1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CodeView.h" 17 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCSectionCOFF.h" 25 #include "llvm/MC/MCSymbol.h" 26 #include "llvm/Support/COFF.h" 27 #include "llvm/Support/ScopedPrinter.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 using namespace llvm::codeview; 34 35 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 36 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 37 // If module doesn't have named metadata anchors or COFF debug section 38 // is not available, skip any debug info related stuff. 39 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 40 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 41 Asm = nullptr; 42 return; 43 } 44 45 // Tell MMI that we have debug info. 46 MMI->setDebugInfoAvailability(true); 47 } 48 49 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 50 std::string &Filepath = FileToFilepathMap[File]; 51 if (!Filepath.empty()) 52 return Filepath; 53 54 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 55 56 // Clang emits directory and relative filename info into the IR, but CodeView 57 // operates on full paths. We could change Clang to emit full paths too, but 58 // that would increase the IR size and probably not needed for other users. 59 // For now, just concatenate and canonicalize the path here. 60 if (Filename.find(':') == 1) 61 Filepath = Filename; 62 else 63 Filepath = (Dir + "\\" + Filename).str(); 64 65 // Canonicalize the path. We have to do it textually because we may no longer 66 // have access the file in the filesystem. 67 // First, replace all slashes with backslashes. 68 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 69 70 // Remove all "\.\" with "\". 71 size_t Cursor = 0; 72 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 73 Filepath.erase(Cursor, 2); 74 75 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 76 // path should be well-formatted, e.g. start with a drive letter, etc. 77 Cursor = 0; 78 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 79 // Something's wrong if the path starts with "\..\", abort. 80 if (Cursor == 0) 81 break; 82 83 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 84 if (PrevSlash == std::string::npos) 85 // Something's wrong, abort. 86 break; 87 88 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 89 // The next ".." might be following the one we've just erased. 90 Cursor = PrevSlash; 91 } 92 93 // Remove all duplicate backslashes. 94 Cursor = 0; 95 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 96 Filepath.erase(Cursor, 1); 97 98 return Filepath; 99 } 100 101 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 102 unsigned NextId = FileIdMap.size() + 1; 103 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 104 if (Insertion.second) { 105 // We have to compute the full filepath and emit a .cv_file directive. 106 StringRef FullPath = getFullFilepath(F); 107 NextId = OS.EmitCVFileDirective(NextId, FullPath); 108 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 109 } 110 return Insertion.first->second; 111 } 112 113 CodeViewDebug::InlineSite & 114 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 115 const DISubprogram *Inlinee) { 116 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 117 InlineSite *Site = &SiteInsertion.first->second; 118 if (SiteInsertion.second) { 119 Site->SiteFuncId = NextFuncId++; 120 Site->Inlinee = Inlinee; 121 InlinedSubprograms.insert(Inlinee); 122 getFuncIdForSubprogram(Inlinee); 123 } 124 return *Site; 125 } 126 127 static const DISubprogram *getQualifiedNameComponents( 128 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 129 const DISubprogram *ClosestSubprogram = nullptr; 130 while (Scope != nullptr) { 131 if (ClosestSubprogram == nullptr) 132 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 133 StringRef ScopeName = Scope->getName(); 134 if (!ScopeName.empty()) 135 QualifiedNameComponents.push_back(ScopeName); 136 Scope = Scope->getScope().resolve(); 137 } 138 return ClosestSubprogram; 139 } 140 141 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 142 StringRef TypeName) { 143 std::string FullyQualifiedName; 144 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 145 FullyQualifiedName.append(QualifiedNameComponent); 146 FullyQualifiedName.append("::"); 147 } 148 FullyQualifiedName.append(TypeName); 149 return FullyQualifiedName; 150 } 151 152 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 153 SmallVector<StringRef, 5> QualifiedNameComponents; 154 getQualifiedNameComponents(Scope, QualifiedNameComponents); 155 return getQualifiedName(QualifiedNameComponents, Name); 156 } 157 158 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 159 // No scope means global scope and that uses the zero index. 160 if (!Scope || isa<DIFile>(Scope)) 161 return TypeIndex(); 162 163 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 164 165 // Check if we've already translated this scope. 166 auto I = TypeIndices.find({Scope, nullptr}); 167 if (I != TypeIndices.end()) 168 return I->second; 169 170 // Build the fully qualified name of the scope. 171 std::string ScopeName = 172 getFullyQualifiedName(Scope->getScope().resolve(), Scope->getName()); 173 TypeIndex TI = 174 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 175 return recordTypeIndexForDINode(Scope, TI); 176 } 177 178 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 179 // It's possible to ask for the FuncId of a function which doesn't have a 180 // subprogram: inlining a function with debug info into a function with none. 181 if (!SP) 182 return TypeIndex::None(); 183 184 // Check if we've already translated this subprogram. 185 auto I = TypeIndices.find({SP, nullptr}); 186 if (I != TypeIndices.end()) 187 return I->second; 188 189 // The display name includes function template arguments. Drop them to match 190 // MSVC. 191 StringRef DisplayName = SP->getDisplayName().split('<').first; 192 193 const DIScope *Scope = SP->getScope().resolve(); 194 TypeIndex TI; 195 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 196 // If the scope is a DICompositeType, then this must be a method. Member 197 // function types take some special handling, and require access to the 198 // subprogram. 199 TypeIndex ClassType = getTypeIndex(Class); 200 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 201 DisplayName); 202 TI = TypeTable.writeMemberFuncId(MFuncId); 203 } else { 204 // Otherwise, this must be a free function. 205 TypeIndex ParentScope = getScopeIndex(Scope); 206 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 207 TI = TypeTable.writeFuncId(FuncId); 208 } 209 210 return recordTypeIndexForDINode(SP, TI); 211 } 212 213 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 214 const DICompositeType *Class) { 215 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 216 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 217 auto I = TypeIndices.find({SP, nullptr}); 218 if (I != TypeIndices.end()) 219 return I->second; 220 221 // FIXME: Get the ThisAdjustment off of SP when it is available. 222 TypeIndex TI = 223 lowerTypeMemberFunction(SP->getType(), Class, /*ThisAdjustment=*/0); 224 225 return recordTypeIndexForDINode(SP, TI, Class); 226 } 227 228 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 229 const DIType *ClassTy) { 230 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 231 (void)InsertResult; 232 assert(InsertResult.second && "DINode was already assigned a type index"); 233 return TI; 234 } 235 236 unsigned CodeViewDebug::getPointerSizeInBytes() { 237 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 238 } 239 240 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 241 const DILocation *InlinedAt) { 242 if (InlinedAt) { 243 // This variable was inlined. Associate it with the InlineSite. 244 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 245 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 246 Site.InlinedLocals.emplace_back(Var); 247 } else { 248 // This variable goes in the main ProcSym. 249 CurFn->Locals.emplace_back(Var); 250 } 251 } 252 253 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 254 const DILocation *Loc) { 255 auto B = Locs.begin(), E = Locs.end(); 256 if (std::find(B, E, Loc) == E) 257 Locs.push_back(Loc); 258 } 259 260 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 261 const MachineFunction *MF) { 262 // Skip this instruction if it has the same location as the previous one. 263 if (DL == CurFn->LastLoc) 264 return; 265 266 const DIScope *Scope = DL.get()->getScope(); 267 if (!Scope) 268 return; 269 270 // Skip this line if it is longer than the maximum we can record. 