1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
44   // If module doesn't have named metadata anchors or COFF debug section
45   // is not available, skip any debug info related stuff.
46   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
47       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
48     Asm = nullptr;
49     return;
50   }
51 
52   // Tell MMI that we have debug info.
53   MMI->setDebugInfoAvailability(true);
54 }
55 
56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
57   std::string &Filepath = FileToFilepathMap[File];
58   if (!Filepath.empty())
59     return Filepath;
60 
61   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
62 
63   // Clang emits directory and relative filename info into the IR, but CodeView
64   // operates on full paths.  We could change Clang to emit full paths too, but
65   // that would increase the IR size and probably not needed for other users.
66   // For now, just concatenate and canonicalize the path here.
67   if (Filename.find(':') == 1)
68     Filepath = Filename;
69   else
70     Filepath = (Dir + "\\" + Filename).str();
71 
72   // Canonicalize the path.  We have to do it textually because we may no longer
73   // have access the file in the filesystem.
74   // First, replace all slashes with backslashes.
75   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
76 
77   // Remove all "\.\" with "\".
78   size_t Cursor = 0;
79   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
80     Filepath.erase(Cursor, 2);
81 
82   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
83   // path should be well-formatted, e.g. start with a drive letter, etc.
84   Cursor = 0;
85   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
86     // Something's wrong if the path starts with "\..\", abort.
87     if (Cursor == 0)
88       break;
89 
90     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
91     if (PrevSlash == std::string::npos)
92       // Something's wrong, abort.
93       break;
94 
95     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
96     // The next ".." might be following the one we've just erased.
97     Cursor = PrevSlash;
98   }
99 
100   // Remove all duplicate backslashes.
101   Cursor = 0;
102   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
103     Filepath.erase(Cursor, 1);
104 
105   return Filepath;
106 }
107 
108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
109   unsigned NextId = FileIdMap.size() + 1;
110   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
111   if (Insertion.second) {
112     // We have to compute the full filepath and emit a .cv_file directive.
113     StringRef FullPath = getFullFilepath(F);
114     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
115     (void)Success;
116     assert(Success && ".cv_file directive failed");
117   }
118   return Insertion.first->second;
119 }
120 
121 CodeViewDebug::InlineSite &
122 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
123                              const DISubprogram *Inlinee) {
124   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
125   InlineSite *Site = &SiteInsertion.first->second;
126   if (SiteInsertion.second) {
127     Site->SiteFuncId = NextFuncId++;
128     Site->Inlinee = Inlinee;
129     InlinedSubprograms.insert(Inlinee);
130     getFuncIdForSubprogram(Inlinee);
131   }
132   return *Site;
133 }
134 
135 static StringRef getPrettyScopeName(const DIScope *Scope) {
136   StringRef ScopeName = Scope->getName();
137   if (!ScopeName.empty())
138     return ScopeName;
139 
140   switch (Scope->getTag()) {
141   case dwarf::DW_TAG_enumeration_type:
142   case dwarf::DW_TAG_class_type:
143   case dwarf::DW_TAG_structure_type:
144   case dwarf::DW_TAG_union_type:
145     return "<unnamed-tag>";
146   case dwarf::DW_TAG_namespace:
147     return "`anonymous namespace'";
148   }
149 
150   return StringRef();
151 }
152 
153 static const DISubprogram *getQualifiedNameComponents(
154     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
155   const DISubprogram *ClosestSubprogram = nullptr;
156   while (Scope != nullptr) {
157     if (ClosestSubprogram == nullptr)
158       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
159     StringRef ScopeName = getPrettyScopeName(Scope);
160     if (!ScopeName.empty())
161       QualifiedNameComponents.push_back(ScopeName);
162     Scope = Scope->getScope().resolve();
163   }
164   return ClosestSubprogram;
165 }
166 
167 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
168                                     StringRef TypeName) {
169   std::string FullyQualifiedName;
170   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
171     FullyQualifiedName.append(QualifiedNameComponent);
172     FullyQualifiedName.append("::");
173   }
174   FullyQualifiedName.append(TypeName);
175   return FullyQualifiedName;
176 }
177 
178 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
179   SmallVector<StringRef, 5> QualifiedNameComponents;
180   getQualifiedNameComponents(Scope, QualifiedNameComponents);
181   return getQualifiedName(QualifiedNameComponents, Name);
182 }
183 
184 struct CodeViewDebug::TypeLoweringScope {
185   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
186   ~TypeLoweringScope() {
187     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
188     // inner TypeLoweringScopes don't attempt to emit deferred types.
189     if (CVD.TypeEmissionLevel == 1)
190       CVD.emitDeferredCompleteTypes();
191     --CVD.TypeEmissionLevel;
192   }
193   CodeViewDebug &CVD;
194 };
195 
196 static std::string getFullyQualifiedName(const DIScope *Ty) {
197   const DIScope *Scope = Ty->getScope().resolve();
198   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
199 }
200 
201 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
202   // No scope means global scope and that uses the zero index.
203   if (!Scope || isa<DIFile>(Scope))
204     return TypeIndex();
205 
206   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
207 
208   // Check if we've already translated this scope.
209   auto I = TypeIndices.find({Scope, nullptr});
210   if (I != TypeIndices.end())
211     return I->second;
212 
213   // Build the fully qualified name of the scope.
214   std::string ScopeName = getFullyQualifiedName(Scope);
215   TypeIndex TI =
216       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
217   return recordTypeIndexForDINode(Scope, TI);
218 }
219 
220 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
221   assert(SP);
222 
223   // Check if we've already translated this subprogram.
224   auto I = TypeIndices.find({SP, nullptr});
225   if (I != TypeIndices.end())
226     return I->second;
227 
228   // The display name includes function template arguments. Drop them to match
229   // MSVC.
230   StringRef DisplayName = SP->getDisplayName().split('<').first;
231 
232   const DIScope *Scope = SP->getScope().resolve();
233   TypeIndex TI;
234   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
235     // If the scope is a DICompositeType, then this must be a method. Member
236     // function types take some special handling, and require access to the
237     // subprogram.
238     TypeIndex ClassType = getTypeIndex(Class);
239     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
240                                DisplayName);
241     TI = TypeTable.writeKnownType(MFuncId);
242   } else {
243     // Otherwise, this must be a free function.
244     TypeIndex ParentScope = getScopeIndex(Scope);
245     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
246     TI = TypeTable.writeKnownType(FuncId);
247   }
248 
249   return recordTypeIndexForDINode(SP, TI);
250 }
251 
252 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
253                                                const DICompositeType *Class) {
254   // Always use the method declaration as the key for the function type. The
255   // method declaration contains the this adjustment.
256   if (SP->getDeclaration())
257     SP = SP->getDeclaration();
258   assert(!SP->getDeclaration() && "should use declaration as key");
259 
260   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
261   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
262   auto I = TypeIndices.find({SP, Class});
263   if (I != TypeIndices.end())
264     return I->second;
265 
266   // Make sure complete type info for the class is emitted *after* the member
267   // function type, as the complete class type is likely to reference this
268   // member function type.
269   TypeLoweringScope S(*this);
270   TypeIndex TI =
271       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
272   return recordTypeIndexForDINode(SP, TI, Class);
273 }
274 
275 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
276                                                   TypeIndex TI,
277                                                   const DIType *ClassTy) {
278   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
279   (void)InsertResult;
280   assert(InsertResult.second && "DINode was already assigned a type index");
281   return TI;
282 }
283 
284 unsigned CodeViewDebug::getPointerSizeInBytes() {
285   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
286 }
287 
288 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
289                                         const DILocation *InlinedAt) {
290   if (InlinedAt) {
291     // This variable was inlined. Associate it with the InlineSite.
292     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
293     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
294     Site.InlinedLocals.emplace_back(Var);
295   } else {
296     // This variable goes in the main ProcSym.
297     CurFn->Locals.emplace_back(Var);
298   }
299 }
300 
301 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
302                                const DILocation *Loc) {
303   auto B = Locs.begin(), E = Locs.end();
304   if (std::find(B, E, Loc) == E)
305     Locs.push_back(Loc);
306 }
307 
308 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
309                                         const MachineFunction *MF) {
310   // Skip this instruction if it has the same location as the previous one.
