1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
40 #include "llvm/DebugInfo/CodeView/CodeView.h"
41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
46 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/MC/MCAsmInfo.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSectionCOFF.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/BinaryByteStream.h"
63 #include "llvm/Support/BinaryStreamReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Target/TargetFrameLowering.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Target/TargetSubtargetInfo.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <limits>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace llvm::codeview;
89 
90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
91     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
92   // If module doesn't have named metadata anchors or COFF debug section
93   // is not available, skip any debug info related stuff.
94   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
95       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
96     Asm = nullptr;
97     return;
98   }
99 
100   // Tell MMI that we have debug info.
101   MMI->setDebugInfoAvailability(true);
102 }
103 
104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
105   std::string &Filepath = FileToFilepathMap[File];
106   if (!Filepath.empty())
107     return Filepath;
108 
109   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
110 
111   // Clang emits directory and relative filename info into the IR, but CodeView
112   // operates on full paths.  We could change Clang to emit full paths too, but
113   // that would increase the IR size and probably not needed for other users.
114   // For now, just concatenate and canonicalize the path here.
115   if (Filename.find(':') == 1)
116     Filepath = Filename;
117   else
118     Filepath = (Dir + "\\" + Filename).str();
119 
120   // Canonicalize the path.  We have to do it textually because we may no longer
121   // have access the file in the filesystem.
122   // First, replace all slashes with backslashes.
123   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
124 
125   // Remove all "\.\" with "\".
126   size_t Cursor = 0;
127   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
128     Filepath.erase(Cursor, 2);
129 
130   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
131   // path should be well-formatted, e.g. start with a drive letter, etc.
132   Cursor = 0;
133   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
134     // Something's wrong if the path starts with "\..\", abort.
135     if (Cursor == 0)
136       break;
137 
138     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
139     if (PrevSlash == std::string::npos)
140       // Something's wrong, abort.
141       break;
142 
143     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
144     // The next ".." might be following the one we've just erased.
145     Cursor = PrevSlash;
146   }
147 
148   // Remove all duplicate backslashes.
149   Cursor = 0;
150   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
151     Filepath.erase(Cursor, 1);
152 
153   return Filepath;
154 }
155 
156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
157   unsigned NextId = FileIdMap.size() + 1;
158   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
159   if (Insertion.second) {
160     // We have to compute the full filepath and emit a .cv_file directive.
161     StringRef FullPath = getFullFilepath(F);
162     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
163     (void)Success;
164     assert(Success && ".cv_file directive failed");
165   }
166   return Insertion.first->second;
167 }
168 
169 CodeViewDebug::InlineSite &
170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
171                              const DISubprogram *Inlinee) {
172   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
173   InlineSite *Site = &SiteInsertion.first->second;
174   if (SiteInsertion.second) {
175     unsigned ParentFuncId = CurFn->FuncId;
176     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
177       ParentFuncId =
178           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
179               .SiteFuncId;
180 
181     Site->SiteFuncId = NextFuncId++;
182     OS.EmitCVInlineSiteIdDirective(
183         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
184         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
185     Site->Inlinee = Inlinee;
186     InlinedSubprograms.insert(Inlinee);
187     getFuncIdForSubprogram(Inlinee);
188   }
189   return *Site;
190 }
191 
192 static StringRef getPrettyScopeName(const DIScope *Scope) {
193   StringRef ScopeName = Scope->getName();
194   if (!ScopeName.empty())
195     return ScopeName;
196 
197   switch (Scope->getTag()) {
198   case dwarf::DW_TAG_enumeration_type:
199   case dwarf::DW_TAG_class_type:
200   case dwarf::DW_TAG_structure_type:
201   case dwarf::DW_TAG_union_type:
202     return "<unnamed-tag>";
203   case dwarf::DW_TAG_namespace:
204     return "`anonymous namespace'";
205   }
206 
207   return StringRef();
208 }
209 
210 static const DISubprogram *getQualifiedNameComponents(
211     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
212   const DISubprogram *ClosestSubprogram = nullptr;
213   while (Scope != nullptr) {
214     if (ClosestSubprogram == nullptr)
215       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
216     StringRef ScopeName = getPrettyScopeName(Scope);
217     if (!ScopeName.empty())
218       QualifiedNameComponents.push_back(ScopeName);
219     Scope = Scope->getScope().resolve();
220   }
221   return ClosestSubprogram;
222 }
223 
224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
225                                     StringRef TypeName) {
226   std::string FullyQualifiedName;
227   for (StringRef QualifiedNameComponent :
228        llvm::reverse(QualifiedNameComponents)) {
229     FullyQualifiedName.append(QualifiedNameComponent);
230     FullyQualifiedName.append("::");
231   }
232   FullyQualifiedName.append(TypeName);
233   return FullyQualifiedName;
234 }
235 
236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
237   SmallVector<StringRef, 5> QualifiedNameComponents;
238   getQualifiedNameComponents(Scope, QualifiedNameComponents);
239   return getQualifiedName(QualifiedNameComponents, Name);
240 }
241 
242 struct CodeViewDebug::TypeLoweringScope {
243   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
244   ~TypeLoweringScope() {
245     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
246     // inner TypeLoweringScopes don't attempt to emit deferred types.
247     if (CVD.TypeEmissionLevel == 1)
248       CVD.emitDeferredCompleteTypes();
249     --CVD.TypeEmissionLevel;
250   }
251   CodeViewDebug &CVD;
252 };
253 
254 static std::string getFullyQualifiedName(const DIScope *Ty) {
255   const DIScope *Scope = Ty->getScope().resolve();
256   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
257 }
258 
259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
260   // No scope means global scope and that uses the zero index.
261   if (!Scope || isa<DIFile>(Scope))
262     return TypeIndex();
263 
264   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
265 
266   // Check if we've already translated this scope.
267   auto I = TypeIndices.find({Scope, nullptr});
268   if (I != TypeIndices.end())
269     return I->second;
270 
271   // Build the fully qualified name of the scope.
272   std::string ScopeName = getFullyQualifiedName(Scope);
273   StringIdRecord SID(TypeIndex(), ScopeName);
274   auto TI = TypeTable.writeKnownType(SID);
275   return recordTypeIndexForDINode(Scope, TI);
276 }
277 
278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
279   assert(SP);
280 
281   // Check if we've already translated this subprogram.
282   auto I = TypeIndices.find({SP, nullptr});
283   if (I != TypeIndices.end())
284     return I->second;
285 
286   // The display name includes function template arguments. Drop them to match
287   // MSVC.
288   StringRef DisplayName = SP->getName().split('<').first;
289 
290   const DIScope *Scope = SP->getScope().resolve();
291   TypeIndex TI;
292   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
293     // If the scope is a DICompositeType, then this must be a method. Member
294     // function types take some special handling, and require access to the
295     // subprogram.
296     TypeIndex ClassType = getTypeIndex(Class);
297     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
298                                DisplayName);
299     TI = TypeTable.writeKnownType(MFuncId);
300   } else {
301     // Otherwise, this must be a free function.
302     TypeIndex ParentScope = getScopeIndex(Scope);
303     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
304     TI = TypeTable.writeKnownType(FuncId);
305   }
306 
307   return recordTypeIndexForDINode(SP, TI);
308 }
309 
310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
311                                                const DICompositeType *Class) {
312   // Always use the method declaration as the key for the function type. The
313   // method declaration contains the this adjustment.
314   if (SP->getDeclaration())
315     SP = SP->getDeclaration();
316   assert(!SP->getDeclaration() && "should use declaration as key");
317 
318   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
319   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
320   auto I = TypeIndices.find({SP, Class});
321   if (I != TypeIndices.end())
322     return I->second;
323 
324   // Make sure complete type info for the class is emitted *after* the member
325   // function type, as the complete class type is likely to reference this
326   // member function type.
327   TypeLoweringScope S(*this);
328   TypeIndex TI =
329       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
330   return recordTypeIndexForDINode(SP, TI, Class);
331 }
332 
333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
334                                                   TypeIndex TI,
335                                                   const DIType *ClassTy) {
336   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
337   (void)InsertResult;
338   assert(InsertResult.second && "DINode was already assigned a type index");
339   return TI;
340 }
341 
342 unsigned CodeViewDebug::getPointerSizeInBytes() {
343   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
344 }
345 
346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
347                                         const DILocation *InlinedAt) {
348   if (InlinedAt) {
349     // This variable was inlined. Associate it with the InlineSite.
350     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
351     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
352     Site.InlinedLocals.emplace_back(Var);
353   } else {
354     // This variable goes in the main ProcSym.
355     CurFn->Locals.emplace_back(Var);
356   }
357 }
358 
359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
360                                const DILocation *Loc) {
361   auto B = Locs.begin(), E = Locs.end();
362   if (std::find(B, E, Loc) == E)
363     Locs.push_back(Loc);
364 }
365 
366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
367                                         const MachineFunction *MF) {
368   // Skip this instruction if it has the same location as the previous one.
369   if (!DL || DL == PrevInstLoc)
370     return;
371 
372   const DIScope *Scope = DL.get()->getScope();
373   if (!Scope)
374     return;
375 
376   // Skip this line if it is longer than the maximum we can record.
