1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 953 DenseSet<InlinedVariable> Processed; 954 // Grab the variable info that was squirreled away in the MMI side-table. 955 collectVariableInfoFromMFTable(Processed); 956 957 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 958 959 for (const auto &I : DbgValues) { 960 InlinedVariable IV = I.first; 961 if (Processed.count(IV)) 962 continue; 963 const DILocalVariable *DIVar = IV.first; 964 const DILocation *InlinedAt = IV.second; 965 966 // Instruction ranges, specifying where IV is accessible. 967 const auto &Ranges = I.second; 968 969 LexicalScope *Scope = nullptr; 970 if (InlinedAt) 971 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 972 else 973 Scope = LScopes.findLexicalScope(DIVar->getScope()); 974 // If variable scope is not found then skip this variable. 975 if (!Scope) 976 continue; 977 978 LocalVariable Var; 979 Var.DIVar = DIVar; 980 981 // Calculate the definition ranges. 982 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 983 const InsnRange &Range = *I; 984 const MachineInstr *DVInst = Range.first; 985 assert(DVInst->isDebugValue() && "Invalid History entry"); 986 const DIExpression *DIExpr = DVInst->getDebugExpression(); 987 bool InMemory = DVInst->getOperand(1).isImm(); 988 bool IsSubfield = false; 989 unsigned StructOffset = 0; 990 // Recognize a +Offset expression. 991 int Offset = 0; 992 DIExpressionCursor Ops(DIExpr); 993 auto Op = Ops.peek(); 994 if (Op && Op->getOp() == dwarf::DW_OP_plus_uconst) { 995 Offset = Op->getArg(0); 996 Ops.take(); 997 } 998 999 // Handle fragments. 1000 auto Fragment = Ops.getFragmentInfo(); 1001 if (Fragment) { 1002 IsSubfield = true; 1003 StructOffset = Fragment->OffsetInBits / 8; 1004 } 1005 // Ignore unrecognized exprs. 1006 if (Ops.peek() && Ops.peek()->getOp() != dwarf::DW_OP_LLVM_fragment) 1007 continue; 1008 if (!InMemory && Offset) 1009 continue; 1010 1011 // Bail if operand 0 is not a valid register. This means the variable is a 1012 // simple constant, or is described by a complex expression. 1013 // FIXME: Find a way to represent constant variables, since they are 1014 // relatively common. 1015 unsigned Reg = 1016 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 1017 if (Reg == 0) 1018 continue; 1019 1020 // Handle the two cases we can handle: indirect in memory and in register. 1021 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 1022 { 1023 LocalVarDefRange DR; 1024 DR.CVRegister = CVReg; 1025 DR.InMemory = InMemory; 1026 DR.DataOffset = Offset; 1027 DR.IsSubfield = IsSubfield; 1028 DR.StructOffset = StructOffset; 1029 1030 if (Var.DefRanges.empty() || 1031 Var.DefRanges.back().isDifferentLocation(DR)) { 1032 Var.DefRanges.emplace_back(std::move(DR)); 1033 } 1034 } 1035 1036 // Compute the label range. 1037 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1038 const MCSymbol *End = getLabelAfterInsn(Range.second); 1039 if (!End) { 1040 // This range is valid until the next overlapping bitpiece. In the 1041 // common case, ranges will not be bitpieces, so they will overlap. 1042 auto J = std::next(I); 1043 while (J != E && 1044 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1045 ++J; 1046 if (J != E) 1047 End = getLabelBeforeInsn(J->first); 1048 else 1049 End = Asm->getFunctionEnd(); 1050 } 1051 1052 // If the last range end is our begin, just extend the last range. 1053 // Otherwise make a new range. 1054 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1055 Var.DefRanges.back().Ranges; 1056 if (!Ranges.empty() && Ranges.back().second == Begin) 1057 Ranges.back().second = End; 1058 else 1059 Ranges.emplace_back(Begin, End); 1060 1061 // FIXME: Do more range combining. 1062 } 1063 1064 recordLocalVariable(std::move(Var), InlinedAt); 1065 } 1066 } 1067 1068 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1069 const Function *GV = MF->getFunction(); 1070 assert(FnDebugInfo.count(GV) == false); 1071 CurFn = &FnDebugInfo[GV]; 1072 CurFn->FuncId = NextFuncId++; 1073 CurFn->Begin = Asm->getFunctionBegin(); 1074 1075 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1076 1077 // Find the end of the function prolog. First known non-DBG_VALUE and 1078 // non-frame setup location marks the beginning of the function body. 1079 // FIXME: is there a simpler a way to do this? Can we just search 1080 // for the first instruction of the function, not the last of the prolog? 1081 DebugLoc PrologEndLoc; 1082 bool EmptyPrologue = true; 1083 for (const auto &MBB : *MF) { 1084 for (const auto &MI : MBB) { 1085 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1086 MI.getDebugLoc()) { 1087 PrologEndLoc = MI.getDebugLoc(); 1088 break; 1089 } else if (!MI.isMetaInstruction()) { 1090 EmptyPrologue = false; 1091 } 1092 } 1093 } 1094 1095 // Record beginning of function if we have a non-empty prologue. 1096 if (PrologEndLoc && !EmptyPrologue) { 1097 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1098 maybeRecordLocation(FnStartDL, MF); 1099 } 1100 } 1101 1102 static bool shouldEmitUdt(const DIType *T) { 1103 while (true) { 1104 if (!T || T->isForwardDecl()) 1105 return false; 1106 1107 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1108 if (!DT) 1109 return true; 1110 T = DT->getBaseType().resolve(); 1111 } 1112 return true; 1113 } 1114 1115 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1116 // Don't record empty UDTs. 1117 if (Ty->getName().empty()) 1118 return; 1119 if (!shouldEmitUdt(Ty)) 1120 return; 1121 1122 SmallVector<StringRef, 5> QualifiedNameComponents; 1123 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1124 Ty->getScope().resolve(), QualifiedNameComponents); 1125 1126 std::string FullyQualifiedName = 1127 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1128 1129 if (ClosestSubprogram == nullptr) { 1130 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1131 } else if (ClosestSubprogram == CurrentSubprogram) { 1132 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1133 } 1134 1135 // TODO: What if the ClosestSubprogram is neither null or the current 1136 // subprogram? Currently, the UDT just gets dropped on the floor. 