311   if (DL == CurFn->LastLoc)
312     return;
313 
314   const DIScope *Scope = DL.get()->getScope();
315   if (!Scope)
316     return;
317 
318   // Skip this line if it is longer than the maximum we can record.
319   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
320   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
321       LI.isNeverStepInto())
322     return;
323 
324   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
325   if (CI.getStartColumn() != DL.getCol())
326     return;
327 
328   if (!CurFn->HaveLineInfo)
329     CurFn->HaveLineInfo = true;
330   unsigned FileId = 0;
331   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
332     FileId = CurFn->LastFileId;
333   else
334     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
335   CurFn->LastLoc = DL;
336 
337   unsigned FuncId = CurFn->FuncId;
338   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
339     const DILocation *Loc = DL.get();
340 
341     // If this location was actually inlined from somewhere else, give it the ID
342     // of the inline call site.
343     FuncId =
344         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
345 
346     // Ensure we have links in the tree of inline call sites.
347     bool FirstLoc = true;
348     while ((SiteLoc = Loc->getInlinedAt())) {
349       InlineSite &Site =
350           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
351       if (!FirstLoc)
352         addLocIfNotPresent(Site.ChildSites, Loc);
353       FirstLoc = false;
354       Loc = SiteLoc;
355     }
356     addLocIfNotPresent(CurFn->ChildSites, Loc);
357   }
358 
359   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
360                         /*PrologueEnd=*/false,
361                         /*IsStmt=*/false, DL->getFilename());
362 }
363 
364 void CodeViewDebug::emitCodeViewMagicVersion() {
365   OS.EmitValueToAlignment(4);
366   OS.AddComment("Debug section magic");
367   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
368 }
369 
370 void CodeViewDebug::endModule() {
371   if (!Asm || !MMI->hasDebugInfo())
372     return;
373 
374   assert(Asm != nullptr);
375 
376   // The COFF .debug$S section consists of several subsections, each starting
377   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
378   // of the payload followed by the payload itself.  The subsections are 4-byte
379   // aligned.
380 
381   // Use the generic .debug$S section, and make a subsection for all the inlined
382   // subprograms.
383   switchToDebugSectionForSymbol(nullptr);
384   emitInlineeLinesSubsection();
385 
386   // Emit per-function debug information.
387   for (auto &P : FnDebugInfo)
388     if (!P.first->isDeclarationForLinker())
389       emitDebugInfoForFunction(P.first, P.second);
390 
391   // Emit global variable debug information.
392   setCurrentSubprogram(nullptr);
393   emitDebugInfoForGlobals();
394 
395   // Emit retained types.
396   emitDebugInfoForRetainedTypes();
397 
398   // Switch back to the generic .debug$S section after potentially processing
399   // comdat symbol sections.
400   switchToDebugSectionForSymbol(nullptr);
401 
402   // Emit UDT records for any types used by global variables.
403   if (!GlobalUDTs.empty()) {
404     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
405     emitDebugInfoForUDTs(GlobalUDTs);
406     endCVSubsection(SymbolsEnd);
407   }
408 
409   // This subsection holds a file index to offset in string table table.
410   OS.AddComment("File index to string table offset subsection");
411   OS.EmitCVFileChecksumsDirective();
412 
413   // This subsection holds the string table.
414   OS.AddComment("String table");
415   OS.EmitCVStringTableDirective();
416 
417   // Emit type information last, so that any types we translate while emitting
418   // function info are included.
419   emitTypeInformation();
420 
421   clear();
422 }
423 
424 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
425   // Microsoft's linker seems to have trouble with symbol names longer than
426   // 0xffd8 bytes.
427   S = S.substr(0, 0xffd8);
428   SmallString<32> NullTerminatedString(S);
429   NullTerminatedString.push_back('\0');
430   OS.EmitBytes(NullTerminatedString);
431 }
432 
433 void CodeViewDebug::emitTypeInformation() {
434   // Do nothing if we have no debug info or if no non-trivial types were emitted
435   // to TypeTable during codegen.
436   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
437   if (!CU_Nodes)
438     return;
439   if (TypeTable.empty())
440     return;
441 
442   // Start the .debug$T section with 0x4.
443   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
444   emitCodeViewMagicVersion();
445 
446   SmallString<8> CommentPrefix;
447   if (OS.isVerboseAsm()) {
448     CommentPrefix += '\t';
449     CommentPrefix += Asm->MAI->getCommentString();
450     CommentPrefix += ' ';
451   }
452 
453   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
454   TypeTable.ForEachRecord(
455       [&](TypeIndex Index, StringRef Record) {
456         if (OS.isVerboseAsm()) {
457           // Emit a block comment describing the type record for readability.
458           SmallString<512> CommentBlock;
459           raw_svector_ostream CommentOS(CommentBlock);
460           ScopedPrinter SP(CommentOS);
461           SP.setPrefix(CommentPrefix);
462           CVTD.setPrinter(&SP);
463           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
464           if (E) {
465             logAllUnhandledErrors(std::move(E), errs(), "error: ");
466             llvm_unreachable("produced malformed type record");
467           }
468           // emitRawComment will insert its own tab and comment string before
469           // the first line, so strip off our first one. It also prints its own
470           // newline.
471           OS.emitRawComment(
472               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
473         } else {
474 #ifndef NDEBUG
475           // Assert that the type data is valid even if we aren't dumping
476           // comments. The MSVC linker doesn't do much type record validation,
477           // so the first link of an invalid type record can succeed while
478           // subsequent links will fail with LNK1285.
479           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
480           CVTypeArray Types;
481           StreamReader Reader(Stream);
482           Error E = Reader.readArray(Types, Reader.getLength());
483           if (!E) {
484             TypeVisitorCallbacks C;
485             E = CVTypeVisitor(C).visitTypeStream(Types);
486           }
487           if (E) {
488             logAllUnhandledErrors(std::move(E), errs(), "error: ");
489             llvm_unreachable("produced malformed type record");
490           }
491 #endif
492         }
493         OS.EmitBinaryData(Record);
494       });
495 }
496 
497 void CodeViewDebug::emitInlineeLinesSubsection() {
498   if (InlinedSubprograms.empty())
499     return;
500 
501   OS.AddComment("Inlinee lines subsection");
502   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
503 
504   // We don't provide any extra file info.
505   // FIXME: Find out if debuggers use this info.
506   OS.AddComment("Inlinee lines signature");
507   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
508 
509   for (const DISubprogram *SP : InlinedSubprograms) {
510     assert(TypeIndices.count({SP, nullptr}));
511     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
512 
513     OS.AddBlankLine();
514     unsigned FileId = maybeRecordFile(SP->getFile());
515     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
516                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
517     OS.AddBlankLine();
518     // The filechecksum table uses 8 byte entries for now, and file ids start at
519     // 1.
520     unsigned FileOffset = (FileId - 1) * 8;
521     OS.AddComment("Type index of inlined function");
522     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
523     OS.AddComment("Offset into filechecksum table");
524     OS.EmitIntValue(FileOffset, 4);
525     OS.AddComment("Starting line number");
526     OS.EmitIntValue(SP->getLine(), 4);
527   }
528 
529   endCVSubsection(InlineEnd);
530 }
531 
532 void CodeViewDebug::collectInlineSiteChildren(
533     SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
534     const InlineSite &Site) {
535   for (const DILocation *ChildSiteLoc : Site.ChildSites) {
536     auto I = FI.InlineSites.find(ChildSiteLoc);
537     const InlineSite &ChildSite = I->second;
538     Children.push_back(ChildSite.SiteFuncId);
539     collectInlineSiteChildren(Children, FI, ChildSite);
540   }
541 }
542 
543 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
544                                         const DILocation *InlinedAt,
545                                         const InlineSite &Site) {
546   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
547            *InlineEnd = MMI->getContext().createTempSymbol();
548 
549   assert(TypeIndices.count({Site.Inlinee, nullptr}));
550   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
551 
552   // SymbolRecord
553   OS.AddComment("Record length");
554   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
555   OS.EmitLabel(InlineBegin);
556   OS.AddComment("Record kind: S_INLINESITE");
557   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
558 
559   OS.AddComment("PtrParent");
560   OS.EmitIntValue(0, 4);
561   OS.AddComment("PtrEnd");
562   OS.EmitIntValue(0, 4);
563   OS.AddComment("Inlinee type index");
564   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
565 
566   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
567   unsigned StartLineNum = Site.Inlinee->getLine();
568   SmallVector<unsigned, 3> SecondaryFuncIds;
569   collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
570 
571   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
572                                     FI.Begin, FI.End, SecondaryFuncIds);
573 
574   OS.EmitLabel(InlineEnd);
575 
576   emitLocalVariableList(Site.InlinedLocals);
577 
578   // Recurse on child inlined call sites before closing the scope.
