1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 17 #include "llvm/DebugInfo/CodeView/CodeView.h" 18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 19 #include "llvm/DebugInfo/CodeView/Line.h" 20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 21 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 22 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 23 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 25 #include "llvm/DebugInfo/MSF/ByteStream.h" 26 #include "llvm/DebugInfo/MSF/StreamReader.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/MC/MCSectionCOFF.h" 31 #include "llvm/MC/MCSymbol.h" 32 #include "llvm/Support/COFF.h" 33 #include "llvm/Support/ScopedPrinter.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetRegisterInfo.h" 36 #include "llvm/Target/TargetSubtargetInfo.h" 37 38 using namespace llvm; 39 using namespace llvm::codeview; 40 using namespace llvm::msf; 41 42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 43 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(), 44 TypeTable(Allocator), CurFn(nullptr) { 45 // If module doesn't have named metadata anchors or COFF debug section 46 // is not available, skip any debug info related stuff. 47 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 48 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 49 Asm = nullptr; 50 return; 51 } 52 53 // Tell MMI that we have debug info. 54 MMI->setDebugInfoAvailability(true); 55 } 56 57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 58 std::string &Filepath = FileToFilepathMap[File]; 59 if (!Filepath.empty()) 60 return Filepath; 61 62 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 63 64 // Clang emits directory and relative filename info into the IR, but CodeView 65 // operates on full paths. We could change Clang to emit full paths too, but 66 // that would increase the IR size and probably not needed for other users. 67 // For now, just concatenate and canonicalize the path here. 68 if (Filename.find(':') == 1) 69 Filepath = Filename; 70 else 71 Filepath = (Dir + "\\" + Filename).str(); 72 73 // Canonicalize the path. We have to do it textually because we may no longer 74 // have access the file in the filesystem. 75 // First, replace all slashes with backslashes. 76 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 77 78 // Remove all "\.\" with "\". 79 size_t Cursor = 0; 80 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 81 Filepath.erase(Cursor, 2); 82 83 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 84 // path should be well-formatted, e.g. start with a drive letter, etc. 85 Cursor = 0; 86 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 87 // Something's wrong if the path starts with "\..\", abort. 88 if (Cursor == 0) 89 break; 90 91 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 92 if (PrevSlash == std::string::npos) 93 // Something's wrong, abort. 94 break; 95 96 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 97 // The next ".." might be following the one we've just erased. 98 Cursor = PrevSlash; 99 } 100 101 // Remove all duplicate backslashes. 102 Cursor = 0; 103 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 104 Filepath.erase(Cursor, 1); 105 106 return Filepath; 107 } 108 109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 110 unsigned NextId = FileIdMap.size() + 1; 111 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 112 if (Insertion.second) { 113 // We have to compute the full filepath and emit a .cv_file directive. 114 StringRef FullPath = getFullFilepath(F); 115 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 116 (void)Success; 117 assert(Success && ".cv_file directive failed"); 118 } 119 return Insertion.first->second; 120 } 121 122 CodeViewDebug::InlineSite & 123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 124 const DISubprogram *Inlinee) { 125 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 126 InlineSite *Site = &SiteInsertion.first->second; 127 if (SiteInsertion.second) { 128 unsigned ParentFuncId = CurFn->FuncId; 129 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 130 ParentFuncId = 131 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 132 .SiteFuncId; 133 134 Site->SiteFuncId = NextFuncId++; 135 OS.EmitCVInlineSiteIdDirective( 136 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 137 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 138 Site->Inlinee = Inlinee; 139 InlinedSubprograms.insert(Inlinee); 140 getFuncIdForSubprogram(Inlinee); 141 } 142 return *Site; 143 } 144 145 static StringRef getPrettyScopeName(const DIScope *Scope) { 146 StringRef ScopeName = Scope->getName(); 147 if (!ScopeName.empty()) 148 return ScopeName; 149 150 switch (Scope->getTag()) { 151 case dwarf::DW_TAG_enumeration_type: 152 case dwarf::DW_TAG_class_type: 153 case dwarf::DW_TAG_structure_type: 154 case dwarf::DW_TAG_union_type: 155 return "<unnamed-tag>"; 156 case dwarf::DW_TAG_namespace: 157 return "`anonymous namespace'"; 158 } 159 160 return StringRef(); 161 } 162 163 static const DISubprogram *getQualifiedNameComponents( 164 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 165 const DISubprogram *ClosestSubprogram = nullptr; 166 while (Scope != nullptr) { 167 if (ClosestSubprogram == nullptr) 168 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 169 StringRef ScopeName = getPrettyScopeName(Scope); 170 if (!ScopeName.empty()) 171 QualifiedNameComponents.push_back(ScopeName); 172 Scope = Scope->getScope().resolve(); 173 } 174 return ClosestSubprogram; 175 } 176 177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 178 StringRef TypeName) { 179 std::string FullyQualifiedName; 180 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 181 FullyQualifiedName.append(QualifiedNameComponent); 182 FullyQualifiedName.append("::"); 183 } 184 FullyQualifiedName.append(TypeName); 185 return FullyQualifiedName; 186 } 187 188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 189 SmallVector<StringRef, 5> QualifiedNameComponents; 190 getQualifiedNameComponents(Scope, QualifiedNameComponents); 191 return getQualifiedName(QualifiedNameComponents, Name); 192 } 193 194 struct CodeViewDebug::TypeLoweringScope { 195 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 196 ~TypeLoweringScope() { 197 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 198 // inner TypeLoweringScopes don't attempt to emit deferred types. 199 if (CVD.TypeEmissionLevel == 1) 200 CVD.emitDeferredCompleteTypes(); 201 --CVD.TypeEmissionLevel; 202 } 203 CodeViewDebug &CVD; 204 }; 205 206 static std::string getFullyQualifiedName(const DIScope *Ty) { 207 const DIScope *Scope = Ty->getScope().resolve(); 208 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 209 } 210 211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 212 // No scope means global scope and that uses the zero index. 213 if (!Scope || isa<DIFile>(Scope)) 214 return TypeIndex(); 215 216 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 217 218 // Check if we've already translated this scope. 219 auto I = TypeIndices.find({Scope, nullptr}); 220 if (I != TypeIndices.end()) 221 return I->second; 222 223 // Build the fully qualified name of the scope. 224 std::string ScopeName = getFullyQualifiedName(Scope); 225 TypeIndex TI = 226 TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName)); 227 return recordTypeIndexForDINode(Scope, TI); 228 } 229 230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 231 assert(SP); 232 233 // Check if we've already translated this subprogram. 234 auto I = TypeIndices.find({SP, nullptr}); 235 if (I != TypeIndices.end()) 236 return I->second; 237 238 // The display name includes function template arguments. Drop them to match 239 // MSVC. 240 StringRef DisplayName = SP->getDisplayName().split('<').first; 241 242 const DIScope *Scope = SP->getScope().resolve(); 243 TypeIndex TI; 244 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 245 // If the scope is a DICompositeType, then this must be a method. Member 246 // function types take some special handling, and require access to the 247 // subprogram. 248 TypeIndex ClassType = getTypeIndex(Class); 249 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 250 DisplayName); 251 TI = TypeTable.writeKnownType(MFuncId); 252 } else { 253 // Otherwise, this must be a free function. 254 TypeIndex ParentScope = getScopeIndex(Scope); 255 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 256 TI = TypeTable.writeKnownType(FuncId); 257 } 258 259 return recordTypeIndexForDINode(SP, TI); 260 } 261 262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 263 const DICompositeType *Class) { 264 // Always use the method declaration as the key for the function type. The 265 // method declaration contains the this adjustment. 266 if (SP->getDeclaration()) 267 SP = SP->getDeclaration(); 268 assert(!SP->getDeclaration() && "should use declaration as key"); 269 270 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 271 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 272 auto I = TypeIndices.find({SP, Class}); 273 if (I != TypeIndices.end()) 274 return I->second; 275 276 // Make sure complete type info for the class is emitted *after* the member 277 // function type, as the complete class type is likely to reference this 278 // member function type. 279 TypeLoweringScope S(*this); 280 TypeIndex TI = 281 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 282 return recordTypeIndexForDINode(SP, TI, Class); 283 } 284 285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 286 TypeIndex TI, 287 const DIType *ClassTy) { 288 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 289 (void)InsertResult; 290 assert(InsertResult.second && "DINode was already assigned a type index"); 291 return TI; 292 } 293 294 unsigned CodeViewDebug::getPointerSizeInBytes() { 295 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 296 } 297 298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 299 const DILocation *InlinedAt) { 300 if (InlinedAt) { 301 // This variable was inlined. Associate it with the InlineSite. 