1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
44       TypeTable(Allocator), CurFn(nullptr) {
45   // If module doesn't have named metadata anchors or COFF debug section
46   // is not available, skip any debug info related stuff.
47   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
48       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
49     Asm = nullptr;
50     return;
51   }
52 
53   // Tell MMI that we have debug info.
54   MMI->setDebugInfoAvailability(true);
55 }
56 
57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
58   std::string &Filepath = FileToFilepathMap[File];
59   if (!Filepath.empty())
60     return Filepath;
61 
62   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
63 
64   // Clang emits directory and relative filename info into the IR, but CodeView
65   // operates on full paths.  We could change Clang to emit full paths too, but
66   // that would increase the IR size and probably not needed for other users.
67   // For now, just concatenate and canonicalize the path here.
68   if (Filename.find(':') == 1)
69     Filepath = Filename;
70   else
71     Filepath = (Dir + "\\" + Filename).str();
72 
73   // Canonicalize the path.  We have to do it textually because we may no longer
74   // have access the file in the filesystem.
75   // First, replace all slashes with backslashes.
76   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
77 
78   // Remove all "\.\" with "\".
79   size_t Cursor = 0;
80   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
81     Filepath.erase(Cursor, 2);
82 
83   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
84   // path should be well-formatted, e.g. start with a drive letter, etc.
85   Cursor = 0;
86   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
87     // Something's wrong if the path starts with "\..\", abort.
88     if (Cursor == 0)
89       break;
90 
91     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
92     if (PrevSlash == std::string::npos)
93       // Something's wrong, abort.
94       break;
95 
96     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
97     // The next ".." might be following the one we've just erased.
98     Cursor = PrevSlash;
99   }
100 
101   // Remove all duplicate backslashes.
102   Cursor = 0;
103   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
104     Filepath.erase(Cursor, 1);
105 
106   return Filepath;
107 }
108 
109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
110   unsigned NextId = FileIdMap.size() + 1;
111   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
112   if (Insertion.second) {
113     // We have to compute the full filepath and emit a .cv_file directive.
114     StringRef FullPath = getFullFilepath(F);
115     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
116     (void)Success;
117     assert(Success && ".cv_file directive failed");
118   }
119   return Insertion.first->second;
120 }
121 
122 CodeViewDebug::InlineSite &
123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
124                              const DISubprogram *Inlinee) {
125   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
126   InlineSite *Site = &SiteInsertion.first->second;
127   if (SiteInsertion.second) {
128     unsigned ParentFuncId = CurFn->FuncId;
129     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
130       ParentFuncId =
131           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
132               .SiteFuncId;
133 
134     Site->SiteFuncId = NextFuncId++;
135     OS.EmitCVInlineSiteIdDirective(
136         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
137         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
138     Site->Inlinee = Inlinee;
139     InlinedSubprograms.insert(Inlinee);
140     getFuncIdForSubprogram(Inlinee);
141   }
142   return *Site;
143 }
144 
145 static StringRef getPrettyScopeName(const DIScope *Scope) {
146   StringRef ScopeName = Scope->getName();
147   if (!ScopeName.empty())
148     return ScopeName;
149 
150   switch (Scope->getTag()) {
151   case dwarf::DW_TAG_enumeration_type:
152   case dwarf::DW_TAG_class_type:
153   case dwarf::DW_TAG_structure_type:
154   case dwarf::DW_TAG_union_type:
155     return "<unnamed-tag>";
156   case dwarf::DW_TAG_namespace:
157     return "`anonymous namespace'";
158   }
159 
160   return StringRef();
161 }
162 
163 static const DISubprogram *getQualifiedNameComponents(
164     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
165   const DISubprogram *ClosestSubprogram = nullptr;
166   while (Scope != nullptr) {
167     if (ClosestSubprogram == nullptr)
168       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
169     StringRef ScopeName = getPrettyScopeName(Scope);
170     if (!ScopeName.empty())
171       QualifiedNameComponents.push_back(ScopeName);
172     Scope = Scope->getScope().resolve();
173   }
174   return ClosestSubprogram;
175 }
176 
177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
178                                     StringRef TypeName) {
179   std::string FullyQualifiedName;
180   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
181     FullyQualifiedName.append(QualifiedNameComponent);
182     FullyQualifiedName.append("::");
183   }
184   FullyQualifiedName.append(TypeName);
185   return FullyQualifiedName;
186 }
187 
188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
189   SmallVector<StringRef, 5> QualifiedNameComponents;
190   getQualifiedNameComponents(Scope, QualifiedNameComponents);
191   return getQualifiedName(QualifiedNameComponents, Name);
192 }
193 
194 struct CodeViewDebug::TypeLoweringScope {
195   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
196   ~TypeLoweringScope() {
197     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
198     // inner TypeLoweringScopes don't attempt to emit deferred types.
