1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
40 #include "llvm/DebugInfo/CodeView/CodeView.h"
41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
46 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/MC/MCAsmInfo.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSectionCOFF.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/BinaryByteStream.h"
63 #include "llvm/Support/BinaryStreamReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Target/TargetFrameLowering.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Target/TargetSubtargetInfo.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <limits>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace llvm::codeview;
89 
90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
91     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
92   // If module doesn't have named metadata anchors or COFF debug section
93   // is not available, skip any debug info related stuff.
94   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
95       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
96     Asm = nullptr;
97     return;
98   }
99 
100   // Tell MMI that we have debug info.
101   MMI->setDebugInfoAvailability(true);
102 }
103 
104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
105   std::string &Filepath = FileToFilepathMap[File];
106   if (!Filepath.empty())
107     return Filepath;
108 
109   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
110 
111   // Clang emits directory and relative filename info into the IR, but CodeView
112   // operates on full paths.  We could change Clang to emit full paths too, but
113   // that would increase the IR size and probably not needed for other users.
114   // For now, just concatenate and canonicalize the path here.
115   if (Filename.find(':') == 1)
116     Filepath = Filename;
117   else
118     Filepath = (Dir + "\\" + Filename).str();
119 
120   // Canonicalize the path.  We have to do it textually because we may no longer
121   // have access the file in the filesystem.
122   // First, replace all slashes with backslashes.
123   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
124 
125   // Remove all "\.\" with "\".
126   size_t Cursor = 0;
127   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
128     Filepath.erase(Cursor, 2);
129 
130   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
131   // path should be well-formatted, e.g. start with a drive letter, etc.
132   Cursor = 0;
133   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
134     // Something's wrong if the path starts with "\..\", abort.
135     if (Cursor == 0)
136       break;
137 
138     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
139     if (PrevSlash == std::string::npos)
140       // Something's wrong, abort.
141       break;
142 
143     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
144     // The next ".." might be following the one we've just erased.
145     Cursor = PrevSlash;
146   }
147 
148   // Remove all duplicate backslashes.
149   Cursor = 0;
150   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
151     Filepath.erase(Cursor, 1);
152 
153   return Filepath;
154 }
155 
156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
157   unsigned NextId = FileIdMap.size() + 1;
158   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
159   if (Insertion.second) {
160     // We have to compute the full filepath and emit a .cv_file directive.
161     StringRef FullPath = getFullFilepath(F);
162     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
163     (void)Success;
164     assert(Success && ".cv_file directive failed");
165   }
166   return Insertion.first->second;
167 }
168 
169 CodeViewDebug::InlineSite &
170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
171                              const DISubprogram *Inlinee) {
172   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
173   InlineSite *Site = &SiteInsertion.first->second;
174   if (SiteInsertion.second) {
175     unsigned ParentFuncId = CurFn->FuncId;
176     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
177       ParentFuncId =
178           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
179               .SiteFuncId;
180 
181     Site->SiteFuncId = NextFuncId++;
182     OS.EmitCVInlineSiteIdDirective(
183         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
184         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
185     Site->Inlinee = Inlinee;
186     InlinedSubprograms.insert(Inlinee);
187     getFuncIdForSubprogram(Inlinee);
188   }
189   return *Site;
190 }
191 
192 static StringRef getPrettyScopeName(const DIScope *Scope) {
193   StringRef ScopeName = Scope->getName();
194   if (!ScopeName.empty())
195     return ScopeName;
196 
197   switch (Scope->getTag()) {
198   case dwarf::DW_TAG_enumeration_type:
199   case dwarf::DW_TAG_class_type:
200   case dwarf::DW_TAG_structure_type:
201   case dwarf::DW_TAG_union_type:
202     return "<unnamed-tag>";
203   case dwarf::DW_TAG_namespace:
204     return "`anonymous namespace'";
205   }
206 
207   return StringRef();
208 }
209 
210 static const DISubprogram *getQualifiedNameComponents(
211     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
212   const DISubprogram *ClosestSubprogram = nullptr;
213   while (Scope != nullptr) {
214     if (ClosestSubprogram == nullptr)
215       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
216     StringRef ScopeName = getPrettyScopeName(Scope);
217     if (!ScopeName.empty())
218       QualifiedNameComponents.push_back(ScopeName);
219     Scope = Scope->getScope().resolve();
220   }
221   return ClosestSubprogram;
222 }
223 
224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
225                                     StringRef TypeName) {
226   std::string FullyQualifiedName;
227   for (StringRef QualifiedNameComponent :
228        llvm::reverse(QualifiedNameComponents)) {
229     FullyQualifiedName.append(QualifiedNameComponent);
230     FullyQualifiedName.append("::");
231   }
232   FullyQualifiedName.append(TypeName);
233   return FullyQualifiedName;
234 }
235 
236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
237   SmallVector<StringRef, 5> QualifiedNameComponents;
238   getQualifiedNameComponents(Scope, QualifiedNameComponents);
239   return getQualifiedName(QualifiedNameComponents, Name);
240 }
241 
242 struct CodeViewDebug::TypeLoweringScope {
243   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
244   ~TypeLoweringScope() {
245     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
246     // inner TypeLoweringScopes don't attempt to emit deferred types.
247     if (CVD.TypeEmissionLevel == 1)
248       CVD.emitDeferredCompleteTypes();
249     --CVD.TypeEmissionLevel;
250   }
251   CodeViewDebug &CVD;
252 };
253 
254 static std::string getFullyQualifiedName(const DIScope *Ty) {
255   const DIScope *Scope = Ty->getScope().resolve();
256   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
257 }
258 
259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
260   // No scope means global scope and that uses the zero index.
261   if (!Scope || isa<DIFile>(Scope))
262     return TypeIndex();
263 
264   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
265 
266   // Check if we've already translated this scope.
267   auto I = TypeIndices.find({Scope, nullptr});
268   if (I != TypeIndices.end())
269     return I->second;
270 
271   // Build the fully qualified name of the scope.
272   std::string ScopeName = getFullyQualifiedName(Scope);
273   StringIdRecord SID(TypeIndex(), ScopeName);
274   auto TI = TypeTable.writeKnownType(SID);
275   return recordTypeIndexForDINode(Scope, TI);
276 }
277 
278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
279   assert(SP);
280 
281   // Check if we've already translated this subprogram.
282   auto I = TypeIndices.find({SP, nullptr});
283   if (I != TypeIndices.end())
284     return I->second;
285 
286   // The display name includes function template arguments. Drop them to match
287   // MSVC.
288   StringRef DisplayName = SP->getName().split('<').first;
289 
290   const DIScope *Scope = SP->getScope().resolve();
291   TypeIndex TI;
292   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
293     // If the scope is a DICompositeType, then this must be a method. Member
294     // function types take some special handling, and require access to the
295     // subprogram.
296     TypeIndex ClassType = getTypeIndex(Class);
297     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
298                                DisplayName);
299     TI = TypeTable.writeKnownType(MFuncId);
300   } else {
301     // Otherwise, this must be a free function.
302     TypeIndex ParentScope = getScopeIndex(Scope);
303     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
304     TI = TypeTable.writeKnownType(FuncId);
305   }
306 
307   return recordTypeIndexForDINode(SP, TI);
308 }
309 
310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
311                                                const DICompositeType *Class) {
312   // Always use the method declaration as the key for the function type. The
313   // method declaration contains the this adjustment.
314   if (SP->getDeclaration())
315     SP = SP->getDeclaration();
316   assert(!SP->getDeclaration() && "should use declaration as key");
317 
318   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
319   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
320   auto I = TypeIndices.find({SP, Class});
321   if (I != TypeIndices.end())
322     return I->second;
323 
324   // Make sure complete type info for the class is emitted *after* the member
325   // function type, as the complete class type is likely to reference this
326   // member function type.
327   TypeLoweringScope S(*this);
328   TypeIndex TI =
329       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
330   return recordTypeIndexForDINode(SP, TI, Class);
331 }
332 
333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
334                                                   TypeIndex TI,
335                                                   const DIType *ClassTy) {
336   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
337   (void)InsertResult;
338   assert(InsertResult.second && "DINode was already assigned a type index");
339   return TI;
340 }
341 
342 unsigned CodeViewDebug::getPointerSizeInBytes() {
343   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
344 }
345 
346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
347                                         const DILocation *InlinedAt) {
348   if (InlinedAt) {
349     // This variable was inlined. Associate it with the InlineSite.
350     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
351     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
352     Site.InlinedLocals.emplace_back(Var);
353   } else {
354     // This variable goes in the main ProcSym.
355     CurFn->Locals.emplace_back(Var);
356   }
357 }
358 
359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
360                                const DILocation *Loc) {
361   auto B = Locs.begin(), E = Locs.end();
362   if (std::find(B, E, Loc) == E)
363     Locs.push_back(Loc);
364 }
365 
366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
367                                         const MachineFunction *MF) {
368   // Skip this instruction if it has the same location as the previous one.
369   if (!DL || DL == PrevInstLoc)
370     return;
371 
372   const DIScope *Scope = DL.get()->getScope();
373   if (!Scope)
374     return;
375 
376   // Skip this line if it is longer than the maximum we can record.