377   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
378   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
379       LI.isNeverStepInto())
380     return;
381 
382   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
383   if (CI.getStartColumn() != DL.getCol())
384     return;
385 
386   if (!CurFn->HaveLineInfo)
387     CurFn->HaveLineInfo = true;
388   unsigned FileId = 0;
389   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
390     FileId = CurFn->LastFileId;
391   else
392     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
393   PrevInstLoc = DL;
394 
395   unsigned FuncId = CurFn->FuncId;
396   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
397     const DILocation *Loc = DL.get();
398 
399     // If this location was actually inlined from somewhere else, give it the ID
400     // of the inline call site.
401     FuncId =
402         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
403 
404     // Ensure we have links in the tree of inline call sites.
405     bool FirstLoc = true;
406     while ((SiteLoc = Loc->getInlinedAt())) {
407       InlineSite &Site =
408           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
409       if (!FirstLoc)
410         addLocIfNotPresent(Site.ChildSites, Loc);
411       FirstLoc = false;
412       Loc = SiteLoc;
413     }
414     addLocIfNotPresent(CurFn->ChildSites, Loc);
415   }
416 
417   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
418                         /*PrologueEnd=*/false, /*IsStmt=*/false,
419                         DL->getFilename(), SMLoc());
420 }
421 
422 void CodeViewDebug::emitCodeViewMagicVersion() {
423   OS.EmitValueToAlignment(4);
424   OS.AddComment("Debug section magic");
425   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
426 }
427 
428 void CodeViewDebug::endModule() {
429   if (!Asm || !MMI->hasDebugInfo())
430     return;
431 
432   assert(Asm != nullptr);
433 
434   // The COFF .debug$S section consists of several subsections, each starting
435   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
436   // of the payload followed by the payload itself.  The subsections are 4-byte
437   // aligned.
438 
439   // Use the generic .debug$S section, and make a subsection for all the inlined
440   // subprograms.
441   switchToDebugSectionForSymbol(nullptr);
442 
443   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
444   emitCompilerInformation();
445   endCVSubsection(CompilerInfo);
446 
447   emitInlineeLinesSubsection();
448 
449   // Emit per-function debug information.
450   for (auto &P : FnDebugInfo)
451     if (!P.first->isDeclarationForLinker())
452       emitDebugInfoForFunction(P.first, P.second);
453 
454   // Emit global variable debug information.
455   setCurrentSubprogram(nullptr);
456   emitDebugInfoForGlobals();
457 
458   // Emit retained types.
459   emitDebugInfoForRetainedTypes();
460 
461   // Switch back to the generic .debug$S section after potentially processing
462   // comdat symbol sections.
463   switchToDebugSectionForSymbol(nullptr);
464 
465   // Emit UDT records for any types used by global variables.
466   if (!GlobalUDTs.empty()) {
467     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
468     emitDebugInfoForUDTs(GlobalUDTs);
469     endCVSubsection(SymbolsEnd);
470   }
471 
472   // This subsection holds a file index to offset in string table table.
473   OS.AddComment("File index to string table offset subsection");
474   OS.EmitCVFileChecksumsDirective();
475 
476   // This subsection holds the string table.
477   OS.AddComment("String table");
478   OS.EmitCVStringTableDirective();
479 
480   // Emit type information last, so that any types we translate while emitting
481   // function info are included.
482   emitTypeInformation();
483 
484   clear();
485 }
486 
487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
488   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
489   // after a fixed length portion of the record. The fixed length portion should
490   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
491   // overall record size is less than the maximum allowed.
492   unsigned MaxFixedRecordLength = 0xF00;
493   SmallString<32> NullTerminatedString(
494       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
495   NullTerminatedString.push_back('\0');
496   OS.EmitBytes(NullTerminatedString);
497 }
498 
499 void CodeViewDebug::emitTypeInformation() {
500   // Do nothing if we have no debug info or if no non-trivial types were emitted
501   // to TypeTable during codegen.
502   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
503   if (!CU_Nodes)
504     return;
505   if (TypeTable.empty())
506     return;
507 
508   // Start the .debug$T section with 0x4.
509   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
510   emitCodeViewMagicVersion();
511 
512   SmallString<8> CommentPrefix;
513   if (OS.isVerboseAsm()) {
514     CommentPrefix += '\t';
515     CommentPrefix += Asm->MAI->getCommentString();
516     CommentPrefix += ' ';
517   }
518 
519   TypeTableCollection Table(TypeTable.records());
520   Optional<TypeIndex> B = Table.getFirst();
521   while (B) {
522     // This will fail if the record data is invalid.
523     CVType Record = Table.getType(*B);
524 
525     if (OS.isVerboseAsm()) {
526       // Emit a block comment describing the type record for readability.
527       SmallString<512> CommentBlock;
528       raw_svector_ostream CommentOS(CommentBlock);
529       ScopedPrinter SP(CommentOS);
530       SP.setPrefix(CommentPrefix);
531       TypeDumpVisitor TDV(Table, &SP, false);
532 
533       Error E = codeview::visitTypeRecord(Record, *B, TDV);
534       if (E) {
535         logAllUnhandledErrors(std::move(E), errs(), "error: ");
536         llvm_unreachable("produced malformed type record");
537       }
538       // emitRawComment will insert its own tab and comment string before
539       // the first line, so strip off our first one. It also prints its own
540       // newline.
541       OS.emitRawComment(
542           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
543     }
544     OS.EmitBinaryData(Record.str_data());
545     B = Table.getNext(*B);
546   }
547 }
548 
549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
550   switch (DWLang) {
551   case dwarf::DW_LANG_C:
552   case dwarf::DW_LANG_C89:
553   case dwarf::DW_LANG_C99:
554   case dwarf::DW_LANG_C11:
555   case dwarf::DW_LANG_ObjC:
556     return SourceLanguage::C;
557   case dwarf::DW_LANG_C_plus_plus:
558   case dwarf::DW_LANG_C_plus_plus_03:
559   case dwarf::DW_LANG_C_plus_plus_11:
560   case dwarf::DW_LANG_C_plus_plus_14:
561     return SourceLanguage::Cpp;
562   case dwarf::DW_LANG_Fortran77:
563   case dwarf::DW_LANG_Fortran90:
564   case dwarf::DW_LANG_Fortran03:
565   case dwarf::DW_LANG_Fortran08:
566     return SourceLanguage::Fortran;
567   case dwarf::DW_LANG_Pascal83:
568     return SourceLanguage::Pascal;
569   case dwarf::DW_LANG_Cobol74:
570   case dwarf::DW_LANG_Cobol85:
571     return SourceLanguage::Cobol;
572   case dwarf::DW_LANG_Java:
573     return SourceLanguage::Java;
574   case dwarf::DW_LANG_D:
575     return SourceLanguage::D;
576   default:
577     // There's no CodeView representation for this language, and CV doesn't
578     // have an "unknown" option for the language field, so we'll use MASM,
579     // as it's very low level.
580     return SourceLanguage::Masm;
581   }
582 }
583 
584 namespace {
585 struct Version {
586   int Part[4];
587 };
588 } // end anonymous namespace
589 
590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
591 // the version number.
592 static Version parseVersion(StringRef Name) {
593   Version V = {{0}};
594   int N = 0;
595   for (const char C : Name) {
596     if (isdigit(C)) {
597       V.Part[N] *= 10;
598       V.Part[N] += C - '0';
599     } else if (C == '.') {
600       ++N;
601       if (N >= 4)
602         return V;
603     } else if (N > 0)
604       return V;
605   }
606   return V;
607 }
608 
609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
610   switch (Type) {
611   case Triple::ArchType::x86:
612     return CPUType::Pentium3;
613   case Triple::ArchType::x86_64:
614     return CPUType::X64;
615   case Triple::ArchType::thumb:
616     return CPUType::Thumb;
617   case Triple::ArchType::aarch64:
618     return CPUType::ARM64;
619   default:
620     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
621   }
622 }
623 
624 void CodeViewDebug::emitCompilerInformation() {
625   MCContext &Context = MMI->getContext();
626   MCSymbol *CompilerBegin = Context.createTempSymbol(),
627            *CompilerEnd = Context.createTempSymbol();
628   OS.AddComment("Record length");
629   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
630   OS.EmitLabel(CompilerBegin);
631   OS.AddComment("Record kind: S_COMPILE3");
632   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
633   uint32_t Flags = 0;
634 
635   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
636   const MDNode *Node = *CUs->operands().begin();
637   const auto *CU = cast<DICompileUnit>(Node);
638 
639   // The low byte of the flags indicates the source language.
640   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
641   // TODO:  Figure out which other flags need to be set.
642 
643   OS.AddComment("Flags and language");
644   OS.EmitIntValue(Flags, 4);
645 
646   OS.AddComment("CPUType");
647   CPUType CPU =
648       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
649   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
650 
651   StringRef CompilerVersion = CU->getProducer();
652   Version FrontVer = parseVersion(CompilerVersion);
653   OS.AddComment("Frontend version");
654   for (int N = 0; N < 4; ++N)
655     OS.EmitIntValue(FrontVer.Part[N], 2);
656 
657   // Some Microsoft tools, like Binscope, expect a backend version number of at
658   // least 8.something, so we'll coerce the LLVM version into a form that
659   // guarantees it'll be big enough without really lying about the version.
660   int Major = 1000 * LLVM_VERSION_MAJOR +
661               10 * LLVM_VERSION_MINOR +
662               LLVM_VERSION_PATCH;
663   // Clamp it for builds that use unusually large version numbers.