302 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 303 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 304 Site.InlinedLocals.emplace_back(Var); 305 } else { 306 // This variable goes in the main ProcSym. 307 CurFn->Locals.emplace_back(Var); 308 } 309 } 310 311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 312 const DILocation *Loc) { 313 auto B = Locs.begin(), E = Locs.end(); 314 if (std::find(B, E, Loc) == E) 315 Locs.push_back(Loc); 316 } 317 318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 319 const MachineFunction *MF) { 320 // Skip this instruction if it has the same location as the previous one. 321 if (DL == CurFn->LastLoc) 322 return; 323 324 const DIScope *Scope = DL.get()->getScope(); 325 if (!Scope) 326 return; 327 328 // Skip this line if it is longer than the maximum we can record. 329 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 330 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 331 LI.isNeverStepInto()) 332 return; 333 334 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 335 if (CI.getStartColumn() != DL.getCol()) 336 return; 337 338 if (!CurFn->HaveLineInfo) 339 CurFn->HaveLineInfo = true; 340 unsigned FileId = 0; 341 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 342 FileId = CurFn->LastFileId; 343 else 344 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 345 CurFn->LastLoc = DL; 346 347 unsigned FuncId = CurFn->FuncId; 348 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 349 const DILocation *Loc = DL.get(); 350 351 // If this location was actually inlined from somewhere else, give it the ID 352 // of the inline call site. 353 FuncId = 354 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 355 356 // Ensure we have links in the tree of inline call sites. 357 bool FirstLoc = true; 358 while ((SiteLoc = Loc->getInlinedAt())) { 359 InlineSite &Site = 360 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 361 if (!FirstLoc) 362 addLocIfNotPresent(Site.ChildSites, Loc); 363 FirstLoc = false; 364 Loc = SiteLoc; 365 } 366 addLocIfNotPresent(CurFn->ChildSites, Loc); 367 } 368 369 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 370 /*PrologueEnd=*/false, /*IsStmt=*/false, 371 DL->getFilename(), SMLoc()); 372 } 373 374 void CodeViewDebug::emitCodeViewMagicVersion() { 375 OS.EmitValueToAlignment(4); 376 OS.AddComment("Debug section magic"); 377 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 378 } 379 380 void CodeViewDebug::endModule() { 381 if (!Asm || !MMI->hasDebugInfo()) 382 return; 383 384 assert(Asm != nullptr); 385 386 // The COFF .debug$S section consists of several subsections, each starting 387 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 388 // of the payload followed by the payload itself. The subsections are 4-byte 389 // aligned. 390 391 // Use the generic .debug$S section, and make a subsection for all the inlined 392 // subprograms. 393 switchToDebugSectionForSymbol(nullptr); 394 emitInlineeLinesSubsection(); 395 396 // Emit per-function debug information. 397 for (auto &P : FnDebugInfo) 398 if (!P.first->isDeclarationForLinker()) 399 emitDebugInfoForFunction(P.first, P.second); 400 401 // Emit global variable debug information. 402 setCurrentSubprogram(nullptr); 403 emitDebugInfoForGlobals(); 404 405 // Emit retained types. 406 emitDebugInfoForRetainedTypes(); 407 408 // Switch back to the generic .debug$S section after potentially processing 409 // comdat symbol sections. 410 switchToDebugSectionForSymbol(nullptr); 411 412 // Emit UDT records for any types used by global variables. 413 if (!GlobalUDTs.empty()) { 414 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 415 emitDebugInfoForUDTs(GlobalUDTs); 416 endCVSubsection(SymbolsEnd); 417 } 418 419 // This subsection holds a file index to offset in string table table. 420 OS.AddComment("File index to string table offset subsection"); 421 OS.EmitCVFileChecksumsDirective(); 422 423 // This subsection holds the string table. 424 OS.AddComment("String table"); 425 OS.EmitCVStringTableDirective(); 426 427 // Emit type information last, so that any types we translate while emitting 428 // function info are included. 429 emitTypeInformation(); 430 431 clear(); 432 } 433 434 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 435 // Microsoft's linker seems to have trouble with symbol names longer than 436 // 0xffd8 bytes. 437 S = S.substr(0, 0xffd8); 438 SmallString<32> NullTerminatedString(S); 439 NullTerminatedString.push_back('\0'); 440 OS.EmitBytes(NullTerminatedString); 441 } 442 443 void CodeViewDebug::emitTypeInformation() { 444 // Do nothing if we have no debug info or if no non-trivial types were emitted 445 // to TypeTable during codegen. 446 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 447 if (!CU_Nodes) 448 return; 449 if (TypeTable.empty()) 450 return; 451 452 // Start the .debug$T section with 0x4. 453 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 454 emitCodeViewMagicVersion(); 455 456 SmallString<8> CommentPrefix; 457 if (OS.isVerboseAsm()) { 458 CommentPrefix += '\t'; 459 CommentPrefix += Asm->MAI->getCommentString(); 460 CommentPrefix += ' '; 461 } 462 463 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 464 TypeTable.ForEachRecord( 465 [&](TypeIndex Index, StringRef Record) { 466 if (OS.isVerboseAsm()) { 467 // Emit a block comment describing the type record for readability. 468 SmallString<512> CommentBlock; 469 raw_svector_ostream CommentOS(CommentBlock); 470 ScopedPrinter SP(CommentOS); 471 SP.setPrefix(CommentPrefix); 472 CVTD.setPrinter(&SP); 473 Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 474 if (E) { 475 logAllUnhandledErrors(std::move(E), errs(), "error: "); 476 llvm_unreachable("produced malformed type record"); 477 } 478 // emitRawComment will insert its own tab and comment string before 479 // the first line, so strip off our first one. It also prints its own 480 // newline. 481 OS.emitRawComment( 482 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 483 } else { 484 #ifndef NDEBUG 485 // Assert that the type data is valid even if we aren't dumping 486 // comments. The MSVC linker doesn't do much type record validation, 487 // so the first link of an invalid type record can succeed while 488 // subsequent links will fail with LNK1285. 489 ByteStream Stream({Record.bytes_begin(), Record.bytes_end()}); 490 CVTypeArray Types; 491 StreamReader Reader(Stream); 492 Error E = Reader.readArray(Types, Reader.getLength()); 493 if (!E) { 494 TypeVisitorCallbacks C; 495 E = CVTypeVisitor(C).visitTypeStream(Types); 496 } 497 if (E) { 498 logAllUnhandledErrors(std::move(E), errs(), "error: "); 499 llvm_unreachable("produced malformed type record"); 500 } 501 #endif 502 } 503 OS.EmitBinaryData(Record); 504 }); 505 } 506 507 namespace { 508 509 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 510 switch (DWLang) { 511 case dwarf::DW_LANG_C: 512 case dwarf::DW_LANG_C89: 513 case dwarf::DW_LANG_C99: 514 case dwarf::DW_LANG_C11: 515 case dwarf::DW_LANG_ObjC: 516 return SourceLanguage::C; 517 case dwarf::DW_LANG_C_plus_plus: 518 case dwarf::DW_LANG_C_plus_plus_03: 519 case dwarf::DW_LANG_C_plus_plus_11: 520 case dwarf::DW_LANG_C_plus_plus_14: 521 return SourceLanguage::Cpp; 522 case dwarf::DW_LANG_Fortran77: 523 case dwarf::DW_LANG_Fortran90: 524 case dwarf::DW_LANG_Fortran03: 525 case dwarf::DW_LANG_Fortran08: 526 return SourceLanguage::Fortran; 527 case dwarf::DW_LANG_Pascal83: 528 return SourceLanguage::Pascal; 529 case dwarf::DW_LANG_Cobol74: 530 case dwarf::DW_LANG_Cobol85: 531 return SourceLanguage::Cobol; 532 case dwarf::DW_LANG_Java: 533 return SourceLanguage::Java; 534 default: 535 // There's no CodeView representation for this language, and CV doesn't 536 // have an "unknown" option for the language field, so we'll use MASM, 537 // as it's very low level. 538 return SourceLanguage::Masm; 539 } 540 } 541 542 struct Version { 543 int Part[4]; 544 }; 545 546 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 547 // the version number. 548 static Version parseVersion(StringRef Name) { 549 Version V = {{0}}; 550 int N = 0; 551 for (const char C : Name) { 552 if (isdigit(C)) { 553 V.Part[N] *= 10; 554 V.Part[N] += C - '0'; 555 } else if (C == '.') { 556 ++N; 557 if (N >= 4) 558 return V; 559 } else if (N > 0) 560 return V; 561 } 562 return V; 563 } 564 565 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 566 switch (Type) { 567 case Triple::ArchType::x86: 568 return CPUType::Pentium3; 569 case Triple::ArchType::x86_64: 570 return CPUType::X64; 571 case Triple::ArchType::thumb: 572 return CPUType::Thumb; 573 default: 574 report_fatal_error("target architecture doesn't map to a CodeView " 575 "CPUType"); 576 } 577 } 578 579 } // anonymous namespace 580 581 void CodeViewDebug::emitCompilerInformation() { 582 MCContext &Context = MMI->getContext(); 583 MCSymbol *CompilerBegin = Context.createTempSymbol(), 584 *CompilerEnd = Context.createTempSymbol(); 585 OS.AddComment("Record length"); 586 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 587 OS.EmitLabel(CompilerBegin); 588 OS.AddComment("Record kind: S_COMPILE3"); 589 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 590 uint32_t Flags = 0; 591 592 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 593 const MDNode *Node = *CUs->operands().begin(); 594 const auto *CU = cast<DICompileUnit>(Node); 595 596 // The low byte of the flags indicates the source language. 