1137 // 1138 // The current behavior is not desirable. To get maximal fidelity, we would 1139 // need to perform all type translation before beginning emission of .debug$S 1140 // and then make LocalUDTs a member of FunctionInfo 1141 } 1142 1143 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1144 // Generic dispatch for lowering an unknown type. 1145 switch (Ty->getTag()) { 1146 case dwarf::DW_TAG_array_type: 1147 return lowerTypeArray(cast<DICompositeType>(Ty)); 1148 case dwarf::DW_TAG_typedef: 1149 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1150 case dwarf::DW_TAG_base_type: 1151 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1152 case dwarf::DW_TAG_pointer_type: 1153 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1154 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1155 LLVM_FALLTHROUGH; 1156 case dwarf::DW_TAG_reference_type: 1157 case dwarf::DW_TAG_rvalue_reference_type: 1158 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1159 case dwarf::DW_TAG_ptr_to_member_type: 1160 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1161 case dwarf::DW_TAG_const_type: 1162 case dwarf::DW_TAG_volatile_type: 1163 // TODO: add support for DW_TAG_atomic_type here 1164 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1165 case dwarf::DW_TAG_subroutine_type: 1166 if (ClassTy) { 1167 // The member function type of a member function pointer has no 1168 // ThisAdjustment. 1169 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1170 /*ThisAdjustment=*/0); 1171 } 1172 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1173 case dwarf::DW_TAG_enumeration_type: 1174 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1175 case dwarf::DW_TAG_class_type: 1176 case dwarf::DW_TAG_structure_type: 1177 return lowerTypeClass(cast<DICompositeType>(Ty)); 1178 case dwarf::DW_TAG_union_type: 1179 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1180 default: 1181 // Use the null type index. 1182 return TypeIndex(); 1183 } 1184 } 1185 1186 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1187 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1188 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1189 StringRef TypeName = Ty->getName(); 1190 1191 addToUDTs(Ty); 1192 1193 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1194 TypeName == "HRESULT") 1195 return TypeIndex(SimpleTypeKind::HResult); 1196 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1197 TypeName == "wchar_t") 1198 return TypeIndex(SimpleTypeKind::WideCharacter); 1199 1200 return UnderlyingTypeIndex; 1201 } 1202 1203 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1204 DITypeRef ElementTypeRef = Ty->getBaseType(); 1205 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1206 // IndexType is size_t, which depends on the bitness of the target. 1207 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1208 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1209 : TypeIndex(SimpleTypeKind::UInt32Long); 1210 1211 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1212 1213 // Add subranges to array type. 1214 DINodeArray Elements = Ty->getElements(); 1215 for (int i = Elements.size() - 1; i >= 0; --i) { 1216 const DINode *Element = Elements[i]; 1217 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1218 1219 const DISubrange *Subrange = cast<DISubrange>(Element); 1220 assert(Subrange->getLowerBound() == 0 && 1221 "codeview doesn't support subranges with lower bounds"); 1222 int64_t Count = Subrange->getCount(); 1223 1224 // Variable Length Array (VLA) has Count equal to '-1'. 1225 // Replace with Count '1', assume it is the minimum VLA length. 1226 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1227 if (Count == -1) 1228 Count = 1; 1229 1230 // Update the element size and element type index for subsequent subranges. 1231 ElementSize *= Count; 1232 1233 // If this is the outermost array, use the size from the array. It will be 1234 // more accurate if we had a VLA or an incomplete element type size. 1235 uint64_t ArraySize = 1236 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1237 1238 StringRef Name = (i == 0) ? Ty->getName() : ""; 1239 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1240 ElementTypeIndex = TypeTable.writeKnownType(AR); 1241 } 1242 1243 return ElementTypeIndex; 1244 } 1245 1246 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1247 TypeIndex Index; 1248 dwarf::TypeKind Kind; 1249 uint32_t ByteSize; 1250 1251 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1252 ByteSize = Ty->getSizeInBits() / 8; 1253 1254 SimpleTypeKind STK = SimpleTypeKind::None; 1255 switch (Kind) { 1256 case dwarf::DW_ATE_address: 1257 // FIXME: Translate 1258 break; 1259 case dwarf::DW_ATE_boolean: 1260 switch (ByteSize) { 1261 case 1: STK = SimpleTypeKind::Boolean8; break; 1262 case 2: STK = SimpleTypeKind::Boolean16; break; 1263 case 4: STK = SimpleTypeKind::Boolean32; break; 1264 case 8: STK = SimpleTypeKind::Boolean64; break; 1265 case 16: STK = SimpleTypeKind::Boolean128; break; 1266 } 1267 break; 1268 case dwarf::DW_ATE_complex_float: 1269 switch (ByteSize) { 1270 case 2: STK = SimpleTypeKind::Complex16; break; 1271 case 4: STK = SimpleTypeKind::Complex32; break; 1272 case 8: STK = SimpleTypeKind::Complex64; break; 1273 case 10: STK = SimpleTypeKind::Complex80; break; 1274 case 16: STK = SimpleTypeKind::Complex128; break; 1275 } 1276 break; 1277 case dwarf::DW_ATE_float: 1278 switch (ByteSize) { 1279 case 2: STK = SimpleTypeKind::Float16; break; 1280 case 4: STK = SimpleTypeKind::Float32; break; 1281 case 6: STK = SimpleTypeKind::Float48; break; 1282 case 8: STK = SimpleTypeKind::Float64; break; 1283 case 10: STK = SimpleTypeKind::Float80; break; 1284 case 16: STK = SimpleTypeKind::Float128; break; 1285 } 1286 break; 1287 case dwarf::DW_ATE_signed: 1288 switch (ByteSize) { 1289 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1290 case 2: STK = SimpleTypeKind::Int16Short; break; 1291 case 4: STK = SimpleTypeKind::Int32; break; 1292 case 8: STK = SimpleTypeKind::Int64Quad; break; 1293 case 16: STK = SimpleTypeKind::Int128Oct; break; 1294 } 1295 break; 1296 case dwarf::DW_ATE_unsigned: 1297 switch (ByteSize) { 1298 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1299 case 2: STK = SimpleTypeKind::UInt16Short; break; 1300 case 4: STK = SimpleTypeKind::UInt32; break; 1301 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1302 