271 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 272 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 273 LI.isNeverStepInto()) 274 return; 275 276 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 277 if (CI.getStartColumn() != DL.getCol()) 278 return; 279 280 if (!CurFn->HaveLineInfo) 281 CurFn->HaveLineInfo = true; 282 unsigned FileId = 0; 283 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 284 FileId = CurFn->LastFileId; 285 else 286 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 287 CurFn->LastLoc = DL; 288 289 unsigned FuncId = CurFn->FuncId; 290 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 291 const DILocation *Loc = DL.get(); 292 293 // If this location was actually inlined from somewhere else, give it the ID 294 // of the inline call site. 295 FuncId = 296 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 297 298 // Ensure we have links in the tree of inline call sites. 299 bool FirstLoc = true; 300 while ((SiteLoc = Loc->getInlinedAt())) { 301 InlineSite &Site = 302 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 303 if (!FirstLoc) 304 addLocIfNotPresent(Site.ChildSites, Loc); 305 FirstLoc = false; 306 Loc = SiteLoc; 307 } 308 addLocIfNotPresent(CurFn->ChildSites, Loc); 309 } 310 311 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 312 /*PrologueEnd=*/false, 313 /*IsStmt=*/false, DL->getFilename()); 314 } 315 316 void CodeViewDebug::emitCodeViewMagicVersion() { 317 OS.EmitValueToAlignment(4); 318 OS.AddComment("Debug section magic"); 319 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 320 } 321 322 void CodeViewDebug::endModule() { 323 if (!Asm || !MMI->hasDebugInfo()) 324 return; 325 326 assert(Asm != nullptr); 327 328 // The COFF .debug$S section consists of several subsections, each starting 329 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 330 // of the payload followed by the payload itself. The subsections are 4-byte 331 // aligned. 332 333 // Use the generic .debug$S section, and make a subsection for all the inlined 334 // subprograms. 335 switchToDebugSectionForSymbol(nullptr); 336 emitInlineeLinesSubsection(); 337 338 // Emit per-function debug information. 339 for (auto &P : FnDebugInfo) 340 if (!P.first->isDeclarationForLinker()) 341 emitDebugInfoForFunction(P.first, P.second); 342 343 // Emit global variable debug information. 344 setCurrentSubprogram(nullptr); 345 emitDebugInfoForGlobals(); 346 347 // Emit retained types. 348 emitDebugInfoForRetainedTypes(); 349 350 // Switch back to the generic .debug$S section after potentially processing 351 // comdat symbol sections. 352 switchToDebugSectionForSymbol(nullptr); 353 354 // Emit UDT records for any types used by global variables. 355 if (!GlobalUDTs.empty()) { 356 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 357 emitDebugInfoForUDTs(GlobalUDTs); 358 endCVSubsection(SymbolsEnd); 359 } 360 361 // This subsection holds a file index to offset in string table table. 362 OS.AddComment("File index to string table offset subsection"); 363 OS.EmitCVFileChecksumsDirective(); 364 365 // This subsection holds the string table. 366 OS.AddComment("String table"); 367 OS.EmitCVStringTableDirective(); 368 369 // Emit type information last, so that any types we translate while emitting 370 // function info are included. 371 emitTypeInformation(); 372 373 clear(); 374 } 375 376 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 377 // Microsoft's linker seems to have trouble with symbol names longer than 378 // 0xffd8 bytes. 379 S = S.substr(0, 0xffd8); 380 SmallString<32> NullTerminatedString(S); 381 NullTerminatedString.push_back('\0'); 382 OS.EmitBytes(NullTerminatedString); 383 } 384 385 void CodeViewDebug::emitTypeInformation() { 386 // Do nothing if we have no debug info or if no non-trivial types were emitted 387 // to TypeTable during codegen. 388 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 389 if (!CU_Nodes) 390 return; 391 if (TypeTable.empty()) 392 return; 393 394 // Start the .debug$T section with 0x4. 395 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 396 emitCodeViewMagicVersion(); 397 398 SmallString<8> CommentPrefix; 399 if (OS.isVerboseAsm()) { 400 CommentPrefix += '\t'; 401 CommentPrefix += Asm->MAI->getCommentString(); 402 CommentPrefix += ' '; 403 } 404 405 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 406 TypeTable.ForEachRecord( 407 [&](TypeIndex Index, StringRef Record) { 408 if (OS.isVerboseAsm()) { 409 // Emit a block comment describing the type record for readability. 410 SmallString<512> CommentBlock; 411 raw_svector_ostream CommentOS(CommentBlock); 412 ScopedPrinter SP(CommentOS); 413 SP.setPrefix(CommentPrefix); 414 CVTD.setPrinter(&SP); 415 Error EC = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 416 assert(!EC && "produced malformed type record"); 417 consumeError(std::move(EC)); 418 // emitRawComment will insert its own tab and comment string before 419 // the first line, so strip off our first one. It also prints its own 420 // newline. 421 OS.emitRawComment( 422 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 423 } 424 OS.EmitBinaryData(Record); 425 }); 426 } 427 428 void CodeViewDebug::emitInlineeLinesSubsection() { 429 if (InlinedSubprograms.empty()) 430 return; 431 432 OS.AddComment("Inlinee lines subsection"); 433 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 434 435 // We don't provide any extra file info. 436 // FIXME: Find out if debuggers use this info. 437 OS.AddComment("Inlinee lines signature"); 438 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 439 440 for (const DISubprogram *SP : InlinedSubprograms) { 441 assert(TypeIndices.count({SP, nullptr})); 442 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 443 444 OS.AddBlankLine(); 445 unsigned FileId = maybeRecordFile(SP->getFile()); 446 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 447 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 448 OS.AddBlankLine(); 449 // The filechecksum table uses 8 byte entries for now, and file ids start at 450 // 1. 451 unsigned FileOffset = (FileId - 1) * 8; 452 OS.AddComment("Type index of inlined function"); 453 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 454 OS.AddComment("Offset into filechecksum table"); 455 OS.EmitIntValue(FileOffset, 4); 456 OS.AddComment("Starting line number"); 457 OS.EmitIntValue(SP->getLine(), 4); 458 } 459 460 endCVSubsection(InlineEnd); 461 } 462 463 void CodeViewDebug::collectInlineSiteChildren( 464 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 465 const InlineSite &Site) { 466 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 467 auto I = FI.InlineSites.find(ChildSiteLoc); 468 const InlineSite &ChildSite = I->second; 469 Children.push_back(ChildSite.SiteFuncId); 470 collectInlineSiteChildren(Children, FI, ChildSite); 471 } 472 } 473 474 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 475 const DILocation *InlinedAt, 476 const InlineSite &Site) { 477 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 478 *InlineEnd = MMI->getContext().createTempSymbol(); 479 480 assert(TypeIndices.count({Site.Inlinee, nullptr})); 481 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 482 483 // SymbolRecord 484 OS.AddComment("Record length"); 485 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 486 OS.EmitLabel(InlineBegin); 487 OS.AddComment("Record kind: S_INLINESITE"); 488 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 489 490 OS.AddComment("PtrParent"); 491 OS.EmitIntValue(0, 4); 492 OS.AddComment("PtrEnd"); 493 OS.EmitIntValue(0, 4); 494 OS.AddComment("Inlinee type index"); 495 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 496 497 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 498 unsigned StartLineNum = Site.Inlinee->getLine(); 499 SmallVector<unsigned, 3> SecondaryFuncIds; 500 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 501 502 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 503 FI.Begin, FI.End, SecondaryFuncIds); 504 505 OS.EmitLabel(InlineEnd); 506 507 emitLocalVariableList(Site.InlinedLocals); 508 509 // Recurse on child inlined call sites before closing the scope. 510 for (const DILocation *ChildSite : Site.ChildSites) { 511 auto I = FI.InlineSites.find(ChildSite); 512 assert(I != FI.InlineSites.end() && 513 "child site not in function inline site map"); 514 emitInlinedCallSite(FI, ChildSite, I->second); 515 } 516 517 // Close the scope. 