579   for (const DILocation *ChildSite : Site.ChildSites) {
580     auto I = FI.InlineSites.find(ChildSite);
581     assert(I != FI.InlineSites.end() &&
582            "child site not in function inline site map");
583     emitInlinedCallSite(FI, ChildSite, I->second);
584   }
585 
586   // Close the scope.
587   OS.AddComment("Record length");
588   OS.EmitIntValue(2, 2);                                  // RecordLength
589   OS.AddComment("Record kind: S_INLINESITE_END");
590   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
591 }
592 
593 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
594   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
595   // comdat key. A section may be comdat because of -ffunction-sections or
596   // because it is comdat in the IR.
597   MCSectionCOFF *GVSec =
598       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
599   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
600 
601   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
602       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
603   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
604 
605   OS.SwitchSection(DebugSec);
606 
607   // Emit the magic version number if this is the first time we've switched to
608   // this section.
609   if (ComdatDebugSections.insert(DebugSec).second)
610     emitCodeViewMagicVersion();
611 }
612 
613 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
614                                              FunctionInfo &FI) {
615   // For each function there is a separate subsection
616   // which holds the PC to file:line table.
617   const MCSymbol *Fn = Asm->getSymbol(GV);
618   assert(Fn);
619 
620   // Switch to the to a comdat section, if appropriate.
621   switchToDebugSectionForSymbol(Fn);
622 
623   std::string FuncName;
624   auto *SP = GV->getSubprogram();
625   assert(SP);
626   setCurrentSubprogram(SP);
627 
628   // If we have a display name, build the fully qualified name by walking the
629   // chain of scopes.
630   if (!SP->getDisplayName().empty())
631     FuncName =
632         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
633 
634   // If our DISubprogram name is empty, use the mangled name.
635   if (FuncName.empty())
636     FuncName = GlobalValue::getRealLinkageName(GV->getName());
637 
638   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
639   OS.AddComment("Symbol subsection for " + Twine(FuncName));
640   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
641   {
642     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
643              *ProcRecordEnd = MMI->getContext().createTempSymbol();
644     OS.AddComment("Record length");
645     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
646     OS.EmitLabel(ProcRecordBegin);
647 
648   if (GV->hasLocalLinkage()) {
649     OS.AddComment("Record kind: S_LPROC32_ID");
650     OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
651   } else {
652     OS.AddComment("Record kind: S_GPROC32_ID");
653     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
654   }
655 
656     // These fields are filled in by tools like CVPACK which run after the fact.
657     OS.AddComment("PtrParent");
658     OS.EmitIntValue(0, 4);
659     OS.AddComment("PtrEnd");
660     OS.EmitIntValue(0, 4);
661     OS.AddComment("PtrNext");
662     OS.EmitIntValue(0, 4);
663     // This is the important bit that tells the debugger where the function
664     // code is located and what's its size:
665     OS.AddComment("Code size");
666     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
667     OS.AddComment("Offset after prologue");
668     OS.EmitIntValue(0, 4);
669     OS.AddComment("Offset before epilogue");
670     OS.EmitIntValue(0, 4);
671     OS.AddComment("Function type index");
672     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
673     OS.AddComment("Function section relative address");
674     OS.EmitCOFFSecRel32(Fn);
675     OS.AddComment("Function section index");
676     OS.EmitCOFFSectionIndex(Fn);
677     OS.AddComment("Flags");
678     OS.EmitIntValue(0, 1);
679     // Emit the function display name as a null-terminated string.
680     OS.AddComment("Function name");
681     // Truncate the name so we won't overflow the record length field.
682     emitNullTerminatedSymbolName(OS, FuncName);
683     OS.EmitLabel(ProcRecordEnd);
684 
685     emitLocalVariableList(FI.Locals);
686 
687     // Emit inlined call site information. Only emit functions inlined directly
688     // into the parent function. We'll emit the other sites recursively as part
689     // of their parent inline site.
690     for (const DILocation *InlinedAt : FI.ChildSites) {
691       auto I = FI.InlineSites.find(InlinedAt);
692       assert(I != FI.InlineSites.end() &&
693              "child site not in function inline site map");
694       emitInlinedCallSite(FI, InlinedAt, I->second);
695     }
696 
697     if (SP != nullptr)
698       emitDebugInfoForUDTs(LocalUDTs);
699 
700     // We're done with this function.
701     OS.AddComment("Record length");
702     OS.EmitIntValue(0x0002, 2);
703     OS.AddComment("Record kind: S_PROC_ID_END");
704     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
705   }
706   endCVSubsection(SymbolsEnd);
707 
708   // We have an assembler directive that takes care of the whole line table.
709   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
710 }
711 
712 CodeViewDebug::LocalVarDefRange
713 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
714   LocalVarDefRange DR;
715   DR.InMemory = -1;
716   DR.DataOffset = Offset;
717   assert(DR.DataOffset == Offset && "truncation");
718   DR.StructOffset = 0;
719   DR.CVRegister = CVRegister;
720   return DR;
721 }
722 
723 CodeViewDebug::LocalVarDefRange
724 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
725   LocalVarDefRange DR;
726   DR.InMemory = 0;
727   DR.DataOffset = 0;
728   DR.StructOffset = 0;
729   DR.CVRegister = CVRegister;
730   return DR;
731 }
732 
733 void CodeViewDebug::collectVariableInfoFromMMITable(
734     DenseSet<InlinedVariable> &Processed) {
735   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
736   const TargetFrameLowering *TFI = TSI.getFrameLowering();
737   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
738 
739   for (const MachineModuleInfo::VariableDbgInfo &VI :
740        MMI->getVariableDbgInfo()) {
741     if (!VI.Var)
742       continue;
743     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
744            "Expected inlined-at fields to agree");
745 
746     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
747     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
748 
749     // If variable scope is not found then skip this variable.
750     if (!Scope)
751       continue;
752 
753     // Get the frame register used and the offset.
754     unsigned FrameReg = 0;
755     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
756     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
757 
758     // Calculate the label ranges.
759     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
760     for (const InsnRange &Range : Scope->getRanges()) {
761       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
762       const MCSymbol *End = getLabelAfterInsn(Range.second);
763       End = End ? End : Asm->getFunctionEnd();
764       DefRange.Ranges.emplace_back(Begin, End);
765     }
766 
767     LocalVariable Var;
768     Var.DIVar = VI.Var;
769     Var.DefRanges.emplace_back(std::move(DefRange));
770     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
771   }
772 }
773 
774 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
775   DenseSet<InlinedVariable> Processed;
776   // Grab the variable info that was squirreled away in the MMI side-table.
777   collectVariableInfoFromMMITable(Processed);
778 
779   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
780 
781   for (const auto &I : DbgValues) {
782     InlinedVariable IV = I.first;
783     if (Processed.count(IV))
784       continue;
785     const DILocalVariable *DIVar = IV.first;
786     const DILocation *InlinedAt = IV.second;
787 
788     // Instruction ranges, specifying where IV is accessible.
789     const auto &Ranges = I.second;
790 
791     LexicalScope *Scope = nullptr;
792     if (InlinedAt)
793       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
794     else
795       Scope = LScopes.findLexicalScope(DIVar->getScope());
796     // If variable scope is not found then skip this variable.
797     if (!Scope)
798       continue;
799 
800     LocalVariable Var;
801     Var.DIVar = DIVar;
802 
803     // Calculate the definition ranges.
804     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
805       const InsnRange &Range = *I;
806       const MachineInstr *DVInst = Range.first;
807       assert(DVInst->isDebugValue() && "Invalid History entry");
808       const DIExpression *DIExpr = DVInst->getDebugExpression();
809 
810       // Bail if there is a complex DWARF expression for now.
