1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/COFF.h"
25 #include "llvm/BinaryFormat/Dwarf.h"
26 #include "llvm/CodeGen/AsmPrinter.h"
27 #include "llvm/CodeGen/LexicalScopes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
41 #include "llvm/DebugInfo/CodeView/EnumTables.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/MC/MCAsmInfo.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSectionCOFF.h"
59 #include "llvm/MC/MCStreamer.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/BinaryByteStream.h"
62 #include "llvm/Support/BinaryStreamReader.h"
63 #include "llvm/Support/BinaryStreamWriter.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FormatVariadic.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/SMLoc.h"
72 #include "llvm/Support/ScopedPrinter.h"
73 #include "llvm/Target/TargetLoweringObjectFile.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <iterator>
80 #include <limits>
81 
82 using namespace llvm;
83 using namespace llvm::codeview;
84 
85 namespace {
86 class CVMCAdapter : public CodeViewRecordStreamer {
87 public:
88   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
89       : OS(&OS), TypeTable(TypeTable) {}
90 
91   void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
92 
93   void emitIntValue(uint64_t Value, unsigned Size) override {
94     OS->emitIntValueInHex(Value, Size);
95   }
96 
97   void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
98 
99   void AddComment(const Twine &T) override { OS->AddComment(T); }
100 
101   void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
102 
103   bool isVerboseAsm() override { return OS->isVerboseAsm(); }
104 
105   std::string getTypeName(TypeIndex TI) override {
106     std::string TypeName;
107     if (!TI.isNoneType()) {
108       if (TI.isSimple())
109         TypeName = std::string(TypeIndex::simpleTypeName(TI));
110       else
111         TypeName = std::string(TypeTable.getTypeName(TI));
112     }
113     return TypeName;
114   }
115 
116 private:
117   MCStreamer *OS = nullptr;
118   TypeCollection &TypeTable;
119 };
120 } // namespace
121 
122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
123   switch (Type) {
124   case Triple::ArchType::x86:
125     return CPUType::Pentium3;
126   case Triple::ArchType::x86_64:
127     return CPUType::X64;
128   case Triple::ArchType::thumb:
129     // LLVM currently doesn't support Windows CE and so thumb
130     // here is indiscriminately mapped to ARMNT specifically.
131     return CPUType::ARMNT;
132   case Triple::ArchType::aarch64:
133     return CPUType::ARM64;
134   default:
135     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
136   }
137 }
138 
139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
140     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
141 
142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
143   std::string &Filepath = FileToFilepathMap[File];
144   if (!Filepath.empty())
145     return Filepath;
146 
147   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
148 
149   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
150   // it textually because one of the path components could be a symlink.
151   if (Dir.startswith("/") || Filename.startswith("/")) {
152     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
153       return Filename;
154     Filepath = std::string(Dir);
155     if (Dir.back() != '/')
156       Filepath += '/';
157     Filepath += Filename;
158     return Filepath;
159   }
160 
161   // Clang emits directory and relative filename info into the IR, but CodeView
162   // operates on full paths.  We could change Clang to emit full paths too, but
163   // that would increase the IR size and probably not needed for other users.
164   // For now, just concatenate and canonicalize the path here.
165   if (Filename.find(':') == 1)
166     Filepath = std::string(Filename);
167   else
168     Filepath = (Dir + "\\" + Filename).str();
169 
170   // Canonicalize the path.  We have to do it textually because we may no longer
171   // have access the file in the filesystem.
172   // First, replace all slashes with backslashes.
173   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
174 
175   // Remove all "\.\" with "\".
176   size_t Cursor = 0;
177   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
178     Filepath.erase(Cursor, 2);
179 
180   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
181   // path should be well-formatted, e.g. start with a drive letter, etc.
182   Cursor = 0;
183   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
184     // Something's wrong if the path starts with "\..\", abort.
185     if (Cursor == 0)
186       break;
187 
188     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
189     if (PrevSlash == std::string::npos)
190       // Something's wrong, abort.
191       break;
192 
193     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
194     // The next ".." might be following the one we've just erased.
195     Cursor = PrevSlash;
196   }
197 
198   // Remove all duplicate backslashes.
199   Cursor = 0;
200   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
201     Filepath.erase(Cursor, 1);
202 
203   return Filepath;
204 }
205 
206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
207   StringRef FullPath = getFullFilepath(F);
208   unsigned NextId = FileIdMap.size() + 1;
209   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
210   if (Insertion.second) {
211     // We have to compute the full filepath and emit a .cv_file directive.
212     ArrayRef<uint8_t> ChecksumAsBytes;
213     FileChecksumKind CSKind = FileChecksumKind::None;
214     if (F->getChecksum()) {
215       std::string Checksum = fromHex(F->getChecksum()->Value);
216       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
217       memcpy(CKMem, Checksum.data(), Checksum.size());
218       ChecksumAsBytes = ArrayRef<uint8_t>(
219           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
220       switch (F->getChecksum()->Kind) {
221       case DIFile::CSK_MD5:
222         CSKind = FileChecksumKind::MD5;
223         break;
224       case DIFile::CSK_SHA1:
225         CSKind = FileChecksumKind::SHA1;
226         break;
227       case DIFile::CSK_SHA256:
228         CSKind = FileChecksumKind::SHA256;
229         break;
230       }
231     }
232     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
233                                           static_cast<unsigned>(CSKind));
234     (void)Success;
235     assert(Success && ".cv_file directive failed");
236   }
237   return Insertion.first->second;
238 }
239 
240 CodeViewDebug::InlineSite &
241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
242                              const DISubprogram *Inlinee) {
243   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
244   InlineSite *Site = &SiteInsertion.first->second;
245   if (SiteInsertion.second) {
246     unsigned ParentFuncId = CurFn->FuncId;
247     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
248       ParentFuncId =
249           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
250               .SiteFuncId;
251 
252     Site->SiteFuncId = NextFuncId++;
253     OS.EmitCVInlineSiteIdDirective(
254         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
255         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
256     Site->Inlinee = Inlinee;
257     InlinedSubprograms.insert(Inlinee);
258     getFuncIdForSubprogram(Inlinee);
259   }
260   return *Site;
261 }
262 
263 static StringRef getPrettyScopeName(const DIScope *Scope) {
264   StringRef ScopeName = Scope->getName();
265   if (!ScopeName.empty())
266     return ScopeName;
267 
268   switch (Scope->getTag()) {
269   case dwarf::DW_TAG_enumeration_type:
270   case dwarf::DW_TAG_class_type:
271   case dwarf::DW_TAG_structure_type:
272   case dwarf::DW_TAG_union_type:
273     return "<unnamed-tag>";
274   case dwarf::DW_TAG_namespace:
275     return "`anonymous namespace'";
276   default:
277     return StringRef();
278   }
279 }
280 
281 const DISubprogram *CodeViewDebug::collectParentScopeNames(
282     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
283   const DISubprogram *ClosestSubprogram = nullptr;
284   while (Scope != nullptr) {
285     if (ClosestSubprogram == nullptr)
286       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
287 
288     // If a type appears in a scope chain, make sure it gets emitted. The
289     // frontend will be responsible for deciding if this should be a forward
290     // declaration or a complete type.
291     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
292       DeferredCompleteTypes.push_back(Ty);
293 
294     StringRef ScopeName = getPrettyScopeName(Scope);
295     if (!ScopeName.empty())
296       QualifiedNameComponents.push_back(ScopeName);
297     Scope = Scope->getScope();
298   }
299   return ClosestSubprogram;
300 }
301 
302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
303                                     StringRef TypeName) {
304   std::string FullyQualifiedName;
305   for (StringRef QualifiedNameComponent :
306        llvm::reverse(QualifiedNameComponents)) {
307     FullyQualifiedName.append(std::string(QualifiedNameComponent));
308     FullyQualifiedName.append("::");
309   }
310   FullyQualifiedName.append(std::string(TypeName));
311   return FullyQualifiedName;
312 }
313 
314 struct CodeViewDebug::TypeLoweringScope {
315   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
316   ~TypeLoweringScope() {
317     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
318     // inner TypeLoweringScopes don't attempt to emit deferred types.
319     if (CVD.TypeEmissionLevel == 1)
320       CVD.emitDeferredCompleteTypes();
321     --CVD.TypeEmissionLevel;
322   }
323   CodeViewDebug &CVD;
324 };
325 
326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
327                                                  StringRef Name) {
328   // Ensure types in the scope chain are emitted as soon as possible.
329   // This can create otherwise a situation where S_UDTs are emitted while
330   // looping in emitDebugInfoForUDTs.
331   TypeLoweringScope S(*this);
332   SmallVector<StringRef, 5> QualifiedNameComponents;
333   collectParentScopeNames(Scope, QualifiedNameComponents);
334   return formatNestedName(QualifiedNameComponents, Name);
335 }
336 
337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
338   const DIScope *Scope = Ty->getScope();
339   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
340 }
341 
342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
343   // No scope means global scope and that uses the zero index.
344   if (!Scope || isa<DIFile>(Scope))
345     return TypeIndex();
346 
347   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
348 
349   // Check if we've already translated this scope.
350   auto I = TypeIndices.find({Scope, nullptr});
351   if (I != TypeIndices.end())
352     return I->second;
353 
354   // Build the fully qualified name of the scope.
355   std::string ScopeName = getFullyQualifiedName(Scope);
356   StringIdRecord SID(TypeIndex(), ScopeName);
357   auto TI = TypeTable.writeLeafType(SID);
358   return recordTypeIndexForDINode(Scope, TI);
359 }
360 
361 static StringRef removeTemplateArgs(StringRef Name) {
362   // Remove template args from the display name. Assume that the template args
363   // are the last thing in the name.
364   if (Name.empty() || Name.back() != '>')
365     return Name;
366 
367   int OpenBrackets = 0;
368   for (int i = Name.size() - 1; i >= 0; --i) {
369     if (Name[i] == '>')
370       ++OpenBrackets;
371     else if (Name[i] == '<') {
372       --OpenBrackets;
373       if (OpenBrackets == 0)
374         return Name.substr(0, i);
375     }
376   }
377   return Name;
378 }
379 
380 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
381   assert(SP);
382 
383   // Check if we've already translated this subprogram.
384   auto I = TypeIndices.find({SP, nullptr});
385   if (I != TypeIndices.end())
386     return I->second;
387 
388   // The display name includes function template arguments. Drop them to match
389   // MSVC. We need to have the template arguments in the DISubprogram name
390   // because they are used in other symbol records, such as S_GPROC32_IDs.
391   StringRef DisplayName = removeTemplateArgs(SP->getName());
392 
393   const DIScope *Scope = SP->getScope();
394   TypeIndex TI;
395   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
396     // If the scope is a DICompositeType, then this must be a method. Member
397     // function types take some special handling, and require access to the
398     // subprogram.
399     TypeIndex ClassType = getTypeIndex(Class);
400     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
401                                DisplayName);
402     TI = TypeTable.writeLeafType(MFuncId);
403   } else {
404     // Otherwise, this must be a free function.
405     TypeIndex ParentScope = getScopeIndex(Scope);
406     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
407     TI = TypeTable.writeLeafType(FuncId);
408   }
409 
410   return recordTypeIndexForDINode(SP, TI);
411 }
412 
413 static bool isNonTrivial(const DICompositeType *DCTy) {
414   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
415 }
416 
417 static FunctionOptions
418 getFunctionOptions(const DISubroutineType *Ty,
419                    const DICompositeType *ClassTy = nullptr,
420                    StringRef SPName = StringRef("")) {
421   FunctionOptions FO = FunctionOptions::None;
422   const DIType *ReturnTy = nullptr;
423   if (auto TypeArray = Ty->getTypeArray()) {
424     if (TypeArray.size())
425       ReturnTy = TypeArray[0];
426   }
427 
428   // Add CxxReturnUdt option to functions that return nontrivial record types
429   // or methods that return record types.
430   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
431     if (isNonTrivial(ReturnDCTy) || ClassTy)
432       FO |= FunctionOptions::CxxReturnUdt;
433 
434   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
435   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
436     FO |= FunctionOptions::Constructor;
437 
438   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
439 
440   }
441   return FO;
442 }
443 
444 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
445                                                const DICompositeType *Class) {
446   // Always use the method declaration as the key for the function type. The
447   // method declaration contains the this adjustment.
448   if (SP->getDeclaration())
449     SP = SP->getDeclaration();
450   assert(!SP->getDeclaration() && "should use declaration as key");
451 
452   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
453   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
454   auto I = TypeIndices.find({SP, Class});
455   if (I != TypeIndices.end())
456     return I->second;
457 
458   // Make sure complete type info for the class is emitted *after* the member
459   // function type, as the complete class type is likely to reference this
460   // member function type.
461   TypeLoweringScope S(*this);
462   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
463 
464   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
465   TypeIndex TI = lowerTypeMemberFunction(
466       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
467   return recordTypeIndexForDINode(SP, TI, Class);
468 }
469 
470 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
471                                                   TypeIndex TI,
472                                                   const DIType *ClassTy) {
473   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
474   (void)InsertResult;
475   assert(InsertResult.second && "DINode was already assigned a type index");
476   return TI;
477 }
478 
479 unsigned CodeViewDebug::getPointerSizeInBytes() {
480   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
481 }
482 
483 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
484                                         const LexicalScope *LS) {
485   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
486     // This variable was inlined. Associate it with the InlineSite.