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1303 } 1304 break; 1305 case dwarf::DW_ATE_UTF: 1306 switch (ByteSize) { 1307 case 2: STK = SimpleTypeKind::Character16; break; 1308 case 4: STK = SimpleTypeKind::Character32; break; 1309 } 1310 break; 1311 case dwarf::DW_ATE_signed_char: 1312 if (ByteSize == 1) 1313 STK = SimpleTypeKind::SignedCharacter; 1314 break; 1315 case dwarf::DW_ATE_unsigned_char: 1316 if (ByteSize == 1) 1317 STK = SimpleTypeKind::UnsignedCharacter; 1318 break; 1319 default: 1320 break; 1321 } 1322 1323 // Apply some fixups based on the source-level type name. 1324 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1325 STK = SimpleTypeKind::Int32Long; 1326 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1327 STK = SimpleTypeKind::UInt32Long; 1328 if (STK == SimpleTypeKind::UInt16Short && 1329 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1330 STK = SimpleTypeKind::WideCharacter; 1331 if ((STK == SimpleTypeKind::SignedCharacter || 1332 STK == SimpleTypeKind::UnsignedCharacter) && 1333 Ty->getName() == "char") 1334 STK = SimpleTypeKind::NarrowCharacter; 1335 1336 return TypeIndex(STK); 1337 } 1338 1339 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1340 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1341 1342 // Pointers to simple types can use SimpleTypeMode, rather than having a 1343 // dedicated pointer type record. 1344 if (PointeeTI.isSimple() && 1345 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1346 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1347 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1348 ? SimpleTypeMode::NearPointer64 1349 : SimpleTypeMode::NearPointer32; 1350 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1351 } 1352 1353 PointerKind PK = 1354 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1355 PointerMode PM = PointerMode::Pointer; 1356 switch (Ty->getTag()) { 1357 default: llvm_unreachable("not a pointer tag type"); 1358 case dwarf::DW_TAG_pointer_type: 1359 PM = PointerMode::Pointer; 1360 break; 1361 case dwarf::DW_TAG_reference_type: 1362 PM = PointerMode::LValueReference; 1363 break; 1364 case dwarf::DW_TAG_rvalue_reference_type: 1365 PM = PointerMode::RValueReference; 1366 break; 1367 } 1368 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1369 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1370 // do. 1371 PointerOptions PO = PointerOptions::None; 1372 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1373 return TypeTable.writeKnownType(PR); 1374 } 1375 1376 static PointerToMemberRepresentation 1377 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1378 // SizeInBytes being zero generally implies that the member pointer type was 1379 // incomplete, which can happen if it is part of a function prototype. In this 1380 // case, use the unknown model instead of the general model. 1381 if (IsPMF) { 1382 switch (Flags & DINode::FlagPtrToMemberRep) { 1383 case 0: 1384 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1385 : PointerToMemberRepresentation::GeneralFunction; 1386 case DINode::FlagSingleInheritance: 1387 return PointerToMemberRepresentation::SingleInheritanceFunction; 1388 case DINode::FlagMultipleInheritance: 1389 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1390 case DINode::FlagVirtualInheritance: 1391 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1392 } 1393 } else { 1394 switch (Flags & DINode::FlagPtrToMemberRep) { 1395 case 0: 1396 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1397 : PointerToMemberRepresentation::GeneralData; 1398 case DINode::FlagSingleInheritance: 1399 return PointerToMemberRepresentation::SingleInheritanceData; 1400 case DINode::FlagMultipleInheritance: 1401 return PointerToMemberRepresentation::MultipleInheritanceData; 1402 case DINode::FlagVirtualInheritance: 1403 return PointerToMemberRepresentation::VirtualInheritanceData; 1404 } 1405 } 1406 llvm_unreachable("invalid ptr to member representation"); 1407 } 1408 1409 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1410 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1411 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1412 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1413 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1414 : PointerKind::Near32; 1415 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1416 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1417 : PointerMode::PointerToDataMember; 1418 PointerOptions PO = PointerOptions::None; // FIXME 1419 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1420 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1421 MemberPointerInfo MPI( 1422 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1423 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1424 return TypeTable.writeKnownType(PR); 1425 } 1426 1427 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1428 /// have a translation, use the NearC convention. 1429 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1430 switch (DwarfCC) { 1431 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1432 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1433 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1434 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1435 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1436 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1437 } 1438 return CallingConvention::NearC; 1439 } 1440 1441 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1442 ModifierOptions Mods = ModifierOptions::None; 1443 bool IsModifier = true; 1444 const DIType *BaseTy = Ty; 1445 while (IsModifier && BaseTy) { 1446 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1447 switch (BaseTy->getTag()) { 1448 case dwarf::DW_TAG_const_type: 1449 Mods |= ModifierOptions::Const; 1450 break; 1451 case dwarf::DW_TAG_volatile_type: 1452 Mods |= ModifierOptions::Volatile; 1453 break; 1454 default: 1455 IsModifier = false; 1456 break; 1457 } 1458 if (IsModifier) 1459 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1460 } 1461 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1462 ModifierRecord MR(ModifiedTI, Mods); 1463 return TypeTable.writeKnownType(MR); 1464 } 1465 1466 