199     if (CVD.TypeEmissionLevel == 1)
200       CVD.emitDeferredCompleteTypes();
201     --CVD.TypeEmissionLevel;
202   }
203   CodeViewDebug &CVD;
204 };
205 
206 static std::string getFullyQualifiedName(const DIScope *Ty) {
207   const DIScope *Scope = Ty->getScope().resolve();
208   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
209 }
210 
211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
212   // No scope means global scope and that uses the zero index.
213   if (!Scope || isa<DIFile>(Scope))
214     return TypeIndex();
215 
216   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
217 
218   // Check if we've already translated this scope.
219   auto I = TypeIndices.find({Scope, nullptr});
220   if (I != TypeIndices.end())
221     return I->second;
222 
223   // Build the fully qualified name of the scope.
224   std::string ScopeName = getFullyQualifiedName(Scope);
225   TypeIndex TI =
226       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
227   return recordTypeIndexForDINode(Scope, TI);
228 }
229 
230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
231   assert(SP);
232 
233   // Check if we've already translated this subprogram.
234   auto I = TypeIndices.find({SP, nullptr});
235   if (I != TypeIndices.end())
236     return I->second;
237 
238   // The display name includes function template arguments. Drop them to match
239   // MSVC.
240   StringRef DisplayName = SP->getDisplayName().split('<').first;
241 
242   const DIScope *Scope = SP->getScope().resolve();
243   TypeIndex TI;
244   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
245     // If the scope is a DICompositeType, then this must be a method. Member
246     // function types take some special handling, and require access to the
247     // subprogram.
248     TypeIndex ClassType = getTypeIndex(Class);
249     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
250                                DisplayName);
251     TI = TypeTable.writeKnownType(MFuncId);
252   } else {
253     // Otherwise, this must be a free function.
254     TypeIndex ParentScope = getScopeIndex(Scope);
255     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
256     TI = TypeTable.writeKnownType(FuncId);
257   }
258 
259   return recordTypeIndexForDINode(SP, TI);
260 }
261 
262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
263                                                const DICompositeType *Class) {
264   // Always use the method declaration as the key for the function type. The
265   // method declaration contains the this adjustment.
266   if (SP->getDeclaration())
267     SP = SP->getDeclaration();
268   assert(!SP->getDeclaration() && "should use declaration as key");
269 
270   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
271   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
272   auto I = TypeIndices.find({SP, Class});
273   if (I != TypeIndices.end())
274     return I->second;
275 
276   // Make sure complete type info for the class is emitted *after* the member
277   // function type, as the complete class type is likely to reference this
278   // member function type.
279   TypeLoweringScope S(*this);
280   TypeIndex TI =
281       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
282   return recordTypeIndexForDINode(SP, TI, Class);
283 }
284 
285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
286                                                   TypeIndex TI,
287                                                   const DIType *ClassTy) {
288   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
289   (void)InsertResult;
290   assert(InsertResult.second && "DINode was already assigned a type index");
291   return TI;
292 }
293 
294 unsigned CodeViewDebug::getPointerSizeInBytes() {
295   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
296 }
297 
298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
299                                         const DILocation *InlinedAt) {
300   if (InlinedAt) {
301     // This variable was inlined. Associate it with the InlineSite.