597 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 598 // TODO: Figure out which other flags need to be set. 599 600 OS.AddComment("Flags and language"); 601 OS.EmitIntValue(Flags, 4); 602 603 OS.AddComment("CPUType"); 604 CPUType CPU = 605 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 606 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 607 608 StringRef CompilerVersion = CU->getProducer(); 609 Version FrontVer = parseVersion(CompilerVersion); 610 OS.AddComment("Frontend version"); 611 for (int N = 0; N < 4; ++N) 612 OS.EmitIntValue(FrontVer.Part[N], 2); 613 614 // Some Microsoft tools, like Binscope, expect a backend version number of at 615 // least 8.something, so we'll coerce the LLVM version into a form that 616 // guarantees it'll be big enough without really lying about the version. 617 Version BackVer = {{ 618 1000 * LLVM_VERSION_MAJOR + 619 10 * LLVM_VERSION_MINOR + 620 LLVM_VERSION_PATCH, 621 0, 0, 0 }}; 622 OS.AddComment("Backend version"); 623 for (int N = 0; N < 4; ++N) 624 OS.EmitIntValue(BackVer.Part[N], 2); 625 626 OS.AddComment("Null-terminated compiler version string"); 627 emitNullTerminatedSymbolName(OS, CompilerVersion); 628 629 OS.EmitLabel(CompilerEnd); 630 } 631 632 void CodeViewDebug::emitInlineeLinesSubsection() { 633 if (InlinedSubprograms.empty()) 634 return; 635 636 OS.AddComment("Inlinee lines subsection"); 637 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 638 639 // We don't provide any extra file info. 640 // FIXME: Find out if debuggers use this info. 641 OS.AddComment("Inlinee lines signature"); 642 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 643 644 for (const DISubprogram *SP : InlinedSubprograms) { 645 assert(TypeIndices.count({SP, nullptr})); 646 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 647 648 OS.AddBlankLine(); 649 unsigned FileId = maybeRecordFile(SP->getFile()); 650 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 651 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 652 OS.AddBlankLine(); 653 // The filechecksum table uses 8 byte entries for now, and file ids start at 654 // 1. 655 unsigned FileOffset = (FileId - 1) * 8; 656 OS.AddComment("Type index of inlined function"); 657 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 658 OS.AddComment("Offset into filechecksum table"); 659 OS.EmitIntValue(FileOffset, 4); 660 OS.AddComment("Starting line number"); 661 OS.EmitIntValue(SP->getLine(), 4); 662 } 663 664 endCVSubsection(InlineEnd); 665 } 666 667 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 668 const DILocation *InlinedAt, 669 const InlineSite &Site) { 670 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 671 *InlineEnd = MMI->getContext().createTempSymbol(); 672 673 assert(TypeIndices.count({Site.Inlinee, nullptr})); 674 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 675 676 // SymbolRecord 677 OS.AddComment("Record length"); 678 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 679 OS.EmitLabel(InlineBegin); 680 OS.AddComment("Record kind: S_INLINESITE"); 681 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 682 683 OS.AddComment("PtrParent"); 684 OS.EmitIntValue(0, 4); 685 OS.AddComment("PtrEnd"); 686 OS.EmitIntValue(0, 4); 687 OS.AddComment("Inlinee type index"); 688 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 689 690 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 691 unsigned StartLineNum = Site.Inlinee->getLine(); 692 693 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 694 FI.Begin, FI.End); 695 696 OS.EmitLabel(InlineEnd); 697 698 emitLocalVariableList(Site.InlinedLocals); 699 700 // Recurse on child inlined call sites before closing the scope. 701 for (const DILocation *ChildSite : Site.ChildSites) { 702 auto I = FI.InlineSites.find(ChildSite); 703 assert(I != FI.InlineSites.end() && 704 "child site not in function inline site map"); 705 emitInlinedCallSite(FI, ChildSite, I->second); 706 } 707 708 // Close the scope. 709 OS.AddComment("Record length"); 710 OS.EmitIntValue(2, 2); // RecordLength 711 OS.AddComment("Record kind: S_INLINESITE_END"); 712 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 713 } 714 715 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 716 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 717 // comdat key. A section may be comdat because of -ffunction-sections or 718 // because it is comdat in the IR. 719 MCSectionCOFF *GVSec = 720 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 721 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 722 723 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 724 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 725 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 726 727 OS.SwitchSection(DebugSec); 728 729 // Emit the magic version number if this is the first time we've switched to 730 // this section. 731 if (ComdatDebugSections.insert(DebugSec).second) 732 emitCodeViewMagicVersion(); 733 } 734 735 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 736 FunctionInfo &FI) { 737 // For each function there is a separate subsection 738 // which holds the PC to file:line table. 739 const MCSymbol *Fn = Asm->getSymbol(GV); 740 assert(Fn); 741 742 // Switch to the to a comdat section, if appropriate. 743 switchToDebugSectionForSymbol(Fn); 744 745 std::string FuncName; 746 auto *SP = GV->getSubprogram(); 747 assert(SP); 748 setCurrentSubprogram(SP); 749 750 // If we have a display name, build the fully qualified name by walking the 751 // chain of scopes. 752 if (!SP->getDisplayName().empty()) 753 FuncName = 754 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 755 756 // If our DISubprogram name is empty, use the mangled name. 757 if (FuncName.empty()) 758 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 759 760 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 761 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 762 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 763 { 764 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 765 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 766 OS.AddComment("Record length"); 767 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 768 OS.EmitLabel(ProcRecordBegin); 769 770 if (GV->hasLocalLinkage()) { 771 OS.AddComment("Record kind: S_LPROC32_ID"); 772 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 773 } else { 774 OS.AddComment("Record kind: S_GPROC32_ID"); 775 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 776 } 777 778 // These fields are filled in by tools like CVPACK which run after the fact. 779 OS.AddComment("PtrParent"); 780 OS.EmitIntValue(0, 4); 781 OS.AddComment("PtrEnd"); 782 OS.EmitIntValue(0, 4); 783 OS.AddComment("PtrNext"); 784 OS.EmitIntValue(0, 4); 785 // This is the important bit that tells the debugger where the function 786 // code is located and what's its size: 787 OS.AddComment("Code size"); 788 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 789 OS.AddComment("Offset after prologue"); 790 OS.EmitIntValue(0, 4); 791 OS.AddComment("Offset before epilogue"); 792 OS.EmitIntValue(0, 4); 793 OS.AddComment("Function type index"); 794 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 795 OS.AddComment("Function section relative address"); 796 OS.EmitCOFFSecRel32(Fn); 797 OS.AddComment("Function section index"); 798 OS.EmitCOFFSectionIndex(Fn); 799 OS.AddComment("Flags"); 800 OS.EmitIntValue(0, 1); 801 // Emit the function display name as a null-terminated string. 802 OS.AddComment("Function name"); 803 // Truncate the name so we won't overflow the record length field. 804 emitNullTerminatedSymbolName(OS, FuncName); 805 OS.EmitLabel(ProcRecordEnd); 806 807 emitLocalVariableList(FI.Locals); 808 809 // Emit inlined call site information. Only emit functions inlined directly 810 // into the parent function. We'll emit the other sites recursively as part 811 // of their parent inline site. 812 for (const DILocation *InlinedAt : FI.ChildSites) { 813 auto I = FI.InlineSites.find(InlinedAt); 814 assert(I != FI.InlineSites.end() && 815 "child site not in function inline site map"); 816 emitInlinedCallSite(FI, InlinedAt, I->second); 817 } 818 819 if (SP != nullptr) 820 emitDebugInfoForUDTs(LocalUDTs); 821 822 // We're done with this function. 823 OS.AddComment("Record length"); 824 OS.EmitIntValue(0x0002, 2); 825 OS.AddComment("Record kind: S_PROC_ID_END"); 826 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 827 } 828 endCVSubsection(SymbolsEnd); 829 830 // We have an assembler directive that takes care of the whole line table. 831 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 832 } 833 834 CodeViewDebug::LocalVarDefRange 835 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 836 LocalVarDefRange DR; 837 DR.InMemory = -1; 838 DR.DataOffset = Offset; 839 assert(DR.DataOffset == Offset && "truncation"); 840 DR.StructOffset = 0; 841 DR.CVRegister = CVRegister; 842 return DR; 843 } 844 845 CodeViewDebug::LocalVarDefRange 846 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 847 LocalVarDefRange DR; 848 DR.InMemory = 0; 849 DR.DataOffset = 0; 850 DR.StructOffset = 0; 851 DR.CVRegister = CVRegister; 852 return DR; 853 } 854 855 void CodeViewDebug::collectVariableInfoFromMMITable( 856 DenseSet<InlinedVariable> &Processed) { 857 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 858 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 859 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 860 861 for (const MachineModuleInfo::VariableDbgInfo &VI : 862 MMI->getVariableDbgInfo()) { 863 if (!VI.Var) 864 continue; 865 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 866 "Expected inlined-at fields to agree"); 867 868 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 869 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 870 871 // If variable scope is not found then skip this variable. 872 if (!Scope) 873 continue; 874 875 // Get the frame register used and the offset. 