518 OS.AddComment("Record length"); 519 OS.EmitIntValue(2, 2); // RecordLength 520 OS.AddComment("Record kind: S_INLINESITE_END"); 521 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 522 } 523 524 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 525 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 526 // comdat key. A section may be comdat because of -ffunction-sections or 527 // because it is comdat in the IR. 528 MCSectionCOFF *GVSec = 529 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 530 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 531 532 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 533 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 534 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 535 536 OS.SwitchSection(DebugSec); 537 538 // Emit the magic version number if this is the first time we've switched to 539 // this section. 540 if (ComdatDebugSections.insert(DebugSec).second) 541 emitCodeViewMagicVersion(); 542 } 543 544 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 545 FunctionInfo &FI) { 546 // For each function there is a separate subsection 547 // which holds the PC to file:line table. 548 const MCSymbol *Fn = Asm->getSymbol(GV); 549 assert(Fn); 550 551 // Switch to the to a comdat section, if appropriate. 552 switchToDebugSectionForSymbol(Fn); 553 554 std::string FuncName; 555 auto *SP = GV->getSubprogram(); 556 setCurrentSubprogram(SP); 557 558 // If we have a display name, build the fully qualified name by walking the 559 // chain of scopes. 560 if (SP != nullptr && !SP->getDisplayName().empty()) 561 FuncName = 562 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 563 564 // If our DISubprogram name is empty, use the mangled name. 565 if (FuncName.empty()) 566 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 567 568 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 569 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 570 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 571 { 572 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 573 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 574 OS.AddComment("Record length"); 575 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 576 OS.EmitLabel(ProcRecordBegin); 577 578 OS.AddComment("Record kind: S_GPROC32_ID"); 579 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 580 581 // These fields are filled in by tools like CVPACK which run after the fact. 582 OS.AddComment("PtrParent"); 583 OS.EmitIntValue(0, 4); 584 OS.AddComment("PtrEnd"); 585 OS.EmitIntValue(0, 4); 586 OS.AddComment("PtrNext"); 587 OS.EmitIntValue(0, 4); 588 // This is the important bit that tells the debugger where the function 589 // code is located and what's its size: 590 OS.AddComment("Code size"); 591 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 592 OS.AddComment("Offset after prologue"); 593 OS.EmitIntValue(0, 4); 594 OS.AddComment("Offset before epilogue"); 595 OS.EmitIntValue(0, 4); 596 OS.AddComment("Function type index"); 597 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 598 OS.AddComment("Function section relative address"); 599 OS.EmitCOFFSecRel32(Fn); 600 OS.AddComment("Function section index"); 601 OS.EmitCOFFSectionIndex(Fn); 602 OS.AddComment("Flags"); 603 OS.EmitIntValue(0, 1); 604 // Emit the function display name as a null-terminated string. 605 OS.AddComment("Function name"); 606 // Truncate the name so we won't overflow the record length field. 607 emitNullTerminatedSymbolName(OS, FuncName); 608 OS.EmitLabel(ProcRecordEnd); 609 610 emitLocalVariableList(FI.Locals); 611 612 // Emit inlined call site information. Only emit functions inlined directly 613 // into the parent function. We'll emit the other sites recursively as part 614 // of their parent inline site. 615 for (const DILocation *InlinedAt : FI.ChildSites) { 616 auto I = FI.InlineSites.find(InlinedAt); 617 assert(I != FI.InlineSites.end() && 618 "child site not in function inline site map"); 619 emitInlinedCallSite(FI, InlinedAt, I->second); 620 } 621 622 if (SP != nullptr) 623 emitDebugInfoForUDTs(LocalUDTs); 624 625 // We're done with this function. 626 OS.AddComment("Record length"); 627 OS.EmitIntValue(0x0002, 2); 628 OS.AddComment("Record kind: S_PROC_ID_END"); 629 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 630 } 631 endCVSubsection(SymbolsEnd); 632 633 // We have an assembler directive that takes care of the whole line table. 634 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 635 } 636 637 CodeViewDebug::LocalVarDefRange 638 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 639 LocalVarDefRange DR; 640 DR.InMemory = -1; 641 DR.DataOffset = Offset; 642 assert(DR.DataOffset == Offset && "truncation"); 643 DR.StructOffset = 0; 644 DR.CVRegister = CVRegister; 645 return DR; 646 } 647 648 CodeViewDebug::LocalVarDefRange 649 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 650 LocalVarDefRange DR; 651 DR.InMemory = 0; 652 DR.DataOffset = 0; 653 DR.StructOffset = 0; 654 DR.CVRegister = CVRegister; 655 return DR; 656 } 657 658 void CodeViewDebug::collectVariableInfoFromMMITable( 659 DenseSet<InlinedVariable> &Processed) { 660 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 661 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 662 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 663 664 for (const MachineModuleInfo::VariableDbgInfo &VI : 665 MMI->getVariableDbgInfo()) { 666 if (!VI.Var) 667 continue; 668 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 669 "Expected inlined-at fields to agree"); 670 671 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 672 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 673 674 // If variable scope is not found then skip this variable. 675 if (!Scope) 676 continue; 677 678 // Get the frame register used and the offset. 679 unsigned FrameReg = 0; 680 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 681 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 682 683 // Calculate the label ranges. 684 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 685 for (const InsnRange &Range : Scope->getRanges()) { 686 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 687 const MCSymbol *End = getLabelAfterInsn(Range.second); 688 End = End ? End : Asm->getFunctionEnd(); 689 DefRange.Ranges.emplace_back(Begin, End); 690 } 691 692 LocalVariable Var; 693 Var.DIVar = VI.Var; 694 Var.DefRanges.emplace_back(std::move(DefRange)); 695 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 696 } 697 } 698 699 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 700 DenseSet<InlinedVariable> Processed; 701 // Grab the variable info that was squirreled away in the MMI side-table. 702 collectVariableInfoFromMMITable(Processed); 703 704 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 705 706 for (const auto &I : DbgValues) { 707 InlinedVariable IV = I.first; 708 if (Processed.count(IV)) 709 continue; 710 const DILocalVariable *DIVar = IV.first; 711 const DILocation *InlinedAt = IV.second; 712 713 // Instruction ranges, specifying where IV is accessible. 714 const auto &Ranges = I.second; 715 716 LexicalScope *Scope = nullptr; 717 if (InlinedAt) 718 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 719 else 720 Scope = LScopes.findLexicalScope(DIVar->getScope()); 721 // If variable scope is not found then skip this variable. 722 if (!Scope) 723 continue; 724 725 LocalVariable Var; 726 Var.DIVar = DIVar; 727 728 // Calculate the definition ranges. 729 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 730 const InsnRange &Range = *I; 731 const MachineInstr *DVInst = Range.first; 732 assert(DVInst->isDebugValue() && "Invalid History entry"); 733 const DIExpression *DIExpr = DVInst->getDebugExpression(); 734 735 // Bail if there is a complex DWARF expression for now. 736 if (DIExpr && DIExpr->getNumElements() > 0) 737 continue; 738 739 // Bail if operand 0 is not a valid register. This means the variable is a 740 // simple constant, or is described by a complex expression. 741 // FIXME: Find a way to represent constant variables, since they are 742 // relatively common. 743 unsigned Reg = 744 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 745 if (Reg == 0) 746 continue; 747 748 // Handle the two cases we can handle: indirect in memory and in register. 749 bool IsIndirect = DVInst->getOperand(1).isImm(); 750 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 751 { 752 LocalVarDefRange DefRange; 753 if (IsIndirect) { 754 int64_t Offset = DVInst->getOperand(1).getImm(); 755 DefRange = createDefRangeMem(CVReg, Offset); 756 } else { 757 DefRange = createDefRangeReg(CVReg); 758 } 759 if (Var.DefRanges.empty() || 760 Var.DefRanges.back().isDifferentLocation(DefRange)) { 761 Var.DefRanges.emplace_back(std::move(DefRange)); 762 } 763 } 764 765 // Compute the label range. 