1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 void CodeViewDebug::calculateRanges( 953 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 954 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 955 956 // calculate the definition ranges. 957 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 958 const InsnRange &Range = *I; 959 const MachineInstr *DVInst = Range.first; 960 assert(DVInst->isDebugValue() && "Invalid History entry"); 961 // FIXME: Find a way to represent constant variables, since they are 962 // relatively common. 963 DbgVariableLocation Location; 964 bool Supported = 965 DbgVariableLocation::extractFromMachineInstruction(Location, *DVInst); 966 // If not Supported, don't even look at Location because it's invalid. 967 if (!Supported) 968 continue; 969 970 // Because we cannot express DW_OP_deref in CodeView directly, 971 // we use a trick: we encode the type as a reference to the 972 // real type. 973 if (Var.Deref) { 974 // When we're encoding the type as a reference to the original type, 975 // we need to remove a level of indirection from incoming locations. 976 // E.g. [RSP+8] with DW_OP_deref becomes [RSP+8], 977 // and [RCX+0] without DW_OP_deref becomes RCX. 978 if (!Location.Deref) { 979 if (Location.InMemory) 980 Location.InMemory = false; 981 else 982 Supported = false; 983 } 984 } else if (Location.Deref) { 985 // We've encountered a Deref range when we had not applied the 986 // reference encoding. Start over using reference encoding. 987 Var.Deref = true; 988 Var.DefRanges.clear(); 989 calculateRanges(Var, Ranges); 990 return; 991 } 992 993 // If we don't know how to handle this range, skip past it. 994 if (!Supported || Location.Register == 0 || 995 (Location.Offset && !Location.InMemory)) 996 continue; 997 998 // Handle the two cases we can handle: indirect in memory and in register. 999 { 1000 LocalVarDefRange DR; 1001 DR.CVRegister = TRI->getCodeViewRegNum(Location.Register); 1002 DR.InMemory = Location.InMemory; 1003 DR.DataOffset = Location.Offset; 1004 if (Location.FragmentInfo) { 1005 DR.IsSubfield = true; 1006 DR.StructOffset = Location.FragmentInfo->OffsetInBits / 8; 1007 } else { 1008 DR.IsSubfield = false; 1009 DR.StructOffset = 0; 1010 } 1011 1012 if (Var.DefRanges.empty() || 1013 Var.DefRanges.back().isDifferentLocation(DR)) { 1014 Var.DefRanges.emplace_back(std::move(DR)); 1015 } 1016 } 1017 1018 // Compute the label range. 1019 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1020 const MCSymbol *End = getLabelAfterInsn(Range.second); 1021 if (!End) { 1022 // This range is valid until the next overlapping bitpiece. In the 1023 // common case, ranges will not be bitpieces, so they will overlap. 1024 auto J = std::next(I); 1025 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1026 while (J != E && 1027 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1028 ++J; 1029 if (J != E) 1030 End = getLabelBeforeInsn(J->first); 1031 else 1032 End = Asm->getFunctionEnd(); 1033 } 1034 1035 // If the last range end is our begin, just extend the last range. 1036 // Otherwise make a new range. 1037 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1038 Var.DefRanges.back().Ranges; 1039 if (!R.empty() && R.back().second == Begin) 1040 R.back().second = End; 1041 else 1042 R.emplace_back(Begin, End); 1043 1044 // FIXME: Do more range combining. 1045 } 1046 } 1047 1048 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1049 DenseSet<InlinedVariable> Processed; 1050 // Grab the variable info that was squirreled away in the MMI side-table. 1051 collectVariableInfoFromMFTable(Processed); 1052 1053 for (const auto &I : DbgValues) { 1054 InlinedVariable IV = I.first; 1055 if (Processed.count(IV)) 1056 continue; 1057 const DILocalVariable *DIVar = IV.first; 1058 const DILocation *InlinedAt = IV.second; 1059 1060 // Instruction ranges, specifying where IV is accessible. 1061 const auto &Ranges = I.second; 1062 1063 LexicalScope *Scope = nullptr; 1064 if (InlinedAt) 1065 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1066 else 1067 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1068 // If variable scope is not found then skip this variable. 1069 if (!Scope) 1070 continue; 1071 1072 LocalVariable Var; 1073 Var.DIVar = DIVar; 1074 1075 calculateRanges(Var, Ranges); 1076 recordLocalVariable(std::move(Var), InlinedAt); 1077 } 1078 } 1079 1080 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1081 const Function *GV = MF->getFunction(); 1082 assert(FnDebugInfo.count(GV) == false); 1083 CurFn = &FnDebugInfo[GV]; 1084 CurFn->FuncId = NextFuncId++; 1085 CurFn->Begin = Asm->getFunctionBegin(); 1086 1087 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1088 1089 // Find the end of the function prolog. First known non-DBG_VALUE and 1090 // non-frame setup location marks the beginning of the function body. 1091 // FIXME: is there a simpler a way to do this? Can we just search 1092 // for the first instruction of the function, not the last of the prolog? 1093 DebugLoc PrologEndLoc; 1094 bool EmptyPrologue = true; 1095 for (const auto &MBB : *MF) { 1096 for (const auto &MI : MBB) { 1097 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1098 MI.getDebugLoc()) { 1099 PrologEndLoc = MI.getDebugLoc(); 1100 break; 1101 } else if (!MI.isMetaInstruction()) { 1102 EmptyPrologue = false; 1103 } 1104 } 1105 } 1106 1107 // Record beginning of function if we have a non-empty prologue. 1108 if (PrologEndLoc && !EmptyPrologue) { 1109 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1110 maybeRecordLocation(FnStartDL, MF); 1111 } 1112 } 1113 1114 static bool shouldEmitUdt(const DIType *T) { 1115 while (true) { 1116 if (!T || T->isForwardDecl()) 1117 return false; 1118 1119 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1120 if (!DT) 1121 return true; 1122 T = DT->getBaseType().resolve(); 1123 } 1124 return true; 1125 } 1126 1127 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1128 // Don't record empty UDTs. 1129 if (Ty->getName().empty()) 1130 return; 1131 if (!shouldEmitUdt(Ty)) 1132 return; 1133 1134 SmallVector<StringRef, 5> QualifiedNameComponents; 1135 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1136 Ty->getScope().resolve(), QualifiedNameComponents); 1137 1138 std::string FullyQualifiedName = 1139 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1140 1141 if (ClosestSubprogram == nullptr) { 1142 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1143 } else if (ClosestSubprogram == CurrentSubprogram) { 1144 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1145 } 1146 1147 // TODO: What if the ClosestSubprogram is neither null or the current 1148 // subprogram? Currently, the UDT just gets dropped on the floor. 