377   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
378   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
379       LI.isNeverStepInto())
380     return;
381 
382   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
383   if (CI.getStartColumn() != DL.getCol())
384     return;
385 
386   if (!CurFn->HaveLineInfo)
387     CurFn->HaveLineInfo = true;
388   unsigned FileId = 0;
389   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
390     FileId = CurFn->LastFileId;
391   else
392     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
393   PrevInstLoc = DL;
394 
395   unsigned FuncId = CurFn->FuncId;
396   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
397     const DILocation *Loc = DL.get();
398 
399     // If this location was actually inlined from somewhere else, give it the ID
400     // of the inline call site.
401     FuncId =
402         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
403 
404     // Ensure we have links in the tree of inline call sites.
405     bool FirstLoc = true;
406     while ((SiteLoc = Loc->getInlinedAt())) {
407       InlineSite &Site =
408           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
409       if (!FirstLoc)
410         addLocIfNotPresent(Site.ChildSites, Loc);
411       FirstLoc = false;
412       Loc = SiteLoc;
413     }
414     addLocIfNotPresent(CurFn->ChildSites, Loc);
415   }
416 
417   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
418                         /*PrologueEnd=*/false, /*IsStmt=*/false,
419                         DL->getFilename(), SMLoc());
420 }
421 
422 void CodeViewDebug::emitCodeViewMagicVersion() {
423   OS.EmitValueToAlignment(4);
424   OS.AddComment("Debug section magic");
425   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
426 }
427 
428 void CodeViewDebug::endModule() {
429   if (!Asm || !MMI->hasDebugInfo())
430     return;
431 
432   assert(Asm != nullptr);
433 
434   // The COFF .debug$S section consists of several subsections, each starting
435   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
436   // of the payload followed by the payload itself.  The subsections are 4-byte
437   // aligned.
438 
439   // Use the generic .debug$S section, and make a subsection for all the inlined
440   // subprograms.
441   switchToDebugSectionForSymbol(nullptr);
442 
443   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
444   emitCompilerInformation();
445   endCVSubsection(CompilerInfo);
446 
447   emitInlineeLinesSubsection();
448 
449   // Emit per-function debug information.
450   for (auto &P : FnDebugInfo)
451     if (!P.first->isDeclarationForLinker())
452       emitDebugInfoForFunction(P.first, P.second);
453 
454   // Emit global variable debug information.
455   setCurrentSubprogram(nullptr);
456   emitDebugInfoForGlobals();
457 
458   // Emit retained types.
459   emitDebugInfoForRetainedTypes();
460 
461   // Switch back to the generic .debug$S section after potentially processing
462   // comdat symbol sections.
463   switchToDebugSectionForSymbol(nullptr);
464 
465   // Emit UDT records for any types used by global variables.
466   if (!GlobalUDTs.empty()) {
467     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
468     emitDebugInfoForUDTs(GlobalUDTs);
469     endCVSubsection(SymbolsEnd);
470   }
471 
472   // This subsection holds a file index to offset in string table table.
473   OS.AddComment("File index to string table offset subsection");
474   OS.EmitCVFileChecksumsDirective();
475 
476   // This subsection holds the string table.
477   OS.AddComment("String table");
478   OS.EmitCVStringTableDirective();
479 
480   // Emit type information last, so that any types we translate while emitting
481   // function info are included.
482   emitTypeInformation();
483 
484   clear();
485 }
486 
487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
488   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
489   // after a fixed length portion of the record. The fixed length portion should
490   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
491   // overall record size is less than the maximum allowed.
492   unsigned MaxFixedRecordLength = 0xF00;
493   SmallString<32> NullTerminatedString(
494       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
495   NullTerminatedString.push_back('\0');
496   OS.EmitBytes(NullTerminatedString);
497 }
498 
499 void CodeViewDebug::emitTypeInformation() {
500   // Do nothing if we have no debug info or if no non-trivial types were emitted
501   // to TypeTable during codegen.
502   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
503   if (!CU_Nodes)
504     return;
505   if (TypeTable.empty())
506     return;
507 
508   // Start the .debug$T section with 0x4.
509   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
510   emitCodeViewMagicVersion();
511 
512   SmallString<8> CommentPrefix;
513   if (OS.isVerboseAsm()) {
514     CommentPrefix += '\t';
515     CommentPrefix += Asm->MAI->getCommentString();
516     CommentPrefix += ' ';
517   }
518 
519   TypeTableCollection Table(TypeTable.records());
520   Optional<TypeIndex> B = Table.getFirst();
521   while (B) {
522     // This will fail if the record data is invalid.
523     CVType Record = Table.getType(*B);
524 
525     if (OS.isVerboseAsm()) {
526       // Emit a block comment describing the type record for readability.
527       SmallString<512> CommentBlock;
528       raw_svector_ostream CommentOS(CommentBlock);
529       ScopedPrinter SP(CommentOS);
530       SP.setPrefix(CommentPrefix);
531       TypeDumpVisitor TDV(Table, &SP, false);
532 
533       Error E = codeview::visitTypeRecord(Record, *B, TDV);
534       if (E) {
535         logAllUnhandledErrors(std::move(E), errs(), "error: ");
536         llvm_unreachable("produced malformed type record");
537       }
538       // emitRawComment will insert its own tab and comment string before
539       // the first line, so strip off our first one. It also prints its own
540       // newline.
541       OS.emitRawComment(
542           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
543     }
544     OS.EmitBinaryData(Record.str_data());
545     B = Table.getNext(*B);
546   }
547 }
548 
549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
550   switch (DWLang) {
551   case dwarf::DW_LANG_C:
552   case dwarf::DW_LANG_C89:
553   case dwarf::DW_LANG_C99:
554   case dwarf::DW_LANG_C11:
555   case dwarf::DW_LANG_ObjC:
556     return SourceLanguage::C;
557   case dwarf::DW_LANG_C_plus_plus:
558   case dwarf::DW_LANG_C_plus_plus_03:
559   case dwarf::DW_LANG_C_plus_plus_11:
560   case dwarf::DW_LANG_C_plus_plus_14:
561     return SourceLanguage::Cpp;
562   case dwarf::DW_LANG_Fortran77:
563   case dwarf::DW_LANG_Fortran90:
564   case dwarf::DW_LANG_Fortran03:
565   case dwarf::DW_LANG_Fortran08:
566     return SourceLanguage::Fortran;
567   case dwarf::DW_LANG_Pascal83:
568     return SourceLanguage::Pascal;
569   case dwarf::DW_LANG_Cobol74:
570   case dwarf::DW_LANG_Cobol85:
571     return SourceLanguage::Cobol;
572   case dwarf::DW_LANG_Java:
573     return SourceLanguage::Java;
574   case dwarf::DW_LANG_D:
575     return SourceLanguage::D;
576   default:
577     // There's no CodeView representation for this language, and CV doesn't
578     // have an "unknown" option for the language field, so we'll use MASM,
579     // as it's very low level.
580     return SourceLanguage::Masm;
581   }
582 }
583 
584 namespace {
585 struct Version {
586   int Part[4];
587 };
588 } // end anonymous namespace
589 
590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
591 // the version number.
592 static Version parseVersion(StringRef Name) {
593   Version V = {{0}};
594   int N = 0;
595   for (const char C : Name) {
596     if (isdigit(C)) {
597       V.Part[N] *= 10;
598       V.Part[N] += C - '0';
599     } else if (C == '.') {
600       ++N;
601       if (N >= 4)
602         return V;
603     } else if (N > 0)
604       return V;
605   }
606   return V;
607 }
608 
609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
610   switch (Type) {
611   case Triple::ArchType::x86:
612     return CPUType::Pentium3;
613   case Triple::ArchType::x86_64:
614     return CPUType::X64;
615   case Triple::ArchType::thumb:
616     return CPUType::Thumb;
617   case Triple::ArchType::aarch64:
618     return CPUType::ARM64;
619   default:
620     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
621   }
622 }
623 
624 void CodeViewDebug::emitCompilerInformation() {
625   MCContext &Context = MMI->getContext();
626   MCSymbol *CompilerBegin = Context.createTempSymbol(),
627            *CompilerEnd = Context.createTempSymbol();
628   OS.AddComment("Record length");
629   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
630   OS.EmitLabel(CompilerBegin);
631   OS.AddComment("Record kind: S_COMPILE3");
632   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
633   uint32_t Flags = 0;
634 
635   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
636   const MDNode *Node = *CUs->operands().begin();
637   const auto *CU = cast<DICompileUnit>(Node);
638 
639   // The low byte of the flags indicates the source language.
640   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
641   // TODO:  Figure out which other flags need to be set.
642 
643   OS.AddComment("Flags and language");
644   OS.EmitIntValue(Flags, 4);
645 
646   OS.AddComment("CPUType");
647   CPUType CPU =
648       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
649   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
650 
651   StringRef CompilerVersion = CU->getProducer();
652   Version FrontVer = parseVersion(CompilerVersion);
653   OS.AddComment("Frontend version");
654   for (int N = 0; N < 4; ++N)
655     OS.EmitIntValue(FrontVer.Part[N], 2);
656 
657   // Some Microsoft tools, like Binscope, expect a backend version number of at
658   // least 8.something, so we'll coerce the LLVM version into a form that
659   // guarantees it'll be big enough without really lying about the version.
660   int Major = 1000 * LLVM_VERSION_MAJOR +
661               10 * LLVM_VERSION_MINOR +
662               LLVM_VERSION_PATCH;
663   // Clamp it for builds that use unusually large version numbers.
