1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeDumper.h" 17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 18 #include "llvm/DebugInfo/CodeView/CodeView.h" 19 #include "llvm/DebugInfo/CodeView/Line.h" 20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 21 #include "llvm/DebugInfo/CodeView/TypeDatabase.h" 22 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 23 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 25 #include "llvm/DebugInfo/MSF/ByteStream.h" 26 #include "llvm/DebugInfo/MSF/StreamReader.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/MC/MCSectionCOFF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/COFF.h" 33 #include "llvm/Support/ScopedPrinter.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 38 using namespace llvm; 39 using namespace llvm::codeview; 40 using namespace llvm::msf; 41 42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 43 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(), 44 TypeTable(Allocator), CurFn(nullptr) { 45 // If module doesn't have named metadata anchors or COFF debug section 46 // is not available, skip any debug info related stuff. 47 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 48 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 49 Asm = nullptr; 50 return; 51 } 52 53 // Tell MMI that we have debug info. 54 MMI->setDebugInfoAvailability(true); 55 } 56 57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 58 std::string &Filepath = FileToFilepathMap[File]; 59 if (!Filepath.empty()) 60 return Filepath; 61 62 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 63 64 // Clang emits directory and relative filename info into the IR, but CodeView 65 // operates on full paths. We could change Clang to emit full paths too, but 66 // that would increase the IR size and probably not needed for other users. 67 // For now, just concatenate and canonicalize the path here. 68 if (Filename.find(':') == 1) 69 Filepath = Filename; 70 else 71 Filepath = (Dir + "\\" + Filename).str(); 72 73 // Canonicalize the path. We have to do it textually because we may no longer 74 // have access the file in the filesystem. 75 // First, replace all slashes with backslashes. 76 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 77 78 // Remove all "\.\" with "\". 79 size_t Cursor = 0; 80 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 81 Filepath.erase(Cursor, 2); 82 83 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 84 // path should be well-formatted, e.g. start with a drive letter, etc. 85 Cursor = 0; 86 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 87 // Something's wrong if the path starts with "\..\", abort. 88 if (Cursor == 0) 89 break; 90 91 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 92 if (PrevSlash == std::string::npos) 93 // Something's wrong, abort. 94 break; 95 96 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 97 // The next ".." might be following the one we've just erased. 98 Cursor = PrevSlash; 99 } 100 101 // Remove all duplicate backslashes. 102 Cursor = 0; 103 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 104 Filepath.erase(Cursor, 1); 105 106 return Filepath; 107 } 108 109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 110 unsigned NextId = FileIdMap.size() + 1; 111 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 112 if (Insertion.second) { 113 // We have to compute the full filepath and emit a .cv_file directive. 114 StringRef FullPath = getFullFilepath(F); 115 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 116 (void)Success; 117 assert(Success && ".cv_file directive failed"); 118 } 119 return Insertion.first->second; 120 } 121 122 CodeViewDebug::InlineSite & 123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 124 const DISubprogram *Inlinee) { 125 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 126 InlineSite *Site = &SiteInsertion.first->second; 127 if (SiteInsertion.second) { 128 unsigned ParentFuncId = CurFn->FuncId; 129 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 130 ParentFuncId = 131 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 132 .SiteFuncId; 133 134 Site->SiteFuncId = NextFuncId++; 135 OS.EmitCVInlineSiteIdDirective( 136 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 137 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 138 Site->Inlinee = Inlinee; 139 InlinedSubprograms.insert(Inlinee); 140 getFuncIdForSubprogram(Inlinee); 141 } 142 return *Site; 143 } 144 145 static StringRef getPrettyScopeName(const DIScope *Scope) { 146 StringRef ScopeName = Scope->getName(); 147 if (!ScopeName.empty()) 148 return ScopeName; 149 150 switch (Scope->getTag()) { 151 case dwarf::DW_TAG_enumeration_type: 152 case dwarf::DW_TAG_class_type: 153 case dwarf::DW_TAG_structure_type: 154 case dwarf::DW_TAG_union_type: 155 return "<unnamed-tag>"; 156 case dwarf::DW_TAG_namespace: 157 return "`anonymous namespace'"; 158 } 159 160 return StringRef(); 161 } 162 163 static const DISubprogram *getQualifiedNameComponents( 164 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 165 const DISubprogram *ClosestSubprogram = nullptr; 166 while (Scope != nullptr) { 167 if (ClosestSubprogram == nullptr) 168 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 169 StringRef ScopeName = getPrettyScopeName(Scope); 170 if (!ScopeName.empty()) 171 QualifiedNameComponents.push_back(ScopeName); 172 Scope = Scope->getScope().resolve(); 173 } 174 return ClosestSubprogram; 175 } 176 177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 178 StringRef TypeName) { 179 std::string FullyQualifiedName; 180 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 181 FullyQualifiedName.append(QualifiedNameComponent); 182 FullyQualifiedName.append("::"); 183 } 184 FullyQualifiedName.append(TypeName); 185 return FullyQualifiedName; 186 } 187 188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 189 SmallVector<StringRef, 5> QualifiedNameComponents; 190 getQualifiedNameComponents(Scope, QualifiedNameComponents); 191 return getQualifiedName(QualifiedNameComponents, Name); 192 } 193 194 struct CodeViewDebug::TypeLoweringScope { 195 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 196 ~TypeLoweringScope() { 197 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 198 // inner TypeLoweringScopes don't attempt to emit deferred types. 199 if (CVD.TypeEmissionLevel == 1) 200 CVD.emitDeferredCompleteTypes(); 201 --CVD.TypeEmissionLevel; 202 } 203 CodeViewDebug &CVD; 204 }; 205 206 static std::string getFullyQualifiedName(const DIScope *Ty) { 207 const DIScope *Scope = Ty->getScope().resolve(); 208 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 209 } 210 211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 212 // No scope means global scope and that uses the zero index. 213 if (!Scope || isa<DIFile>(Scope)) 214 return TypeIndex(); 215 216 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 217 218 // Check if we've already translated this scope. 219 auto I = TypeIndices.find({Scope, nullptr}); 220 if (I != TypeIndices.end()) 221 return I->second; 222 223 // Build the fully qualified name of the scope. 224 std::string ScopeName = getFullyQualifiedName(Scope); 225 StringIdRecord SID(TypeIndex(), ScopeName); 226 auto TI = TypeTable.writeKnownType(SID); 227 return recordTypeIndexForDINode(Scope, TI); 228 } 229 230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 231 assert(SP); 232 233 // Check if we've already translated this subprogram. 234 auto I = TypeIndices.find({SP, nullptr}); 235 if (I != TypeIndices.end()) 236 return I->second; 237 238 // The display name includes function template arguments. Drop them to match 239 // MSVC. 240 StringRef DisplayName = SP->getDisplayName().split('<').first; 241 242 const DIScope *Scope = SP->getScope().resolve(); 243 TypeIndex TI; 244 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 245 // If the scope is a DICompositeType, then this must be a method. Member 246 // function types take some special handling, and require access to the 247 // subprogram. 248 TypeIndex ClassType = getTypeIndex(Class); 249 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 250 DisplayName); 251 TI = TypeTable.writeKnownType(MFuncId); 252 } else { 253 // Otherwise, this must be a free function. 254 TypeIndex ParentScope = getScopeIndex(Scope); 255 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 256 TI = TypeTable.writeKnownType(FuncId); 257 } 258 259 return recordTypeIndexForDINode(SP, TI); 260 } 261 262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 263 const DICompositeType *Class) { 264 // Always use the method declaration as the key for the function type. The 265 // method declaration contains the this adjustment. 266 if (SP->getDeclaration()) 267 SP = SP->getDeclaration(); 268 assert(!SP->getDeclaration() && "should use declaration as key"); 269 270 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 271 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 272 auto I = TypeIndices.find({SP, Class}); 273 if (I != TypeIndices.end()) 274 return I->second; 275 276 // Make sure complete type info for the class is emitted *after* the member 277 // function type, as the complete class type is likely to reference this 278 // member function type. 279 TypeLoweringScope S(*this); 280 TypeIndex TI = 281 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 282 return recordTypeIndexForDINode(SP, TI, Class); 283 } 284 285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 286 TypeIndex TI, 287 const DIType *ClassTy) { 288 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 289 (void)InsertResult; 290 assert(InsertResult.second && "DINode was already assigned a type index"); 291 return TI; 292 } 293 294 unsigned CodeViewDebug::getPointerSizeInBytes() { 295 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 296 } 297 298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 299 const DILocation *InlinedAt) { 300 if (InlinedAt) { 301 // This variable was inlined. Associate it with the InlineSite. 302 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 303 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 304 Site.InlinedLocals.emplace_back(Var); 305 } else { 306 // This variable goes in the main ProcSym. 