487     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
488     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
489     Site.InlinedLocals.emplace_back(Var);
490   } else {
491     // This variable goes into the corresponding lexical scope.
492     ScopeVariables[LS].emplace_back(Var);
493   }
494 }
495 
496 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
497                                const DILocation *Loc) {
498   if (!llvm::is_contained(Locs, Loc))
499     Locs.push_back(Loc);
500 }
501 
502 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
503                                         const MachineFunction *MF) {
504   // Skip this instruction if it has the same location as the previous one.
505   if (!DL || DL == PrevInstLoc)
506     return;
507 
508   const DIScope *Scope = DL.get()->getScope();
509   if (!Scope)
510     return;
511 
512   // Skip this line if it is longer than the maximum we can record.
513   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
514   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
515       LI.isNeverStepInto())
516     return;
517 
518   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
519   if (CI.getStartColumn() != DL.getCol())
520     return;
521 
522   if (!CurFn->HaveLineInfo)
523     CurFn->HaveLineInfo = true;
524   unsigned FileId = 0;
525   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
526     FileId = CurFn->LastFileId;
527   else
528     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
529   PrevInstLoc = DL;
530 
531   unsigned FuncId = CurFn->FuncId;
532   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
533     const DILocation *Loc = DL.get();
534 
535     // If this location was actually inlined from somewhere else, give it the ID
536     // of the inline call site.
537     FuncId =
538         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
539 
540     // Ensure we have links in the tree of inline call sites.
541     bool FirstLoc = true;
542     while ((SiteLoc = Loc->getInlinedAt())) {
543       InlineSite &Site =
544           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
545       if (!FirstLoc)
546         addLocIfNotPresent(Site.ChildSites, Loc);
547       FirstLoc = false;
548       Loc = SiteLoc;
549     }
550     addLocIfNotPresent(CurFn->ChildSites, Loc);
551   }
552 
553   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
554                         /*PrologueEnd=*/false, /*IsStmt=*/false,
555                         DL->getFilename(), SMLoc());
556 }
557 
558 void CodeViewDebug::emitCodeViewMagicVersion() {
559   OS.emitValueToAlignment(4);
560   OS.AddComment("Debug section magic");
561   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
562 }
563 
564 void CodeViewDebug::beginModule(Module *M) {
565   // If module doesn't have named metadata anchors or COFF debug section
566   // is not available, skip any debug info related stuff.
567   if (!M->getNamedMetadata("llvm.dbg.cu") ||
568       !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
569     Asm = nullptr;
570     return;
571   }
572   // Tell MMI that we have and need debug info.
573   MMI->setDebugInfoAvailability(true);
574 
575   TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
576 
577   collectGlobalVariableInfo();
578 
579   // Check if we should emit type record hashes.
580   ConstantInt *GH =
581       mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
582   EmitDebugGlobalHashes = GH && !GH->isZero();
583 }
584 
585 void CodeViewDebug::endModule() {
586   if (!Asm || !MMI->hasDebugInfo())
587     return;
588 
589   // The COFF .debug$S section consists of several subsections, each starting
590   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
591   // of the payload followed by the payload itself.  The subsections are 4-byte
592   // aligned.
593 
594   // Use the generic .debug$S section, and make a subsection for all the inlined
595   // subprograms.
596   switchToDebugSectionForSymbol(nullptr);
597 
598   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
599   emitCompilerInformation();
600   endCVSubsection(CompilerInfo);
601 
602   emitInlineeLinesSubsection();
603 
604   // Emit per-function debug information.
605   for (auto &P : FnDebugInfo)
606     if (!P.first->isDeclarationForLinker())
607       emitDebugInfoForFunction(P.first, *P.second);
608 
609   // Get types used by globals without emitting anything.
610   // This is meant to collect all static const data members so they can be
611   // emitted as globals.
612   collectDebugInfoForGlobals();
613 
614   // Emit retained types.
615   emitDebugInfoForRetainedTypes();
616 
617   // Emit global variable debug information.
618   setCurrentSubprogram(nullptr);
619   emitDebugInfoForGlobals();
620 
621   // Switch back to the generic .debug$S section after potentially processing
622   // comdat symbol sections.
623   switchToDebugSectionForSymbol(nullptr);
624 
625   // Emit UDT records for any types used by global variables.
626   if (!GlobalUDTs.empty()) {
627     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
628     emitDebugInfoForUDTs(GlobalUDTs);
629     endCVSubsection(SymbolsEnd);
630   }
631 
632   // This subsection holds a file index to offset in string table table.
633   OS.AddComment("File index to string table offset subsection");
634   OS.emitCVFileChecksumsDirective();
635 
636   // This subsection holds the string table.
637   OS.AddComment("String table");
638   OS.emitCVStringTableDirective();
639 
640   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
641   // subsection in the generic .debug$S section at the end. There is no
642   // particular reason for this ordering other than to match MSVC.
643   emitBuildInfo();
644 
645   // Emit type information and hashes last, so that any types we translate while
646   // emitting function info are included.
647   emitTypeInformation();
648 
649   if (EmitDebugGlobalHashes)
650     emitTypeGlobalHashes();
651 
652   clear();
653 }
654 
655 static void
656 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
657                              unsigned MaxFixedRecordLength = 0xF00) {
658   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
659   // after a fixed length portion of the record. The fixed length portion should
660   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
661   // overall record size is less than the maximum allowed.
662   SmallString<32> NullTerminatedString(
663       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
664   NullTerminatedString.push_back('\0');
665   OS.emitBytes(NullTerminatedString);
666 }
667 
668 void CodeViewDebug::emitTypeInformation() {
669   if (TypeTable.empty())
670     return;
671 
672   // Start the .debug$T or .debug$P section with 0x4.
673   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
674   emitCodeViewMagicVersion();
675 
676   TypeTableCollection Table(TypeTable.records());
677   TypeVisitorCallbackPipeline Pipeline;
678 
679   // To emit type record using Codeview MCStreamer adapter
680   CVMCAdapter CVMCOS(OS, Table);
681   TypeRecordMapping typeMapping(CVMCOS);
682   Pipeline.addCallbackToPipeline(typeMapping);
683 
684   Optional<TypeIndex> B = Table.getFirst();
685   while (B) {
686     // This will fail if the record data is invalid.
687     CVType Record = Table.getType(*B);
688 
689     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
690 
691     if (E) {
692       logAllUnhandledErrors(std::move(E), errs(), "error: ");
693       llvm_unreachable("produced malformed type record");
694     }
695 
696     B = Table.getNext(*B);
697   }
698 }
699 
700 void CodeViewDebug::emitTypeGlobalHashes() {
701   if (TypeTable.empty())
702     return;
703 
704   // Start the .debug$H section with the version and hash algorithm, currently
705   // hardcoded to version 0, SHA1.
706   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
707 
708   OS.emitValueToAlignment(4);
709   OS.AddComment("Magic");
710   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
711   OS.AddComment("Section Version");
712   OS.emitInt16(0);
713   OS.AddComment("Hash Algorithm");
714   OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
715 
716   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
717   for (const auto &GHR : TypeTable.hashes()) {
718     if (OS.isVerboseAsm()) {
719       // Emit an EOL-comment describing which TypeIndex this hash corresponds
720       // to, as well as the stringified SHA1 hash.
721       SmallString<32> Comment;
722       raw_svector_ostream CommentOS(Comment);
723       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
724       OS.AddComment(Comment);
725       ++TI;
726     }
727     assert(GHR.Hash.size() == 8);
728     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
729                 GHR.Hash.size());
730     OS.emitBinaryData(S);
731   }
732 }
733 
734 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
735   switch (DWLang) {
736   case dwarf::DW_LANG_C:
737   case dwarf::DW_LANG_C89:
738   case dwarf::DW_LANG_C99:
739   case dwarf::DW_LANG_C11:
740   case dwarf::DW_LANG_ObjC:
741     return SourceLanguage::C;
742   case dwarf::DW_LANG_C_plus_plus:
743   case dwarf::DW_LANG_C_plus_plus_03:
744   case dwarf::DW_LANG_C_plus_plus_11:
745   case dwarf::DW_LANG_C_plus_plus_14:
746     return SourceLanguage::Cpp;
747   case dwarf::DW_LANG_Fortran77:
748   case dwarf::DW_LANG_Fortran90:
749   case dwarf::DW_LANG_Fortran95:
750   case dwarf::DW_LANG_Fortran03:
751   case dwarf::DW_LANG_Fortran08:
752     return SourceLanguage::Fortran;
753   case dwarf::DW_LANG_Pascal83:
754     return SourceLanguage::Pascal;
755   case dwarf::DW_LANG_Cobol74:
756   case dwarf::DW_LANG_Cobol85:
757     return SourceLanguage::Cobol;
758   case dwarf::DW_LANG_Java:
759     return SourceLanguage::Java;
760   case dwarf::DW_LANG_D:
761     return SourceLanguage::D;
762   case dwarf::DW_LANG_Swift:
763     return SourceLanguage::Swift;
764   default:
765     // There's no CodeView representation for this language, and CV doesn't
766     // have an "unknown" option for the language field, so we'll use MASM,
767     // as it's very low level.
768     return SourceLanguage::Masm;
769   }
770 }
771 
772 namespace {
773 struct Version {
774   int Part[4];
775 };
776 } // end anonymous namespace
777 
778 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
779 // the version number.
780 static Version parseVersion(StringRef Name) {
781   Version V = {{0}};
782   int N = 0;
783   for (const char C : Name) {
784     if (isdigit(C)) {
785       V.Part[N] *= 10;
786       V.Part[N] += C - '0';
787     } else if (C == '.') {
788       ++N;
789       if (N >= 4)
790         return V;
791     } else if (N > 0)
792       return V;
793   }
794   return V;
795 }
796 
797 void CodeViewDebug::emitCompilerInformation() {
798   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
799   uint32_t Flags = 0;
800 
801   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
802   const MDNode *Node = *CUs->operands().begin();
803   const auto *CU = cast<DICompileUnit>(Node);
804 
805   // The low byte of the flags indicates the source language.
806   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
807   // TODO:  Figure out which other flags need to be set.
808   if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
809     Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
810   }
811 
812   OS.AddComment("Flags and language");
813   OS.emitInt32(Flags);
814 
815   OS.AddComment("CPUType");
816   OS.emitInt16(static_cast<uint64_t>(TheCPU));
817 
818   StringRef CompilerVersion = CU->getProducer();
819   Version FrontVer = parseVersion(CompilerVersion);
820   OS.AddComment("Frontend version");
821   for (int N : FrontVer.Part)
822     OS.emitInt16(N);
823 
824   // Some Microsoft tools, like Binscope, expect a backend version number of at
825   // least 8.something, so we'll coerce the LLVM version into a form that
826   // guarantees it'll be big enough without really lying about the version.
827   int Major = 1000 * LLVM_VERSION_MAJOR +
828               10 * LLVM_VERSION_MINOR +
829               LLVM_VERSION_PATCH;
830   // Clamp it for builds that use unusually large version numbers.
831   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
832   Version BackVer = {{ Major, 0, 0, 0 }};
833   OS.AddComment("Backend version");
834   for (int N : BackVer.Part)
835     OS.emitInt16(N);
836 
837   OS.AddComment("Null-terminated compiler version string");
838   emitNullTerminatedSymbolName(OS, CompilerVersion);
839 
840   endSymbolRecord(CompilerEnd);
841 }
842 
843 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
844                                     StringRef S) {
845   StringIdRecord SIR(TypeIndex(0x0), S);
846   return TypeTable.writeLeafType(SIR);
847 }
848 
849 void CodeViewDebug::emitBuildInfo() {
850   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
851   // build info. The known prefix is:
852   // - Absolute path of current directory
853   // - Compiler path
854   // - Main source file path, relative to CWD or absolute
855   // - Type server PDB file
856   // - Canonical compiler command line
857   // If frontend and backend compilation are separated (think llc or LTO), it's
858   // not clear if the compiler path should refer to the executable for the
859   // frontend or the backend. Leave it blank for now.
860   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
861   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
862   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
863   const auto *CU = cast<DICompileUnit>(Node);
864   const DIFile *MainSourceFile = CU->getFile();
865   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
866       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
867   BuildInfoArgs[BuildInfoRecord::SourceFile] =
868       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
869   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
870   // we implement /Zi type servers.
871   BuildInfoRecord BIR(BuildInfoArgs);
872   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
873 
874   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
875   // from the module symbols into the type stream.
876   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
877   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
878   OS.AddComment("LF_BUILDINFO index");
879   OS.emitInt32(BuildInfoIndex.getIndex());
880   endSymbolRecord(BIEnd);
881   endCVSubsection(BISubsecEnd);
882 }
883 
884 void CodeViewDebug::emitInlineeLinesSubsection() {
885   if (InlinedSubprograms.empty())
886     return;
887 
888   OS.AddComment("Inlinee lines subsection");
889   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
890 
891   // We emit the checksum info for files.  This is used by debuggers to
892   // determine if a pdb matches the source before loading it.  Visual Studio,
893   // for instance, will display a warning that the breakpoints are not valid if
894   // the pdb does not match the source.