766 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 767 const MCSymbol *End = getLabelAfterInsn(Range.second); 768 if (!End) { 769 if (std::next(I) != E) 770 End = getLabelBeforeInsn(std::next(I)->first); 771 else 772 End = Asm->getFunctionEnd(); 773 } 774 775 // If the last range end is our begin, just extend the last range. 776 // Otherwise make a new range. 777 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 778 Var.DefRanges.back().Ranges; 779 if (!Ranges.empty() && Ranges.back().second == Begin) 780 Ranges.back().second = End; 781 else 782 Ranges.emplace_back(Begin, End); 783 784 // FIXME: Do more range combining. 785 } 786 787 recordLocalVariable(std::move(Var), InlinedAt); 788 } 789 } 790 791 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 792 assert(!CurFn && "Can't process two functions at once!"); 793 794 if (!Asm || !MMI->hasDebugInfo()) 795 return; 796 797 DebugHandlerBase::beginFunction(MF); 798 799 const Function *GV = MF->getFunction(); 800 assert(FnDebugInfo.count(GV) == false); 801 CurFn = &FnDebugInfo[GV]; 802 CurFn->FuncId = NextFuncId++; 803 CurFn->Begin = Asm->getFunctionBegin(); 804 805 // Find the end of the function prolog. First known non-DBG_VALUE and 806 // non-frame setup location marks the beginning of the function body. 807 // FIXME: is there a simpler a way to do this? Can we just search 808 // for the first instruction of the function, not the last of the prolog? 809 DebugLoc PrologEndLoc; 810 bool EmptyPrologue = true; 811 for (const auto &MBB : *MF) { 812 for (const auto &MI : MBB) { 813 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 814 MI.getDebugLoc()) { 815 PrologEndLoc = MI.getDebugLoc(); 816 break; 817 } else if (!MI.isDebugValue()) { 818 EmptyPrologue = false; 819 } 820 } 821 } 822 823 // Record beginning of function if we have a non-empty prologue. 824 if (PrologEndLoc && !EmptyPrologue) { 825 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 826 maybeRecordLocation(FnStartDL, MF); 827 } 828 } 829 830 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 831 SmallVector<StringRef, 5> QualifiedNameComponents; 832 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 833 Ty->getScope().resolve(), QualifiedNameComponents); 834 835 std::string FullyQualifiedName = 836 getQualifiedName(QualifiedNameComponents, Ty->getName()); 837 838 if (ClosestSubprogram == nullptr) 839 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 840 else if (ClosestSubprogram == CurrentSubprogram) 841 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 842 843 // TODO: What if the ClosestSubprogram is neither null or the current 844 // subprogram? Currently, the UDT just gets dropped on the floor. 845 // 846 // The current behavior is not desirable. To get maximal fidelity, we would 847 // need to perform all type translation before beginning emission of .debug$S 848 // and then make LocalUDTs a member of FunctionInfo 849 } 850 851 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 852 // Generic dispatch for lowering an unknown type. 853 switch (Ty->getTag()) { 854 case dwarf::DW_TAG_array_type: 855 return lowerTypeArray(cast<DICompositeType>(Ty)); 856 case dwarf::DW_TAG_typedef: 857 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 858 case dwarf::DW_TAG_base_type: 859 return lowerTypeBasic(cast<DIBasicType>(Ty)); 860 case dwarf::DW_TAG_pointer_type: 861 case dwarf::DW_TAG_reference_type: 862 case dwarf::DW_TAG_rvalue_reference_type: 863 return lowerTypePointer(cast<DIDerivedType>(Ty)); 864 case dwarf::DW_TAG_ptr_to_member_type: 865 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 866 case dwarf::DW_TAG_const_type: 867 case dwarf::DW_TAG_volatile_type: 868 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 869 case dwarf::DW_TAG_subroutine_type: 870 if (ClassTy) { 871 // The member function type of a member function pointer has no 872 // ThisAdjustment. 873 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 874 /*ThisAdjustment=*/0); 875 } 876 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 877 case dwarf::DW_TAG_enumeration_type: 878 return lowerTypeEnum(cast<DICompositeType>(Ty)); 879 case dwarf::DW_TAG_class_type: 880 case dwarf::DW_TAG_structure_type: 881 return lowerTypeClass(cast<DICompositeType>(Ty)); 882 case dwarf::DW_TAG_union_type: 883 return lowerTypeUnion(cast<DICompositeType>(Ty)); 884 default: 885 // Use the null type index. 886 return TypeIndex(); 887 } 888 } 889 890 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 891 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 892 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 893 StringRef TypeName = Ty->getName(); 894 895 addToUDTs(Ty, UnderlyingTypeIndex); 896 897 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 898 TypeName == "HRESULT") 899 return TypeIndex(SimpleTypeKind::HResult); 900 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 901 TypeName == "wchar_t") 902 return TypeIndex(SimpleTypeKind::WideCharacter); 903 904 return UnderlyingTypeIndex; 905 } 906 907 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 908 DITypeRef ElementTypeRef = Ty->getBaseType(); 909 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 910 // IndexType is size_t, which depends on the bitness of the target. 911 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 912 ? TypeIndex(SimpleTypeKind::UInt64Quad) 913 : TypeIndex(SimpleTypeKind::UInt32Long); 914 assert(ElementTypeRef.resolve()); 915 uint64_t ElementSize = ElementTypeRef.resolve()->getSizeInBits() / 8; 916 917 bool UndefinedSubrange = false; 918 919 // FIXME: 920 // There is a bug in the front-end where an array of a structure, which was 921 // declared as incomplete structure first, ends up not getting a size assigned 922 // to it. (PR28303) 923 // Example: 924 // struct A(*p)[3]; 925 // struct A { int f; } a[3]; 926 // 927 // This needs to be fixed in the front-end, but in the meantime we don't want 928 // to trigger an assertion because of this. 929 if (Ty->getSizeInBits() == 0) { 930 UndefinedSubrange = true; 931 } 932 933 // Add subranges to array type. 934 DINodeArray Elements = Ty->getElements(); 935 for (int i = Elements.size() - 1; i >= 0; --i) { 936 const DINode *Element = Elements[i]; 937 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 938 939 const DISubrange *Subrange = cast<DISubrange>(Element); 940 assert(Subrange->getLowerBound() == 0 && 941 "codeview doesn't support subranges with lower bounds"); 942 int64_t Count = Subrange->getCount(); 943 944 // Variable Length Array (VLA) has Count equal to '-1'. 945 // Replace with Count '1', assume it is the minimum VLA length. 946 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 947 if (Count == -1) { 948 Count = 1; 949 UndefinedSubrange = true; 950 } 951 952 StringRef Name = (i == 0) ? Ty->getName() : ""; 953 // Update the element size and element type index for subsequent subranges. 954 ElementSize *= Count; 955 ElementTypeIndex = TypeTable.writeArray( 956 ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name)); 957 } 958 959 assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8)); 960 961 return ElementTypeIndex; 962 } 963 964 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 965 TypeIndex Index; 966 dwarf::TypeKind Kind; 967 uint32_t ByteSize; 968 969 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 970 ByteSize = Ty->getSizeInBits() / 8; 971 972 SimpleTypeKind STK = SimpleTypeKind::None; 973 switch (Kind) { 974 case dwarf::DW_ATE_address: 975 // FIXME: Translate 976 break; 977 case dwarf::DW_ATE_boolean: 978 switch (ByteSize) { 979 case 1: STK = SimpleTypeKind::Boolean8; break; 980 case 2: STK = SimpleTypeKind::Boolean16; break; 981 case 4: STK = SimpleTypeKind::Boolean32; break; 982 case 8: STK = SimpleTypeKind::Boolean64; break; 983 case 16: STK = SimpleTypeKind::Boolean128; break; 984 } 985 break; 986 case dwarf::DW_ATE_complex_float: 987 switch (ByteSize) { 988 case 2: STK = SimpleTypeKind::Complex16; break; 989 case 4: STK = SimpleTypeKind::Complex32; break; 990 case 8: STK = SimpleTypeKind::Complex64; break; 991 case 10: STK = SimpleTypeKind::Complex80; break; 992 case 16: STK = SimpleTypeKind::Complex128; break; 993 } 994 break; 995 case dwarf::DW_ATE_float: 996 switch (ByteSize) { 997 case 2: STK = SimpleTypeKind::Float16; break; 998 case 4: STK = SimpleTypeKind::Float32; break; 999 case 6: STK = SimpleTypeKind::Float48; break; 1000 case 8: STK = SimpleTypeKind::Float64; break; 1001 case 10: STK = SimpleTypeKind::Float80; break; 1002 case 16: STK = SimpleTypeKind::Float128; break; 1003 } 1004 break; 1005 case dwarf::DW_ATE_signed: 