1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/COFF.h"
25 #include "llvm/BinaryFormat/Dwarf.h"
26 #include "llvm/CodeGen/AsmPrinter.h"
27 #include "llvm/CodeGen/LexicalScopes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
41 #include "llvm/DebugInfo/CodeView/EnumTables.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/MC/MCAsmInfo.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSectionCOFF.h"
59 #include "llvm/MC/MCStreamer.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/BinaryByteStream.h"
62 #include "llvm/Support/BinaryStreamReader.h"
63 #include "llvm/Support/BinaryStreamWriter.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FormatVariadic.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/SMLoc.h"
72 #include "llvm/Support/ScopedPrinter.h"
73 #include "llvm/Target/TargetLoweringObjectFile.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <iterator>
80 #include <limits>
81 
82 using namespace llvm;
83 using namespace llvm::codeview;
84 
85 namespace {
86 class CVMCAdapter : public CodeViewRecordStreamer {
87 public:
88   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
89       : OS(&OS), TypeTable(TypeTable) {}
90 
91   void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
92 
93   void emitIntValue(uint64_t Value, unsigned Size) override {
94     OS->emitIntValueInHex(Value, Size);
95   }
96 
97   void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
98 
99   void AddComment(const Twine &T) override { OS->AddComment(T); }
100 
101   void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
102 
103   bool isVerboseAsm() override { return OS->isVerboseAsm(); }
104 
105   std::string getTypeName(TypeIndex TI) override {
106     std::string TypeName;
107     if (!TI.isNoneType()) {
108       if (TI.isSimple())
109         TypeName = std::string(TypeIndex::simpleTypeName(TI));
110       else
111         TypeName = std::string(TypeTable.getTypeName(TI));
112     }
113     return TypeName;
114   }
115 
116 private:
117   MCStreamer *OS = nullptr;
118   TypeCollection &TypeTable;
119 };
120 } // namespace
121 
122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
123   switch (Type) {
124   case Triple::ArchType::x86:
125     return CPUType::Pentium3;
126   case Triple::ArchType::x86_64:
127     return CPUType::X64;
128   case Triple::ArchType::thumb:
129     // LLVM currently doesn't support Windows CE and so thumb
130     // here is indiscriminately mapped to ARMNT specifically.
131     return CPUType::ARMNT;
132   case Triple::ArchType::aarch64:
133     return CPUType::ARM64;
134   default:
135     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
136   }
137 }
138 
139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
140     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
141 
142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
143   std::string &Filepath = FileToFilepathMap[File];
144   if (!Filepath.empty())
145     return Filepath;
146 
147   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
148 
149   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
150   // it textually because one of the path components could be a symlink.
151   if (Dir.startswith("/") || Filename.startswith("/")) {
152     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
153       return Filename;
154     Filepath = std::string(Dir);
155     if (Dir.back() != '/')
156       Filepath += '/';
157     Filepath += Filename;
158     return Filepath;
159   }
160 
161   // Clang emits directory and relative filename info into the IR, but CodeView
162   // operates on full paths.  We could change Clang to emit full paths too, but
163   // that would increase the IR size and probably not needed for other users.
164   // For now, just concatenate and canonicalize the path here.
165   if (Filename.find(':') == 1)
166     Filepath = std::string(Filename);
167   else
168     Filepath = (Dir + "\\" + Filename).str();
169 
170   // Canonicalize the path.  We have to do it textually because we may no longer
171   // have access the file in the filesystem.
172   // First, replace all slashes with backslashes.
173   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
174 
175   // Remove all "\.\" with "\".
176   size_t Cursor = 0;
177   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
178     Filepath.erase(Cursor, 2);
179 
180   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
181   // path should be well-formatted, e.g. start with a drive letter, etc.
182   Cursor = 0;
183   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
184     // Something's wrong if the path starts with "\..\", abort.
185     if (Cursor == 0)
186       break;
187 
188     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
189     if (PrevSlash == std::string::npos)
190       // Something's wrong, abort.
191       break;
192 
193     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
194     // The next ".." might be following the one we've just erased.
195     Cursor = PrevSlash;
196   }
197 
198   // Remove all duplicate backslashes.
199   Cursor = 0;
200   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
201     Filepath.erase(Cursor, 1);
202 
203   return Filepath;
204 }
205 
206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
207   StringRef FullPath = getFullFilepath(F);
208   unsigned NextId = FileIdMap.size() + 1;
209   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
210   if (Insertion.second) {
211     // We have to compute the full filepath and emit a .cv_file directive.
212     ArrayRef<uint8_t> ChecksumAsBytes;
213     FileChecksumKind CSKind = FileChecksumKind::None;
214     if (F->getChecksum()) {
215       std::string Checksum = fromHex(F->getChecksum()->Value);
216       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
217       memcpy(CKMem, Checksum.data(), Checksum.size());
218       ChecksumAsBytes = ArrayRef<uint8_t>(
219           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
220       switch (F->getChecksum()->Kind) {
221       case DIFile::CSK_MD5:
222         CSKind = FileChecksumKind::MD5;
223         break;
224       case DIFile::CSK_SHA1:
225         CSKind = FileChecksumKind::SHA1;
226         break;
227       case DIFile::CSK_SHA256:
228         CSKind = FileChecksumKind::SHA256;
229         break;
230       }
231     }
232     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
233                                           static_cast<unsigned>(CSKind));
234     (void)Success;
235     assert(Success && ".cv_file directive failed");
236   }
237   return Insertion.first->second;
238 }
239 
240 CodeViewDebug::InlineSite &
241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
242                              const DISubprogram *Inlinee) {
243   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
244   InlineSite *Site = &SiteInsertion.first->second;
245   if (SiteInsertion.second) {
246     unsigned ParentFuncId = CurFn->FuncId;
247     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
248       ParentFuncId =
249           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
250               .SiteFuncId;
251 
252     Site->SiteFuncId = NextFuncId++;
253     OS.EmitCVInlineSiteIdDirective(
254         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
255         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
256     Site->Inlinee = Inlinee;
257     InlinedSubprograms.insert(Inlinee);
258     getFuncIdForSubprogram(Inlinee);
259   }
260   return *Site;
261 }
262 
263 static StringRef getPrettyScopeName(const DIScope *Scope) {
264   StringRef ScopeName = Scope->getName();
265   if (!ScopeName.empty())
266     return ScopeName;
267 
268   switch (Scope->getTag()) {
269   case dwarf::DW_TAG_enumeration_type:
270   case dwarf::DW_TAG_class_type:
271   case dwarf::DW_TAG_structure_type:
272   case dwarf::DW_TAG_union_type:
273     return "<unnamed-tag>";
274   case dwarf::DW_TAG_namespace:
275     return "`anonymous namespace'";
276   }
277 
278   return StringRef();
279 }
280 
281 const DISubprogram *CodeViewDebug::collectParentScopeNames(
282     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
283   const DISubprogram *ClosestSubprogram = nullptr;
284   while (Scope != nullptr) {
285     if (ClosestSubprogram == nullptr)
286       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
287 
288     // If a type appears in a scope chain, make sure it gets emitted. The
289     // frontend will be responsible for deciding if this should be a forward
290     // declaration or a complete type.
291     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
292       DeferredCompleteTypes.push_back(Ty);
293 
294     StringRef ScopeName = getPrettyScopeName(Scope);
295     if (!ScopeName.empty())
296       QualifiedNameComponents.push_back(ScopeName);
297     Scope = Scope->getScope();
298   }
299   return ClosestSubprogram;
300 }
301 
302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
303                                     StringRef TypeName) {
304   std::string FullyQualifiedName;
305   for (StringRef QualifiedNameComponent :
306        llvm::reverse(QualifiedNameComponents)) {
307     FullyQualifiedName.append(std::string(QualifiedNameComponent));
308     FullyQualifiedName.append("::");
309   }
310   FullyQualifiedName.append(std::string(TypeName));
311   return FullyQualifiedName;
312 }
313 
314 struct CodeViewDebug::TypeLoweringScope {
315   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
316   ~TypeLoweringScope() {
317     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
318     // inner TypeLoweringScopes don't attempt to emit deferred types.
319     if (CVD.TypeEmissionLevel == 1)
320       CVD.emitDeferredCompleteTypes();
321     --CVD.TypeEmissionLevel;
322   }
323   CodeViewDebug &CVD;
324 };
325 
326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
327                                                  StringRef Name) {
328   // Ensure types in the scope chain are emitted as soon as possible.
329   // This can create otherwise a situation where S_UDTs are emitted while
330   // looping in emitDebugInfoForUDTs.
331   TypeLoweringScope S(*this);
332   SmallVector<StringRef, 5> QualifiedNameComponents;
333   collectParentScopeNames(Scope, QualifiedNameComponents);
334   return formatNestedName(QualifiedNameComponents, Name);
335 }
336 
337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
338   const DIScope *Scope = Ty->getScope();
339   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
340 }
341 
342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
343   // No scope means global scope and that uses the zero index.
344   if (!Scope || isa<DIFile>(Scope))
345     return TypeIndex();
346 
347   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
348 
349   // Check if we've already translated this scope.
350   auto I = TypeIndices.find({Scope, nullptr});
351   if (I != TypeIndices.end())
352     return I->second;
353 
354   // Build the fully qualified name of the scope.
355   std::string ScopeName = getFullyQualifiedName(Scope);
356   StringIdRecord SID(TypeIndex(), ScopeName);
357   auto TI = TypeTable.writeLeafType(SID);
358   return recordTypeIndexForDINode(Scope, TI);
359 }
360 
361 static StringRef removeTemplateArgs(StringRef Name) {
362   // Remove template args from the display name. Assume that the template args
363   // are the last thing in the name.
364   if (Name.empty() || Name.back() != '>')
365     return Name;
366 
367   int OpenBrackets = 0;
368   for (int i = Name.size() - 1; i >= 0; --i) {
369     if (Name[i] == '>')
370       ++OpenBrackets;
371     else if (Name[i] == '<') {
372       --OpenBrackets;
373       if (OpenBrackets == 0)
374         return Name.substr(0, i);
375     }
376   }
377   return Name;
378 }
379 
380 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
381   assert(SP);
382 
383   // Check if we've already translated this subprogram.
384   auto I = TypeIndices.find({SP, nullptr});
385   if (I != TypeIndices.end())
386     return I->second;
387 
388   // The display name includes function template arguments. Drop them to match
389   // MSVC. We need to have the template arguments in the DISubprogram name
390   // because they are used in other symbol records, such as S_GPROC32_IDs.
391   StringRef DisplayName = removeTemplateArgs(SP->getName());
392 
393   const DIScope *Scope = SP->getScope();
394   TypeIndex TI;
395   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
396     // If the scope is a DICompositeType, then this must be a method. Member
397     // function types take some special handling, and require access to the
398     // subprogram.
399     TypeIndex ClassType = getTypeIndex(Class);
400     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
401                                DisplayName);
402     TI = TypeTable.writeLeafType(MFuncId);
403   } else {
404     // Otherwise, this must be a free function.
405     TypeIndex ParentScope = getScopeIndex(Scope);
406     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
407     TI = TypeTable.writeLeafType(FuncId);
408   }
409 
410   return recordTypeIndexForDINode(SP, TI);
411 }
412 
413 static bool isNonTrivial(const DICompositeType *DCTy) {
414   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
415 }
416 
417 static FunctionOptions
418 getFunctionOptions(const DISubroutineType *Ty,
419                    const DICompositeType *ClassTy = nullptr,
420                    StringRef SPName = StringRef("")) {
421   FunctionOptions FO = FunctionOptions::None;
422   const DIType *ReturnTy = nullptr;
423   if (auto TypeArray = Ty->getTypeArray()) {
424     if (TypeArray.size())
425       ReturnTy = TypeArray[0];
426   }
427 
428   // Add CxxReturnUdt option to functions that return nontrivial record types
429   // or methods that return record types.
430   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
431     if (isNonTrivial(ReturnDCTy) || ClassTy)
432       FO |= FunctionOptions::CxxReturnUdt;
433 
434   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
435   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
436     FO |= FunctionOptions::Constructor;
437 
438   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
439 
440   }
441   return FO;
442 }
443 
444 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
445                                                const DICompositeType *Class) {
446   // Always use the method declaration as the key for the function type. The
447   // method declaration contains the this adjustment.
448   if (SP->getDeclaration())
449     SP = SP->getDeclaration();
450   assert(!SP->getDeclaration() && "should use declaration as key");
451 
452   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
453   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
454   auto I = TypeIndices.find({SP, Class});
455   if (I != TypeIndices.end())
456     return I->second;
457 
458   // Make sure complete type info for the class is emitted *after* the member
459   // function type, as the complete class type is likely to reference this
460   // member function type.
461   TypeLoweringScope S(*this);
462   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
463 
464   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
465   TypeIndex TI = lowerTypeMemberFunction(
466       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
467   return recordTypeIndexForDINode(SP, TI, Class);
468 }
469 
470 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
471                                                   TypeIndex TI,
472                                                   const DIType *ClassTy) {
473   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
474   (void)InsertResult;
475   assert(InsertResult.second && "DINode was already assigned a type index");
476   return TI;
477 }
478 
479 unsigned CodeViewDebug::getPointerSizeInBytes() {
480   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
481 }
482 
483 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
484                                         const LexicalScope *LS) {
485   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
486     // This variable was inlined. Associate it with the InlineSite.