664   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
665   Version BackVer = {{ Major, 0, 0, 0 }};
666   OS.AddComment("Backend version");
667   for (int N = 0; N < 4; ++N)
668     OS.EmitIntValue(BackVer.Part[N], 2);
669 
670   OS.AddComment("Null-terminated compiler version string");
671   emitNullTerminatedSymbolName(OS, CompilerVersion);
672 
673   OS.EmitLabel(CompilerEnd);
674 }
675 
676 void CodeViewDebug::emitInlineeLinesSubsection() {
677   if (InlinedSubprograms.empty())
678     return;
679 
680   OS.AddComment("Inlinee lines subsection");
681   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
682 
683   // We don't provide any extra file info.
684   // FIXME: Find out if debuggers use this info.
685   OS.AddComment("Inlinee lines signature");
686   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
687 
688   for (const DISubprogram *SP : InlinedSubprograms) {
689     assert(TypeIndices.count({SP, nullptr}));
690     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
691 
692     OS.AddBlankLine();
693     unsigned FileId = maybeRecordFile(SP->getFile());
694     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
695                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
696     OS.AddBlankLine();
697     // The filechecksum table uses 8 byte entries for now, and file ids start at
698     // 1.
699     unsigned FileOffset = (FileId - 1) * 8;
700     OS.AddComment("Type index of inlined function");
701     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
702     OS.AddComment("Offset into filechecksum table");
703     OS.EmitIntValue(FileOffset, 4);
704     OS.AddComment("Starting line number");
705     OS.EmitIntValue(SP->getLine(), 4);
706   }
707 
708   endCVSubsection(InlineEnd);
709 }
710 
711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
712                                         const DILocation *InlinedAt,
713                                         const InlineSite &Site) {
714   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
715            *InlineEnd = MMI->getContext().createTempSymbol();
716 
717   assert(TypeIndices.count({Site.Inlinee, nullptr}));
718   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
719 
720   // SymbolRecord
721   OS.AddComment("Record length");
722   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
723   OS.EmitLabel(InlineBegin);
724   OS.AddComment("Record kind: S_INLINESITE");
725   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
726 
727   OS.AddComment("PtrParent");
728   OS.EmitIntValue(0, 4);
729   OS.AddComment("PtrEnd");
730   OS.EmitIntValue(0, 4);
731   OS.AddComment("Inlinee type index");
732   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
733 
734   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
735   unsigned StartLineNum = Site.Inlinee->getLine();
736 
737   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
738                                     FI.Begin, FI.End);
739 
740   OS.EmitLabel(InlineEnd);
741 
742   emitLocalVariableList(Site.InlinedLocals);
743 
744   // Recurse on child inlined call sites before closing the scope.
745   for (const DILocation *ChildSite : Site.ChildSites) {
746     auto I = FI.InlineSites.find(ChildSite);
747     assert(I != FI.InlineSites.end() &&
748            "child site not in function inline site map");
749     emitInlinedCallSite(FI, ChildSite, I->second);
750   }
751 
752   // Close the scope.
753   OS.AddComment("Record length");
754   OS.EmitIntValue(2, 2);                                  // RecordLength
755   OS.AddComment("Record kind: S_INLINESITE_END");
756   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
757 }
758 
759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
760   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
761   // comdat key. A section may be comdat because of -ffunction-sections or
762   // because it is comdat in the IR.
763   MCSectionCOFF *GVSec =
764       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
765   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
766 
767   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
768       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
769   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
770 
771   OS.SwitchSection(DebugSec);
772 
773   // Emit the magic version number if this is the first time we've switched to
774   // this section.
775   if (ComdatDebugSections.insert(DebugSec).second)
776     emitCodeViewMagicVersion();
777 }
778 
779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
780                                              FunctionInfo &FI) {
781   // For each function there is a separate subsection
782   // which holds the PC to file:line table.
783   const MCSymbol *Fn = Asm->getSymbol(GV);
784   assert(Fn);
785 
786   // Switch to the to a comdat section, if appropriate.
787   switchToDebugSectionForSymbol(Fn);
788 
789   std::string FuncName;
790   auto *SP = GV->getSubprogram();
791   assert(SP);
792   setCurrentSubprogram(SP);
793 
794   // If we have a display name, build the fully qualified name by walking the
795   // chain of scopes.
796   if (!SP->getName().empty())
797     FuncName =
798         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
799 
800   // If our DISubprogram name is empty, use the mangled name.
801   if (FuncName.empty())
802     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
803 
804   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
805   OS.AddComment("Symbol subsection for " + Twine(FuncName));
806   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
807   {
808     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
809              *ProcRecordEnd = MMI->getContext().createTempSymbol();
810     OS.AddComment("Record length");
811     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
812     OS.EmitLabel(ProcRecordBegin);
813 
814     if (GV->hasLocalLinkage()) {
815       OS.AddComment("Record kind: S_LPROC32_ID");
816       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
817     } else {
818       OS.AddComment("Record kind: S_GPROC32_ID");
819       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
820     }
821 
822     // These fields are filled in by tools like CVPACK which run after the fact.
823     OS.AddComment("PtrParent");
824     OS.EmitIntValue(0, 4);
825     OS.AddComment("PtrEnd");
826     OS.EmitIntValue(0, 4);
827     OS.AddComment("PtrNext");
828     OS.EmitIntValue(0, 4);
829     // This is the important bit that tells the debugger where the function
830     // code is located and what's its size:
831     OS.AddComment("Code size");
832     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
833     OS.AddComment("Offset after prologue");
834     OS.EmitIntValue(0, 4);
835     OS.AddComment("Offset before epilogue");
836     OS.EmitIntValue(0, 4);
837     OS.AddComment("Function type index");
838     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
839     OS.AddComment("Function section relative address");
840     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
841     OS.AddComment("Function section index");
842     OS.EmitCOFFSectionIndex(Fn);
843     OS.AddComment("Flags");
844     OS.EmitIntValue(0, 1);
845     // Emit the function display name as a null-terminated string.
846     OS.AddComment("Function name");
847     // Truncate the name so we won't overflow the record length field.
848     emitNullTerminatedSymbolName(OS, FuncName);
849     OS.EmitLabel(ProcRecordEnd);
850 
851     emitLocalVariableList(FI.Locals);
852 
853     // Emit inlined call site information. Only emit functions inlined directly
854     // into the parent function. We'll emit the other sites recursively as part
855     // of their parent inline site.
856     for (const DILocation *InlinedAt : FI.ChildSites) {
857       auto I = FI.InlineSites.find(InlinedAt);
858       assert(I != FI.InlineSites.end() &&
859              "child site not in function inline site map");
860       emitInlinedCallSite(FI, InlinedAt, I->second);
861     }
862 
863     if (SP != nullptr)
864       emitDebugInfoForUDTs(LocalUDTs);
865 
866     // We're done with this function.
867     OS.AddComment("Record length");
868     OS.EmitIntValue(0x0002, 2);
869     OS.AddComment("Record kind: S_PROC_ID_END");
870     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
871   }
872   endCVSubsection(SymbolsEnd);
873 
874   // We have an assembler directive that takes care of the whole line table.
875   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
876 }
877 
878 CodeViewDebug::LocalVarDefRange
879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
880   LocalVarDefRange DR;
881   DR.InMemory = -1;
882   DR.DataOffset = Offset;
883   assert(DR.DataOffset == Offset && "truncation");
884   DR.IsSubfield = 0;
885   DR.StructOffset = 0;
886   DR.CVRegister = CVRegister;
887   return DR;
888 }
889 
890 CodeViewDebug::LocalVarDefRange
891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
892                                      int Offset, bool IsSubfield,
893                                      uint16_t StructOffset) {
894   LocalVarDefRange DR;
895   DR.InMemory = InMemory;
896   DR.DataOffset = Offset;
897   DR.IsSubfield = IsSubfield;
898   DR.StructOffset = StructOffset;
899   DR.CVRegister = CVRegister;
900   return DR;
901 }
902 
903 void CodeViewDebug::collectVariableInfoFromMFTable(
904     DenseSet<InlinedVariable> &Processed) {
905   const MachineFunction &MF = *Asm->MF;
906   const TargetSubtargetInfo &TSI = MF.getSubtarget();
907   const TargetFrameLowering *TFI = TSI.getFrameLowering();
908   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
909 
910   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
911     if (!VI.Var)
912       continue;
913     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
914            "Expected inlined-at fields to agree");
915 
916     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
917     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
918 
919     // If variable scope is not found then skip this variable.
920     if (!Scope)
921       continue;
922 
923     // If the variable has an attached offset expression, extract it.
924     // FIXME: Try to handle DW_OP_deref as well.
925     int64_t ExprOffset = 0;
926     if (VI.Expr)
927       if (!VI.Expr->extractIfOffset(ExprOffset))
928         continue;
929 
930     // Get the frame register used and the offset.
931     unsigned FrameReg = 0;
932     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
933     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
934 
935     // Calculate the label ranges.
936     LocalVarDefRange DefRange =
937         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
938     for (const InsnRange &Range : Scope->getRanges()) {
939       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
940       const MCSymbol *End = getLabelAfterInsn(Range.second);
941       End = End ? End : Asm->getFunctionEnd();
942       DefRange.Ranges.emplace_back(Begin, End);
943     }
944 
945     LocalVariable Var;
946     Var.DIVar = VI.Var;
947     Var.DefRanges.emplace_back(std::move(DefRange));
948     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
949   }
950 }
951 
952 void CodeViewDebug::calculateRanges(
953     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
954   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
955 
956   // calculate the definition ranges.