1006 switch (ByteSize) { 1007 case 1: STK = SimpleTypeKind::SByte; break; 1008 case 2: STK = SimpleTypeKind::Int16Short; break; 1009 case 4: STK = SimpleTypeKind::Int32; break; 1010 case 8: STK = SimpleTypeKind::Int64Quad; break; 1011 case 16: STK = SimpleTypeKind::Int128Oct; break; 1012 } 1013 break; 1014 case dwarf::DW_ATE_unsigned: 1015 switch (ByteSize) { 1016 case 1: STK = SimpleTypeKind::Byte; break; 1017 case 2: STK = SimpleTypeKind::UInt16Short; break; 1018 case 4: STK = SimpleTypeKind::UInt32; break; 1019 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1020 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1021 } 1022 break; 1023 case dwarf::DW_ATE_UTF: 1024 switch (ByteSize) { 1025 case 2: STK = SimpleTypeKind::Character16; break; 1026 case 4: STK = SimpleTypeKind::Character32; break; 1027 } 1028 break; 1029 case dwarf::DW_ATE_signed_char: 1030 if (ByteSize == 1) 1031 STK = SimpleTypeKind::SignedCharacter; 1032 break; 1033 case dwarf::DW_ATE_unsigned_char: 1034 if (ByteSize == 1) 1035 STK = SimpleTypeKind::UnsignedCharacter; 1036 break; 1037 default: 1038 break; 1039 } 1040 1041 // Apply some fixups based on the source-level type name. 1042 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1043 STK = SimpleTypeKind::Int32Long; 1044 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1045 STK = SimpleTypeKind::UInt32Long; 1046 if (STK == SimpleTypeKind::UInt16Short && 1047 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1048 STK = SimpleTypeKind::WideCharacter; 1049 if ((STK == SimpleTypeKind::SignedCharacter || 1050 STK == SimpleTypeKind::UnsignedCharacter) && 1051 Ty->getName() == "char") 1052 STK = SimpleTypeKind::NarrowCharacter; 1053 1054 return TypeIndex(STK); 1055 } 1056 1057 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1058 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1059 1060 // While processing the type being pointed to it is possible we already 1061 // created this pointer type. If so, we check here and return the existing 1062 // pointer type. 1063 auto I = TypeIndices.find({Ty, nullptr}); 1064 if (I != TypeIndices.end()) 1065 return I->second; 1066 1067 // Pointers to simple types can use SimpleTypeMode, rather than having a 1068 // dedicated pointer type record. 1069 if (PointeeTI.isSimple() && 1070 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1071 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1072 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1073 ? SimpleTypeMode::NearPointer64 1074 : SimpleTypeMode::NearPointer32; 1075 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1076 } 1077 1078 PointerKind PK = 1079 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1080 PointerMode PM = PointerMode::Pointer; 1081 switch (Ty->getTag()) { 1082 default: llvm_unreachable("not a pointer tag type"); 1083 case dwarf::DW_TAG_pointer_type: 1084 PM = PointerMode::Pointer; 1085 break; 1086 case dwarf::DW_TAG_reference_type: 1087 PM = PointerMode::LValueReference; 1088 break; 1089 case dwarf::DW_TAG_rvalue_reference_type: 1090 PM = PointerMode::RValueReference; 1091 break; 1092 } 1093 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1094 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1095 // do. 1096 PointerOptions PO = PointerOptions::None; 1097 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1098 return TypeTable.writePointer(PR); 1099 } 1100 1101 static PointerToMemberRepresentation 1102 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1103 // SizeInBytes being zero generally implies that the member pointer type was 1104 // incomplete, which can happen if it is part of a function prototype. In this 1105 // case, use the unknown model instead of the general model. 1106 if (IsPMF) { 1107 switch (Flags & DINode::FlagPtrToMemberRep) { 1108 case 0: 1109 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1110 : PointerToMemberRepresentation::GeneralFunction; 1111 case DINode::FlagSingleInheritance: 1112 return PointerToMemberRepresentation::SingleInheritanceFunction; 1113 case DINode::FlagMultipleInheritance: 1114 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1115 case DINode::FlagVirtualInheritance: 1116 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1117 } 1118 } else { 1119 switch (Flags & DINode::FlagPtrToMemberRep) { 1120 case 0: 1121 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1122 : PointerToMemberRepresentation::GeneralData; 1123 case DINode::FlagSingleInheritance: 1124 return PointerToMemberRepresentation::SingleInheritanceData; 1125 case DINode::FlagMultipleInheritance: 1126 return PointerToMemberRepresentation::MultipleInheritanceData; 1127 case DINode::FlagVirtualInheritance: 1128 return PointerToMemberRepresentation::VirtualInheritanceData; 1129 } 1130 } 1131 llvm_unreachable("invalid ptr to member representation"); 1132 } 1133 1134 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1135 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1136 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1137 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1138 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1139 : PointerKind::Near32; 1140 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1141 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1142 : PointerMode::PointerToDataMember; 1143 PointerOptions PO = PointerOptions::None; // FIXME 1144 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1145 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1146 MemberPointerInfo MPI( 1147 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1148 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1149 return TypeTable.writePointer(PR); 1150 } 1151 1152 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1153 /// have a translation, use the NearC convention. 1154 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1155 switch (DwarfCC) { 1156 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1157 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1158 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1159 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1160 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1161 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1162 } 1163 return CallingConvention::NearC; 1164 } 1165 1166 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1167 ModifierOptions Mods = ModifierOptions::None; 1168 bool IsModifier = true; 1169 const DIType *BaseTy = Ty; 1170 while (IsModifier && BaseTy) { 1171 // FIXME: Need to add DWARF tag for __unaligned. 1172 switch (BaseTy->getTag()) { 1173 case dwarf::DW_TAG_const_type: 1174 Mods |= ModifierOptions::Const; 1175 break; 1176 case dwarf::DW_TAG_volatile_type: 1177 Mods |= ModifierOptions::Volatile; 1178 break; 1179 default: 1180 IsModifier = false; 1181 break; 1182 } 1183 if (IsModifier) 1184 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1185 } 1186 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1187 1188 // While processing the type being pointed to, it is possible we already 1189 // created this modifier type. If so, we check here and return the existing 1190 // modifier type. 1191 auto I = TypeIndices.find({Ty, nullptr}); 1192 if (I != TypeIndices.end()) 1193 return I->second; 1194 1195 ModifierRecord MR(ModifiedTI, Mods); 1196 return TypeTable.writeModifier(MR); 1197 } 1198 1199 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1200 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1201 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1202 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1203 1204 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1205 ArrayRef<TypeIndex> ArgTypeIndices = None; 1206 if (!ReturnAndArgTypeIndices.empty()) { 1207 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1208 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1209 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1210 } 1211 1212 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1213 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1214 1215 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1216 1217 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1218 ArgTypeIndices.size(), ArgListIndex); 1219 return TypeTable.writeProcedure(Procedure); 1220 } 1221 1222 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1223 const DIType *ClassTy, 1224 int ThisAdjustment) { 1225 // Lower the containing class type. 1226 TypeIndex ClassType = getTypeIndex(ClassTy); 1227 1228 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1229 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1230 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1231 1232 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1233 ArrayRef<TypeIndex> ArgTypeIndices = None; 1234 if (!ReturnAndArgTypeIndices.empty()) { 1235 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1236 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1237 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1238 } 1239 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1240 if (!ArgTypeIndices.empty()) { 1241 ThisTypeIndex = ArgTypeIndices.front(); 1242 ArgTypeIndices = ArgTypeIndices.drop_front(); 1243 } 1244 1245 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1246 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1247 1248 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1249 1250 // TODO: Need to use the correct values for: 1251 // FunctionOptions 1252 // ThisPointerAdjustment. 