1149 // 1150 // The current behavior is not desirable. To get maximal fidelity, we would 1151 // need to perform all type translation before beginning emission of .debug$S 1152 // and then make LocalUDTs a member of FunctionInfo 1153 } 1154 1155 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1156 // Generic dispatch for lowering an unknown type. 1157 switch (Ty->getTag()) { 1158 case dwarf::DW_TAG_array_type: 1159 return lowerTypeArray(cast<DICompositeType>(Ty)); 1160 case dwarf::DW_TAG_typedef: 1161 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1162 case dwarf::DW_TAG_base_type: 1163 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1164 case dwarf::DW_TAG_pointer_type: 1165 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1166 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1167 LLVM_FALLTHROUGH; 1168 case dwarf::DW_TAG_reference_type: 1169 case dwarf::DW_TAG_rvalue_reference_type: 1170 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1171 case dwarf::DW_TAG_ptr_to_member_type: 1172 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1173 case dwarf::DW_TAG_const_type: 1174 case dwarf::DW_TAG_volatile_type: 1175 // TODO: add support for DW_TAG_atomic_type here 1176 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1177 case dwarf::DW_TAG_subroutine_type: 1178 if (ClassTy) { 1179 // The member function type of a member function pointer has no 1180 // ThisAdjustment. 1181 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1182 /*ThisAdjustment=*/0); 1183 } 1184 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1185 case dwarf::DW_TAG_enumeration_type: 1186 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1187 case dwarf::DW_TAG_class_type: 1188 case dwarf::DW_TAG_structure_type: 1189 return lowerTypeClass(cast<DICompositeType>(Ty)); 1190 case dwarf::DW_TAG_union_type: 1191 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1192 default: 1193 // Use the null type index. 1194 return TypeIndex(); 1195 } 1196 } 1197 1198 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1199 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1200 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1201 StringRef TypeName = Ty->getName(); 1202 1203 addToUDTs(Ty); 1204 1205 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1206 TypeName == "HRESULT") 1207 return TypeIndex(SimpleTypeKind::HResult); 1208 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1209 TypeName == "wchar_t") 1210 return TypeIndex(SimpleTypeKind::WideCharacter); 1211 1212 return UnderlyingTypeIndex; 1213 } 1214 1215 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1216 DITypeRef ElementTypeRef = Ty->getBaseType(); 1217 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1218 // IndexType is size_t, which depends on the bitness of the target. 1219 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1220 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1221 : TypeIndex(SimpleTypeKind::UInt32Long); 1222 1223 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1224 1225 // Add subranges to array type. 1226 DINodeArray Elements = Ty->getElements(); 1227 for (int i = Elements.size() - 1; i >= 0; --i) { 1228 const DINode *Element = Elements[i]; 1229 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1230 1231 const DISubrange *Subrange = cast<DISubrange>(Element); 1232 assert(Subrange->getLowerBound() == 0 && 1233 "codeview doesn't support subranges with lower bounds"); 1234 int64_t Count = Subrange->getCount(); 1235 1236 // Variable Length Array (VLA) has Count equal to '-1'. 1237 // Replace with Count '1', assume it is the minimum VLA length. 1238 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1239 if (Count == -1) 1240 Count = 1; 1241 1242 // Update the element size and element type index for subsequent subranges. 1243 ElementSize *= Count; 1244 1245 // If this is the outermost array, use the size from the array. It will be 1246 // more accurate if we had a VLA or an incomplete element type size. 1247 uint64_t ArraySize = 1248 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1249 1250 StringRef Name = (i == 0) ? Ty->getName() : ""; 1251 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1252 ElementTypeIndex = TypeTable.writeKnownType(AR); 1253 } 1254 1255 return ElementTypeIndex; 1256 } 1257 1258 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1259 TypeIndex Index; 1260 dwarf::TypeKind Kind; 1261 uint32_t ByteSize; 1262 1263 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1264 ByteSize = Ty->getSizeInBits() / 8; 1265 1266 SimpleTypeKind STK = SimpleTypeKind::None; 1267 switch (Kind) { 1268 case dwarf::DW_ATE_address: 1269 // FIXME: Translate 1270 break; 1271 case dwarf::DW_ATE_boolean: 1272 switch (ByteSize) { 1273 case 1: STK = SimpleTypeKind::Boolean8; break; 1274 case 2: STK = SimpleTypeKind::Boolean16; break; 1275 case 4: STK = SimpleTypeKind::Boolean32; break; 1276 case 8: STK = SimpleTypeKind::Boolean64; break; 1277 case 16: STK = SimpleTypeKind::Boolean128; break; 1278 } 1279 break; 1280 case dwarf::DW_ATE_complex_float: 1281 switch (ByteSize) { 1282 case 2: STK = SimpleTypeKind::Complex16; break; 1283 case 4: STK = SimpleTypeKind::Complex32; break; 1284 case 8: STK = SimpleTypeKind::Complex64; break; 1285 case 10: STK = SimpleTypeKind::Complex80; break; 1286 case 16: STK = SimpleTypeKind::Complex128; break; 1287 } 1288 break; 1289 case dwarf::DW_ATE_float: 1290 switch (ByteSize) { 1291 case 2: STK = SimpleTypeKind::Float16; break; 1292 case 4: STK = SimpleTypeKind::Float32; break; 1293 case 6: STK = SimpleTypeKind::Float48; break; 1294 case 8: STK = SimpleTypeKind::Float64; break; 1295 case 10: STK = SimpleTypeKind::Float80; break; 1296 case 16: STK = SimpleTypeKind::Float128; break; 1297 } 1298 break; 1299 case dwarf::DW_ATE_signed: 1300 switch (ByteSize) { 1301 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1302 case 2: STK = SimpleTypeKind::Int16Short; break; 1303 case 4: STK = SimpleTypeKind::Int32; break; 1304 case 8: STK = SimpleTypeKind::Int64Quad; break; 