302     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
303     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
304     Site.InlinedLocals.emplace_back(Var);
305   } else {
306     // This variable goes in the main ProcSym.
307     CurFn->Locals.emplace_back(Var);
308   }
309 }
310 
311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
312                                const DILocation *Loc) {
313   auto B = Locs.begin(), E = Locs.end();
314   if (std::find(B, E, Loc) == E)
315     Locs.push_back(Loc);
316 }
317 
318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
319                                         const MachineFunction *MF) {
320   // Skip this instruction if it has the same location as the previous one.
321   if (DL == CurFn->LastLoc)
322     return;
323 
324   const DIScope *Scope = DL.get()->getScope();
325   if (!Scope)
326     return;
327 
328   // Skip this line if it is longer than the maximum we can record.
329   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
330   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
331       LI.isNeverStepInto())
332     return;
333 
334   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
335   if (CI.getStartColumn() != DL.getCol())
336     return;
337 
338   if (!CurFn->HaveLineInfo)
339     CurFn->HaveLineInfo = true;
340   unsigned FileId = 0;
341   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
342     FileId = CurFn->LastFileId;
343   else
344     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
345   CurFn->LastLoc = DL;
346 
347   unsigned FuncId = CurFn->FuncId;
348   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
349     const DILocation *Loc = DL.get();
350 
351     // If this location was actually inlined from somewhere else, give it the ID
352     // of the inline call site.
353     FuncId =
354         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
355 
356     // Ensure we have links in the tree of inline call sites.
357     bool FirstLoc = true;
358     while ((SiteLoc = Loc->getInlinedAt())) {
359       InlineSite &Site =
360           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
361       if (!FirstLoc)
362         addLocIfNotPresent(Site.ChildSites, Loc);
363       FirstLoc = false;
364       Loc = SiteLoc;
365     }
366     addLocIfNotPresent(CurFn->ChildSites, Loc);
367   }
368 
369   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
370                         /*PrologueEnd=*/false, /*IsStmt=*/false,
371                         DL->getFilename(), SMLoc());
372 }
373 
374 void CodeViewDebug::emitCodeViewMagicVersion() {
375   OS.EmitValueToAlignment(4);
376   OS.AddComment("Debug section magic");
377   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
378 }
379 
380 void CodeViewDebug::endModule() {
381   if (!Asm || !MMI->hasDebugInfo())
382     return;
383 
384   assert(Asm != nullptr);
385 
386   // The COFF .debug$S section consists of several subsections, each starting
387   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
388   // of the payload followed by the payload itself.  The subsections are 4-byte
389   // aligned.
390 
391   // Use the generic .debug$S section, and make a subsection for all the inlined
392   // subprograms.
393   switchToDebugSectionForSymbol(nullptr);
394   emitInlineeLinesSubsection();
395 
396   // Emit per-function debug information.
397   for (auto &P : FnDebugInfo)
398     if (!P.first->isDeclarationForLinker())
399       emitDebugInfoForFunction(P.first, P.second);
400 
401   // Emit global variable debug information.
402   setCurrentSubprogram(nullptr);
403   emitDebugInfoForGlobals();
404 
405   // Emit retained types.
406   emitDebugInfoForRetainedTypes();
407 
408   // Switch back to the generic .debug$S section after potentially processing
409   // comdat symbol sections.
410   switchToDebugSectionForSymbol(nullptr);
411 
412   // Emit UDT records for any types used by global variables.
413   if (!GlobalUDTs.empty()) {
414     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
415     emitDebugInfoForUDTs(GlobalUDTs);
416     endCVSubsection(SymbolsEnd);
417   }
418 
419   // This subsection holds a file index to offset in string table table.