307 CurFn->Locals.emplace_back(Var); 308 } 309 } 310 311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 312 const DILocation *Loc) { 313 auto B = Locs.begin(), E = Locs.end(); 314 if (std::find(B, E, Loc) == E) 315 Locs.push_back(Loc); 316 } 317 318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 319 const MachineFunction *MF) { 320 // Skip this instruction if it has the same location as the previous one. 321 if (DL == CurFn->LastLoc) 322 return; 323 324 const DIScope *Scope = DL.get()->getScope(); 325 if (!Scope) 326 return; 327 328 // Skip this line if it is longer than the maximum we can record. 329 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 330 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 331 LI.isNeverStepInto()) 332 return; 333 334 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 335 if (CI.getStartColumn() != DL.getCol()) 336 return; 337 338 if (!CurFn->HaveLineInfo) 339 CurFn->HaveLineInfo = true; 340 unsigned FileId = 0; 341 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 342 FileId = CurFn->LastFileId; 343 else 344 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 345 CurFn->LastLoc = DL; 346 347 unsigned FuncId = CurFn->FuncId; 348 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 349 const DILocation *Loc = DL.get(); 350 351 // If this location was actually inlined from somewhere else, give it the ID 352 // of the inline call site. 353 FuncId = 354 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 355 356 // Ensure we have links in the tree of inline call sites. 357 bool FirstLoc = true; 358 while ((SiteLoc = Loc->getInlinedAt())) { 359 InlineSite &Site = 360 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 361 if (!FirstLoc) 362 addLocIfNotPresent(Site.ChildSites, Loc); 363 FirstLoc = false; 364 Loc = SiteLoc; 365 } 366 addLocIfNotPresent(CurFn->ChildSites, Loc); 367 } 368 369 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 370 /*PrologueEnd=*/false, /*IsStmt=*/false, 371 DL->getFilename(), SMLoc()); 372 } 373 374 void CodeViewDebug::emitCodeViewMagicVersion() { 375 OS.EmitValueToAlignment(4); 376 OS.AddComment("Debug section magic"); 377 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 378 } 379 380 void CodeViewDebug::endModule() { 381 if (!Asm || !MMI->hasDebugInfo()) 382 return; 383 384 assert(Asm != nullptr); 385 386 // The COFF .debug$S section consists of several subsections, each starting 387 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 388 // of the payload followed by the payload itself. The subsections are 4-byte 389 // aligned. 390 391 // Use the generic .debug$S section, and make a subsection for all the inlined 392 // subprograms. 393 switchToDebugSectionForSymbol(nullptr); 394 395 MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols); 396 emitCompilerInformation(); 397 endCVSubsection(CompilerInfo); 398 399 emitInlineeLinesSubsection(); 400 401 // Emit per-function debug information. 402 for (auto &P : FnDebugInfo) 403 if (!P.first->isDeclarationForLinker()) 404 emitDebugInfoForFunction(P.first, P.second); 405 406 // Emit global variable debug information. 407 setCurrentSubprogram(nullptr); 408 emitDebugInfoForGlobals(); 409 410 // Emit retained types. 411 emitDebugInfoForRetainedTypes(); 412 413 // Switch back to the generic .debug$S section after potentially processing 414 // comdat symbol sections. 415 switchToDebugSectionForSymbol(nullptr); 416 417 // Emit UDT records for any types used by global variables. 418 if (!GlobalUDTs.empty()) { 419 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 420 emitDebugInfoForUDTs(GlobalUDTs); 421 endCVSubsection(SymbolsEnd); 422 } 423 424 // This subsection holds a file index to offset in string table table. 425 OS.AddComment("File index to string table offset subsection"); 426 OS.EmitCVFileChecksumsDirective(); 427 428 // This subsection holds the string table. 429 OS.AddComment("String table"); 430 OS.EmitCVStringTableDirective(); 431 432 // Emit type information last, so that any types we translate while emitting 433 // function info are included. 434 emitTypeInformation(); 435 436 clear(); 437 } 438 439 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 440 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 441 // after a fixed length portion of the record. The fixed length portion should 442 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 443 // overall record size is less than the maximum allowed. 444 unsigned MaxFixedRecordLength = 0xF00; 445 SmallString<32> NullTerminatedString( 446 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 447 NullTerminatedString.push_back('\0'); 448 OS.EmitBytes(NullTerminatedString); 449 } 450 451 void CodeViewDebug::emitTypeInformation() { 452 // Do nothing if we have no debug info or if no non-trivial types were emitted 453 // to TypeTable during codegen. 454 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 455 if (!CU_Nodes) 456 return; 457 if (TypeTable.empty()) 458 return; 459 460 // Start the .debug$T section with 0x4. 461 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 462 emitCodeViewMagicVersion(); 463 464 SmallString<8> CommentPrefix; 465 if (OS.isVerboseAsm()) { 466 CommentPrefix += '\t'; 467 CommentPrefix += Asm->MAI->getCommentString(); 468 CommentPrefix += ' '; 469 } 470 471 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 472 TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) { 473 if (OS.isVerboseAsm()) { 474 // Emit a block comment describing the type record for readability. 475 SmallString<512> CommentBlock; 476 raw_svector_ostream CommentOS(CommentBlock); 477 ScopedPrinter SP(CommentOS); 478 SP.setPrefix(CommentPrefix); 479 CVTD.setPrinter(&SP); 480 Error E = CVTD.dump(Record); 481 if (E) { 482 logAllUnhandledErrors(std::move(E), errs(), "error: "); 483 llvm_unreachable("produced malformed type record"); 484 } 485 // emitRawComment will insert its own tab and comment string before 486 // the first line, so strip off our first one. It also prints its own 487 // newline. 488 OS.emitRawComment( 489 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 490 } else { 491 #ifndef NDEBUG 492 // Assert that the type data is valid even if we aren't dumping 493 // comments. The MSVC linker doesn't do much type record validation, 494 // so the first link of an invalid type record can succeed while 495 // subsequent links will fail with LNK1285. 496 ByteStream Stream(Record); 497 CVTypeArray Types; 498 StreamReader Reader(Stream); 499 Error E = Reader.readArray(Types, Reader.getLength()); 500 if (!E) { 501 TypeVisitorCallbacks C; 502 E = CVTypeVisitor(C).visitTypeStream(Types); 503 } 504 if (E) { 505 logAllUnhandledErrors(std::move(E), errs(), "error: "); 506 llvm_unreachable("produced malformed type record"); 507 } 508 #endif 509 } 510 StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size()); 511 OS.EmitBinaryData(S); 512 }); 513 } 514 515 namespace { 516 517 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 518 switch (DWLang) { 519 case dwarf::DW_LANG_C: 520 case dwarf::DW_LANG_C89: 521 case dwarf::DW_LANG_C99: 522 case dwarf::DW_LANG_C11: 523 case dwarf::DW_LANG_ObjC: 524 return SourceLanguage::C; 525 case dwarf::DW_LANG_C_plus_plus: 526 case dwarf::DW_LANG_C_plus_plus_03: 527 case dwarf::DW_LANG_C_plus_plus_11: 528 case dwarf::DW_LANG_C_plus_plus_14: 529 return SourceLanguage::Cpp; 530 case dwarf::DW_LANG_Fortran77: 531 case dwarf::DW_LANG_Fortran90: 532 case dwarf::DW_LANG_Fortran03: 533 case dwarf::DW_LANG_Fortran08: 534 return SourceLanguage::Fortran; 535 case dwarf::DW_LANG_Pascal83: 536 return SourceLanguage::Pascal; 537 case dwarf::DW_LANG_Cobol74: 538 case dwarf::DW_LANG_Cobol85: 539 return SourceLanguage::Cobol; 540 case dwarf::DW_LANG_Java: 541 return SourceLanguage::Java; 542 default: 543 // There's no CodeView representation for this language, and CV doesn't 544 // have an "unknown" option for the language field, so we'll use MASM, 545 // as it's very low level. 546 return SourceLanguage::Masm; 547 } 548 } 549 550 struct Version { 551 int Part[4]; 552 }; 553 554 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 555 // the version number. 556 static Version parseVersion(StringRef Name) { 557 Version V = {{0}}; 558 int N = 0; 559 for (const char C : Name) { 560 if (isdigit(C)) { 561 V.Part[N] *= 10; 562 V.Part[N] += C - '0'; 563 } else if (C == '.') { 564 ++N; 565 if (N >= 4) 566 return V; 567 } else if (N > 0) 568 return V; 569 } 570 return V; 571 } 572 573 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 574 switch (Type) { 575 case Triple::ArchType::x86: 576 return CPUType::Pentium3; 577 case Triple::ArchType::x86_64: 578 return CPUType::X64; 579 case Triple::ArchType::thumb: 580 return CPUType::Thumb; 581 default: 582 report_fatal_error("target architecture doesn't map to a CodeView " 583 "CPUType"); 584 } 585 } 586 587 } // anonymous namespace 588 589 void CodeViewDebug::emitCompilerInformation() { 590 MCContext &Context = MMI->getContext(); 591 MCSymbol *CompilerBegin = Context.createTempSymbol(), 592 *CompilerEnd = Context.createTempSymbol(); 593 OS.AddComment("Record length"); 594 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 595 OS.EmitLabel(CompilerBegin); 596 OS.AddComment("Record kind: S_COMPILE3"); 597 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 598 uint32_t Flags = 0; 599 600 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 601 const MDNode *Node = *CUs->operands().begin(); 602 const auto *CU = cast<DICompileUnit>(Node); 603 604 // The low byte of the flags indicates the source language. 605 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 606 // TODO: Figure out which other flags need to be set. 607 608 OS.AddComment("Flags and language"); 609 OS.EmitIntValue(Flags, 4); 610 611 OS.AddComment("CPUType"); 612 CPUType CPU = 613 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 614 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 615 616 StringRef CompilerVersion = CU->getProducer(); 617 Version FrontVer = parseVersion(CompilerVersion); 618 OS.AddComment("Frontend version"); 619 for (int N = 0; N < 4; ++N) 620 OS.EmitIntValue(FrontVer.Part[N], 2); 621 622 // Some Microsoft tools, like Binscope, expect a backend version number of at 623 // least 8.something, so we'll coerce the LLVM version into a form that 624 // guarantees it'll be big enough without really lying about the version. 