895   OS.AddComment("Inlinee lines signature");
896   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
897 
898   for (const DISubprogram *SP : InlinedSubprograms) {
899     assert(TypeIndices.count({SP, nullptr}));
900     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
901 
902     OS.AddBlankLine();
903     unsigned FileId = maybeRecordFile(SP->getFile());
904     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
905                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
906     OS.AddBlankLine();
907     OS.AddComment("Type index of inlined function");
908     OS.emitInt32(InlineeIdx.getIndex());
909     OS.AddComment("Offset into filechecksum table");
910     OS.emitCVFileChecksumOffsetDirective(FileId);
911     OS.AddComment("Starting line number");
912     OS.emitInt32(SP->getLine());
913   }
914 
915   endCVSubsection(InlineEnd);
916 }
917 
918 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
919                                         const DILocation *InlinedAt,
920                                         const InlineSite &Site) {
921   assert(TypeIndices.count({Site.Inlinee, nullptr}));
922   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
923 
924   // SymbolRecord
925   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
926 
927   OS.AddComment("PtrParent");
928   OS.emitInt32(0);
929   OS.AddComment("PtrEnd");
930   OS.emitInt32(0);
931   OS.AddComment("Inlinee type index");
932   OS.emitInt32(InlineeIdx.getIndex());
933 
934   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
935   unsigned StartLineNum = Site.Inlinee->getLine();
936 
937   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
938                                     FI.Begin, FI.End);
939 
940   endSymbolRecord(InlineEnd);
941 
942   emitLocalVariableList(FI, Site.InlinedLocals);
943 
944   // Recurse on child inlined call sites before closing the scope.
945   for (const DILocation *ChildSite : Site.ChildSites) {
946     auto I = FI.InlineSites.find(ChildSite);
947     assert(I != FI.InlineSites.end() &&
948            "child site not in function inline site map");
949     emitInlinedCallSite(FI, ChildSite, I->second);
950   }
951 
952   // Close the scope.
953   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
954 }
955 
956 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
957   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
958   // comdat key. A section may be comdat because of -ffunction-sections or
959   // because it is comdat in the IR.
960   MCSectionCOFF *GVSec =
961       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
962   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
963 
964   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
965       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
966   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
967 
968   OS.SwitchSection(DebugSec);
969 
970   // Emit the magic version number if this is the first time we've switched to
971   // this section.
972   if (ComdatDebugSections.insert(DebugSec).second)
973     emitCodeViewMagicVersion();
974 }
975 
976 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
977 // The only supported thunk ordinal is currently the standard type.
978 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
979                                           FunctionInfo &FI,
980                                           const MCSymbol *Fn) {
981   std::string FuncName =
982       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
983   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
984 
985   OS.AddComment("Symbol subsection for " + Twine(FuncName));
986   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
987 
988   // Emit S_THUNK32
989   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
990   OS.AddComment("PtrParent");
991   OS.emitInt32(0);
992   OS.AddComment("PtrEnd");
993   OS.emitInt32(0);
994   OS.AddComment("PtrNext");
995   OS.emitInt32(0);
996   OS.AddComment("Thunk section relative address");
997   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
998   OS.AddComment("Thunk section index");
999   OS.EmitCOFFSectionIndex(Fn);
1000   OS.AddComment("Code size");
1001   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1002   OS.AddComment("Ordinal");
1003   OS.emitInt8(unsigned(ordinal));
1004   OS.AddComment("Function name");
1005   emitNullTerminatedSymbolName(OS, FuncName);
1006   // Additional fields specific to the thunk ordinal would go here.
1007   endSymbolRecord(ThunkRecordEnd);
1008 
1009   // Local variables/inlined routines are purposely omitted here.  The point of
1010   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1011 
1012   // Emit S_PROC_ID_END
1013   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1014 
1015   endCVSubsection(SymbolsEnd);
1016 }
1017 
1018 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1019                                              FunctionInfo &FI) {
1020   // For each function there is a separate subsection which holds the PC to
1021   // file:line table.
1022   const MCSymbol *Fn = Asm->getSymbol(GV);
1023   assert(Fn);
1024 
1025   // Switch to the to a comdat section, if appropriate.
1026   switchToDebugSectionForSymbol(Fn);
1027 
1028   std::string FuncName;
1029   auto *SP = GV->getSubprogram();
1030   assert(SP);
1031   setCurrentSubprogram(SP);
1032 
1033   if (SP->isThunk()) {
1034     emitDebugInfoForThunk(GV, FI, Fn);
1035     return;
1036   }
1037 
1038   // If we have a display name, build the fully qualified name by walking the
1039   // chain of scopes.
1040   if (!SP->getName().empty())
1041     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1042 
1043   // If our DISubprogram name is empty, use the mangled name.
1044   if (FuncName.empty())
1045     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1046 
1047   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1048   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1049     OS.EmitCVFPOData(Fn);
1050 
1051   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1052   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1053   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1054   {
1055     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1056                                                 : SymbolKind::S_GPROC32_ID;
1057     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1058 
1059     // These fields are filled in by tools like CVPACK which run after the fact.
1060     OS.AddComment("PtrParent");
1061     OS.emitInt32(0);
1062     OS.AddComment("PtrEnd");
1063     OS.emitInt32(0);
1064     OS.AddComment("PtrNext");
1065     OS.emitInt32(0);
1066     // This is the important bit that tells the debugger where the function
1067     // code is located and what's its size:
1068     OS.AddComment("Code size");
1069     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1070     OS.AddComment("Offset after prologue");
1071     OS.emitInt32(0);
1072     OS.AddComment("Offset before epilogue");
1073     OS.emitInt32(0);
1074     OS.AddComment("Function type index");
1075     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1076     OS.AddComment("Function section relative address");
1077     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1078     OS.AddComment("Function section index");
1079     OS.EmitCOFFSectionIndex(Fn);
1080     OS.AddComment("Flags");
1081     OS.emitInt8(0);
1082     // Emit the function display name as a null-terminated string.
1083     OS.AddComment("Function name");
1084     // Truncate the name so we won't overflow the record length field.
1085     emitNullTerminatedSymbolName(OS, FuncName);
1086     endSymbolRecord(ProcRecordEnd);
1087 
1088     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1089     // Subtract out the CSR size since MSVC excludes that and we include it.
1090     OS.AddComment("FrameSize");
1091     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1092     OS.AddComment("Padding");
1093     OS.emitInt32(0);
1094     OS.AddComment("Offset of padding");
1095     OS.emitInt32(0);
1096     OS.AddComment("Bytes of callee saved registers");
1097     OS.emitInt32(FI.CSRSize);
1098     OS.AddComment("Exception handler offset");
1099     OS.emitInt32(0);
1100     OS.AddComment("Exception handler section");
1101     OS.emitInt16(0);
1102     OS.AddComment("Flags (defines frame register)");
1103     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1104     endSymbolRecord(FrameProcEnd);
1105 
1106     emitLocalVariableList(FI, FI.Locals);
1107     emitGlobalVariableList(FI.Globals);
1108     emitLexicalBlockList(FI.ChildBlocks, FI);
1109 
1110     // Emit inlined call site information. Only emit functions inlined directly
1111     // into the parent function. We'll emit the other sites recursively as part
1112     // of their parent inline site.
1113     for (const DILocation *InlinedAt : FI.ChildSites) {
1114       auto I = FI.InlineSites.find(InlinedAt);
1115       assert(I != FI.InlineSites.end() &&
1116              "child site not in function inline site map");
1117       emitInlinedCallSite(FI, InlinedAt, I->second);
1118     }
1119 
1120     for (auto Annot : FI.Annotations) {
1121       MCSymbol *Label = Annot.first;
1122       MDTuple *Strs = cast<MDTuple>(Annot.second);
1123       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1124       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1125       // FIXME: Make sure we don't overflow the max record size.
1126       OS.EmitCOFFSectionIndex(Label);
1127       OS.emitInt16(Strs->getNumOperands());
1128       for (Metadata *MD : Strs->operands()) {
1129         // MDStrings are null terminated, so we can do EmitBytes and get the
1130         // nice .asciz directive.
1131         StringRef Str = cast<MDString>(MD)->getString();
1132         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1133         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1134       }
1135       endSymbolRecord(AnnotEnd);
1136     }
1137 
1138     for (auto HeapAllocSite : FI.HeapAllocSites) {
1139       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1140       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1141       const DIType *DITy = std::get<2>(HeapAllocSite);
1142       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1143       OS.AddComment("Call site offset");
1144       OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1145       OS.AddComment("Call site section index");
1146       OS.EmitCOFFSectionIndex(BeginLabel);
1147       OS.AddComment("Call instruction length");
1148       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1149       OS.AddComment("Type index");
1150       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1151       endSymbolRecord(HeapAllocEnd);
1152     }
1153 
1154     if (SP != nullptr)
1155       emitDebugInfoForUDTs(LocalUDTs);
1156 
1157     // We're done with this function.
1158     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1159   }
1160   endCVSubsection(SymbolsEnd);
1161 
1162   // We have an assembler directive that takes care of the whole line table.
1163   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1164 }
1165 
1166 CodeViewDebug::LocalVarDefRange
1167 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1168   LocalVarDefRange DR;
1169   DR.InMemory = -1;
1170   DR.DataOffset = Offset;
1171   assert(DR.DataOffset == Offset && "truncation");
1172   DR.IsSubfield = 0;
1173   DR.StructOffset = 0;
1174   DR.CVRegister = CVRegister;
1175   return DR;
1176 }
1177 
1178 void CodeViewDebug::collectVariableInfoFromMFTable(
1179     DenseSet<InlinedEntity> &Processed) {
1180   const MachineFunction &MF = *Asm->MF;
1181   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1182   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1183   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1184 
1185   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1186     if (!VI.Var)
1187       continue;
1188     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1189            "Expected inlined-at fields to agree");
1190 
1191     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1192     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1193 
1194     // If variable scope is not found then skip this variable.
1195     if (!Scope)
1196       continue;
1197 
1198     // If the variable has an attached offset expression, extract it.
1199     // FIXME: Try to handle DW_OP_deref as well.
1200     int64_t ExprOffset = 0;
1201     bool Deref = false;
1202     if (VI.Expr) {
1203       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1204       if (VI.Expr->getNumElements() == 1 &&
1205           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1206         Deref = true;
1207       else if (!VI.Expr->extractIfOffset(ExprOffset))
1208         continue;
1209     }
1210 
1211     // Get the frame register used and the offset.
1212     Register FrameReg;
1213     StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1214     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1215 
1216     assert(!FrameOffset.getScalable() &&
1217            "Frame offsets with a scalable component are not supported");
1218 
1219     // Calculate the label ranges.
1220     LocalVarDefRange DefRange =
1221         createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1222 
1223     for (const InsnRange &Range : Scope->getRanges()) {
1224       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1225       const MCSymbol *End = getLabelAfterInsn(Range.second);
1226       End = End ? End : Asm->getFunctionEnd();
1227       DefRange.Ranges.emplace_back(Begin, End);
1228     }
1229 
1230     LocalVariable Var;
1231     Var.DIVar = VI.Var;
1232     Var.DefRanges.emplace_back(std::move(DefRange));
1233     if (Deref)
1234       Var.UseReferenceType = true;
1235 
1236     recordLocalVariable(std::move(Var), Scope);
1237   }
1238 }
1239 
1240 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1241   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1242 }
1243 
1244 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1245   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1246 }
1247 
1248 void CodeViewDebug::calculateRanges(
1249     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1250   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1251 
1252   // Calculate the definition ranges.
1253   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1254     const auto &Entry = *I;
1255     if (!Entry.isDbgValue())
1256       continue;
1257     const MachineInstr *DVInst = Entry.getInstr();
1258     assert(DVInst->isDebugValue() && "Invalid History entry");
1259     // FIXME: Find a way to represent constant variables, since they are
1260     // relatively common.
1261     Optional<DbgVariableLocation> Location =
1262         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1263     if (!Location)
1264       continue;
1265 
1266     // CodeView can only express variables in register and variables in memory
1267     // at a constant offset from a register. However, for variables passed
1268     // indirectly by pointer, it is common for that pointer to be spilled to a
1269     // stack location. For the special case of one offseted load followed by a
1270     // zero offset load (a pointer spilled to the stack), we change the type of
1271     // the local variable from a value type to a reference type. This tricks the
1272     // debugger into doing the load for us.
1273     if (Var.UseReferenceType) {
1274       // We're using a reference type. Drop the last zero offset load.
1275       if (canUseReferenceType(*Location))
1276         Location->LoadChain.pop_back();
1277       else
1278         continue;
1279     } else if (needsReferenceType(*Location)) {
1280       // This location can't be expressed without switching to a reference type.
1281       // Start over using that.
1282       Var.UseReferenceType = true;
1283       Var.DefRanges.clear();
1284       calculateRanges(Var, Entries);
1285       return;
1286     }
1287 
1288     // We can only handle a register or an offseted load of a register.
1289     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1290       continue;
1291     {
1292       LocalVarDefRange DR;
1293       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1294       DR.InMemory = !Location->LoadChain.empty();
1295       DR.DataOffset =
1296           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1297       if (Location->FragmentInfo) {
1298         DR.IsSubfield = true;
1299         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1300       } else {
1301         DR.IsSubfield = false;
1302         DR.StructOffset = 0;
1303       }
1304 
1305       if (Var.DefRanges.empty() ||
1306           Var.DefRanges.back().isDifferentLocation(DR)) {
1307         Var.DefRanges.emplace_back(std::move(DR));
1308       }
1309     }
1310 
1311     // Compute the label range.