487     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
488     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
489     Site.InlinedLocals.emplace_back(Var);
490   } else {
491     // This variable goes into the corresponding lexical scope.
492     ScopeVariables[LS].emplace_back(Var);
493   }
494 }
495 
496 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
497                                const DILocation *Loc) {
498   if (!llvm::is_contained(Locs, Loc))
499     Locs.push_back(Loc);
500 }
501 
502 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
503                                         const MachineFunction *MF) {
504   // Skip this instruction if it has the same location as the previous one.
505   if (!DL || DL == PrevInstLoc)
506     return;
507 
508   const DIScope *Scope = DL.get()->getScope();
509   if (!Scope)
510     return;
511 
512   // Skip this line if it is longer than the maximum we can record.
513   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
514   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
515       LI.isNeverStepInto())
516     return;
517 
518   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
519   if (CI.getStartColumn() != DL.getCol())
520     return;
521 
522   if (!CurFn->HaveLineInfo)
523     CurFn->HaveLineInfo = true;
524   unsigned FileId = 0;
525   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
526     FileId = CurFn->LastFileId;
527   else
528     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
529   PrevInstLoc = DL;
530 
531   unsigned FuncId = CurFn->FuncId;
532   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
533     const DILocation *Loc = DL.get();
534 
535     // If this location was actually inlined from somewhere else, give it the ID
536     // of the inline call site.
537     FuncId =
538         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
539 
540     // Ensure we have links in the tree of inline call sites.
541     bool FirstLoc = true;
542     while ((SiteLoc = Loc->getInlinedAt())) {
543       InlineSite &Site =
544           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
545       if (!FirstLoc)
546         addLocIfNotPresent(Site.ChildSites, Loc);
547       FirstLoc = false;
548       Loc = SiteLoc;
549     }
550     addLocIfNotPresent(CurFn->ChildSites, Loc);
551   }
552 
553   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
554                         /*PrologueEnd=*/false, /*IsStmt=*/false,
555                         DL->getFilename(), SMLoc());
556 }
557 
558 void CodeViewDebug::emitCodeViewMagicVersion() {
559   OS.emitValueToAlignment(4);
560   OS.AddComment("Debug section magic");
561   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
562 }
563 
564 void CodeViewDebug::beginModule(Module *M) {
565   // If module doesn't have named metadata anchors or COFF debug section
566   // is not available, skip any debug info related stuff.
567   if (!M->getNamedMetadata("llvm.dbg.cu") ||
568       !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
569     Asm = nullptr;
570     return;
571   }
572   // Tell MMI that we have and need debug info.
573   MMI->setDebugInfoAvailability(true);
574 
575   TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
576 
577   collectGlobalVariableInfo();
578 
579   // Check if we should emit type record hashes.
580   ConstantInt *GH =
581       mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
582   EmitDebugGlobalHashes = GH && !GH->isZero();
583 }
584 
585 void CodeViewDebug::endModule() {
586   if (!Asm || !MMI->hasDebugInfo())
587     return;
588 
589   // The COFF .debug$S section consists of several subsections, each starting
590   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
591   // of the payload followed by the payload itself.  The subsections are 4-byte
592   // aligned.
593 
594   // Use the generic .debug$S section, and make a subsection for all the inlined
595   // subprograms.
596   switchToDebugSectionForSymbol(nullptr);
597 
598   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
599   emitCompilerInformation();
600   endCVSubsection(CompilerInfo);
601 
602   emitInlineeLinesSubsection();
603 
604   // Emit per-function debug information.
605   for (auto &P : FnDebugInfo)
606     if (!P.first->isDeclarationForLinker())
607       emitDebugInfoForFunction(P.first, *P.second);
608 
609   // Get types used by globals without emitting anything.
610   // This is meant to collect all static const data members so they can be
611   // emitted as globals.
612   collectDebugInfoForGlobals();
613 
614   // Emit retained types.
615   emitDebugInfoForRetainedTypes();
616 
617   // Emit global variable debug information.
618   setCurrentSubprogram(nullptr);
619   emitDebugInfoForGlobals();
620 
621   // Switch back to the generic .debug$S section after potentially processing
622   // comdat symbol sections.
623   switchToDebugSectionForSymbol(nullptr);
624 
625   // Emit UDT records for any types used by global variables.
626   if (!GlobalUDTs.empty()) {
627     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
628     emitDebugInfoForUDTs(GlobalUDTs);
629     endCVSubsection(SymbolsEnd);
630   }
631 
632   // This subsection holds a file index to offset in string table table.
633   OS.AddComment("File index to string table offset subsection");
634   OS.emitCVFileChecksumsDirective();
635 
636   // This subsection holds the string table.
637   OS.AddComment("String table");
638   OS.emitCVStringTableDirective();
639 
640   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
641   // subsection in the generic .debug$S section at the end. There is no
642   // particular reason for this ordering other than to match MSVC.
643   emitBuildInfo();
644 
645   // Emit type information and hashes last, so that any types we translate while
646   // emitting function info are included.
647   emitTypeInformation();
648 
649   if (EmitDebugGlobalHashes)
650     emitTypeGlobalHashes();
651 
652   clear();
653 }
654 
655 static void
656 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
657                              unsigned MaxFixedRecordLength = 0xF00) {
658   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
659   // after a fixed length portion of the record. The fixed length portion should
660   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
661   // overall record size is less than the maximum allowed.
662   SmallString<32> NullTerminatedString(
663       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
664   NullTerminatedString.push_back('\0');
665   OS.emitBytes(NullTerminatedString);
666 }
667 
668 void CodeViewDebug::emitTypeInformation() {
669   if (TypeTable.empty())
670     return;
671 
672   // Start the .debug$T or .debug$P section with 0x4.
673   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
674   emitCodeViewMagicVersion();
675 
676   TypeTableCollection Table(TypeTable.records());
677   TypeVisitorCallbackPipeline Pipeline;
678 
679   // To emit type record using Codeview MCStreamer adapter
680   CVMCAdapter CVMCOS(OS, Table);
681   TypeRecordMapping typeMapping(CVMCOS);
682   Pipeline.addCallbackToPipeline(typeMapping);
683 
684   Optional<TypeIndex> B = Table.getFirst();
685   while (B) {
686     // This will fail if the record data is invalid.
687     CVType Record = Table.getType(*B);
688 
689     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
690 
691     if (E) {
692       logAllUnhandledErrors(std::move(E), errs(), "error: ");
693       llvm_unreachable("produced malformed type record");
694     }
695 
696     B = Table.getNext(*B);
697   }
698 }
699 
700 void CodeViewDebug::emitTypeGlobalHashes() {
701   if (TypeTable.empty())
702     return;
703 
704   // Start the .debug$H section with the version and hash algorithm, currently
705   // hardcoded to version 0, SHA1.
706   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
707 
708   OS.emitValueToAlignment(4);
709   OS.AddComment("Magic");
710   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
711   OS.AddComment("Section Version");
712   OS.emitInt16(0);
713   OS.AddComment("Hash Algorithm");
714   OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
715 
716   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
717   for (const auto &GHR : TypeTable.hashes()) {
718     if (OS.isVerboseAsm()) {
719       // Emit an EOL-comment describing which TypeIndex this hash corresponds
720       // to, as well as the stringified SHA1 hash.
721       SmallString<32> Comment;
722       raw_svector_ostream CommentOS(Comment);
723       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
724       OS.AddComment(Comment);
725       ++TI;
726     }
727     assert(GHR.Hash.size() == 8);
728     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
729                 GHR.Hash.size());
730     OS.emitBinaryData(S);
731   }
732 }
733 
734 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
735   switch (DWLang) {
736   case dwarf::DW_LANG_C:
737   case dwarf::DW_LANG_C89:
738   case dwarf::DW_LANG_C99:
739   case dwarf::DW_LANG_C11:
740   case dwarf::DW_LANG_ObjC:
741     return SourceLanguage::C;
742   case dwarf::DW_LANG_C_plus_plus:
743   case dwarf::DW_LANG_C_plus_plus_03:
744   case dwarf::DW_LANG_C_plus_plus_11:
745   case dwarf::DW_LANG_C_plus_plus_14:
746     return SourceLanguage::Cpp;
747   case dwarf::DW_LANG_Fortran77:
748   case dwarf::DW_LANG_Fortran90:
749   case dwarf::DW_LANG_Fortran03:
750   case dwarf::DW_LANG_Fortran08:
751     return SourceLanguage::Fortran;
752   case dwarf::DW_LANG_Pascal83:
753     return SourceLanguage::Pascal;
754   case dwarf::DW_LANG_Cobol74:
755   case dwarf::DW_LANG_Cobol85:
756     return SourceLanguage::Cobol;
757   case dwarf::DW_LANG_Java:
758     return SourceLanguage::Java;
759   case dwarf::DW_LANG_D:
760     return SourceLanguage::D;
761   case dwarf::DW_LANG_Swift:
762     return SourceLanguage::Swift;
763   default:
764     // There's no CodeView representation for this language, and CV doesn't
765     // have an "unknown" option for the language field, so we'll use MASM,
766     // as it's very low level.
767     return SourceLanguage::Masm;
768   }
769 }
770 
771 namespace {
772 struct Version {
773   int Part[4];
774 };
775 } // end anonymous namespace
776 
777 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
778 // the version number.
779 static Version parseVersion(StringRef Name) {
780   Version V = {{0}};
781   int N = 0;
782   for (const char C : Name) {
783     if (isdigit(C)) {
784       V.Part[N] *= 10;
785       V.Part[N] += C - '0';
786     } else if (C == '.') {
787       ++N;
788       if (N >= 4)
789         return V;
790     } else if (N > 0)
791       return V;
792   }
793   return V;
794 }
795 
796 void CodeViewDebug::emitCompilerInformation() {
797   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
798   uint32_t Flags = 0;
799 
800   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
801   const MDNode *Node = *CUs->operands().begin();
802   const auto *CU = cast<DICompileUnit>(Node);
803 
804   // The low byte of the flags indicates the source language.
805   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
806   // TODO:  Figure out which other flags need to be set.
807   if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
808     Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
809   }
810 
811   OS.AddComment("Flags and language");
812   OS.emitInt32(Flags);
813 
814   OS.AddComment("CPUType");
815   OS.emitInt16(static_cast<uint64_t>(TheCPU));
816 
817   StringRef CompilerVersion = CU->getProducer();
818   Version FrontVer = parseVersion(CompilerVersion);
819   OS.AddComment("Frontend version");
820   for (int N : FrontVer.Part)
821     OS.emitInt16(N);
822 
823   // Some Microsoft tools, like Binscope, expect a backend version number of at
824   // least 8.something, so we'll coerce the LLVM version into a form that
825   // guarantees it'll be big enough without really lying about the version.
826   int Major = 1000 * LLVM_VERSION_MAJOR +
827               10 * LLVM_VERSION_MINOR +
828               LLVM_VERSION_PATCH;
829   // Clamp it for builds that use unusually large version numbers.
830   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
831   Version BackVer = {{ Major, 0, 0, 0 }};
832   OS.AddComment("Backend version");
833   for (int N : BackVer.Part)
834     OS.emitInt16(N);
835 
836   OS.AddComment("Null-terminated compiler version string");
837   emitNullTerminatedSymbolName(OS, CompilerVersion);
838 
839   endSymbolRecord(CompilerEnd);
840 }
841 
842 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
843                                     StringRef S) {
844   StringIdRecord SIR(TypeIndex(0x0), S);
845   return TypeTable.writeLeafType(SIR);
846 }
847 
848 void CodeViewDebug::emitBuildInfo() {
849   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
850   // build info. The known prefix is:
851   // - Absolute path of current directory
852   // - Compiler path
853   // - Main source file path, relative to CWD or absolute
854   // - Type server PDB file
855   // - Canonical compiler command line
856   // If frontend and backend compilation are separated (think llc or LTO), it's
857   // not clear if the compiler path should refer to the executable for the
858   // frontend or the backend. Leave it blank for now.
859   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
860   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
861   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
862   const auto *CU = cast<DICompileUnit>(Node);
863   const DIFile *MainSourceFile = CU->getFile();
864   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
865       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
866   BuildInfoArgs[BuildInfoRecord::SourceFile] =
867       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
868   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
869   // we implement /Zi type servers.
870   BuildInfoRecord BIR(BuildInfoArgs);
871   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
872 
873   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
874   // from the module symbols into the type stream.
875   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
876   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
877   OS.AddComment("LF_BUILDINFO index");
878   OS.emitInt32(BuildInfoIndex.getIndex());
879   endSymbolRecord(BIEnd);
880   endCVSubsection(BISubsecEnd);
881 }
882 
883 void CodeViewDebug::emitInlineeLinesSubsection() {
884   if (InlinedSubprograms.empty())
885     return;
886 
887   OS.AddComment("Inlinee lines subsection");
888   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
889 
890   // We emit the checksum info for files.  This is used by debuggers to
891   // determine if a pdb matches the source before loading it.  Visual Studio,
892   // for instance, will display a warning that the breakpoints are not valid if
893   // the pdb does not match the source.