625 int Major = 1000 * LLVM_VERSION_MAJOR + 626 10 * LLVM_VERSION_MINOR + 627 LLVM_VERSION_PATCH; 628 // Clamp it for builds that use unusually large version numbers. 629 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 630 Version BackVer = {{ Major, 0, 0, 0 }}; 631 OS.AddComment("Backend version"); 632 for (int N = 0; N < 4; ++N) 633 OS.EmitIntValue(BackVer.Part[N], 2); 634 635 OS.AddComment("Null-terminated compiler version string"); 636 emitNullTerminatedSymbolName(OS, CompilerVersion); 637 638 OS.EmitLabel(CompilerEnd); 639 } 640 641 void CodeViewDebug::emitInlineeLinesSubsection() { 642 if (InlinedSubprograms.empty()) 643 return; 644 645 OS.AddComment("Inlinee lines subsection"); 646 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 647 648 // We don't provide any extra file info. 649 // FIXME: Find out if debuggers use this info. 650 OS.AddComment("Inlinee lines signature"); 651 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 652 653 for (const DISubprogram *SP : InlinedSubprograms) { 654 assert(TypeIndices.count({SP, nullptr})); 655 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 656 657 OS.AddBlankLine(); 658 unsigned FileId = maybeRecordFile(SP->getFile()); 659 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 660 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 661 OS.AddBlankLine(); 662 // The filechecksum table uses 8 byte entries for now, and file ids start at 663 // 1. 664 unsigned FileOffset = (FileId - 1) * 8; 665 OS.AddComment("Type index of inlined function"); 666 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 667 OS.AddComment("Offset into filechecksum table"); 668 OS.EmitIntValue(FileOffset, 4); 669 OS.AddComment("Starting line number"); 670 OS.EmitIntValue(SP->getLine(), 4); 671 } 672 673 endCVSubsection(InlineEnd); 674 } 675 676 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 677 const DILocation *InlinedAt, 678 const InlineSite &Site) { 679 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 680 *InlineEnd = MMI->getContext().createTempSymbol(); 681 682 assert(TypeIndices.count({Site.Inlinee, nullptr})); 683 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 684 685 // SymbolRecord 686 OS.AddComment("Record length"); 687 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 688 OS.EmitLabel(InlineBegin); 689 OS.AddComment("Record kind: S_INLINESITE"); 690 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 691 692 OS.AddComment("PtrParent"); 693 OS.EmitIntValue(0, 4); 694 OS.AddComment("PtrEnd"); 695 OS.EmitIntValue(0, 4); 696 OS.AddComment("Inlinee type index"); 697 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 698 699 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 700 unsigned StartLineNum = Site.Inlinee->getLine(); 701 702 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 703 FI.Begin, FI.End); 704 705 OS.EmitLabel(InlineEnd); 706 707 emitLocalVariableList(Site.InlinedLocals); 708 709 // Recurse on child inlined call sites before closing the scope. 710 for (const DILocation *ChildSite : Site.ChildSites) { 711 auto I = FI.InlineSites.find(ChildSite); 712 assert(I != FI.InlineSites.end() && 713 "child site not in function inline site map"); 714 emitInlinedCallSite(FI, ChildSite, I->second); 715 } 716 717 // Close the scope. 718 OS.AddComment("Record length"); 719 OS.EmitIntValue(2, 2); // RecordLength 720 OS.AddComment("Record kind: S_INLINESITE_END"); 721 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 722 } 723 724 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 725 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 726 // comdat key. A section may be comdat because of -ffunction-sections or 727 // because it is comdat in the IR. 728 MCSectionCOFF *GVSec = 729 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 730 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 731 732 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 733 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 734 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 735 736 OS.SwitchSection(DebugSec); 737 738 // Emit the magic version number if this is the first time we've switched to 739 // this section. 740 if (ComdatDebugSections.insert(DebugSec).second) 741 emitCodeViewMagicVersion(); 742 } 743 744 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 745 FunctionInfo &FI) { 746 // For each function there is a separate subsection 747 // which holds the PC to file:line table. 748 const MCSymbol *Fn = Asm->getSymbol(GV); 749 assert(Fn); 750 751 // Switch to the to a comdat section, if appropriate. 752 switchToDebugSectionForSymbol(Fn); 753 754 std::string FuncName; 755 auto *SP = GV->getSubprogram(); 756 assert(SP); 757 setCurrentSubprogram(SP); 758 759 // If we have a display name, build the fully qualified name by walking the 760 // chain of scopes. 761 if (!SP->getDisplayName().empty()) 762 FuncName = 763 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 764 765 // If our DISubprogram name is empty, use the mangled name. 766 if (FuncName.empty()) 767 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 768 769 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 770 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 771 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 772 { 773 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 774 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 775 OS.AddComment("Record length"); 776 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 777 OS.EmitLabel(ProcRecordBegin); 778 779 if (GV->hasLocalLinkage()) { 780 OS.AddComment("Record kind: S_LPROC32_ID"); 781 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 782 } else { 783 OS.AddComment("Record kind: S_GPROC32_ID"); 784 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 785 } 786 787 // These fields are filled in by tools like CVPACK which run after the fact. 788 OS.AddComment("PtrParent"); 789 OS.EmitIntValue(0, 4); 790 OS.AddComment("PtrEnd"); 791 OS.EmitIntValue(0, 4); 792 OS.AddComment("PtrNext"); 793 OS.EmitIntValue(0, 4); 794 // This is the important bit that tells the debugger where the function 795 // code is located and what's its size: 796 OS.AddComment("Code size"); 797 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 798 OS.AddComment("Offset after prologue"); 799 OS.EmitIntValue(0, 4); 800 OS.AddComment("Offset before epilogue"); 801 OS.EmitIntValue(0, 4); 802 OS.AddComment("Function type index"); 803 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 804 OS.AddComment("Function section relative address"); 805 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 806 OS.AddComment("Function section index"); 807 OS.EmitCOFFSectionIndex(Fn); 808 OS.AddComment("Flags"); 809 OS.EmitIntValue(0, 1); 810 // Emit the function display name as a null-terminated string. 811 OS.AddComment("Function name"); 812 // Truncate the name so we won't overflow the record length field. 813 emitNullTerminatedSymbolName(OS, FuncName); 814 OS.EmitLabel(ProcRecordEnd); 815 816 emitLocalVariableList(FI.Locals); 817 818 // Emit inlined call site information. Only emit functions inlined directly 819 // into the parent function. We'll emit the other sites recursively as part 820 // of their parent inline site. 821 for (const DILocation *InlinedAt : FI.ChildSites) { 822 auto I = FI.InlineSites.find(InlinedAt); 823 assert(I != FI.InlineSites.end() && 824 "child site not in function inline site map"); 825 emitInlinedCallSite(FI, InlinedAt, I->second); 826 } 827 828 if (SP != nullptr) 829 emitDebugInfoForUDTs(LocalUDTs); 830 831 // We're done with this function. 832 OS.AddComment("Record length"); 833 OS.EmitIntValue(0x0002, 2); 834 OS.AddComment("Record kind: S_PROC_ID_END"); 835 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 836 } 837 endCVSubsection(SymbolsEnd); 838 839 // We have an assembler directive that takes care of the whole line table. 840 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 841 } 842 843 CodeViewDebug::LocalVarDefRange 844 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 845 LocalVarDefRange DR; 846 DR.InMemory = -1; 847 DR.DataOffset = Offset; 848 assert(DR.DataOffset == Offset && "truncation"); 849 DR.IsSubfield = 0; 850 DR.StructOffset = 0; 851 DR.CVRegister = CVRegister; 852 return DR; 853 } 854 855 CodeViewDebug::LocalVarDefRange 856 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 857 int Offset, bool IsSubfield, 858 uint16_t StructOffset) { 859 LocalVarDefRange DR; 860 DR.InMemory = InMemory; 861 DR.DataOffset = Offset; 862 DR.IsSubfield = IsSubfield; 863 DR.StructOffset = StructOffset; 864 DR.CVRegister = CVRegister; 865 return DR; 866 } 867 868 void CodeViewDebug::collectVariableInfoFromMFTable( 869 DenseSet<InlinedVariable> &Processed) { 870 const MachineFunction &MF = *Asm->MF; 871 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 872 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 873 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 874 875 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 876 if (!VI.Var) 877 continue; 878 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 879 "Expected inlined-at fields to agree"); 880 881 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 882 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 883 884 // If variable scope is not found then skip this variable. 885 if (!Scope) 886 continue; 887 888 // Get the frame register used and the offset. 889 unsigned FrameReg = 0; 890 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 891 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 892 893 // Calculate the label ranges. 