664   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
665   Version BackVer = {{ Major, 0, 0, 0 }};
666   OS.AddComment("Backend version");
667   for (int N = 0; N < 4; ++N)
668     OS.EmitIntValue(BackVer.Part[N], 2);
669 
670   OS.AddComment("Null-terminated compiler version string");
671   emitNullTerminatedSymbolName(OS, CompilerVersion);
672 
673   OS.EmitLabel(CompilerEnd);
674 }
675 
676 void CodeViewDebug::emitInlineeLinesSubsection() {
677   if (InlinedSubprograms.empty())
678     return;
679 
680   OS.AddComment("Inlinee lines subsection");
681   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
682 
683   // We don't provide any extra file info.
684   // FIXME: Find out if debuggers use this info.
685   OS.AddComment("Inlinee lines signature");
686   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
687 
688   for (const DISubprogram *SP : InlinedSubprograms) {
689     assert(TypeIndices.count({SP, nullptr}));
690     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
691 
692     OS.AddBlankLine();
693     unsigned FileId = maybeRecordFile(SP->getFile());
694     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
695                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
696     OS.AddBlankLine();
697     // The filechecksum table uses 8 byte entries for now, and file ids start at
698     // 1.
699     unsigned FileOffset = (FileId - 1) * 8;
700     OS.AddComment("Type index of inlined function");
701     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
702     OS.AddComment("Offset into filechecksum table");
703     OS.EmitIntValue(FileOffset, 4);
704     OS.AddComment("Starting line number");
705     OS.EmitIntValue(SP->getLine(), 4);
706   }
707 
708   endCVSubsection(InlineEnd);
709 }
710 
711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
712                                         const DILocation *InlinedAt,
713                                         const InlineSite &Site) {
714   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
715            *InlineEnd = MMI->getContext().createTempSymbol();
716 
717   assert(TypeIndices.count({Site.Inlinee, nullptr}));
718   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
719 
720   // SymbolRecord
721   OS.AddComment("Record length");
722   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
723   OS.EmitLabel(InlineBegin);
724   OS.AddComment("Record kind: S_INLINESITE");
725   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
726 
727   OS.AddComment("PtrParent");
728   OS.EmitIntValue(0, 4);
729   OS.AddComment("PtrEnd");
730   OS.EmitIntValue(0, 4);
731   OS.AddComment("Inlinee type index");
732   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
733 
734   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
735   unsigned StartLineNum = Site.Inlinee->getLine();
736 
737   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
738                                     FI.Begin, FI.End);
739 
740   OS.EmitLabel(InlineEnd);
741 
742   emitLocalVariableList(Site.InlinedLocals);
743 
744   // Recurse on child inlined call sites before closing the scope.
745   for (const DILocation *ChildSite : Site.ChildSites) {
746     auto I = FI.InlineSites.find(ChildSite);
747     assert(I != FI.InlineSites.end() &&
748            "child site not in function inline site map");
749     emitInlinedCallSite(FI, ChildSite, I->second);
750   }
751 
752   // Close the scope.
753   OS.AddComment("Record length");
754   OS.EmitIntValue(2, 2);                                  // RecordLength
755   OS.AddComment("Record kind: S_INLINESITE_END");
756   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
757 }
758 
759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
760   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
761   // comdat key. A section may be comdat because of -ffunction-sections or
762   // because it is comdat in the IR.
763   MCSectionCOFF *GVSec =
764       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
765   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
766 
767   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
768       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
769   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
770 
771   OS.SwitchSection(DebugSec);
772 
773   // Emit the magic version number if this is the first time we've switched to
774   // this section.
775   if (ComdatDebugSections.insert(DebugSec).second)
776     emitCodeViewMagicVersion();
777 }
778 
779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
780                                              FunctionInfo &FI) {
781   // For each function there is a separate subsection
782   // which holds the PC to file:line table.
783   const MCSymbol *Fn = Asm->getSymbol(GV);
784   assert(Fn);
785 
786   // Switch to the to a comdat section, if appropriate.
787   switchToDebugSectionForSymbol(Fn);
788 
789   std::string FuncName;
790   auto *SP = GV->getSubprogram();
791   assert(SP);
792   setCurrentSubprogram(SP);
793 
794   // If we have a display name, build the fully qualified name by walking the
795   // chain of scopes.
796   if (!SP->getName().empty())
797     FuncName =
798         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
799 
800   // If our DISubprogram name is empty, use the mangled name.
801   if (FuncName.empty())
802     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
803 
804   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
805   OS.AddComment("Symbol subsection for " + Twine(FuncName));
806   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
807   {
808     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
809              *ProcRecordEnd = MMI->getContext().createTempSymbol();
810     OS.AddComment("Record length");
811     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
812     OS.EmitLabel(ProcRecordBegin);
813 
814     if (GV->hasLocalLinkage()) {
815       OS.AddComment("Record kind: S_LPROC32_ID");
816       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
817     } else {
818       OS.AddComment("Record kind: S_GPROC32_ID");
819       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
820     }
821 
822     // These fields are filled in by tools like CVPACK which run after the fact.
823     OS.AddComment("PtrParent");
824     OS.EmitIntValue(0, 4);
825     OS.AddComment("PtrEnd");
826     OS.EmitIntValue(0, 4);
827     OS.AddComment("PtrNext");
828     OS.EmitIntValue(0, 4);
829     // This is the important bit that tells the debugger where the function
830     // code is located and what's its size:
831     OS.AddComment("Code size");
832     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
833     OS.AddComment("Offset after prologue");
834     OS.EmitIntValue(0, 4);
835     OS.AddComment("Offset before epilogue");
836     OS.EmitIntValue(0, 4);
837     OS.AddComment("Function type index");
838     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
839     OS.AddComment("Function section relative address");
840     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
841     OS.AddComment("Function section index");
842     OS.EmitCOFFSectionIndex(Fn);
843     OS.AddComment("Flags");
844     OS.EmitIntValue(0, 1);
845     // Emit the function display name as a null-terminated string.
846     OS.AddComment("Function name");
847     // Truncate the name so we won't overflow the record length field.
848     emitNullTerminatedSymbolName(OS, FuncName);
849     OS.EmitLabel(ProcRecordEnd);
850 
851     emitLocalVariableList(FI.Locals);
852 
853     // Emit inlined call site information. Only emit functions inlined directly
854     // into the parent function. We'll emit the other sites recursively as part
855     // of their parent inline site.
856     for (const DILocation *InlinedAt : FI.ChildSites) {
857       auto I = FI.InlineSites.find(InlinedAt);
858       assert(I != FI.InlineSites.end() &&
859              "child site not in function inline site map");
860       emitInlinedCallSite(FI, InlinedAt, I->second);
861     }
862 
863     if (SP != nullptr)
864       emitDebugInfoForUDTs(LocalUDTs);
865 
866     // We're done with this function.
867     OS.AddComment("Record length");
868     OS.EmitIntValue(0x0002, 2);
869     OS.AddComment("Record kind: S_PROC_ID_END");
870     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
871   }
872   endCVSubsection(SymbolsEnd);
873 
874   // We have an assembler directive that takes care of the whole line table.
875   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
876 }
877 
878 CodeViewDebug::LocalVarDefRange
879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
880   LocalVarDefRange DR;
881   DR.InMemory = -1;
882   DR.DataOffset = Offset;
883   assert(DR.DataOffset == Offset && "truncation");
884   DR.IsSubfield = 0;
885   DR.StructOffset = 0;
886   DR.CVRegister = CVRegister;
887   return DR;
888 }
889 
890 CodeViewDebug::LocalVarDefRange
891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
892                                      int Offset, bool IsSubfield,
893                                      uint16_t StructOffset) {
894   LocalVarDefRange DR;
895   DR.InMemory = InMemory;
896   DR.DataOffset = Offset;
897   DR.IsSubfield = IsSubfield;
898   DR.StructOffset = StructOffset;
899   DR.CVRegister = CVRegister;
900   return DR;
901 }
902 
903 void CodeViewDebug::collectVariableInfoFromMFTable(
904     DenseSet<InlinedVariable> &Processed) {
905   const MachineFunction &MF = *Asm->MF;
906   const TargetSubtargetInfo &TSI = MF.getSubtarget();
907   const TargetFrameLowering *TFI = TSI.getFrameLowering();
908   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
909 
910   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
911     if (!VI.Var)
912       continue;
913     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
914            "Expected inlined-at fields to agree");
915 
916     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
917     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
918 
919     // If variable scope is not found then skip this variable.
920     if (!Scope)
921       continue;
922 
923     // If the variable has an attached offset expression, extract it.
924     // FIXME: Try to handle DW_OP_deref as well.
925     int64_t ExprOffset = 0;
926     if (VI.Expr)
927       if (!VI.Expr->extractIfOffset(ExprOffset))
928         continue;
929 
930     // Get the frame register used and the offset.
931     unsigned FrameReg = 0;
932     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
933     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
934 
935     // Calculate the label ranges.
936     LocalVarDefRange DefRange =
937         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
938     for (const InsnRange &Range : Scope->getRanges()) {
939       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
940       const MCSymbol *End = getLabelAfterInsn(Range.second);
941       End = End ? End : Asm->getFunctionEnd();
942       DefRange.Ranges.emplace_back(Begin, End);
943     }
944 
945     LocalVariable Var;
946     Var.DIVar = VI.Var;
947     Var.DefRanges.emplace_back(std::move(DefRange));
948     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
949   }
950 }
951 
952 void CodeViewDebug::calculateRanges(
953     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
954   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
955 
956   // calculate the definition ranges.