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1467 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1468 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1469 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1470 1471 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1472 ArrayRef<TypeIndex> ArgTypeIndices = None; 1473 if (!ReturnAndArgTypeIndices.empty()) { 1474 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1475 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1476 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1477 } 1478 1479 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1480 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1481 1482 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1483 1484 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1485 ArgTypeIndices.size(), ArgListIndex); 1486 return TypeTable.writeKnownType(Procedure); 1487 } 1488 1489 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1490 const DIType *ClassTy, 1491 int ThisAdjustment) { 1492 // Lower the containing class type. 1493 TypeIndex ClassType = getTypeIndex(ClassTy); 1494 1495 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1496 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1497 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1498 1499 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1500 ArrayRef<TypeIndex> ArgTypeIndices = None; 1501 if (!ReturnAndArgTypeIndices.empty()) { 1502 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1503 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1504 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1505 } 1506 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1507 if (!ArgTypeIndices.empty()) { 1508 ThisTypeIndex = ArgTypeIndices.front(); 1509 ArgTypeIndices = ArgTypeIndices.drop_front(); 1510 } 1511 1512 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1513 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1514 1515 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1516 1517 // TODO: Need to use the correct values for: 1518 // FunctionOptions 1519 // ThisPointerAdjustment. 1520 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1521 FunctionOptions::None, ArgTypeIndices.size(), 1522 ArgListIndex, ThisAdjustment); 1523 TypeIndex TI = TypeTable.writeKnownType(MFR); 1524 1525 return TI; 1526 } 1527 1528 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1529 unsigned VSlotCount = 1530 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1531 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1532 1533 VFTableShapeRecord VFTSR(Slots); 1534 return TypeTable.writeKnownType(VFTSR); 1535 } 1536 1537 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1538 switch (Flags & DINode::FlagAccessibility) { 1539 case DINode::FlagPrivate: return MemberAccess::Private; 1540 case DINode::FlagPublic: return MemberAccess::Public; 1541 case DINode::FlagProtected: return MemberAccess::Protected; 1542 case 0: 1543 // If there was no explicit access control, provide the default for the tag. 1544 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1545 : MemberAccess::Public; 1546 } 1547 llvm_unreachable("access flags are exclusive"); 1548 } 1549 1550 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1551 if (SP->isArtificial()) 1552 return MethodOptions::CompilerGenerated; 1553 1554 // FIXME: Handle other MethodOptions. 1555 1556 return MethodOptions::None; 1557 } 1558 1559 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1560 bool Introduced) { 1561 switch (SP->getVirtuality()) { 1562 case dwarf::DW_VIRTUALITY_none: 1563 break; 1564 case dwarf::DW_VIRTUALITY_virtual: 1565 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1566 case dwarf::DW_VIRTUALITY_pure_virtual: 1567 return Introduced ? MethodKind::PureIntroducingVirtual 1568 : MethodKind::PureVirtual; 1569 default: 1570 llvm_unreachable("unhandled virtuality case"); 1571 } 1572 1573 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1574 1575 return MethodKind::Vanilla; 1576 } 1577 1578 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1579 switch (Ty->getTag()) { 1580 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1581 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1582 } 1583 llvm_unreachable("unexpected tag"); 1584 } 1585 1586 /// Return ClassOptions that should be present on both the forward declaration 1587 /// and the defintion of a tag type. 1588 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1589 ClassOptions CO = ClassOptions::None; 1590 1591 // MSVC always sets this flag, even for local types. Clang doesn't always 1592 // appear to give every type a linkage name, which may be problematic for us. 1593 // FIXME: Investigate the consequences of not following them here. 1594 if (!Ty->getIdentifier().empty()) 1595 CO |= ClassOptions::HasUniqueName; 1596 1597 // Put the Nested flag on a type if it appears immediately inside a tag type. 1598 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1599 // here. That flag is only set on definitions, and not forward declarations. 1600 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1601 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1602 CO |= ClassOptions::Nested; 1603 1604 // Put the Scoped flag on function-local types. 1605 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1606 Scope = Scope->getScope().resolve()) { 1607 if (isa<DISubprogram>(Scope)) { 1608 CO |= ClassOptions::Scoped; 1609 break; 1610 } 1611 } 1612 1613 return CO; 1614 } 1615 1616 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1617 ClassOptions CO = getCommonClassOptions(Ty); 1618 TypeIndex FTI; 1619 unsigned EnumeratorCount = 0; 1620 1621 if (Ty->isForwardDecl()) { 1622 CO |= ClassOptions::ForwardReference; 1623 } else { 1624 FieldListRecordBuilder FLRB(TypeTable); 1625 1626 FLRB.begin(); 1627 for (const DINode *Element : Ty->getElements()) { 1628 // We assume that the frontend provides all members in source declaration 1629 // order, which is what MSVC does. 1630 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1631 EnumeratorRecord ER(MemberAccess::Public, 1632 APSInt::getUnsigned(Enumerator->getValue()), 1633 Enumerator->getName()); 1634 FLRB.writeMemberType(ER); 1635 EnumeratorCount++; 1636 } 1637 } 1638 FTI = FLRB.end(true); 1639 } 1640 1641 std::string FullName = getFullyQualifiedName(Ty); 1642 1643 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1644 getTypeIndex(Ty->getBaseType())); 1645 return TypeTable.writeKnownType(ER); 1646 } 1647 1648 //===----------------------------------------------------------------------===// 1649 // ClassInfo 1650 //===----------------------------------------------------------------------===// 1651 1652 struct llvm::ClassInfo { 1653 struct MemberInfo { 1654 const DIDerivedType *MemberTypeNode; 1655 uint64_t BaseOffset; 1656 }; 1657 // [MemberInfo] 1658 using MemberList = std::vector<MemberInfo>; 1659 1660 using MethodsList = TinyPtrVector<const DISubprogram *>; 1661 // MethodName -> MethodsList 1662 using MethodsMap = MapVector<MDString *, MethodsList>; 1663 1664 /// Base classes. 