894   OS.AddComment("Inlinee lines signature");
895   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
896 
897   for (const DISubprogram *SP : InlinedSubprograms) {
898     assert(TypeIndices.count({SP, nullptr}));
899     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
900 
901     OS.AddBlankLine();
902     unsigned FileId = maybeRecordFile(SP->getFile());
903     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
904                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
905     OS.AddBlankLine();
906     OS.AddComment("Type index of inlined function");
907     OS.emitInt32(InlineeIdx.getIndex());
908     OS.AddComment("Offset into filechecksum table");
909     OS.emitCVFileChecksumOffsetDirective(FileId);
910     OS.AddComment("Starting line number");
911     OS.emitInt32(SP->getLine());
912   }
913 
914   endCVSubsection(InlineEnd);
915 }
916 
917 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
918                                         const DILocation *InlinedAt,
919                                         const InlineSite &Site) {
920   assert(TypeIndices.count({Site.Inlinee, nullptr}));
921   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
922 
923   // SymbolRecord
924   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
925 
926   OS.AddComment("PtrParent");
927   OS.emitInt32(0);
928   OS.AddComment("PtrEnd");
929   OS.emitInt32(0);
930   OS.AddComment("Inlinee type index");
931   OS.emitInt32(InlineeIdx.getIndex());
932 
933   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
934   unsigned StartLineNum = Site.Inlinee->getLine();
935 
936   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
937                                     FI.Begin, FI.End);
938 
939   endSymbolRecord(InlineEnd);
940 
941   emitLocalVariableList(FI, Site.InlinedLocals);
942 
943   // Recurse on child inlined call sites before closing the scope.
944   for (const DILocation *ChildSite : Site.ChildSites) {
945     auto I = FI.InlineSites.find(ChildSite);
946     assert(I != FI.InlineSites.end() &&
947            "child site not in function inline site map");
948     emitInlinedCallSite(FI, ChildSite, I->second);
949   }
950 
951   // Close the scope.
952   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
953 }
954 
955 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
956   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
957   // comdat key. A section may be comdat because of -ffunction-sections or
958   // because it is comdat in the IR.
959   MCSectionCOFF *GVSec =
960       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
961   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
962 
963   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
964       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
965   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
966 
967   OS.SwitchSection(DebugSec);
968 
969   // Emit the magic version number if this is the first time we've switched to
970   // this section.
971   if (ComdatDebugSections.insert(DebugSec).second)
972     emitCodeViewMagicVersion();
973 }
974 
975 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
976 // The only supported thunk ordinal is currently the standard type.
977 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
978                                           FunctionInfo &FI,
979                                           const MCSymbol *Fn) {
980   std::string FuncName =
981       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
982   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
983 
984   OS.AddComment("Symbol subsection for " + Twine(FuncName));
985   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
986 
987   // Emit S_THUNK32
988   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
989   OS.AddComment("PtrParent");
990   OS.emitInt32(0);
991   OS.AddComment("PtrEnd");
992   OS.emitInt32(0);
993   OS.AddComment("PtrNext");
994   OS.emitInt32(0);
995   OS.AddComment("Thunk section relative address");
996   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
997   OS.AddComment("Thunk section index");
998   OS.EmitCOFFSectionIndex(Fn);
999   OS.AddComment("Code size");
1000   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1001   OS.AddComment("Ordinal");
1002   OS.emitInt8(unsigned(ordinal));
1003   OS.AddComment("Function name");
1004   emitNullTerminatedSymbolName(OS, FuncName);
1005   // Additional fields specific to the thunk ordinal would go here.
1006   endSymbolRecord(ThunkRecordEnd);
1007 
1008   // Local variables/inlined routines are purposely omitted here.  The point of
1009   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1010 
1011   // Emit S_PROC_ID_END
1012   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1013 
1014   endCVSubsection(SymbolsEnd);
1015 }
1016 
1017 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1018                                              FunctionInfo &FI) {
1019   // For each function there is a separate subsection which holds the PC to
1020   // file:line table.
1021   const MCSymbol *Fn = Asm->getSymbol(GV);
1022   assert(Fn);
1023 
1024   // Switch to the to a comdat section, if appropriate.
1025   switchToDebugSectionForSymbol(Fn);
1026 
1027   std::string FuncName;
1028   auto *SP = GV->getSubprogram();
1029   assert(SP);
1030   setCurrentSubprogram(SP);
1031 
1032   if (SP->isThunk()) {
1033     emitDebugInfoForThunk(GV, FI, Fn);
1034     return;
1035   }
1036 
1037   // If we have a display name, build the fully qualified name by walking the
1038   // chain of scopes.
1039   if (!SP->getName().empty())
1040     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1041 
1042   // If our DISubprogram name is empty, use the mangled name.
1043   if (FuncName.empty())
1044     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1045 
1046   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1047   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1048     OS.EmitCVFPOData(Fn);
1049 
1050   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1051   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1052   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1053   {
1054     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1055                                                 : SymbolKind::S_GPROC32_ID;
1056     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1057 
1058     // These fields are filled in by tools like CVPACK which run after the fact.
1059     OS.AddComment("PtrParent");
1060     OS.emitInt32(0);
1061     OS.AddComment("PtrEnd");
1062     OS.emitInt32(0);
1063     OS.AddComment("PtrNext");
1064     OS.emitInt32(0);
1065     // This is the important bit that tells the debugger where the function
1066     // code is located and what's its size:
1067     OS.AddComment("Code size");
1068     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1069     OS.AddComment("Offset after prologue");
1070     OS.emitInt32(0);
1071     OS.AddComment("Offset before epilogue");
1072     OS.emitInt32(0);
1073     OS.AddComment("Function type index");
1074     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1075     OS.AddComment("Function section relative address");
1076     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1077     OS.AddComment("Function section index");
1078     OS.EmitCOFFSectionIndex(Fn);
1079     OS.AddComment("Flags");
1080     OS.emitInt8(0);
1081     // Emit the function display name as a null-terminated string.
1082     OS.AddComment("Function name");
1083     // Truncate the name so we won't overflow the record length field.
1084     emitNullTerminatedSymbolName(OS, FuncName);
1085     endSymbolRecord(ProcRecordEnd);
1086 
1087     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1088     // Subtract out the CSR size since MSVC excludes that and we include it.
1089     OS.AddComment("FrameSize");
1090     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1091     OS.AddComment("Padding");
1092     OS.emitInt32(0);
1093     OS.AddComment("Offset of padding");
1094     OS.emitInt32(0);
1095     OS.AddComment("Bytes of callee saved registers");
1096     OS.emitInt32(FI.CSRSize);
1097     OS.AddComment("Exception handler offset");
1098     OS.emitInt32(0);
1099     OS.AddComment("Exception handler section");
1100     OS.emitInt16(0);
1101     OS.AddComment("Flags (defines frame register)");
1102     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1103     endSymbolRecord(FrameProcEnd);
1104 
1105     emitLocalVariableList(FI, FI.Locals);
1106     emitGlobalVariableList(FI.Globals);
1107     emitLexicalBlockList(FI.ChildBlocks, FI);
1108 
1109     // Emit inlined call site information. Only emit functions inlined directly
1110     // into the parent function. We'll emit the other sites recursively as part
1111     // of their parent inline site.
1112     for (const DILocation *InlinedAt : FI.ChildSites) {
1113       auto I = FI.InlineSites.find(InlinedAt);
1114       assert(I != FI.InlineSites.end() &&
1115              "child site not in function inline site map");
1116       emitInlinedCallSite(FI, InlinedAt, I->second);
1117     }
1118 
1119     for (auto Annot : FI.Annotations) {
1120       MCSymbol *Label = Annot.first;
1121       MDTuple *Strs = cast<MDTuple>(Annot.second);
1122       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1123       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1124       // FIXME: Make sure we don't overflow the max record size.
1125       OS.EmitCOFFSectionIndex(Label);
1126       OS.emitInt16(Strs->getNumOperands());
1127       for (Metadata *MD : Strs->operands()) {
1128         // MDStrings are null terminated, so we can do EmitBytes and get the
1129         // nice .asciz directive.
1130         StringRef Str = cast<MDString>(MD)->getString();
1131         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1132         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1133       }
1134       endSymbolRecord(AnnotEnd);
1135     }
1136 
1137     for (auto HeapAllocSite : FI.HeapAllocSites) {
1138       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1139       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1140       const DIType *DITy = std::get<2>(HeapAllocSite);
1141       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1142       OS.AddComment("Call site offset");
1143       OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1144       OS.AddComment("Call site section index");
1145       OS.EmitCOFFSectionIndex(BeginLabel);
1146       OS.AddComment("Call instruction length");
1147       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1148       OS.AddComment("Type index");
1149       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1150       endSymbolRecord(HeapAllocEnd);
1151     }
1152 
1153     if (SP != nullptr)
1154       emitDebugInfoForUDTs(LocalUDTs);
1155 
1156     // We're done with this function.
1157     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1158   }
1159   endCVSubsection(SymbolsEnd);
1160 
1161   // We have an assembler directive that takes care of the whole line table.
1162   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1163 }
1164 
1165 CodeViewDebug::LocalVarDefRange
1166 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1167   LocalVarDefRange DR;
1168   DR.InMemory = -1;
1169   DR.DataOffset = Offset;
1170   assert(DR.DataOffset == Offset && "truncation");
1171   DR.IsSubfield = 0;
1172   DR.StructOffset = 0;
1173   DR.CVRegister = CVRegister;
1174   return DR;
1175 }
1176 
1177 void CodeViewDebug::collectVariableInfoFromMFTable(
1178     DenseSet<InlinedEntity> &Processed) {
1179   const MachineFunction &MF = *Asm->MF;
1180   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1181   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1182   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1183 
1184   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1185     if (!VI.Var)
1186       continue;
1187     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1188            "Expected inlined-at fields to agree");
1189 
1190     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1191     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1192 
1193     // If variable scope is not found then skip this variable.
1194     if (!Scope)
1195       continue;
1196 
1197     // If the variable has an attached offset expression, extract it.
1198     // FIXME: Try to handle DW_OP_deref as well.
1199     int64_t ExprOffset = 0;
1200     bool Deref = false;
1201     if (VI.Expr) {
1202       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1203       if (VI.Expr->getNumElements() == 1 &&
1204           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1205         Deref = true;
1206       else if (!VI.Expr->extractIfOffset(ExprOffset))
1207         continue;
1208     }
1209 
1210     // Get the frame register used and the offset.
1211     Register FrameReg;
1212     StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1213     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1214 
1215     assert(!FrameOffset.getScalable() &&
1216            "Frame offsets with a scalable component are not supported");
1217 
1218     // Calculate the label ranges.
1219     LocalVarDefRange DefRange =
1220         createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1221 
1222     for (const InsnRange &Range : Scope->getRanges()) {
1223       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1224       const MCSymbol *End = getLabelAfterInsn(Range.second);
1225       End = End ? End : Asm->getFunctionEnd();
1226       DefRange.Ranges.emplace_back(Begin, End);
1227     }
1228 
1229     LocalVariable Var;
1230     Var.DIVar = VI.Var;
1231     Var.DefRanges.emplace_back(std::move(DefRange));
1232     if (Deref)
1233       Var.UseReferenceType = true;
1234 
1235     recordLocalVariable(std::move(Var), Scope);
1236   }
1237 }
1238 
1239 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1240   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1241 }
1242 
1243 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1244   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1245 }
1246 
1247 void CodeViewDebug::calculateRanges(
1248     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1249   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1250 
1251   // Calculate the definition ranges.
1252   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1253     const auto &Entry = *I;
1254     if (!Entry.isDbgValue())
1255       continue;
1256     const MachineInstr *DVInst = Entry.getInstr();
1257     assert(DVInst->isDebugValue() && "Invalid History entry");
1258     // FIXME: Find a way to represent constant variables, since they are
1259     // relatively common.
1260     Optional<DbgVariableLocation> Location =
1261         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1262     if (!Location)
1263       continue;
1264 
1265     // CodeView can only express variables in register and variables in memory
1266     // at a constant offset from a register. However, for variables passed
1267     // indirectly by pointer, it is common for that pointer to be spilled to a
1268     // stack location. For the special case of one offseted load followed by a
1269     // zero offset load (a pointer spilled to the stack), we change the type of
1270     // the local variable from a value type to a reference type. This tricks the
1271     // debugger into doing the load for us.
1272     if (Var.UseReferenceType) {
1273       // We're using a reference type. Drop the last zero offset load.
1274       if (canUseReferenceType(*Location))
1275         Location->LoadChain.pop_back();
1276       else
1277         continue;
1278     } else if (needsReferenceType(*Location)) {
1279       // This location can't be expressed without switching to a reference type.
1280       // Start over using that.
1281       Var.UseReferenceType = true;
1282       Var.DefRanges.clear();
1283       calculateRanges(Var, Entries);
1284       return;
1285     }
1286 
1287     // We can only handle a register or an offseted load of a register.
1288     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1289       continue;
1290     {
1291       LocalVarDefRange DR;
1292       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1293       DR.InMemory = !Location->LoadChain.empty();
1294       DR.DataOffset =
1295           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1296       if (Location->FragmentInfo) {
1297         DR.IsSubfield = true;
1298         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1299       } else {
1300         DR.IsSubfield = false;
1301         DR.StructOffset = 0;
1302       }
1303 
1304       if (Var.DefRanges.empty() ||
1305           Var.DefRanges.back().isDifferentLocation(DR)) {
1306         Var.DefRanges.emplace_back(std::move(DR));
1307       }
1308     }
1309 
1310     // Compute the label range.