957   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
958     const InsnRange &Range = *I;
959     const MachineInstr *DVInst = Range.first;
960     assert(DVInst->isDebugValue() && "Invalid History entry");
961     // FIXME: Find a way to represent constant variables, since they are
962     // relatively common.
963     DbgVariableLocation Location;
964     bool Supported =
965         DbgVariableLocation::extractFromMachineInstruction(Location, *DVInst);
966 
967     // Because we cannot express DW_OP_deref in CodeView directly,
968     // we use a trick: we encode the type as a reference to the
969     // real type.
970     if (Var.Deref) {
971       // When we're encoding the type as a reference to the original type,
972       // we need to remove a level of indirection from incoming locations.
973       // E.g. [RSP+8] with DW_OP_deref becomes [RSP+8],
974       // and [RCX+0] without DW_OP_deref becomes RCX.
975       if (!Location.Deref) {
976         if (Location.InMemory)
977           Location.InMemory = false;
978         else
979           Supported = false;
980       }
981     } else if (Location.Deref) {
982       // We've encountered a Deref range when we had not applied the
983       // reference encoding. Start over using reference encoding.
984       Var.Deref = true;
985       Var.DefRanges.clear();
986       calculateRanges(Var, Ranges);
987       return;
988     }
989 
990     // If we don't know how to handle this range, skip past it.
991     if (!Supported || Location.Register == 0 || (Location.Offset && !Location.InMemory))
992       continue;
993 
994     // Handle the two cases we can handle: indirect in memory and in register.
995     {
996       LocalVarDefRange DR;
997       DR.CVRegister = TRI->getCodeViewRegNum(Location.Register);
998       DR.InMemory = Location.InMemory;
999       DR.DataOffset = Location.Offset;
1000       if (Location.FragmentInfo) {
1001         DR.IsSubfield = true;
1002         DR.StructOffset = Location.FragmentInfo->OffsetInBits / 8;
1003       } else {
1004         DR.IsSubfield = false;
1005         DR.StructOffset = 0;
1006       }
1007 
1008       if (Var.DefRanges.empty() ||
1009           Var.DefRanges.back().isDifferentLocation(DR)) {
1010         Var.DefRanges.emplace_back(std::move(DR));
1011       }
1012     }
1013 
1014     // Compute the label range.
1015     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1016     const MCSymbol *End = getLabelAfterInsn(Range.second);
1017     if (!End) {
1018       // This range is valid until the next overlapping bitpiece. In the
1019       // common case, ranges will not be bitpieces, so they will overlap.
1020       auto J = std::next(I);
1021       const DIExpression *DIExpr = DVInst->getDebugExpression();
1022       while (J != E &&
1023              !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1024         ++J;
1025       if (J != E)
1026         End = getLabelBeforeInsn(J->first);
1027       else
1028         End = Asm->getFunctionEnd();
1029     }
1030 
1031     // If the last range end is our begin, just extend the last range.
1032     // Otherwise make a new range.
1033     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1034         Var.DefRanges.back().Ranges;
1035     if (!R.empty() && R.back().second == Begin)
1036       R.back().second = End;
1037     else
1038       R.emplace_back(Begin, End);
1039 
1040     // FIXME: Do more range combining.
1041   }
1042 }
1043 
1044 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1045   DenseSet<InlinedVariable> Processed;
1046   // Grab the variable info that was squirreled away in the MMI side-table.
1047   collectVariableInfoFromMFTable(Processed);
1048 
1049   for (const auto &I : DbgValues) {
1050     InlinedVariable IV = I.first;
1051     if (Processed.count(IV))
1052       continue;
1053     const DILocalVariable *DIVar = IV.first;
1054     const DILocation *InlinedAt = IV.second;
1055 
1056     // Instruction ranges, specifying where IV is accessible.
1057     const auto &Ranges = I.second;
1058 
1059     LexicalScope *Scope = nullptr;
1060     if (InlinedAt)
1061       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1062     else
1063       Scope = LScopes.findLexicalScope(DIVar->getScope());
1064     // If variable scope is not found then skip this variable.
1065     if (!Scope)
1066       continue;
1067 
1068     LocalVariable Var;
1069     Var.DIVar = DIVar;
1070 
1071     calculateRanges(Var, Ranges);
1072     recordLocalVariable(std::move(Var), InlinedAt);
1073   }
1074 }
1075 
1076 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1077   const Function *GV = MF->getFunction();
1078   assert(FnDebugInfo.count(GV) == false);
1079   CurFn = &FnDebugInfo[GV];
1080   CurFn->FuncId = NextFuncId++;
1081   CurFn->Begin = Asm->getFunctionBegin();
1082 
1083   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1084 
1085   // Find the end of the function prolog.  First known non-DBG_VALUE and
1086   // non-frame setup location marks the beginning of the function body.
1087   // FIXME: is there a simpler a way to do this? Can we just search
1088   // for the first instruction of the function, not the last of the prolog?
1089   DebugLoc PrologEndLoc;
1090   bool EmptyPrologue = true;
1091   for (const auto &MBB : *MF) {
1092     for (const auto &MI : MBB) {
1093       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1094           MI.getDebugLoc()) {
1095         PrologEndLoc = MI.getDebugLoc();
1096         break;
1097       } else if (!MI.isMetaInstruction()) {
1098         EmptyPrologue = false;
1099       }
1100     }
1101   }
1102 
1103   // Record beginning of function if we have a non-empty prologue.
1104   if (PrologEndLoc && !EmptyPrologue) {
1105     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1106     maybeRecordLocation(FnStartDL, MF);
1107   }
1108 }
1109 
1110 static bool shouldEmitUdt(const DIType *T) {
1111   while (true) {
1112     if (!T || T->isForwardDecl())
1113       return false;
1114 
1115     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1116     if (!DT)
1117       return true;
1118     T = DT->getBaseType().resolve();
1119   }
1120   return true;
1121 }
1122 
1123 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1124   // Don't record empty UDTs.
1125   if (Ty->getName().empty())
1126     return;
1127   if (!shouldEmitUdt(Ty))
1128     return;
1129 
1130   SmallVector<StringRef, 5> QualifiedNameComponents;
1131   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1132       Ty->getScope().resolve(), QualifiedNameComponents);
1133 
1134   std::string FullyQualifiedName =
1135       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1136 
1137   if (ClosestSubprogram == nullptr) {
1138     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1139   } else if (ClosestSubprogram == CurrentSubprogram) {
1140     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1141   }
1142 
1143   // TODO: What if the ClosestSubprogram is neither null or the current
1144   // subprogram?  Currently, the UDT just gets dropped on the floor.
1145   //
1146   // The current behavior is not desirable.  To get maximal fidelity, we would
1147   // need to perform all type translation before beginning emission of .debug$S
1148   // and then make LocalUDTs a member of FunctionInfo
1149 }
1150 
1151 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1152   // Generic dispatch for lowering an unknown type.
1153   switch (Ty->getTag()) {
1154   case dwarf::DW_TAG_array_type:
1155     return lowerTypeArray(cast<DICompositeType>(Ty));
1156   case dwarf::DW_TAG_typedef:
1157     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1158   case dwarf::DW_TAG_base_type:
1159     return lowerTypeBasic(cast<DIBasicType>(Ty));
1160   case dwarf::DW_TAG_pointer_type:
1161     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1162       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1163     LLVM_FALLTHROUGH;
1164   case dwarf::DW_TAG_reference_type:
1165   case dwarf::DW_TAG_rvalue_reference_type:
1166     return lowerTypePointer(cast<DIDerivedType>(Ty));
1167   case dwarf::DW_TAG_ptr_to_member_type:
1168     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1169   case dwarf::DW_TAG_const_type:
1170   case dwarf::DW_TAG_volatile_type:
1171   // TODO: add support for DW_TAG_atomic_type here
1172     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1173   case dwarf::DW_TAG_subroutine_type:
1174     if (ClassTy) {
1175       // The member function type of a member function pointer has no
1176       // ThisAdjustment.
1177       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1178                                      /*ThisAdjustment=*/0);
1179     }
1180     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1181   case dwarf::DW_TAG_enumeration_type:
1182     return lowerTypeEnum(cast<DICompositeType>(Ty));
1183   case dwarf::DW_TAG_class_type:
1184   case dwarf::DW_TAG_structure_type:
1185     return lowerTypeClass(cast<DICompositeType>(Ty));
1186   case dwarf::DW_TAG_union_type:
1187     return lowerTypeUnion(cast<DICompositeType>(Ty));
1188   default:
1189     // Use the null type index.
1190     return TypeIndex();
1191   }
1192 }
1193 
1194 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1195   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1196   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1197   StringRef TypeName = Ty->getName();
1198 
1199   addToUDTs(Ty);
1200 
1201   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1202       TypeName == "HRESULT")
1203     return TypeIndex(SimpleTypeKind::HResult);
1204   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1205       TypeName == "wchar_t")
1206     return TypeIndex(SimpleTypeKind::WideCharacter);
1207 
1208   return UnderlyingTypeIndex;
1209 }
1210 
1211 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1212   DITypeRef ElementTypeRef = Ty->getBaseType();
1213   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1214   // IndexType is size_t, which depends on the bitness of the target.