1305 case 16: STK = SimpleTypeKind::Int128Oct; break; 1306 } 1307 break; 1308 case dwarf::DW_ATE_unsigned: 1309 switch (ByteSize) { 1310 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1311 case 2: STK = SimpleTypeKind::UInt16Short; break; 1312 case 4: STK = SimpleTypeKind::UInt32; break; 1313 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1314 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1315 } 1316 break; 1317 case dwarf::DW_ATE_UTF: 1318 switch (ByteSize) { 1319 case 2: STK = SimpleTypeKind::Character16; break; 1320 case 4: STK = SimpleTypeKind::Character32; break; 1321 } 1322 break; 1323 case dwarf::DW_ATE_signed_char: 1324 if (ByteSize == 1) 1325 STK = SimpleTypeKind::SignedCharacter; 1326 break; 1327 case dwarf::DW_ATE_unsigned_char: 1328 if (ByteSize == 1) 1329 STK = SimpleTypeKind::UnsignedCharacter; 1330 break; 1331 default: 1332 break; 1333 } 1334 1335 // Apply some fixups based on the source-level type name. 1336 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1337 STK = SimpleTypeKind::Int32Long; 1338 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1339 STK = SimpleTypeKind::UInt32Long; 1340 if (STK == SimpleTypeKind::UInt16Short && 1341 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1342 STK = SimpleTypeKind::WideCharacter; 1343 if ((STK == SimpleTypeKind::SignedCharacter || 1344 STK == SimpleTypeKind::UnsignedCharacter) && 1345 Ty->getName() == "char") 1346 STK = SimpleTypeKind::NarrowCharacter; 1347 1348 return TypeIndex(STK); 1349 } 1350 1351 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1352 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1353 1354 // Pointers to simple types can use SimpleTypeMode, rather than having a 1355 // dedicated pointer type record. 1356 if (PointeeTI.isSimple() && 1357 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1358 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1359 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1360 ? SimpleTypeMode::NearPointer64 1361 : SimpleTypeMode::NearPointer32; 1362 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1363 } 1364 1365 PointerKind PK = 1366 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1367 PointerMode PM = PointerMode::Pointer; 1368 switch (Ty->getTag()) { 1369 default: llvm_unreachable("not a pointer tag type"); 1370 case dwarf::DW_TAG_pointer_type: 1371 PM = PointerMode::Pointer; 1372 break; 1373 case dwarf::DW_TAG_reference_type: 1374 PM = PointerMode::LValueReference; 1375 break; 1376 case dwarf::DW_TAG_rvalue_reference_type: 1377 PM = PointerMode::RValueReference; 1378 break; 1379 } 1380 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1381 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1382 // do. 1383 PointerOptions PO = PointerOptions::None; 1384 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1385 return TypeTable.writeKnownType(PR); 1386 } 1387 1388 static PointerToMemberRepresentation 1389 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1390 // SizeInBytes being zero generally implies that the member pointer type was 1391 // incomplete, which can happen if it is part of a function prototype. In this 1392 // case, use the unknown model instead of the general model. 1393 if (IsPMF) { 1394 switch (Flags & DINode::FlagPtrToMemberRep) { 1395 case 0: 1396 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1397 : PointerToMemberRepresentation::GeneralFunction; 1398 case DINode::FlagSingleInheritance: 1399 return PointerToMemberRepresentation::SingleInheritanceFunction; 1400 case DINode::FlagMultipleInheritance: 1401 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1402 case DINode::FlagVirtualInheritance: 1403 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1404 } 1405 } else { 1406 switch (Flags & DINode::FlagPtrToMemberRep) { 1407 case 0: 1408 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1409 : PointerToMemberRepresentation::GeneralData; 1410 case DINode::FlagSingleInheritance: 1411 return PointerToMemberRepresentation::SingleInheritanceData; 1412 case DINode::FlagMultipleInheritance: 1413 return PointerToMemberRepresentation::MultipleInheritanceData; 1414 case DINode::FlagVirtualInheritance: 1415 return PointerToMemberRepresentation::VirtualInheritanceData; 1416 } 1417 } 1418 llvm_unreachable("invalid ptr to member representation"); 1419 } 1420 1421 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1422 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1423 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1424 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1425 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1426 : PointerKind::Near32; 1427 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1428 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1429 : PointerMode::PointerToDataMember; 1430 PointerOptions PO = PointerOptions::None; // FIXME 1431 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1432 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1433 MemberPointerInfo MPI( 1434 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1435 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1436 return TypeTable.writeKnownType(PR); 1437 } 1438 1439 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1440 /// have a translation, use the NearC convention. 1441 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1442 switch (DwarfCC) { 1443 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1444 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1445 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1446 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1447 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1448 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1449 } 1450 return CallingConvention::NearC; 1451 } 1452 1453 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1454 ModifierOptions Mods = ModifierOptions::None; 1455 bool IsModifier = true; 1456 const DIType *BaseTy = Ty; 1457 while (IsModifier && BaseTy) { 1458 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1459 switch (BaseTy->getTag()) { 1460 case dwarf::DW_TAG_const_type: 1461 Mods |= ModifierOptions::Const; 1462 break; 1463 case dwarf::DW_TAG_volatile_type: 1464 Mods |= ModifierOptions::Volatile; 1465 break; 1466 default: 1467 IsModifier = false; 1468 break; 1469 } 1470 if (IsModifier) 1471 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1472 } 1473 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1474 ModifierRecord MR(ModifiedTI, Mods); 1475 return TypeTable.writeKnownType(MR); 1476 } 1477 1478 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1479 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1480 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1481 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1482 1483 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1484 ArrayRef<TypeIndex> ArgTypeIndices = None; 1485 if (!ReturnAndArgTypeIndices.empty()) { 1486 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1487 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1488 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1489 } 1490 1491 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1492 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1493 1494 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1495 1496 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1497 ArgTypeIndices.size(), ArgListIndex); 1498 return TypeTable.writeKnownType(Procedure); 1499 } 1500 1501 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1502 const DIType *ClassTy, 1503 int ThisAdjustment) { 1504 // Lower the containing class type. 1505 TypeIndex ClassType = getTypeIndex(ClassTy); 1506 1507 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1508 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1509 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1510 1511 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1512 ArrayRef<TypeIndex> ArgTypeIndices = None; 1513 if (!ReturnAndArgTypeIndices.empty()) { 1514 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1515 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1516 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1517 } 1518 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1519 if (!ArgTypeIndices.empty()) { 1520 ThisTypeIndex = ArgTypeIndices.front(); 1521 ArgTypeIndices = ArgTypeIndices.drop_front(); 1522 } 1523 1524 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1525 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1526 1527 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1528 1529 // TODO: Need to use the correct values for: 1530 // FunctionOptions 1531 // ThisPointerAdjustment. 1532 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1533 FunctionOptions::None, ArgTypeIndices.size(), 1534 ArgListIndex, ThisAdjustment); 1535 TypeIndex TI = TypeTable.writeKnownType(MFR); 1536 1537 return TI; 1538 } 1539 1540 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1541 unsigned VSlotCount = 1542 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1543 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1544 1545 VFTableShapeRecord VFTSR(Slots); 1546 return TypeTable.writeKnownType(VFTSR); 1547 } 1548 1549 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1550 switch (Flags & DINode::FlagAccessibility) { 1551 case DINode::FlagPrivate: return MemberAccess::Private; 1552 case DINode::FlagPublic: return MemberAccess::Public; 1553 case DINode::FlagProtected: return MemberAccess::Protected; 1554 case 0: 1555 // If there was no explicit access control, provide the default for the tag. 1556 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1557 : MemberAccess::Public; 1558 } 1559 llvm_unreachable("access flags are exclusive"); 1560 } 1561 1562 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1563 if (SP->isArtificial()) 1564 return MethodOptions::CompilerGenerated; 1565 1566 // FIXME: Handle other MethodOptions. 1567 1568 return MethodOptions::None; 1569 } 1570 1571 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1572 bool Introduced) { 1573 switch (SP->getVirtuality()) { 1574 case dwarf::DW_VIRTUALITY_none: 1575 break; 1576 case dwarf::DW_VIRTUALITY_virtual: 1577 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1578 case dwarf::DW_VIRTUALITY_pure_virtual: 1579 return Introduced ? MethodKind::PureIntroducingVirtual 1580 : MethodKind::PureVirtual; 1581 default: 1582 llvm_unreachable("unhandled virtuality case"); 1583 } 1584 1585 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1586 1587 return MethodKind::Vanilla; 1588 } 1589 1590 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1591 switch (Ty->getTag()) { 1592 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1593 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1594 } 1595 llvm_unreachable("unexpected tag"); 1596 } 1597 1598 /// Return ClassOptions that should be present on both the forward declaration 1599 /// and the defintion of a tag type. 1600 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1601 ClassOptions CO = ClassOptions::None; 1602 1603 // MSVC always sets this flag, even for local types. Clang doesn't always 1604 // appear to give every type a linkage name, which may be problematic for us. 1605 // FIXME: Investigate the consequences of not following them here. 1606 if (!Ty->getIdentifier().empty()) 1607 CO |= ClassOptions::HasUniqueName; 1608 1609 // Put the Nested flag on a type if it appears immediately inside a tag type. 1610 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1611 // here. That flag is only set on definitions, and not forward declarations. 1612 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1613 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1614 CO |= ClassOptions::Nested; 1615 1616 // Put the Scoped flag on function-local types. 1617 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1618 Scope = Scope->getScope().resolve()) { 1619 if (isa<DISubprogram>(Scope)) { 1620 CO |= ClassOptions::Scoped; 1621 break; 1622 } 1623 } 1624 1625 return CO; 1626 } 1627 1628 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1629 ClassOptions CO = getCommonClassOptions(Ty); 1630 TypeIndex FTI; 1631 unsigned EnumeratorCount = 0; 1632 1633 if (Ty->isForwardDecl()) { 1634 CO |= ClassOptions::ForwardReference; 1635 } else { 1636 FieldListRecordBuilder FLRB(TypeTable); 1637 1638 FLRB.begin(); 1639 for (const DINode *Element : Ty->getElements()) { 1640 // We assume that the frontend provides all members in source declaration 1641 // order, which is what MSVC does. 1642 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1643 EnumeratorRecord ER(MemberAccess::Public, 1644 APSInt::getUnsigned(Enumerator->getValue()), 1645 Enumerator->getName()); 1646 FLRB.writeMemberType(ER); 1647 EnumeratorCount++; 1648 } 1649 } 1650 FTI = FLRB.end(true); 1651 } 1652 1653 std::string FullName = getFullyQualifiedName(Ty); 1654 1655 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1656 getTypeIndex(Ty->getBaseType())); 1657 return TypeTable.writeKnownType(ER); 1658 } 1659 1660 //===----------------------------------------------------------------------===// 1661 // ClassInfo 1662 //===----------------------------------------------------------------------===// 1663 1664 struct llvm::ClassInfo { 1665 struct MemberInfo { 1666 const DIDerivedType *MemberTypeNode; 1667 uint64_t BaseOffset; 1668 }; 1669 // [MemberInfo] 1670 using MemberList = std::vector<MemberInfo>; 1671 1672 using MethodsList = TinyPtrVector<const DISubprogram *>; 1673 // MethodName -> MethodsList 1674 using MethodsMap = MapVector<MDString *, MethodsList>; 1675 1676 /// Base classes. 