1665 std::vector<const DIDerivedType *> Inheritance; 1666 1667 /// Direct members. 1668 MemberList Members; 1669 // Direct overloaded methods gathered by name. 1670 MethodsMap Methods; 1671 1672 TypeIndex VShapeTI; 1673 1674 std::vector<const DIType *> NestedTypes; 1675 }; 1676 1677 void CodeViewDebug::clear() { 1678 assert(CurFn == nullptr); 1679 FileIdMap.clear(); 1680 FnDebugInfo.clear(); 1681 FileToFilepathMap.clear(); 1682 LocalUDTs.clear(); 1683 GlobalUDTs.clear(); 1684 TypeIndices.clear(); 1685 CompleteTypeIndices.clear(); 1686 } 1687 1688 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1689 const DIDerivedType *DDTy) { 1690 if (!DDTy->getName().empty()) { 1691 Info.Members.push_back({DDTy, 0}); 1692 return; 1693 } 1694 // An unnamed member must represent a nested struct or union. Add all the 1695 // indirect fields to the current record. 1696 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1697 uint64_t Offset = DDTy->getOffsetInBits(); 1698 const DIType *Ty = DDTy->getBaseType().resolve(); 1699 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1700 ClassInfo NestedInfo = collectClassInfo(DCTy); 1701 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1702 Info.Members.push_back( 1703 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1704 } 1705 1706 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1707 ClassInfo Info; 1708 // Add elements to structure type. 1709 DINodeArray Elements = Ty->getElements(); 1710 for (auto *Element : Elements) { 1711 // We assume that the frontend provides all members in source declaration 1712 // order, which is what MSVC does. 1713 if (!Element) 1714 continue; 1715 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1716 Info.Methods[SP->getRawName()].push_back(SP); 1717 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1718 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1719 collectMemberInfo(Info, DDTy); 1720 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1721 Info.Inheritance.push_back(DDTy); 1722 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1723 DDTy->getName() == "__vtbl_ptr_type") { 1724 Info.VShapeTI = getTypeIndex(DDTy); 1725 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1726 Info.NestedTypes.push_back(DDTy); 1727 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1728 // Ignore friend members. It appears that MSVC emitted info about 1729 // friends in the past, but modern versions do not. 1730 } 1731 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1732 Info.NestedTypes.push_back(Composite); 1733 } 1734 // Skip other unrecognized kinds of elements. 1735 } 1736 return Info; 1737 } 1738 1739 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1740 // First, construct the forward decl. Don't look into Ty to compute the 1741 // forward decl options, since it might not be available in all TUs. 1742 TypeRecordKind Kind = getRecordKind(Ty); 1743 ClassOptions CO = 1744 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1745 std::string FullName = getFullyQualifiedName(Ty); 1746 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1747 FullName, Ty->getIdentifier()); 1748 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1749 if (!Ty->isForwardDecl()) 1750 DeferredCompleteTypes.push_back(Ty); 1751 return FwdDeclTI; 1752 } 1753 1754 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1755 // Construct the field list and complete type record. 1756 TypeRecordKind Kind = getRecordKind(Ty); 1757 ClassOptions CO = getCommonClassOptions(Ty); 1758 TypeIndex FieldTI; 1759 TypeIndex VShapeTI; 1760 unsigned FieldCount; 1761 bool ContainsNestedClass; 1762 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1763 lowerRecordFieldList(Ty); 1764 1765 if (ContainsNestedClass) 1766 CO |= ClassOptions::ContainsNestedClass; 1767 1768 std::string FullName = getFullyQualifiedName(Ty); 1769 1770 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1771 1772 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1773 SizeInBytes, FullName, Ty->getIdentifier()); 1774 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1775 1776 if (const auto *File = Ty->getFile()) { 1777 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1778 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1779 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1780 TypeTable.writeKnownType(USLR); 1781 } 1782 1783 addToUDTs(Ty); 1784 1785 return ClassTI; 1786 } 1787 1788 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1789 ClassOptions CO = 1790 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1791 std::string FullName = getFullyQualifiedName(Ty); 1792 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1793 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1794 if (!Ty->isForwardDecl()) 1795 DeferredCompleteTypes.push_back(Ty); 1796 return FwdDeclTI; 1797 } 1798 1799 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1800 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1801 TypeIndex FieldTI; 1802 unsigned FieldCount; 1803 bool ContainsNestedClass; 1804 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1805 lowerRecordFieldList(Ty); 1806 1807 if (ContainsNestedClass) 1808 CO |= ClassOptions::ContainsNestedClass; 1809 1810 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1811 std::string FullName = getFullyQualifiedName(Ty); 1812 1813 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1814 Ty->getIdentifier()); 1815 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1816 1817 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1818 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1819 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1820 TypeTable.writeKnownType(USLR); 1821 1822 addToUDTs(Ty); 1823 1824 return UnionTI; 1825 } 1826 1827 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1828 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1829 // Manually count members. MSVC appears to count everything that generates a 1830 // field list record. Each individual overload in a method overload group 1831 // contributes to this count, even though the overload group is a single field 1832 // list record. 