876 unsigned FrameReg = 0; 877 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 878 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 879 880 // Calculate the label ranges. 881 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 882 for (const InsnRange &Range : Scope->getRanges()) { 883 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 884 const MCSymbol *End = getLabelAfterInsn(Range.second); 885 End = End ? End : Asm->getFunctionEnd(); 886 DefRange.Ranges.emplace_back(Begin, End); 887 } 888 889 LocalVariable Var; 890 Var.DIVar = VI.Var; 891 Var.DefRanges.emplace_back(std::move(DefRange)); 892 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 893 } 894 } 895 896 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 897 DenseSet<InlinedVariable> Processed; 898 // Grab the variable info that was squirreled away in the MMI side-table. 899 collectVariableInfoFromMMITable(Processed); 900 901 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 902 903 for (const auto &I : DbgValues) { 904 InlinedVariable IV = I.first; 905 if (Processed.count(IV)) 906 continue; 907 const DILocalVariable *DIVar = IV.first; 908 const DILocation *InlinedAt = IV.second; 909 910 // Instruction ranges, specifying where IV is accessible. 911 const auto &Ranges = I.second; 912 913 LexicalScope *Scope = nullptr; 914 if (InlinedAt) 915 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 916 else 917 Scope = LScopes.findLexicalScope(DIVar->getScope()); 918 // If variable scope is not found then skip this variable. 919 if (!Scope) 920 continue; 921 922 LocalVariable Var; 923 Var.DIVar = DIVar; 924 925 // Calculate the definition ranges. 926 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 927 const InsnRange &Range = *I; 928 const MachineInstr *DVInst = Range.first; 929 assert(DVInst->isDebugValue() && "Invalid History entry"); 930 const DIExpression *DIExpr = DVInst->getDebugExpression(); 931 932 // Bail if there is a complex DWARF expression for now. 933 if (DIExpr && DIExpr->getNumElements() > 0) 934 continue; 935 936 // Bail if operand 0 is not a valid register. This means the variable is a 937 // simple constant, or is described by a complex expression. 938 // FIXME: Find a way to represent constant variables, since they are 939 // relatively common. 940 unsigned Reg = 941 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 942 if (Reg == 0) 943 continue; 944 945 // Handle the two cases we can handle: indirect in memory and in register. 946 bool IsIndirect = DVInst->getOperand(1).isImm(); 947 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 948 { 949 LocalVarDefRange DefRange; 950 if (IsIndirect) { 951 int64_t Offset = DVInst->getOperand(1).getImm(); 952 DefRange = createDefRangeMem(CVReg, Offset); 953 } else { 954 DefRange = createDefRangeReg(CVReg); 955 } 956 if (Var.DefRanges.empty() || 957 Var.DefRanges.back().isDifferentLocation(DefRange)) { 958 Var.DefRanges.emplace_back(std::move(DefRange)); 959 } 960 } 961 962 // Compute the label range. 963 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 964 const MCSymbol *End = getLabelAfterInsn(Range.second); 965 if (!End) { 966 if (std::next(I) != E) 967 End = getLabelBeforeInsn(std::next(I)->first); 968 else 969 End = Asm->getFunctionEnd(); 970 } 971 972 // If the last range end is our begin, just extend the last range. 973 // Otherwise make a new range. 974 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 975 Var.DefRanges.back().Ranges; 976 if (!Ranges.empty() && Ranges.back().second == Begin) 977 Ranges.back().second = End; 978 else 979 Ranges.emplace_back(Begin, End); 980 981 // FIXME: Do more range combining. 982 } 983 984 recordLocalVariable(std::move(Var), InlinedAt); 985 } 986 } 987 988 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 989 assert(!CurFn && "Can't process two functions at once!"); 990 991 if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram()) 992 return; 993 994 DebugHandlerBase::beginFunction(MF); 995 996 const Function *GV = MF->getFunction(); 997 assert(FnDebugInfo.count(GV) == false); 998 CurFn = &FnDebugInfo[GV]; 999 CurFn->FuncId = NextFuncId++; 1000 CurFn->Begin = Asm->getFunctionBegin(); 1001 1002 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1003 1004 // Find the end of the function prolog. First known non-DBG_VALUE and 1005 // non-frame setup location marks the beginning of the function body. 1006 // FIXME: is there a simpler a way to do this? Can we just search 1007 // for the first instruction of the function, not the last of the prolog? 1008 DebugLoc PrologEndLoc; 1009 bool EmptyPrologue = true; 1010 for (const auto &MBB : *MF) { 1011 for (const auto &MI : MBB) { 1012 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1013 MI.getDebugLoc()) { 1014 PrologEndLoc = MI.getDebugLoc(); 1015 break; 1016 } else if (!MI.isDebugValue()) { 1017 EmptyPrologue = false; 1018 } 1019 } 1020 } 1021 1022 // Record beginning of function if we have a non-empty prologue. 1023 if (PrologEndLoc && !EmptyPrologue) { 1024 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1025 maybeRecordLocation(FnStartDL, MF); 1026 } 1027 } 1028 1029 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1030 // Don't record empty UDTs. 1031 if (Ty->getName().empty()) 1032 return; 1033 1034 SmallVector<StringRef, 5> QualifiedNameComponents; 1035 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1036 Ty->getScope().resolve(), QualifiedNameComponents); 1037 1038 std::string FullyQualifiedName = 1039 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1040 1041 if (ClosestSubprogram == nullptr) 1042 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1043 else if (ClosestSubprogram == CurrentSubprogram) 1044 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1045 1046 // TODO: What if the ClosestSubprogram is neither null or the current 1047 // subprogram? Currently, the UDT just gets dropped on the floor. 1048 // 1049 // The current behavior is not desirable. To get maximal fidelity, we would 1050 // need to perform all type translation before beginning emission of .debug$S 1051 // and then make LocalUDTs a member of FunctionInfo 1052 } 1053 1054 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1055 // Generic dispatch for lowering an unknown type. 1056 switch (Ty->getTag()) { 1057 case dwarf::DW_TAG_array_type: 1058 return lowerTypeArray(cast<DICompositeType>(Ty)); 1059 case dwarf::DW_TAG_typedef: 1060 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1061 case dwarf::DW_TAG_base_type: 1062 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1063 case dwarf::DW_TAG_pointer_type: 1064 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1065 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1066 LLVM_FALLTHROUGH; 1067 case dwarf::DW_TAG_reference_type: 1068 case dwarf::DW_TAG_rvalue_reference_type: 1069 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1070 case dwarf::DW_TAG_ptr_to_member_type: 1071 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1072 case dwarf::DW_TAG_const_type: 1073 case dwarf::DW_TAG_volatile_type: 1074 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1075 case dwarf::DW_TAG_subroutine_type: 1076 if (ClassTy) { 1077 // The member function type of a member function pointer has no 1078 // ThisAdjustment. 1079 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1080 /*ThisAdjustment=*/0); 1081 } 1082 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1083 case dwarf::DW_TAG_enumeration_type: 1084 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1085 case dwarf::DW_TAG_class_type: 1086 case dwarf::DW_TAG_structure_type: 1087 return lowerTypeClass(cast<DICompositeType>(Ty)); 1088 case dwarf::DW_TAG_union_type: 1089 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1090 default: 1091 // Use the null type index. 1092 return TypeIndex(); 1093 } 1094 } 1095 1096 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1097 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1098 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1099 StringRef TypeName = Ty->getName(); 1100 1101 addToUDTs(Ty, UnderlyingTypeIndex); 1102 1103 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1104 TypeName == "HRESULT") 1105 return TypeIndex(SimpleTypeKind::HResult); 1106 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1107 TypeName == "wchar_t") 1108 return TypeIndex(SimpleTypeKind::WideCharacter); 1109 1110 return UnderlyingTypeIndex; 1111 } 1112 1113 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1114 DITypeRef ElementTypeRef = Ty->getBaseType(); 1115 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1116 // IndexType is size_t, which depends on the bitness of the target. 1117 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 1118 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1119 : TypeIndex(SimpleTypeKind::UInt32Long); 1120 1121 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1122 1123 1124 // We want to assert that the element type multiplied by the array lengths 1125 // match the size of the overall array. However, if we don't have complete 1126 // type information for the base type, we can't make this assertion. This 1127 // happens if limited debug info is enabled in this case: 1128 // struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); }; 1129 // VTableOptzn array[3]; 1130 // The DICompositeType of VTableOptzn will have size zero, and the array will 1131 // have size 3 * sizeof(void*), and we should avoid asserting. 