1677 std::vector<const DIDerivedType *> Inheritance; 1678 1679 /// Direct members. 1680 MemberList Members; 1681 // Direct overloaded methods gathered by name. 1682 MethodsMap Methods; 1683 1684 TypeIndex VShapeTI; 1685 1686 std::vector<const DIType *> NestedTypes; 1687 }; 1688 1689 void CodeViewDebug::clear() { 1690 assert(CurFn == nullptr); 1691 FileIdMap.clear(); 1692 FnDebugInfo.clear(); 1693 FileToFilepathMap.clear(); 1694 LocalUDTs.clear(); 1695 GlobalUDTs.clear(); 1696 TypeIndices.clear(); 1697 CompleteTypeIndices.clear(); 1698 } 1699 1700 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1701 const DIDerivedType *DDTy) { 1702 if (!DDTy->getName().empty()) { 1703 Info.Members.push_back({DDTy, 0}); 1704 return; 1705 } 1706 // An unnamed member must represent a nested struct or union. Add all the 1707 // indirect fields to the current record. 1708 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1709 uint64_t Offset = DDTy->getOffsetInBits(); 1710 const DIType *Ty = DDTy->getBaseType().resolve(); 1711 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1712 ClassInfo NestedInfo = collectClassInfo(DCTy); 1713 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1714 Info.Members.push_back( 1715 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1716 } 1717 1718 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1719 ClassInfo Info; 1720 // Add elements to structure type. 1721 DINodeArray Elements = Ty->getElements(); 1722 for (auto *Element : Elements) { 1723 // We assume that the frontend provides all members in source declaration 1724 // order, which is what MSVC does. 1725 if (!Element) 1726 continue; 1727 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1728 Info.Methods[SP->getRawName()].push_back(SP); 1729 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1730 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1731 collectMemberInfo(Info, DDTy); 1732 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1733 Info.Inheritance.push_back(DDTy); 1734 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1735 DDTy->getName() == "__vtbl_ptr_type") { 1736 Info.VShapeTI = getTypeIndex(DDTy); 1737 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1738 Info.NestedTypes.push_back(DDTy); 1739 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1740 // Ignore friend members. It appears that MSVC emitted info about 1741 // friends in the past, but modern versions do not. 1742 } 1743 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1744 Info.NestedTypes.push_back(Composite); 1745 } 1746 // Skip other unrecognized kinds of elements. 1747 } 1748 return Info; 1749 } 1750 1751 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1752 // First, construct the forward decl. Don't look into Ty to compute the 1753 // forward decl options, since it might not be available in all TUs. 1754 TypeRecordKind Kind = getRecordKind(Ty); 1755 ClassOptions CO = 1756 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1757 std::string FullName = getFullyQualifiedName(Ty); 1758 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1759 FullName, Ty->getIdentifier()); 1760 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1761 if (!Ty->isForwardDecl()) 1762 DeferredCompleteTypes.push_back(Ty); 1763 return FwdDeclTI; 1764 } 1765 1766 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1767 // Construct the field list and complete type record. 1768 TypeRecordKind Kind = getRecordKind(Ty); 1769 ClassOptions CO = getCommonClassOptions(Ty); 1770 TypeIndex FieldTI; 1771 TypeIndex VShapeTI; 1772 unsigned FieldCount; 1773 bool ContainsNestedClass; 1774 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1775 lowerRecordFieldList(Ty); 1776 1777 if (ContainsNestedClass) 1778 CO |= ClassOptions::ContainsNestedClass; 1779 1780 std::string FullName = getFullyQualifiedName(Ty); 1781 1782 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1783 1784 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1785 SizeInBytes, FullName, Ty->getIdentifier()); 1786 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1787 1788 if (const auto *File = Ty->getFile()) { 1789 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1790 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1791 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1792 TypeTable.writeKnownType(USLR); 1793 } 1794 1795 addToUDTs(Ty); 1796 1797 return ClassTI; 1798 } 1799 1800 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1801 ClassOptions CO = 1802 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1803 std::string FullName = getFullyQualifiedName(Ty); 1804 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1805 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1806 if (!Ty->isForwardDecl()) 1807 DeferredCompleteTypes.push_back(Ty); 1808 return FwdDeclTI; 1809 } 1810 1811 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1812 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1813 TypeIndex FieldTI; 1814 unsigned FieldCount; 1815 bool ContainsNestedClass; 1816 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1817 lowerRecordFieldList(Ty); 1818 1819 if (ContainsNestedClass) 1820 CO |= ClassOptions::ContainsNestedClass; 1821 1822 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1823 std::string FullName = getFullyQualifiedName(Ty); 1824 1825 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1826 Ty->getIdentifier()); 1827 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1828 1829 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1830 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1831 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1832 TypeTable.writeKnownType(USLR); 1833 1834 addToUDTs(Ty); 1835 1836 return UnionTI; 1837 } 1838 1839 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1840 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1841 // Manually count members. MSVC appears to count everything that generates a 1842 // field list record. Each individual overload in a method overload group 1843 // contributes to this count, even though the overload group is a single field 1844 // list record. 