1833 unsigned MemberCount = 0; 1834 ClassInfo Info = collectClassInfo(Ty); 1835 FieldListRecordBuilder FLBR(TypeTable); 1836 FLBR.begin(); 1837 1838 // Create base classes. 1839 for (const DIDerivedType *I : Info.Inheritance) { 1840 if (I->getFlags() & DINode::FlagVirtual) { 1841 // Virtual base. 1842 // FIXME: Emit VBPtrOffset when the frontend provides it. 1843 unsigned VBPtrOffset = 0; 1844 // FIXME: Despite the accessor name, the offset is really in bytes. 1845 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1846 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1847 ? TypeRecordKind::IndirectVirtualBaseClass 1848 : TypeRecordKind::VirtualBaseClass; 1849 VirtualBaseClassRecord VBCR( 1850 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1851 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1852 VBTableIndex); 1853 1854 FLBR.writeMemberType(VBCR); 1855 } else { 1856 assert(I->getOffsetInBits() % 8 == 0 && 1857 "bases must be on byte boundaries"); 1858 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1859 getTypeIndex(I->getBaseType()), 1860 I->getOffsetInBits() / 8); 1861 FLBR.writeMemberType(BCR); 1862 } 1863 } 1864 1865 // Create members. 1866 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1867 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1868 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1869 StringRef MemberName = Member->getName(); 1870 MemberAccess Access = 1871 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1872 1873 if (Member->isStaticMember()) { 1874 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1875 FLBR.writeMemberType(SDMR); 1876 MemberCount++; 1877 continue; 1878 } 1879 1880 // Virtual function pointer member. 1881 if ((Member->getFlags() & DINode::FlagArtificial) && 1882 Member->getName().startswith("_vptr$")) { 1883 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1884 FLBR.writeMemberType(VFPR); 1885 MemberCount++; 1886 continue; 1887 } 1888 1889 // Data member. 1890 uint64_t MemberOffsetInBits = 1891 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1892 if (Member->isBitField()) { 1893 uint64_t StartBitOffset = MemberOffsetInBits; 1894 if (const auto *CI = 1895 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1896 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1897 } 1898 StartBitOffset -= MemberOffsetInBits; 1899 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1900 StartBitOffset); 1901 MemberBaseType = TypeTable.writeKnownType(BFR); 1902 } 1903 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1904 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1905 MemberName); 1906 FLBR.writeMemberType(DMR); 1907 MemberCount++; 1908 } 1909 1910 // Create methods 1911 for (auto &MethodItr : Info.Methods) { 1912 StringRef Name = MethodItr.first->getString(); 1913 1914 std::vector<OneMethodRecord> Methods; 1915 for (const DISubprogram *SP : MethodItr.second) { 1916 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1917 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1918 1919 unsigned VFTableOffset = -1; 1920 if (Introduced) 1921 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1922 1923 Methods.push_back(OneMethodRecord( 1924 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1925 translateMethodKindFlags(SP, Introduced), 1926 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1927 MemberCount++; 1928 } 1929 assert(!Methods.empty() && "Empty methods map entry"); 1930 if (Methods.size() == 1) 1931 FLBR.writeMemberType(Methods[0]); 1932 else { 1933 MethodOverloadListRecord MOLR(Methods); 1934 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1935 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1936 FLBR.writeMemberType(OMR); 1937 } 1938 } 1939 1940 // Create nested classes. 1941 for (const DIType *Nested : Info.NestedTypes) { 1942 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1943 FLBR.writeMemberType(R); 1944 MemberCount++; 1945 } 1946 1947 TypeIndex FieldTI = FLBR.end(true); 1948 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1949 !Info.NestedTypes.empty()); 1950 } 1951 1952 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1953 if (!VBPType.getIndex()) { 1954 // Make a 'const int *' type. 1955 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1956 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1957 1958 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1959 : PointerKind::Near32; 1960 PointerMode PM = PointerMode::Pointer; 1961 PointerOptions PO = PointerOptions::None; 1962 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1963 1964 VBPType = TypeTable.writeKnownType(PR); 1965 } 1966 1967 return VBPType; 1968 } 1969 1970 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1971 const DIType *Ty = TypeRef.resolve(); 1972 const DIType *ClassTy = ClassTyRef.resolve(); 1973 1974 // The null DIType is the void type. Don't try to hash it. 1975 if (!Ty) 1976 return TypeIndex::Void(); 1977 1978 // Check if we've already translated this type. Don't try to do a 1979 // get-or-create style insertion that caches the hash lookup across the 1980 // lowerType call. It will update the TypeIndices map. 1981 auto I = TypeIndices.find({Ty, ClassTy}); 1982 if (I != TypeIndices.end()) 1983 return I->second; 1984 1985 TypeLoweringScope S(*this); 1986 TypeIndex TI = lowerType(Ty, ClassTy); 1987 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1988 } 1989 1990 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1991 const DIType *Ty = TypeRef.resolve(); 1992 1993 // The null DIType is the void type. Don't try to hash it. 1994 if (!Ty) 1995 return TypeIndex::Void(); 1996 1997 // If this is a non-record type, the complete type index is the same as the 1998 // normal type index. Just call getTypeIndex. 