811       if (DIExpr && DIExpr->getNumElements() > 0)
812         continue;
813 
814       // Bail if operand 0 is not a valid register. This means the variable is a
815       // simple constant, or is described by a complex expression.
816       // FIXME: Find a way to represent constant variables, since they are
817       // relatively common.
818       unsigned Reg =
819           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
820       if (Reg == 0)
821         continue;
822 
823       // Handle the two cases we can handle: indirect in memory and in register.
824       bool IsIndirect = DVInst->getOperand(1).isImm();
825       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
826       {
827         LocalVarDefRange DefRange;
828         if (IsIndirect) {
829           int64_t Offset = DVInst->getOperand(1).getImm();
830           DefRange = createDefRangeMem(CVReg, Offset);
831         } else {
832           DefRange = createDefRangeReg(CVReg);
833         }
834         if (Var.DefRanges.empty() ||
835             Var.DefRanges.back().isDifferentLocation(DefRange)) {
836           Var.DefRanges.emplace_back(std::move(DefRange));
837         }
838       }
839 
840       // Compute the label range.
841       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
842       const MCSymbol *End = getLabelAfterInsn(Range.second);
843       if (!End) {
844         if (std::next(I) != E)
845           End = getLabelBeforeInsn(std::next(I)->first);
846         else
847           End = Asm->getFunctionEnd();
848       }
849 
850       // If the last range end is our begin, just extend the last range.
851       // Otherwise make a new range.
852       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
853           Var.DefRanges.back().Ranges;
854       if (!Ranges.empty() && Ranges.back().second == Begin)
855         Ranges.back().second = End;
856       else
857         Ranges.emplace_back(Begin, End);
858 
859       // FIXME: Do more range combining.
860     }
861 
862     recordLocalVariable(std::move(Var), InlinedAt);
863   }
864 }
865 
866 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
867   assert(!CurFn && "Can't process two functions at once!");
868 
869   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
870     return;
871 
872   DebugHandlerBase::beginFunction(MF);
873 
874   const Function *GV = MF->getFunction();
875   assert(FnDebugInfo.count(GV) == false);
876   CurFn = &FnDebugInfo[GV];
877   CurFn->FuncId = NextFuncId++;
878   CurFn->Begin = Asm->getFunctionBegin();
879 
880   // Find the end of the function prolog.  First known non-DBG_VALUE and
881   // non-frame setup location marks the beginning of the function body.
882   // FIXME: is there a simpler a way to do this? Can we just search
883   // for the first instruction of the function, not the last of the prolog?
884   DebugLoc PrologEndLoc;
885   bool EmptyPrologue = true;
886   for (const auto &MBB : *MF) {
887     for (const auto &MI : MBB) {
888       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
889           MI.getDebugLoc()) {
890         PrologEndLoc = MI.getDebugLoc();
891         break;
892       } else if (!MI.isDebugValue()) {
893         EmptyPrologue = false;
894       }
895     }
896   }
897 
898   // Record beginning of function if we have a non-empty prologue.
899   if (PrologEndLoc && !EmptyPrologue) {
900     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
901     maybeRecordLocation(FnStartDL, MF);
902   }
903 }
904 
905 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
906   // Don't record empty UDTs.
907   if (Ty->getName().empty())
908     return;
909 
910   SmallVector<StringRef, 5> QualifiedNameComponents;
911   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
912       Ty->getScope().resolve(), QualifiedNameComponents);
913 
914   std::string FullyQualifiedName =
915       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
916 
917   if (ClosestSubprogram == nullptr)
918     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
919   else if (ClosestSubprogram == CurrentSubprogram)
920     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
921 
922   // TODO: What if the ClosestSubprogram is neither null or the current
923   // subprogram?  Currently, the UDT just gets dropped on the floor.
924   //
925   // The current behavior is not desirable.  To get maximal fidelity, we would
926   // need to perform all type translation before beginning emission of .debug$S
927   // and then make LocalUDTs a member of FunctionInfo
928 }
929 
930 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
931   // Generic dispatch for lowering an unknown type.
932   switch (Ty->getTag()) {
933   case dwarf::DW_TAG_array_type:
934     return lowerTypeArray(cast<DICompositeType>(Ty));
935   case dwarf::DW_TAG_typedef:
936     return lowerTypeAlias(cast<DIDerivedType>(Ty));
937   case dwarf::DW_TAG_base_type:
938     return lowerTypeBasic(cast<DIBasicType>(Ty));
939   case dwarf::DW_TAG_pointer_type:
940   case dwarf::DW_TAG_reference_type:
941   case dwarf::DW_TAG_rvalue_reference_type:
942     return lowerTypePointer(cast<DIDerivedType>(Ty));
943   case dwarf::DW_TAG_ptr_to_member_type:
944     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
945   case dwarf::DW_TAG_const_type:
946   case dwarf::DW_TAG_volatile_type:
947     return lowerTypeModifier(cast<DIDerivedType>(Ty));
948   case dwarf::DW_TAG_subroutine_type:
949     if (ClassTy) {
950       // The member function type of a member function pointer has no
951       // ThisAdjustment.
952       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
953                                      /*ThisAdjustment=*/0);
954     }
955     return lowerTypeFunction(cast<DISubroutineType>(Ty));
956   case dwarf::DW_TAG_enumeration_type:
957     return lowerTypeEnum(cast<DICompositeType>(Ty));
958   case dwarf::DW_TAG_class_type:
959   case dwarf::DW_TAG_structure_type:
960     return lowerTypeClass(cast<DICompositeType>(Ty));
961   case dwarf::DW_TAG_union_type:
962     return lowerTypeUnion(cast<DICompositeType>(Ty));
963   default:
964     // Use the null type index.
965     return TypeIndex();
966   }
967 }
968 
969 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
970   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
971   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
972   StringRef TypeName = Ty->getName();
973 
974   addToUDTs(Ty, UnderlyingTypeIndex);
975 
976   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
977       TypeName == "HRESULT")
978     return TypeIndex(SimpleTypeKind::HResult);
979   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
980       TypeName == "wchar_t")
981     return TypeIndex(SimpleTypeKind::WideCharacter);
982 
983   return UnderlyingTypeIndex;
984 }
985 
986 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
987   DITypeRef ElementTypeRef = Ty->getBaseType();
988   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
989   // IndexType is size_t, which depends on the bitness of the target.
990   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
991                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
992                             : TypeIndex(SimpleTypeKind::UInt32Long);
993 
994   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
995 
996   bool UndefinedSubrange = false;
997 
998   // FIXME:
999   // There is a bug in the front-end where an array of a structure, which was
1000   // declared as incomplete structure first, ends up not getting a size assigned
1001   // to it. (PR28303)
1002   // Example:
1003   //   struct A(*p)[3];
1004   //   struct A { int f; } a[3];
1005   //
1006   // This needs to be fixed in the front-end, but in the meantime we don't want
1007   // to trigger an assertion because of this.
1008   if (Ty->getSizeInBits() == 0) {
1009     UndefinedSubrange = true;
1010   }
1011 
1012   // Add subranges to array type.
1013   DINodeArray Elements = Ty->getElements();
1014   for (int i = Elements.size() - 1; i >= 0; --i) {
1015     const DINode *Element = Elements[i];
1016     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1017 
1018     const DISubrange *Subrange = cast<DISubrange>(Element);
1019     assert(Subrange->getLowerBound() == 0 &&
1020            "codeview doesn't support subranges with lower bounds");
1021     int64_t Count = Subrange->getCount();
1022 
1023     // Variable Length Array (VLA) has Count equal to '-1'.
1024     // Replace with Count '1', assume it is the minimum VLA length.
1025     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1026     if (Count == -1) {
1027       Count = 1;
1028       UndefinedSubrange = true;
1029     }
1030 
1031     StringRef Name = (i == 0) ? Ty->getName() : "";
1032     // Update the element size and element type index for subsequent subranges.