1845 unsigned MemberCount = 0; 1846 ClassInfo Info = collectClassInfo(Ty); 1847 FieldListRecordBuilder FLBR(TypeTable); 1848 FLBR.begin(); 1849 1850 // Create base classes. 1851 for (const DIDerivedType *I : Info.Inheritance) { 1852 if (I->getFlags() & DINode::FlagVirtual) { 1853 // Virtual base. 1854 // FIXME: Emit VBPtrOffset when the frontend provides it. 1855 unsigned VBPtrOffset = 0; 1856 // FIXME: Despite the accessor name, the offset is really in bytes. 1857 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1858 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1859 ? TypeRecordKind::IndirectVirtualBaseClass 1860 : TypeRecordKind::VirtualBaseClass; 1861 VirtualBaseClassRecord VBCR( 1862 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1863 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1864 VBTableIndex); 1865 1866 FLBR.writeMemberType(VBCR); 1867 } else { 1868 assert(I->getOffsetInBits() % 8 == 0 && 1869 "bases must be on byte boundaries"); 1870 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1871 getTypeIndex(I->getBaseType()), 1872 I->getOffsetInBits() / 8); 1873 FLBR.writeMemberType(BCR); 1874 } 1875 } 1876 1877 // Create members. 1878 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1879 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1880 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1881 StringRef MemberName = Member->getName(); 1882 MemberAccess Access = 1883 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1884 1885 if (Member->isStaticMember()) { 1886 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1887 FLBR.writeMemberType(SDMR); 1888 MemberCount++; 1889 continue; 1890 } 1891 1892 // Virtual function pointer member. 1893 if ((Member->getFlags() & DINode::FlagArtificial) && 1894 Member->getName().startswith("_vptr$")) { 1895 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1896 FLBR.writeMemberType(VFPR); 1897 MemberCount++; 1898 continue; 1899 } 1900 1901 // Data member. 1902 uint64_t MemberOffsetInBits = 1903 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1904 if (Member->isBitField()) { 1905 uint64_t StartBitOffset = MemberOffsetInBits; 1906 if (const auto *CI = 1907 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1908 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1909 } 1910 StartBitOffset -= MemberOffsetInBits; 1911 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1912 StartBitOffset); 1913 MemberBaseType = TypeTable.writeKnownType(BFR); 1914 } 1915 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1916 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1917 MemberName); 1918 FLBR.writeMemberType(DMR); 1919 MemberCount++; 1920 } 1921 1922 // Create methods 1923 for (auto &MethodItr : Info.Methods) { 1924 StringRef Name = MethodItr.first->getString(); 1925 1926 std::vector<OneMethodRecord> Methods; 1927 for (const DISubprogram *SP : MethodItr.second) { 1928 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1929 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1930 1931 unsigned VFTableOffset = -1; 1932 if (Introduced) 1933 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1934 1935 Methods.push_back(OneMethodRecord( 1936 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1937 translateMethodKindFlags(SP, Introduced), 1938 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1939 MemberCount++; 1940 } 1941 assert(!Methods.empty() && "Empty methods map entry"); 1942 if (Methods.size() == 1) 1943 FLBR.writeMemberType(Methods[0]); 1944 else { 1945 MethodOverloadListRecord MOLR(Methods); 1946 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1947 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1948 FLBR.writeMemberType(OMR); 1949 } 1950 } 1951 1952 // Create nested classes. 1953 for (const DIType *Nested : Info.NestedTypes) { 1954 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1955 FLBR.writeMemberType(R); 1956 MemberCount++; 1957 } 1958 1959 TypeIndex FieldTI = FLBR.end(true); 1960 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1961 !Info.NestedTypes.empty()); 1962 } 1963 1964 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1965 if (!VBPType.getIndex()) { 1966 // Make a 'const int *' type. 1967 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1968 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1969 1970 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1971 : PointerKind::Near32; 1972 PointerMode PM = PointerMode::Pointer; 1973 PointerOptions PO = PointerOptions::None; 1974 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1975 1976 VBPType = TypeTable.writeKnownType(PR); 1977 } 1978 1979 return VBPType; 1980 } 1981 1982 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1983 const DIType *Ty = TypeRef.resolve(); 1984 const DIType *ClassTy = ClassTyRef.resolve(); 1985 1986 // The null DIType is the void type. Don't try to hash it. 1987 if (!Ty) 1988 return TypeIndex::Void(); 1989 1990 // Check if we've already translated this type. Don't try to do a 1991 // get-or-create style insertion that caches the hash lookup across the 1992 // lowerType call. It will update the TypeIndices map. 1993 auto I = TypeIndices.find({Ty, ClassTy}); 1994 if (I != TypeIndices.end()) 1995 return I->second; 1996 1997 TypeLoweringScope S(*this); 1998 TypeIndex TI = lowerType(Ty, ClassTy); 1999 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2000 } 2001 2002 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2003 DIType *Ty = TypeRef.resolve(); 2004 PointerRecord PR(getTypeIndex(Ty), 2005 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2006 : PointerKind::Near32, 2007 PointerMode::LValueReference, PointerOptions::None, 2008 Ty->getSizeInBits() / 8); 2009 return TypeTable.writeKnownType(PR); 2010 } 2011 2012 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2013 const DIType *Ty = TypeRef.resolve(); 2014 2015 // The null DIType is the void type. Don't try to hash it. 2016 if (!Ty) 2017 return TypeIndex::Void(); 2018 2019 // If this is a non-record type, the complete type index is the same as the 2020 // normal type index. Just call getTypeIndex. 