1311     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1312     const MCSymbol *End;
1313     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1314       auto &EndingEntry = Entries[Entry.getEndIndex()];
1315       End = EndingEntry.isDbgValue()
1316                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1317                 : getLabelAfterInsn(EndingEntry.getInstr());
1318     } else
1319       End = Asm->getFunctionEnd();
1320 
1321     // If the last range end is our begin, just extend the last range.
1322     // Otherwise make a new range.
1323     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1324         Var.DefRanges.back().Ranges;
1325     if (!R.empty() && R.back().second == Begin)
1326       R.back().second = End;
1327     else
1328       R.emplace_back(Begin, End);
1329 
1330     // FIXME: Do more range combining.
1331   }
1332 }
1333 
1334 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1335   DenseSet<InlinedEntity> Processed;
1336   // Grab the variable info that was squirreled away in the MMI side-table.
1337   collectVariableInfoFromMFTable(Processed);
1338 
1339   for (const auto &I : DbgValues) {
1340     InlinedEntity IV = I.first;
1341     if (Processed.count(IV))
1342       continue;
1343     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1344     const DILocation *InlinedAt = IV.second;
1345 
1346     // Instruction ranges, specifying where IV is accessible.
1347     const auto &Entries = I.second;
1348 
1349     LexicalScope *Scope = nullptr;
1350     if (InlinedAt)
1351       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1352     else
1353       Scope = LScopes.findLexicalScope(DIVar->getScope());
1354     // If variable scope is not found then skip this variable.
1355     if (!Scope)
1356       continue;
1357 
1358     LocalVariable Var;
1359     Var.DIVar = DIVar;
1360 
1361     calculateRanges(Var, Entries);
1362     recordLocalVariable(std::move(Var), Scope);
1363   }
1364 }
1365 
1366 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1367   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1368   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1369   const MachineFrameInfo &MFI = MF->getFrameInfo();
1370   const Function &GV = MF->getFunction();
1371   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1372   assert(Insertion.second && "function already has info");
1373   CurFn = Insertion.first->second.get();
1374   CurFn->FuncId = NextFuncId++;
1375   CurFn->Begin = Asm->getFunctionBegin();
1376 
1377   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1378   // callee-saved registers were used. For targets that don't use a PUSH
1379   // instruction (AArch64), this will be zero.
1380   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1381   CurFn->FrameSize = MFI.getStackSize();
1382   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1383   CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1384 
1385   // For this function S_FRAMEPROC record, figure out which codeview register
1386   // will be the frame pointer.
1387   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1388   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1389   if (CurFn->FrameSize > 0) {
1390     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1391       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1392       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1393     } else {
1394       // If there is an FP, parameters are always relative to it.
1395       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1396       if (CurFn->HasStackRealignment) {
1397         // If the stack needs realignment, locals are relative to SP or VFRAME.
1398         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1399       } else {
1400         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1401         // other stack adjustments.
1402         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1403       }
1404     }
1405   }
1406 
1407   // Compute other frame procedure options.
1408   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1409   if (MFI.hasVarSizedObjects())
1410     FPO |= FrameProcedureOptions::HasAlloca;
1411   if (MF->exposesReturnsTwice())
1412     FPO |= FrameProcedureOptions::HasSetJmp;
1413   // FIXME: Set HasLongJmp if we ever track that info.
1414   if (MF->hasInlineAsm())
1415     FPO |= FrameProcedureOptions::HasInlineAssembly;
1416   if (GV.hasPersonalityFn()) {
1417     if (isAsynchronousEHPersonality(
1418             classifyEHPersonality(GV.getPersonalityFn())))
1419       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1420     else
1421       FPO |= FrameProcedureOptions::HasExceptionHandling;
1422   }
1423   if (GV.hasFnAttribute(Attribute::InlineHint))
1424     FPO |= FrameProcedureOptions::MarkedInline;
1425   if (GV.hasFnAttribute(Attribute::Naked))
1426     FPO |= FrameProcedureOptions::Naked;
1427   if (MFI.hasStackProtectorIndex())
1428     FPO |= FrameProcedureOptions::SecurityChecks;
1429   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1430   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1431   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1432       !GV.hasOptSize() && !GV.hasOptNone())
1433     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1434   if (GV.hasProfileData()) {
1435     FPO |= FrameProcedureOptions::ValidProfileCounts;
1436     FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1437   }
1438   // FIXME: Set GuardCfg when it is implemented.
1439   CurFn->FrameProcOpts = FPO;
1440 
1441   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1442 
1443   // Find the end of the function prolog.  First known non-DBG_VALUE and
1444   // non-frame setup location marks the beginning of the function body.
1445   // FIXME: is there a simpler a way to do this? Can we just search
1446   // for the first instruction of the function, not the last of the prolog?
1447   DebugLoc PrologEndLoc;
1448   bool EmptyPrologue = true;
1449   for (const auto &MBB : *MF) {
1450     for (const auto &MI : MBB) {
1451       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1452           MI.getDebugLoc()) {
1453         PrologEndLoc = MI.getDebugLoc();
1454         break;
1455       } else if (!MI.isMetaInstruction()) {
1456         EmptyPrologue = false;
1457       }
1458     }
1459   }
1460 
1461   // Record beginning of function if we have a non-empty prologue.
1462   if (PrologEndLoc && !EmptyPrologue) {
1463     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1464     maybeRecordLocation(FnStartDL, MF);
1465   }
1466 
1467   // Find heap alloc sites and emit labels around them.
1468   for (const auto &MBB : *MF) {
1469     for (const auto &MI : MBB) {
1470       if (MI.getHeapAllocMarker()) {
1471         requestLabelBeforeInsn(&MI);
1472         requestLabelAfterInsn(&MI);
1473       }
1474     }
1475   }
1476 }
1477 
1478 static bool shouldEmitUdt(const DIType *T) {
1479   if (!T)
1480     return false;
1481 
1482   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1483   if (T->getTag() == dwarf::DW_TAG_typedef) {
1484     if (DIScope *Scope = T->getScope()) {
1485       switch (Scope->getTag()) {
1486       case dwarf::DW_TAG_structure_type:
1487       case dwarf::DW_TAG_class_type:
1488       case dwarf::DW_TAG_union_type:
1489         return false;
1490       }
1491     }
1492   }
1493 
1494   while (true) {
1495     if (!T || T->isForwardDecl())
1496       return false;
1497 
1498     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1499     if (!DT)
1500       return true;
1501     T = DT->getBaseType();
1502   }
1503   return true;
1504 }
1505 
1506 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1507   // Don't record empty UDTs.
1508   if (Ty->getName().empty())
1509     return;
1510   if (!shouldEmitUdt(Ty))
1511     return;
1512 
1513   SmallVector<StringRef, 5> ParentScopeNames;
1514   const DISubprogram *ClosestSubprogram =
1515       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1516 
1517   std::string FullyQualifiedName =
1518       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1519 
1520   if (ClosestSubprogram == nullptr) {
1521     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1522   } else if (ClosestSubprogram == CurrentSubprogram) {
1523     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1524   }
1525 
1526   // TODO: What if the ClosestSubprogram is neither null or the current
1527   // subprogram?  Currently, the UDT just gets dropped on the floor.
1528   //
1529   // The current behavior is not desirable.  To get maximal fidelity, we would
1530   // need to perform all type translation before beginning emission of .debug$S
1531   // and then make LocalUDTs a member of FunctionInfo
1532 }
1533 
1534 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1535   // Generic dispatch for lowering an unknown type.
1536   switch (Ty->getTag()) {
1537   case dwarf::DW_TAG_array_type:
1538     return lowerTypeArray(cast<DICompositeType>(Ty));
1539   case dwarf::DW_TAG_typedef:
1540     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1541   case dwarf::DW_TAG_base_type:
1542     return lowerTypeBasic(cast<DIBasicType>(Ty));
1543   case dwarf::DW_TAG_pointer_type:
1544     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1545       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1546     LLVM_FALLTHROUGH;
1547   case dwarf::DW_TAG_reference_type:
1548   case dwarf::DW_TAG_rvalue_reference_type:
1549     return lowerTypePointer(cast<DIDerivedType>(Ty));
1550   case dwarf::DW_TAG_ptr_to_member_type:
1551     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1552   case dwarf::DW_TAG_restrict_type:
1553   case dwarf::DW_TAG_const_type:
1554   case dwarf::DW_TAG_volatile_type:
1555   // TODO: add support for DW_TAG_atomic_type here
1556     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1557   case dwarf::DW_TAG_subroutine_type:
1558     if (ClassTy) {
1559       // The member function type of a member function pointer has no
1560       // ThisAdjustment.
1561       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1562                                      /*ThisAdjustment=*/0,
1563                                      /*IsStaticMethod=*/false);
1564     }
1565     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1566   case dwarf::DW_TAG_enumeration_type:
1567     return lowerTypeEnum(cast<DICompositeType>(Ty));
1568   case dwarf::DW_TAG_class_type:
1569   case dwarf::DW_TAG_structure_type:
1570     return lowerTypeClass(cast<DICompositeType>(Ty));
1571   case dwarf::DW_TAG_union_type:
1572     return lowerTypeUnion(cast<DICompositeType>(Ty));
1573   case dwarf::DW_TAG_unspecified_type:
1574     if (Ty->getName() == "decltype(nullptr)")
1575       return TypeIndex::NullptrT();
1576     return TypeIndex::None();
1577   default:
1578     // Use the null type index.
1579     return TypeIndex();
1580   }
1581 }
1582 
1583 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1584   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1585   StringRef TypeName = Ty->getName();
1586 
1587   addToUDTs(Ty);
1588 
1589   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1590       TypeName == "HRESULT")
1591     return TypeIndex(SimpleTypeKind::HResult);
1592   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1593       TypeName == "wchar_t")
1594     return TypeIndex(SimpleTypeKind::WideCharacter);
1595 
1596   return UnderlyingTypeIndex;
1597 }
1598 
1599 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1600   const DIType *ElementType = Ty->getBaseType();
1601   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1602   // IndexType is size_t, which depends on the bitness of the target.
1603   TypeIndex IndexType = getPointerSizeInBytes() == 8
1604                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1605                             : TypeIndex(SimpleTypeKind::UInt32Long);
1606 
1607   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1608 
1609   // Add subranges to array type.
1610   DINodeArray Elements = Ty->getElements();
1611   for (int i = Elements.size() - 1; i >= 0; --i) {
1612     const DINode *Element = Elements[i];
1613     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1614 
1615     const DISubrange *Subrange = cast<DISubrange>(Element);
1616     int64_t Count = -1;
1617     // Calculate the count if either LowerBound is absent or is zero and
1618     // either of Count or UpperBound are constant.
1619     auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>();
1620     if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) {
1621       if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1622         Count = CI->getSExtValue();
1623       else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>())
1624         Count = UI->getSExtValue() + 1; // LowerBound is zero
1625     }
1626 
1627     // Forward declarations of arrays without a size and VLAs use a count of -1.
1628     // Emit a count of zero in these cases to match what MSVC does for arrays
1629     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1630     // should do for them even if we could distinguish them.
1631     if (Count == -1)
1632       Count = 0;
1633 
1634     // Update the element size and element type index for subsequent subranges.
1635     ElementSize *= Count;
1636 
1637     // If this is the outermost array, use the size from the array. It will be
1638     // more accurate if we had a VLA or an incomplete element type size.
1639     uint64_t ArraySize =
1640         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1641 
1642     StringRef Name = (i == 0) ? Ty->getName() : "";
1643     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1644     ElementTypeIndex = TypeTable.writeLeafType(AR);
1645   }
1646 
1647   return ElementTypeIndex;
1648 }
1649 
1650 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1651   TypeIndex Index;
1652   dwarf::TypeKind Kind;
1653   uint32_t ByteSize;
1654 
1655   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1656   ByteSize = Ty->getSizeInBits() / 8;
1657 
1658   SimpleTypeKind STK = SimpleTypeKind::None;
1659   switch (Kind) {
1660   case dwarf::DW_ATE_address:
1661     // FIXME: Translate
1662     break;
1663   case dwarf::DW_ATE_boolean:
1664     switch (ByteSize) {
1665     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1666     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1667     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1668     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1669     case 16: STK = SimpleTypeKind::Boolean128; break;
1670     }
1671     break;
1672   case dwarf::DW_ATE_complex_float:
1673     switch (ByteSize) {
1674     case 2:  STK = SimpleTypeKind::Complex16;  break;
1675     case 4:  STK = SimpleTypeKind::Complex32;  break;
1676     case 8:  STK = SimpleTypeKind::Complex64;  break;
1677     case 10: STK = SimpleTypeKind::Complex80;  break;
1678     case 16: STK = SimpleTypeKind::Complex128; break;
1679     }
1680     break;
1681   case dwarf::DW_ATE_float:
1682     switch (ByteSize) {
1683     case 2:  STK = SimpleTypeKind::Float16;  break;
1684     case 4:  STK = SimpleTypeKind::Float32;  break;
1685     case 6:  STK = SimpleTypeKind::Float48;  break;
1686     case 8:  STK = SimpleTypeKind::Float64;  break;
1687     case 10: STK = SimpleTypeKind::Float80;  break;
1688     case 16: STK = SimpleTypeKind::Float128; break;
1689     }
1690     break;
1691   case dwarf::DW_ATE_signed:
1692     switch (ByteSize) {
1693     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1694     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1695     case 4:  STK = SimpleTypeKind::Int32;           break;
1696     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1697     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1698     }
1699     break;
1700   case dwarf::DW_ATE_unsigned:
1701     switch (ByteSize) {
1702     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1703     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1704     case 4:  STK = SimpleTypeKind::UInt32;            break;
1705     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1706     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1707     }
1708     break;
1709   case dwarf::DW_ATE_UTF:
1710     switch (ByteSize) {
1711     case 2: STK = SimpleTypeKind::Character16; break;
1712     case 4: STK = SimpleTypeKind::Character32; break;
1713     }
1714     break;
1715   case dwarf::DW_ATE_signed_char:
1716     if (ByteSize == 1)
1717       STK = SimpleTypeKind::SignedCharacter;
1718     break;
1719   case dwarf::DW_ATE_unsigned_char:
1720     if (ByteSize == 1)
1721       STK = SimpleTypeKind::UnsignedCharacter;
1722     break;
1723   default:
1724     break;
1725   }
1726 
1727   // Apply some fixups based on the source-level type name.