420   OS.AddComment("File index to string table offset subsection");
421   OS.EmitCVFileChecksumsDirective();
422 
423   // This subsection holds the string table.
424   OS.AddComment("String table");
425   OS.EmitCVStringTableDirective();
426 
427   // Emit type information last, so that any types we translate while emitting
428   // function info are included.
429   emitTypeInformation();
430 
431   clear();
432 }
433 
434 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
435   // Microsoft's linker seems to have trouble with symbol names longer than
436   // 0xffd8 bytes.
437   S = S.substr(0, 0xffd8);
438   SmallString<32> NullTerminatedString(S);
439   NullTerminatedString.push_back('\0');
440   OS.EmitBytes(NullTerminatedString);
441 }
442 
443 void CodeViewDebug::emitTypeInformation() {
444   // Do nothing if we have no debug info or if no non-trivial types were emitted
445   // to TypeTable during codegen.
446   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
447   if (!CU_Nodes)
448     return;
449   if (TypeTable.empty())
450     return;
451 
452   // Start the .debug$T section with 0x4.
453   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
454   emitCodeViewMagicVersion();
455 
456   SmallString<8> CommentPrefix;
457   if (OS.isVerboseAsm()) {
458     CommentPrefix += '\t';
459     CommentPrefix += Asm->MAI->getCommentString();
460     CommentPrefix += ' ';
461   }
462 
463   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
464   TypeTable.ForEachRecord(
465       [&](TypeIndex Index, StringRef Record) {
466         if (OS.isVerboseAsm()) {
467           // Emit a block comment describing the type record for readability.
468           SmallString<512> CommentBlock;
469           raw_svector_ostream CommentOS(CommentBlock);
470           ScopedPrinter SP(CommentOS);
471           SP.setPrefix(CommentPrefix);
472           CVTD.setPrinter(&SP);
473           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
474           if (E) {
475             logAllUnhandledErrors(std::move(E), errs(), "error: ");
476             llvm_unreachable("produced malformed type record");
477           }
478           // emitRawComment will insert its own tab and comment string before
479           // the first line, so strip off our first one. It also prints its own
480           // newline.
481           OS.emitRawComment(
482               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
483         } else {
484 #ifndef NDEBUG
485           // Assert that the type data is valid even if we aren't dumping
486           // comments. The MSVC linker doesn't do much type record validation,
487           // so the first link of an invalid type record can succeed while
488           // subsequent links will fail with LNK1285.
489           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
490           CVTypeArray Types;
491           StreamReader Reader(Stream);
492           Error E = Reader.readArray(Types, Reader.getLength());
493           if (!E) {
494             TypeVisitorCallbacks C;
495             E = CVTypeVisitor(C).visitTypeStream(Types);
496           }
497           if (E) {
498             logAllUnhandledErrors(std::move(E), errs(), "error: ");
499             llvm_unreachable("produced malformed type record");
500           }
501 #endif
502         }
503         OS.EmitBinaryData(Record);
504       });
505 }
506 
507 namespace {
508 
509 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
510   switch (DWLang) {
511   case dwarf::DW_LANG_C:
512   case dwarf::DW_LANG_C89:
513   case dwarf::DW_LANG_C99:
514   case dwarf::DW_LANG_C11:
515   case dwarf::DW_LANG_ObjC:
516     return SourceLanguage::C;
517   case dwarf::DW_LANG_C_plus_plus:
518   case dwarf::DW_LANG_C_plus_plus_03:
519   case dwarf::DW_LANG_C_plus_plus_11:
520   case dwarf::DW_LANG_C_plus_plus_14:
521     return SourceLanguage::Cpp;
522   case dwarf::DW_LANG_Fortran77:
523   case dwarf::DW_LANG_Fortran90:
524   case dwarf::DW_LANG_Fortran03:
525   case dwarf::DW_LANG_Fortran08:
526     return SourceLanguage::Fortran;
527   case dwarf::DW_LANG_Pascal83:
528     return SourceLanguage::Pascal;
529   case dwarf::DW_LANG_Cobol74:
530   case dwarf::DW_LANG_Cobol85:
531     return SourceLanguage::Cobol;
532   case dwarf::DW_LANG_Java:
533     return SourceLanguage::Java;
534   default:
535     // There's no CodeView representation for this language, and CV doesn't
536     // have an "unknown" option for the language field, so we'll use MASM,
537     // as it's very low level.