957   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
958     const InsnRange &Range = *I;
959     const MachineInstr *DVInst = Range.first;
960     assert(DVInst->isDebugValue() && "Invalid History entry");
961     // FIXME: Find a way to represent constant variables, since they are
962     // relatively common.
963     DbgVariableLocation Location;
964     bool Supported =
965         DbgVariableLocation::extractFromMachineInstruction(Location, *DVInst);
966     // If not Supported, don't even look at Location because it's invalid.
967     if (!Supported)
968       continue;
969 
970     // Because we cannot express DW_OP_deref in CodeView directly,
971     // we use a trick: we encode the type as a reference to the
972     // real type.
973     if (Var.Deref) {
974       // When we're encoding the type as a reference to the original type,
975       // we need to remove a level of indirection from incoming locations.
976       // E.g. [RSP+8] with DW_OP_deref becomes [RSP+8],
977       // and [RCX+0] without DW_OP_deref becomes RCX.
978       if (!Location.Deref) {
979         if (Location.InMemory)
980           Location.InMemory = false;
981         else
982           Supported = false;
983       }
984     } else if (Location.Deref) {
985       // We've encountered a Deref range when we had not applied the
986       // reference encoding. Start over using reference encoding.
987       Var.Deref = true;
988       Var.DefRanges.clear();
989       calculateRanges(Var, Ranges);
990       return;
991     }
992 
993     // If we don't know how to handle this range, skip past it.
994     if (!Supported || Location.Register == 0 ||
995         (Location.Offset && !Location.InMemory))
996       continue;
997 
998     // Handle the two cases we can handle: indirect in memory and in register.
999     {
1000       LocalVarDefRange DR;
1001       DR.CVRegister = TRI->getCodeViewRegNum(Location.Register);
1002       DR.InMemory = Location.InMemory;
1003       DR.DataOffset = Location.Offset;
1004       if (Location.FragmentInfo) {
1005         DR.IsSubfield = true;
1006         DR.StructOffset = Location.FragmentInfo->OffsetInBits / 8;
1007       } else {
1008         DR.IsSubfield = false;
1009         DR.StructOffset = 0;
1010       }
1011 
1012       if (Var.DefRanges.empty() ||
1013           Var.DefRanges.back().isDifferentLocation(DR)) {
1014         Var.DefRanges.emplace_back(std::move(DR));
1015       }
1016     }
1017 
1018     // Compute the label range.
1019     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1020     const MCSymbol *End = getLabelAfterInsn(Range.second);
1021     if (!End) {
1022       // This range is valid until the next overlapping bitpiece. In the
1023       // common case, ranges will not be bitpieces, so they will overlap.
1024       auto J = std::next(I);
1025       const DIExpression *DIExpr = DVInst->getDebugExpression();
1026       while (J != E &&
1027              !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1028         ++J;
1029       if (J != E)
1030         End = getLabelBeforeInsn(J->first);
1031       else
1032         End = Asm->getFunctionEnd();
1033     }
1034 
1035     // If the last range end is our begin, just extend the last range.
1036     // Otherwise make a new range.
1037     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1038         Var.DefRanges.back().Ranges;
1039     if (!R.empty() && R.back().second == Begin)
1040       R.back().second = End;
1041     else
1042       R.emplace_back(Begin, End);
1043 
1044     // FIXME: Do more range combining.
1045   }
1046 }
1047 
1048 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1049   DenseSet<InlinedVariable> Processed;
1050   // Grab the variable info that was squirreled away in the MMI side-table.
1051   collectVariableInfoFromMFTable(Processed);
1052 
1053   for (const auto &I : DbgValues) {
1054     InlinedVariable IV = I.first;
1055     if (Processed.count(IV))
1056       continue;
1057     const DILocalVariable *DIVar = IV.first;
1058     const DILocation *InlinedAt = IV.second;
1059 
1060     // Instruction ranges, specifying where IV is accessible.
1061     const auto &Ranges = I.second;
1062 
1063     LexicalScope *Scope = nullptr;
1064     if (InlinedAt)
1065       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1066     else
1067       Scope = LScopes.findLexicalScope(DIVar->getScope());
1068     // If variable scope is not found then skip this variable.
1069     if (!Scope)
1070       continue;
1071 
1072     LocalVariable Var;
1073     Var.DIVar = DIVar;
1074 
1075     calculateRanges(Var, Ranges);
1076     recordLocalVariable(std::move(Var), InlinedAt);
1077   }
1078 }
1079 
1080 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1081   const Function *GV = MF->getFunction();
1082   assert(FnDebugInfo.count(GV) == false);
1083   CurFn = &FnDebugInfo[GV];
1084   CurFn->FuncId = NextFuncId++;
1085   CurFn->Begin = Asm->getFunctionBegin();
1086 
1087   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1088 
1089   // Find the end of the function prolog.  First known non-DBG_VALUE and
1090   // non-frame setup location marks the beginning of the function body.
1091   // FIXME: is there a simpler a way to do this? Can we just search
1092   // for the first instruction of the function, not the last of the prolog?
1093   DebugLoc PrologEndLoc;
1094   bool EmptyPrologue = true;
1095   for (const auto &MBB : *MF) {
1096     for (const auto &MI : MBB) {
1097       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1098           MI.getDebugLoc()) {
1099         PrologEndLoc = MI.getDebugLoc();
1100         break;
1101       } else if (!MI.isMetaInstruction()) {
1102         EmptyPrologue = false;
1103       }
1104     }
1105   }
1106 
1107   // Record beginning of function if we have a non-empty prologue.
1108   if (PrologEndLoc && !EmptyPrologue) {
1109     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1110     maybeRecordLocation(FnStartDL, MF);
1111   }
1112 }
1113 
1114 static bool shouldEmitUdt(const DIType *T) {
1115   while (true) {
1116     if (!T || T->isForwardDecl())
1117       return false;
1118 
1119     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1120     if (!DT)
1121       return true;
1122     T = DT->getBaseType().resolve();
1123   }
1124   return true;
1125 }
1126 
1127 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1128   // Don't record empty UDTs.
1129   if (Ty->getName().empty())
1130     return;
1131   if (!shouldEmitUdt(Ty))
1132     return;
1133 
1134   SmallVector<StringRef, 5> QualifiedNameComponents;
1135   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1136       Ty->getScope().resolve(), QualifiedNameComponents);
1137 
1138   std::string FullyQualifiedName =
1139       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1140 
1141   if (ClosestSubprogram == nullptr) {
1142     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1143   } else if (ClosestSubprogram == CurrentSubprogram) {
1144     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1145   }
1146 
1147   // TODO: What if the ClosestSubprogram is neither null or the current
1148   // subprogram?  Currently, the UDT just gets dropped on the floor.
1149   //
1150   // The current behavior is not desirable.  To get maximal fidelity, we would
1151   // need to perform all type translation before beginning emission of .debug$S
1152   // and then make LocalUDTs a member of FunctionInfo
1153 }
1154 
1155 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1156   // Generic dispatch for lowering an unknown type.
1157   switch (Ty->getTag()) {
1158   case dwarf::DW_TAG_array_type:
1159     return lowerTypeArray(cast<DICompositeType>(Ty));
1160   case dwarf::DW_TAG_typedef:
1161     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1162   case dwarf::DW_TAG_base_type:
1163     return lowerTypeBasic(cast<DIBasicType>(Ty));
1164   case dwarf::DW_TAG_pointer_type:
1165     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1166       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1167     LLVM_FALLTHROUGH;
1168   case dwarf::DW_TAG_reference_type:
1169   case dwarf::DW_TAG_rvalue_reference_type:
1170     return lowerTypePointer(cast<DIDerivedType>(Ty));
1171   case dwarf::DW_TAG_ptr_to_member_type:
1172     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1173   case dwarf::DW_TAG_const_type:
1174   case dwarf::DW_TAG_volatile_type:
1175   // TODO: add support for DW_TAG_atomic_type here
1176     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1177   case dwarf::DW_TAG_subroutine_type:
1178     if (ClassTy) {
1179       // The member function type of a member function pointer has no
1180       // ThisAdjustment.
1181       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1182                                      /*ThisAdjustment=*/0);
1183     }
1184     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1185   case dwarf::DW_TAG_enumeration_type:
1186     return lowerTypeEnum(cast<DICompositeType>(Ty));
1187   case dwarf::DW_TAG_class_type:
1188   case dwarf::DW_TAG_structure_type:
1189     return lowerTypeClass(cast<DICompositeType>(Ty));
1190   case dwarf::DW_TAG_union_type:
1191     return lowerTypeUnion(cast<DICompositeType>(Ty));
1192   default:
1193     // Use the null type index.
1194     return TypeIndex();
1195   }
1196 }
1197 
1198 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1199   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1200   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1201   StringRef TypeName = Ty->getName();
1202 
1203   addToUDTs(Ty);
1204 
1205   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1206       TypeName == "HRESULT")
1207     return TypeIndex(SimpleTypeKind::HResult);
1208   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1209       TypeName == "wchar_t")
1210     return TypeIndex(SimpleTypeKind::WideCharacter);
1211 
1212   return UnderlyingTypeIndex;
1213 }
1214 
1215 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1216   DITypeRef ElementTypeRef = Ty->getBaseType();
1217   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1218   // IndexType is size_t, which depends on the bitness of the target.