1728   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1729     STK = SimpleTypeKind::Int32Long;
1730   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1731     STK = SimpleTypeKind::UInt32Long;
1732   if (STK == SimpleTypeKind::UInt16Short &&
1733       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1734     STK = SimpleTypeKind::WideCharacter;
1735   if ((STK == SimpleTypeKind::SignedCharacter ||
1736        STK == SimpleTypeKind::UnsignedCharacter) &&
1737       Ty->getName() == "char")
1738     STK = SimpleTypeKind::NarrowCharacter;
1739 
1740   return TypeIndex(STK);
1741 }
1742 
1743 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1744                                           PointerOptions PO) {
1745   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1746 
1747   // Pointers to simple types without any options can use SimpleTypeMode, rather
1748   // than having a dedicated pointer type record.
1749   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1750       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1751       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1752     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1753                               ? SimpleTypeMode::NearPointer64
1754                               : SimpleTypeMode::NearPointer32;
1755     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1756   }
1757 
1758   PointerKind PK =
1759       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1760   PointerMode PM = PointerMode::Pointer;
1761   switch (Ty->getTag()) {
1762   default: llvm_unreachable("not a pointer tag type");
1763   case dwarf::DW_TAG_pointer_type:
1764     PM = PointerMode::Pointer;
1765     break;
1766   case dwarf::DW_TAG_reference_type:
1767     PM = PointerMode::LValueReference;
1768     break;
1769   case dwarf::DW_TAG_rvalue_reference_type:
1770     PM = PointerMode::RValueReference;
1771     break;
1772   }
1773 
1774   if (Ty->isObjectPointer())
1775     PO |= PointerOptions::Const;
1776 
1777   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1778   return TypeTable.writeLeafType(PR);
1779 }
1780 
1781 static PointerToMemberRepresentation
1782 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1783   // SizeInBytes being zero generally implies that the member pointer type was
1784   // incomplete, which can happen if it is part of a function prototype. In this
1785   // case, use the unknown model instead of the general model.
1786   if (IsPMF) {
1787     switch (Flags & DINode::FlagPtrToMemberRep) {
1788     case 0:
1789       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1790                               : PointerToMemberRepresentation::GeneralFunction;
1791     case DINode::FlagSingleInheritance:
1792       return PointerToMemberRepresentation::SingleInheritanceFunction;
1793     case DINode::FlagMultipleInheritance:
1794       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1795     case DINode::FlagVirtualInheritance:
1796       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1797     }
1798   } else {
1799     switch (Flags & DINode::FlagPtrToMemberRep) {
1800     case 0:
1801       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1802                               : PointerToMemberRepresentation::GeneralData;
1803     case DINode::FlagSingleInheritance:
1804       return PointerToMemberRepresentation::SingleInheritanceData;
1805     case DINode::FlagMultipleInheritance:
1806       return PointerToMemberRepresentation::MultipleInheritanceData;
1807     case DINode::FlagVirtualInheritance:
1808       return PointerToMemberRepresentation::VirtualInheritanceData;
1809     }
1810   }
1811   llvm_unreachable("invalid ptr to member representation");
1812 }
1813 
1814 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1815                                                 PointerOptions PO) {
1816   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1817   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1818   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1819   TypeIndex PointeeTI =
1820       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1821   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1822                                                 : PointerKind::Near32;
1823   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1824                          : PointerMode::PointerToDataMember;
1825 
1826   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1827   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1828   MemberPointerInfo MPI(
1829       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1830   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1831   return TypeTable.writeLeafType(PR);
1832 }
1833 
1834 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1835 /// have a translation, use the NearC convention.
1836 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1837   switch (DwarfCC) {
1838   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1839   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1840   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1841   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1842   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1843   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1844   }
1845   return CallingConvention::NearC;
1846 }
1847 
1848 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1849   ModifierOptions Mods = ModifierOptions::None;
1850   PointerOptions PO = PointerOptions::None;
1851   bool IsModifier = true;
1852   const DIType *BaseTy = Ty;
1853   while (IsModifier && BaseTy) {
1854     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1855     switch (BaseTy->getTag()) {
1856     case dwarf::DW_TAG_const_type:
1857       Mods |= ModifierOptions::Const;
1858       PO |= PointerOptions::Const;
1859       break;
1860     case dwarf::DW_TAG_volatile_type:
1861       Mods |= ModifierOptions::Volatile;
1862       PO |= PointerOptions::Volatile;
1863       break;
1864     case dwarf::DW_TAG_restrict_type:
1865       // Only pointer types be marked with __restrict. There is no known flag
1866       // for __restrict in LF_MODIFIER records.
1867       PO |= PointerOptions::Restrict;
1868       break;
1869     default:
1870       IsModifier = false;
1871       break;
1872     }
1873     if (IsModifier)
1874       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1875   }
1876 
1877   // Check if the inner type will use an LF_POINTER record. If so, the
1878   // qualifiers will go in the LF_POINTER record. This comes up for types like
1879   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1880   // char *'.
1881   if (BaseTy) {
1882     switch (BaseTy->getTag()) {
1883     case dwarf::DW_TAG_pointer_type:
1884     case dwarf::DW_TAG_reference_type:
1885     case dwarf::DW_TAG_rvalue_reference_type:
1886       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1887     case dwarf::DW_TAG_ptr_to_member_type:
1888       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1889     default:
1890       break;
1891     }
1892   }
1893 
1894   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1895 
1896   // Return the base type index if there aren't any modifiers. For example, the
1897   // metadata could contain restrict wrappers around non-pointer types.
1898   if (Mods == ModifierOptions::None)
1899     return ModifiedTI;
1900 
1901   ModifierRecord MR(ModifiedTI, Mods);
1902   return TypeTable.writeLeafType(MR);
1903 }
1904 
1905 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1906   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1907   for (const DIType *ArgType : Ty->getTypeArray())
1908     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1909 
1910   // MSVC uses type none for variadic argument.
1911   if (ReturnAndArgTypeIndices.size() > 1 &&
1912       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1913     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1914   }
1915   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1916   ArrayRef<TypeIndex> ArgTypeIndices = None;
1917   if (!ReturnAndArgTypeIndices.empty()) {
1918     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1919     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1920     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1921   }
1922 
1923   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1924   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1925 
1926   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1927 
1928   FunctionOptions FO = getFunctionOptions(Ty);
1929   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1930                             ArgListIndex);
1931   return TypeTable.writeLeafType(Procedure);
1932 }
1933 
1934 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1935                                                  const DIType *ClassTy,
1936                                                  int ThisAdjustment,
1937                                                  bool IsStaticMethod,
1938                                                  FunctionOptions FO) {
1939   // Lower the containing class type.
1940   TypeIndex ClassType = getTypeIndex(ClassTy);
1941 
1942   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1943 
1944   unsigned Index = 0;
1945   SmallVector<TypeIndex, 8> ArgTypeIndices;
1946   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1947   if (ReturnAndArgs.size() > Index) {
1948     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1949   }
1950 
1951   // If the first argument is a pointer type and this isn't a static method,
1952   // treat it as the special 'this' parameter, which is encoded separately from
1953   // the arguments.
1954   TypeIndex ThisTypeIndex;
1955   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1956     if (const DIDerivedType *PtrTy =
1957             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
1958       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1959         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1960         Index++;
1961       }
1962     }
1963   }
1964 
1965   while (Index < ReturnAndArgs.size())
1966     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1967 
1968   // MSVC uses type none for variadic argument.
1969   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1970     ArgTypeIndices.back() = TypeIndex::None();
1971 
1972   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1973   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1974 
1975   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1976 
1977   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1978                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1979   return TypeTable.writeLeafType(MFR);
1980 }
1981 
1982 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1983   unsigned VSlotCount =
1984       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1985   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1986 
1987   VFTableShapeRecord VFTSR(Slots);
1988   return TypeTable.writeLeafType(VFTSR);
1989 }
1990 
1991 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1992   switch (Flags & DINode::FlagAccessibility) {
1993   case DINode::FlagPrivate:   return MemberAccess::Private;
1994   case DINode::FlagPublic:    return MemberAccess::Public;
1995   case DINode::FlagProtected: return MemberAccess::Protected;
1996   case 0:
1997     // If there was no explicit access control, provide the default for the tag.
1998     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1999                                                  : MemberAccess::Public;
2000   }
2001   llvm_unreachable("access flags are exclusive");
2002 }
2003 
2004 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2005   if (SP->isArtificial())
2006     return MethodOptions::CompilerGenerated;
2007 
2008   // FIXME: Handle other MethodOptions.
2009 
2010   return MethodOptions::None;
2011 }
2012 
2013 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2014                                            bool Introduced) {
2015   if (SP->getFlags() & DINode::FlagStaticMember)
2016     return MethodKind::Static;
2017 
2018   switch (SP->getVirtuality()) {
2019   case dwarf::DW_VIRTUALITY_none:
2020     break;
2021   case dwarf::DW_VIRTUALITY_virtual:
2022     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2023   case dwarf::DW_VIRTUALITY_pure_virtual:
2024     return Introduced ? MethodKind::PureIntroducingVirtual
2025                       : MethodKind::PureVirtual;
2026   default:
2027     llvm_unreachable("unhandled virtuality case");
2028   }
2029 
2030   return MethodKind::Vanilla;
2031 }
2032 
2033 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2034   switch (Ty->getTag()) {
2035   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
2036   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
2037   }
2038   llvm_unreachable("unexpected tag");
2039 }
2040 
2041 /// Return ClassOptions that should be present on both the forward declaration
2042 /// and the defintion of a tag type.
2043 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2044   ClassOptions CO = ClassOptions::None;
2045 
2046   // MSVC always sets this flag, even for local types. Clang doesn't always
2047   // appear to give every type a linkage name, which may be problematic for us.
2048   // FIXME: Investigate the consequences of not following them here.
2049   if (!Ty->getIdentifier().empty())
2050     CO |= ClassOptions::HasUniqueName;
2051 
2052   // Put the Nested flag on a type if it appears immediately inside a tag type.
2053   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2054   // here. That flag is only set on definitions, and not forward declarations.
2055   const DIScope *ImmediateScope = Ty->getScope();
2056   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2057     CO |= ClassOptions::Nested;
2058 
2059   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2060   // type only when it has an immediate function scope. Clang never puts enums
2061   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2062   // always in function, class, or file scopes.
2063   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2064     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2065       CO |= ClassOptions::Scoped;
2066   } else {
2067     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2068          Scope = Scope->getScope()) {
2069       if (isa<DISubprogram>(Scope)) {
2070         CO |= ClassOptions::Scoped;
2071         break;
2072       }
2073     }
2074   }
2075 
2076   return CO;
2077 }
2078 
2079 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2080   switch (Ty->getTag()) {
2081   case dwarf::DW_TAG_class_type:
2082   case dwarf::DW_TAG_structure_type:
2083   case dwarf::DW_TAG_union_type:
2084   case dwarf::DW_TAG_enumeration_type:
2085     break;
2086   default:
2087     return;
2088   }
2089 
2090   if (const auto *File = Ty->getFile()) {
2091     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2092     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2093 
2094     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2095     TypeTable.writeLeafType(USLR);
2096   }
2097 }
2098 
2099 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2100   ClassOptions CO = getCommonClassOptions(Ty);
2101   TypeIndex FTI;
2102   unsigned EnumeratorCount = 0;
2103 
2104   if (Ty->isForwardDecl()) {
2105     CO |= ClassOptions::ForwardReference;
2106   } else {
2107     ContinuationRecordBuilder ContinuationBuilder;
2108     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2109     for (const DINode *Element : Ty->getElements()) {
2110       // We assume that the frontend provides all members in source declaration
2111       // order, which is what MSVC does.