1132 // 1133 // There is a related bug in the front-end where an array of a structure, 1134 // which was declared as incomplete structure first, ends up not getting a 1135 // size assigned to it. (PR28303) 1136 // Example: 1137 // struct A(*p)[3]; 1138 // struct A { int f; } a[3]; 1139 bool PartiallyIncomplete = false; 1140 if (Ty->getSizeInBits() == 0 || ElementSize == 0) { 1141 PartiallyIncomplete = true; 1142 } 1143 1144 // Add subranges to array type. 1145 DINodeArray Elements = Ty->getElements(); 1146 for (int i = Elements.size() - 1; i >= 0; --i) { 1147 const DINode *Element = Elements[i]; 1148 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1149 1150 const DISubrange *Subrange = cast<DISubrange>(Element); 1151 assert(Subrange->getLowerBound() == 0 && 1152 "codeview doesn't support subranges with lower bounds"); 1153 int64_t Count = Subrange->getCount(); 1154 1155 // Variable Length Array (VLA) has Count equal to '-1'. 1156 // Replace with Count '1', assume it is the minimum VLA length. 1157 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1158 if (Count == -1) { 1159 Count = 1; 1160 PartiallyIncomplete = true; 1161 } 1162 1163 // Update the element size and element type index for subsequent subranges. 1164 ElementSize *= Count; 1165 1166 // If this is the outermost array, use the size from the array. It will be 1167 // more accurate if PartiallyIncomplete is true. 1168 uint64_t ArraySize = 1169 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1170 1171 StringRef Name = (i == 0) ? Ty->getName() : ""; 1172 ElementTypeIndex = TypeTable.writeKnownType( 1173 ArrayRecord(ElementTypeIndex, IndexType, ArraySize, Name)); 1174 } 1175 1176 (void)PartiallyIncomplete; 1177 assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8)); 1178 1179 return ElementTypeIndex; 1180 } 1181 1182 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1183 TypeIndex Index; 1184 dwarf::TypeKind Kind; 1185 uint32_t ByteSize; 1186 1187 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1188 ByteSize = Ty->getSizeInBits() / 8; 1189 1190 SimpleTypeKind STK = SimpleTypeKind::None; 1191 switch (Kind) { 1192 case dwarf::DW_ATE_address: 1193 // FIXME: Translate 1194 break; 1195 case dwarf::DW_ATE_boolean: 1196 switch (ByteSize) { 1197 case 1: STK = SimpleTypeKind::Boolean8; break; 1198 case 2: STK = SimpleTypeKind::Boolean16; break; 1199 case 4: STK = SimpleTypeKind::Boolean32; break; 1200 case 8: STK = SimpleTypeKind::Boolean64; break; 1201 case 16: STK = SimpleTypeKind::Boolean128; break; 1202 } 1203 break; 1204 case dwarf::DW_ATE_complex_float: 1205 switch (ByteSize) { 1206 case 2: STK = SimpleTypeKind::Complex16; break; 1207 case 4: STK = SimpleTypeKind::Complex32; break; 1208 case 8: STK = SimpleTypeKind::Complex64; break; 1209 case 10: STK = SimpleTypeKind::Complex80; break; 1210 case 16: STK = SimpleTypeKind::Complex128; break; 1211 } 1212 break; 1213 case dwarf::DW_ATE_float: 1214 switch (ByteSize) { 1215 case 2: STK = SimpleTypeKind::Float16; break; 1216 case 4: STK = SimpleTypeKind::Float32; break; 1217 case 6: STK = SimpleTypeKind::Float48; break; 1218 case 8: STK = SimpleTypeKind::Float64; break; 1219 case 10: STK = SimpleTypeKind::Float80; break; 1220 case 16: STK = SimpleTypeKind::Float128; break; 1221 } 1222 break; 1223 case dwarf::DW_ATE_signed: 1224 switch (ByteSize) { 1225 case 1: STK = SimpleTypeKind::SByte; break; 1226 case 2: STK = SimpleTypeKind::Int16Short; break; 1227 case 4: STK = SimpleTypeKind::Int32; break; 1228 case 8: STK = SimpleTypeKind::Int64Quad; break; 1229 case 16: STK = SimpleTypeKind::Int128Oct; break; 1230 } 1231 break; 1232 case dwarf::DW_ATE_unsigned: 1233 switch (ByteSize) { 1234 case 1: STK = SimpleTypeKind::Byte; break; 1235 case 2: STK = SimpleTypeKind::UInt16Short; break; 1236 case 4: STK = SimpleTypeKind::UInt32; break; 1237 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1238 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1239 } 1240 break; 1241 case dwarf::DW_ATE_UTF: 1242 switch (ByteSize) { 1243 case 2: STK = SimpleTypeKind::Character16; break; 1244 case 4: STK = SimpleTypeKind::Character32; break; 1245 } 1246 break; 1247 case dwarf::DW_ATE_signed_char: 1248 if (ByteSize == 1) 1249 STK = SimpleTypeKind::SignedCharacter; 1250 break; 1251 case dwarf::DW_ATE_unsigned_char: 1252 if (ByteSize == 1) 1253 STK = SimpleTypeKind::UnsignedCharacter; 1254 break; 1255 default: 1256 break; 1257 } 1258 1259 // Apply some fixups based on the source-level type name. 1260 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1261 STK = SimpleTypeKind::Int32Long; 1262 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1263 STK = SimpleTypeKind::UInt32Long; 1264 if (STK == SimpleTypeKind::UInt16Short && 1265 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1266 STK = SimpleTypeKind::WideCharacter; 1267 if ((STK == SimpleTypeKind::SignedCharacter || 1268 STK == SimpleTypeKind::UnsignedCharacter) && 1269 Ty->getName() == "char") 1270 STK = SimpleTypeKind::NarrowCharacter; 1271 1272 return TypeIndex(STK); 1273 } 1274 1275 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1276 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1277 1278 // Pointers to simple types can use SimpleTypeMode, rather than having a 1279 // dedicated pointer type record. 1280 if (PointeeTI.isSimple() && 1281 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1282 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1283 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1284 ? SimpleTypeMode::NearPointer64 1285 : SimpleTypeMode::NearPointer32; 1286 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1287 } 1288 1289 PointerKind PK = 1290 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1291 PointerMode PM = PointerMode::Pointer; 1292 switch (Ty->getTag()) { 1293 default: llvm_unreachable("not a pointer tag type"); 1294 case dwarf::DW_TAG_pointer_type: 1295 PM = PointerMode::Pointer; 1296 break; 1297 case dwarf::DW_TAG_reference_type: 1298 PM = PointerMode::LValueReference; 1299 break; 1300 case dwarf::DW_TAG_rvalue_reference_type: 1301 PM = PointerMode::RValueReference; 1302 break; 1303 } 1304 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1305 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1306 // do. 1307 PointerOptions PO = PointerOptions::None; 1308 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1309 return TypeTable.writeKnownType(PR); 1310 } 1311 1312 static PointerToMemberRepresentation 1313 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1314 // SizeInBytes being zero generally implies that the member pointer type was 1315 // incomplete, which can happen if it is part of a function prototype. In this 1316 // case, use the unknown model instead of the general model. 1317 if (IsPMF) { 1318 switch (Flags & DINode::FlagPtrToMemberRep) { 1319 case 0: 1320 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1321 : PointerToMemberRepresentation::GeneralFunction; 1322 case DINode::FlagSingleInheritance: 1323 return PointerToMemberRepresentation::SingleInheritanceFunction; 1324 case DINode::FlagMultipleInheritance: 1325 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1326 case DINode::FlagVirtualInheritance: 1327 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1328 } 1329 } else { 1330 switch (Flags & DINode::FlagPtrToMemberRep) { 1331 case 0: 1332 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1333 : PointerToMemberRepresentation::GeneralData; 1334 case DINode::FlagSingleInheritance: 1335 return PointerToMemberRepresentation::SingleInheritanceData; 1336 case DINode::FlagMultipleInheritance: 1337 return PointerToMemberRepresentation::MultipleInheritanceData; 1338 case DINode::FlagVirtualInheritance: 1339 return PointerToMemberRepresentation::VirtualInheritanceData; 1340 } 1341 } 1342 llvm_unreachable("invalid ptr to member representation"); 1343 } 1344 1345 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1346 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1347 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1348 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1349 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1350 : PointerKind::Near32; 1351 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1352 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1353 : PointerMode::PointerToDataMember; 1354 PointerOptions PO = PointerOptions::None; // FIXME 1355 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1356 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1357 MemberPointerInfo MPI( 1358 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1359 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1360 return TypeTable.writeKnownType(PR); 1361 } 1362 1363 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1364 /// have a translation, use the NearC convention. 1365 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1366 switch (DwarfCC) { 1367 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1368 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1369 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1370 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1371 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1372 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1373 } 1374 return CallingConvention::NearC; 1375 } 1376 1377 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1378 ModifierOptions Mods = ModifierOptions::None; 1379 bool IsModifier = true; 1380 const DIType *BaseTy = Ty; 1381 while (IsModifier && BaseTy) { 1382 // FIXME: Need to add DWARF tag for __unaligned. 