1312     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1313     const MCSymbol *End;
1314     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1315       auto &EndingEntry = Entries[Entry.getEndIndex()];
1316       End = EndingEntry.isDbgValue()
1317                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1318                 : getLabelAfterInsn(EndingEntry.getInstr());
1319     } else
1320       End = Asm->getFunctionEnd();
1321 
1322     // If the last range end is our begin, just extend the last range.
1323     // Otherwise make a new range.
1324     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1325         Var.DefRanges.back().Ranges;
1326     if (!R.empty() && R.back().second == Begin)
1327       R.back().second = End;
1328     else
1329       R.emplace_back(Begin, End);
1330 
1331     // FIXME: Do more range combining.
1332   }
1333 }
1334 
1335 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1336   DenseSet<InlinedEntity> Processed;
1337   // Grab the variable info that was squirreled away in the MMI side-table.
1338   collectVariableInfoFromMFTable(Processed);
1339 
1340   for (const auto &I : DbgValues) {
1341     InlinedEntity IV = I.first;
1342     if (Processed.count(IV))
1343       continue;
1344     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1345     const DILocation *InlinedAt = IV.second;
1346 
1347     // Instruction ranges, specifying where IV is accessible.
1348     const auto &Entries = I.second;
1349 
1350     LexicalScope *Scope = nullptr;
1351     if (InlinedAt)
1352       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1353     else
1354       Scope = LScopes.findLexicalScope(DIVar->getScope());
1355     // If variable scope is not found then skip this variable.
1356     if (!Scope)
1357       continue;
1358 
1359     LocalVariable Var;
1360     Var.DIVar = DIVar;
1361 
1362     calculateRanges(Var, Entries);
1363     recordLocalVariable(std::move(Var), Scope);
1364   }
1365 }
1366 
1367 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1368   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1369   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1370   const MachineFrameInfo &MFI = MF->getFrameInfo();
1371   const Function &GV = MF->getFunction();
1372   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1373   assert(Insertion.second && "function already has info");
1374   CurFn = Insertion.first->second.get();
1375   CurFn->FuncId = NextFuncId++;
1376   CurFn->Begin = Asm->getFunctionBegin();
1377 
1378   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1379   // callee-saved registers were used. For targets that don't use a PUSH
1380   // instruction (AArch64), this will be zero.
1381   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1382   CurFn->FrameSize = MFI.getStackSize();
1383   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1384   CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1385 
1386   // For this function S_FRAMEPROC record, figure out which codeview register
1387   // will be the frame pointer.
1388   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1389   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1390   if (CurFn->FrameSize > 0) {
1391     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1392       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1393       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1394     } else {
1395       // If there is an FP, parameters are always relative to it.
1396       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1397       if (CurFn->HasStackRealignment) {
1398         // If the stack needs realignment, locals are relative to SP or VFRAME.
1399         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1400       } else {
1401         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1402         // other stack adjustments.
1403         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1404       }
1405     }
1406   }
1407 
1408   // Compute other frame procedure options.
1409   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1410   if (MFI.hasVarSizedObjects())
1411     FPO |= FrameProcedureOptions::HasAlloca;
1412   if (MF->exposesReturnsTwice())
1413     FPO |= FrameProcedureOptions::HasSetJmp;
1414   // FIXME: Set HasLongJmp if we ever track that info.
1415   if (MF->hasInlineAsm())
1416     FPO |= FrameProcedureOptions::HasInlineAssembly;
1417   if (GV.hasPersonalityFn()) {
1418     if (isAsynchronousEHPersonality(
1419             classifyEHPersonality(GV.getPersonalityFn())))
1420       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1421     else
1422       FPO |= FrameProcedureOptions::HasExceptionHandling;
1423   }
1424   if (GV.hasFnAttribute(Attribute::InlineHint))
1425     FPO |= FrameProcedureOptions::MarkedInline;
1426   if (GV.hasFnAttribute(Attribute::Naked))
1427     FPO |= FrameProcedureOptions::Naked;
1428   if (MFI.hasStackProtectorIndex())
1429     FPO |= FrameProcedureOptions::SecurityChecks;
1430   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1431   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1432   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1433       !GV.hasOptSize() && !GV.hasOptNone())
1434     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1435   if (GV.hasProfileData()) {
1436     FPO |= FrameProcedureOptions::ValidProfileCounts;
1437     FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1438   }
1439   // FIXME: Set GuardCfg when it is implemented.
1440   CurFn->FrameProcOpts = FPO;
1441 
1442   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1443 
1444   // Find the end of the function prolog.  First known non-DBG_VALUE and
1445   // non-frame setup location marks the beginning of the function body.
1446   // FIXME: is there a simpler a way to do this? Can we just search
1447   // for the first instruction of the function, not the last of the prolog?
1448   DebugLoc PrologEndLoc;
1449   bool EmptyPrologue = true;
1450   for (const auto &MBB : *MF) {
1451     for (const auto &MI : MBB) {
1452       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1453           MI.getDebugLoc()) {
1454         PrologEndLoc = MI.getDebugLoc();
1455         break;
1456       } else if (!MI.isMetaInstruction()) {
1457         EmptyPrologue = false;
1458       }
1459     }
1460   }
1461 
1462   // Record beginning of function if we have a non-empty prologue.
1463   if (PrologEndLoc && !EmptyPrologue) {
1464     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1465     maybeRecordLocation(FnStartDL, MF);
1466   }
1467 
1468   // Find heap alloc sites and emit labels around them.
1469   for (const auto &MBB : *MF) {
1470     for (const auto &MI : MBB) {
1471       if (MI.getHeapAllocMarker()) {
1472         requestLabelBeforeInsn(&MI);
1473         requestLabelAfterInsn(&MI);
1474       }
1475     }
1476   }
1477 }
1478 
1479 static bool shouldEmitUdt(const DIType *T) {
1480   if (!T)
1481     return false;
1482 
1483   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1484   if (T->getTag() == dwarf::DW_TAG_typedef) {
1485     if (DIScope *Scope = T->getScope()) {
1486       switch (Scope->getTag()) {
1487       case dwarf::DW_TAG_structure_type:
1488       case dwarf::DW_TAG_class_type:
1489       case dwarf::DW_TAG_union_type:
1490         return false;
1491       default:
1492           // do nothing.
1493           ;
1494       }
1495     }
1496   }
1497 
1498   while (true) {
1499     if (!T || T->isForwardDecl())
1500       return false;
1501 
1502     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1503     if (!DT)
1504       return true;
1505     T = DT->getBaseType();
1506   }
1507   return true;
1508 }
1509 
1510 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1511   // Don't record empty UDTs.
1512   if (Ty->getName().empty())
1513     return;
1514   if (!shouldEmitUdt(Ty))
1515     return;
1516 
1517   SmallVector<StringRef, 5> ParentScopeNames;
1518   const DISubprogram *ClosestSubprogram =
1519       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1520 
1521   std::string FullyQualifiedName =
1522       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1523 
1524   if (ClosestSubprogram == nullptr) {
1525     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1526   } else if (ClosestSubprogram == CurrentSubprogram) {
1527     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1528   }
1529 
1530   // TODO: What if the ClosestSubprogram is neither null or the current
1531   // subprogram?  Currently, the UDT just gets dropped on the floor.
1532   //
1533   // The current behavior is not desirable.  To get maximal fidelity, we would
1534   // need to perform all type translation before beginning emission of .debug$S
1535   // and then make LocalUDTs a member of FunctionInfo
1536 }
1537 
1538 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1539   // Generic dispatch for lowering an unknown type.
1540   switch (Ty->getTag()) {
1541   case dwarf::DW_TAG_array_type:
1542     return lowerTypeArray(cast<DICompositeType>(Ty));
1543   case dwarf::DW_TAG_typedef:
1544     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1545   case dwarf::DW_TAG_base_type:
1546     return lowerTypeBasic(cast<DIBasicType>(Ty));
1547   case dwarf::DW_TAG_pointer_type:
1548     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1549       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1550     LLVM_FALLTHROUGH;
1551   case dwarf::DW_TAG_reference_type:
1552   case dwarf::DW_TAG_rvalue_reference_type:
1553     return lowerTypePointer(cast<DIDerivedType>(Ty));
1554   case dwarf::DW_TAG_ptr_to_member_type:
1555     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1556   case dwarf::DW_TAG_restrict_type:
1557   case dwarf::DW_TAG_const_type:
1558   case dwarf::DW_TAG_volatile_type:
1559   // TODO: add support for DW_TAG_atomic_type here
1560     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1561   case dwarf::DW_TAG_subroutine_type:
1562     if (ClassTy) {
1563       // The member function type of a member function pointer has no
1564       // ThisAdjustment.
1565       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1566                                      /*ThisAdjustment=*/0,
1567                                      /*IsStaticMethod=*/false);
1568     }
1569     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1570   case dwarf::DW_TAG_enumeration_type:
1571     return lowerTypeEnum(cast<DICompositeType>(Ty));
1572   case dwarf::DW_TAG_class_type:
1573   case dwarf::DW_TAG_structure_type:
1574     return lowerTypeClass(cast<DICompositeType>(Ty));
1575   case dwarf::DW_TAG_union_type:
1576     return lowerTypeUnion(cast<DICompositeType>(Ty));
1577   case dwarf::DW_TAG_unspecified_type:
1578     if (Ty->getName() == "decltype(nullptr)")
1579       return TypeIndex::NullptrT();
1580     return TypeIndex::None();
1581   default:
1582     // Use the null type index.
1583     return TypeIndex();
1584   }
1585 }
1586 
1587 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1588   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1589   StringRef TypeName = Ty->getName();
1590 
1591   addToUDTs(Ty);
1592 
1593   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1594       TypeName == "HRESULT")
1595     return TypeIndex(SimpleTypeKind::HResult);
1596   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1597       TypeName == "wchar_t")
1598     return TypeIndex(SimpleTypeKind::WideCharacter);
1599 
1600   return UnderlyingTypeIndex;
1601 }
1602 
1603 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1604   const DIType *ElementType = Ty->getBaseType();
1605   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1606   // IndexType is size_t, which depends on the bitness of the target.
1607   TypeIndex IndexType = getPointerSizeInBytes() == 8
1608                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1609                             : TypeIndex(SimpleTypeKind::UInt32Long);
1610 
1611   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1612 
1613   // Add subranges to array type.
1614   DINodeArray Elements = Ty->getElements();
1615   for (int i = Elements.size() - 1; i >= 0; --i) {
1616     const DINode *Element = Elements[i];
1617     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1618 
1619     const DISubrange *Subrange = cast<DISubrange>(Element);
1620     int64_t Count = -1;
1621     // Calculate the count if either LowerBound is absent or is zero and
1622     // either of Count or UpperBound are constant.
1623     auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>();
1624     if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) {
1625       if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1626         Count = CI->getSExtValue();
1627       else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>())
1628         Count = UI->getSExtValue() + 1; // LowerBound is zero
1629     }
1630 
1631     // Forward declarations of arrays without a size and VLAs use a count of -1.
1632     // Emit a count of zero in these cases to match what MSVC does for arrays
1633     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1634     // should do for them even if we could distinguish them.
1635     if (Count == -1)
1636       Count = 0;
1637 
1638     // Update the element size and element type index for subsequent subranges.
1639     ElementSize *= Count;
1640 
1641     // If this is the outermost array, use the size from the array. It will be
1642     // more accurate if we had a VLA or an incomplete element type size.
1643     uint64_t ArraySize =
1644         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1645 
1646     StringRef Name = (i == 0) ? Ty->getName() : "";
1647     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1648     ElementTypeIndex = TypeTable.writeLeafType(AR);
1649   }
1650 
1651   return ElementTypeIndex;
1652 }
1653 
1654 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1655   TypeIndex Index;
1656   dwarf::TypeKind Kind;
1657   uint32_t ByteSize;
1658 
1659   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1660   ByteSize = Ty->getSizeInBits() / 8;
1661 
1662   SimpleTypeKind STK = SimpleTypeKind::None;
1663   switch (Kind) {
1664   case dwarf::DW_ATE_address:
1665     // FIXME: Translate
1666     break;
1667   case dwarf::DW_ATE_boolean:
1668     switch (ByteSize) {
1669     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1670     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1671     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1672     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1673     case 16: STK = SimpleTypeKind::Boolean128; break;
1674     }
1675     break;
1676   case dwarf::DW_ATE_complex_float:
1677     switch (ByteSize) {
1678     case 2:  STK = SimpleTypeKind::Complex16;  break;
1679     case 4:  STK = SimpleTypeKind::Complex32;  break;
1680     case 8:  STK = SimpleTypeKind::Complex64;  break;
1681     case 10: STK = SimpleTypeKind::Complex80;  break;
1682     case 16: STK = SimpleTypeKind::Complex128; break;
1683     }
1684     break;
1685   case dwarf::DW_ATE_float:
1686     switch (ByteSize) {
1687     case 2:  STK = SimpleTypeKind::Float16;  break;
1688     case 4:  STK = SimpleTypeKind::Float32;  break;
1689     case 6:  STK = SimpleTypeKind::Float48;  break;
1690     case 8:  STK = SimpleTypeKind::Float64;  break;
1691     case 10: STK = SimpleTypeKind::Float80;  break;
1692     case 16: STK = SimpleTypeKind::Float128; break;
1693     }
1694     break;
1695   case dwarf::DW_ATE_signed:
1696     switch (ByteSize) {
1697     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1698     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1699     case 4:  STK = SimpleTypeKind::Int32;           break;
1700     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1701     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1702     }
1703     break;
1704   case dwarf::DW_ATE_unsigned:
1705     switch (ByteSize) {
1706     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1707     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1708     case 4:  STK = SimpleTypeKind::UInt32;            break;
1709     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1710     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1711     }
1712     break;
1713   case dwarf::DW_ATE_UTF:
1714     switch (ByteSize) {
1715     case 2: STK = SimpleTypeKind::Character16; break;
1716     case 4: STK = SimpleTypeKind::Character32; break;
1717     }
1718     break;
1719   case dwarf::DW_ATE_signed_char:
1720     if (ByteSize == 1)
1721       STK = SimpleTypeKind::SignedCharacter;
1722     break;
1723   case dwarf::DW_ATE_unsigned_char:
1724     if (ByteSize == 1)
1725       STK = SimpleTypeKind::UnsignedCharacter;
1726     break;
1727   default:
1728     break;
1729   }
1730 
1731   // Apply some fixups based on the source-level type name.