1999 switch (Ty->getTag()) { 2000 case dwarf::DW_TAG_class_type: 2001 case dwarf::DW_TAG_structure_type: 2002 case dwarf::DW_TAG_union_type: 2003 break; 2004 default: 2005 return getTypeIndex(Ty); 2006 } 2007 2008 // Check if we've already translated the complete record type. Lowering a 2009 // complete type should never trigger lowering another complete type, so we 2010 // can reuse the hash table lookup result. 2011 const auto *CTy = cast<DICompositeType>(Ty); 2012 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2013 if (!InsertResult.second) 2014 return InsertResult.first->second; 2015 2016 TypeLoweringScope S(*this); 2017 2018 // Make sure the forward declaration is emitted first. It's unclear if this 2019 // is necessary, but MSVC does it, and we should follow suit until we can show 2020 // otherwise. 2021 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2022 2023 // Just use the forward decl if we don't have complete type info. This might 2024 // happen if the frontend is using modules and expects the complete definition 2025 // to be emitted elsewhere. 2026 if (CTy->isForwardDecl()) 2027 return FwdDeclTI; 2028 2029 TypeIndex TI; 2030 switch (CTy->getTag()) { 2031 case dwarf::DW_TAG_class_type: 2032 case dwarf::DW_TAG_structure_type: 2033 TI = lowerCompleteTypeClass(CTy); 2034 break; 2035 case dwarf::DW_TAG_union_type: 2036 TI = lowerCompleteTypeUnion(CTy); 2037 break; 2038 default: 2039 llvm_unreachable("not a record"); 2040 } 2041 2042 InsertResult.first->second = TI; 2043 return TI; 2044 } 2045 2046 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2047 /// and do this until fixpoint, as each complete record type typically 2048 /// references 2049 /// many other record types. 2050 void CodeViewDebug::emitDeferredCompleteTypes() { 2051 SmallVector<const DICompositeType *, 4> TypesToEmit; 2052 while (!DeferredCompleteTypes.empty()) { 2053 std::swap(DeferredCompleteTypes, TypesToEmit); 2054 for (const DICompositeType *RecordTy : TypesToEmit) 2055 getCompleteTypeIndex(RecordTy); 2056 TypesToEmit.clear(); 2057 } 2058 } 2059 2060 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2061 // Get the sorted list of parameters and emit them first. 2062 SmallVector<const LocalVariable *, 6> Params; 2063 for (const LocalVariable &L : Locals) 2064 if (L.DIVar->isParameter()) 2065 Params.push_back(&L); 2066 std::sort(Params.begin(), Params.end(), 2067 [](const LocalVariable *L, const LocalVariable *R) { 2068 return L->DIVar->getArg() < R->DIVar->getArg(); 2069 }); 2070 for (const LocalVariable *L : Params) 2071 emitLocalVariable(*L); 2072 2073 // Next emit all non-parameters in the order that we found them. 2074 for (const LocalVariable &L : Locals) 2075 if (!L.DIVar->isParameter()) 2076 emitLocalVariable(L); 2077 } 2078 2079 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2080 // LocalSym record, see SymbolRecord.h for more info. 2081 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2082 *LocalEnd = MMI->getContext().createTempSymbol(); 2083 OS.AddComment("Record length"); 2084 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2085 OS.EmitLabel(LocalBegin); 2086 2087 OS.AddComment("Record kind: S_LOCAL"); 2088 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2089 2090 LocalSymFlags Flags = LocalSymFlags::None; 2091 if (Var.DIVar->isParameter()) 2092 Flags |= LocalSymFlags::IsParameter; 2093 if (Var.DefRanges.empty()) 2094 Flags |= LocalSymFlags::IsOptimizedOut; 2095 2096 OS.AddComment("TypeIndex"); 2097 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2098 OS.EmitIntValue(TI.getIndex(), 4); 2099 OS.AddComment("Flags"); 2100 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2101 // Truncate the name so we won't overflow the record length field. 2102 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2103 OS.EmitLabel(LocalEnd); 2104 2105 // Calculate the on disk prefix of the appropriate def range record. The 2106 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2107 // should be big enough to hold all forms without memory allocation. 2108 SmallString<20> BytePrefix; 2109 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2110 BytePrefix.clear(); 2111 if (DefRange.InMemory) { 2112 uint16_t RegRelFlags = 0; 2113 if (DefRange.IsSubfield) { 2114 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2115 (DefRange.StructOffset 2116 << DefRangeRegisterRelSym::OffsetInParentShift); 2117 } 2118 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2119 Sym.Hdr.Register = DefRange.CVRegister; 2120 Sym.Hdr.Flags = RegRelFlags; 2121 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2122 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2123 BytePrefix += 2124 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2125 BytePrefix += 2126 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2127 } else { 2128 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2129 if (DefRange.IsSubfield) { 2130 // Unclear what matters here. 2131 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2132 Sym.Hdr.Register = DefRange.CVRegister; 2133 Sym.Hdr.MayHaveNoName = 0; 2134 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2135 2136 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2137 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2138 sizeof(SymKind)); 2139 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2140 sizeof(Sym.Hdr)); 2141 } else { 2142 // Unclear what matters here. 2143 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2144 Sym.Hdr.Register = DefRange.CVRegister; 2145 Sym.Hdr.MayHaveNoName = 0; 2146 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2147 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2148 sizeof(SymKind)); 2149 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2150 sizeof(Sym.Hdr)); 2151 } 2152 } 2153 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2154 } 2155 } 2156 2157 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2158 const Function *GV = MF->getFunction(); 2159 assert(FnDebugInfo.count(GV)); 2160 assert(CurFn == &FnDebugInfo[GV]); 2161 2162 collectVariableInfo(GV->getSubprogram()); 2163 2164 // Don't emit anything if we don't have any line tables. 