1219   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1220                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1221                             : TypeIndex(SimpleTypeKind::UInt32Long);
1222 
1223   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1224 
1225   // Add subranges to array type.
1226   DINodeArray Elements = Ty->getElements();
1227   for (int i = Elements.size() - 1; i >= 0; --i) {
1228     const DINode *Element = Elements[i];
1229     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1230 
1231     const DISubrange *Subrange = cast<DISubrange>(Element);
1232     assert(Subrange->getLowerBound() == 0 &&
1233            "codeview doesn't support subranges with lower bounds");
1234     int64_t Count = Subrange->getCount();
1235 
1236     // Variable Length Array (VLA) has Count equal to '-1'.
1237     // Replace with Count '1', assume it is the minimum VLA length.
1238     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1239     if (Count == -1)
1240       Count = 1;
1241 
1242     // Update the element size and element type index for subsequent subranges.
1243     ElementSize *= Count;
1244 
1245     // If this is the outermost array, use the size from the array. It will be
1246     // more accurate if we had a VLA or an incomplete element type size.
1247     uint64_t ArraySize =
1248         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1249 
1250     StringRef Name = (i == 0) ? Ty->getName() : "";
1251     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1252     ElementTypeIndex = TypeTable.writeKnownType(AR);
1253   }
1254 
1255   return ElementTypeIndex;
1256 }
1257 
1258 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1259   TypeIndex Index;
1260   dwarf::TypeKind Kind;
1261   uint32_t ByteSize;
1262 
1263   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1264   ByteSize = Ty->getSizeInBits() / 8;
1265 
1266   SimpleTypeKind STK = SimpleTypeKind::None;
1267   switch (Kind) {
1268   case dwarf::DW_ATE_address:
1269     // FIXME: Translate
1270     break;
1271   case dwarf::DW_ATE_boolean:
1272     switch (ByteSize) {
1273     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1274     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1275     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1276     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1277     case 16: STK = SimpleTypeKind::Boolean128; break;
1278     }
1279     break;
1280   case dwarf::DW_ATE_complex_float:
1281     switch (ByteSize) {
1282     case 2:  STK = SimpleTypeKind::Complex16;  break;
1283     case 4:  STK = SimpleTypeKind::Complex32;  break;
1284     case 8:  STK = SimpleTypeKind::Complex64;  break;
1285     case 10: STK = SimpleTypeKind::Complex80;  break;
1286     case 16: STK = SimpleTypeKind::Complex128; break;
1287     }
1288     break;
1289   case dwarf::DW_ATE_float:
1290     switch (ByteSize) {
1291     case 2:  STK = SimpleTypeKind::Float16;  break;
1292     case 4:  STK = SimpleTypeKind::Float32;  break;
1293     case 6:  STK = SimpleTypeKind::Float48;  break;
1294     case 8:  STK = SimpleTypeKind::Float64;  break;
1295     case 10: STK = SimpleTypeKind::Float80;  break;
1296     case 16: STK = SimpleTypeKind::Float128; break;
1297     }
1298     break;
1299   case dwarf::DW_ATE_signed:
1300     switch (ByteSize) {
1301     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1302     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1303     case 4:  STK = SimpleTypeKind::Int32;           break;
1304     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1305     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1306     }
1307     break;
1308   case dwarf::DW_ATE_unsigned:
1309     switch (ByteSize) {
1310     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1311     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1312     case 4:  STK = SimpleTypeKind::UInt32;            break;
1313     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1314     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1315     }
1316     break;
1317   case dwarf::DW_ATE_UTF:
1318     switch (ByteSize) {
1319     case 2: STK = SimpleTypeKind::Character16; break;
1320     case 4: STK = SimpleTypeKind::Character32; break;
1321     }
1322     break;
1323   case dwarf::DW_ATE_signed_char:
1324     if (ByteSize == 1)
1325       STK = SimpleTypeKind::SignedCharacter;
1326     break;
1327   case dwarf::DW_ATE_unsigned_char:
1328     if (ByteSize == 1)
1329       STK = SimpleTypeKind::UnsignedCharacter;
1330     break;
1331   default:
1332     break;
1333   }
1334 
1335   // Apply some fixups based on the source-level type name.
1336   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1337     STK = SimpleTypeKind::Int32Long;
1338   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1339     STK = SimpleTypeKind::UInt32Long;
1340   if (STK == SimpleTypeKind::UInt16Short &&
1341       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1342     STK = SimpleTypeKind::WideCharacter;
1343   if ((STK == SimpleTypeKind::SignedCharacter ||
1344        STK == SimpleTypeKind::UnsignedCharacter) &&
1345       Ty->getName() == "char")
1346     STK = SimpleTypeKind::NarrowCharacter;
1347 
1348   return TypeIndex(STK);
1349 }
1350 
1351 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1352   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1353 
1354   // Pointers to simple types can use SimpleTypeMode, rather than having a
1355   // dedicated pointer type record.
1356   if (PointeeTI.isSimple() &&
1357       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1358       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1359     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1360                               ? SimpleTypeMode::NearPointer64
1361                               : SimpleTypeMode::NearPointer32;
1362     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1363   }
1364 
1365   PointerKind PK =
1366       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1367   PointerMode PM = PointerMode::Pointer;
1368   switch (Ty->getTag()) {
1369   default: llvm_unreachable("not a pointer tag type");
1370   case dwarf::DW_TAG_pointer_type:
1371     PM = PointerMode::Pointer;
1372     break;
1373   case dwarf::DW_TAG_reference_type:
1374     PM = PointerMode::LValueReference;
1375     break;
1376   case dwarf::DW_TAG_rvalue_reference_type:
1377     PM = PointerMode::RValueReference;
1378     break;
1379   }
1380   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1381   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1382   // do.
1383   PointerOptions PO = PointerOptions::None;
1384   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1385   return TypeTable.writeKnownType(PR);
1386 }
1387 
1388 static PointerToMemberRepresentation
1389 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1390   // SizeInBytes being zero generally implies that the member pointer type was
1391   // incomplete, which can happen if it is part of a function prototype. In this
1392   // case, use the unknown model instead of the general model.
1393   if (IsPMF) {
1394     switch (Flags & DINode::FlagPtrToMemberRep) {
1395     case 0:
1396       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1397                               : PointerToMemberRepresentation::GeneralFunction;
1398     case DINode::FlagSingleInheritance:
1399       return PointerToMemberRepresentation::SingleInheritanceFunction;
1400     case DINode::FlagMultipleInheritance:
1401       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1402     case DINode::FlagVirtualInheritance:
1403       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1404     }
1405   } else {
1406     switch (Flags & DINode::FlagPtrToMemberRep) {
1407     case 0:
1408       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1409                               : PointerToMemberRepresentation::GeneralData;
1410     case DINode::FlagSingleInheritance:
1411       return PointerToMemberRepresentation::SingleInheritanceData;
1412     case DINode::FlagMultipleInheritance:
1413       return PointerToMemberRepresentation::MultipleInheritanceData;
1414     case DINode::FlagVirtualInheritance:
1415       return PointerToMemberRepresentation::VirtualInheritanceData;
1416     }
1417   }
1418   llvm_unreachable("invalid ptr to member representation");
1419 }
1420 
1421 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1422   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1423   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1424   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1425   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1426                                                  : PointerKind::Near32;
1427   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1428   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1429                          : PointerMode::PointerToDataMember;
1430   PointerOptions PO = PointerOptions::None; // FIXME
1431   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1432   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1433   MemberPointerInfo MPI(
1434       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1435   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1436   return TypeTable.writeKnownType(PR);
1437 }
1438 
1439 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1440 /// have a translation, use the NearC convention.
1441 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1442   switch (DwarfCC) {
1443   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1444   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1445   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1446   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1447   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1448   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1449   }
1450   return CallingConvention::NearC;
1451 }
1452 
1453 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1454   ModifierOptions Mods = ModifierOptions::None;
1455   bool IsModifier = true;
1456   const DIType *BaseTy = Ty;
1457   while (IsModifier && BaseTy) {
1458     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1459     switch (BaseTy->getTag()) {
1460     case dwarf::DW_TAG_const_type:
1461       Mods |= ModifierOptions::Const;
1462       break;
1463     case dwarf::DW_TAG_volatile_type:
1464       Mods |= ModifierOptions::Volatile;
1465       break;
1466     default:
1467       IsModifier = false;
1468       break;
1469     }
1470     if (IsModifier)
1471       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1472   }
1473   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1474   ModifierRecord MR(ModifiedTI, Mods);
1475   return TypeTable.writeKnownType(MR);
1476 }
1477 
1478 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1479   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1480   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1481     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1482 
1483   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1484   ArrayRef<TypeIndex> ArgTypeIndices = None;
1485   if (!ReturnAndArgTypeIndices.empty()) {
1486     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1487     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1488     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1489   }
1490 
1491   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1492   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1493 
1494   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1495 
1496   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1497                             ArgTypeIndices.size(), ArgListIndex);
1498   return TypeTable.writeKnownType(Procedure);
1499 }
1500 
1501 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1502                                                  const DIType *ClassTy,
1503                                                  int ThisAdjustment) {
1504   // Lower the containing class type.