1215   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1216                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1217                             : TypeIndex(SimpleTypeKind::UInt32Long);
1218 
1219   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1220 
1221   // Add subranges to array type.
1222   DINodeArray Elements = Ty->getElements();
1223   for (int i = Elements.size() - 1; i >= 0; --i) {
1224     const DINode *Element = Elements[i];
1225     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1226 
1227     const DISubrange *Subrange = cast<DISubrange>(Element);
1228     assert(Subrange->getLowerBound() == 0 &&
1229            "codeview doesn't support subranges with lower bounds");
1230     int64_t Count = Subrange->getCount();
1231 
1232     // Variable Length Array (VLA) has Count equal to '-1'.
1233     // Replace with Count '1', assume it is the minimum VLA length.
1234     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1235     if (Count == -1)
1236       Count = 1;
1237 
1238     // Update the element size and element type index for subsequent subranges.
1239     ElementSize *= Count;
1240 
1241     // If this is the outermost array, use the size from the array. It will be
1242     // more accurate if we had a VLA or an incomplete element type size.
1243     uint64_t ArraySize =
1244         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1245 
1246     StringRef Name = (i == 0) ? Ty->getName() : "";
1247     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1248     ElementTypeIndex = TypeTable.writeKnownType(AR);
1249   }
1250 
1251   return ElementTypeIndex;
1252 }
1253 
1254 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1255   TypeIndex Index;
1256   dwarf::TypeKind Kind;
1257   uint32_t ByteSize;
1258 
1259   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1260   ByteSize = Ty->getSizeInBits() / 8;
1261 
1262   SimpleTypeKind STK = SimpleTypeKind::None;
1263   switch (Kind) {
1264   case dwarf::DW_ATE_address:
1265     // FIXME: Translate
1266     break;
1267   case dwarf::DW_ATE_boolean:
1268     switch (ByteSize) {
1269     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1270     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1271     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1272     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1273     case 16: STK = SimpleTypeKind::Boolean128; break;
1274     }
1275     break;
1276   case dwarf::DW_ATE_complex_float:
1277     switch (ByteSize) {
1278     case 2:  STK = SimpleTypeKind::Complex16;  break;
1279     case 4:  STK = SimpleTypeKind::Complex32;  break;
1280     case 8:  STK = SimpleTypeKind::Complex64;  break;
1281     case 10: STK = SimpleTypeKind::Complex80;  break;
1282     case 16: STK = SimpleTypeKind::Complex128; break;
1283     }
1284     break;
1285   case dwarf::DW_ATE_float:
1286     switch (ByteSize) {
1287     case 2:  STK = SimpleTypeKind::Float16;  break;
1288     case 4:  STK = SimpleTypeKind::Float32;  break;
1289     case 6:  STK = SimpleTypeKind::Float48;  break;
1290     case 8:  STK = SimpleTypeKind::Float64;  break;
1291     case 10: STK = SimpleTypeKind::Float80;  break;
1292     case 16: STK = SimpleTypeKind::Float128; break;
1293     }
1294     break;
1295   case dwarf::DW_ATE_signed:
1296     switch (ByteSize) {
1297     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1298     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1299     case 4:  STK = SimpleTypeKind::Int32;           break;
1300     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1301     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1302     }
1303     break;
1304   case dwarf::DW_ATE_unsigned:
1305     switch (ByteSize) {
1306     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1307     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1308     case 4:  STK = SimpleTypeKind::UInt32;            break;
1309     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1310     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1311     }
1312     break;
1313   case dwarf::DW_ATE_UTF:
1314     switch (ByteSize) {
1315     case 2: STK = SimpleTypeKind::Character16; break;
1316     case 4: STK = SimpleTypeKind::Character32; break;
1317     }
1318     break;
1319   case dwarf::DW_ATE_signed_char:
1320     if (ByteSize == 1)
1321       STK = SimpleTypeKind::SignedCharacter;
1322     break;
1323   case dwarf::DW_ATE_unsigned_char:
1324     if (ByteSize == 1)
1325       STK = SimpleTypeKind::UnsignedCharacter;
1326     break;
1327   default:
1328     break;
1329   }
1330 
1331   // Apply some fixups based on the source-level type name.
1332   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1333     STK = SimpleTypeKind::Int32Long;
1334   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1335     STK = SimpleTypeKind::UInt32Long;
1336   if (STK == SimpleTypeKind::UInt16Short &&
1337       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1338     STK = SimpleTypeKind::WideCharacter;
1339   if ((STK == SimpleTypeKind::SignedCharacter ||
1340        STK == SimpleTypeKind::UnsignedCharacter) &&
1341       Ty->getName() == "char")
1342     STK = SimpleTypeKind::NarrowCharacter;
1343 
1344   return TypeIndex(STK);
1345 }
1346 
1347 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1348   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1349 
1350   // Pointers to simple types can use SimpleTypeMode, rather than having a
1351   // dedicated pointer type record.
1352   if (PointeeTI.isSimple() &&
1353       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1354       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1355     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1356                               ? SimpleTypeMode::NearPointer64
1357                               : SimpleTypeMode::NearPointer32;
1358     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1359   }
1360 
1361   PointerKind PK =
1362       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1363   PointerMode PM = PointerMode::Pointer;
1364   switch (Ty->getTag()) {
1365   default: llvm_unreachable("not a pointer tag type");
1366   case dwarf::DW_TAG_pointer_type:
1367     PM = PointerMode::Pointer;
1368     break;
1369   case dwarf::DW_TAG_reference_type:
1370     PM = PointerMode::LValueReference;
1371     break;
1372   case dwarf::DW_TAG_rvalue_reference_type:
1373     PM = PointerMode::RValueReference;
1374     break;
1375   }
1376   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1377   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1378   // do.
1379   PointerOptions PO = PointerOptions::None;
1380   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1381   return TypeTable.writeKnownType(PR);
1382 }
1383 
1384 static PointerToMemberRepresentation
1385 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1386   // SizeInBytes being zero generally implies that the member pointer type was
1387   // incomplete, which can happen if it is part of a function prototype. In this
1388   // case, use the unknown model instead of the general model.
1389   if (IsPMF) {
1390     switch (Flags & DINode::FlagPtrToMemberRep) {
1391     case 0:
1392       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1393                               : PointerToMemberRepresentation::GeneralFunction;
1394     case DINode::FlagSingleInheritance:
1395       return PointerToMemberRepresentation::SingleInheritanceFunction;
1396     case DINode::FlagMultipleInheritance:
1397       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1398     case DINode::FlagVirtualInheritance:
1399       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1400     }
1401   } else {
1402     switch (Flags & DINode::FlagPtrToMemberRep) {
1403     case 0:
1404       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1405                               : PointerToMemberRepresentation::GeneralData;
1406     case DINode::FlagSingleInheritance:
1407       return PointerToMemberRepresentation::SingleInheritanceData;
1408     case DINode::FlagMultipleInheritance:
1409       return PointerToMemberRepresentation::MultipleInheritanceData;
1410     case DINode::FlagVirtualInheritance:
1411       return PointerToMemberRepresentation::VirtualInheritanceData;
1412     }
1413   }
1414   llvm_unreachable("invalid ptr to member representation");
1415 }
1416 
1417 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1418   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1419   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1420   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1421   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1422                                                  : PointerKind::Near32;
1423   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1424   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1425                          : PointerMode::PointerToDataMember;
1426   PointerOptions PO = PointerOptions::None; // FIXME
1427   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1428   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1429   MemberPointerInfo MPI(
1430       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1431   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1432   return TypeTable.writeKnownType(PR);
1433 }
1434 
1435 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1436 /// have a translation, use the NearC convention.
1437 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1438   switch (DwarfCC) {
1439   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1440   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1441   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1442   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1443   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1444   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1445   }
1446   return CallingConvention::NearC;
1447 }
1448 
1449 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1450   ModifierOptions Mods = ModifierOptions::None;
1451   bool IsModifier = true;
1452   const DIType *BaseTy = Ty;
1453   while (IsModifier && BaseTy) {
1454     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1455     switch (BaseTy->getTag()) {
1456     case dwarf::DW_TAG_const_type:
1457       Mods |= ModifierOptions::Const;
1458       break;
1459     case dwarf::DW_TAG_volatile_type:
1460       Mods |= ModifierOptions::Volatile;
1461       break;
1462     default:
1463       IsModifier = false;
1464       break;
1465     }
1466     if (IsModifier)
1467       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1468   }
1469   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1470   ModifierRecord MR(ModifiedTI, Mods);
1471   return TypeTable.writeKnownType(MR);
1472 }
1473 
1474 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1475   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1476   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1477     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1478 
1479   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1480   ArrayRef<TypeIndex> ArgTypeIndices = None;
1481   if (!ReturnAndArgTypeIndices.empty()) {
1482     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1483     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1484     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1485   }
1486 
1487   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1488   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1489 
1490   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1491 
1492   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1493                             ArgTypeIndices.size(), ArgListIndex);
1494   return TypeTable.writeKnownType(Procedure);
1495 }
1496 
1497 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1498                                                  const DIType *ClassTy,
1499                                                  int ThisAdjustment) {
1500   // Lower the containing class type.