1732   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1733     STK = SimpleTypeKind::Int32Long;
1734   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1735     STK = SimpleTypeKind::UInt32Long;
1736   if (STK == SimpleTypeKind::UInt16Short &&
1737       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1738     STK = SimpleTypeKind::WideCharacter;
1739   if ((STK == SimpleTypeKind::SignedCharacter ||
1740        STK == SimpleTypeKind::UnsignedCharacter) &&
1741       Ty->getName() == "char")
1742     STK = SimpleTypeKind::NarrowCharacter;
1743 
1744   return TypeIndex(STK);
1745 }
1746 
1747 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1748                                           PointerOptions PO) {
1749   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1750 
1751   // Pointers to simple types without any options can use SimpleTypeMode, rather
1752   // than having a dedicated pointer type record.
1753   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1754       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1755       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1756     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1757                               ? SimpleTypeMode::NearPointer64
1758                               : SimpleTypeMode::NearPointer32;
1759     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1760   }
1761 
1762   PointerKind PK =
1763       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1764   PointerMode PM = PointerMode::Pointer;
1765   switch (Ty->getTag()) {
1766   default: llvm_unreachable("not a pointer tag type");
1767   case dwarf::DW_TAG_pointer_type:
1768     PM = PointerMode::Pointer;
1769     break;
1770   case dwarf::DW_TAG_reference_type:
1771     PM = PointerMode::LValueReference;
1772     break;
1773   case dwarf::DW_TAG_rvalue_reference_type:
1774     PM = PointerMode::RValueReference;
1775     break;
1776   }
1777 
1778   if (Ty->isObjectPointer())
1779     PO |= PointerOptions::Const;
1780 
1781   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1782   return TypeTable.writeLeafType(PR);
1783 }
1784 
1785 static PointerToMemberRepresentation
1786 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1787   // SizeInBytes being zero generally implies that the member pointer type was
1788   // incomplete, which can happen if it is part of a function prototype. In this
1789   // case, use the unknown model instead of the general model.
1790   if (IsPMF) {
1791     switch (Flags & DINode::FlagPtrToMemberRep) {
1792     case 0:
1793       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1794                               : PointerToMemberRepresentation::GeneralFunction;
1795     case DINode::FlagSingleInheritance:
1796       return PointerToMemberRepresentation::SingleInheritanceFunction;
1797     case DINode::FlagMultipleInheritance:
1798       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1799     case DINode::FlagVirtualInheritance:
1800       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1801     }
1802   } else {
1803     switch (Flags & DINode::FlagPtrToMemberRep) {
1804     case 0:
1805       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1806                               : PointerToMemberRepresentation::GeneralData;
1807     case DINode::FlagSingleInheritance:
1808       return PointerToMemberRepresentation::SingleInheritanceData;
1809     case DINode::FlagMultipleInheritance:
1810       return PointerToMemberRepresentation::MultipleInheritanceData;
1811     case DINode::FlagVirtualInheritance:
1812       return PointerToMemberRepresentation::VirtualInheritanceData;
1813     }
1814   }
1815   llvm_unreachable("invalid ptr to member representation");
1816 }
1817 
1818 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1819                                                 PointerOptions PO) {
1820   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1821   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1822   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1823   TypeIndex PointeeTI =
1824       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1825   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1826                                                 : PointerKind::Near32;
1827   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1828                          : PointerMode::PointerToDataMember;
1829 
1830   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1831   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1832   MemberPointerInfo MPI(
1833       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1834   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1835   return TypeTable.writeLeafType(PR);
1836 }
1837 
1838 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1839 /// have a translation, use the NearC convention.
1840 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1841   switch (DwarfCC) {
1842   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1843   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1844   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1845   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1846   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1847   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1848   }
1849   return CallingConvention::NearC;
1850 }
1851 
1852 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1853   ModifierOptions Mods = ModifierOptions::None;
1854   PointerOptions PO = PointerOptions::None;
1855   bool IsModifier = true;
1856   const DIType *BaseTy = Ty;
1857   while (IsModifier && BaseTy) {
1858     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1859     switch (BaseTy->getTag()) {
1860     case dwarf::DW_TAG_const_type:
1861       Mods |= ModifierOptions::Const;
1862       PO |= PointerOptions::Const;
1863       break;
1864     case dwarf::DW_TAG_volatile_type:
1865       Mods |= ModifierOptions::Volatile;
1866       PO |= PointerOptions::Volatile;
1867       break;
1868     case dwarf::DW_TAG_restrict_type:
1869       // Only pointer types be marked with __restrict. There is no known flag
1870       // for __restrict in LF_MODIFIER records.
1871       PO |= PointerOptions::Restrict;
1872       break;
1873     default:
1874       IsModifier = false;
1875       break;
1876     }
1877     if (IsModifier)
1878       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1879   }
1880 
1881   // Check if the inner type will use an LF_POINTER record. If so, the
1882   // qualifiers will go in the LF_POINTER record. This comes up for types like
1883   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1884   // char *'.
1885   if (BaseTy) {
1886     switch (BaseTy->getTag()) {
1887     case dwarf::DW_TAG_pointer_type:
1888     case dwarf::DW_TAG_reference_type:
1889     case dwarf::DW_TAG_rvalue_reference_type:
1890       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1891     case dwarf::DW_TAG_ptr_to_member_type:
1892       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1893     default:
1894       break;
1895     }
1896   }
1897 
1898   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1899 
1900   // Return the base type index if there aren't any modifiers. For example, the
1901   // metadata could contain restrict wrappers around non-pointer types.
1902   if (Mods == ModifierOptions::None)
1903     return ModifiedTI;
1904 
1905   ModifierRecord MR(ModifiedTI, Mods);
1906   return TypeTable.writeLeafType(MR);
1907 }
1908 
1909 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1910   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1911   for (const DIType *ArgType : Ty->getTypeArray())
1912     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1913 
1914   // MSVC uses type none for variadic argument.
1915   if (ReturnAndArgTypeIndices.size() > 1 &&
1916       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1917     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1918   }
1919   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1920   ArrayRef<TypeIndex> ArgTypeIndices = None;
1921   if (!ReturnAndArgTypeIndices.empty()) {
1922     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1923     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1924     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1925   }
1926 
1927   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1928   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1929 
1930   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1931 
1932   FunctionOptions FO = getFunctionOptions(Ty);
1933   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1934                             ArgListIndex);
1935   return TypeTable.writeLeafType(Procedure);
1936 }
1937 
1938 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1939                                                  const DIType *ClassTy,
1940                                                  int ThisAdjustment,
1941                                                  bool IsStaticMethod,
1942                                                  FunctionOptions FO) {
1943   // Lower the containing class type.
1944   TypeIndex ClassType = getTypeIndex(ClassTy);
1945 
1946   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1947 
1948   unsigned Index = 0;
1949   SmallVector<TypeIndex, 8> ArgTypeIndices;
1950   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1951   if (ReturnAndArgs.size() > Index) {
1952     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1953   }
1954 
1955   // If the first argument is a pointer type and this isn't a static method,
1956   // treat it as the special 'this' parameter, which is encoded separately from
1957   // the arguments.
1958   TypeIndex ThisTypeIndex;
1959   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1960     if (const DIDerivedType *PtrTy =
1961             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
1962       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1963         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1964         Index++;
1965       }
1966     }
1967   }
1968 
1969   while (Index < ReturnAndArgs.size())
1970     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1971 
1972   // MSVC uses type none for variadic argument.
1973   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1974     ArgTypeIndices.back() = TypeIndex::None();
1975 
1976   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1977   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1978 
1979   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1980 
1981   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1982                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1983   return TypeTable.writeLeafType(MFR);
1984 }
1985 
1986 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1987   unsigned VSlotCount =
1988       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1989   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1990 
1991   VFTableShapeRecord VFTSR(Slots);
1992   return TypeTable.writeLeafType(VFTSR);
1993 }
1994 
1995 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1996   switch (Flags & DINode::FlagAccessibility) {
1997   case DINode::FlagPrivate:   return MemberAccess::Private;
1998   case DINode::FlagPublic:    return MemberAccess::Public;
1999   case DINode::FlagProtected: return MemberAccess::Protected;
2000   case 0:
2001     // If there was no explicit access control, provide the default for the tag.
2002     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2003                                                  : MemberAccess::Public;
2004   }
2005   llvm_unreachable("access flags are exclusive");
2006 }
2007 
2008 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2009   if (SP->isArtificial())
2010     return MethodOptions::CompilerGenerated;
2011 
2012   // FIXME: Handle other MethodOptions.
2013 
2014   return MethodOptions::None;
2015 }
2016 
2017 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2018                                            bool Introduced) {
2019   if (SP->getFlags() & DINode::FlagStaticMember)
2020     return MethodKind::Static;
2021 
2022   switch (SP->getVirtuality()) {
2023   case dwarf::DW_VIRTUALITY_none:
2024     break;
2025   case dwarf::DW_VIRTUALITY_virtual:
2026     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2027   case dwarf::DW_VIRTUALITY_pure_virtual:
2028     return Introduced ? MethodKind::PureIntroducingVirtual
2029                       : MethodKind::PureVirtual;
2030   default:
2031     llvm_unreachable("unhandled virtuality case");
2032   }
2033 
2034   return MethodKind::Vanilla;
2035 }
2036 
2037 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2038   switch (Ty->getTag()) {
2039   case dwarf::DW_TAG_class_type:
2040     return TypeRecordKind::Class;
2041   case dwarf::DW_TAG_structure_type:
2042     return TypeRecordKind::Struct;
2043   default:
2044     llvm_unreachable("unexpected tag");
2045   }
2046 }
2047 
2048 /// Return ClassOptions that should be present on both the forward declaration
2049 /// and the defintion of a tag type.
2050 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2051   ClassOptions CO = ClassOptions::None;
2052 
2053   // MSVC always sets this flag, even for local types. Clang doesn't always
2054   // appear to give every type a linkage name, which may be problematic for us.
2055   // FIXME: Investigate the consequences of not following them here.
2056   if (!Ty->getIdentifier().empty())
2057     CO |= ClassOptions::HasUniqueName;
2058 
2059   // Put the Nested flag on a type if it appears immediately inside a tag type.
2060   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2061   // here. That flag is only set on definitions, and not forward declarations.
2062   const DIScope *ImmediateScope = Ty->getScope();
2063   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2064     CO |= ClassOptions::Nested;
2065 
2066   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2067   // type only when it has an immediate function scope. Clang never puts enums
2068   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2069   // always in function, class, or file scopes.
2070   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2071     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2072       CO |= ClassOptions::Scoped;
2073   } else {
2074     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2075          Scope = Scope->getScope()) {
2076       if (isa<DISubprogram>(Scope)) {
2077         CO |= ClassOptions::Scoped;
2078         break;
2079       }
2080     }
2081   }
2082 
2083   return CO;
2084 }
2085 
2086 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2087   switch (Ty->getTag()) {
2088   case dwarf::DW_TAG_class_type:
2089   case dwarf::DW_TAG_structure_type:
2090   case dwarf::DW_TAG_union_type:
2091   case dwarf::DW_TAG_enumeration_type:
2092     break;
2093   default:
2094     return;
2095   }
2096 
2097   if (const auto *File = Ty->getFile()) {
2098     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2099     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2100 
2101     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2102     TypeTable.writeLeafType(USLR);
2103   }
2104 }
2105 
2106 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2107   ClassOptions CO = getCommonClassOptions(Ty);
2108   TypeIndex FTI;
2109   unsigned EnumeratorCount = 0;
2110 
2111   if (Ty->isForwardDecl()) {
2112     CO |= ClassOptions::ForwardReference;
2113   } else {
2114     ContinuationRecordBuilder ContinuationBuilder;
2115     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2116     for (const DINode *Element : Ty->getElements()) {
2117       // We assume that the frontend provides all members in source declaration
2118       // order, which is what MSVC does.