1033     ElementSize *= Count;
1034     ElementTypeIndex = TypeTable.writeKnownType(
1035         ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name));
1036   }
1037 
1038   (void)UndefinedSubrange;
1039   assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8));
1040 
1041   return ElementTypeIndex;
1042 }
1043 
1044 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1045   TypeIndex Index;
1046   dwarf::TypeKind Kind;
1047   uint32_t ByteSize;
1048 
1049   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1050   ByteSize = Ty->getSizeInBits() / 8;
1051 
1052   SimpleTypeKind STK = SimpleTypeKind::None;
1053   switch (Kind) {
1054   case dwarf::DW_ATE_address:
1055     // FIXME: Translate
1056     break;
1057   case dwarf::DW_ATE_boolean:
1058     switch (ByteSize) {
1059     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1060     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1061     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1062     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1063     case 16: STK = SimpleTypeKind::Boolean128; break;
1064     }
1065     break;
1066   case dwarf::DW_ATE_complex_float:
1067     switch (ByteSize) {
1068     case 2:  STK = SimpleTypeKind::Complex16;  break;
1069     case 4:  STK = SimpleTypeKind::Complex32;  break;
1070     case 8:  STK = SimpleTypeKind::Complex64;  break;
1071     case 10: STK = SimpleTypeKind::Complex80;  break;
1072     case 16: STK = SimpleTypeKind::Complex128; break;
1073     }
1074     break;
1075   case dwarf::DW_ATE_float:
1076     switch (ByteSize) {
1077     case 2:  STK = SimpleTypeKind::Float16;  break;
1078     case 4:  STK = SimpleTypeKind::Float32;  break;
1079     case 6:  STK = SimpleTypeKind::Float48;  break;
1080     case 8:  STK = SimpleTypeKind::Float64;  break;
1081     case 10: STK = SimpleTypeKind::Float80;  break;
1082     case 16: STK = SimpleTypeKind::Float128; break;
1083     }
1084     break;
1085   case dwarf::DW_ATE_signed:
1086     switch (ByteSize) {
1087     case 1:  STK = SimpleTypeKind::SByte;      break;
1088     case 2:  STK = SimpleTypeKind::Int16Short; break;
1089     case 4:  STK = SimpleTypeKind::Int32;      break;
1090     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1091     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1092     }
1093     break;
1094   case dwarf::DW_ATE_unsigned:
1095     switch (ByteSize) {
1096     case 1:  STK = SimpleTypeKind::Byte;        break;
1097     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1098     case 4:  STK = SimpleTypeKind::UInt32;      break;
1099     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1100     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1101     }
1102     break;
1103   case dwarf::DW_ATE_UTF:
1104     switch (ByteSize) {
1105     case 2: STK = SimpleTypeKind::Character16; break;
1106     case 4: STK = SimpleTypeKind::Character32; break;
1107     }
1108     break;
1109   case dwarf::DW_ATE_signed_char:
1110     if (ByteSize == 1)
1111       STK = SimpleTypeKind::SignedCharacter;
1112     break;
1113   case dwarf::DW_ATE_unsigned_char:
1114     if (ByteSize == 1)
1115       STK = SimpleTypeKind::UnsignedCharacter;
1116     break;
1117   default:
1118     break;
1119   }
1120 
1121   // Apply some fixups based on the source-level type name.
1122   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1123     STK = SimpleTypeKind::Int32Long;
1124   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1125     STK = SimpleTypeKind::UInt32Long;
1126   if (STK == SimpleTypeKind::UInt16Short &&
1127       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1128     STK = SimpleTypeKind::WideCharacter;
1129   if ((STK == SimpleTypeKind::SignedCharacter ||
1130        STK == SimpleTypeKind::UnsignedCharacter) &&
1131       Ty->getName() == "char")
1132     STK = SimpleTypeKind::NarrowCharacter;
1133 
1134   return TypeIndex(STK);
1135 }
1136 
1137 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1138   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1139 
1140   // While processing the type being pointed to it is possible we already
1141   // created this pointer type.  If so, we check here and return the existing
1142   // pointer type.
1143   auto I = TypeIndices.find({Ty, nullptr});
1144   if (I != TypeIndices.end())
1145     return I->second;
1146 
1147   // Pointers to simple types can use SimpleTypeMode, rather than having a
1148   // dedicated pointer type record.
1149   if (PointeeTI.isSimple() &&
1150       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1151       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1152     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1153                               ? SimpleTypeMode::NearPointer64
1154                               : SimpleTypeMode::NearPointer32;
1155     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1156   }
1157 
1158   PointerKind PK =
1159       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1160   PointerMode PM = PointerMode::Pointer;
1161   switch (Ty->getTag()) {
1162   default: llvm_unreachable("not a pointer tag type");
1163   case dwarf::DW_TAG_pointer_type:
1164     PM = PointerMode::Pointer;
1165     break;
1166   case dwarf::DW_TAG_reference_type:
1167     PM = PointerMode::LValueReference;
1168     break;
1169   case dwarf::DW_TAG_rvalue_reference_type:
1170     PM = PointerMode::RValueReference;
1171     break;
1172   }
1173   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1174   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1175   // do.
1176   PointerOptions PO = PointerOptions::None;
1177   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1178   return TypeTable.writeKnownType(PR);
1179 }
1180 
1181 static PointerToMemberRepresentation
1182 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1183   // SizeInBytes being zero generally implies that the member pointer type was
1184   // incomplete, which can happen if it is part of a function prototype. In this
1185   // case, use the unknown model instead of the general model.
1186   if (IsPMF) {
1187     switch (Flags & DINode::FlagPtrToMemberRep) {
1188     case 0:
1189       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1190                               : PointerToMemberRepresentation::GeneralFunction;
1191     case DINode::FlagSingleInheritance:
1192       return PointerToMemberRepresentation::SingleInheritanceFunction;
1193     case DINode::FlagMultipleInheritance:
1194       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1195     case DINode::FlagVirtualInheritance:
1196       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1197     }
1198   } else {
1199     switch (Flags & DINode::FlagPtrToMemberRep) {
1200     case 0:
1201       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1202                               : PointerToMemberRepresentation::GeneralData;
1203     case DINode::FlagSingleInheritance:
1204       return PointerToMemberRepresentation::SingleInheritanceData;
1205     case DINode::FlagMultipleInheritance:
1206       return PointerToMemberRepresentation::MultipleInheritanceData;
1207     case DINode::FlagVirtualInheritance:
1208       return PointerToMemberRepresentation::VirtualInheritanceData;
1209     }
1210   }
1211   llvm_unreachable("invalid ptr to member representation");
1212 }
1213 
1214 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1215   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1216   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1217   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1218   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1219                                                    : PointerKind::Near32;
1220   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1221   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1222                          : PointerMode::PointerToDataMember;
1223   PointerOptions PO = PointerOptions::None; // FIXME
1224   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1225   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1226   MemberPointerInfo MPI(
1227       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1228   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1229   return TypeTable.writeKnownType(PR);
1230 }
1231 
1232 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1233 /// have a translation, use the NearC convention.
1234 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1235   switch (DwarfCC) {
1236   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1237   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1238   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1239   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1240   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1241   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1242   }
1243   return CallingConvention::NearC;
1244 }
1245 
1246 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1247   ModifierOptions Mods = ModifierOptions::None;
1248   bool IsModifier = true;
1249   const DIType *BaseTy = Ty;
1250   while (IsModifier && BaseTy) {
1251     // FIXME: Need to add DWARF tag for __unaligned.
1252     switch (BaseTy->getTag()) {
1253     case dwarf::DW_TAG_const_type:
1254       Mods |= ModifierOptions::Const;
1255       break;
1256     case dwarf::DW_TAG_volatile_type:
1257       Mods |= ModifierOptions::Volatile;
1258       break;
1259     default:
1260       IsModifier = false;
1261       break;
1262     }
1263     if (IsModifier)
1264       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1265   }
1266   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1267 
1268   // While processing the type being pointed to, it is possible we already
1269   // created this modifier type.  If so, we check here and return the existing
1270   // modifier type.
1271   auto I = TypeIndices.find({Ty, nullptr});
1272   if (I != TypeIndices.end())
1273     return I->second;
1274 
1275   ModifierRecord MR(ModifiedTI, Mods);
1276   return TypeTable.writeKnownType(MR);
1277 }
1278 
1279 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1280   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1281   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1282     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1283 
1284   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1285   ArrayRef<TypeIndex> ArgTypeIndices = None;
1286   if (!ReturnAndArgTypeIndices.empty()) {
1287     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1288     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1289     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1290   }
1291 
1292   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1293   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1294 
1295   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1296 
1297   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1298                             ArgTypeIndices.size(), ArgListIndex);
1299   return TypeTable.writeKnownType(Procedure);
1300 }
1301 
1302 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1303                                                  const DIType *ClassTy,
1304                                                  int ThisAdjustment) {
1305   // Lower the containing class type.