2021 switch (Ty->getTag()) { 2022 case dwarf::DW_TAG_class_type: 2023 case dwarf::DW_TAG_structure_type: 2024 case dwarf::DW_TAG_union_type: 2025 break; 2026 default: 2027 return getTypeIndex(Ty); 2028 } 2029 2030 // Check if we've already translated the complete record type. Lowering a 2031 // complete type should never trigger lowering another complete type, so we 2032 // can reuse the hash table lookup result. 2033 const auto *CTy = cast<DICompositeType>(Ty); 2034 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2035 if (!InsertResult.second) 2036 return InsertResult.first->second; 2037 2038 TypeLoweringScope S(*this); 2039 2040 // Make sure the forward declaration is emitted first. It's unclear if this 2041 // is necessary, but MSVC does it, and we should follow suit until we can show 2042 // otherwise. 2043 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2044 2045 // Just use the forward decl if we don't have complete type info. This might 2046 // happen if the frontend is using modules and expects the complete definition 2047 // to be emitted elsewhere. 2048 if (CTy->isForwardDecl()) 2049 return FwdDeclTI; 2050 2051 TypeIndex TI; 2052 switch (CTy->getTag()) { 2053 case dwarf::DW_TAG_class_type: 2054 case dwarf::DW_TAG_structure_type: 2055 TI = lowerCompleteTypeClass(CTy); 2056 break; 2057 case dwarf::DW_TAG_union_type: 2058 TI = lowerCompleteTypeUnion(CTy); 2059 break; 2060 default: 2061 llvm_unreachable("not a record"); 2062 } 2063 2064 InsertResult.first->second = TI; 2065 return TI; 2066 } 2067 2068 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2069 /// and do this until fixpoint, as each complete record type typically 2070 /// references 2071 /// many other record types. 2072 void CodeViewDebug::emitDeferredCompleteTypes() { 2073 SmallVector<const DICompositeType *, 4> TypesToEmit; 2074 while (!DeferredCompleteTypes.empty()) { 2075 std::swap(DeferredCompleteTypes, TypesToEmit); 2076 for (const DICompositeType *RecordTy : TypesToEmit) 2077 getCompleteTypeIndex(RecordTy); 2078 TypesToEmit.clear(); 2079 } 2080 } 2081 2082 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2083 // Get the sorted list of parameters and emit them first. 2084 SmallVector<const LocalVariable *, 6> Params; 2085 for (const LocalVariable &L : Locals) 2086 if (L.DIVar->isParameter()) 2087 Params.push_back(&L); 2088 std::sort(Params.begin(), Params.end(), 2089 [](const LocalVariable *L, const LocalVariable *R) { 2090 return L->DIVar->getArg() < R->DIVar->getArg(); 2091 }); 2092 for (const LocalVariable *L : Params) 2093 emitLocalVariable(*L); 2094 2095 // Next emit all non-parameters in the order that we found them. 2096 for (const LocalVariable &L : Locals) 2097 if (!L.DIVar->isParameter()) 2098 emitLocalVariable(L); 2099 } 2100 2101 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2102 // LocalSym record, see SymbolRecord.h for more info. 2103 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2104 *LocalEnd = MMI->getContext().createTempSymbol(); 2105 OS.AddComment("Record length"); 2106 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2107 OS.EmitLabel(LocalBegin); 2108 2109 OS.AddComment("Record kind: S_LOCAL"); 2110 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2111 2112 LocalSymFlags Flags = LocalSymFlags::None; 2113 if (Var.DIVar->isParameter()) 2114 Flags |= LocalSymFlags::IsParameter; 2115 if (Var.DefRanges.empty()) 2116 Flags |= LocalSymFlags::IsOptimizedOut; 2117 2118 OS.AddComment("TypeIndex"); 2119 TypeIndex TI = Var.Deref ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2120 : getCompleteTypeIndex(Var.DIVar->getType()); 2121 OS.EmitIntValue(TI.getIndex(), 4); 2122 OS.AddComment("Flags"); 2123 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2124 // Truncate the name so we won't overflow the record length field. 2125 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2126 OS.EmitLabel(LocalEnd); 2127 2128 // Calculate the on disk prefix of the appropriate def range record. The 2129 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2130 // should be big enough to hold all forms without memory allocation. 2131 SmallString<20> BytePrefix; 2132 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2133 BytePrefix.clear(); 2134 if (DefRange.InMemory) { 2135 uint16_t RegRelFlags = 0; 2136 if (DefRange.IsSubfield) { 2137 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2138 (DefRange.StructOffset 2139 << DefRangeRegisterRelSym::OffsetInParentShift); 2140 } 2141 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2142 Sym.Hdr.Register = DefRange.CVRegister; 2143 Sym.Hdr.Flags = RegRelFlags; 2144 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2145 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2146 BytePrefix += 2147 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2148 BytePrefix += 2149 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2150 } else { 2151 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2152 if (DefRange.IsSubfield) { 2153 // Unclear what matters here. 2154 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2155 Sym.Hdr.Register = DefRange.CVRegister; 2156 Sym.Hdr.MayHaveNoName = 0; 2157 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2158 2159 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2160 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2161 sizeof(SymKind)); 2162 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2163 sizeof(Sym.Hdr)); 2164 } else { 2165 // Unclear what matters here. 2166 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2167 Sym.Hdr.Register = DefRange.CVRegister; 2168 Sym.Hdr.MayHaveNoName = 0; 2169 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2170 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2171 sizeof(SymKind)); 2172 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2173 sizeof(Sym.Hdr)); 2174 } 2175 } 2176 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2177 } 2178 } 2179 2180 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2181 const Function *GV = MF->getFunction(); 2182 assert(FnDebugInfo.count(GV)); 2183 assert(CurFn == &FnDebugInfo[GV]); 2184 2185 collectVariableInfo(GV->getSubprogram()); 2186 2187 // Don't emit anything if we don't have any line tables. 