1383 switch (BaseTy->getTag()) { 1384 case dwarf::DW_TAG_const_type: 1385 Mods |= ModifierOptions::Const; 1386 break; 1387 case dwarf::DW_TAG_volatile_type: 1388 Mods |= ModifierOptions::Volatile; 1389 break; 1390 default: 1391 IsModifier = false; 1392 break; 1393 } 1394 if (IsModifier) 1395 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1396 } 1397 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1398 return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods)); 1399 } 1400 1401 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1402 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1403 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1404 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1405 1406 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1407 ArrayRef<TypeIndex> ArgTypeIndices = None; 1408 if (!ReturnAndArgTypeIndices.empty()) { 1409 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1410 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1411 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1412 } 1413 1414 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1415 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1416 1417 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1418 1419 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1420 ArgTypeIndices.size(), ArgListIndex); 1421 return TypeTable.writeKnownType(Procedure); 1422 } 1423 1424 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1425 const DIType *ClassTy, 1426 int ThisAdjustment) { 1427 // Lower the containing class type. 1428 TypeIndex ClassType = getTypeIndex(ClassTy); 1429 1430 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1431 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1432 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1433 1434 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1435 ArrayRef<TypeIndex> ArgTypeIndices = None; 1436 if (!ReturnAndArgTypeIndices.empty()) { 1437 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1438 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1439 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1440 } 1441 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1442 if (!ArgTypeIndices.empty()) { 1443 ThisTypeIndex = ArgTypeIndices.front(); 1444 ArgTypeIndices = ArgTypeIndices.drop_front(); 1445 } 1446 1447 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1448 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1449 1450 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1451 1452 // TODO: Need to use the correct values for: 1453 // FunctionOptions 1454 // ThisPointerAdjustment. 1455 TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord( 1456 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1457 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1458 1459 return TI; 1460 } 1461 1462 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1463 unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize()); 1464 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1465 return TypeTable.writeKnownType(VFTableShapeRecord(Slots)); 1466 } 1467 1468 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1469 switch (Flags & DINode::FlagAccessibility) { 1470 case DINode::FlagPrivate: return MemberAccess::Private; 1471 case DINode::FlagPublic: return MemberAccess::Public; 1472 case DINode::FlagProtected: return MemberAccess::Protected; 1473 case 0: 1474 // If there was no explicit access control, provide the default for the tag. 1475 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1476 : MemberAccess::Public; 1477 } 1478 llvm_unreachable("access flags are exclusive"); 1479 } 1480 1481 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1482 if (SP->isArtificial()) 1483 return MethodOptions::CompilerGenerated; 1484 1485 // FIXME: Handle other MethodOptions. 1486 1487 return MethodOptions::None; 1488 } 1489 1490 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1491 bool Introduced) { 1492 switch (SP->getVirtuality()) { 1493 case dwarf::DW_VIRTUALITY_none: 1494 break; 1495 case dwarf::DW_VIRTUALITY_virtual: 1496 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1497 case dwarf::DW_VIRTUALITY_pure_virtual: 1498 return Introduced ? MethodKind::PureIntroducingVirtual 1499 : MethodKind::PureVirtual; 1500 default: 1501 llvm_unreachable("unhandled virtuality case"); 1502 } 1503 1504 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1505 1506 return MethodKind::Vanilla; 1507 } 1508 1509 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1510 switch (Ty->getTag()) { 1511 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1512 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1513 } 1514 llvm_unreachable("unexpected tag"); 1515 } 1516 1517 /// Return ClassOptions that should be present on both the forward declaration 1518 /// and the defintion of a tag type. 1519 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1520 ClassOptions CO = ClassOptions::None; 1521 1522 // MSVC always sets this flag, even for local types. Clang doesn't always 1523 // appear to give every type a linkage name, which may be problematic for us. 1524 // FIXME: Investigate the consequences of not following them here. 1525 if (!Ty->getIdentifier().empty()) 1526 CO |= ClassOptions::HasUniqueName; 1527 1528 // Put the Nested flag on a type if it appears immediately inside a tag type. 1529 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1530 // here. That flag is only set on definitions, and not forward declarations. 1531 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1532 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1533 CO |= ClassOptions::Nested; 1534 1535 // Put the Scoped flag on function-local types. 1536 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1537 Scope = Scope->getScope().resolve()) { 1538 if (isa<DISubprogram>(Scope)) { 1539 CO |= ClassOptions::Scoped; 1540 break; 1541 } 1542 } 1543 1544 return CO; 1545 } 1546 1547 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1548 ClassOptions CO = getCommonClassOptions(Ty); 1549 TypeIndex FTI; 1550 unsigned EnumeratorCount = 0; 1551 1552 if (Ty->isForwardDecl()) { 1553 CO |= ClassOptions::ForwardReference; 1554 } else { 1555 FieldListRecordBuilder Fields; 1556 for (const DINode *Element : Ty->getElements()) { 1557 // We assume that the frontend provides all members in source declaration 1558 // order, which is what MSVC does. 1559 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1560 Fields.writeMemberType(EnumeratorRecord( 1561 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1562 Enumerator->getName())); 1563 EnumeratorCount++; 1564 } 1565 } 1566 FTI = TypeTable.writeFieldList(Fields); 1567 } 1568 1569 std::string FullName = getFullyQualifiedName(Ty); 1570 1571 return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1572 Ty->getIdentifier(), 1573 getTypeIndex(Ty->getBaseType()))); 1574 } 1575 1576 //===----------------------------------------------------------------------===// 1577 // ClassInfo 1578 //===----------------------------------------------------------------------===// 1579 1580 struct llvm::ClassInfo { 1581 struct MemberInfo { 1582 const DIDerivedType *MemberTypeNode; 1583 uint64_t BaseOffset; 1584 }; 1585 // [MemberInfo] 1586 typedef std::vector<MemberInfo> MemberList; 1587 1588 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1589 // MethodName -> MethodsList 1590 typedef MapVector<MDString *, MethodsList> MethodsMap; 1591 1592 /// Base classes. 1593 std::vector<const DIDerivedType *> Inheritance; 1594 1595 /// Direct members. 1596 MemberList Members; 1597 // Direct overloaded methods gathered by name. 1598 MethodsMap Methods; 1599 1600 TypeIndex VShapeTI; 1601 1602 std::vector<const DICompositeType *> NestedClasses; 1603 }; 1604 1605 void CodeViewDebug::clear() { 1606 assert(CurFn == nullptr); 1607 FileIdMap.clear(); 1608 FnDebugInfo.clear(); 1609 FileToFilepathMap.clear(); 1610 LocalUDTs.clear(); 1611 GlobalUDTs.clear(); 1612 TypeIndices.clear(); 1613 CompleteTypeIndices.clear(); 1614 } 1615 1616 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1617 const DIDerivedType *DDTy) { 1618 if (!DDTy->getName().empty()) { 1619 Info.Members.push_back({DDTy, 0}); 1620 return; 1621 } 1622 // An unnamed member must represent a nested struct or union. Add all the 1623 // indirect fields to the current record. 1624 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1625 uint64_t Offset = DDTy->getOffsetInBits(); 1626 const DIType *Ty = DDTy->getBaseType().resolve(); 1627 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1628 ClassInfo NestedInfo = collectClassInfo(DCTy); 1629 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1630 Info.Members.push_back( 1631 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1632 } 1633 1634 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1635 ClassInfo Info; 1636 // Add elements to structure type. 1637 DINodeArray Elements = Ty->getElements(); 1638 for (auto *Element : Elements) { 1639 // We assume that the frontend provides all members in source declaration 1640 // order, which is what MSVC does. 1641 if (!Element) 1642 continue; 1643 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1644 Info.Methods[SP->getRawName()].push_back(SP); 1645 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1646 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1647 collectMemberInfo(Info, DDTy); 1648 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1649 Info.Inheritance.push_back(DDTy); 1650 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1651 DDTy->getName() == "__vtbl_ptr_type") { 1652 Info.VShapeTI = getTypeIndex(DDTy); 1653 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1654 // Ignore friend members. It appears that MSVC emitted info about 1655 // friends in the past, but modern versions do not. 1656 } 1657 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1658 Info.NestedClasses.push_back(Composite); 1659 } 1660 // Skip other unrecognized kinds of elements. 1661 } 1662 return Info; 1663 } 1664 1665 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1666 // First, construct the forward decl. Don't look into Ty to compute the 1667 // forward decl options, since it might not be available in all TUs. 1668 TypeRecordKind Kind = getRecordKind(Ty); 1669 ClassOptions CO = 1670 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1671 std::string FullName = getFullyQualifiedName(Ty); 1672 TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord( 1673 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1674 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1675 if (!Ty->isForwardDecl()) 1676 DeferredCompleteTypes.push_back(Ty); 1677 return FwdDeclTI; 1678 } 1679 1680 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1681 // Construct the field list and complete type record. 