1306   TypeIndex ClassType = getTypeIndex(ClassTy);
1307 
1308   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1309   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1310     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1311 
1312   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1313   ArrayRef<TypeIndex> ArgTypeIndices = None;
1314   if (!ReturnAndArgTypeIndices.empty()) {
1315     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1316     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1317     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1318   }
1319   TypeIndex ThisTypeIndex = TypeIndex::Void();
1320   if (!ArgTypeIndices.empty()) {
1321     ThisTypeIndex = ArgTypeIndices.front();
1322     ArgTypeIndices = ArgTypeIndices.drop_front();
1323   }
1324 
1325   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1326   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1327 
1328   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1329 
1330   // TODO: Need to use the correct values for:
1331   //       FunctionOptions
1332   //       ThisPointerAdjustment.
1333   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1334       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1335       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1336 
1337   return TI;
1338 }
1339 
1340 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1341   switch (Flags & DINode::FlagAccessibility) {
1342   case DINode::FlagPrivate:   return MemberAccess::Private;
1343   case DINode::FlagPublic:    return MemberAccess::Public;
1344   case DINode::FlagProtected: return MemberAccess::Protected;
1345   case 0:
1346     // If there was no explicit access control, provide the default for the tag.
1347     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1348                                                  : MemberAccess::Public;
1349   }
1350   llvm_unreachable("access flags are exclusive");
1351 }
1352 
1353 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1354   if (SP->isArtificial())
1355     return MethodOptions::CompilerGenerated;
1356 
1357   // FIXME: Handle other MethodOptions.
1358 
1359   return MethodOptions::None;
1360 }
1361 
1362 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1363                                            bool Introduced) {
1364   switch (SP->getVirtuality()) {
1365   case dwarf::DW_VIRTUALITY_none:
1366     break;
1367   case dwarf::DW_VIRTUALITY_virtual:
1368     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1369   case dwarf::DW_VIRTUALITY_pure_virtual:
1370     return Introduced ? MethodKind::PureIntroducingVirtual
1371                       : MethodKind::PureVirtual;
1372   default:
1373     llvm_unreachable("unhandled virtuality case");
1374   }
1375 
1376   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1377 
1378   return MethodKind::Vanilla;
1379 }
1380 
1381 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1382   switch (Ty->getTag()) {
1383   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1384   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1385   }
1386   llvm_unreachable("unexpected tag");
1387 }
1388 
1389 /// Return ClassOptions that should be present on both the forward declaration
1390 /// and the defintion of a tag type.
1391 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1392   ClassOptions CO = ClassOptions::None;
1393 
1394   // MSVC always sets this flag, even for local types. Clang doesn't always
1395   // appear to give every type a linkage name, which may be problematic for us.
1396   // FIXME: Investigate the consequences of not following them here.
1397   if (!Ty->getIdentifier().empty())
1398     CO |= ClassOptions::HasUniqueName;
1399 
1400   // Put the Nested flag on a type if it appears immediately inside a tag type.
1401   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1402   // here. That flag is only set on definitions, and not forward declarations.
1403   const DIScope *ImmediateScope = Ty->getScope().resolve();
1404   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1405     CO |= ClassOptions::Nested;
1406 
1407   // Put the Scoped flag on function-local types.
1408   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1409        Scope = Scope->getScope().resolve()) {
1410     if (isa<DISubprogram>(Scope)) {
1411       CO |= ClassOptions::Scoped;
1412       break;
1413     }
1414   }
1415 
1416   return CO;
1417 }
1418 
1419 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1420   ClassOptions CO = getCommonClassOptions(Ty);
1421   TypeIndex FTI;
1422   unsigned EnumeratorCount = 0;
1423 
1424   if (Ty->isForwardDecl()) {
1425     CO |= ClassOptions::ForwardReference;
1426   } else {
1427     FieldListRecordBuilder Fields;
1428     for (const DINode *Element : Ty->getElements()) {
1429       // We assume that the frontend provides all members in source declaration
1430       // order, which is what MSVC does.
1431       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1432         Fields.writeMemberType(EnumeratorRecord(
1433             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1434             Enumerator->getName()));
1435         EnumeratorCount++;
1436       }
1437     }
1438     FTI = TypeTable.writeFieldList(Fields);
1439   }
1440 
1441   std::string FullName = getFullyQualifiedName(Ty);
1442 
1443   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1444                                              Ty->getIdentifier(),
1445                                              getTypeIndex(Ty->getBaseType())));
1446 }
1447 
1448 //===----------------------------------------------------------------------===//
1449 // ClassInfo
1450 //===----------------------------------------------------------------------===//
1451 
1452 struct llvm::ClassInfo {
1453   struct MemberInfo {
1454     const DIDerivedType *MemberTypeNode;
1455     uint64_t BaseOffset;
1456   };
1457   // [MemberInfo]
1458   typedef std::vector<MemberInfo> MemberList;
1459 
1460   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1461   // MethodName -> MethodsList
1462   typedef MapVector<MDString *, MethodsList> MethodsMap;
1463 
1464   /// Base classes.
1465   std::vector<const DIDerivedType *> Inheritance;
1466 
1467   /// Direct members.
1468   MemberList Members;
1469   // Direct overloaded methods gathered by name.
1470   MethodsMap Methods;
1471 
1472   std::vector<const DICompositeType *> NestedClasses;
1473 };
1474 
1475 void CodeViewDebug::clear() {
1476   assert(CurFn == nullptr);
1477   FileIdMap.clear();
1478   FnDebugInfo.clear();
1479   FileToFilepathMap.clear();
1480   LocalUDTs.clear();
1481   GlobalUDTs.clear();
1482   TypeIndices.clear();
1483   CompleteTypeIndices.clear();
1484 }
1485 
1486 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1487                                       const DIDerivedType *DDTy) {
1488   if (!DDTy->getName().empty()) {
1489     Info.Members.push_back({DDTy, 0});
1490     return;
1491   }
1492   // An unnamed member must represent a nested struct or union. Add all the
1493   // indirect fields to the current record.
1494   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1495   uint64_t Offset = DDTy->getOffsetInBits();
1496   const DIType *Ty = DDTy->getBaseType().resolve();
1497   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1498   ClassInfo NestedInfo = collectClassInfo(DCTy);
1499   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1500     Info.Members.push_back(
1501         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1502 }
1503 
1504 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1505   ClassInfo Info;
1506   // Add elements to structure type.
1507   DINodeArray Elements = Ty->getElements();
1508   for (auto *Element : Elements) {
1509     // We assume that the frontend provides all members in source declaration
1510     // order, which is what MSVC does.
1511     if (!Element)
1512       continue;
1513     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1514       Info.Methods[SP->getRawName()].push_back(SP);
1515     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1516       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1517         collectMemberInfo(Info, DDTy);
1518       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1519         Info.Inheritance.push_back(DDTy);
1520       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1521         // Ignore friend members. It appears that MSVC emitted info about
1522         // friends in the past, but modern versions do not.
1523       }
1524       // FIXME: Get Clang to emit function virtual table here and handle it.
1525     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1526       Info.NestedClasses.push_back(Composite);
1527     }
1528     // Skip other unrecognized kinds of elements.
1529   }
1530   return Info;
1531 }
1532 
1533 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1534   // First, construct the forward decl.  Don't look into Ty to compute the
1535   // forward decl options, since it might not be available in all TUs.
1536   TypeRecordKind Kind = getRecordKind(Ty);
1537   ClassOptions CO =
1538       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1539   std::string FullName = getFullyQualifiedName(Ty);
1540   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1541       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1542       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1543   if (!Ty->isForwardDecl())
1544     DeferredCompleteTypes.push_back(Ty);
1545   return FwdDeclTI;
1546 }
1547 
1548 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1549   // Construct the field list and complete type record.