894 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 895 for (const InsnRange &Range : Scope->getRanges()) { 896 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 897 const MCSymbol *End = getLabelAfterInsn(Range.second); 898 End = End ? End : Asm->getFunctionEnd(); 899 DefRange.Ranges.emplace_back(Begin, End); 900 } 901 902 LocalVariable Var; 903 Var.DIVar = VI.Var; 904 Var.DefRanges.emplace_back(std::move(DefRange)); 905 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 906 } 907 } 908 909 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 910 DenseSet<InlinedVariable> Processed; 911 // Grab the variable info that was squirreled away in the MMI side-table. 912 collectVariableInfoFromMFTable(Processed); 913 914 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 915 916 for (const auto &I : DbgValues) { 917 InlinedVariable IV = I.first; 918 if (Processed.count(IV)) 919 continue; 920 const DILocalVariable *DIVar = IV.first; 921 const DILocation *InlinedAt = IV.second; 922 923 // Instruction ranges, specifying where IV is accessible. 924 const auto &Ranges = I.second; 925 926 LexicalScope *Scope = nullptr; 927 if (InlinedAt) 928 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 929 else 930 Scope = LScopes.findLexicalScope(DIVar->getScope()); 931 // If variable scope is not found then skip this variable. 932 if (!Scope) 933 continue; 934 935 LocalVariable Var; 936 Var.DIVar = DIVar; 937 938 // Calculate the definition ranges. 939 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 940 const InsnRange &Range = *I; 941 const MachineInstr *DVInst = Range.first; 942 assert(DVInst->isDebugValue() && "Invalid History entry"); 943 const DIExpression *DIExpr = DVInst->getDebugExpression(); 944 bool IsSubfield = false; 945 unsigned StructOffset = 0; 946 947 // Handle fragments. 948 auto Fragment = DIExpr->getFragmentInfo(); 949 if (DIExpr && Fragment) { 950 IsSubfield = true; 951 StructOffset = Fragment->OffsetInBits / 8; 952 } else if (DIExpr && DIExpr->getNumElements() > 0) { 953 continue; // Ignore unrecognized exprs. 954 } 955 956 // Bail if operand 0 is not a valid register. This means the variable is a 957 // simple constant, or is described by a complex expression. 958 // FIXME: Find a way to represent constant variables, since they are 959 // relatively common. 960 unsigned Reg = 961 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 962 if (Reg == 0) 963 continue; 964 965 // Handle the two cases we can handle: indirect in memory and in register. 966 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 967 bool InMemory = DVInst->getOperand(1).isImm(); 968 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 969 { 970 LocalVarDefRange DR; 971 DR.CVRegister = CVReg; 972 DR.InMemory = InMemory; 973 DR.DataOffset = Offset; 974 DR.IsSubfield = IsSubfield; 975 DR.StructOffset = StructOffset; 976 977 if (Var.DefRanges.empty() || 978 Var.DefRanges.back().isDifferentLocation(DR)) { 979 Var.DefRanges.emplace_back(std::move(DR)); 980 } 981 } 982 983 // Compute the label range. 984 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 985 const MCSymbol *End = getLabelAfterInsn(Range.second); 986 if (!End) { 987 // This range is valid until the next overlapping bitpiece. In the 988 // common case, ranges will not be bitpieces, so they will overlap. 989 auto J = std::next(I); 990 while (J != E && 991 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 992 ++J; 993 if (J != E) 994 End = getLabelBeforeInsn(J->first); 995 else 996 End = Asm->getFunctionEnd(); 997 } 998 999 // If the last range end is our begin, just extend the last range. 1000 // Otherwise make a new range. 1001 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1002 Var.DefRanges.back().Ranges; 1003 if (!Ranges.empty() && Ranges.back().second == Begin) 1004 Ranges.back().second = End; 1005 else 1006 Ranges.emplace_back(Begin, End); 1007 1008 // FIXME: Do more range combining. 1009 } 1010 1011 recordLocalVariable(std::move(Var), InlinedAt); 1012 } 1013 } 1014 1015 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 1016 assert(!CurFn && "Can't process two functions at once!"); 1017 1018 if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram()) 1019 return; 1020 1021 DebugHandlerBase::beginFunction(MF); 1022 1023 const Function *GV = MF->getFunction(); 1024 assert(FnDebugInfo.count(GV) == false); 1025 CurFn = &FnDebugInfo[GV]; 1026 CurFn->FuncId = NextFuncId++; 1027 CurFn->Begin = Asm->getFunctionBegin(); 1028 1029 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1030 1031 // Find the end of the function prolog. First known non-DBG_VALUE and 1032 // non-frame setup location marks the beginning of the function body. 1033 // FIXME: is there a simpler a way to do this? Can we just search 1034 // for the first instruction of the function, not the last of the prolog? 1035 DebugLoc PrologEndLoc; 1036 bool EmptyPrologue = true; 1037 for (const auto &MBB : *MF) { 1038 for (const auto &MI : MBB) { 1039 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1040 MI.getDebugLoc()) { 1041 PrologEndLoc = MI.getDebugLoc(); 1042 break; 1043 } else if (!MI.isDebugValue()) { 1044 EmptyPrologue = false; 1045 } 1046 } 1047 } 1048 1049 // Record beginning of function if we have a non-empty prologue. 1050 if (PrologEndLoc && !EmptyPrologue) { 1051 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1052 maybeRecordLocation(FnStartDL, MF); 1053 } 1054 } 1055 1056 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1057 // Don't record empty UDTs. 1058 if (Ty->getName().empty()) 1059 return; 1060 1061 SmallVector<StringRef, 5> QualifiedNameComponents; 1062 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1063 Ty->getScope().resolve(), QualifiedNameComponents); 1064 1065 std::string FullyQualifiedName = 1066 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1067 1068 if (ClosestSubprogram == nullptr) 1069 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1070 else if (ClosestSubprogram == CurrentSubprogram) 1071 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1072 1073 // TODO: What if the ClosestSubprogram is neither null or the current 1074 // subprogram? Currently, the UDT just gets dropped on the floor. 1075 // 1076 // The current behavior is not desirable. To get maximal fidelity, we would 1077 // need to perform all type translation before beginning emission of .debug$S 1078 // and then make LocalUDTs a member of FunctionInfo 1079 } 1080 1081 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1082 // Generic dispatch for lowering an unknown type. 1083 switch (Ty->getTag()) { 1084 case dwarf::DW_TAG_array_type: 1085 return lowerTypeArray(cast<DICompositeType>(Ty)); 1086 case dwarf::DW_TAG_typedef: 1087 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1088 case dwarf::DW_TAG_base_type: 1089 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1090 case dwarf::DW_TAG_pointer_type: 1091 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1092 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1093 LLVM_FALLTHROUGH; 1094 case dwarf::DW_TAG_reference_type: 1095 case dwarf::DW_TAG_rvalue_reference_type: 1096 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1097 case dwarf::DW_TAG_ptr_to_member_type: 1098 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1099 case dwarf::DW_TAG_const_type: 1100 case dwarf::DW_TAG_volatile_type: 1101 // TODO: add support for DW_TAG_atomic_type here 1102 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1103 case dwarf::DW_TAG_subroutine_type: 1104 if (ClassTy) { 1105 // The member function type of a member function pointer has no 1106 // ThisAdjustment. 1107 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1108 /*ThisAdjustment=*/0); 1109 } 1110 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1111 case dwarf::DW_TAG_enumeration_type: 1112 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1113 case dwarf::DW_TAG_class_type: 1114 case dwarf::DW_TAG_structure_type: 1115 return lowerTypeClass(cast<DICompositeType>(Ty)); 1116 case dwarf::DW_TAG_union_type: 1117 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1118 default: 1119 // Use the null type index. 1120 return TypeIndex(); 1121 } 1122 } 1123 1124 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1125 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1126 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1127 StringRef TypeName = Ty->getName(); 1128 1129 addToUDTs(Ty, UnderlyingTypeIndex); 1130 1131 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1132 TypeName == "HRESULT") 1133 return TypeIndex(SimpleTypeKind::HResult); 1134 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1135 TypeName == "wchar_t") 1136 return TypeIndex(SimpleTypeKind::WideCharacter); 1137 1138 return UnderlyingTypeIndex; 1139 } 1140 1141 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1142 DITypeRef ElementTypeRef = Ty->getBaseType(); 1143 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1144 // IndexType is size_t, which depends on the bitness of the target. 1145 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 1146 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1147 : TypeIndex(SimpleTypeKind::UInt32Long); 1148 1149 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1150 1151 1152 // We want to assert that the element type multiplied by the array lengths 1153 // match the size of the overall array. However, if we don't have complete 1154 // type information for the base type, we can't make this assertion. This 1155 // happens if limited debug info is enabled in this case: 1156 // struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); }; 1157 // VTableOptzn array[3]; 1158 // The DICompositeType of VTableOptzn will have size zero, and the array will 1159 // have size 3 * sizeof(void*), and we should avoid asserting. 