2112       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2113         EnumeratorRecord ER(MemberAccess::Public,
2114                             APSInt(Enumerator->getValue(), true),
2115                             Enumerator->getName());
2116         ContinuationBuilder.writeMemberType(ER);
2117         EnumeratorCount++;
2118       }
2119     }
2120     FTI = TypeTable.insertRecord(ContinuationBuilder);
2121   }
2122 
2123   std::string FullName = getFullyQualifiedName(Ty);
2124 
2125   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2126                 getTypeIndex(Ty->getBaseType()));
2127   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2128 
2129   addUDTSrcLine(Ty, EnumTI);
2130 
2131   return EnumTI;
2132 }
2133 
2134 //===----------------------------------------------------------------------===//
2135 // ClassInfo
2136 //===----------------------------------------------------------------------===//
2137 
2138 struct llvm::ClassInfo {
2139   struct MemberInfo {
2140     const DIDerivedType *MemberTypeNode;
2141     uint64_t BaseOffset;
2142   };
2143   // [MemberInfo]
2144   using MemberList = std::vector<MemberInfo>;
2145 
2146   using MethodsList = TinyPtrVector<const DISubprogram *>;
2147   // MethodName -> MethodsList
2148   using MethodsMap = MapVector<MDString *, MethodsList>;
2149 
2150   /// Base classes.
2151   std::vector<const DIDerivedType *> Inheritance;
2152 
2153   /// Direct members.
2154   MemberList Members;
2155   // Direct overloaded methods gathered by name.
2156   MethodsMap Methods;
2157 
2158   TypeIndex VShapeTI;
2159 
2160   std::vector<const DIType *> NestedTypes;
2161 };
2162 
2163 void CodeViewDebug::clear() {
2164   assert(CurFn == nullptr);
2165   FileIdMap.clear();
2166   FnDebugInfo.clear();
2167   FileToFilepathMap.clear();
2168   LocalUDTs.clear();
2169   GlobalUDTs.clear();
2170   TypeIndices.clear();
2171   CompleteTypeIndices.clear();
2172   ScopeGlobals.clear();
2173 }
2174 
2175 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2176                                       const DIDerivedType *DDTy) {
2177   if (!DDTy->getName().empty()) {
2178     Info.Members.push_back({DDTy, 0});
2179 
2180     // Collect static const data members with values.
2181     if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2182         DINode::FlagStaticMember) {
2183       if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2184                                   isa<ConstantFP>(DDTy->getConstant())))
2185         StaticConstMembers.push_back(DDTy);
2186     }
2187 
2188     return;
2189   }
2190 
2191   // An unnamed member may represent a nested struct or union. Attempt to
2192   // interpret the unnamed member as a DICompositeType possibly wrapped in
2193   // qualifier types. Add all the indirect fields to the current record if that
2194   // succeeds, and drop the member if that fails.
2195   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2196   uint64_t Offset = DDTy->getOffsetInBits();
2197   const DIType *Ty = DDTy->getBaseType();
2198   bool FullyResolved = false;
2199   while (!FullyResolved) {
2200     switch (Ty->getTag()) {
2201     case dwarf::DW_TAG_const_type:
2202     case dwarf::DW_TAG_volatile_type:
2203       // FIXME: we should apply the qualifier types to the indirect fields
2204       // rather than dropping them.
2205       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2206       break;
2207     default:
2208       FullyResolved = true;
2209       break;
2210     }
2211   }
2212 
2213   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2214   if (!DCTy)
2215     return;
2216 
2217   ClassInfo NestedInfo = collectClassInfo(DCTy);
2218   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2219     Info.Members.push_back(
2220         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2221 }
2222 
2223 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2224   ClassInfo Info;
2225   // Add elements to structure type.
2226   DINodeArray Elements = Ty->getElements();
2227   for (auto *Element : Elements) {
2228     // We assume that the frontend provides all members in source declaration
2229     // order, which is what MSVC does.
2230     if (!Element)
2231       continue;
2232     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2233       Info.Methods[SP->getRawName()].push_back(SP);
2234     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2235       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2236         collectMemberInfo(Info, DDTy);
2237       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2238         Info.Inheritance.push_back(DDTy);
2239       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2240                  DDTy->getName() == "__vtbl_ptr_type") {
2241         Info.VShapeTI = getTypeIndex(DDTy);
2242       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2243         Info.NestedTypes.push_back(DDTy);
2244       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2245         // Ignore friend members. It appears that MSVC emitted info about
2246         // friends in the past, but modern versions do not.
2247       }
2248     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2249       Info.NestedTypes.push_back(Composite);
2250     }
2251     // Skip other unrecognized kinds of elements.
2252   }
2253   return Info;
2254 }
2255 
2256 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2257   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2258   // if a complete type should be emitted instead of a forward reference.
2259   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2260       !Ty->isForwardDecl();
2261 }
2262 
2263 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2264   // Emit the complete type for unnamed structs.  C++ classes with methods
2265   // which have a circular reference back to the class type are expected to
2266   // be named by the front-end and should not be "unnamed".  C unnamed
2267   // structs should not have circular references.
2268   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2269     // If this unnamed complete type is already in the process of being defined
2270     // then the description of the type is malformed and cannot be emitted
2271     // into CodeView correctly so report a fatal error.
2272     auto I = CompleteTypeIndices.find(Ty);
2273     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2274       report_fatal_error("cannot debug circular reference to unnamed type");
2275     return getCompleteTypeIndex(Ty);
2276   }
2277 
2278   // First, construct the forward decl.  Don't look into Ty to compute the
2279   // forward decl options, since it might not be available in all TUs.
2280   TypeRecordKind Kind = getRecordKind(Ty);
2281   ClassOptions CO =
2282       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2283   std::string FullName = getFullyQualifiedName(Ty);
2284   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2285                  FullName, Ty->getIdentifier());
2286   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2287   if (!Ty->isForwardDecl())
2288     DeferredCompleteTypes.push_back(Ty);
2289   return FwdDeclTI;
2290 }
2291 
2292 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2293   // Construct the field list and complete type record.
2294   TypeRecordKind Kind = getRecordKind(Ty);
2295   ClassOptions CO = getCommonClassOptions(Ty);
2296   TypeIndex FieldTI;
2297   TypeIndex VShapeTI;
2298   unsigned FieldCount;
2299   bool ContainsNestedClass;
2300   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2301       lowerRecordFieldList(Ty);
2302 
2303   if (ContainsNestedClass)
2304     CO |= ClassOptions::ContainsNestedClass;
2305 
2306   // MSVC appears to set this flag by searching any destructor or method with
2307   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2308   // the members, however special member functions are not yet emitted into
2309   // debug information. For now checking a class's non-triviality seems enough.
2310   // FIXME: not true for a nested unnamed struct.
2311   if (isNonTrivial(Ty))
2312     CO |= ClassOptions::HasConstructorOrDestructor;
2313 
2314   std::string FullName = getFullyQualifiedName(Ty);
2315 
2316   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2317 
2318   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2319                  SizeInBytes, FullName, Ty->getIdentifier());
2320   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2321 
2322   addUDTSrcLine(Ty, ClassTI);
2323 
2324   addToUDTs(Ty);
2325 
2326   return ClassTI;
2327 }
2328 
2329 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2330   // Emit the complete type for unnamed unions.
2331   if (shouldAlwaysEmitCompleteClassType(Ty))
2332     return getCompleteTypeIndex(Ty);
2333 
2334   ClassOptions CO =
2335       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2336   std::string FullName = getFullyQualifiedName(Ty);
2337   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2338   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2339   if (!Ty->isForwardDecl())
2340     DeferredCompleteTypes.push_back(Ty);
2341   return FwdDeclTI;
2342 }
2343 
2344 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2345   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2346   TypeIndex FieldTI;
2347   unsigned FieldCount;
2348   bool ContainsNestedClass;
2349   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2350       lowerRecordFieldList(Ty);
2351 
2352   if (ContainsNestedClass)
2353     CO |= ClassOptions::ContainsNestedClass;
2354 
2355   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2356   std::string FullName = getFullyQualifiedName(Ty);
2357 
2358   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2359                  Ty->getIdentifier());
2360   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2361 
2362   addUDTSrcLine(Ty, UnionTI);
2363 
2364   addToUDTs(Ty);
2365 
2366   return UnionTI;
2367 }
2368 
2369 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2370 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2371   // Manually count members. MSVC appears to count everything that generates a
2372   // field list record. Each individual overload in a method overload group
2373   // contributes to this count, even though the overload group is a single field
2374   // list record.
2375   unsigned MemberCount = 0;
2376   ClassInfo Info = collectClassInfo(Ty);
2377   ContinuationRecordBuilder ContinuationBuilder;
2378   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2379 
2380   // Create base classes.
2381   for (const DIDerivedType *I : Info.Inheritance) {
2382     if (I->getFlags() & DINode::FlagVirtual) {
2383       // Virtual base.
2384       unsigned VBPtrOffset = I->getVBPtrOffset();
2385       // FIXME: Despite the accessor name, the offset is really in bytes.
2386       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2387       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2388                             ? TypeRecordKind::IndirectVirtualBaseClass
2389                             : TypeRecordKind::VirtualBaseClass;
2390       VirtualBaseClassRecord VBCR(
2391           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2392           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2393           VBTableIndex);
2394 
2395       ContinuationBuilder.writeMemberType(VBCR);
2396       MemberCount++;
2397     } else {
2398       assert(I->getOffsetInBits() % 8 == 0 &&
2399              "bases must be on byte boundaries");
2400       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2401                           getTypeIndex(I->getBaseType()),
2402                           I->getOffsetInBits() / 8);
2403       ContinuationBuilder.writeMemberType(BCR);
2404       MemberCount++;
2405     }
2406   }
2407 
2408   // Create members.
2409   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2410     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2411     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2412     StringRef MemberName = Member->getName();
2413     MemberAccess Access =
2414         translateAccessFlags(Ty->getTag(), Member->getFlags());
2415 
2416     if (Member->isStaticMember()) {
2417       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2418       ContinuationBuilder.writeMemberType(SDMR);
2419       MemberCount++;
2420       continue;
2421     }
2422 
2423     // Virtual function pointer member.
2424     if ((Member->getFlags() & DINode::FlagArtificial) &&
2425         Member->getName().startswith("_vptr$")) {
2426       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2427       ContinuationBuilder.writeMemberType(VFPR);
2428       MemberCount++;
2429       continue;
2430     }
2431 
2432     // Data member.
2433     uint64_t MemberOffsetInBits =
2434         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2435     if (Member->isBitField()) {
2436       uint64_t StartBitOffset = MemberOffsetInBits;
2437       if (const auto *CI =
2438               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2439         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2440       }
2441       StartBitOffset -= MemberOffsetInBits;
2442       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2443                          StartBitOffset);
2444       MemberBaseType = TypeTable.writeLeafType(BFR);
2445     }
2446     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2447     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2448                          MemberName);
2449     ContinuationBuilder.writeMemberType(DMR);
2450     MemberCount++;
2451   }
2452 
2453   // Create methods
2454   for (auto &MethodItr : Info.Methods) {
2455     StringRef Name = MethodItr.first->getString();
2456 
2457     std::vector<OneMethodRecord> Methods;
2458     for (const DISubprogram *SP : MethodItr.second) {
2459       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2460       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2461 
2462       unsigned VFTableOffset = -1;
2463       if (Introduced)
2464         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2465 
2466       Methods.push_back(OneMethodRecord(
2467           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2468           translateMethodKindFlags(SP, Introduced),
2469           translateMethodOptionFlags(SP), VFTableOffset, Name));
2470       MemberCount++;
2471     }
2472     assert(!Methods.empty() && "Empty methods map entry");
2473     if (Methods.size() == 1)
2474       ContinuationBuilder.writeMemberType(Methods[0]);
2475     else {
2476       // FIXME: Make this use its own ContinuationBuilder so that
2477       // MethodOverloadList can be split correctly.
2478       MethodOverloadListRecord MOLR(Methods);
2479       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2480 
2481       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2482       ContinuationBuilder.writeMemberType(OMR);
2483     }
2484   }
2485 
2486   // Create nested classes.
2487   for (const DIType *Nested : Info.NestedTypes) {
2488     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2489     ContinuationBuilder.writeMemberType(R);
2490     MemberCount++;
2491   }
2492 
2493   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2494   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2495                          !Info.NestedTypes.empty());
2496 }
2497 
2498 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2499   if (!VBPType.getIndex()) {
2500     // Make a 'const int *' type.
2501     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2502     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2503 
2504     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2505                                                   : PointerKind::Near32;
2506     PointerMode PM = PointerMode::Pointer;
2507     PointerOptions PO = PointerOptions::None;
2508     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2509     VBPType = TypeTable.writeLeafType(PR);
2510   }
2511 
2512   return VBPType;
2513 }
2514 
2515 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2516   // The null DIType is the void type. Don't try to hash it.
2517   if (!Ty)
2518     return TypeIndex::Void();
2519 
2520   // Check if we've already translated this type. Don't try to do a
2521   // get-or-create style insertion that caches the hash lookup across the
2522   // lowerType call. It will update the TypeIndices map.