1550   TypeRecordKind Kind = getRecordKind(Ty);
1551   ClassOptions CO = getCommonClassOptions(Ty);
1552   TypeIndex FieldTI;
1553   TypeIndex VShapeTI;
1554   unsigned FieldCount;
1555   bool ContainsNestedClass;
1556   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1557       lowerRecordFieldList(Ty);
1558 
1559   if (ContainsNestedClass)
1560     CO |= ClassOptions::ContainsNestedClass;
1561 
1562   std::string FullName = getFullyQualifiedName(Ty);
1563 
1564   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1565 
1566   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1567       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1568       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1569 
1570   TypeTable.writeKnownType(UdtSourceLineRecord(
1571       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1572                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1573       Ty->getLine()));
1574 
1575   addToUDTs(Ty, ClassTI);
1576 
1577   return ClassTI;
1578 }
1579 
1580 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1581   ClassOptions CO =
1582       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1583   std::string FullName = getFullyQualifiedName(Ty);
1584   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1585       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1586   if (!Ty->isForwardDecl())
1587     DeferredCompleteTypes.push_back(Ty);
1588   return FwdDeclTI;
1589 }
1590 
1591 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1592   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1593   TypeIndex FieldTI;
1594   unsigned FieldCount;
1595   bool ContainsNestedClass;
1596   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1597       lowerRecordFieldList(Ty);
1598 
1599   if (ContainsNestedClass)
1600     CO |= ClassOptions::ContainsNestedClass;
1601 
1602   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1603   std::string FullName = getFullyQualifiedName(Ty);
1604 
1605   TypeIndex UnionTI = TypeTable.writeKnownType(
1606       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1607                   Ty->getIdentifier()));
1608 
1609   TypeTable.writeKnownType(UdtSourceLineRecord(
1610       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1611                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1612       Ty->getLine()));
1613 
1614   addToUDTs(Ty, UnionTI);
1615 
1616   return UnionTI;
1617 }
1618 
1619 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1620 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1621   // Manually count members. MSVC appears to count everything that generates a
1622   // field list record. Each individual overload in a method overload group
1623   // contributes to this count, even though the overload group is a single field
1624   // list record.
1625   unsigned MemberCount = 0;
1626   ClassInfo Info = collectClassInfo(Ty);
1627   FieldListRecordBuilder Fields;
1628 
1629   // Create base classes.
1630   for (const DIDerivedType *I : Info.Inheritance) {
1631     if (I->getFlags() & DINode::FlagVirtual) {
1632       // Virtual base.
1633       // FIXME: Emit VBPtrOffset when the frontend provides it.
1634       unsigned VBPtrOffset = 0;
1635       // FIXME: Despite the accessor name, the offset is really in bytes.
1636       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1637       Fields.writeMemberType(VirtualBaseClassRecord(
1638           translateAccessFlags(Ty->getTag(), I->getFlags()),
1639           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1640           VBTableIndex));
1641     } else {
1642       assert(I->getOffsetInBits() % 8 == 0 &&
1643              "bases must be on byte boundaries");
1644       Fields.writeMemberType(BaseClassRecord(
1645           translateAccessFlags(Ty->getTag(), I->getFlags()),
1646           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1647     }
1648   }
1649 
1650   // Create members.
1651   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1652     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1653     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1654     StringRef MemberName = Member->getName();
1655     MemberAccess Access =
1656         translateAccessFlags(Ty->getTag(), Member->getFlags());
1657 
1658     if (Member->isStaticMember()) {
1659       Fields.writeMemberType(
1660           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1661       MemberCount++;
1662       continue;
1663     }
1664 
1665     // Data member.
1666     uint64_t MemberOffsetInBits =
1667         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1668     if (Member->isBitField()) {
1669       uint64_t StartBitOffset = MemberOffsetInBits;
1670       if (const auto *CI =
1671               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1672         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1673       }
1674       StartBitOffset -= MemberOffsetInBits;
1675       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1676           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1677     }
1678     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1679     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1680                                             MemberOffsetInBytes, MemberName));
1681     MemberCount++;
1682   }
1683 
1684   // Create methods
1685   for (auto &MethodItr : Info.Methods) {
1686     StringRef Name = MethodItr.first->getString();
1687 
1688     std::vector<OneMethodRecord> Methods;
1689     for (const DISubprogram *SP : MethodItr.second) {
1690       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1691       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1692 
1693       unsigned VFTableOffset = -1;
1694       if (Introduced)
1695         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1696 
1697       Methods.push_back(
1698           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1699                           translateMethodOptionFlags(SP),
1700                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1701                           VFTableOffset, Name));
1702       MemberCount++;
1703     }
1704     assert(Methods.size() > 0 && "Empty methods map entry");
1705     if (Methods.size() == 1)
1706       Fields.writeMemberType(Methods[0]);
1707     else {
1708       TypeIndex MethodList =
1709           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1710       Fields.writeMemberType(
1711           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1712     }
1713   }
1714 
1715   // Create nested classes.
1716   for (const DICompositeType *Nested : Info.NestedClasses) {
1717     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1718     Fields.writeMemberType(R);
1719     MemberCount++;
1720   }
1721 
1722   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1723   return std::make_tuple(FieldTI, TypeIndex(), MemberCount,
1724                          !Info.NestedClasses.empty());
1725 }
1726 
1727 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1728   if (!VBPType.getIndex()) {
1729     // Make a 'const int *' type.
1730     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1731     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1732 
1733     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1734                                                   : PointerKind::Near32;
1735     PointerMode PM = PointerMode::Pointer;
1736     PointerOptions PO = PointerOptions::None;
1737     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1738 
1739     VBPType = TypeTable.writeKnownType(PR);
1740   }
1741 
1742   return VBPType;
1743 }
1744 
1745 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1746   const DIType *Ty = TypeRef.resolve();
1747   const DIType *ClassTy = ClassTyRef.resolve();
1748 
1749   // The null DIType is the void type. Don't try to hash it.
1750   if (!Ty)
1751     return TypeIndex::Void();
1752 
1753   // Check if we've already translated this type. Don't try to do a
1754   // get-or-create style insertion that caches the hash lookup across the
1755   // lowerType call. It will update the TypeIndices map.
1756   auto I = TypeIndices.find({Ty, ClassTy});
1757   if (I != TypeIndices.end())
1758     return I->second;
1759 
1760   TypeLoweringScope S(*this);
1761   TypeIndex TI = lowerType(Ty, ClassTy);
1762   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1763 }
1764 
1765 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1766   const DIType *Ty = TypeRef.resolve();
1767 
1768   // The null DIType is the void type. Don't try to hash it.
1769   if (!Ty)
1770     return TypeIndex::Void();
1771 
1772   // If this is a non-record type, the complete type index is the same as the
1773   // normal type index. Just call getTypeIndex.
1774   switch (Ty->getTag()) {
1775   case dwarf::DW_TAG_class_type:
1776   case dwarf::DW_TAG_structure_type:
1777   case dwarf::DW_TAG_union_type:
1778     break;
1779   default:
1780     return getTypeIndex(Ty);
1781   }
1782 
1783   // Check if we've already translated the complete record type.  Lowering a
1784   // complete type should never trigger lowering another complete type, so we
1785   // can reuse the hash table lookup result.
1786   const auto *CTy = cast<DICompositeType>(Ty);
1787   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1788   if (!InsertResult.second)
1789     return InsertResult.first->second;
1790 
1791   TypeLoweringScope S(*this);
1792 
1793   // Make sure the forward declaration is emitted first. It's unclear if this
1794   // is necessary, but MSVC does it, and we should follow suit until we can show
1795   // otherwise.
1796   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1797 
1798   // Just use the forward decl if we don't have complete type info. This might
1799   // happen if the frontend is using modules and expects the complete definition
1800   // to be emitted elsewhere.
1801   if (CTy->isForwardDecl())
1802     return FwdDeclTI;
1803 
1804   TypeIndex TI;
1805   switch (CTy->getTag()) {
1806   case dwarf::DW_TAG_class_type:
1807   case dwarf::DW_TAG_structure_type:
1808     TI = lowerCompleteTypeClass(CTy);
1809     break;
1810   case dwarf::DW_TAG_union_type:
1811     TI = lowerCompleteTypeUnion(CTy);
1812     break;
1813   default:
1814     llvm_unreachable("not a record");
1815   }
1816 
1817   InsertResult.first->second = TI;
1818   return TI;
1819 }
1820 
1821 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1822 /// and do this until fixpoint, as each complete record type typically
1823 /// references
1824 /// many other record types.