1160 // 1161 // There is a related bug in the front-end where an array of a structure, 1162 // which was declared as incomplete structure first, ends up not getting a 1163 // size assigned to it. (PR28303) 1164 // Example: 1165 // struct A(*p)[3]; 1166 // struct A { int f; } a[3]; 1167 bool PartiallyIncomplete = false; 1168 if (Ty->getSizeInBits() == 0 || ElementSize == 0) { 1169 PartiallyIncomplete = true; 1170 } 1171 1172 // Add subranges to array type. 1173 DINodeArray Elements = Ty->getElements(); 1174 for (int i = Elements.size() - 1; i >= 0; --i) { 1175 const DINode *Element = Elements[i]; 1176 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1177 1178 const DISubrange *Subrange = cast<DISubrange>(Element); 1179 assert(Subrange->getLowerBound() == 0 && 1180 "codeview doesn't support subranges with lower bounds"); 1181 int64_t Count = Subrange->getCount(); 1182 1183 // Variable Length Array (VLA) has Count equal to '-1'. 1184 // Replace with Count '1', assume it is the minimum VLA length. 1185 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1186 if (Count == -1) { 1187 Count = 1; 1188 PartiallyIncomplete = true; 1189 } 1190 1191 // Update the element size and element type index for subsequent subranges. 1192 ElementSize *= Count; 1193 1194 // If this is the outermost array, use the size from the array. It will be 1195 // more accurate if PartiallyIncomplete is true. 1196 uint64_t ArraySize = 1197 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1198 1199 StringRef Name = (i == 0) ? Ty->getName() : ""; 1200 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1201 ElementTypeIndex = TypeTable.writeKnownType(AR); 1202 } 1203 1204 (void)PartiallyIncomplete; 1205 assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8)); 1206 1207 return ElementTypeIndex; 1208 } 1209 1210 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1211 TypeIndex Index; 1212 dwarf::TypeKind Kind; 1213 uint32_t ByteSize; 1214 1215 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1216 ByteSize = Ty->getSizeInBits() / 8; 1217 1218 SimpleTypeKind STK = SimpleTypeKind::None; 1219 switch (Kind) { 1220 case dwarf::DW_ATE_address: 1221 // FIXME: Translate 1222 break; 1223 case dwarf::DW_ATE_boolean: 1224 switch (ByteSize) { 1225 case 1: STK = SimpleTypeKind::Boolean8; break; 1226 case 2: STK = SimpleTypeKind::Boolean16; break; 1227 case 4: STK = SimpleTypeKind::Boolean32; break; 1228 case 8: STK = SimpleTypeKind::Boolean64; break; 1229 case 16: STK = SimpleTypeKind::Boolean128; break; 1230 } 1231 break; 1232 case dwarf::DW_ATE_complex_float: 1233 switch (ByteSize) { 1234 case 2: STK = SimpleTypeKind::Complex16; break; 1235 case 4: STK = SimpleTypeKind::Complex32; break; 1236 case 8: STK = SimpleTypeKind::Complex64; break; 1237 case 10: STK = SimpleTypeKind::Complex80; break; 1238 case 16: STK = SimpleTypeKind::Complex128; break; 1239 } 1240 break; 1241 case dwarf::DW_ATE_float: 1242 switch (ByteSize) { 1243 case 2: STK = SimpleTypeKind::Float16; break; 1244 case 4: STK = SimpleTypeKind::Float32; break; 1245 case 6: STK = SimpleTypeKind::Float48; break; 1246 case 8: STK = SimpleTypeKind::Float64; break; 1247 case 10: STK = SimpleTypeKind::Float80; break; 1248 case 16: STK = SimpleTypeKind::Float128; break; 1249 } 1250 break; 1251 case dwarf::DW_ATE_signed: 1252 switch (ByteSize) { 1253 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1254 case 2: STK = SimpleTypeKind::Int16Short; break; 1255 case 4: STK = SimpleTypeKind::Int32; break; 1256 case 8: STK = SimpleTypeKind::Int64Quad; break; 1257 case 16: STK = SimpleTypeKind::Int128Oct; break; 1258 } 1259 break; 1260 case dwarf::DW_ATE_unsigned: 1261 switch (ByteSize) { 1262 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1263 case 2: STK = SimpleTypeKind::UInt16Short; break; 1264 case 4: STK = SimpleTypeKind::UInt32; break; 1265 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1266 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1267 } 1268 break; 1269 case dwarf::DW_ATE_UTF: 1270 switch (ByteSize) { 1271 case 2: STK = SimpleTypeKind::Character16; break; 1272 case 4: STK = SimpleTypeKind::Character32; break; 1273 } 1274 break; 1275 case dwarf::DW_ATE_signed_char: 1276 if (ByteSize == 1) 1277 STK = SimpleTypeKind::SignedCharacter; 1278 break; 1279 case dwarf::DW_ATE_unsigned_char: 1280 if (ByteSize == 1) 1281 STK = SimpleTypeKind::UnsignedCharacter; 1282 break; 1283 default: 1284 break; 1285 } 1286 1287 // Apply some fixups based on the source-level type name. 1288 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1289 STK = SimpleTypeKind::Int32Long; 1290 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1291 STK = SimpleTypeKind::UInt32Long; 1292 if (STK == SimpleTypeKind::UInt16Short && 1293 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1294 STK = SimpleTypeKind::WideCharacter; 1295 if ((STK == SimpleTypeKind::SignedCharacter || 1296 STK == SimpleTypeKind::UnsignedCharacter) && 1297 Ty->getName() == "char") 1298 STK = SimpleTypeKind::NarrowCharacter; 1299 1300 return TypeIndex(STK); 1301 } 1302 1303 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1304 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1305 1306 // Pointers to simple types can use SimpleTypeMode, rather than having a 1307 // dedicated pointer type record. 1308 if (PointeeTI.isSimple() && 1309 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1310 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1311 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1312 ? SimpleTypeMode::NearPointer64 1313 : SimpleTypeMode::NearPointer32; 1314 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1315 } 1316 1317 PointerKind PK = 1318 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1319 PointerMode PM = PointerMode::Pointer; 1320 switch (Ty->getTag()) { 1321 default: llvm_unreachable("not a pointer tag type"); 1322 case dwarf::DW_TAG_pointer_type: 1323 PM = PointerMode::Pointer; 1324 break; 1325 case dwarf::DW_TAG_reference_type: 1326 PM = PointerMode::LValueReference; 1327 break; 1328 case dwarf::DW_TAG_rvalue_reference_type: 1329 PM = PointerMode::RValueReference; 1330 break; 1331 } 1332 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1333 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1334 // do. 1335 PointerOptions PO = PointerOptions::None; 1336 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1337 return TypeTable.writeKnownType(PR); 1338 } 1339 1340 static PointerToMemberRepresentation 1341 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1342 // SizeInBytes being zero generally implies that the member pointer type was 1343 // incomplete, which can happen if it is part of a function prototype. In this 1344 // case, use the unknown model instead of the general model. 1345 if (IsPMF) { 1346 switch (Flags & DINode::FlagPtrToMemberRep) { 1347 case 0: 1348 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1349 : PointerToMemberRepresentation::GeneralFunction; 1350 case DINode::FlagSingleInheritance: 1351 return PointerToMemberRepresentation::SingleInheritanceFunction; 1352 case DINode::FlagMultipleInheritance: 1353 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1354 case DINode::FlagVirtualInheritance: 1355 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1356 } 1357 } else { 1358 switch (Flags & DINode::FlagPtrToMemberRep) { 1359 case 0: 1360 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1361 : PointerToMemberRepresentation::GeneralData; 1362 case DINode::FlagSingleInheritance: 1363 return PointerToMemberRepresentation::SingleInheritanceData; 1364 case DINode::FlagMultipleInheritance: 1365 return PointerToMemberRepresentation::MultipleInheritanceData; 1366 case DINode::FlagVirtualInheritance: 1367 return PointerToMemberRepresentation::VirtualInheritanceData; 1368 } 1369 } 1370 llvm_unreachable("invalid ptr to member representation"); 1371 } 1372 1373 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1374 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1375 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1376 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1377 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1378 : PointerKind::Near32; 1379 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1380 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1381 : PointerMode::PointerToDataMember; 1382 PointerOptions PO = PointerOptions::None; // FIXME 1383 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1384 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1385 MemberPointerInfo MPI( 1386 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1387 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1388 return TypeTable.writeKnownType(PR); 1389 } 1390 1391 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1392 /// have a translation, use the NearC convention. 1393 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1394 switch (DwarfCC) { 1395 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1396 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1397 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1398 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1399 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1400 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1401 } 1402 return CallingConvention::NearC; 1403 } 1404 1405 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1406 ModifierOptions Mods = ModifierOptions::None; 1407 bool IsModifier = true; 1408 const DIType *BaseTy = Ty; 1409 while (IsModifier && BaseTy) { 1410 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1411 switch (BaseTy->getTag()) { 1412 case dwarf::DW_TAG_const_type: 1413 Mods |= ModifierOptions::Const; 1414 break; 1415 case dwarf::DW_TAG_volatile_type: 1416 Mods |= ModifierOptions::Volatile; 1417 break; 1418 default: 1419 IsModifier = false; 1420 break; 1421 } 1422 if (IsModifier) 1423 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1424 } 1425 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1426 ModifierRecord MR(ModifiedTI, Mods); 1427 return TypeTable.writeKnownType(MR); 1428 } 1429 1430 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1431 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1432 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1433 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1434 1435 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1436 ArrayRef<TypeIndex> ArgTypeIndices = None; 1437 if (!ReturnAndArgTypeIndices.empty()) { 1438 