2165 if (!CurFn->HaveLineInfo) { 2166 FnDebugInfo.erase(GV); 2167 CurFn = nullptr; 2168 return; 2169 } 2170 2171 CurFn->End = Asm->getFunctionEnd(); 2172 2173 CurFn = nullptr; 2174 } 2175 2176 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2177 DebugHandlerBase::beginInstruction(MI); 2178 2179 // Ignore DBG_VALUE locations and function prologue. 2180 if (!Asm || !CurFn || MI->isDebugValue() || 2181 MI->getFlag(MachineInstr::FrameSetup)) 2182 return; 2183 2184 // If the first instruction of a new MBB has no location, find the first 2185 // instruction with a location and use that. 2186 DebugLoc DL = MI->getDebugLoc(); 2187 if (!DL && MI->getParent() != PrevInstBB) { 2188 for (const auto &NextMI : *MI->getParent()) { 2189 if (NextMI.isDebugValue()) 2190 continue; 2191 DL = NextMI.getDebugLoc(); 2192 if (DL) 2193 break; 2194 } 2195 } 2196 PrevInstBB = MI->getParent(); 2197 2198 // If we still don't have a debug location, don't record a location. 2199 if (!DL) 2200 return; 2201 2202 maybeRecordLocation(DL, Asm->MF); 2203 } 2204 2205 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2206 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2207 *EndLabel = MMI->getContext().createTempSymbol(); 2208 OS.EmitIntValue(unsigned(Kind), 4); 2209 OS.AddComment("Subsection size"); 2210 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2211 OS.EmitLabel(BeginLabel); 2212 return EndLabel; 2213 } 2214 2215 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2216 OS.EmitLabel(EndLabel); 2217 // Every subsection must be aligned to a 4-byte boundary. 2218 OS.EmitValueToAlignment(4); 2219 } 2220 2221 void CodeViewDebug::emitDebugInfoForUDTs( 2222 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2223 for (const auto &UDT : UDTs) { 2224 const DIType *T = UDT.second; 2225 assert(shouldEmitUdt(T)); 2226 2227 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2228 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2229 OS.AddComment("Record length"); 2230 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2231 OS.EmitLabel(UDTRecordBegin); 2232 2233 OS.AddComment("Record kind: S_UDT"); 2234 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2235 2236 OS.AddComment("Type"); 2237 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2238 2239 emitNullTerminatedSymbolName(OS, UDT.first); 2240 OS.EmitLabel(UDTRecordEnd); 2241 } 2242 } 2243 2244 void CodeViewDebug::emitDebugInfoForGlobals() { 2245 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2246 GlobalMap; 2247 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2248 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2249 GV.getDebugInfo(GVEs); 2250 for (const auto *GVE : GVEs) 2251 GlobalMap[GVE] = &GV; 2252 } 2253 2254 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2255 for (const MDNode *Node : CUs->operands()) { 2256 const auto *CU = cast<DICompileUnit>(Node); 2257 2258 // First, emit all globals that are not in a comdat in a single symbol 2259 // substream. MSVC doesn't like it if the substream is empty, so only open 2260 // it if we have at least one global to emit. 2261 switchToDebugSectionForSymbol(nullptr); 2262 MCSymbol *EndLabel = nullptr; 2263 for (const auto *GVE : CU->getGlobalVariables()) { 2264 if (const auto *GV = GlobalMap.lookup(GVE)) 2265 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2266 if (!EndLabel) { 2267 OS.AddComment("Symbol subsection for globals"); 2268 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2269 } 2270 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2271 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2272 } 2273 } 2274 if (EndLabel) 2275 endCVSubsection(EndLabel); 2276 2277 // Second, emit each global that is in a comdat into its own .debug$S 2278 // section along with its own symbol substream. 2279 for (const auto *GVE : CU->getGlobalVariables()) { 2280 if (const auto *GV = GlobalMap.lookup(GVE)) { 2281 if (GV->hasComdat()) { 2282 MCSymbol *GVSym = Asm->getSymbol(GV); 2283 OS.AddComment("Symbol subsection for " + 2284 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2285 switchToDebugSectionForSymbol(GVSym); 2286 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2287 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2288 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2289 endCVSubsection(EndLabel); 2290 } 2291 } 2292 } 2293 } 2294 } 2295 2296 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2297 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2298 for (const MDNode *Node : CUs->operands()) { 2299 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2300 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2301 getTypeIndex(RT); 2302 // FIXME: Add to global/local DTU list. 2303 } 2304 } 2305 } 2306 } 2307 2308 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2309 const GlobalVariable *GV, 2310 MCSymbol *GVSym) { 2311 // DataSym record, see SymbolRecord.h for more info. 2312 // FIXME: Thread local data, etc 2313 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2314 *DataEnd = MMI->getContext().createTempSymbol(); 2315 OS.AddComment("Record length"); 2316 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2317 OS.EmitLabel(DataBegin); 2318 if (DIGV->isLocalToUnit()) { 2319 if (GV->isThreadLocal()) { 2320 OS.AddComment("Record kind: S_LTHREAD32"); 2321 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2322 } else { 2323 OS.AddComment("Record kind: S_LDATA32"); 2324 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2325 } 2326 } else { 2327 if (GV->isThreadLocal()) { 2328 OS.AddComment("Record kind: S_GTHREAD32"); 2329 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2330 } else { 2331 OS.AddComment("Record kind: S_GDATA32"); 2332 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2333 } 2334 } 2335 OS.AddComment("Type"); 2336 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2337 OS.AddComment("DataOffset"); 2338 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2339 OS.AddComment("Segment"); 2340 OS.EmitCOFFSectionIndex(GVSym); 2341 OS.AddComment("Name"); 2342 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2343 OS.EmitLabel(DataEnd); 2344 } 2345