1253 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1254 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1255 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1256 1257 return TI; 1258 } 1259 1260 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1261 switch (Flags & DINode::FlagAccessibility) { 1262 case DINode::FlagPrivate: return MemberAccess::Private; 1263 case DINode::FlagPublic: return MemberAccess::Public; 1264 case DINode::FlagProtected: return MemberAccess::Protected; 1265 case 0: 1266 // If there was no explicit access control, provide the default for the tag. 1267 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1268 : MemberAccess::Public; 1269 } 1270 llvm_unreachable("access flags are exclusive"); 1271 } 1272 1273 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1274 if (SP->isArtificial()) 1275 return MethodOptions::CompilerGenerated; 1276 1277 // FIXME: Handle other MethodOptions. 1278 1279 return MethodOptions::None; 1280 } 1281 1282 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1283 bool Introduced) { 1284 switch (SP->getVirtuality()) { 1285 case dwarf::DW_VIRTUALITY_none: 1286 break; 1287 case dwarf::DW_VIRTUALITY_virtual: 1288 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1289 case dwarf::DW_VIRTUALITY_pure_virtual: 1290 return Introduced ? MethodKind::PureIntroducingVirtual 1291 : MethodKind::PureVirtual; 1292 default: 1293 llvm_unreachable("unhandled virtuality case"); 1294 } 1295 1296 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1297 1298 return MethodKind::Vanilla; 1299 } 1300 1301 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1302 switch (Ty->getTag()) { 1303 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1304 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1305 } 1306 llvm_unreachable("unexpected tag"); 1307 } 1308 1309 /// Return the HasUniqueName option if it should be present in ClassOptions, or 1310 /// None otherwise. 1311 static ClassOptions getRecordUniqueNameOption(const DICompositeType *Ty) { 1312 // MSVC always sets this flag now, even for local types. Clang doesn't always 1313 // appear to give every type a linkage name, which may be problematic for us. 1314 // FIXME: Investigate the consequences of not following them here. 1315 return !Ty->getIdentifier().empty() ? ClassOptions::HasUniqueName 1316 : ClassOptions::None; 1317 } 1318 1319 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1320 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1321 TypeIndex FTI; 1322 unsigned EnumeratorCount = 0; 1323 1324 if (Ty->isForwardDecl()) { 1325 CO |= ClassOptions::ForwardReference; 1326 } else { 1327 FieldListRecordBuilder Fields; 1328 for (const DINode *Element : Ty->getElements()) { 1329 // We assume that the frontend provides all members in source declaration 1330 // order, which is what MSVC does. 1331 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1332 Fields.writeEnumerator(EnumeratorRecord( 1333 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1334 Enumerator->getName())); 1335 EnumeratorCount++; 1336 } 1337 } 1338 FTI = TypeTable.writeFieldList(Fields); 1339 } 1340 1341 std::string FullName = 1342 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1343 1344 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1345 Ty->getIdentifier(), 1346 getTypeIndex(Ty->getBaseType()))); 1347 } 1348 1349 //===----------------------------------------------------------------------===// 1350 // ClassInfo 1351 //===----------------------------------------------------------------------===// 1352 1353 struct llvm::ClassInfo { 1354 struct MemberInfo { 1355 const DIDerivedType *MemberTypeNode; 1356 unsigned BaseOffset; 1357 }; 1358 // [MemberInfo] 1359 typedef std::vector<MemberInfo> MemberList; 1360 1361 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1362 // MethodName -> MethodsList 1363 typedef MapVector<MDString *, MethodsList> MethodsMap; 1364 1365 /// Base classes. 1366 std::vector<const DIDerivedType *> Inheritance; 1367 1368 /// Direct members. 1369 MemberList Members; 1370 // Direct overloaded methods gathered by name. 1371 MethodsMap Methods; 1372 }; 1373 1374 void CodeViewDebug::clear() { 1375 assert(CurFn == nullptr); 1376 FileIdMap.clear(); 1377 FnDebugInfo.clear(); 1378 FileToFilepathMap.clear(); 1379 LocalUDTs.clear(); 1380 GlobalUDTs.clear(); 1381 TypeIndices.clear(); 1382 CompleteTypeIndices.clear(); 1383 } 1384 1385 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1386 const DIDerivedType *DDTy) { 1387 if (!DDTy->getName().empty()) { 1388 Info.Members.push_back({DDTy, 0}); 1389 return; 1390 } 1391 // An unnamed member must represent a nested struct or union. Add all the 1392 // indirect fields to the current record. 1393 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1394 unsigned Offset = DDTy->getOffsetInBits() / 8; 1395 const DIType *Ty = DDTy->getBaseType().resolve(); 1396 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1397 ClassInfo NestedInfo = collectClassInfo(DCTy); 1398 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1399 Info.Members.push_back( 1400 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1401 } 1402 1403 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1404 ClassInfo Info; 1405 // Add elements to structure type. 1406 DINodeArray Elements = Ty->getElements(); 1407 for (auto *Element : Elements) { 1408 // We assume that the frontend provides all members in source declaration 1409 // order, which is what MSVC does. 1410 if (!Element) 1411 continue; 1412 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1413 Info.Methods[SP->getRawName()].push_back(SP); 1414 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1415 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1416 collectMemberInfo(Info, DDTy); 1417 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1418 Info.Inheritance.push_back(DDTy); 1419 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1420 // Ignore friend members. It appears that MSVC emitted info about 1421 // friends in the past, but modern versions do not. 1422 } 1423 // FIXME: Get Clang to emit function virtual table here and handle it. 1424 // FIXME: Get clang to emit nested types here and do something with 1425 // them. 1426 } 1427 // Skip other unrecognized kinds of elements. 1428 } 1429 return Info; 1430 } 1431 1432 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1433 // First, construct the forward decl. Don't look into Ty to compute the 1434 // forward decl options, since it might not be available in all TUs. 1435 TypeRecordKind Kind = getRecordKind(Ty); 1436 ClassOptions CO = 1437 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1438 std::string FullName = 1439 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1440 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1441 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1442 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1443 if (!Ty->isForwardDecl()) 1444 DeferredCompleteTypes.push_back(Ty); 1445 return FwdDeclTI; 1446 } 1447 1448 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1449 // Construct the field list and complete type record. 1450 TypeRecordKind Kind = getRecordKind(Ty); 1451 // FIXME: Other ClassOptions, like ContainsNestedClass and NestedClass. 