538     return SourceLanguage::Masm;
539   }
540 }
541 
542 struct Version {
543   int Part[4];
544 };
545 
546 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
547 // the version number.
548 static Version parseVersion(StringRef Name) {
549   Version V = {{0}};
550   int N = 0;
551   for (const char C : Name) {
552     if (isdigit(C)) {
553       V.Part[N] *= 10;
554       V.Part[N] += C - '0';
555     } else if (C == '.') {
556       ++N;
557       if (N >= 4)
558         return V;
559     } else if (N > 0)
560       return V;
561   }
562   return V;
563 }
564 
565 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
566   switch (Type) {
567     case Triple::ArchType::x86:
568       return CPUType::Pentium3;
569     case Triple::ArchType::x86_64:
570       return CPUType::X64;
571     case Triple::ArchType::thumb:
572       return CPUType::Thumb;
573     default:
574       report_fatal_error("target architecture doesn't map to a CodeView "
575                          "CPUType");
576   }
577 }
578 
579 }  // anonymous namespace
580 
581 void CodeViewDebug::emitCompilerInformation() {
582   MCContext &Context = MMI->getContext();
583   MCSymbol *CompilerBegin = Context.createTempSymbol(),
584            *CompilerEnd = Context.createTempSymbol();
585   OS.AddComment("Record length");
586   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
587   OS.EmitLabel(CompilerBegin);
588   OS.AddComment("Record kind: S_COMPILE3");
589   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
590   uint32_t Flags = 0;
591 
592   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
593   const MDNode *Node = *CUs->operands().begin();
594   const auto *CU = cast<DICompileUnit>(Node);
595 
596   // The low byte of the flags indicates the source language.
597   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
598   // TODO:  Figure out which other flags need to be set.
599 
600   OS.AddComment("Flags and language");
601   OS.EmitIntValue(Flags, 4);
602 
603   OS.AddComment("CPUType");
604   CPUType CPU =
605       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
606   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
607 
608   StringRef CompilerVersion = CU->getProducer();
609   Version FrontVer = parseVersion(CompilerVersion);
610   OS.AddComment("Frontend version");
611   for (int N = 0; N < 4; ++N)
612     OS.EmitIntValue(FrontVer.Part[N], 2);
613 
614   // Some Microsoft tools, like Binscope, expect a backend version number of at
615   // least 8.something, so we'll coerce the LLVM version into a form that
616   // guarantees it'll be big enough without really lying about the version.
617   Version BackVer = {{
618       1000 * LLVM_VERSION_MAJOR +
619       10 * LLVM_VERSION_MINOR +
620       LLVM_VERSION_PATCH,
621       0, 0, 0 }};
622   OS.AddComment("Backend version");
623   for (int N = 0; N < 4; ++N)
624     OS.EmitIntValue(BackVer.Part[N], 2);
625 
626   OS.AddComment("Null-terminated compiler version string");
627   emitNullTerminatedSymbolName(OS, CompilerVersion);
628 
629   OS.EmitLabel(CompilerEnd);
630 }
631 
632 void CodeViewDebug::emitInlineeLinesSubsection() {
633   if (InlinedSubprograms.empty())
634     return;
635 
636   OS.AddComment("Inlinee lines subsection");
637   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
638 
639   // We don't provide any extra file info.
640   // FIXME: Find out if debuggers use this info.