2188 if (!CurFn->HaveLineInfo) { 2189 FnDebugInfo.erase(GV); 2190 CurFn = nullptr; 2191 return; 2192 } 2193 2194 CurFn->End = Asm->getFunctionEnd(); 2195 2196 CurFn = nullptr; 2197 } 2198 2199 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2200 DebugHandlerBase::beginInstruction(MI); 2201 2202 // Ignore DBG_VALUE locations and function prologue. 2203 if (!Asm || !CurFn || MI->isDebugValue() || 2204 MI->getFlag(MachineInstr::FrameSetup)) 2205 return; 2206 2207 // If the first instruction of a new MBB has no location, find the first 2208 // instruction with a location and use that. 2209 DebugLoc DL = MI->getDebugLoc(); 2210 if (!DL && MI->getParent() != PrevInstBB) { 2211 for (const auto &NextMI : *MI->getParent()) { 2212 if (NextMI.isDebugValue()) 2213 continue; 2214 DL = NextMI.getDebugLoc(); 2215 if (DL) 2216 break; 2217 } 2218 } 2219 PrevInstBB = MI->getParent(); 2220 2221 // If we still don't have a debug location, don't record a location. 2222 if (!DL) 2223 return; 2224 2225 maybeRecordLocation(DL, Asm->MF); 2226 } 2227 2228 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2229 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2230 *EndLabel = MMI->getContext().createTempSymbol(); 2231 OS.EmitIntValue(unsigned(Kind), 4); 2232 OS.AddComment("Subsection size"); 2233 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2234 OS.EmitLabel(BeginLabel); 2235 return EndLabel; 2236 } 2237 2238 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2239 OS.EmitLabel(EndLabel); 2240 // Every subsection must be aligned to a 4-byte boundary. 2241 OS.EmitValueToAlignment(4); 2242 } 2243 2244 void CodeViewDebug::emitDebugInfoForUDTs( 2245 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2246 for (const auto &UDT : UDTs) { 2247 const DIType *T = UDT.second; 2248 assert(shouldEmitUdt(T)); 2249 2250 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2251 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2252 OS.AddComment("Record length"); 2253 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2254 OS.EmitLabel(UDTRecordBegin); 2255 2256 OS.AddComment("Record kind: S_UDT"); 2257 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2258 2259 OS.AddComment("Type"); 2260 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2261 2262 emitNullTerminatedSymbolName(OS, UDT.first); 2263 OS.EmitLabel(UDTRecordEnd); 2264 } 2265 } 2266 2267 void CodeViewDebug::emitDebugInfoForGlobals() { 2268 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2269 GlobalMap; 2270 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2271 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2272 GV.getDebugInfo(GVEs); 2273 for (const auto *GVE : GVEs) 2274 GlobalMap[GVE] = &GV; 2275 } 2276 2277 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2278 for (const MDNode *Node : CUs->operands()) { 2279 const auto *CU = cast<DICompileUnit>(Node); 2280 2281 // First, emit all globals that are not in a comdat in a single symbol 2282 // substream. MSVC doesn't like it if the substream is empty, so only open 2283 // it if we have at least one global to emit. 2284 switchToDebugSectionForSymbol(nullptr); 2285 MCSymbol *EndLabel = nullptr; 2286 for (const auto *GVE : CU->getGlobalVariables()) { 2287 if (const auto *GV = GlobalMap.lookup(GVE)) 2288 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2289 if (!EndLabel) { 2290 OS.AddComment("Symbol subsection for globals"); 2291 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2292 } 2293 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2294 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2295 } 2296 } 2297 if (EndLabel) 2298 endCVSubsection(EndLabel); 2299 2300 // Second, emit each global that is in a comdat into its own .debug$S 2301 // section along with its own symbol substream. 2302 for (const auto *GVE : CU->getGlobalVariables()) { 2303 if (const auto *GV = GlobalMap.lookup(GVE)) { 2304 if (GV->hasComdat()) { 2305 MCSymbol *GVSym = Asm->getSymbol(GV); 2306 OS.AddComment("Symbol subsection for " + 2307 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2308 switchToDebugSectionForSymbol(GVSym); 2309 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2310 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2311 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2312 endCVSubsection(EndLabel); 2313 } 2314 } 2315 } 2316 } 2317 } 2318 2319 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2320 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2321 for (const MDNode *Node : CUs->operands()) { 2322 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2323 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2324 getTypeIndex(RT); 2325 // FIXME: Add to global/local DTU list. 2326 } 2327 } 2328 } 2329 } 2330 2331 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2332 const GlobalVariable *GV, 2333 MCSymbol *GVSym) { 2334 // DataSym record, see SymbolRecord.h for more info. 2335 // FIXME: Thread local data, etc 2336 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2337 *DataEnd = MMI->getContext().createTempSymbol(); 2338 OS.AddComment("Record length"); 2339 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2340 OS.EmitLabel(DataBegin); 2341 if (DIGV->isLocalToUnit()) { 2342 if (GV->isThreadLocal()) { 2343 OS.AddComment("Record kind: S_LTHREAD32"); 2344 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2345 } else { 2346 OS.AddComment("Record kind: S_LDATA32"); 2347 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2348 } 2349 } else { 2350 if (GV->isThreadLocal()) { 2351 OS.AddComment("Record kind: S_GTHREAD32"); 2352 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2353 } else { 2354 OS.AddComment("Record kind: S_GDATA32"); 2355 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2356 } 2357 } 2358 OS.AddComment("Type"); 2359 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2360 OS.AddComment("DataOffset"); 2361 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2362 OS.AddComment("Segment"); 2363 OS.EmitCOFFSectionIndex(GVSym); 2364 OS.AddComment("Name"); 2365 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2366 OS.EmitLabel(DataEnd); 2367 } 2368