2119       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2120         // FIXME: Is it correct to always emit these as unsigned here?
2121         EnumeratorRecord ER(MemberAccess::Public,
2122                             APSInt(Enumerator->getValue(), true),
2123                             Enumerator->getName());
2124         ContinuationBuilder.writeMemberType(ER);
2125         EnumeratorCount++;
2126       }
2127     }
2128     FTI = TypeTable.insertRecord(ContinuationBuilder);
2129   }
2130 
2131   std::string FullName = getFullyQualifiedName(Ty);
2132 
2133   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2134                 getTypeIndex(Ty->getBaseType()));
2135   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2136 
2137   addUDTSrcLine(Ty, EnumTI);
2138 
2139   return EnumTI;
2140 }
2141 
2142 //===----------------------------------------------------------------------===//
2143 // ClassInfo
2144 //===----------------------------------------------------------------------===//
2145 
2146 struct llvm::ClassInfo {
2147   struct MemberInfo {
2148     const DIDerivedType *MemberTypeNode;
2149     uint64_t BaseOffset;
2150   };
2151   // [MemberInfo]
2152   using MemberList = std::vector<MemberInfo>;
2153 
2154   using MethodsList = TinyPtrVector<const DISubprogram *>;
2155   // MethodName -> MethodsList
2156   using MethodsMap = MapVector<MDString *, MethodsList>;
2157 
2158   /// Base classes.
2159   std::vector<const DIDerivedType *> Inheritance;
2160 
2161   /// Direct members.
2162   MemberList Members;
2163   // Direct overloaded methods gathered by name.
2164   MethodsMap Methods;
2165 
2166   TypeIndex VShapeTI;
2167 
2168   std::vector<const DIType *> NestedTypes;
2169 };
2170 
2171 void CodeViewDebug::clear() {
2172   assert(CurFn == nullptr);
2173   FileIdMap.clear();
2174   FnDebugInfo.clear();
2175   FileToFilepathMap.clear();
2176   LocalUDTs.clear();
2177   GlobalUDTs.clear();
2178   TypeIndices.clear();
2179   CompleteTypeIndices.clear();
2180   ScopeGlobals.clear();
2181 }
2182 
2183 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2184                                       const DIDerivedType *DDTy) {
2185   if (!DDTy->getName().empty()) {
2186     Info.Members.push_back({DDTy, 0});
2187 
2188     // Collect static const data members with values.
2189     if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2190         DINode::FlagStaticMember) {
2191       if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2192                                   isa<ConstantFP>(DDTy->getConstant())))
2193         StaticConstMembers.push_back(DDTy);
2194     }
2195 
2196     return;
2197   }
2198 
2199   // An unnamed member may represent a nested struct or union. Attempt to
2200   // interpret the unnamed member as a DICompositeType possibly wrapped in
2201   // qualifier types. Add all the indirect fields to the current record if that
2202   // succeeds, and drop the member if that fails.
2203   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2204   uint64_t Offset = DDTy->getOffsetInBits();
2205   const DIType *Ty = DDTy->getBaseType();
2206   bool FullyResolved = false;
2207   while (!FullyResolved) {
2208     switch (Ty->getTag()) {
2209     case dwarf::DW_TAG_const_type:
2210     case dwarf::DW_TAG_volatile_type:
2211       // FIXME: we should apply the qualifier types to the indirect fields
2212       // rather than dropping them.
2213       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2214       break;
2215     default:
2216       FullyResolved = true;
2217       break;
2218     }
2219   }
2220 
2221   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2222   if (!DCTy)
2223     return;
2224 
2225   ClassInfo NestedInfo = collectClassInfo(DCTy);
2226   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2227     Info.Members.push_back(
2228         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2229 }
2230 
2231 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2232   ClassInfo Info;
2233   // Add elements to structure type.
2234   DINodeArray Elements = Ty->getElements();
2235   for (auto *Element : Elements) {
2236     // We assume that the frontend provides all members in source declaration
2237     // order, which is what MSVC does.
2238     if (!Element)
2239       continue;
2240     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2241       Info.Methods[SP->getRawName()].push_back(SP);
2242     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2243       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2244         collectMemberInfo(Info, DDTy);
2245       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2246         Info.Inheritance.push_back(DDTy);
2247       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2248                  DDTy->getName() == "__vtbl_ptr_type") {
2249         Info.VShapeTI = getTypeIndex(DDTy);
2250       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2251         Info.NestedTypes.push_back(DDTy);
2252       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2253         // Ignore friend members. It appears that MSVC emitted info about
2254         // friends in the past, but modern versions do not.
2255       }
2256     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2257       Info.NestedTypes.push_back(Composite);
2258     }
2259     // Skip other unrecognized kinds of elements.
2260   }
2261   return Info;
2262 }
2263 
2264 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2265   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2266   // if a complete type should be emitted instead of a forward reference.
2267   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2268       !Ty->isForwardDecl();
2269 }
2270 
2271 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2272   // Emit the complete type for unnamed structs.  C++ classes with methods
2273   // which have a circular reference back to the class type are expected to
2274   // be named by the front-end and should not be "unnamed".  C unnamed
2275   // structs should not have circular references.
2276   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2277     // If this unnamed complete type is already in the process of being defined
2278     // then the description of the type is malformed and cannot be emitted
2279     // into CodeView correctly so report a fatal error.
2280     auto I = CompleteTypeIndices.find(Ty);
2281     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2282       report_fatal_error("cannot debug circular reference to unnamed type");
2283     return getCompleteTypeIndex(Ty);
2284   }
2285 
2286   // First, construct the forward decl.  Don't look into Ty to compute the
2287   // forward decl options, since it might not be available in all TUs.
2288   TypeRecordKind Kind = getRecordKind(Ty);
2289   ClassOptions CO =
2290       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2291   std::string FullName = getFullyQualifiedName(Ty);
2292   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2293                  FullName, Ty->getIdentifier());
2294   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2295   if (!Ty->isForwardDecl())
2296     DeferredCompleteTypes.push_back(Ty);
2297   return FwdDeclTI;
2298 }
2299 
2300 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2301   // Construct the field list and complete type record.
2302   TypeRecordKind Kind = getRecordKind(Ty);
2303   ClassOptions CO = getCommonClassOptions(Ty);
2304   TypeIndex FieldTI;
2305   TypeIndex VShapeTI;
2306   unsigned FieldCount;
2307   bool ContainsNestedClass;
2308   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2309       lowerRecordFieldList(Ty);
2310 
2311   if (ContainsNestedClass)
2312     CO |= ClassOptions::ContainsNestedClass;
2313 
2314   // MSVC appears to set this flag by searching any destructor or method with
2315   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2316   // the members, however special member functions are not yet emitted into
2317   // debug information. For now checking a class's non-triviality seems enough.
2318   // FIXME: not true for a nested unnamed struct.
2319   if (isNonTrivial(Ty))
2320     CO |= ClassOptions::HasConstructorOrDestructor;
2321 
2322   std::string FullName = getFullyQualifiedName(Ty);
2323 
2324   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2325 
2326   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2327                  SizeInBytes, FullName, Ty->getIdentifier());
2328   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2329 
2330   addUDTSrcLine(Ty, ClassTI);
2331 
2332   addToUDTs(Ty);
2333 
2334   return ClassTI;
2335 }
2336 
2337 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2338   // Emit the complete type for unnamed unions.
2339   if (shouldAlwaysEmitCompleteClassType(Ty))
2340     return getCompleteTypeIndex(Ty);
2341 
2342   ClassOptions CO =
2343       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2344   std::string FullName = getFullyQualifiedName(Ty);
2345   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2346   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2347   if (!Ty->isForwardDecl())
2348     DeferredCompleteTypes.push_back(Ty);
2349   return FwdDeclTI;
2350 }
2351 
2352 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2353   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2354   TypeIndex FieldTI;
2355   unsigned FieldCount;
2356   bool ContainsNestedClass;
2357   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2358       lowerRecordFieldList(Ty);
2359 
2360   if (ContainsNestedClass)
2361     CO |= ClassOptions::ContainsNestedClass;
2362 
2363   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2364   std::string FullName = getFullyQualifiedName(Ty);
2365 
2366   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2367                  Ty->getIdentifier());
2368   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2369 
2370   addUDTSrcLine(Ty, UnionTI);
2371 
2372   addToUDTs(Ty);
2373 
2374   return UnionTI;
2375 }
2376 
2377 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2378 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2379   // Manually count members. MSVC appears to count everything that generates a
2380   // field list record. Each individual overload in a method overload group
2381   // contributes to this count, even though the overload group is a single field
2382   // list record.
2383   unsigned MemberCount = 0;
2384   ClassInfo Info = collectClassInfo(Ty);
2385   ContinuationRecordBuilder ContinuationBuilder;
2386   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2387 
2388   // Create base classes.
2389   for (const DIDerivedType *I : Info.Inheritance) {
2390     if (I->getFlags() & DINode::FlagVirtual) {
2391       // Virtual base.
2392       unsigned VBPtrOffset = I->getVBPtrOffset();
2393       // FIXME: Despite the accessor name, the offset is really in bytes.
2394       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2395       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2396                             ? TypeRecordKind::IndirectVirtualBaseClass
2397                             : TypeRecordKind::VirtualBaseClass;
2398       VirtualBaseClassRecord VBCR(
2399           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2400           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2401           VBTableIndex);
2402 
2403       ContinuationBuilder.writeMemberType(VBCR);
2404       MemberCount++;
2405     } else {
2406       assert(I->getOffsetInBits() % 8 == 0 &&
2407              "bases must be on byte boundaries");
2408       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2409                           getTypeIndex(I->getBaseType()),
2410                           I->getOffsetInBits() / 8);
2411       ContinuationBuilder.writeMemberType(BCR);
2412       MemberCount++;
2413     }
2414   }
2415 
2416   // Create members.
2417   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2418     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2419     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2420     StringRef MemberName = Member->getName();
2421     MemberAccess Access =
2422         translateAccessFlags(Ty->getTag(), Member->getFlags());
2423 
2424     if (Member->isStaticMember()) {
2425       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2426       ContinuationBuilder.writeMemberType(SDMR);
2427       MemberCount++;
2428       continue;
2429     }
2430 
2431     // Virtual function pointer member.
2432     if ((Member->getFlags() & DINode::FlagArtificial) &&
2433         Member->getName().startswith("_vptr$")) {
2434       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2435       ContinuationBuilder.writeMemberType(VFPR);
2436       MemberCount++;
2437       continue;
2438     }
2439 
2440     // Data member.
2441     uint64_t MemberOffsetInBits =
2442         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2443     if (Member->isBitField()) {
2444       uint64_t StartBitOffset = MemberOffsetInBits;
2445       if (const auto *CI =
2446               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2447         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2448       }
2449       StartBitOffset -= MemberOffsetInBits;
2450       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2451                          StartBitOffset);
2452       MemberBaseType = TypeTable.writeLeafType(BFR);
2453     }
2454     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2455     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2456                          MemberName);
2457     ContinuationBuilder.writeMemberType(DMR);
2458     MemberCount++;
2459   }
2460 
2461   // Create methods
2462   for (auto &MethodItr : Info.Methods) {
2463     StringRef Name = MethodItr.first->getString();
2464 
2465     std::vector<OneMethodRecord> Methods;
2466     for (const DISubprogram *SP : MethodItr.second) {
2467       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2468       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2469 
2470       unsigned VFTableOffset = -1;
2471       if (Introduced)
2472         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2473 
2474       Methods.push_back(OneMethodRecord(
2475           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2476           translateMethodKindFlags(SP, Introduced),
2477           translateMethodOptionFlags(SP), VFTableOffset, Name));
2478       MemberCount++;
2479     }
2480     assert(!Methods.empty() && "Empty methods map entry");
2481     if (Methods.size() == 1)
2482       ContinuationBuilder.writeMemberType(Methods[0]);
2483     else {
2484       // FIXME: Make this use its own ContinuationBuilder so that
2485       // MethodOverloadList can be split correctly.
2486       MethodOverloadListRecord MOLR(Methods);
2487       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2488 
2489       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2490       ContinuationBuilder.writeMemberType(OMR);
2491     }
2492   }
2493 
2494   // Create nested classes.
2495   for (const DIType *Nested : Info.NestedTypes) {
2496     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2497     ContinuationBuilder.writeMemberType(R);
2498     MemberCount++;
2499   }
2500 
2501   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2502   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2503                          !Info.NestedTypes.empty());
2504 }
2505 
2506 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2507   if (!VBPType.getIndex()) {
2508     // Make a 'const int *' type.
2509     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2510     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2511 
2512     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2513                                                   : PointerKind::Near32;
2514     PointerMode PM = PointerMode::Pointer;
2515     PointerOptions PO = PointerOptions::None;
2516     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2517     VBPType = TypeTable.writeLeafType(PR);
2518   }
2519 
2520   return VBPType;
2521 }
2522 
2523 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2524   // The null DIType is the void type. Don't try to hash it.
2525   if (!Ty)
2526     return TypeIndex::Void();
2527 
2528   // Check if we've already translated this type. Don't try to do a
2529   // get-or-create style insertion that caches the hash lookup across the
2530   // lowerType call. It will update the TypeIndices map.