1682 TypeRecordKind Kind = getRecordKind(Ty); 1683 ClassOptions CO = getCommonClassOptions(Ty); 1684 TypeIndex FieldTI; 1685 TypeIndex VShapeTI; 1686 unsigned FieldCount; 1687 bool ContainsNestedClass; 1688 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1689 lowerRecordFieldList(Ty); 1690 1691 if (ContainsNestedClass) 1692 CO |= ClassOptions::ContainsNestedClass; 1693 1694 std::string FullName = getFullyQualifiedName(Ty); 1695 1696 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1697 1698 TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord( 1699 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1700 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1701 1702 TypeTable.writeKnownType(UdtSourceLineRecord( 1703 ClassTI, TypeTable.writeKnownType(StringIdRecord( 1704 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1705 Ty->getLine())); 1706 1707 addToUDTs(Ty, ClassTI); 1708 1709 return ClassTI; 1710 } 1711 1712 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1713 ClassOptions CO = 1714 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1715 std::string FullName = getFullyQualifiedName(Ty); 1716 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord( 1717 0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier())); 1718 if (!Ty->isForwardDecl()) 1719 DeferredCompleteTypes.push_back(Ty); 1720 return FwdDeclTI; 1721 } 1722 1723 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1724 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1725 TypeIndex FieldTI; 1726 unsigned FieldCount; 1727 bool ContainsNestedClass; 1728 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1729 lowerRecordFieldList(Ty); 1730 1731 if (ContainsNestedClass) 1732 CO |= ClassOptions::ContainsNestedClass; 1733 1734 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1735 std::string FullName = getFullyQualifiedName(Ty); 1736 1737 TypeIndex UnionTI = TypeTable.writeKnownType( 1738 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1739 Ty->getIdentifier())); 1740 1741 TypeTable.writeKnownType(UdtSourceLineRecord( 1742 UnionTI, TypeTable.writeKnownType(StringIdRecord( 1743 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1744 Ty->getLine())); 1745 1746 addToUDTs(Ty, UnionTI); 1747 1748 return UnionTI; 1749 } 1750 1751 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1752 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1753 // Manually count members. MSVC appears to count everything that generates a 1754 // field list record. Each individual overload in a method overload group 1755 // contributes to this count, even though the overload group is a single field 1756 // list record. 1757 unsigned MemberCount = 0; 1758 ClassInfo Info = collectClassInfo(Ty); 1759 FieldListRecordBuilder Fields; 1760 1761 // Create base classes. 1762 for (const DIDerivedType *I : Info.Inheritance) { 1763 if (I->getFlags() & DINode::FlagVirtual) { 1764 // Virtual base. 1765 // FIXME: Emit VBPtrOffset when the frontend provides it. 1766 unsigned VBPtrOffset = 0; 1767 // FIXME: Despite the accessor name, the offset is really in bytes. 1768 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1769 Fields.writeMemberType(VirtualBaseClassRecord( 1770 translateAccessFlags(Ty->getTag(), I->getFlags()), 1771 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1772 VBTableIndex)); 1773 } else { 1774 assert(I->getOffsetInBits() % 8 == 0 && 1775 "bases must be on byte boundaries"); 1776 Fields.writeMemberType(BaseClassRecord( 1777 translateAccessFlags(Ty->getTag(), I->getFlags()), 1778 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1779 } 1780 } 1781 1782 // Create members. 1783 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1784 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1785 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1786 StringRef MemberName = Member->getName(); 1787 MemberAccess Access = 1788 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1789 1790 if (Member->isStaticMember()) { 1791 Fields.writeMemberType( 1792 StaticDataMemberRecord(Access, MemberBaseType, MemberName)); 1793 MemberCount++; 1794 continue; 1795 } 1796 1797 // Virtual function pointer member. 1798 if ((Member->getFlags() & DINode::FlagArtificial) && 1799 Member->getName().startswith("_vptr$")) { 1800 Fields.writeMemberType(VFPtrRecord(getTypeIndex(Member->getBaseType()))); 1801 MemberCount++; 1802 continue; 1803 } 1804 1805 // Data member. 1806 uint64_t MemberOffsetInBits = 1807 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1808 if (Member->isBitField()) { 1809 uint64_t StartBitOffset = MemberOffsetInBits; 1810 if (const auto *CI = 1811 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1812 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1813 } 1814 StartBitOffset -= MemberOffsetInBits; 1815 MemberBaseType = TypeTable.writeKnownType(BitFieldRecord( 1816 MemberBaseType, Member->getSizeInBits(), StartBitOffset)); 1817 } 1818 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1819 Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType, 1820 MemberOffsetInBytes, MemberName)); 1821 MemberCount++; 1822 } 1823 1824 // Create methods 1825 for (auto &MethodItr : Info.Methods) { 1826 StringRef Name = MethodItr.first->getString(); 1827 1828 std::vector<OneMethodRecord> Methods; 1829 for (const DISubprogram *SP : MethodItr.second) { 1830 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1831 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1832 1833 unsigned VFTableOffset = -1; 1834 if (Introduced) 1835 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1836 1837 Methods.push_back( 1838 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1839 translateMethodOptionFlags(SP), 1840 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1841 VFTableOffset, Name)); 1842 MemberCount++; 1843 } 1844 assert(Methods.size() > 0 && "Empty methods map entry"); 1845 if (Methods.size() == 1) 1846 Fields.writeMemberType(Methods[0]); 1847 else { 1848 TypeIndex MethodList = 1849 TypeTable.writeKnownType(MethodOverloadListRecord(Methods)); 1850 Fields.writeMemberType( 1851 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1852 } 1853 } 1854 1855 // Create nested classes. 1856 for (const DICompositeType *Nested : Info.NestedClasses) { 1857 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1858 Fields.writeMemberType(R); 1859 MemberCount++; 1860 } 1861 1862 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1863 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1864 !Info.NestedClasses.empty()); 1865 } 1866 1867 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1868 if (!VBPType.getIndex()) { 1869 // Make a 'const int *' type. 1870 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1871 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1872 1873 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1874 : PointerKind::Near32; 1875 PointerMode PM = PointerMode::Pointer; 1876 PointerOptions PO = PointerOptions::None; 1877 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1878 1879 VBPType = TypeTable.writeKnownType(PR); 1880 } 1881 1882 return VBPType; 1883 } 1884 1885 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1886 const DIType *Ty = TypeRef.resolve(); 1887 const DIType *ClassTy = ClassTyRef.resolve(); 1888 1889 // The null DIType is the void type. Don't try to hash it. 1890 if (!Ty) 1891 return TypeIndex::Void(); 1892 1893 // Check if we've already translated this type. Don't try to do a 1894 // get-or-create style insertion that caches the hash lookup across the 1895 // lowerType call. It will update the TypeIndices map. 1896 auto I = TypeIndices.find({Ty, ClassTy}); 1897 if (I != TypeIndices.end()) 1898 return I->second; 1899 1900 TypeLoweringScope S(*this); 1901 TypeIndex TI = lowerType(Ty, ClassTy); 1902 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1903 } 1904 1905 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1906 const DIType *Ty = TypeRef.resolve(); 1907 1908 // The null DIType is the void type. Don't try to hash it. 1909 if (!Ty) 1910 return TypeIndex::Void(); 1911 1912 // If this is a non-record type, the complete type index is the same as the 1913 // normal type index. Just call getTypeIndex. 1914 switch (Ty->getTag()) { 1915 case dwarf::DW_TAG_class_type: 1916 case dwarf::DW_TAG_structure_type: 1917 case dwarf::DW_TAG_union_type: 1918 break; 1919 default: 1920 return getTypeIndex(Ty); 1921 } 1922 1923 // Check if we've already translated the complete record type. Lowering a 1924 // complete type should never trigger lowering another complete type, so we 1925 // can reuse the hash table lookup result. 1926 const auto *CTy = cast<DICompositeType>(Ty); 1927 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1928 if (!InsertResult.second) 1929 return InsertResult.first->second; 1930 1931 TypeLoweringScope S(*this); 1932 1933 // Make sure the forward declaration is emitted first. It's unclear if this 1934 // is necessary, but MSVC does it, and we should follow suit until we can show 1935 // otherwise. 1936 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1937 1938 // Just use the forward decl if we don't have complete type info. This might 1939 // happen if the frontend is using modules and expects the complete definition 1940 // to be emitted elsewhere. 