641   OS.AddComment("Inlinee lines signature");
642   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
643 
644   for (const DISubprogram *SP : InlinedSubprograms) {
645     assert(TypeIndices.count({SP, nullptr}));
646     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
647 
648     OS.AddBlankLine();
649     unsigned FileId = maybeRecordFile(SP->getFile());
650     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
651                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
652     OS.AddBlankLine();
653     // The filechecksum table uses 8 byte entries for now, and file ids start at
654     // 1.
655     unsigned FileOffset = (FileId - 1) * 8;
656     OS.AddComment("Type index of inlined function");
657     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
658     OS.AddComment("Offset into filechecksum table");
659     OS.EmitIntValue(FileOffset, 4);
660     OS.AddComment("Starting line number");
661     OS.EmitIntValue(SP->getLine(), 4);
662   }
663 
664   endCVSubsection(InlineEnd);
665 }
666 
667 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
668                                         const DILocation *InlinedAt,
669                                         const InlineSite &Site) {
670   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
671            *InlineEnd = MMI->getContext().createTempSymbol();
672 
673   assert(TypeIndices.count({Site.Inlinee, nullptr}));
674   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
675 
676   // SymbolRecord
677   OS.AddComment("Record length");
678   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
679   OS.EmitLabel(InlineBegin);
680   OS.AddComment("Record kind: S_INLINESITE");
681   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
682 
683   OS.AddComment("PtrParent");
684   OS.EmitIntValue(0, 4);
685   OS.AddComment("PtrEnd");
686   OS.EmitIntValue(0, 4);
687   OS.AddComment("Inlinee type index");
688   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
689 
690   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
691   unsigned StartLineNum = Site.Inlinee->getLine();
692 
693   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
694                                     FI.Begin, FI.End);
695 
696   OS.EmitLabel(InlineEnd);
697 
698   emitLocalVariableList(Site.InlinedLocals);
699 
700   // Recurse on child inlined call sites before closing the scope.
701   for (const DILocation *ChildSite : Site.ChildSites) {
702     auto I = FI.InlineSites.find(ChildSite);
703     assert(I != FI.InlineSites.end() &&
704            "child site not in function inline site map");
705     emitInlinedCallSite(FI, ChildSite, I->second);
706   }
707 
708   // Close the scope.
709   OS.AddComment("Record length");
710   OS.EmitIntValue(2, 2);                                  // RecordLength
711   OS.AddComment("Record kind: S_INLINESITE_END");
712   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
713 }
714 
715 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
716   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
717   // comdat key. A section may be comdat because of -ffunction-sections or
718   // because it is comdat in the IR.
719   MCSectionCOFF *GVSec =
720       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
721   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
722 
723   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
724       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
725   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
726 
727   OS.SwitchSection(DebugSec);
728 
729   // Emit the magic version number if this is the first time we've switched to
730   // this section.
731   if (ComdatDebugSections.insert(DebugSec).second)
732     emitCodeViewMagicVersion();
733 }
734 
735 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
736                                              FunctionInfo &FI) {
737   // For each function there is a separate subsection
738   // which holds the PC to file:line table.
739   const MCSymbol *Fn = Asm->getSymbol(GV);
740   assert(Fn);
741 
742   // Switch to the to a comdat section, if appropriate.
743   switchToDebugSectionForSymbol(Fn);
744 
745   std::string FuncName;
746   auto *SP = GV->getSubprogram();
747   assert(SP);
748   setCurrentSubprogram(SP);
749 
750   // If we have a display name, build the fully qualified name by walking the
751   // chain of scopes.
752   if (!SP->getDisplayName().empty())
753     FuncName =
754         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
755 
756   // If our DISubprogram name is empty, use the mangled name.