1501   TypeIndex ClassType = getTypeIndex(ClassTy);
1502 
1503   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1504   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1505     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1506 
1507   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1508   ArrayRef<TypeIndex> ArgTypeIndices = None;
1509   if (!ReturnAndArgTypeIndices.empty()) {
1510     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1511     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1512     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1513   }
1514   TypeIndex ThisTypeIndex = TypeIndex::Void();
1515   if (!ArgTypeIndices.empty()) {
1516     ThisTypeIndex = ArgTypeIndices.front();
1517     ArgTypeIndices = ArgTypeIndices.drop_front();
1518   }
1519 
1520   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1521   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1522 
1523   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1524 
1525   // TODO: Need to use the correct values for:
1526   //       FunctionOptions
1527   //       ThisPointerAdjustment.
1528   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1529                            FunctionOptions::None, ArgTypeIndices.size(),
1530                            ArgListIndex, ThisAdjustment);
1531   TypeIndex TI = TypeTable.writeKnownType(MFR);
1532 
1533   return TI;
1534 }
1535 
1536 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1537   unsigned VSlotCount =
1538       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1539   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1540 
1541   VFTableShapeRecord VFTSR(Slots);
1542   return TypeTable.writeKnownType(VFTSR);
1543 }
1544 
1545 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1546   switch (Flags & DINode::FlagAccessibility) {
1547   case DINode::FlagPrivate:   return MemberAccess::Private;
1548   case DINode::FlagPublic:    return MemberAccess::Public;
1549   case DINode::FlagProtected: return MemberAccess::Protected;
1550   case 0:
1551     // If there was no explicit access control, provide the default for the tag.
1552     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1553                                                  : MemberAccess::Public;
1554   }
1555   llvm_unreachable("access flags are exclusive");
1556 }
1557 
1558 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1559   if (SP->isArtificial())
1560     return MethodOptions::CompilerGenerated;
1561 
1562   // FIXME: Handle other MethodOptions.
1563 
1564   return MethodOptions::None;
1565 }
1566 
1567 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1568                                            bool Introduced) {
1569   switch (SP->getVirtuality()) {
1570   case dwarf::DW_VIRTUALITY_none:
1571     break;
1572   case dwarf::DW_VIRTUALITY_virtual:
1573     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1574   case dwarf::DW_VIRTUALITY_pure_virtual:
1575     return Introduced ? MethodKind::PureIntroducingVirtual
1576                       : MethodKind::PureVirtual;
1577   default:
1578     llvm_unreachable("unhandled virtuality case");
1579   }
1580 
1581   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1582 
1583   return MethodKind::Vanilla;
1584 }
1585 
1586 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1587   switch (Ty->getTag()) {
1588   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1589   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1590   }
1591   llvm_unreachable("unexpected tag");
1592 }
1593 
1594 /// Return ClassOptions that should be present on both the forward declaration
1595 /// and the defintion of a tag type.
1596 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1597   ClassOptions CO = ClassOptions::None;
1598 
1599   // MSVC always sets this flag, even for local types. Clang doesn't always
1600   // appear to give every type a linkage name, which may be problematic for us.
1601   // FIXME: Investigate the consequences of not following them here.
1602   if (!Ty->getIdentifier().empty())
1603     CO |= ClassOptions::HasUniqueName;
1604 
1605   // Put the Nested flag on a type if it appears immediately inside a tag type.
1606   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1607   // here. That flag is only set on definitions, and not forward declarations.
1608   const DIScope *ImmediateScope = Ty->getScope().resolve();
1609   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1610     CO |= ClassOptions::Nested;
1611 
1612   // Put the Scoped flag on function-local types.
1613   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1614        Scope = Scope->getScope().resolve()) {
1615     if (isa<DISubprogram>(Scope)) {
1616       CO |= ClassOptions::Scoped;
1617       break;
1618     }
1619   }
1620 
1621   return CO;
1622 }
1623 
1624 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1625   ClassOptions CO = getCommonClassOptions(Ty);
1626   TypeIndex FTI;
1627   unsigned EnumeratorCount = 0;
1628 
1629   if (Ty->isForwardDecl()) {
1630     CO |= ClassOptions::ForwardReference;
1631   } else {
1632     FieldListRecordBuilder FLRB(TypeTable);
1633 
1634     FLRB.begin();
1635     for (const DINode *Element : Ty->getElements()) {
1636       // We assume that the frontend provides all members in source declaration
1637       // order, which is what MSVC does.
1638       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1639         EnumeratorRecord ER(MemberAccess::Public,
1640                             APSInt::getUnsigned(Enumerator->getValue()),
1641                             Enumerator->getName());
1642         FLRB.writeMemberType(ER);
1643         EnumeratorCount++;
1644       }
1645     }
1646     FTI = FLRB.end(true);
1647   }
1648 
1649   std::string FullName = getFullyQualifiedName(Ty);
1650 
1651   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1652                 getTypeIndex(Ty->getBaseType()));
1653   return TypeTable.writeKnownType(ER);
1654 }
1655 
1656 //===----------------------------------------------------------------------===//
1657 // ClassInfo
1658 //===----------------------------------------------------------------------===//
1659 
1660 struct llvm::ClassInfo {
1661   struct MemberInfo {
1662     const DIDerivedType *MemberTypeNode;
1663     uint64_t BaseOffset;
1664   };
1665   // [MemberInfo]
1666   using MemberList = std::vector<MemberInfo>;
1667 
1668   using MethodsList = TinyPtrVector<const DISubprogram *>;
1669   // MethodName -> MethodsList
1670   using MethodsMap = MapVector<MDString *, MethodsList>;
1671 
1672   /// Base classes.
1673   std::vector<const DIDerivedType *> Inheritance;
1674 
1675   /// Direct members.
1676   MemberList Members;
1677   // Direct overloaded methods gathered by name.
1678   MethodsMap Methods;
1679 
1680   TypeIndex VShapeTI;
1681 
1682   std::vector<const DIType *> NestedTypes;
1683 };
1684 
1685 void CodeViewDebug::clear() {
1686   assert(CurFn == nullptr);
1687   FileIdMap.clear();
1688   FnDebugInfo.clear();
1689   FileToFilepathMap.clear();
1690   LocalUDTs.clear();
1691   GlobalUDTs.clear();
1692   TypeIndices.clear();
1693   CompleteTypeIndices.clear();
1694 }
1695 
1696 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1697                                       const DIDerivedType *DDTy) {
1698   if (!DDTy->getName().empty()) {
1699     Info.Members.push_back({DDTy, 0});
1700     return;
1701   }
1702   // An unnamed member must represent a nested struct or union. Add all the
1703   // indirect fields to the current record.
1704   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1705   uint64_t Offset = DDTy->getOffsetInBits();
1706   const DIType *Ty = DDTy->getBaseType().resolve();
1707   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1708   ClassInfo NestedInfo = collectClassInfo(DCTy);
1709   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1710     Info.Members.push_back(
1711         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1712 }
1713 
1714 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1715   ClassInfo Info;
1716   // Add elements to structure type.
1717   DINodeArray Elements = Ty->getElements();
1718   for (auto *Element : Elements) {
1719     // We assume that the frontend provides all members in source declaration
1720     // order, which is what MSVC does.
1721     if (!Element)
1722       continue;
1723     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1724       Info.Methods[SP->getRawName()].push_back(SP);
1725     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1726       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1727         collectMemberInfo(Info, DDTy);
1728       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1729         Info.Inheritance.push_back(DDTy);
1730       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1731                  DDTy->getName() == "__vtbl_ptr_type") {
1732         Info.VShapeTI = getTypeIndex(DDTy);
1733       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1734         Info.NestedTypes.push_back(DDTy);
1735       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1736         // Ignore friend members. It appears that MSVC emitted info about
1737         // friends in the past, but modern versions do not.
1738       }
1739     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1740       Info.NestedTypes.push_back(Composite);
1741     }
1742     // Skip other unrecognized kinds of elements.
1743   }
1744   return Info;
1745 }
1746 
1747 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1748   // First, construct the forward decl.  Don't look into Ty to compute the
1749   // forward decl options, since it might not be available in all TUs.
1750   TypeRecordKind Kind = getRecordKind(Ty);
1751   ClassOptions CO =
1752       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1753   std::string FullName = getFullyQualifiedName(Ty);
1754   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1755                  FullName, Ty->getIdentifier());
1756   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1757   if (!Ty->isForwardDecl())
1758     DeferredCompleteTypes.push_back(Ty);
1759   return FwdDeclTI;
1760 }
1761 
1762 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1763   // Construct the field list and complete type record.