2523   auto I = TypeIndices.find({Ty, ClassTy});
2524   if (I != TypeIndices.end())
2525     return I->second;
2526 
2527   TypeLoweringScope S(*this);
2528   TypeIndex TI = lowerType(Ty, ClassTy);
2529   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2530 }
2531 
2532 codeview::TypeIndex
2533 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2534                                       const DISubroutineType *SubroutineTy) {
2535   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2536          "this type must be a pointer type");
2537 
2538   PointerOptions Options = PointerOptions::None;
2539   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2540     Options = PointerOptions::LValueRefThisPointer;
2541   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2542     Options = PointerOptions::RValueRefThisPointer;
2543 
2544   // Check if we've already translated this type.  If there is no ref qualifier
2545   // on the function then we look up this pointer type with no associated class
2546   // so that the TypeIndex for the this pointer can be shared with the type
2547   // index for other pointers to this class type.  If there is a ref qualifier
2548   // then we lookup the pointer using the subroutine as the parent type.
2549   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2550   if (I != TypeIndices.end())
2551     return I->second;
2552 
2553   TypeLoweringScope S(*this);
2554   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2555   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2556 }
2557 
2558 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2559   PointerRecord PR(getTypeIndex(Ty),
2560                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2561                                                 : PointerKind::Near32,
2562                    PointerMode::LValueReference, PointerOptions::None,
2563                    Ty->getSizeInBits() / 8);
2564   return TypeTable.writeLeafType(PR);
2565 }
2566 
2567 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2568   // The null DIType is the void type. Don't try to hash it.
2569   if (!Ty)
2570     return TypeIndex::Void();
2571 
2572   // Look through typedefs when getting the complete type index. Call
2573   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2574   // emitted only once.
2575   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2576     (void)getTypeIndex(Ty);
2577   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2578     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2579 
2580   // If this is a non-record type, the complete type index is the same as the
2581   // normal type index. Just call getTypeIndex.
2582   switch (Ty->getTag()) {
2583   case dwarf::DW_TAG_class_type:
2584   case dwarf::DW_TAG_structure_type:
2585   case dwarf::DW_TAG_union_type:
2586     break;
2587   default:
2588     return getTypeIndex(Ty);
2589   }
2590 
2591   const auto *CTy = cast<DICompositeType>(Ty);
2592 
2593   TypeLoweringScope S(*this);
2594 
2595   // Make sure the forward declaration is emitted first. It's unclear if this
2596   // is necessary, but MSVC does it, and we should follow suit until we can show
2597   // otherwise.
2598   // We only emit a forward declaration for named types.
2599   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2600     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2601 
2602     // Just use the forward decl if we don't have complete type info. This
2603     // might happen if the frontend is using modules and expects the complete
2604     // definition to be emitted elsewhere.
2605     if (CTy->isForwardDecl())
2606       return FwdDeclTI;
2607   }
2608 
2609   // Check if we've already translated the complete record type.
2610   // Insert the type with a null TypeIndex to signify that the type is currently
2611   // being lowered.
2612   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2613   if (!InsertResult.second)
2614     return InsertResult.first->second;
2615 
2616   TypeIndex TI;
2617   switch (CTy->getTag()) {
2618   case dwarf::DW_TAG_class_type:
2619   case dwarf::DW_TAG_structure_type:
2620     TI = lowerCompleteTypeClass(CTy);
2621     break;
2622   case dwarf::DW_TAG_union_type:
2623     TI = lowerCompleteTypeUnion(CTy);
2624     break;
2625   default:
2626     llvm_unreachable("not a record");
2627   }
2628 
2629   // Update the type index associated with this CompositeType.  This cannot
2630   // use the 'InsertResult' iterator above because it is potentially
2631   // invalidated by map insertions which can occur while lowering the class
2632   // type above.
2633   CompleteTypeIndices[CTy] = TI;
2634   return TI;
2635 }
2636 
2637 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2638 /// and do this until fixpoint, as each complete record type typically
2639 /// references
2640 /// many other record types.
2641 void CodeViewDebug::emitDeferredCompleteTypes() {
2642   SmallVector<const DICompositeType *, 4> TypesToEmit;
2643   while (!DeferredCompleteTypes.empty()) {
2644     std::swap(DeferredCompleteTypes, TypesToEmit);
2645     for (const DICompositeType *RecordTy : TypesToEmit)
2646       getCompleteTypeIndex(RecordTy);
2647     TypesToEmit.clear();
2648   }
2649 }
2650 
2651 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2652                                           ArrayRef<LocalVariable> Locals) {
2653   // Get the sorted list of parameters and emit them first.
2654   SmallVector<const LocalVariable *, 6> Params;
2655   for (const LocalVariable &L : Locals)
2656     if (L.DIVar->isParameter())
2657       Params.push_back(&L);
2658   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2659     return L->DIVar->getArg() < R->DIVar->getArg();
2660   });
2661   for (const LocalVariable *L : Params)
2662     emitLocalVariable(FI, *L);
2663 
2664   // Next emit all non-parameters in the order that we found them.
2665   for (const LocalVariable &L : Locals)
2666     if (!L.DIVar->isParameter())
2667       emitLocalVariable(FI, L);
2668 }
2669 
2670 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2671                                       const LocalVariable &Var) {
2672   // LocalSym record, see SymbolRecord.h for more info.
2673   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2674 
2675   LocalSymFlags Flags = LocalSymFlags::None;
2676   if (Var.DIVar->isParameter())
2677     Flags |= LocalSymFlags::IsParameter;
2678   if (Var.DefRanges.empty())
2679     Flags |= LocalSymFlags::IsOptimizedOut;
2680 
2681   OS.AddComment("TypeIndex");
2682   TypeIndex TI = Var.UseReferenceType
2683                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2684                      : getCompleteTypeIndex(Var.DIVar->getType());
2685   OS.emitInt32(TI.getIndex());
2686   OS.AddComment("Flags");
2687   OS.emitInt16(static_cast<uint16_t>(Flags));
2688   // Truncate the name so we won't overflow the record length field.
2689   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2690   endSymbolRecord(LocalEnd);
2691 
2692   // Calculate the on disk prefix of the appropriate def range record. The
2693   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2694   // should be big enough to hold all forms without memory allocation.
2695   SmallString<20> BytePrefix;
2696   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2697     BytePrefix.clear();
2698     if (DefRange.InMemory) {
2699       int Offset = DefRange.DataOffset;
2700       unsigned Reg = DefRange.CVRegister;
2701 
2702       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2703       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2704       // instead. In frames without stack realignment, $T0 will be the CFA.
2705       if (RegisterId(Reg) == RegisterId::ESP) {
2706         Reg = unsigned(RegisterId::VFRAME);
2707         Offset += FI.OffsetAdjustment;
2708       }
2709 
2710       // If we can use the chosen frame pointer for the frame and this isn't a
2711       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2712       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2713       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2714       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2715           (bool(Flags & LocalSymFlags::IsParameter)
2716                ? (EncFP == FI.EncodedParamFramePtrReg)
2717                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2718         DefRangeFramePointerRelHeader DRHdr;
2719         DRHdr.Offset = Offset;
2720         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2721       } else {
2722         uint16_t RegRelFlags = 0;
2723         if (DefRange.IsSubfield) {
2724           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2725                         (DefRange.StructOffset
2726                          << DefRangeRegisterRelSym::OffsetInParentShift);
2727         }
2728         DefRangeRegisterRelHeader DRHdr;
2729         DRHdr.Register = Reg;
2730         DRHdr.Flags = RegRelFlags;
2731         DRHdr.BasePointerOffset = Offset;
2732         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2733       }
2734     } else {
2735       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2736       if (DefRange.IsSubfield) {
2737         DefRangeSubfieldRegisterHeader DRHdr;
2738         DRHdr.Register = DefRange.CVRegister;
2739         DRHdr.MayHaveNoName = 0;
2740         DRHdr.OffsetInParent = DefRange.StructOffset;
2741         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2742       } else {
2743         DefRangeRegisterHeader DRHdr;
2744         DRHdr.Register = DefRange.CVRegister;
2745         DRHdr.MayHaveNoName = 0;
2746         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2747       }
2748     }
2749   }
2750 }
2751 
2752 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2753                                          const FunctionInfo& FI) {
2754   for (LexicalBlock *Block : Blocks)
2755     emitLexicalBlock(*Block, FI);
2756 }
2757 
2758 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2759 /// lexical block scope.
2760 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2761                                      const FunctionInfo& FI) {
2762   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2763   OS.AddComment("PtrParent");
2764   OS.emitInt32(0); // PtrParent
2765   OS.AddComment("PtrEnd");
2766   OS.emitInt32(0); // PtrEnd
2767   OS.AddComment("Code size");
2768   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2769   OS.AddComment("Function section relative address");
2770   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2771   OS.AddComment("Function section index");
2772   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2773   OS.AddComment("Lexical block name");
2774   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2775   endSymbolRecord(RecordEnd);
2776 
2777   // Emit variables local to this lexical block.
2778   emitLocalVariableList(FI, Block.Locals);
2779   emitGlobalVariableList(Block.Globals);
2780 
2781   // Emit lexical blocks contained within this block.
2782   emitLexicalBlockList(Block.Children, FI);
2783 
2784   // Close the lexical block scope.
2785   emitEndSymbolRecord(SymbolKind::S_END);
2786 }
2787 
2788 /// Convenience routine for collecting lexical block information for a list
2789 /// of lexical scopes.
2790 void CodeViewDebug::collectLexicalBlockInfo(
2791         SmallVectorImpl<LexicalScope *> &Scopes,
2792         SmallVectorImpl<LexicalBlock *> &Blocks,
2793         SmallVectorImpl<LocalVariable> &Locals,
2794         SmallVectorImpl<CVGlobalVariable> &Globals) {
2795   for (LexicalScope *Scope : Scopes)
2796     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2797 }
2798 
2799 /// Populate the lexical blocks and local variable lists of the parent with
2800 /// information about the specified lexical scope.
2801 void CodeViewDebug::collectLexicalBlockInfo(
2802     LexicalScope &Scope,
2803     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2804     SmallVectorImpl<LocalVariable> &ParentLocals,
2805     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2806   if (Scope.isAbstractScope())
2807     return;
2808 
2809   // Gather information about the lexical scope including local variables,
2810   // global variables, and address ranges.
2811   bool IgnoreScope = false;
2812   auto LI = ScopeVariables.find(&Scope);
2813   SmallVectorImpl<LocalVariable> *Locals =
2814       LI != ScopeVariables.end() ? &LI->second : nullptr;
2815   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2816   SmallVectorImpl<CVGlobalVariable> *Globals =
2817       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2818   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2819   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2820 
2821   // Ignore lexical scopes which do not contain variables.
2822   if (!Locals && !Globals)
2823     IgnoreScope = true;
2824 
2825   // Ignore lexical scopes which are not lexical blocks.
2826   if (!DILB)
2827     IgnoreScope = true;
2828 
2829   // Ignore scopes which have too many address ranges to represent in the
2830   // current CodeView format or do not have a valid address range.
2831   //
2832   // For lexical scopes with multiple address ranges you may be tempted to
2833   // construct a single range covering every instruction where the block is
2834   // live and everything in between.  Unfortunately, Visual Studio only
2835   // displays variables from the first matching lexical block scope.  If the
2836   // first lexical block contains exception handling code or cold code which
2837   // is moved to the bottom of the routine creating a single range covering
2838   // nearly the entire routine, then it will hide all other lexical blocks
2839   // and the variables they contain.
2840   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2841     IgnoreScope = true;
2842 
2843   if (IgnoreScope) {
2844     // This scope can be safely ignored and eliminating it will reduce the
2845     // size of the debug information. Be sure to collect any variable and scope
2846     // information from the this scope or any of its children and collapse them
2847     // into the parent scope.
2848     if (Locals)
2849       ParentLocals.append(Locals->begin(), Locals->end());
2850     if (Globals)
2851       ParentGlobals.append(Globals->begin(), Globals->end());
2852     collectLexicalBlockInfo(Scope.getChildren(),
2853                             ParentBlocks,
2854                             ParentLocals,
2855                             ParentGlobals);
2856     return;
2857   }
2858 
2859   // Create a new CodeView lexical block for this lexical scope.  If we've
2860   // seen this DILexicalBlock before then the scope tree is malformed and
2861   // we can handle this gracefully by not processing it a second time.
2862   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2863   if (!BlockInsertion.second)
2864     return;
2865 
2866   // Create a lexical block containing the variables and collect the the
2867   // lexical block information for the children.
2868   const InsnRange &Range = Ranges.front();
2869   assert(Range.first && Range.second);
2870   LexicalBlock &Block = BlockInsertion.first->second;
2871   Block.Begin = getLabelBeforeInsn(Range.first);
2872   Block.End = getLabelAfterInsn(Range.second);
2873   assert(Block.Begin && "missing label for scope begin");
2874   assert(Block.End && "missing label for scope end");
2875   Block.Name = DILB->getName();
2876   if (Locals)
2877     Block.Locals = std::move(*Locals);
2878   if (Globals)
2879     Block.Globals = std::move(*Globals);
2880   ParentBlocks.push_back(&Block);
2881   collectLexicalBlockInfo(Scope.getChildren(),
2882                           Block.Children,
2883                           Block.Locals,
2884                           Block.Globals);
2885 }
2886 
2887 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2888   const Function &GV = MF->getFunction();
2889   assert(FnDebugInfo.count(&GV));
2890   assert(CurFn == FnDebugInfo[&GV].get());
2891 
2892   collectVariableInfo(GV.getSubprogram());
2893 
2894   // Build the lexical block structure to emit for this routine.