1941 if (CTy->isForwardDecl()) 1942 return FwdDeclTI; 1943 1944 TypeIndex TI; 1945 switch (CTy->getTag()) { 1946 case dwarf::DW_TAG_class_type: 1947 case dwarf::DW_TAG_structure_type: 1948 TI = lowerCompleteTypeClass(CTy); 1949 break; 1950 case dwarf::DW_TAG_union_type: 1951 TI = lowerCompleteTypeUnion(CTy); 1952 break; 1953 default: 1954 llvm_unreachable("not a record"); 1955 } 1956 1957 InsertResult.first->second = TI; 1958 return TI; 1959 } 1960 1961 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1962 /// and do this until fixpoint, as each complete record type typically 1963 /// references 1964 /// many other record types. 1965 void CodeViewDebug::emitDeferredCompleteTypes() { 1966 SmallVector<const DICompositeType *, 4> TypesToEmit; 1967 while (!DeferredCompleteTypes.empty()) { 1968 std::swap(DeferredCompleteTypes, TypesToEmit); 1969 for (const DICompositeType *RecordTy : TypesToEmit) 1970 getCompleteTypeIndex(RecordTy); 1971 TypesToEmit.clear(); 1972 } 1973 } 1974 1975 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 1976 // Get the sorted list of parameters and emit them first. 1977 SmallVector<const LocalVariable *, 6> Params; 1978 for (const LocalVariable &L : Locals) 1979 if (L.DIVar->isParameter()) 1980 Params.push_back(&L); 1981 std::sort(Params.begin(), Params.end(), 1982 [](const LocalVariable *L, const LocalVariable *R) { 1983 return L->DIVar->getArg() < R->DIVar->getArg(); 1984 }); 1985 for (const LocalVariable *L : Params) 1986 emitLocalVariable(*L); 1987 1988 // Next emit all non-parameters in the order that we found them. 1989 for (const LocalVariable &L : Locals) 1990 if (!L.DIVar->isParameter()) 1991 emitLocalVariable(L); 1992 } 1993 1994 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1995 // LocalSym record, see SymbolRecord.h for more info. 1996 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1997 *LocalEnd = MMI->getContext().createTempSymbol(); 1998 OS.AddComment("Record length"); 1999 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2000 OS.EmitLabel(LocalBegin); 2001 2002 OS.AddComment("Record kind: S_LOCAL"); 2003 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2004 2005 LocalSymFlags Flags = LocalSymFlags::None; 2006 if (Var.DIVar->isParameter()) 2007 Flags |= LocalSymFlags::IsParameter; 2008 if (Var.DefRanges.empty()) 2009 Flags |= LocalSymFlags::IsOptimizedOut; 2010 2011 OS.AddComment("TypeIndex"); 2012 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2013 OS.EmitIntValue(TI.getIndex(), 4); 2014 OS.AddComment("Flags"); 2015 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2016 // Truncate the name so we won't overflow the record length field. 2017 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2018 OS.EmitLabel(LocalEnd); 2019 2020 // Calculate the on disk prefix of the appropriate def range record. The 2021 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2022 // should be big enough to hold all forms without memory allocation. 2023 SmallString<20> BytePrefix; 2024 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2025 BytePrefix.clear(); 2026 // FIXME: Handle bitpieces. 2027 if (DefRange.StructOffset != 0) 2028 continue; 2029 2030 if (DefRange.InMemory) { 2031 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 2032 0, 0, ArrayRef<LocalVariableAddrGap>()); 2033 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2034 BytePrefix += 2035 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2036 BytePrefix += 2037 StringRef(reinterpret_cast<const char *>(&Sym.Header), 2038 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 2039 } else { 2040 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2041 // Unclear what matters here. 2042 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 2043 ArrayRef<LocalVariableAddrGap>()); 2044 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2045 BytePrefix += 2046 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2047 BytePrefix += 2048 StringRef(reinterpret_cast<const char *>(&Sym.Header), 2049 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 2050 } 2051 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2052 } 2053 } 2054 2055 void CodeViewDebug::endFunction(const MachineFunction *MF) { 2056 if (!Asm || !CurFn) // We haven't created any debug info for this function. 2057 return; 2058 2059 const Function *GV = MF->getFunction(); 2060 assert(FnDebugInfo.count(GV)); 2061 assert(CurFn == &FnDebugInfo[GV]); 2062 2063 collectVariableInfo(GV->getSubprogram()); 2064 2065 DebugHandlerBase::endFunction(MF); 2066 2067 // Don't emit anything if we don't have any line tables. 2068 if (!CurFn->HaveLineInfo) { 2069 FnDebugInfo.erase(GV); 2070 CurFn = nullptr; 2071 return; 2072 } 2073 2074 CurFn->End = Asm->getFunctionEnd(); 2075 2076 CurFn = nullptr; 2077 } 2078 2079 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2080 DebugHandlerBase::beginInstruction(MI); 2081 2082 // Ignore DBG_VALUE locations and function prologue. 2083 if (!Asm || !CurFn || MI->isDebugValue() || 2084 MI->getFlag(MachineInstr::FrameSetup)) 2085 return; 2086 DebugLoc DL = MI->getDebugLoc(); 2087 if (DL == PrevInstLoc || !DL) 2088 return; 2089 maybeRecordLocation(DL, Asm->MF); 2090 } 2091 2092 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 2093 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2094 *EndLabel = MMI->getContext().createTempSymbol(); 2095 OS.EmitIntValue(unsigned(Kind), 4); 2096 OS.AddComment("Subsection size"); 2097 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2098 OS.EmitLabel(BeginLabel); 2099 if (Kind == ModuleSubstreamKind::Symbols) 2100 emitCompilerInformation(); 2101 return EndLabel; 2102 } 2103 2104 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2105 OS.EmitLabel(EndLabel); 2106 // Every subsection must be aligned to a 4-byte boundary. 2107 OS.EmitValueToAlignment(4); 2108 } 2109 2110 void CodeViewDebug::emitDebugInfoForUDTs( 2111 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2112 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2113 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2114 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2115 OS.AddComment("Record length"); 2116 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2117 OS.EmitLabel(UDTRecordBegin); 2118 2119 OS.AddComment("Record kind: S_UDT"); 2120 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2121 2122 OS.AddComment("Type"); 2123 OS.EmitIntValue(UDT.second.getIndex(), 4); 2124 2125 emitNullTerminatedSymbolName(OS, UDT.first); 2126 OS.EmitLabel(UDTRecordEnd); 2127 } 2128 } 2129 2130 void CodeViewDebug::emitDebugInfoForGlobals() { 2131 DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap; 2132 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2133 SmallVector<MDNode *, 1> MDs; 2134 GV.getMetadata(LLVMContext::MD_dbg, MDs); 2135 for (MDNode *MD : MDs) 2136 GlobalMap[cast<DIGlobalVariable>(MD)] = &GV; 2137 } 2138 2139 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2140 for (const MDNode *Node : CUs->operands()) { 2141 const auto *CU = cast<DICompileUnit>(Node); 2142 2143 // First, emit all globals that are not in a comdat in a single symbol 2144 // substream. MSVC doesn't like it if the substream is empty, so only open 2145 // it if we have at least one global to emit. 2146 switchToDebugSectionForSymbol(nullptr); 2147 MCSymbol *EndLabel = nullptr; 2148 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 2149 if (const auto *GV = GlobalMap.lookup(G)) 2150 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2151 if (!EndLabel) { 2152 OS.AddComment("Symbol subsection for globals"); 2153 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2154 } 2155 emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV)); 2156 } 2157 } 2158 if (EndLabel) 2159 endCVSubsection(EndLabel); 2160 2161 // Second, emit each global that is in a comdat into its own .debug$S 2162 // section along with its own symbol substream. 2163 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 2164 if (const auto *GV = GlobalMap.lookup(G)) { 2165 if (GV->hasComdat()) { 2166 MCSymbol *GVSym = Asm->getSymbol(GV); 2167 OS.AddComment("Symbol subsection for " + 2168 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2169 switchToDebugSectionForSymbol(GVSym); 2170 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2171 emitDebugInfoForGlobal(G, GV, GVSym); 2172 endCVSubsection(EndLabel); 2173 } 2174 } 2175 } 2176 } 2177 } 2178 2179 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2180 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2181 for (const MDNode *Node : CUs->operands()) { 2182 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2183 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2184 getTypeIndex(RT); 2185 // FIXME: Add to global/local DTU list. 2186 } 2187 } 2188 } 2189 } 2190 2191 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2192 const GlobalVariable *GV, 2193 MCSymbol *GVSym) { 2194 // DataSym record, see SymbolRecord.h for more info. 2195 // FIXME: Thread local data, etc 2196 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2197 *DataEnd = MMI->getContext().createTempSymbol(); 2198 OS.AddComment("Record length"); 2199 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2200 OS.EmitLabel(DataBegin); 2201 if (DIGV->isLocalToUnit()) { 2202 if (GV->isThreadLocal()) { 2203 OS.AddComment("Record kind: S_LTHREAD32"); 2204 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2205 } else { 2206 OS.AddComment("Record kind: S_LDATA32"); 2207 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2208 } 2209 } else { 2210 if (GV->isThreadLocal()) { 2211 OS.AddComment("Record kind: S_GTHREAD32"); 2212 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2213 } else { 2214 OS.AddComment("Record kind: S_GDATA32"); 2215 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2216 } 2217 } 2218 OS.AddComment("Type"); 2219 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2220 OS.AddComment("DataOffset"); 2221 OS.EmitCOFFSecRel32(GVSym); 2222 OS.AddComment("Segment"); 2223 OS.EmitCOFFSectionIndex(GVSym); 2224 OS.AddComment("Name"); 2225 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2226 OS.EmitLabel(DataEnd); 2227 } 2228