1452 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1453 TypeIndex FieldTI; 1454 TypeIndex VShapeTI; 1455 unsigned FieldCount; 1456 std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty); 1457 1458 std::string FullName = 1459 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1460 1461 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1462 1463 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1464 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1465 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1466 1467 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1468 ClassTI, TypeTable.writeStringId(StringIdRecord( 1469 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1470 Ty->getLine())); 1471 1472 addToUDTs(Ty, ClassTI); 1473 1474 return ClassTI; 1475 } 1476 1477 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1478 ClassOptions CO = 1479 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1480 std::string FullName = 1481 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1482 TypeIndex FwdDeclTI = 1483 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1484 FullName, Ty->getIdentifier())); 1485 if (!Ty->isForwardDecl()) 1486 DeferredCompleteTypes.push_back(Ty); 1487 return FwdDeclTI; 1488 } 1489 1490 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1491 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1492 TypeIndex FieldTI; 1493 unsigned FieldCount; 1494 std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty); 1495 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1496 std::string FullName = 1497 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1498 1499 TypeIndex UnionTI = TypeTable.writeUnion( 1500 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1501 Ty->getIdentifier())); 1502 1503 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1504 UnionTI, TypeTable.writeStringId(StringIdRecord( 1505 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1506 Ty->getLine())); 1507 1508 addToUDTs(Ty, UnionTI); 1509 1510 return UnionTI; 1511 } 1512 1513 std::tuple<TypeIndex, TypeIndex, unsigned> 1514 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1515 // Manually count members. MSVC appears to count everything that generates a 1516 // field list record. Each individual overload in a method overload group 1517 // contributes to this count, even though the overload group is a single field 1518 // list record. 1519 unsigned MemberCount = 0; 1520 ClassInfo Info = collectClassInfo(Ty); 1521 FieldListRecordBuilder Fields; 1522 1523 // Create base classes. 1524 for (const DIDerivedType *I : Info.Inheritance) { 1525 if (I->getFlags() & DINode::FlagVirtual) { 1526 // Virtual base. 1527 // FIXME: Emit VBPtrOffset when the frontend provides it. 1528 unsigned VBPtrOffset = 0; 1529 // FIXME: Despite the accessor name, the offset is really in bytes. 1530 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1531 Fields.writeVirtualBaseClass(VirtualBaseClassRecord( 1532 translateAccessFlags(Ty->getTag(), I->getFlags()), 1533 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1534 VBTableIndex)); 1535 } else { 1536 assert(I->getOffsetInBits() % 8 == 0 && 1537 "bases must be on byte boundaries"); 1538 Fields.writeBaseClass(BaseClassRecord( 1539 translateAccessFlags(Ty->getTag(), I->getFlags()), 1540 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1541 } 1542 } 1543 1544 // Create members. 1545 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1546 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1547 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1548 1549 if (Member->isStaticMember()) { 1550 Fields.writeStaticDataMember(StaticDataMemberRecord( 1551 translateAccessFlags(Ty->getTag(), Member->getFlags()), 1552 MemberBaseType, Member->getName())); 1553 MemberCount++; 1554 continue; 1555 } 1556 1557 uint64_t OffsetInBytes = MemberInfo.BaseOffset; 1558 1559 // FIXME: Handle bitfield type memeber. 1560 OffsetInBytes += Member->getOffsetInBits() / 8; 1561 1562 Fields.writeDataMember( 1563 DataMemberRecord(translateAccessFlags(Ty->getTag(), Member->getFlags()), 1564 MemberBaseType, OffsetInBytes, Member->getName())); 1565 MemberCount++; 1566 } 1567 1568 // Create methods 1569 for (auto &MethodItr : Info.Methods) { 1570 StringRef Name = MethodItr.first->getString(); 1571 1572 std::vector<OneMethodRecord> Methods; 1573 for (const DISubprogram *SP : MethodItr.second) { 1574 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1575 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1576 1577 unsigned VFTableOffset = -1; 1578 if (Introduced) 1579 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1580 1581 Methods.push_back( 1582 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1583 translateMethodOptionFlags(SP), 1584 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1585 VFTableOffset, Name)); 1586 MemberCount++; 1587 } 1588 assert(Methods.size() > 0 && "Empty methods map entry"); 1589 if (Methods.size() == 1) 1590 Fields.writeOneMethod(Methods[0]); 1591 else { 1592 TypeIndex MethodList = 1593 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1594 Fields.writeOverloadedMethod( 1595 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1596 } 1597 } 1598 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1599 return std::make_tuple(FieldTI, TypeIndex(), MemberCount); 1600 } 1601 1602 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1603 if (!VBPType.getIndex()) { 1604 // Make a 'const int *' type. 1605 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1606 TypeIndex ModifiedTI = TypeTable.writeModifier(MR); 1607 1608 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1609 : PointerKind::Near32; 1610 PointerMode PM = PointerMode::Pointer; 1611 PointerOptions PO = PointerOptions::None; 1612 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1613 1614 VBPType = TypeTable.writePointer(PR); 1615 } 1616 1617 return VBPType; 1618 } 1619 1620 struct CodeViewDebug::TypeLoweringScope { 1621 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 1622 ~TypeLoweringScope() { 1623 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 1624 // inner TypeLoweringScopes don't attempt to emit deferred types. 1625 if (CVD.TypeEmissionLevel == 1) 1626 CVD.emitDeferredCompleteTypes(); 1627 --CVD.TypeEmissionLevel; 1628 } 1629 CodeViewDebug &CVD; 1630 }; 1631 1632 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1633 const DIType *Ty = TypeRef.resolve(); 1634 const DIType *ClassTy = ClassTyRef.resolve(); 1635 1636 // The null DIType is the void type. Don't try to hash it. 1637 if (!Ty) 1638 return TypeIndex::Void(); 1639 1640 // Check if we've already translated this type. Don't try to do a 1641 // get-or-create style insertion that caches the hash lookup across the 1642 // lowerType call. It will update the TypeIndices map. 1643 auto I = TypeIndices.find({Ty, ClassTy}); 1644 if (I != TypeIndices.end()) 1645 return I->second; 1646 1647 TypeIndex TI; 1648 { 1649 TypeLoweringScope S(*this); 1650 TI = lowerType(Ty, ClassTy); 1651 recordTypeIndexForDINode(Ty, TI, ClassTy); 1652 } 1653 1654 return TI; 1655 } 1656 1657 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1658 const DIType *Ty = TypeRef.resolve(); 1659 1660 // The null DIType is the void type. Don't try to hash it. 1661 if (!Ty) 1662 return TypeIndex::Void(); 1663 1664 // If this is a non-record type, the complete type index is the same as the 1665 // normal type index. Just call getTypeIndex. 1666 switch (Ty->getTag()) { 1667 case dwarf::DW_TAG_class_type: 1668 case dwarf::DW_TAG_structure_type: 1669 case dwarf::DW_TAG_union_type: 1670 break; 1671 default: 1672 return getTypeIndex(Ty); 1673 } 1674 1675 // Check if we've already translated the complete record type. Lowering a 1676 // complete type should never trigger lowering another complete type, so we 1677 // can reuse the hash table lookup result. 1678 const auto *CTy = cast<DICompositeType>(Ty); 1679 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1680 if (!InsertResult.second) 1681 return InsertResult.first->second; 1682 1683 TypeLoweringScope S(*this); 1684 1685 // Make sure the forward declaration is emitted first. It's unclear if this 1686 // is necessary, but MSVC does it, and we should follow suit until we can show 1687 // otherwise. 1688 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1689 1690 // Just use the forward decl if we don't have complete type info. This might 1691 // happen if the frontend is using modules and expects the complete definition 1692 // to be emitted elsewhere. 1693 if (CTy->isForwardDecl()) 1694 return FwdDeclTI; 1695 1696 TypeIndex TI; 1697 switch (CTy->getTag()) { 1698 case dwarf::DW_TAG_class_type: 1699 case dwarf::DW_TAG_structure_type: 1700 TI = lowerCompleteTypeClass(CTy); 1701 break; 1702 case dwarf::DW_TAG_union_type: 1703 TI = lowerCompleteTypeUnion(CTy); 1704 break; 1705 default: 1706 llvm_unreachable("not a record"); 1707 } 1708 1709 InsertResult.first->second = TI; 1710 return TI; 1711 } 1712 1713 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1714 /// and do this until fixpoint, as each complete record type typically references 1715 /// many other record types. 