1505   TypeIndex ClassType = getTypeIndex(ClassTy);
1506 
1507   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1508   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1509     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1510 
1511   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1512   ArrayRef<TypeIndex> ArgTypeIndices = None;
1513   if (!ReturnAndArgTypeIndices.empty()) {
1514     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1515     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1516     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1517   }
1518   TypeIndex ThisTypeIndex = TypeIndex::Void();
1519   if (!ArgTypeIndices.empty()) {
1520     ThisTypeIndex = ArgTypeIndices.front();
1521     ArgTypeIndices = ArgTypeIndices.drop_front();
1522   }
1523 
1524   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1525   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1526 
1527   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1528 
1529   // TODO: Need to use the correct values for:
1530   //       FunctionOptions
1531   //       ThisPointerAdjustment.
1532   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1533                            FunctionOptions::None, ArgTypeIndices.size(),
1534                            ArgListIndex, ThisAdjustment);
1535   TypeIndex TI = TypeTable.writeKnownType(MFR);
1536 
1537   return TI;
1538 }
1539 
1540 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1541   unsigned VSlotCount =
1542       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1543   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1544 
1545   VFTableShapeRecord VFTSR(Slots);
1546   return TypeTable.writeKnownType(VFTSR);
1547 }
1548 
1549 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1550   switch (Flags & DINode::FlagAccessibility) {
1551   case DINode::FlagPrivate:   return MemberAccess::Private;
1552   case DINode::FlagPublic:    return MemberAccess::Public;
1553   case DINode::FlagProtected: return MemberAccess::Protected;
1554   case 0:
1555     // If there was no explicit access control, provide the default for the tag.
1556     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1557                                                  : MemberAccess::Public;
1558   }
1559   llvm_unreachable("access flags are exclusive");
1560 }
1561 
1562 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1563   if (SP->isArtificial())
1564     return MethodOptions::CompilerGenerated;
1565 
1566   // FIXME: Handle other MethodOptions.
1567 
1568   return MethodOptions::None;
1569 }
1570 
1571 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1572                                            bool Introduced) {
1573   switch (SP->getVirtuality()) {
1574   case dwarf::DW_VIRTUALITY_none:
1575     break;
1576   case dwarf::DW_VIRTUALITY_virtual:
1577     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1578   case dwarf::DW_VIRTUALITY_pure_virtual:
1579     return Introduced ? MethodKind::PureIntroducingVirtual
1580                       : MethodKind::PureVirtual;
1581   default:
1582     llvm_unreachable("unhandled virtuality case");
1583   }
1584 
1585   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1586 
1587   return MethodKind::Vanilla;
1588 }
1589 
1590 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1591   switch (Ty->getTag()) {
1592   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1593   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1594   }
1595   llvm_unreachable("unexpected tag");
1596 }
1597 
1598 /// Return ClassOptions that should be present on both the forward declaration
1599 /// and the defintion of a tag type.
1600 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1601   ClassOptions CO = ClassOptions::None;
1602 
1603   // MSVC always sets this flag, even for local types. Clang doesn't always
1604   // appear to give every type a linkage name, which may be problematic for us.
1605   // FIXME: Investigate the consequences of not following them here.
1606   if (!Ty->getIdentifier().empty())
1607     CO |= ClassOptions::HasUniqueName;
1608 
1609   // Put the Nested flag on a type if it appears immediately inside a tag type.
1610   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1611   // here. That flag is only set on definitions, and not forward declarations.
1612   const DIScope *ImmediateScope = Ty->getScope().resolve();
1613   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1614     CO |= ClassOptions::Nested;
1615 
1616   // Put the Scoped flag on function-local types.
1617   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1618        Scope = Scope->getScope().resolve()) {
1619     if (isa<DISubprogram>(Scope)) {
1620       CO |= ClassOptions::Scoped;
1621       break;
1622     }
1623   }
1624 
1625   return CO;
1626 }
1627 
1628 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1629   ClassOptions CO = getCommonClassOptions(Ty);
1630   TypeIndex FTI;
1631   unsigned EnumeratorCount = 0;
1632 
1633   if (Ty->isForwardDecl()) {
1634     CO |= ClassOptions::ForwardReference;
1635   } else {
1636     FieldListRecordBuilder FLRB(TypeTable);
1637 
1638     FLRB.begin();
1639     for (const DINode *Element : Ty->getElements()) {
1640       // We assume that the frontend provides all members in source declaration
1641       // order, which is what MSVC does.
1642       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1643         EnumeratorRecord ER(MemberAccess::Public,
1644                             APSInt::getUnsigned(Enumerator->getValue()),
1645                             Enumerator->getName());
1646         FLRB.writeMemberType(ER);
1647         EnumeratorCount++;
1648       }
1649     }
1650     FTI = FLRB.end(true);
1651   }
1652 
1653   std::string FullName = getFullyQualifiedName(Ty);
1654 
1655   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1656                 getTypeIndex(Ty->getBaseType()));
1657   return TypeTable.writeKnownType(ER);
1658 }
1659 
1660 //===----------------------------------------------------------------------===//
1661 // ClassInfo
1662 //===----------------------------------------------------------------------===//
1663 
1664 struct llvm::ClassInfo {
1665   struct MemberInfo {
1666     const DIDerivedType *MemberTypeNode;
1667     uint64_t BaseOffset;
1668   };
1669   // [MemberInfo]
1670   using MemberList = std::vector<MemberInfo>;
1671 
1672   using MethodsList = TinyPtrVector<const DISubprogram *>;
1673   // MethodName -> MethodsList
1674   using MethodsMap = MapVector<MDString *, MethodsList>;
1675 
1676   /// Base classes.
1677   std::vector<const DIDerivedType *> Inheritance;
1678 
1679   /// Direct members.
1680   MemberList Members;
1681   // Direct overloaded methods gathered by name.
1682   MethodsMap Methods;
1683 
1684   TypeIndex VShapeTI;
1685 
1686   std::vector<const DIType *> NestedTypes;
1687 };
1688 
1689 void CodeViewDebug::clear() {
1690   assert(CurFn == nullptr);
1691   FileIdMap.clear();
1692   FnDebugInfo.clear();
1693   FileToFilepathMap.clear();
1694   LocalUDTs.clear();
1695   GlobalUDTs.clear();
1696   TypeIndices.clear();
1697   CompleteTypeIndices.clear();
1698 }
1699 
1700 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1701                                       const DIDerivedType *DDTy) {
1702   if (!DDTy->getName().empty()) {
1703     Info.Members.push_back({DDTy, 0});
1704     return;
1705   }
1706   // An unnamed member must represent a nested struct or union. Add all the
1707   // indirect fields to the current record.
1708   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1709   uint64_t Offset = DDTy->getOffsetInBits();
1710   const DIType *Ty = DDTy->getBaseType().resolve();
1711   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1712   ClassInfo NestedInfo = collectClassInfo(DCTy);
1713   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1714     Info.Members.push_back(
1715         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1716 }
1717 
1718 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1719   ClassInfo Info;
1720   // Add elements to structure type.
1721   DINodeArray Elements = Ty->getElements();
1722   for (auto *Element : Elements) {
1723     // We assume that the frontend provides all members in source declaration
1724     // order, which is what MSVC does.
1725     if (!Element)
1726       continue;
1727     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1728       Info.Methods[SP->getRawName()].push_back(SP);
1729     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1730       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1731         collectMemberInfo(Info, DDTy);
1732       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1733         Info.Inheritance.push_back(DDTy);
1734       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1735                  DDTy->getName() == "__vtbl_ptr_type") {
1736         Info.VShapeTI = getTypeIndex(DDTy);
1737       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1738         Info.NestedTypes.push_back(DDTy);
1739       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1740         // Ignore friend members. It appears that MSVC emitted info about
1741         // friends in the past, but modern versions do not.
1742       }
1743     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1744       Info.NestedTypes.push_back(Composite);
1745     }
1746     // Skip other unrecognized kinds of elements.
1747   }
1748   return Info;
1749 }
1750 
1751 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1752   // First, construct the forward decl.  Don't look into Ty to compute the
1753   // forward decl options, since it might not be available in all TUs.
1754   TypeRecordKind Kind = getRecordKind(Ty);
1755   ClassOptions CO =
1756       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1757   std::string FullName = getFullyQualifiedName(Ty);
1758   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1759                  FullName, Ty->getIdentifier());
1760   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1761   if (!Ty->isForwardDecl())
1762     DeferredCompleteTypes.push_back(Ty);
1763   return FwdDeclTI;
1764 }
1765 
1766 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1767   // Construct the field list and complete type record.