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1439 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1440 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1441 } 1442 1443 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1444 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1445 1446 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1447 1448 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1449 ArgTypeIndices.size(), ArgListIndex); 1450 return TypeTable.writeKnownType(Procedure); 1451 } 1452 1453 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1454 const DIType *ClassTy, 1455 int ThisAdjustment) { 1456 // Lower the containing class type. 1457 TypeIndex ClassType = getTypeIndex(ClassTy); 1458 1459 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1460 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1461 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1462 1463 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1464 ArrayRef<TypeIndex> ArgTypeIndices = None; 1465 if (!ReturnAndArgTypeIndices.empty()) { 1466 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1467 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1468 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1469 } 1470 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1471 if (!ArgTypeIndices.empty()) { 1472 ThisTypeIndex = ArgTypeIndices.front(); 1473 ArgTypeIndices = ArgTypeIndices.drop_front(); 1474 } 1475 1476 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1477 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1478 1479 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1480 1481 // TODO: Need to use the correct values for: 1482 // FunctionOptions 1483 // ThisPointerAdjustment. 1484 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1485 FunctionOptions::None, ArgTypeIndices.size(), 1486 ArgListIndex, ThisAdjustment); 1487 TypeIndex TI = TypeTable.writeKnownType(MFR); 1488 1489 return TI; 1490 } 1491 1492 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1493 unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize()); 1494 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1495 1496 VFTableShapeRecord VFTSR(Slots); 1497 return TypeTable.writeKnownType(VFTSR); 1498 } 1499 1500 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1501 switch (Flags & DINode::FlagAccessibility) { 1502 case DINode::FlagPrivate: return MemberAccess::Private; 1503 case DINode::FlagPublic: return MemberAccess::Public; 1504 case DINode::FlagProtected: return MemberAccess::Protected; 1505 case 0: 1506 // If there was no explicit access control, provide the default for the tag. 1507 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1508 : MemberAccess::Public; 1509 } 1510 llvm_unreachable("access flags are exclusive"); 1511 } 1512 1513 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1514 if (SP->isArtificial()) 1515 return MethodOptions::CompilerGenerated; 1516 1517 // FIXME: Handle other MethodOptions. 1518 1519 return MethodOptions::None; 1520 } 1521 1522 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1523 bool Introduced) { 1524 switch (SP->getVirtuality()) { 1525 case dwarf::DW_VIRTUALITY_none: 1526 break; 1527 case dwarf::DW_VIRTUALITY_virtual: 1528 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1529 case dwarf::DW_VIRTUALITY_pure_virtual: 1530 return Introduced ? MethodKind::PureIntroducingVirtual 1531 : MethodKind::PureVirtual; 1532 default: 1533 llvm_unreachable("unhandled virtuality case"); 1534 } 1535 1536 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1537 1538 return MethodKind::Vanilla; 1539 } 1540 1541 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1542 switch (Ty->getTag()) { 1543 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1544 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1545 } 1546 llvm_unreachable("unexpected tag"); 1547 } 1548 1549 /// Return ClassOptions that should be present on both the forward declaration 1550 /// and the defintion of a tag type. 1551 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1552 ClassOptions CO = ClassOptions::None; 1553 1554 // MSVC always sets this flag, even for local types. Clang doesn't always 1555 // appear to give every type a linkage name, which may be problematic for us. 1556 // FIXME: Investigate the consequences of not following them here. 1557 if (!Ty->getIdentifier().empty()) 1558 CO |= ClassOptions::HasUniqueName; 1559 1560 // Put the Nested flag on a type if it appears immediately inside a tag type. 1561 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1562 // here. That flag is only set on definitions, and not forward declarations. 1563 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1564 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1565 CO |= ClassOptions::Nested; 1566 1567 // Put the Scoped flag on function-local types. 1568 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1569 Scope = Scope->getScope().resolve()) { 1570 if (isa<DISubprogram>(Scope)) { 1571 CO |= ClassOptions::Scoped; 1572 break; 1573 } 1574 } 1575 1576 return CO; 1577 } 1578 1579 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1580 ClassOptions CO = getCommonClassOptions(Ty); 1581 TypeIndex FTI; 1582 unsigned EnumeratorCount = 0; 1583 1584 if (Ty->isForwardDecl()) { 1585 CO |= ClassOptions::ForwardReference; 1586 } else { 1587 FieldListRecordBuilder FLRB(TypeTable); 1588 1589 FLRB.begin(); 1590 for (const DINode *Element : Ty->getElements()) { 1591 // We assume that the frontend provides all members in source declaration 1592 // order, which is what MSVC does. 1593 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1594 EnumeratorRecord ER(MemberAccess::Public, 1595 APSInt::getUnsigned(Enumerator->getValue()), 1596 Enumerator->getName()); 1597 FLRB.writeMemberType(ER); 1598 EnumeratorCount++; 1599 } 1600 } 1601 FTI = FLRB.end(); 1602 } 1603 1604 std::string FullName = getFullyQualifiedName(Ty); 1605 1606 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1607 getTypeIndex(Ty->getBaseType())); 1608 return TypeTable.writeKnownType(ER); 1609 } 1610 1611 //===----------------------------------------------------------------------===// 1612 // ClassInfo 1613 //===----------------------------------------------------------------------===// 1614 1615 struct llvm::ClassInfo { 1616 struct MemberInfo { 1617 const DIDerivedType *MemberTypeNode; 1618 uint64_t BaseOffset; 1619 }; 1620 // [MemberInfo] 1621 typedef std::vector<MemberInfo> MemberList; 1622 1623 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1624 // MethodName -> MethodsList 1625 typedef MapVector<MDString *, MethodsList> MethodsMap; 1626 1627 /// Base classes. 1628 std::vector<const DIDerivedType *> Inheritance; 1629 1630 /// Direct members. 1631 MemberList Members; 1632 // Direct overloaded methods gathered by name. 1633 MethodsMap Methods; 1634 1635 TypeIndex VShapeTI; 1636 1637 std::vector<const DICompositeType *> NestedClasses; 1638 }; 1639 1640 void CodeViewDebug::clear() { 1641 assert(CurFn == nullptr); 1642 FileIdMap.clear(); 1643 FnDebugInfo.clear(); 1644 FileToFilepathMap.clear(); 1645 LocalUDTs.clear(); 1646 GlobalUDTs.clear(); 1647 TypeIndices.clear(); 1648 CompleteTypeIndices.clear(); 1649 } 1650 1651 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1652 const DIDerivedType *DDTy) { 1653 if (!DDTy->getName().empty()) { 1654 Info.Members.push_back({DDTy, 0}); 1655 return; 1656 } 1657 // An unnamed member must represent a nested struct or union. Add all the 1658 // indirect fields to the current record. 1659 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1660 uint64_t Offset = DDTy->getOffsetInBits(); 1661 const DIType *Ty = DDTy->getBaseType().resolve(); 1662 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1663 ClassInfo NestedInfo = collectClassInfo(DCTy); 1664 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1665 Info.Members.push_back( 1666 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1667 } 1668 1669 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1670 ClassInfo Info; 1671 // Add elements to structure type. 1672 DINodeArray Elements = Ty->getElements(); 1673 for (auto *Element : Elements) { 1674 // We assume that the frontend provides all members in source declaration 1675 // order, which is what MSVC does. 1676 if (!Element) 1677 continue; 1678 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1679 Info.Methods[SP->getRawName()].push_back(SP); 1680 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1681 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1682 collectMemberInfo(Info, DDTy); 1683 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1684 Info.Inheritance.push_back(DDTy); 1685 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1686 DDTy->getName() == "__vtbl_ptr_type") { 1687 Info.VShapeTI = getTypeIndex(DDTy); 1688 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1689 // Ignore friend members. It appears that MSVC emitted info about 1690 // friends in the past, but modern versions do not. 1691 } 1692 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1693 Info.NestedClasses.push_back(Composite); 1694 } 1695 // Skip other unrecognized kinds of elements. 1696 } 1697 return Info; 1698 } 1699 1700 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1701 // First, construct the forward decl. Don't look into Ty to compute the 1702 // forward decl options, since it might not be available in all TUs. 1703 TypeRecordKind Kind = getRecordKind(Ty); 1704 ClassOptions CO = 1705 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1706 std::string FullName = getFullyQualifiedName(Ty); 1707 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1708 FullName, Ty->getIdentifier()); 1709 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1710 if (!Ty->isForwardDecl()) 1711 DeferredCompleteTypes.push_back(Ty); 1712 return FwdDeclTI; 1713 } 1714 1715 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1716 // Construct the field list and complete type record. 