1825 void CodeViewDebug::emitDeferredCompleteTypes() {
1826   SmallVector<const DICompositeType *, 4> TypesToEmit;
1827   while (!DeferredCompleteTypes.empty()) {
1828     std::swap(DeferredCompleteTypes, TypesToEmit);
1829     for (const DICompositeType *RecordTy : TypesToEmit)
1830       getCompleteTypeIndex(RecordTy);
1831     TypesToEmit.clear();
1832   }
1833 }
1834 
1835 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1836   // Get the sorted list of parameters and emit them first.
1837   SmallVector<const LocalVariable *, 6> Params;
1838   for (const LocalVariable &L : Locals)
1839     if (L.DIVar->isParameter())
1840       Params.push_back(&L);
1841   std::sort(Params.begin(), Params.end(),
1842             [](const LocalVariable *L, const LocalVariable *R) {
1843               return L->DIVar->getArg() < R->DIVar->getArg();
1844             });
1845   for (const LocalVariable *L : Params)
1846     emitLocalVariable(*L);
1847 
1848   // Next emit all non-parameters in the order that we found them.
1849   for (const LocalVariable &L : Locals)
1850     if (!L.DIVar->isParameter())
1851       emitLocalVariable(L);
1852 }
1853 
1854 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1855   // LocalSym record, see SymbolRecord.h for more info.
1856   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1857            *LocalEnd = MMI->getContext().createTempSymbol();
1858   OS.AddComment("Record length");
1859   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1860   OS.EmitLabel(LocalBegin);
1861 
1862   OS.AddComment("Record kind: S_LOCAL");
1863   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1864 
1865   LocalSymFlags Flags = LocalSymFlags::None;
1866   if (Var.DIVar->isParameter())
1867     Flags |= LocalSymFlags::IsParameter;
1868   if (Var.DefRanges.empty())
1869     Flags |= LocalSymFlags::IsOptimizedOut;
1870 
1871   OS.AddComment("TypeIndex");
1872   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1873   OS.EmitIntValue(TI.getIndex(), 4);
1874   OS.AddComment("Flags");
1875   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1876   // Truncate the name so we won't overflow the record length field.
1877   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1878   OS.EmitLabel(LocalEnd);
1879 
1880   // Calculate the on disk prefix of the appropriate def range record. The
1881   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1882   // should be big enough to hold all forms without memory allocation.
1883   SmallString<20> BytePrefix;
1884   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1885     BytePrefix.clear();
1886     // FIXME: Handle bitpieces.
1887     if (DefRange.StructOffset != 0)
1888       continue;
1889 
1890     if (DefRange.InMemory) {
1891       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1892                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1893       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1894       BytePrefix +=
1895           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1896       BytePrefix +=
1897           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1898                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1899     } else {
1900       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1901       // Unclear what matters here.
1902       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1903                               ArrayRef<LocalVariableAddrGap>());
1904       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1905       BytePrefix +=
1906           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1907       BytePrefix +=
1908           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1909                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1910     }
1911     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1912   }
1913 }
1914 
1915 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1916   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1917     return;
1918 
1919   const Function *GV = MF->getFunction();
1920   assert(FnDebugInfo.count(GV));
1921   assert(CurFn == &FnDebugInfo[GV]);
1922 
1923   collectVariableInfo(GV->getSubprogram());
1924 
1925   DebugHandlerBase::endFunction(MF);
1926 
1927   // Don't emit anything if we don't have any line tables.
1928   if (!CurFn->HaveLineInfo) {
1929     FnDebugInfo.erase(GV);
1930     CurFn = nullptr;
1931     return;
1932   }
1933 
1934   CurFn->End = Asm->getFunctionEnd();
1935 
1936   CurFn = nullptr;
1937 }
1938 
1939 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1940   DebugHandlerBase::beginInstruction(MI);
1941 
1942   // Ignore DBG_VALUE locations and function prologue.
1943   if (!Asm || !CurFn || MI->isDebugValue() ||
1944       MI->getFlag(MachineInstr::FrameSetup))
1945     return;
1946   DebugLoc DL = MI->getDebugLoc();
1947   if (DL == PrevInstLoc || !DL)
1948     return;
1949   maybeRecordLocation(DL, Asm->MF);
1950 }
1951 
1952 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1953   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1954            *EndLabel = MMI->getContext().createTempSymbol();
1955   OS.EmitIntValue(unsigned(Kind), 4);
1956   OS.AddComment("Subsection size");
1957   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1958   OS.EmitLabel(BeginLabel);
1959   return EndLabel;
1960 }
1961 
1962 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1963   OS.EmitLabel(EndLabel);
1964   // Every subsection must be aligned to a 4-byte boundary.
1965   OS.EmitValueToAlignment(4);
1966 }
1967 
1968 void CodeViewDebug::emitDebugInfoForUDTs(
1969     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1970   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1971     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1972              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1973     OS.AddComment("Record length");
1974     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1975     OS.EmitLabel(UDTRecordBegin);
1976 
1977     OS.AddComment("Record kind: S_UDT");
1978     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1979 
1980     OS.AddComment("Type");
1981     OS.EmitIntValue(UDT.second.getIndex(), 4);
1982 
1983     emitNullTerminatedSymbolName(OS, UDT.first);
1984     OS.EmitLabel(UDTRecordEnd);
1985   }
1986 }
1987 
1988 void CodeViewDebug::emitDebugInfoForGlobals() {
1989   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1990   for (const MDNode *Node : CUs->operands()) {
1991     const auto *CU = cast<DICompileUnit>(Node);
1992 
1993     // First, emit all globals that are not in a comdat in a single symbol
1994     // substream. MSVC doesn't like it if the substream is empty, so only open
1995     // it if we have at least one global to emit.
1996     switchToDebugSectionForSymbol(nullptr);
1997     MCSymbol *EndLabel = nullptr;
1998     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1999       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2000         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2001           if (!EndLabel) {
2002             OS.AddComment("Symbol subsection for globals");
2003             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2004           }
2005           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
2006         }
2007       }
2008     }
2009     if (EndLabel)
2010       endCVSubsection(EndLabel);
2011 
2012     // Second, emit each global that is in a comdat into its own .debug$S
2013     // section along with its own symbol substream.
2014     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2015       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2016         if (GV->hasComdat()) {
2017           MCSymbol *GVSym = Asm->getSymbol(GV);
2018           OS.AddComment("Symbol subsection for " +
2019                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2020           switchToDebugSectionForSymbol(GVSym);
2021           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2022           emitDebugInfoForGlobal(G, GVSym);
2023           endCVSubsection(EndLabel);
2024         }
2025       }
2026     }
2027   }
2028 }
2029 
2030 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2031   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2032   for (const MDNode *Node : CUs->operands()) {
2033     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2034       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2035         getTypeIndex(RT);
2036         // FIXME: Add to global/local DTU list.
2037       }
2038     }
2039   }
2040 }
2041 
2042 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2043                                            MCSymbol *GVSym) {
2044   // DataSym record, see SymbolRecord.h for more info.
2045   // FIXME: Thread local data, etc
2046   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2047            *DataEnd = MMI->getContext().createTempSymbol();
2048   OS.AddComment("Record length");
2049   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2050   OS.EmitLabel(DataBegin);
2051   const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
2052   if (DIGV->isLocalToUnit()) {
2053     if (GV->isThreadLocal()) {
2054       OS.AddComment("Record kind: S_LTHREAD32");
2055       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2056     } else {
2057       OS.AddComment("Record kind: S_LDATA32");
2058       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2059     }
2060   } else {
2061     if (GV->isThreadLocal()) {
2062       OS.AddComment("Record kind: S_GTHREAD32");
2063       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2064     } else {
2065       OS.AddComment("Record kind: S_GDATA32");
2066       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2067     }
2068   }
2069   OS.AddComment("Type");
2070   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2071   OS.AddComment("DataOffset");
2072   OS.EmitCOFFSecRel32(GVSym);
2073   OS.AddComment("Segment");
2074   OS.EmitCOFFSectionIndex(GVSym);
2075   OS.AddComment("Name");
2076   emitNullTerminatedSymbolName(OS, DIGV->getName());
2077   OS.EmitLabel(DataEnd);
2078 }
2079