1768   TypeRecordKind Kind = getRecordKind(Ty);
1769   ClassOptions CO = getCommonClassOptions(Ty);
1770   TypeIndex FieldTI;
1771   TypeIndex VShapeTI;
1772   unsigned FieldCount;
1773   bool ContainsNestedClass;
1774   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1775       lowerRecordFieldList(Ty);
1776 
1777   if (ContainsNestedClass)
1778     CO |= ClassOptions::ContainsNestedClass;
1779 
1780   std::string FullName = getFullyQualifiedName(Ty);
1781 
1782   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1783 
1784   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1785                  SizeInBytes, FullName, Ty->getIdentifier());
1786   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1787 
1788   if (const auto *File = Ty->getFile()) {
1789     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1790     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1791     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1792     TypeTable.writeKnownType(USLR);
1793   }
1794 
1795   addToUDTs(Ty);
1796 
1797   return ClassTI;
1798 }
1799 
1800 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1801   ClassOptions CO =
1802       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1803   std::string FullName = getFullyQualifiedName(Ty);
1804   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1805   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1806   if (!Ty->isForwardDecl())
1807     DeferredCompleteTypes.push_back(Ty);
1808   return FwdDeclTI;
1809 }
1810 
1811 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1812   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1813   TypeIndex FieldTI;
1814   unsigned FieldCount;
1815   bool ContainsNestedClass;
1816   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1817       lowerRecordFieldList(Ty);
1818 
1819   if (ContainsNestedClass)
1820     CO |= ClassOptions::ContainsNestedClass;
1821 
1822   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1823   std::string FullName = getFullyQualifiedName(Ty);
1824 
1825   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1826                  Ty->getIdentifier());
1827   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1828 
1829   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1830   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1831   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1832   TypeTable.writeKnownType(USLR);
1833 
1834   addToUDTs(Ty);
1835 
1836   return UnionTI;
1837 }
1838 
1839 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1840 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1841   // Manually count members. MSVC appears to count everything that generates a
1842   // field list record. Each individual overload in a method overload group
1843   // contributes to this count, even though the overload group is a single field
1844   // list record.
1845   unsigned MemberCount = 0;
1846   ClassInfo Info = collectClassInfo(Ty);
1847   FieldListRecordBuilder FLBR(TypeTable);
1848   FLBR.begin();
1849 
1850   // Create base classes.
1851   for (const DIDerivedType *I : Info.Inheritance) {
1852     if (I->getFlags() & DINode::FlagVirtual) {
1853       // Virtual base.
1854       // FIXME: Emit VBPtrOffset when the frontend provides it.
1855       unsigned VBPtrOffset = 0;
1856       // FIXME: Despite the accessor name, the offset is really in bytes.
1857       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1858       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1859                             ? TypeRecordKind::IndirectVirtualBaseClass
1860                             : TypeRecordKind::VirtualBaseClass;
1861       VirtualBaseClassRecord VBCR(
1862           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1863           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1864           VBTableIndex);
1865 
1866       FLBR.writeMemberType(VBCR);
1867     } else {
1868       assert(I->getOffsetInBits() % 8 == 0 &&
1869              "bases must be on byte boundaries");
1870       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1871                           getTypeIndex(I->getBaseType()),
1872                           I->getOffsetInBits() / 8);
1873       FLBR.writeMemberType(BCR);
1874     }
1875   }
1876 
1877   // Create members.
1878   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1879     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1880     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1881     StringRef MemberName = Member->getName();
1882     MemberAccess Access =
1883         translateAccessFlags(Ty->getTag(), Member->getFlags());
1884 
1885     if (Member->isStaticMember()) {
1886       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1887       FLBR.writeMemberType(SDMR);
1888       MemberCount++;
1889       continue;
1890     }
1891 
1892     // Virtual function pointer member.
1893     if ((Member->getFlags() & DINode::FlagArtificial) &&
1894         Member->getName().startswith("_vptr$")) {
1895       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1896       FLBR.writeMemberType(VFPR);
1897       MemberCount++;
1898       continue;
1899     }
1900 
1901     // Data member.
1902     uint64_t MemberOffsetInBits =
1903         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1904     if (Member->isBitField()) {
1905       uint64_t StartBitOffset = MemberOffsetInBits;
1906       if (const auto *CI =
1907               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1908         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1909       }
1910       StartBitOffset -= MemberOffsetInBits;
1911       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1912                          StartBitOffset);
1913       MemberBaseType = TypeTable.writeKnownType(BFR);
1914     }
1915     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1916     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1917                          MemberName);
1918     FLBR.writeMemberType(DMR);
1919     MemberCount++;
1920   }
1921 
1922   // Create methods
1923   for (auto &MethodItr : Info.Methods) {
1924     StringRef Name = MethodItr.first->getString();
1925 
1926     std::vector<OneMethodRecord> Methods;
1927     for (const DISubprogram *SP : MethodItr.second) {
1928       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1929       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1930 
1931       unsigned VFTableOffset = -1;
1932       if (Introduced)
1933         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1934 
1935       Methods.push_back(OneMethodRecord(
1936           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1937           translateMethodKindFlags(SP, Introduced),
1938           translateMethodOptionFlags(SP), VFTableOffset, Name));
1939       MemberCount++;
1940     }
1941     assert(!Methods.empty() && "Empty methods map entry");
1942     if (Methods.size() == 1)
1943       FLBR.writeMemberType(Methods[0]);
1944     else {
1945       MethodOverloadListRecord MOLR(Methods);
1946       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1947       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1948       FLBR.writeMemberType(OMR);
1949     }
1950   }
1951 
1952   // Create nested classes.
1953   for (const DIType *Nested : Info.NestedTypes) {
1954     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1955     FLBR.writeMemberType(R);
1956     MemberCount++;
1957   }
1958 
1959   TypeIndex FieldTI = FLBR.end(true);
1960   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1961                          !Info.NestedTypes.empty());
1962 }
1963 
1964 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1965   if (!VBPType.getIndex()) {
1966     // Make a 'const int *' type.
1967     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1968     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1969 
1970     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1971                                                   : PointerKind::Near32;
1972     PointerMode PM = PointerMode::Pointer;
1973     PointerOptions PO = PointerOptions::None;
1974     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1975 
1976     VBPType = TypeTable.writeKnownType(PR);
1977   }
1978 
1979   return VBPType;
1980 }
1981 
1982 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1983   const DIType *Ty = TypeRef.resolve();
1984   const DIType *ClassTy = ClassTyRef.resolve();
1985 
1986   // The null DIType is the void type. Don't try to hash it.
1987   if (!Ty)
1988     return TypeIndex::Void();
1989 
1990   // Check if we've already translated this type. Don't try to do a
1991   // get-or-create style insertion that caches the hash lookup across the
1992   // lowerType call. It will update the TypeIndices map.
1993   auto I = TypeIndices.find({Ty, ClassTy});
1994   if (I != TypeIndices.end())
1995     return I->second;
1996 
1997   TypeLoweringScope S(*this);
1998   TypeIndex TI = lowerType(Ty, ClassTy);
1999   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2000 }
2001 
2002 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2003   DIType *Ty = TypeRef.resolve();
2004   PointerRecord PR(getTypeIndex(Ty),
2005                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2006                                                 : PointerKind::Near32,
2007                    PointerMode::LValueReference, PointerOptions::None,
2008                    Ty->getSizeInBits() / 8);
2009   return TypeTable.writeKnownType(PR);
2010 }
2011 
2012 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2013   const DIType *Ty = TypeRef.resolve();
2014 
2015   // The null DIType is the void type. Don't try to hash it.
2016   if (!Ty)
2017     return TypeIndex::Void();
2018 
2019   // If this is a non-record type, the complete type index is the same as the
2020   // normal type index. Just call getTypeIndex.
2021   switch (Ty->getTag()) {
2022   case dwarf::DW_TAG_class_type:
2023   case dwarf::DW_TAG_structure_type:
2024   case dwarf::DW_TAG_union_type:
2025     break;
2026   default:
2027     return getTypeIndex(Ty);
2028   }
2029 
2030   // Check if we've already translated the complete record type.  Lowering a
2031   // complete type should never trigger lowering another complete type, so we
2032   // can reuse the hash table lookup result.
2033   const auto *CTy = cast<DICompositeType>(Ty);
2034   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2035   if (!InsertResult.second)
2036     return InsertResult.first->second;
2037 
2038   TypeLoweringScope S(*this);
2039 
2040   // Make sure the forward declaration is emitted first. It's unclear if this
2041   // is necessary, but MSVC does it, and we should follow suit until we can show
2042   // otherwise.
2043   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2044 
2045   // Just use the forward decl if we don't have complete type info. This might
2046   // happen if the frontend is using modules and expects the complete definition
2047   // to be emitted elsewhere.
2048   if (CTy->isForwardDecl())
2049     return FwdDeclTI;
2050 
2051   TypeIndex TI;
2052   switch (CTy->getTag()) {
2053   case dwarf::DW_TAG_class_type:
2054   case dwarf::DW_TAG_structure_type:
2055     TI = lowerCompleteTypeClass(CTy);
2056     break;
2057   case dwarf::DW_TAG_union_type:
2058     TI = lowerCompleteTypeUnion(CTy);
2059     break;
2060   default:
2061     llvm_unreachable("not a record");
2062   }
2063 
2064   InsertResult.first->second = TI;
2065   return TI;
2066 }
2067 
2068 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2069 /// and do this until fixpoint, as each complete record type typically
2070 /// references
2071 /// many other record types.
2072 void CodeViewDebug::emitDeferredCompleteTypes() {
2073   SmallVector<const DICompositeType *, 4> TypesToEmit;
2074   while (!DeferredCompleteTypes.empty()) {
2075     std::swap(DeferredCompleteTypes, TypesToEmit);
2076     for (const DICompositeType *RecordTy : TypesToEmit)
2077       getCompleteTypeIndex(RecordTy);
2078     TypesToEmit.clear();
2079   }
2080 }
2081 
2082 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2083   // Get the sorted list of parameters and emit them first.