1716 void CodeViewDebug::emitDeferredCompleteTypes() { 1717 SmallVector<const DICompositeType *, 4> TypesToEmit; 1718 while (!DeferredCompleteTypes.empty()) { 1719 std::swap(DeferredCompleteTypes, TypesToEmit); 1720 for (const DICompositeType *RecordTy : TypesToEmit) 1721 getCompleteTypeIndex(RecordTy); 1722 TypesToEmit.clear(); 1723 } 1724 } 1725 1726 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1727 // Get the sorted list of parameters and emit them first. 1728 SmallVector<const LocalVariable *, 6> Params; 1729 for (const LocalVariable &L : Locals) 1730 if (L.DIVar->isParameter()) 1731 Params.push_back(&L); 1732 std::sort(Params.begin(), Params.end(), 1733 [](const LocalVariable *L, const LocalVariable *R) { 1734 return L->DIVar->getArg() < R->DIVar->getArg(); 1735 }); 1736 for (const LocalVariable *L : Params) 1737 emitLocalVariable(*L); 1738 1739 // Next emit all non-parameters in the order that we found them. 1740 for (const LocalVariable &L : Locals) 1741 if (!L.DIVar->isParameter()) 1742 emitLocalVariable(L); 1743 } 1744 1745 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1746 // LocalSym record, see SymbolRecord.h for more info. 1747 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1748 *LocalEnd = MMI->getContext().createTempSymbol(); 1749 OS.AddComment("Record length"); 1750 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1751 OS.EmitLabel(LocalBegin); 1752 1753 OS.AddComment("Record kind: S_LOCAL"); 1754 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1755 1756 LocalSymFlags Flags = LocalSymFlags::None; 1757 if (Var.DIVar->isParameter()) 1758 Flags |= LocalSymFlags::IsParameter; 1759 if (Var.DefRanges.empty()) 1760 Flags |= LocalSymFlags::IsOptimizedOut; 1761 1762 OS.AddComment("TypeIndex"); 1763 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1764 OS.EmitIntValue(TI.getIndex(), 4); 1765 OS.AddComment("Flags"); 1766 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1767 // Truncate the name so we won't overflow the record length field. 1768 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1769 OS.EmitLabel(LocalEnd); 1770 1771 // Calculate the on disk prefix of the appropriate def range record. The 1772 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1773 // should be big enough to hold all forms without memory allocation. 1774 SmallString<20> BytePrefix; 1775 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1776 BytePrefix.clear(); 1777 // FIXME: Handle bitpieces. 1778 if (DefRange.StructOffset != 0) 1779 continue; 1780 1781 if (DefRange.InMemory) { 1782 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1783 0, 0, ArrayRef<LocalVariableAddrGap>()); 1784 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1785 BytePrefix += 1786 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1787 BytePrefix += 1788 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1789 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1790 } else { 1791 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1792 // Unclear what matters here. 1793 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1794 ArrayRef<LocalVariableAddrGap>()); 1795 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1796 BytePrefix += 1797 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1798 BytePrefix += 1799 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1800 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1801 } 1802 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1803 } 1804 } 1805 1806 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1807 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1808 return; 1809 1810 const Function *GV = MF->getFunction(); 1811 assert(FnDebugInfo.count(GV)); 1812 assert(CurFn == &FnDebugInfo[GV]); 1813 1814 collectVariableInfo(GV->getSubprogram()); 1815 1816 DebugHandlerBase::endFunction(MF); 1817 1818 // Don't emit anything if we don't have any line tables. 1819 if (!CurFn->HaveLineInfo) { 1820 FnDebugInfo.erase(GV); 1821 CurFn = nullptr; 1822 return; 1823 } 1824 1825 CurFn->End = Asm->getFunctionEnd(); 1826 1827 CurFn = nullptr; 1828 } 1829 1830 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1831 DebugHandlerBase::beginInstruction(MI); 1832 1833 // Ignore DBG_VALUE locations and function prologue. 1834 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1835 return; 1836 DebugLoc DL = MI->getDebugLoc(); 1837 if (DL == PrevInstLoc || !DL) 1838 return; 1839 maybeRecordLocation(DL, Asm->MF); 1840 } 1841 1842 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1843 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1844 *EndLabel = MMI->getContext().createTempSymbol(); 1845 OS.EmitIntValue(unsigned(Kind), 4); 1846 OS.AddComment("Subsection size"); 1847 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1848 OS.EmitLabel(BeginLabel); 1849 return EndLabel; 1850 } 1851 1852 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1853 OS.EmitLabel(EndLabel); 1854 // Every subsection must be aligned to a 4-byte boundary. 1855 OS.EmitValueToAlignment(4); 1856 } 1857 1858 void CodeViewDebug::emitDebugInfoForUDTs( 1859 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1860 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1861 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1862 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1863 OS.AddComment("Record length"); 1864 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1865 OS.EmitLabel(UDTRecordBegin); 1866 1867 OS.AddComment("Record kind: S_UDT"); 1868 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1869 1870 OS.AddComment("Type"); 1871 OS.EmitIntValue(UDT.second.getIndex(), 4); 1872 1873 emitNullTerminatedSymbolName(OS, UDT.first); 1874 OS.EmitLabel(UDTRecordEnd); 1875 } 1876 } 1877 1878 void CodeViewDebug::emitDebugInfoForGlobals() { 1879 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1880 for (const MDNode *Node : CUs->operands()) { 1881 const auto *CU = cast<DICompileUnit>(Node); 1882 1883 // First, emit all globals that are not in a comdat in a single symbol 1884 // substream. MSVC doesn't like it if the substream is empty, so only open 1885 // it if we have at least one global to emit. 1886 switchToDebugSectionForSymbol(nullptr); 1887 MCSymbol *EndLabel = nullptr; 1888 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1889 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1890 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1891 if (!EndLabel) { 1892 OS.AddComment("Symbol subsection for globals"); 1893 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1894 } 1895 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1896 } 1897 } 1898 } 1899 if (EndLabel) 1900 endCVSubsection(EndLabel); 1901 1902 // Second, emit each global that is in a comdat into its own .debug$S 1903 // section along with its own symbol substream. 1904 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1905 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1906 if (GV->hasComdat()) { 1907 MCSymbol *GVSym = Asm->getSymbol(GV); 1908 OS.AddComment("Symbol subsection for " + 1909 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1910 switchToDebugSectionForSymbol(GVSym); 1911 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1912 emitDebugInfoForGlobal(G, GVSym); 1913 endCVSubsection(EndLabel); 1914 } 1915 } 1916 } 1917 } 1918 } 1919 1920 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 1921 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1922 for (const MDNode *Node : CUs->operands()) { 1923 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 1924 if (DIType *RT = dyn_cast<DIType>(Ty)) { 1925 getTypeIndex(RT); 1926 // FIXME: Add to global/local DTU list. 1927 } 1928 } 1929 } 1930 } 1931 1932 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1933 MCSymbol *GVSym) { 1934 // DataSym record, see SymbolRecord.h for more info. 1935 // FIXME: Thread local data, etc 1936 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1937 *DataEnd = MMI->getContext().createTempSymbol(); 1938 OS.AddComment("Record length"); 1939 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 1940 OS.EmitLabel(DataBegin); 1941 OS.AddComment("Record kind: S_GDATA32"); 1942 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 1943 OS.AddComment("Type"); 1944 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 1945 OS.AddComment("DataOffset"); 1946 OS.EmitCOFFSecRel32(GVSym); 1947 OS.AddComment("Segment"); 1948 OS.EmitCOFFSectionIndex(GVSym); 1949 OS.AddComment("Name"); 1950 emitNullTerminatedSymbolName(OS, DIGV->getName()); 1951 OS.EmitLabel(DataEnd); 1952 } 1953