2531   auto I = TypeIndices.find({Ty, ClassTy});
2532   if (I != TypeIndices.end())
2533     return I->second;
2534 
2535   TypeLoweringScope S(*this);
2536   TypeIndex TI = lowerType(Ty, ClassTy);
2537   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2538 }
2539 
2540 codeview::TypeIndex
2541 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2542                                       const DISubroutineType *SubroutineTy) {
2543   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2544          "this type must be a pointer type");
2545 
2546   PointerOptions Options = PointerOptions::None;
2547   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2548     Options = PointerOptions::LValueRefThisPointer;
2549   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2550     Options = PointerOptions::RValueRefThisPointer;
2551 
2552   // Check if we've already translated this type.  If there is no ref qualifier
2553   // on the function then we look up this pointer type with no associated class
2554   // so that the TypeIndex for the this pointer can be shared with the type
2555   // index for other pointers to this class type.  If there is a ref qualifier
2556   // then we lookup the pointer using the subroutine as the parent type.
2557   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2558   if (I != TypeIndices.end())
2559     return I->second;
2560 
2561   TypeLoweringScope S(*this);
2562   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2563   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2564 }
2565 
2566 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2567   PointerRecord PR(getTypeIndex(Ty),
2568                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2569                                                 : PointerKind::Near32,
2570                    PointerMode::LValueReference, PointerOptions::None,
2571                    Ty->getSizeInBits() / 8);
2572   return TypeTable.writeLeafType(PR);
2573 }
2574 
2575 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2576   // The null DIType is the void type. Don't try to hash it.
2577   if (!Ty)
2578     return TypeIndex::Void();
2579 
2580   // Look through typedefs when getting the complete type index. Call
2581   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2582   // emitted only once.
2583   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2584     (void)getTypeIndex(Ty);
2585   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2586     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2587 
2588   // If this is a non-record type, the complete type index is the same as the
2589   // normal type index. Just call getTypeIndex.
2590   switch (Ty->getTag()) {
2591   case dwarf::DW_TAG_class_type:
2592   case dwarf::DW_TAG_structure_type:
2593   case dwarf::DW_TAG_union_type:
2594     break;
2595   default:
2596     return getTypeIndex(Ty);
2597   }
2598 
2599   const auto *CTy = cast<DICompositeType>(Ty);
2600 
2601   TypeLoweringScope S(*this);
2602 
2603   // Make sure the forward declaration is emitted first. It's unclear if this
2604   // is necessary, but MSVC does it, and we should follow suit until we can show
2605   // otherwise.
2606   // We only emit a forward declaration for named types.
2607   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2608     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2609 
2610     // Just use the forward decl if we don't have complete type info. This
2611     // might happen if the frontend is using modules and expects the complete
2612     // definition to be emitted elsewhere.
2613     if (CTy->isForwardDecl())
2614       return FwdDeclTI;
2615   }
2616 
2617   // Check if we've already translated the complete record type.
2618   // Insert the type with a null TypeIndex to signify that the type is currently
2619   // being lowered.
2620   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2621   if (!InsertResult.second)
2622     return InsertResult.first->second;
2623 
2624   TypeIndex TI;
2625   switch (CTy->getTag()) {
2626   case dwarf::DW_TAG_class_type:
2627   case dwarf::DW_TAG_structure_type:
2628     TI = lowerCompleteTypeClass(CTy);
2629     break;
2630   case dwarf::DW_TAG_union_type:
2631     TI = lowerCompleteTypeUnion(CTy);
2632     break;
2633   default:
2634     llvm_unreachable("not a record");
2635   }
2636 
2637   // Update the type index associated with this CompositeType.  This cannot
2638   // use the 'InsertResult' iterator above because it is potentially
2639   // invalidated by map insertions which can occur while lowering the class
2640   // type above.
2641   CompleteTypeIndices[CTy] = TI;
2642   return TI;
2643 }
2644 
2645 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2646 /// and do this until fixpoint, as each complete record type typically
2647 /// references
2648 /// many other record types.
2649 void CodeViewDebug::emitDeferredCompleteTypes() {
2650   SmallVector<const DICompositeType *, 4> TypesToEmit;
2651   while (!DeferredCompleteTypes.empty()) {
2652     std::swap(DeferredCompleteTypes, TypesToEmit);
2653     for (const DICompositeType *RecordTy : TypesToEmit)
2654       getCompleteTypeIndex(RecordTy);
2655     TypesToEmit.clear();
2656   }
2657 }
2658 
2659 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2660                                           ArrayRef<LocalVariable> Locals) {
2661   // Get the sorted list of parameters and emit them first.
2662   SmallVector<const LocalVariable *, 6> Params;
2663   for (const LocalVariable &L : Locals)
2664     if (L.DIVar->isParameter())
2665       Params.push_back(&L);
2666   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2667     return L->DIVar->getArg() < R->DIVar->getArg();
2668   });
2669   for (const LocalVariable *L : Params)
2670     emitLocalVariable(FI, *L);
2671 
2672   // Next emit all non-parameters in the order that we found them.
2673   for (const LocalVariable &L : Locals)
2674     if (!L.DIVar->isParameter())
2675       emitLocalVariable(FI, L);
2676 }
2677 
2678 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2679                                       const LocalVariable &Var) {
2680   // LocalSym record, see SymbolRecord.h for more info.
2681   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2682 
2683   LocalSymFlags Flags = LocalSymFlags::None;
2684   if (Var.DIVar->isParameter())
2685     Flags |= LocalSymFlags::IsParameter;
2686   if (Var.DefRanges.empty())
2687     Flags |= LocalSymFlags::IsOptimizedOut;
2688 
2689   OS.AddComment("TypeIndex");
2690   TypeIndex TI = Var.UseReferenceType
2691                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2692                      : getCompleteTypeIndex(Var.DIVar->getType());
2693   OS.emitInt32(TI.getIndex());
2694   OS.AddComment("Flags");
2695   OS.emitInt16(static_cast<uint16_t>(Flags));
2696   // Truncate the name so we won't overflow the record length field.
2697   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2698   endSymbolRecord(LocalEnd);
2699 
2700   // Calculate the on disk prefix of the appropriate def range record. The
2701   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2702   // should be big enough to hold all forms without memory allocation.
2703   SmallString<20> BytePrefix;
2704   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2705     BytePrefix.clear();
2706     if (DefRange.InMemory) {
2707       int Offset = DefRange.DataOffset;
2708       unsigned Reg = DefRange.CVRegister;
2709 
2710       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2711       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2712       // instead. In frames without stack realignment, $T0 will be the CFA.
2713       if (RegisterId(Reg) == RegisterId::ESP) {
2714         Reg = unsigned(RegisterId::VFRAME);
2715         Offset += FI.OffsetAdjustment;
2716       }
2717 
2718       // If we can use the chosen frame pointer for the frame and this isn't a
2719       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2720       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2721       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2722       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2723           (bool(Flags & LocalSymFlags::IsParameter)
2724                ? (EncFP == FI.EncodedParamFramePtrReg)
2725                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2726         DefRangeFramePointerRelHeader DRHdr;
2727         DRHdr.Offset = Offset;
2728         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2729       } else {
2730         uint16_t RegRelFlags = 0;
2731         if (DefRange.IsSubfield) {
2732           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2733                         (DefRange.StructOffset
2734                          << DefRangeRegisterRelSym::OffsetInParentShift);
2735         }
2736         DefRangeRegisterRelHeader DRHdr;
2737         DRHdr.Register = Reg;
2738         DRHdr.Flags = RegRelFlags;
2739         DRHdr.BasePointerOffset = Offset;
2740         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2741       }
2742     } else {
2743       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2744       if (DefRange.IsSubfield) {
2745         DefRangeSubfieldRegisterHeader DRHdr;
2746         DRHdr.Register = DefRange.CVRegister;
2747         DRHdr.MayHaveNoName = 0;
2748         DRHdr.OffsetInParent = DefRange.StructOffset;
2749         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2750       } else {
2751         DefRangeRegisterHeader DRHdr;
2752         DRHdr.Register = DefRange.CVRegister;
2753         DRHdr.MayHaveNoName = 0;
2754         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2755       }
2756     }
2757   }
2758 }
2759 
2760 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2761                                          const FunctionInfo& FI) {
2762   for (LexicalBlock *Block : Blocks)
2763     emitLexicalBlock(*Block, FI);
2764 }
2765 
2766 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2767 /// lexical block scope.
2768 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2769                                      const FunctionInfo& FI) {
2770   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2771   OS.AddComment("PtrParent");
2772   OS.emitInt32(0); // PtrParent
2773   OS.AddComment("PtrEnd");
2774   OS.emitInt32(0); // PtrEnd
2775   OS.AddComment("Code size");
2776   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2777   OS.AddComment("Function section relative address");
2778   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2779   OS.AddComment("Function section index");
2780   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2781   OS.AddComment("Lexical block name");
2782   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2783   endSymbolRecord(RecordEnd);
2784 
2785   // Emit variables local to this lexical block.
2786   emitLocalVariableList(FI, Block.Locals);
2787   emitGlobalVariableList(Block.Globals);
2788 
2789   // Emit lexical blocks contained within this block.
2790   emitLexicalBlockList(Block.Children, FI);
2791 
2792   // Close the lexical block scope.
2793   emitEndSymbolRecord(SymbolKind::S_END);
2794 }
2795 
2796 /// Convenience routine for collecting lexical block information for a list
2797 /// of lexical scopes.
2798 void CodeViewDebug::collectLexicalBlockInfo(
2799         SmallVectorImpl<LexicalScope *> &Scopes,
2800         SmallVectorImpl<LexicalBlock *> &Blocks,
2801         SmallVectorImpl<LocalVariable> &Locals,
2802         SmallVectorImpl<CVGlobalVariable> &Globals) {
2803   for (LexicalScope *Scope : Scopes)
2804     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2805 }
2806 
2807 /// Populate the lexical blocks and local variable lists of the parent with
2808 /// information about the specified lexical scope.
2809 void CodeViewDebug::collectLexicalBlockInfo(
2810     LexicalScope &Scope,
2811     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2812     SmallVectorImpl<LocalVariable> &ParentLocals,
2813     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2814   if (Scope.isAbstractScope())
2815     return;
2816 
2817   // Gather information about the lexical scope including local variables,
2818   // global variables, and address ranges.
2819   bool IgnoreScope = false;
2820   auto LI = ScopeVariables.find(&Scope);
2821   SmallVectorImpl<LocalVariable> *Locals =
2822       LI != ScopeVariables.end() ? &LI->second : nullptr;
2823   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2824   SmallVectorImpl<CVGlobalVariable> *Globals =
2825       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2826   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2827   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2828 
2829   // Ignore lexical scopes which do not contain variables.
2830   if (!Locals && !Globals)
2831     IgnoreScope = true;
2832 
2833   // Ignore lexical scopes which are not lexical blocks.
2834   if (!DILB)
2835     IgnoreScope = true;
2836 
2837   // Ignore scopes which have too many address ranges to represent in the
2838   // current CodeView format or do not have a valid address range.
2839   //
2840   // For lexical scopes with multiple address ranges you may be tempted to
2841   // construct a single range covering every instruction where the block is
2842   // live and everything in between.  Unfortunately, Visual Studio only
2843   // displays variables from the first matching lexical block scope.  If the
2844   // first lexical block contains exception handling code or cold code which
2845   // is moved to the bottom of the routine creating a single range covering
2846   // nearly the entire routine, then it will hide all other lexical blocks
2847   // and the variables they contain.
2848   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2849     IgnoreScope = true;
2850 
2851   if (IgnoreScope) {
2852     // This scope can be safely ignored and eliminating it will reduce the
2853     // size of the debug information. Be sure to collect any variable and scope
2854     // information from the this scope or any of its children and collapse them
2855     // into the parent scope.
2856     if (Locals)
2857       ParentLocals.append(Locals->begin(), Locals->end());
2858     if (Globals)
2859       ParentGlobals.append(Globals->begin(), Globals->end());
2860     collectLexicalBlockInfo(Scope.getChildren(),
2861                             ParentBlocks,
2862                             ParentLocals,
2863                             ParentGlobals);
2864     return;
2865   }
2866 
2867   // Create a new CodeView lexical block for this lexical scope.  If we've
2868   // seen this DILexicalBlock before then the scope tree is malformed and
2869   // we can handle this gracefully by not processing it a second time.
2870   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2871   if (!BlockInsertion.second)
2872     return;
2873 
2874   // Create a lexical block containing the variables and collect the the
2875   // lexical block information for the children.
2876   const InsnRange &Range = Ranges.front();
2877   assert(Range.first && Range.second);
2878   LexicalBlock &Block = BlockInsertion.first->second;
2879   Block.Begin = getLabelBeforeInsn(Range.first);
2880   Block.End = getLabelAfterInsn(Range.second);
2881   assert(Block.Begin && "missing label for scope begin");
2882   assert(Block.End && "missing label for scope end");
2883   Block.Name = DILB->getName();
2884   if (Locals)
2885     Block.Locals = std::move(*Locals);
2886   if (Globals)
2887     Block.Globals = std::move(*Globals);
2888   ParentBlocks.push_back(&Block);
2889   collectLexicalBlockInfo(Scope.getChildren(),
2890                           Block.Children,
2891                           Block.Locals,
2892                           Block.Globals);
2893 }
2894 
2895 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2896   const Function &GV = MF->getFunction();
2897   assert(FnDebugInfo.count(&GV));
2898   assert(CurFn == FnDebugInfo[&GV].get());
2899 
2900   collectVariableInfo(GV.getSubprogram());
2901 
2902   // Build the lexical block structure to emit for this routine.