757   if (FuncName.empty())
758     FuncName = GlobalValue::getRealLinkageName(GV->getName());
759 
760   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
761   OS.AddComment("Symbol subsection for " + Twine(FuncName));
762   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
763   {
764     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
765              *ProcRecordEnd = MMI->getContext().createTempSymbol();
766     OS.AddComment("Record length");
767     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
768     OS.EmitLabel(ProcRecordBegin);
769 
770     if (GV->hasLocalLinkage()) {
771       OS.AddComment("Record kind: S_LPROC32_ID");
772       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
773     } else {
774       OS.AddComment("Record kind: S_GPROC32_ID");
775       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
776     }
777 
778     // These fields are filled in by tools like CVPACK which run after the fact.
779     OS.AddComment("PtrParent");
780     OS.EmitIntValue(0, 4);
781     OS.AddComment("PtrEnd");
782     OS.EmitIntValue(0, 4);
783     OS.AddComment("PtrNext");
784     OS.EmitIntValue(0, 4);
785     // This is the important bit that tells the debugger where the function
786     // code is located and what's its size:
787     OS.AddComment("Code size");
788     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
789     OS.AddComment("Offset after prologue");
790     OS.EmitIntValue(0, 4);
791     OS.AddComment("Offset before epilogue");
792     OS.EmitIntValue(0, 4);
793     OS.AddComment("Function type index");
794     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
795     OS.AddComment("Function section relative address");
796     OS.EmitCOFFSecRel32(Fn);
797     OS.AddComment("Function section index");
798     OS.EmitCOFFSectionIndex(Fn);
799     OS.AddComment("Flags");
800     OS.EmitIntValue(0, 1);
801     // Emit the function display name as a null-terminated string.
802     OS.AddComment("Function name");
803     // Truncate the name so we won't overflow the record length field.
804     emitNullTerminatedSymbolName(OS, FuncName);
805     OS.EmitLabel(ProcRecordEnd);
806 
807     emitLocalVariableList(FI.Locals);
808 
809     // Emit inlined call site information. Only emit functions inlined directly
810     // into the parent function. We'll emit the other sites recursively as part
811     // of their parent inline site.
812     for (const DILocation *InlinedAt : FI.ChildSites) {
813       auto I = FI.InlineSites.find(InlinedAt);
814       assert(I != FI.InlineSites.end() &&
815              "child site not in function inline site map");
816       emitInlinedCallSite(FI, InlinedAt, I->second);
817     }
818 
819     if (SP != nullptr)
820       emitDebugInfoForUDTs(LocalUDTs);
821 
822     // We're done with this function.
823     OS.AddComment("Record length");
824     OS.EmitIntValue(0x0002, 2);
825     OS.AddComment("Record kind: S_PROC_ID_END");
826     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
827   }
828   endCVSubsection(SymbolsEnd);
829 
830   // We have an assembler directive that takes care of the whole line table.
831   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
832 }
833 
834 CodeViewDebug::LocalVarDefRange
835 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
836   LocalVarDefRange DR;
837   DR.InMemory = -1;
838   DR.DataOffset = Offset;
839   assert(DR.DataOffset == Offset && "truncation");
840   DR.StructOffset = 0;
841   DR.CVRegister = CVRegister;
842   return DR;
843 }
844 
845 CodeViewDebug::LocalVarDefRange
846 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
847   LocalVarDefRange DR;
848   DR.InMemory = 0;
849   DR.DataOffset = 0;
850   DR.StructOffset = 0;
851   DR.CVRegister = CVRegister;
852   return DR;
853 }
854 
855 void CodeViewDebug::collectVariableInfoFromMMITable(
856     DenseSet<InlinedVariable> &Processed) {
857   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
858   const TargetFrameLowering *TFI = TSI.getFrameLowering();
859   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
860 
861   for (const MachineModuleInfo::VariableDbgInfo &VI :
862        MMI->getVariableDbgInfo()) {
863     if (!VI.Var)
864       continue;
865     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
866            "Expected inlined-at fields to agree");
867 
868     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
869     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
870 
871     // If variable scope is not found then skip this variable.
872     if (!Scope)
873       continue;
874 
875     // Get the frame register used and the offset.