1717 TypeRecordKind Kind = getRecordKind(Ty); 1718 ClassOptions CO = getCommonClassOptions(Ty); 1719 TypeIndex FieldTI; 1720 TypeIndex VShapeTI; 1721 unsigned FieldCount; 1722 bool ContainsNestedClass; 1723 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1724 lowerRecordFieldList(Ty); 1725 1726 if (ContainsNestedClass) 1727 CO |= ClassOptions::ContainsNestedClass; 1728 1729 std::string FullName = getFullyQualifiedName(Ty); 1730 1731 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1732 1733 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1734 SizeInBytes, FullName, Ty->getIdentifier()); 1735 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1736 1737 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1738 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1739 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1740 TypeTable.writeKnownType(USLR); 1741 1742 addToUDTs(Ty, ClassTI); 1743 1744 return ClassTI; 1745 } 1746 1747 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1748 ClassOptions CO = 1749 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1750 std::string FullName = getFullyQualifiedName(Ty); 1751 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1752 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1753 if (!Ty->isForwardDecl()) 1754 DeferredCompleteTypes.push_back(Ty); 1755 return FwdDeclTI; 1756 } 1757 1758 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1759 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1760 TypeIndex FieldTI; 1761 unsigned FieldCount; 1762 bool ContainsNestedClass; 1763 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1764 lowerRecordFieldList(Ty); 1765 1766 if (ContainsNestedClass) 1767 CO |= ClassOptions::ContainsNestedClass; 1768 1769 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1770 std::string FullName = getFullyQualifiedName(Ty); 1771 1772 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1773 Ty->getIdentifier()); 1774 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1775 1776 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1777 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1778 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1779 TypeTable.writeKnownType(USLR); 1780 1781 addToUDTs(Ty, UnionTI); 1782 1783 return UnionTI; 1784 } 1785 1786 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1787 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1788 // Manually count members. MSVC appears to count everything that generates a 1789 // field list record. Each individual overload in a method overload group 1790 // contributes to this count, even though the overload group is a single field 1791 // list record. 1792 unsigned MemberCount = 0; 1793 ClassInfo Info = collectClassInfo(Ty); 1794 FieldListRecordBuilder FLBR(TypeTable); 1795 FLBR.begin(); 1796 1797 // Create base classes. 1798 for (const DIDerivedType *I : Info.Inheritance) { 1799 if (I->getFlags() & DINode::FlagVirtual) { 1800 // Virtual base. 1801 // FIXME: Emit VBPtrOffset when the frontend provides it. 1802 unsigned VBPtrOffset = 0; 1803 // FIXME: Despite the accessor name, the offset is really in bytes. 1804 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1805 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1806 ? TypeRecordKind::IndirectVirtualBaseClass 1807 : TypeRecordKind::VirtualBaseClass; 1808 VirtualBaseClassRecord VBCR( 1809 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1810 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1811 VBTableIndex); 1812 1813 FLBR.writeMemberType(VBCR); 1814 } else { 1815 assert(I->getOffsetInBits() % 8 == 0 && 1816 "bases must be on byte boundaries"); 1817 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1818 getTypeIndex(I->getBaseType()), 1819 I->getOffsetInBits() / 8); 1820 FLBR.writeMemberType(BCR); 1821 } 1822 } 1823 1824 // Create members. 1825 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1826 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1827 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1828 StringRef MemberName = Member->getName(); 1829 MemberAccess Access = 1830 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1831 1832 if (Member->isStaticMember()) { 1833 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1834 FLBR.writeMemberType(SDMR); 1835 MemberCount++; 1836 continue; 1837 } 1838 1839 // Virtual function pointer member. 1840 if ((Member->getFlags() & DINode::FlagArtificial) && 1841 Member->getName().startswith("_vptr$")) { 1842 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1843 FLBR.writeMemberType(VFPR); 1844 MemberCount++; 1845 continue; 1846 } 1847 1848 // Data member. 1849 uint64_t MemberOffsetInBits = 1850 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1851 if (Member->isBitField()) { 1852 uint64_t StartBitOffset = MemberOffsetInBits; 1853 if (const auto *CI = 1854 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1855 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1856 } 1857 StartBitOffset -= MemberOffsetInBits; 1858 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1859 StartBitOffset); 1860 MemberBaseType = TypeTable.writeKnownType(BFR); 1861 } 1862 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1863 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1864 MemberName); 1865 FLBR.writeMemberType(DMR); 1866 MemberCount++; 1867 } 1868 1869 // Create methods 1870 for (auto &MethodItr : Info.Methods) { 1871 StringRef Name = MethodItr.first->getString(); 1872 1873 std::vector<OneMethodRecord> Methods; 1874 for (const DISubprogram *SP : MethodItr.second) { 1875 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1876 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1877 1878 unsigned VFTableOffset = -1; 1879 if (Introduced) 1880 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1881 1882 Methods.push_back(OneMethodRecord( 1883 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1884 translateMethodKindFlags(SP, Introduced), 1885 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1886 MemberCount++; 1887 } 1888 assert(Methods.size() > 0 && "Empty methods map entry"); 1889 if (Methods.size() == 1) 1890 FLBR.writeMemberType(Methods[0]); 1891 else { 1892 MethodOverloadListRecord MOLR(Methods); 1893 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1894 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1895 FLBR.writeMemberType(OMR); 1896 } 1897 } 1898 1899 // Create nested classes. 1900 for (const DICompositeType *Nested : Info.NestedClasses) { 1901 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1902 FLBR.writeMemberType(R); 1903 MemberCount++; 1904 } 1905 1906 TypeIndex FieldTI = FLBR.end(); 1907 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1908 !Info.NestedClasses.empty()); 1909 } 1910 1911 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1912 if (!VBPType.getIndex()) { 1913 // Make a 'const int *' type. 1914 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1915 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1916 1917 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1918 : PointerKind::Near32; 1919 PointerMode PM = PointerMode::Pointer; 1920 PointerOptions PO = PointerOptions::None; 1921 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1922 1923 VBPType = TypeTable.writeKnownType(PR); 1924 } 1925 1926 return VBPType; 1927 } 1928 1929 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1930 const DIType *Ty = TypeRef.resolve(); 1931 const DIType *ClassTy = ClassTyRef.resolve(); 1932 1933 // The null DIType is the void type. Don't try to hash it. 1934 if (!Ty) 1935 return TypeIndex::Void(); 1936 1937 // Check if we've already translated this type. Don't try to do a 1938 // get-or-create style insertion that caches the hash lookup across the 1939 // lowerType call. It will update the TypeIndices map. 1940 auto I = TypeIndices.find({Ty, ClassTy}); 1941 if (I != TypeIndices.end()) 1942 return I->second; 1943 1944 TypeLoweringScope S(*this); 1945 TypeIndex TI = lowerType(Ty, ClassTy); 1946 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1947 } 1948 1949 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1950 const DIType *Ty = TypeRef.resolve(); 1951 1952 // The null DIType is the void type. Don't try to hash it. 1953 if (!Ty) 1954 return TypeIndex::Void(); 1955 1956 // If this is a non-record type, the complete type index is the same as the 1957 // normal type index. Just call getTypeIndex. 1958 switch (Ty->getTag()) { 1959 case dwarf::DW_TAG_class_type: 1960 case dwarf::DW_TAG_structure_type: 1961 case dwarf::DW_TAG_union_type: 1962 break; 1963 default: 1964 return getTypeIndex(Ty); 1965 } 1966 1967 // Check if we've already translated the complete record type. Lowering a 1968 // complete type should never trigger lowering another complete type, so we 1969 // can reuse the hash table lookup result. 1970 const auto *CTy = cast<DICompositeType>(Ty); 1971 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1972 if (!InsertResult.second) 1973 return InsertResult.first->second; 1974 1975 TypeLoweringScope S(*this); 1976 1977 // Make sure the forward declaration is emitted first. It's unclear if this 1978 // is necessary, but MSVC does it, and we should follow suit until we can show 1979 // otherwise. 1980 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1981 1982 // Just use the forward decl if we don't have complete type info. This might 1983 // happen if the frontend is using modules and expects the complete definition 1984 // to be emitted elsewhere. 1985 if (CTy->isForwardDecl()) 1986 return FwdDeclTI; 1987 1988 TypeIndex TI; 1989 switch (CTy->getTag()) { 1990 case dwarf::DW_TAG_class_type: 1991 case dwarf::DW_TAG_structure_type: 1992 TI = lowerCompleteTypeClass(CTy); 1993 break; 1994 case dwarf::DW_TAG_union_type: 1995 TI = lowerCompleteTypeUnion(CTy); 1996 break; 1997 default: 1998 llvm_unreachable("not a record"); 1999 } 2000 2001 InsertResult.first->second = TI; 2002 return TI; 2003 } 2004 2005 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2006 /// and do this until fixpoint, as each complete record type typically 2007 /// references 2008 /// many other record types. 