2903   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2904     collectLexicalBlockInfo(*CFS,
2905                             CurFn->ChildBlocks,
2906                             CurFn->Locals,
2907                             CurFn->Globals);
2908 
2909   // Clear the scope and variable information from the map which will not be
2910   // valid after we have finished processing this routine.  This also prepares
2911   // the map for the subsequent routine.
2912   ScopeVariables.clear();
2913 
2914   // Don't emit anything if we don't have any line tables.
2915   // Thunks are compiler-generated and probably won't have source correlation.
2916   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2917     FnDebugInfo.erase(&GV);
2918     CurFn = nullptr;
2919     return;
2920   }
2921 
2922   // Find heap alloc sites and add to list.
2923   for (const auto &MBB : *MF) {
2924     for (const auto &MI : MBB) {
2925       if (MDNode *MD = MI.getHeapAllocMarker()) {
2926         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2927                                                         getLabelAfterInsn(&MI),
2928                                                         dyn_cast<DIType>(MD)));
2929       }
2930     }
2931   }
2932 
2933   CurFn->Annotations = MF->getCodeViewAnnotations();
2934 
2935   CurFn->End = Asm->getFunctionEnd();
2936 
2937   CurFn = nullptr;
2938 }
2939 
2940 // Usable locations are valid with non-zero line numbers. A line number of zero
2941 // corresponds to optimized code that doesn't have a distinct source location.
2942 // In this case, we try to use the previous or next source location depending on
2943 // the context.
2944 static bool isUsableDebugLoc(DebugLoc DL) {
2945   return DL && DL.getLine() != 0;
2946 }
2947 
2948 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2949   DebugHandlerBase::beginInstruction(MI);
2950 
2951   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2952   if (!Asm || !CurFn || MI->isDebugInstr() ||
2953       MI->getFlag(MachineInstr::FrameSetup))
2954     return;
2955 
2956   // If the first instruction of a new MBB has no location, find the first
2957   // instruction with a location and use that.
2958   DebugLoc DL = MI->getDebugLoc();
2959   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
2960     for (const auto &NextMI : *MI->getParent()) {
2961       if (NextMI.isDebugInstr())
2962         continue;
2963       DL = NextMI.getDebugLoc();
2964       if (isUsableDebugLoc(DL))
2965         break;
2966     }
2967     // FIXME: Handle the case where the BB has no valid locations. This would
2968     // probably require doing a real dataflow analysis.
2969   }
2970   PrevInstBB = MI->getParent();
2971 
2972   // If we still don't have a debug location, don't record a location.
2973   if (!isUsableDebugLoc(DL))
2974     return;
2975 
2976   maybeRecordLocation(DL, Asm->MF);
2977 }
2978 
2979 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2980   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2981            *EndLabel = MMI->getContext().createTempSymbol();
2982   OS.emitInt32(unsigned(Kind));
2983   OS.AddComment("Subsection size");
2984   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2985   OS.emitLabel(BeginLabel);
2986   return EndLabel;
2987 }
2988 
2989 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2990   OS.emitLabel(EndLabel);
2991   // Every subsection must be aligned to a 4-byte boundary.
2992   OS.emitValueToAlignment(4);
2993 }
2994 
2995 static StringRef getSymbolName(SymbolKind SymKind) {
2996   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2997     if (EE.Value == SymKind)
2998       return EE.Name;
2999   return "";
3000 }
3001 
3002 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
3003   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3004            *EndLabel = MMI->getContext().createTempSymbol();
3005   OS.AddComment("Record length");
3006   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
3007   OS.emitLabel(BeginLabel);
3008   if (OS.isVerboseAsm())
3009     OS.AddComment("Record kind: " + getSymbolName(SymKind));
3010   OS.emitInt16(unsigned(SymKind));
3011   return EndLabel;
3012 }
3013 
3014 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3015   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3016   // an extra copy of every symbol record in LLD. This increases object file
3017   // size by less than 1% in the clang build, and is compatible with the Visual
3018   // C++ linker.
3019   OS.emitValueToAlignment(4);
3020   OS.emitLabel(SymEnd);
3021 }
3022 
3023 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3024   OS.AddComment("Record length");
3025   OS.emitInt16(2);
3026   if (OS.isVerboseAsm())
3027     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3028   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3029 }
3030 
3031 void CodeViewDebug::emitDebugInfoForUDTs(
3032     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3033 #ifndef NDEBUG
3034   size_t OriginalSize = UDTs.size();
3035 #endif
3036   for (const auto &UDT : UDTs) {
3037     const DIType *T = UDT.second;
3038     assert(shouldEmitUdt(T));
3039     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3040     OS.AddComment("Type");
3041     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3042     assert(OriginalSize == UDTs.size() &&
3043            "getCompleteTypeIndex found new UDTs!");
3044     emitNullTerminatedSymbolName(OS, UDT.first);
3045     endSymbolRecord(UDTRecordEnd);
3046   }
3047 }
3048 
3049 void CodeViewDebug::collectGlobalVariableInfo() {
3050   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3051       GlobalMap;
3052   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3053     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3054     GV.getDebugInfo(GVEs);
3055     for (const auto *GVE : GVEs)
3056       GlobalMap[GVE] = &GV;
3057   }
3058 
3059   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3060   for (const MDNode *Node : CUs->operands()) {
3061     const auto *CU = cast<DICompileUnit>(Node);
3062     for (const auto *GVE : CU->getGlobalVariables()) {
3063       const DIGlobalVariable *DIGV = GVE->getVariable();
3064       const DIExpression *DIE = GVE->getExpression();
3065 
3066       // Emit constant global variables in a global symbol section.
3067       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3068         CVGlobalVariable CVGV = {DIGV, DIE};
3069         GlobalVariables.emplace_back(std::move(CVGV));
3070       }
3071 
3072       const auto *GV = GlobalMap.lookup(GVE);
3073       if (!GV || GV->isDeclarationForLinker())
3074         continue;
3075 
3076       DIScope *Scope = DIGV->getScope();
3077       SmallVector<CVGlobalVariable, 1> *VariableList;
3078       if (Scope && isa<DILocalScope>(Scope)) {
3079         // Locate a global variable list for this scope, creating one if
3080         // necessary.
3081         auto Insertion = ScopeGlobals.insert(
3082             {Scope, std::unique_ptr<GlobalVariableList>()});
3083         if (Insertion.second)
3084           Insertion.first->second = std::make_unique<GlobalVariableList>();
3085         VariableList = Insertion.first->second.get();
3086       } else if (GV->hasComdat())
3087         // Emit this global variable into a COMDAT section.
3088         VariableList = &ComdatVariables;
3089       else
3090         // Emit this global variable in a single global symbol section.
3091         VariableList = &GlobalVariables;
3092       CVGlobalVariable CVGV = {DIGV, GV};
3093       VariableList->emplace_back(std::move(CVGV));
3094     }
3095   }
3096 }
3097 
3098 void CodeViewDebug::collectDebugInfoForGlobals() {
3099   for (const CVGlobalVariable &CVGV : GlobalVariables) {
3100     const DIGlobalVariable *DIGV = CVGV.DIGV;
3101     const DIScope *Scope = DIGV->getScope();
3102     getCompleteTypeIndex(DIGV->getType());
3103     getFullyQualifiedName(Scope, DIGV->getName());
3104   }
3105 
3106   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3107     const DIGlobalVariable *DIGV = CVGV.DIGV;
3108     const DIScope *Scope = DIGV->getScope();
3109     getCompleteTypeIndex(DIGV->getType());
3110     getFullyQualifiedName(Scope, DIGV->getName());
3111   }
3112 }
3113 
3114 void CodeViewDebug::emitDebugInfoForGlobals() {
3115   // First, emit all globals that are not in a comdat in a single symbol
3116   // substream. MSVC doesn't like it if the substream is empty, so only open
3117   // it if we have at least one global to emit.
3118   switchToDebugSectionForSymbol(nullptr);
3119   if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3120     OS.AddComment("Symbol subsection for globals");
3121     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3122     emitGlobalVariableList(GlobalVariables);
3123     emitStaticConstMemberList();
3124     endCVSubsection(EndLabel);
3125   }
3126 
3127   // Second, emit each global that is in a comdat into its own .debug$S
3128   // section along with its own symbol substream.
3129   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3130     const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3131     MCSymbol *GVSym = Asm->getSymbol(GV);
3132     OS.AddComment("Symbol subsection for " +
3133                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3134     switchToDebugSectionForSymbol(GVSym);
3135     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3136     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3137     emitDebugInfoForGlobal(CVGV);
3138     endCVSubsection(EndLabel);
3139   }
3140 }
3141 
3142 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3143   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3144   for (const MDNode *Node : CUs->operands()) {
3145     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3146       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3147         getTypeIndex(RT);
3148         // FIXME: Add to global/local DTU list.
3149       }
3150     }
3151   }
3152 }
3153 
3154 // Emit each global variable in the specified array.
3155 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3156   for (const CVGlobalVariable &CVGV : Globals) {
3157     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3158     emitDebugInfoForGlobal(CVGV);
3159   }
3160 }
3161 
3162 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
3163                                              const std::string &QualifiedName) {
3164   MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3165   OS.AddComment("Type");
3166   OS.emitInt32(getTypeIndex(DTy).getIndex());
3167 
3168   OS.AddComment("Value");
3169 
3170   // Encoded integers shouldn't need more than 10 bytes.
3171   uint8_t Data[10];
3172   BinaryStreamWriter Writer(Data, llvm::support::endianness::little);
3173   CodeViewRecordIO IO(Writer);
3174   cantFail(IO.mapEncodedInteger(Value));
3175   StringRef SRef((char *)Data, Writer.getOffset());
3176   OS.emitBinaryData(SRef);
3177 
3178   OS.AddComment("Name");
3179   emitNullTerminatedSymbolName(OS, QualifiedName);
3180   endSymbolRecord(SConstantEnd);
3181 }
3182 
3183 void CodeViewDebug::emitStaticConstMemberList() {
3184   for (const DIDerivedType *DTy : StaticConstMembers) {
3185     const DIScope *Scope = DTy->getScope();
3186 
3187     APSInt Value;
3188     if (const ConstantInt *CI =
3189             dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3190       Value = APSInt(CI->getValue(),
3191                      DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3192     else if (const ConstantFP *CFP =
3193                  dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3194       Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3195     else
3196       llvm_unreachable("cannot emit a constant without a value");
3197 
3198     emitConstantSymbolRecord(DTy->getBaseType(), Value,
3199                              getFullyQualifiedName(Scope, DTy->getName()));
3200   }
3201 }
3202 
3203 static bool isFloatDIType(const DIType *Ty) {
3204   if (isa<DICompositeType>(Ty))
3205     return false;
3206 
3207   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3208     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3209     if (T == dwarf::DW_TAG_pointer_type ||
3210         T == dwarf::DW_TAG_ptr_to_member_type ||
3211         T == dwarf::DW_TAG_reference_type ||
3212         T == dwarf::DW_TAG_rvalue_reference_type)
3213       return false;
3214     assert(DTy->getBaseType() && "Expected valid base type");
3215     return isFloatDIType(DTy->getBaseType());
3216   }
3217 
3218   auto *BTy = cast<DIBasicType>(Ty);
3219   return (BTy->getEncoding() == dwarf::DW_ATE_float);
3220 }
3221 
3222 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3223   const DIGlobalVariable *DIGV = CVGV.DIGV;
3224 
3225   const DIScope *Scope = DIGV->getScope();
3226   // For static data members, get the scope from the declaration.
3227   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3228           DIGV->getRawStaticDataMemberDeclaration()))
3229     Scope = MemberDecl->getScope();
3230   std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName());
3231 
3232   if (const GlobalVariable *GV =
3233           CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3234     // DataSym record, see SymbolRecord.h for more info. Thread local data
3235     // happens to have the same format as global data.
3236     MCSymbol *GVSym = Asm->getSymbol(GV);
3237     SymbolKind DataSym = GV->isThreadLocal()
3238                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3239                                                       : SymbolKind::S_GTHREAD32)
3240                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3241                                                       : SymbolKind::S_GDATA32);
3242     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3243     OS.AddComment("Type");
3244     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3245     OS.AddComment("DataOffset");
3246     OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3247     OS.AddComment("Segment");
3248     OS.EmitCOFFSectionIndex(GVSym);
3249     OS.AddComment("Name");
3250     const unsigned LengthOfDataRecord = 12;
3251     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3252     endSymbolRecord(DataEnd);
3253   } else {
3254     const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3255     assert(DIE->isConstant() &&
3256            "Global constant variables must contain a constant expression.");
3257 
3258     // Use unsigned for floats.
3259     bool isUnsigned = isFloatDIType(DIGV->getType())
3260                           ? true
3261                           : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3262     APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3263     emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
3264   }
3265 }
3266