1764   TypeRecordKind Kind = getRecordKind(Ty);
1765   ClassOptions CO = getCommonClassOptions(Ty);
1766   TypeIndex FieldTI;
1767   TypeIndex VShapeTI;
1768   unsigned FieldCount;
1769   bool ContainsNestedClass;
1770   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1771       lowerRecordFieldList(Ty);
1772 
1773   if (ContainsNestedClass)
1774     CO |= ClassOptions::ContainsNestedClass;
1775 
1776   std::string FullName = getFullyQualifiedName(Ty);
1777 
1778   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1779 
1780   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1781                  SizeInBytes, FullName, Ty->getIdentifier());
1782   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1783 
1784   if (const auto *File = Ty->getFile()) {
1785     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1786     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1787     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1788     TypeTable.writeKnownType(USLR);
1789   }
1790 
1791   addToUDTs(Ty);
1792 
1793   return ClassTI;
1794 }
1795 
1796 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1797   ClassOptions CO =
1798       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1799   std::string FullName = getFullyQualifiedName(Ty);
1800   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1801   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1802   if (!Ty->isForwardDecl())
1803     DeferredCompleteTypes.push_back(Ty);
1804   return FwdDeclTI;
1805 }
1806 
1807 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1808   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1809   TypeIndex FieldTI;
1810   unsigned FieldCount;
1811   bool ContainsNestedClass;
1812   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1813       lowerRecordFieldList(Ty);
1814 
1815   if (ContainsNestedClass)
1816     CO |= ClassOptions::ContainsNestedClass;
1817 
1818   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1819   std::string FullName = getFullyQualifiedName(Ty);
1820 
1821   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1822                  Ty->getIdentifier());
1823   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1824 
1825   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1826   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1827   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1828   TypeTable.writeKnownType(USLR);
1829 
1830   addToUDTs(Ty);
1831 
1832   return UnionTI;
1833 }
1834 
1835 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1836 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1837   // Manually count members. MSVC appears to count everything that generates a
1838   // field list record. Each individual overload in a method overload group
1839   // contributes to this count, even though the overload group is a single field
1840   // list record.
1841   unsigned MemberCount = 0;
1842   ClassInfo Info = collectClassInfo(Ty);
1843   FieldListRecordBuilder FLBR(TypeTable);
1844   FLBR.begin();
1845 
1846   // Create base classes.
1847   for (const DIDerivedType *I : Info.Inheritance) {
1848     if (I->getFlags() & DINode::FlagVirtual) {
1849       // Virtual base.
1850       // FIXME: Emit VBPtrOffset when the frontend provides it.
1851       unsigned VBPtrOffset = 0;
1852       // FIXME: Despite the accessor name, the offset is really in bytes.
1853       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1854       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1855                             ? TypeRecordKind::IndirectVirtualBaseClass
1856                             : TypeRecordKind::VirtualBaseClass;
1857       VirtualBaseClassRecord VBCR(
1858           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1859           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1860           VBTableIndex);
1861 
1862       FLBR.writeMemberType(VBCR);
1863     } else {
1864       assert(I->getOffsetInBits() % 8 == 0 &&
1865              "bases must be on byte boundaries");
1866       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1867                           getTypeIndex(I->getBaseType()),
1868                           I->getOffsetInBits() / 8);
1869       FLBR.writeMemberType(BCR);
1870     }
1871   }
1872 
1873   // Create members.
1874   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1875     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1876     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1877     StringRef MemberName = Member->getName();
1878     MemberAccess Access =
1879         translateAccessFlags(Ty->getTag(), Member->getFlags());
1880 
1881     if (Member->isStaticMember()) {
1882       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1883       FLBR.writeMemberType(SDMR);
1884       MemberCount++;
1885       continue;
1886     }
1887 
1888     // Virtual function pointer member.
1889     if ((Member->getFlags() & DINode::FlagArtificial) &&
1890         Member->getName().startswith("_vptr$")) {
1891       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1892       FLBR.writeMemberType(VFPR);
1893       MemberCount++;
1894       continue;
1895     }
1896 
1897     // Data member.
1898     uint64_t MemberOffsetInBits =
1899         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1900     if (Member->isBitField()) {
1901       uint64_t StartBitOffset = MemberOffsetInBits;
1902       if (const auto *CI =
1903               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1904         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1905       }
1906       StartBitOffset -= MemberOffsetInBits;
1907       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1908                          StartBitOffset);
1909       MemberBaseType = TypeTable.writeKnownType(BFR);
1910     }
1911     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1912     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1913                          MemberName);
1914     FLBR.writeMemberType(DMR);
1915     MemberCount++;
1916   }
1917 
1918   // Create methods
1919   for (auto &MethodItr : Info.Methods) {
1920     StringRef Name = MethodItr.first->getString();
1921 
1922     std::vector<OneMethodRecord> Methods;
1923     for (const DISubprogram *SP : MethodItr.second) {
1924       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1925       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1926 
1927       unsigned VFTableOffset = -1;
1928       if (Introduced)
1929         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1930 
1931       Methods.push_back(OneMethodRecord(
1932           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1933           translateMethodKindFlags(SP, Introduced),
1934           translateMethodOptionFlags(SP), VFTableOffset, Name));
1935       MemberCount++;
1936     }
1937     assert(!Methods.empty() && "Empty methods map entry");
1938     if (Methods.size() == 1)
1939       FLBR.writeMemberType(Methods[0]);
1940     else {
1941       MethodOverloadListRecord MOLR(Methods);
1942       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1943       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1944       FLBR.writeMemberType(OMR);
1945     }
1946   }
1947 
1948   // Create nested classes.
1949   for (const DIType *Nested : Info.NestedTypes) {
1950     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1951     FLBR.writeMemberType(R);
1952     MemberCount++;
1953   }
1954 
1955   TypeIndex FieldTI = FLBR.end(true);
1956   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1957                          !Info.NestedTypes.empty());
1958 }
1959 
1960 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1961   if (!VBPType.getIndex()) {
1962     // Make a 'const int *' type.
1963     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1964     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1965 
1966     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1967                                                   : PointerKind::Near32;
1968     PointerMode PM = PointerMode::Pointer;
1969     PointerOptions PO = PointerOptions::None;
1970     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1971 
1972     VBPType = TypeTable.writeKnownType(PR);
1973   }
1974 
1975   return VBPType;
1976 }
1977 
1978 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1979   const DIType *Ty = TypeRef.resolve();
1980   const DIType *ClassTy = ClassTyRef.resolve();
1981 
1982   // The null DIType is the void type. Don't try to hash it.
1983   if (!Ty)
1984     return TypeIndex::Void();
1985 
1986   // Check if we've already translated this type. Don't try to do a
1987   // get-or-create style insertion that caches the hash lookup across the
1988   // lowerType call. It will update the TypeIndices map.
1989   auto I = TypeIndices.find({Ty, ClassTy});
1990   if (I != TypeIndices.end())
1991     return I->second;
1992 
1993   TypeLoweringScope S(*this);
1994   TypeIndex TI = lowerType(Ty, ClassTy);
1995   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1996 }
1997 
1998 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
1999   DIType *Ty = TypeRef.resolve();
2000   PointerRecord PR(getTypeIndex(Ty),
2001                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2002                                                 : PointerKind::Near32,
2003                    PointerMode::LValueReference, PointerOptions::None,
2004                    Ty->getSizeInBits() / 8);
2005   return TypeTable.writeKnownType(PR);
2006 }
2007 
2008 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2009   const DIType *Ty = TypeRef.resolve();
2010 
2011   // The null DIType is the void type. Don't try to hash it.
2012   if (!Ty)
2013     return TypeIndex::Void();
2014 
2015   // If this is a non-record type, the complete type index is the same as the
2016   // normal type index. Just call getTypeIndex.
2017   switch (Ty->getTag()) {
2018   case dwarf::DW_TAG_class_type:
2019   case dwarf::DW_TAG_structure_type:
2020   case dwarf::DW_TAG_union_type:
2021     break;
2022   default:
2023     return getTypeIndex(Ty);
2024   }
2025 
2026   // Check if we've already translated the complete record type.  Lowering a
2027   // complete type should never trigger lowering another complete type, so we
2028   // can reuse the hash table lookup result.
2029   const auto *CTy = cast<DICompositeType>(Ty);
2030   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2031   if (!InsertResult.second)
2032     return InsertResult.first->second;
2033 
2034   TypeLoweringScope S(*this);
2035 
2036   // Make sure the forward declaration is emitted first. It's unclear if this
2037   // is necessary, but MSVC does it, and we should follow suit until we can show
2038   // otherwise.
2039   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2040 
2041   // Just use the forward decl if we don't have complete type info. This might
2042   // happen if the frontend is using modules and expects the complete definition
2043   // to be emitted elsewhere.
2044   if (CTy->isForwardDecl())
2045     return FwdDeclTI;
2046 
2047   TypeIndex TI;
2048   switch (CTy->getTag()) {
2049   case dwarf::DW_TAG_class_type:
2050   case dwarf::DW_TAG_structure_type:
2051     TI = lowerCompleteTypeClass(CTy);
2052     break;
2053   case dwarf::DW_TAG_union_type:
2054     TI = lowerCompleteTypeUnion(CTy);
2055     break;
2056   default:
2057     llvm_unreachable("not a record");
2058   }
2059 
2060   InsertResult.first->second = TI;
2061   return TI;
2062 }
2063 
2064 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2065 /// and do this until fixpoint, as each complete record type typically
2066 /// references
2067 /// many other record types.
2068 void CodeViewDebug::emitDeferredCompleteTypes() {
2069   SmallVector<const DICompositeType *, 4> TypesToEmit;
2070   while (!DeferredCompleteTypes.empty()) {
2071     std::swap(DeferredCompleteTypes, TypesToEmit);
2072     for (const DICompositeType *RecordTy : TypesToEmit)
2073       getCompleteTypeIndex(RecordTy);
2074     TypesToEmit.clear();
2075   }
2076 }
2077 
2078 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2079   // Get the sorted list of parameters and emit them first.