2009 void CodeViewDebug::emitDeferredCompleteTypes() { 2010 SmallVector<const DICompositeType *, 4> TypesToEmit; 2011 while (!DeferredCompleteTypes.empty()) { 2012 std::swap(DeferredCompleteTypes, TypesToEmit); 2013 for (const DICompositeType *RecordTy : TypesToEmit) 2014 getCompleteTypeIndex(RecordTy); 2015 TypesToEmit.clear(); 2016 } 2017 } 2018 2019 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2020 // Get the sorted list of parameters and emit them first. 2021 SmallVector<const LocalVariable *, 6> Params; 2022 for (const LocalVariable &L : Locals) 2023 if (L.DIVar->isParameter()) 2024 Params.push_back(&L); 2025 std::sort(Params.begin(), Params.end(), 2026 [](const LocalVariable *L, const LocalVariable *R) { 2027 return L->DIVar->getArg() < R->DIVar->getArg(); 2028 }); 2029 for (const LocalVariable *L : Params) 2030 emitLocalVariable(*L); 2031 2032 // Next emit all non-parameters in the order that we found them. 2033 for (const LocalVariable &L : Locals) 2034 if (!L.DIVar->isParameter()) 2035 emitLocalVariable(L); 2036 } 2037 2038 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2039 // LocalSym record, see SymbolRecord.h for more info. 2040 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2041 *LocalEnd = MMI->getContext().createTempSymbol(); 2042 OS.AddComment("Record length"); 2043 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2044 OS.EmitLabel(LocalBegin); 2045 2046 OS.AddComment("Record kind: S_LOCAL"); 2047 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2048 2049 LocalSymFlags Flags = LocalSymFlags::None; 2050 if (Var.DIVar->isParameter()) 2051 Flags |= LocalSymFlags::IsParameter; 2052 if (Var.DefRanges.empty()) 2053 Flags |= LocalSymFlags::IsOptimizedOut; 2054 2055 OS.AddComment("TypeIndex"); 2056 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2057 OS.EmitIntValue(TI.getIndex(), 4); 2058 OS.AddComment("Flags"); 2059 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2060 // Truncate the name so we won't overflow the record length field. 2061 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2062 OS.EmitLabel(LocalEnd); 2063 2064 // Calculate the on disk prefix of the appropriate def range record. The 2065 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2066 // should be big enough to hold all forms without memory allocation. 2067 SmallString<20> BytePrefix; 2068 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2069 BytePrefix.clear(); 2070 if (DefRange.InMemory) { 2071 uint16_t RegRelFlags = 0; 2072 if (DefRange.IsSubfield) { 2073 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2074 (DefRange.StructOffset 2075 << DefRangeRegisterRelSym::OffsetInParentShift); 2076 } 2077 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2078 Sym.Hdr.Register = DefRange.CVRegister; 2079 Sym.Hdr.Flags = RegRelFlags; 2080 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2081 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2082 BytePrefix += 2083 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2084 BytePrefix += 2085 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2086 } else { 2087 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2088 if (DefRange.IsSubfield) { 2089 // Unclear what matters here. 2090 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2091 Sym.Hdr.Register = DefRange.CVRegister; 2092 Sym.Hdr.MayHaveNoName = 0; 2093 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2094 2095 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2096 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2097 sizeof(SymKind)); 2098 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2099 sizeof(Sym.Hdr)); 2100 } else { 2101 // Unclear what matters here. 2102 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2103 Sym.Hdr.Register = DefRange.CVRegister; 2104 Sym.Hdr.MayHaveNoName = 0; 2105 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2106 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2107 sizeof(SymKind)); 2108 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2109 sizeof(Sym.Hdr)); 2110 } 2111 } 2112 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2113 } 2114 } 2115 2116 void CodeViewDebug::endFunction(const MachineFunction *MF) { 2117 if (!Asm || !CurFn) // We haven't created any debug info for this function. 2118 return; 2119 2120 const Function *GV = MF->getFunction(); 2121 assert(FnDebugInfo.count(GV)); 2122 assert(CurFn == &FnDebugInfo[GV]); 2123 2124 collectVariableInfo(GV->getSubprogram()); 2125 2126 DebugHandlerBase::endFunction(MF); 2127 2128 // Don't emit anything if we don't have any line tables. 2129 if (!CurFn->HaveLineInfo) { 2130 FnDebugInfo.erase(GV); 2131 CurFn = nullptr; 2132 return; 2133 } 2134 2135 CurFn->End = Asm->getFunctionEnd(); 2136 2137 CurFn = nullptr; 2138 } 2139 2140 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2141 DebugHandlerBase::beginInstruction(MI); 2142 2143 // Ignore DBG_VALUE locations and function prologue. 2144 if (!Asm || !CurFn || MI->isDebugValue() || 2145 MI->getFlag(MachineInstr::FrameSetup)) 2146 return; 2147 DebugLoc DL = MI->getDebugLoc(); 2148 if (DL == PrevInstLoc || !DL) 2149 return; 2150 maybeRecordLocation(DL, Asm->MF); 2151 } 2152 2153 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 2154 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2155 *EndLabel = MMI->getContext().createTempSymbol(); 2156 OS.EmitIntValue(unsigned(Kind), 4); 2157 OS.AddComment("Subsection size"); 2158 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2159 OS.EmitLabel(BeginLabel); 2160 return EndLabel; 2161 } 2162 2163 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2164 OS.EmitLabel(EndLabel); 2165 // Every subsection must be aligned to a 4-byte boundary. 2166 OS.EmitValueToAlignment(4); 2167 } 2168 2169 void CodeViewDebug::emitDebugInfoForUDTs( 2170 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2171 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2172 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2173 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2174 OS.AddComment("Record length"); 2175 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2176 OS.EmitLabel(UDTRecordBegin); 2177 2178 OS.AddComment("Record kind: S_UDT"); 2179 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2180 2181 OS.AddComment("Type"); 2182 OS.EmitIntValue(UDT.second.getIndex(), 4); 2183 2184 emitNullTerminatedSymbolName(OS, UDT.first); 2185 OS.EmitLabel(UDTRecordEnd); 2186 } 2187 } 2188 2189 void CodeViewDebug::emitDebugInfoForGlobals() { 2190 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2191 GlobalMap; 2192 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2193 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2194 GV.getDebugInfo(GVEs); 2195 for (const auto *GVE : GVEs) 2196 GlobalMap[GVE] = &GV; 2197 } 2198 2199 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2200 for (const MDNode *Node : CUs->operands()) { 2201 const auto *CU = cast<DICompileUnit>(Node); 2202 2203 // First, emit all globals that are not in a comdat in a single symbol 2204 // substream. MSVC doesn't like it if the substream is empty, so only open 2205 // it if we have at least one global to emit. 2206 switchToDebugSectionForSymbol(nullptr); 2207 MCSymbol *EndLabel = nullptr; 2208 for (const auto *GVE : CU->getGlobalVariables()) { 2209 if (const auto *GV = GlobalMap.lookup(GVE)) 2210 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2211 if (!EndLabel) { 2212 OS.AddComment("Symbol subsection for globals"); 2213 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2214 } 2215 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2216 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2217 } 2218 } 2219 if (EndLabel) 2220 endCVSubsection(EndLabel); 2221 2222 // Second, emit each global that is in a comdat into its own .debug$S 2223 // section along with its own symbol substream. 2224 for (const auto *GVE : CU->getGlobalVariables()) { 2225 if (const auto *GV = GlobalMap.lookup(GVE)) { 2226 if (GV->hasComdat()) { 2227 MCSymbol *GVSym = Asm->getSymbol(GV); 2228 OS.AddComment("Symbol subsection for " + 2229 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2230 switchToDebugSectionForSymbol(GVSym); 2231 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2232 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2233 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2234 endCVSubsection(EndLabel); 2235 } 2236 } 2237 } 2238 } 2239 } 2240 2241 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2242 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2243 for (const MDNode *Node : CUs->operands()) { 2244 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2245 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2246 getTypeIndex(RT); 2247 // FIXME: Add to global/local DTU list. 2248 } 2249 } 2250 } 2251 } 2252 2253 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2254 const GlobalVariable *GV, 2255 MCSymbol *GVSym) { 2256 // DataSym record, see SymbolRecord.h for more info. 2257 // FIXME: Thread local data, etc 2258 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2259 *DataEnd = MMI->getContext().createTempSymbol(); 2260 OS.AddComment("Record length"); 2261 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2262 OS.EmitLabel(DataBegin); 2263 if (DIGV->isLocalToUnit()) { 2264 if (GV->isThreadLocal()) { 2265 OS.AddComment("Record kind: S_LTHREAD32"); 2266 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2267 } else { 2268 OS.AddComment("Record kind: S_LDATA32"); 2269 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2270 } 2271 } else { 2272 if (GV->isThreadLocal()) { 2273 OS.AddComment("Record kind: S_GTHREAD32"); 2274 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2275 } else { 2276 OS.AddComment("Record kind: S_GDATA32"); 2277 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2278 } 2279 } 2280 OS.AddComment("Type"); 2281 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2282 OS.AddComment("DataOffset"); 2283 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2284 OS.AddComment("Segment"); 2285 OS.EmitCOFFSectionIndex(GVSym); 2286 OS.AddComment("Name"); 2287 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2288 OS.EmitLabel(DataEnd); 2289 } 2290