2895   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2896     collectLexicalBlockInfo(*CFS,
2897                             CurFn->ChildBlocks,
2898                             CurFn->Locals,
2899                             CurFn->Globals);
2900 
2901   // Clear the scope and variable information from the map which will not be
2902   // valid after we have finished processing this routine.  This also prepares
2903   // the map for the subsequent routine.
2904   ScopeVariables.clear();
2905 
2906   // Don't emit anything if we don't have any line tables.
2907   // Thunks are compiler-generated and probably won't have source correlation.
2908   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2909     FnDebugInfo.erase(&GV);
2910     CurFn = nullptr;
2911     return;
2912   }
2913 
2914   // Find heap alloc sites and add to list.
2915   for (const auto &MBB : *MF) {
2916     for (const auto &MI : MBB) {
2917       if (MDNode *MD = MI.getHeapAllocMarker()) {
2918         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2919                                                         getLabelAfterInsn(&MI),
2920                                                         dyn_cast<DIType>(MD)));
2921       }
2922     }
2923   }
2924 
2925   CurFn->Annotations = MF->getCodeViewAnnotations();
2926 
2927   CurFn->End = Asm->getFunctionEnd();
2928 
2929   CurFn = nullptr;
2930 }
2931 
2932 // Usable locations are valid with non-zero line numbers. A line number of zero
2933 // corresponds to optimized code that doesn't have a distinct source location.
2934 // In this case, we try to use the previous or next source location depending on
2935 // the context.
2936 static bool isUsableDebugLoc(DebugLoc DL) {
2937   return DL && DL.getLine() != 0;
2938 }
2939 
2940 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2941   DebugHandlerBase::beginInstruction(MI);
2942 
2943   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2944   if (!Asm || !CurFn || MI->isDebugInstr() ||
2945       MI->getFlag(MachineInstr::FrameSetup))
2946     return;
2947 
2948   // If the first instruction of a new MBB has no location, find the first
2949   // instruction with a location and use that.
2950   DebugLoc DL = MI->getDebugLoc();
2951   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
2952     for (const auto &NextMI : *MI->getParent()) {
2953       if (NextMI.isDebugInstr())
2954         continue;
2955       DL = NextMI.getDebugLoc();
2956       if (isUsableDebugLoc(DL))
2957         break;
2958     }
2959     // FIXME: Handle the case where the BB has no valid locations. This would
2960     // probably require doing a real dataflow analysis.
2961   }
2962   PrevInstBB = MI->getParent();
2963 
2964   // If we still don't have a debug location, don't record a location.
2965   if (!isUsableDebugLoc(DL))
2966     return;
2967 
2968   maybeRecordLocation(DL, Asm->MF);
2969 }
2970 
2971 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2972   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2973            *EndLabel = MMI->getContext().createTempSymbol();
2974   OS.emitInt32(unsigned(Kind));
2975   OS.AddComment("Subsection size");
2976   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2977   OS.emitLabel(BeginLabel);
2978   return EndLabel;
2979 }
2980 
2981 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2982   OS.emitLabel(EndLabel);
2983   // Every subsection must be aligned to a 4-byte boundary.
2984   OS.emitValueToAlignment(4);
2985 }
2986 
2987 static StringRef getSymbolName(SymbolKind SymKind) {
2988   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2989     if (EE.Value == SymKind)
2990       return EE.Name;
2991   return "";
2992 }
2993 
2994 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2995   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2996            *EndLabel = MMI->getContext().createTempSymbol();
2997   OS.AddComment("Record length");
2998   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2999   OS.emitLabel(BeginLabel);
3000   if (OS.isVerboseAsm())
3001     OS.AddComment("Record kind: " + getSymbolName(SymKind));
3002   OS.emitInt16(unsigned(SymKind));
3003   return EndLabel;
3004 }
3005 
3006 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3007   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3008   // an extra copy of every symbol record in LLD. This increases object file
3009   // size by less than 1% in the clang build, and is compatible with the Visual
3010   // C++ linker.
3011   OS.emitValueToAlignment(4);
3012   OS.emitLabel(SymEnd);
3013 }
3014 
3015 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3016   OS.AddComment("Record length");
3017   OS.emitInt16(2);
3018   if (OS.isVerboseAsm())
3019     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3020   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3021 }
3022 
3023 void CodeViewDebug::emitDebugInfoForUDTs(
3024     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3025 #ifndef NDEBUG
3026   size_t OriginalSize = UDTs.size();
3027 #endif
3028   for (const auto &UDT : UDTs) {
3029     const DIType *T = UDT.second;
3030     assert(shouldEmitUdt(T));
3031     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3032     OS.AddComment("Type");
3033     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3034     assert(OriginalSize == UDTs.size() &&
3035            "getCompleteTypeIndex found new UDTs!");
3036     emitNullTerminatedSymbolName(OS, UDT.first);
3037     endSymbolRecord(UDTRecordEnd);
3038   }
3039 }
3040 
3041 void CodeViewDebug::collectGlobalVariableInfo() {
3042   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3043       GlobalMap;
3044   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3045     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3046     GV.getDebugInfo(GVEs);
3047     for (const auto *GVE : GVEs)
3048       GlobalMap[GVE] = &GV;
3049   }
3050 
3051   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3052   for (const MDNode *Node : CUs->operands()) {
3053     const auto *CU = cast<DICompileUnit>(Node);
3054     for (const auto *GVE : CU->getGlobalVariables()) {
3055       const DIGlobalVariable *DIGV = GVE->getVariable();
3056       const DIExpression *DIE = GVE->getExpression();
3057 
3058       // Emit constant global variables in a global symbol section.
3059       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3060         CVGlobalVariable CVGV = {DIGV, DIE};
3061         GlobalVariables.emplace_back(std::move(CVGV));
3062       }
3063 
3064       const auto *GV = GlobalMap.lookup(GVE);
3065       if (!GV || GV->isDeclarationForLinker())
3066         continue;
3067 
3068       DIScope *Scope = DIGV->getScope();
3069       SmallVector<CVGlobalVariable, 1> *VariableList;
3070       if (Scope && isa<DILocalScope>(Scope)) {
3071         // Locate a global variable list for this scope, creating one if
3072         // necessary.
3073         auto Insertion = ScopeGlobals.insert(
3074             {Scope, std::unique_ptr<GlobalVariableList>()});
3075         if (Insertion.second)
3076           Insertion.first->second = std::make_unique<GlobalVariableList>();
3077         VariableList = Insertion.first->second.get();
3078       } else if (GV->hasComdat())
3079         // Emit this global variable into a COMDAT section.
3080         VariableList = &ComdatVariables;
3081       else
3082         // Emit this global variable in a single global symbol section.
3083         VariableList = &GlobalVariables;
3084       CVGlobalVariable CVGV = {DIGV, GV};
3085       VariableList->emplace_back(std::move(CVGV));
3086     }
3087   }
3088 }
3089 
3090 void CodeViewDebug::collectDebugInfoForGlobals() {
3091   for (const CVGlobalVariable &CVGV : GlobalVariables) {
3092     const DIGlobalVariable *DIGV = CVGV.DIGV;
3093     const DIScope *Scope = DIGV->getScope();
3094     getCompleteTypeIndex(DIGV->getType());
3095     getFullyQualifiedName(Scope, DIGV->getName());
3096   }
3097 
3098   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3099     const DIGlobalVariable *DIGV = CVGV.DIGV;
3100     const DIScope *Scope = DIGV->getScope();
3101     getCompleteTypeIndex(DIGV->getType());
3102     getFullyQualifiedName(Scope, DIGV->getName());
3103   }
3104 }
3105 
3106 void CodeViewDebug::emitDebugInfoForGlobals() {
3107   // First, emit all globals that are not in a comdat in a single symbol
3108   // substream. MSVC doesn't like it if the substream is empty, so only open
3109   // it if we have at least one global to emit.
3110   switchToDebugSectionForSymbol(nullptr);
3111   if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3112     OS.AddComment("Symbol subsection for globals");
3113     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3114     emitGlobalVariableList(GlobalVariables);
3115     emitStaticConstMemberList();
3116     endCVSubsection(EndLabel);
3117   }
3118 
3119   // Second, emit each global that is in a comdat into its own .debug$S
3120   // section along with its own symbol substream.
3121   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3122     const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3123     MCSymbol *GVSym = Asm->getSymbol(GV);
3124     OS.AddComment("Symbol subsection for " +
3125                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3126     switchToDebugSectionForSymbol(GVSym);
3127     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3128     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3129     emitDebugInfoForGlobal(CVGV);
3130     endCVSubsection(EndLabel);
3131   }
3132 }
3133 
3134 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3135   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3136   for (const MDNode *Node : CUs->operands()) {
3137     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3138       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3139         getTypeIndex(RT);
3140         // FIXME: Add to global/local DTU list.
3141       }
3142     }
3143   }
3144 }
3145 
3146 // Emit each global variable in the specified array.
3147 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3148   for (const CVGlobalVariable &CVGV : Globals) {
3149     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3150     emitDebugInfoForGlobal(CVGV);
3151   }
3152 }
3153 
3154 void CodeViewDebug::emitStaticConstMemberList() {
3155   for (const DIDerivedType *DTy : StaticConstMembers) {
3156     const DIScope *Scope = DTy->getScope();
3157 
3158     APSInt Value;
3159     if (const ConstantInt *CI =
3160             dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3161       Value = APSInt(CI->getValue(),
3162                      DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3163     else if (const ConstantFP *CFP =
3164                  dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3165       Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3166     else
3167       llvm_unreachable("cannot emit a constant without a value");
3168 
3169     std::string QualifiedName = getFullyQualifiedName(Scope, DTy->getName());
3170 
3171     MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3172     OS.AddComment("Type");
3173     OS.emitInt32(getTypeIndex(DTy->getBaseType()).getIndex());
3174     OS.AddComment("Value");
3175 
3176     // Encoded integers shouldn't need more than 10 bytes.
3177     uint8_t Data[10];
3178     BinaryStreamWriter Writer(Data, llvm::support::endianness::little);
3179     CodeViewRecordIO IO(Writer);
3180     cantFail(IO.mapEncodedInteger(Value));
3181     StringRef SRef((char *)Data, Writer.getOffset());
3182     OS.emitBinaryData(SRef);
3183 
3184     OS.AddComment("Name");
3185     emitNullTerminatedSymbolName(OS, QualifiedName);
3186     endSymbolRecord(SConstantEnd);
3187   }
3188 }
3189 
3190 static bool isFloatDIType(const DIType *Ty) {
3191   if (isa<DICompositeType>(Ty))
3192     return false;
3193 
3194   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3195     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3196     if (T == dwarf::DW_TAG_pointer_type ||
3197         T == dwarf::DW_TAG_ptr_to_member_type ||
3198         T == dwarf::DW_TAG_reference_type ||
3199         T == dwarf::DW_TAG_rvalue_reference_type)
3200       return false;
3201     assert(DTy->getBaseType() && "Expected valid base type");
3202     return isFloatDIType(DTy->getBaseType());
3203   }
3204 
3205   auto *BTy = cast<DIBasicType>(Ty);
3206   return (BTy->getEncoding() == dwarf::DW_ATE_float);
3207 }
3208 
3209 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3210   const DIGlobalVariable *DIGV = CVGV.DIGV;
3211 
3212   const DIScope *Scope = DIGV->getScope();
3213   // For static data members, get the scope from the declaration.
3214   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3215           DIGV->getRawStaticDataMemberDeclaration()))
3216     Scope = MemberDecl->getScope();
3217   std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName());
3218 
3219   if (const GlobalVariable *GV =
3220           CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3221     // DataSym record, see SymbolRecord.h for more info. Thread local data
3222     // happens to have the same format as global data.
3223     MCSymbol *GVSym = Asm->getSymbol(GV);
3224     SymbolKind DataSym = GV->isThreadLocal()
3225                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3226                                                       : SymbolKind::S_GTHREAD32)
3227                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3228                                                       : SymbolKind::S_GDATA32);
3229     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3230     OS.AddComment("Type");
3231     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3232     OS.AddComment("DataOffset");
3233     OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3234     OS.AddComment("Segment");
3235     OS.EmitCOFFSectionIndex(GVSym);
3236     OS.AddComment("Name");
3237     const unsigned LengthOfDataRecord = 12;
3238     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3239     endSymbolRecord(DataEnd);
3240   } else {
3241     const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3242     assert(DIE->isConstant() &&
3243            "Global constant variables must contain a constant expression.");
3244 
3245     // Use unsigned for floats.
3246     bool isUnsigned = isFloatDIType(DIGV->getType())
3247                           ? true
3248                           : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3249     APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3250 
3251     MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3252     OS.AddComment("Type");
3253     OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex());
3254     OS.AddComment("Value");
3255 
3256     // Encoded integers shouldn't need more than 10 bytes.
3257     uint8_t data[10];
3258     BinaryStreamWriter Writer(data, llvm::support::endianness::little);
3259     CodeViewRecordIO IO(Writer);
3260     cantFail(IO.mapEncodedInteger(Value));
3261     StringRef SRef((char *)data, Writer.getOffset());
3262     OS.emitBinaryData(SRef);
3263 
3264     OS.AddComment("Name");
3265     emitNullTerminatedSymbolName(OS, QualifiedName);
3266     endSymbolRecord(SConstantEnd);
3267   }
3268 }
3269