2080   SmallVector<const LocalVariable *, 6> Params;
2081   for (const LocalVariable &L : Locals)
2082     if (L.DIVar->isParameter())
2083       Params.push_back(&L);
2084   std::sort(Params.begin(), Params.end(),
2085             [](const LocalVariable *L, const LocalVariable *R) {
2086               return L->DIVar->getArg() < R->DIVar->getArg();
2087             });
2088   for (const LocalVariable *L : Params)
2089     emitLocalVariable(*L);
2090 
2091   // Next emit all non-parameters in the order that we found them.
2092   for (const LocalVariable &L : Locals)
2093     if (!L.DIVar->isParameter())
2094       emitLocalVariable(L);
2095 }
2096 
2097 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2098   // LocalSym record, see SymbolRecord.h for more info.
2099   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2100            *LocalEnd = MMI->getContext().createTempSymbol();
2101   OS.AddComment("Record length");
2102   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2103   OS.EmitLabel(LocalBegin);
2104 
2105   OS.AddComment("Record kind: S_LOCAL");
2106   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2107 
2108   LocalSymFlags Flags = LocalSymFlags::None;
2109   if (Var.DIVar->isParameter())
2110     Flags |= LocalSymFlags::IsParameter;
2111   if (Var.DefRanges.empty())
2112     Flags |= LocalSymFlags::IsOptimizedOut;
2113 
2114   OS.AddComment("TypeIndex");
2115   TypeIndex TI = Var.Deref ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2116                            : getCompleteTypeIndex(Var.DIVar->getType());
2117   OS.EmitIntValue(TI.getIndex(), 4);
2118   OS.AddComment("Flags");
2119   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2120   // Truncate the name so we won't overflow the record length field.
2121   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2122   OS.EmitLabel(LocalEnd);
2123 
2124   // Calculate the on disk prefix of the appropriate def range record. The
2125   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2126   // should be big enough to hold all forms without memory allocation.
2127   SmallString<20> BytePrefix;
2128   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2129     BytePrefix.clear();
2130     if (DefRange.InMemory) {
2131       uint16_t RegRelFlags = 0;
2132       if (DefRange.IsSubfield) {
2133         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2134                       (DefRange.StructOffset
2135                        << DefRangeRegisterRelSym::OffsetInParentShift);
2136       }
2137       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2138       Sym.Hdr.Register = DefRange.CVRegister;
2139       Sym.Hdr.Flags = RegRelFlags;
2140       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2141       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2142       BytePrefix +=
2143           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2144       BytePrefix +=
2145           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2146     } else {
2147       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2148       if (DefRange.IsSubfield) {
2149         // Unclear what matters here.
2150         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2151         Sym.Hdr.Register = DefRange.CVRegister;
2152         Sym.Hdr.MayHaveNoName = 0;
2153         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2154 
2155         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2156         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2157                                 sizeof(SymKind));
2158         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2159                                 sizeof(Sym.Hdr));
2160       } else {
2161         // Unclear what matters here.
2162         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2163         Sym.Hdr.Register = DefRange.CVRegister;
2164         Sym.Hdr.MayHaveNoName = 0;
2165         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2166         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2167                                 sizeof(SymKind));
2168         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2169                                 sizeof(Sym.Hdr));
2170       }
2171     }
2172     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2173   }
2174 }
2175 
2176 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2177   const Function *GV = MF->getFunction();
2178   assert(FnDebugInfo.count(GV));
2179   assert(CurFn == &FnDebugInfo[GV]);
2180 
2181   collectVariableInfo(GV->getSubprogram());
2182 
2183   // Don't emit anything if we don't have any line tables.
2184   if (!CurFn->HaveLineInfo) {
2185     FnDebugInfo.erase(GV);
2186     CurFn = nullptr;
2187     return;
2188   }
2189 
2190   CurFn->End = Asm->getFunctionEnd();
2191 
2192   CurFn = nullptr;
2193 }
2194 
2195 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2196   DebugHandlerBase::beginInstruction(MI);
2197 
2198   // Ignore DBG_VALUE locations and function prologue.
2199   if (!Asm || !CurFn || MI->isDebugValue() ||
2200       MI->getFlag(MachineInstr::FrameSetup))
2201     return;
2202 
2203   // If the first instruction of a new MBB has no location, find the first
2204   // instruction with a location and use that.
2205   DebugLoc DL = MI->getDebugLoc();
2206   if (!DL && MI->getParent() != PrevInstBB) {
2207     for (const auto &NextMI : *MI->getParent()) {
2208       if (NextMI.isDebugValue())
2209         continue;
2210       DL = NextMI.getDebugLoc();
2211       if (DL)
2212         break;
2213     }
2214   }
2215   PrevInstBB = MI->getParent();
2216 
2217   // If we still don't have a debug location, don't record a location.
2218   if (!DL)
2219     return;
2220 
2221   maybeRecordLocation(DL, Asm->MF);
2222 }
2223 
2224 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2225   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2226            *EndLabel = MMI->getContext().createTempSymbol();
2227   OS.EmitIntValue(unsigned(Kind), 4);
2228   OS.AddComment("Subsection size");
2229   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2230   OS.EmitLabel(BeginLabel);
2231   return EndLabel;
2232 }
2233 
2234 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2235   OS.EmitLabel(EndLabel);
2236   // Every subsection must be aligned to a 4-byte boundary.
2237   OS.EmitValueToAlignment(4);
2238 }
2239 
2240 void CodeViewDebug::emitDebugInfoForUDTs(
2241     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2242   for (const auto &UDT : UDTs) {
2243     const DIType *T = UDT.second;
2244     assert(shouldEmitUdt(T));
2245 
2246     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2247              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2248     OS.AddComment("Record length");
2249     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2250     OS.EmitLabel(UDTRecordBegin);
2251 
2252     OS.AddComment("Record kind: S_UDT");
2253     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2254 
2255     OS.AddComment("Type");
2256     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2257 
2258     emitNullTerminatedSymbolName(OS, UDT.first);
2259     OS.EmitLabel(UDTRecordEnd);
2260   }
2261 }
2262 
2263 void CodeViewDebug::emitDebugInfoForGlobals() {
2264   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2265       GlobalMap;
2266   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2267     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2268     GV.getDebugInfo(GVEs);
2269     for (const auto *GVE : GVEs)
2270       GlobalMap[GVE] = &GV;
2271   }
2272 
2273   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2274   for (const MDNode *Node : CUs->operands()) {
2275     const auto *CU = cast<DICompileUnit>(Node);
2276 
2277     // First, emit all globals that are not in a comdat in a single symbol
2278     // substream. MSVC doesn't like it if the substream is empty, so only open
2279     // it if we have at least one global to emit.
2280     switchToDebugSectionForSymbol(nullptr);
2281     MCSymbol *EndLabel = nullptr;
2282     for (const auto *GVE : CU->getGlobalVariables()) {
2283       if (const auto *GV = GlobalMap.lookup(GVE))
2284         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2285           if (!EndLabel) {
2286             OS.AddComment("Symbol subsection for globals");
2287             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2288           }
2289           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2290           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2291         }
2292     }
2293     if (EndLabel)
2294       endCVSubsection(EndLabel);
2295 
2296     // Second, emit each global that is in a comdat into its own .debug$S
2297     // section along with its own symbol substream.
2298     for (const auto *GVE : CU->getGlobalVariables()) {
2299       if (const auto *GV = GlobalMap.lookup(GVE)) {
2300         if (GV->hasComdat()) {
2301           MCSymbol *GVSym = Asm->getSymbol(GV);
2302           OS.AddComment("Symbol subsection for " +
2303                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2304           switchToDebugSectionForSymbol(GVSym);
2305           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2306           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2307           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2308           endCVSubsection(EndLabel);
2309         }
2310       }
2311     }
2312   }
2313 }
2314 
2315 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2316   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2317   for (const MDNode *Node : CUs->operands()) {
2318     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2319       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2320         getTypeIndex(RT);
2321         // FIXME: Add to global/local DTU list.
2322       }
2323     }
2324   }
2325 }
2326 
2327 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2328                                            const GlobalVariable *GV,
2329                                            MCSymbol *GVSym) {
2330   // DataSym record, see SymbolRecord.h for more info.
2331   // FIXME: Thread local data, etc
2332   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2333            *DataEnd = MMI->getContext().createTempSymbol();
2334   OS.AddComment("Record length");
2335   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2336   OS.EmitLabel(DataBegin);
2337   if (DIGV->isLocalToUnit()) {
2338     if (GV->isThreadLocal()) {
2339       OS.AddComment("Record kind: S_LTHREAD32");
2340       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2341     } else {
2342       OS.AddComment("Record kind: S_LDATA32");
2343       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2344     }
2345   } else {
2346     if (GV->isThreadLocal()) {
2347       OS.AddComment("Record kind: S_GTHREAD32");
2348       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2349     } else {
2350       OS.AddComment("Record kind: S_GDATA32");
2351       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2352     }
2353   }
2354   OS.AddComment("Type");
2355   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2356   OS.AddComment("DataOffset");
2357   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2358   OS.AddComment("Segment");
2359   OS.EmitCOFFSectionIndex(GVSym);
2360   OS.AddComment("Name");
2361   emitNullTerminatedSymbolName(OS, DIGV->getName());
2362   OS.EmitLabel(DataEnd);
2363 }
2364