2084   SmallVector<const LocalVariable *, 6> Params;
2085   for (const LocalVariable &L : Locals)
2086     if (L.DIVar->isParameter())
2087       Params.push_back(&L);
2088   std::sort(Params.begin(), Params.end(),
2089             [](const LocalVariable *L, const LocalVariable *R) {
2090               return L->DIVar->getArg() < R->DIVar->getArg();
2091             });
2092   for (const LocalVariable *L : Params)
2093     emitLocalVariable(*L);
2094 
2095   // Next emit all non-parameters in the order that we found them.
2096   for (const LocalVariable &L : Locals)
2097     if (!L.DIVar->isParameter())
2098       emitLocalVariable(L);
2099 }
2100 
2101 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2102   // LocalSym record, see SymbolRecord.h for more info.
2103   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2104            *LocalEnd = MMI->getContext().createTempSymbol();
2105   OS.AddComment("Record length");
2106   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2107   OS.EmitLabel(LocalBegin);
2108 
2109   OS.AddComment("Record kind: S_LOCAL");
2110   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2111 
2112   LocalSymFlags Flags = LocalSymFlags::None;
2113   if (Var.DIVar->isParameter())
2114     Flags |= LocalSymFlags::IsParameter;
2115   if (Var.DefRanges.empty())
2116     Flags |= LocalSymFlags::IsOptimizedOut;
2117 
2118   OS.AddComment("TypeIndex");
2119   TypeIndex TI = Var.Deref ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2120                            : getCompleteTypeIndex(Var.DIVar->getType());
2121   OS.EmitIntValue(TI.getIndex(), 4);
2122   OS.AddComment("Flags");
2123   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2124   // Truncate the name so we won't overflow the record length field.
2125   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2126   OS.EmitLabel(LocalEnd);
2127 
2128   // Calculate the on disk prefix of the appropriate def range record. The
2129   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2130   // should be big enough to hold all forms without memory allocation.
2131   SmallString<20> BytePrefix;
2132   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2133     BytePrefix.clear();
2134     if (DefRange.InMemory) {
2135       uint16_t RegRelFlags = 0;
2136       if (DefRange.IsSubfield) {
2137         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2138                       (DefRange.StructOffset
2139                        << DefRangeRegisterRelSym::OffsetInParentShift);
2140       }
2141       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2142       Sym.Hdr.Register = DefRange.CVRegister;
2143       Sym.Hdr.Flags = RegRelFlags;
2144       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2145       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2146       BytePrefix +=
2147           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2148       BytePrefix +=
2149           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2150     } else {
2151       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2152       if (DefRange.IsSubfield) {
2153         // Unclear what matters here.
2154         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2155         Sym.Hdr.Register = DefRange.CVRegister;
2156         Sym.Hdr.MayHaveNoName = 0;
2157         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2158 
2159         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2160         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2161                                 sizeof(SymKind));
2162         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2163                                 sizeof(Sym.Hdr));
2164       } else {
2165         // Unclear what matters here.
2166         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2167         Sym.Hdr.Register = DefRange.CVRegister;
2168         Sym.Hdr.MayHaveNoName = 0;
2169         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2170         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2171                                 sizeof(SymKind));
2172         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2173                                 sizeof(Sym.Hdr));
2174       }
2175     }
2176     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2177   }
2178 }
2179 
2180 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2181   const Function *GV = MF->getFunction();
2182   assert(FnDebugInfo.count(GV));
2183   assert(CurFn == &FnDebugInfo[GV]);
2184 
2185   collectVariableInfo(GV->getSubprogram());
2186 
2187   // Don't emit anything if we don't have any line tables.
2188   if (!CurFn->HaveLineInfo) {
2189     FnDebugInfo.erase(GV);
2190     CurFn = nullptr;
2191     return;
2192   }
2193 
2194   CurFn->End = Asm->getFunctionEnd();
2195 
2196   CurFn = nullptr;
2197 }
2198 
2199 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2200   DebugHandlerBase::beginInstruction(MI);
2201 
2202   // Ignore DBG_VALUE locations and function prologue.
2203   if (!Asm || !CurFn || MI->isDebugValue() ||
2204       MI->getFlag(MachineInstr::FrameSetup))
2205     return;
2206 
2207   // If the first instruction of a new MBB has no location, find the first
2208   // instruction with a location and use that.
2209   DebugLoc DL = MI->getDebugLoc();
2210   if (!DL && MI->getParent() != PrevInstBB) {
2211     for (const auto &NextMI : *MI->getParent()) {
2212       if (NextMI.isDebugValue())
2213         continue;
2214       DL = NextMI.getDebugLoc();
2215       if (DL)
2216         break;
2217     }
2218   }
2219   PrevInstBB = MI->getParent();
2220 
2221   // If we still don't have a debug location, don't record a location.
2222   if (!DL)
2223     return;
2224 
2225   maybeRecordLocation(DL, Asm->MF);
2226 }
2227 
2228 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2229   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2230            *EndLabel = MMI->getContext().createTempSymbol();
2231   OS.EmitIntValue(unsigned(Kind), 4);
2232   OS.AddComment("Subsection size");
2233   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2234   OS.EmitLabel(BeginLabel);
2235   return EndLabel;
2236 }
2237 
2238 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2239   OS.EmitLabel(EndLabel);
2240   // Every subsection must be aligned to a 4-byte boundary.
2241   OS.EmitValueToAlignment(4);
2242 }
2243 
2244 void CodeViewDebug::emitDebugInfoForUDTs(
2245     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2246   for (const auto &UDT : UDTs) {
2247     const DIType *T = UDT.second;
2248     assert(shouldEmitUdt(T));
2249 
2250     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2251              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2252     OS.AddComment("Record length");
2253     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2254     OS.EmitLabel(UDTRecordBegin);
2255 
2256     OS.AddComment("Record kind: S_UDT");
2257     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2258 
2259     OS.AddComment("Type");
2260     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2261 
2262     emitNullTerminatedSymbolName(OS, UDT.first);
2263     OS.EmitLabel(UDTRecordEnd);
2264   }
2265 }
2266 
2267 void CodeViewDebug::emitDebugInfoForGlobals() {
2268   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2269       GlobalMap;
2270   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2271     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2272     GV.getDebugInfo(GVEs);
2273     for (const auto *GVE : GVEs)
2274       GlobalMap[GVE] = &GV;
2275   }
2276 
2277   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2278   for (const MDNode *Node : CUs->operands()) {
2279     const auto *CU = cast<DICompileUnit>(Node);
2280 
2281     // First, emit all globals that are not in a comdat in a single symbol
2282     // substream. MSVC doesn't like it if the substream is empty, so only open
2283     // it if we have at least one global to emit.
2284     switchToDebugSectionForSymbol(nullptr);
2285     MCSymbol *EndLabel = nullptr;
2286     for (const auto *GVE : CU->getGlobalVariables()) {
2287       if (const auto *GV = GlobalMap.lookup(GVE))
2288         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2289           if (!EndLabel) {
2290             OS.AddComment("Symbol subsection for globals");
2291             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2292           }
2293           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2294           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2295         }
2296     }
2297     if (EndLabel)
2298       endCVSubsection(EndLabel);
2299 
2300     // Second, emit each global that is in a comdat into its own .debug$S
2301     // section along with its own symbol substream.
2302     for (const auto *GVE : CU->getGlobalVariables()) {
2303       if (const auto *GV = GlobalMap.lookup(GVE)) {
2304         if (GV->hasComdat()) {
2305           MCSymbol *GVSym = Asm->getSymbol(GV);
2306           OS.AddComment("Symbol subsection for " +
2307                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2308           switchToDebugSectionForSymbol(GVSym);
2309           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2310           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2311           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2312           endCVSubsection(EndLabel);
2313         }
2314       }
2315     }
2316   }
2317 }
2318 
2319 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2320   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2321   for (const MDNode *Node : CUs->operands()) {
2322     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2323       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2324         getTypeIndex(RT);
2325         // FIXME: Add to global/local DTU list.
2326       }
2327     }
2328   }
2329 }
2330 
2331 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2332                                            const GlobalVariable *GV,
2333                                            MCSymbol *GVSym) {
2334   // DataSym record, see SymbolRecord.h for more info.
2335   // FIXME: Thread local data, etc
2336   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2337            *DataEnd = MMI->getContext().createTempSymbol();
2338   OS.AddComment("Record length");
2339   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2340   OS.EmitLabel(DataBegin);
2341   if (DIGV->isLocalToUnit()) {
2342     if (GV->isThreadLocal()) {
2343       OS.AddComment("Record kind: S_LTHREAD32");
2344       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2345     } else {
2346       OS.AddComment("Record kind: S_LDATA32");
2347       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2348     }
2349   } else {
2350     if (GV->isThreadLocal()) {
2351       OS.AddComment("Record kind: S_GTHREAD32");
2352       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2353     } else {
2354       OS.AddComment("Record kind: S_GDATA32");
2355       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2356     }
2357   }
2358   OS.AddComment("Type");
2359   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2360   OS.AddComment("DataOffset");
2361   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2362   OS.AddComment("Segment");
2363   OS.EmitCOFFSectionIndex(GVSym);
2364   OS.AddComment("Name");
2365   emitNullTerminatedSymbolName(OS, DIGV->getName());
2366   OS.EmitLabel(DataEnd);
2367 }
2368