876     unsigned FrameReg = 0;
877     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
878     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
879 
880     // Calculate the label ranges.
881     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
882     for (const InsnRange &Range : Scope->getRanges()) {
883       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
884       const MCSymbol *End = getLabelAfterInsn(Range.second);
885       End = End ? End : Asm->getFunctionEnd();
886       DefRange.Ranges.emplace_back(Begin, End);
887     }
888 
889     LocalVariable Var;
890     Var.DIVar = VI.Var;
891     Var.DefRanges.emplace_back(std::move(DefRange));
892     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
893   }
894 }
895 
896 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
897   DenseSet<InlinedVariable> Processed;
898   // Grab the variable info that was squirreled away in the MMI side-table.
899   collectVariableInfoFromMMITable(Processed);
900 
901   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
902 
903   for (const auto &I : DbgValues) {
904     InlinedVariable IV = I.first;
905     if (Processed.count(IV))
906       continue;
907     const DILocalVariable *DIVar = IV.first;
908     const DILocation *InlinedAt = IV.second;
909 
910     // Instruction ranges, specifying where IV is accessible.
911     const auto &Ranges = I.second;
912 
913     LexicalScope *Scope = nullptr;
914     if (InlinedAt)
915       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
916     else
917       Scope = LScopes.findLexicalScope(DIVar->getScope());
918     // If variable scope is not found then skip this variable.
919     if (!Scope)
920       continue;
921 
922     LocalVariable Var;
923     Var.DIVar = DIVar;
924 
925     // Calculate the definition ranges.
926     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
927       const InsnRange &Range = *I;
928       const MachineInstr *DVInst = Range.first;
929       assert(DVInst->isDebugValue() && "Invalid History entry");
930       const DIExpression *DIExpr = DVInst->getDebugExpression();
931 
932       // Bail if there is a complex DWARF expression for now.
933       if (DIExpr && DIExpr->getNumElements() > 0)
934         continue;
935 
936       // Bail if operand 0 is not a valid register. This means the variable is a
937       // simple constant, or is described by a complex expression.
938       // FIXME: Find a way to represent constant variables, since they are
939       // relatively common.
940       unsigned Reg =
941           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
942       if (Reg == 0)
943         continue;
944 
945       // Handle the two cases we can handle: indirect in memory and in register.
946       bool IsIndirect = DVInst->getOperand(1).isImm();
947       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
948       {
949         LocalVarDefRange DefRange;
950         if (IsIndirect) {
951           int64_t Offset = DVInst->getOperand(1).getImm();
952           DefRange = createDefRangeMem(CVReg, Offset);
953         } else {
954           DefRange = createDefRangeReg(CVReg);
955         }
956         if (Var.DefRanges.empty() ||
957             Var.DefRanges.back().isDifferentLocation(DefRange)) {
958           Var.DefRanges.emplace_back(std::move(DefRange));
959         }
960       }
961 
962       // Compute the label range.
963       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
964       const MCSymbol *End = getLabelAfterInsn(Range.second);
965       if (!End) {
966         if (std::next(I) != E)
967           End = getLabelBeforeInsn(std::next(I)->first);
968         else
969           End = Asm->getFunctionEnd();
970       }
971 
972       // If the last range end is our begin, just extend the last range.
973       // Otherwise make a new range.
974       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
975           Var.DefRanges.back().Ranges;
976       if (!Ranges.empty() && Ranges.back().second == Begin)
977         Ranges.back().second = End;
978       else
979         Ranges.emplace_back(Begin, End);
980 
981       // FIXME: Do more range combining.
982     }
983 
984     recordLocalVariable(std::move(Var), InlinedAt);
985   }
986 }
987 
988 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
989   assert(!CurFn && "Can't process two functions at once!");
990 
991   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
992     return;
993 
994   DebugHandlerBase::beginFunction(MF);
995 
996   const Function *GV = MF->getFunction();
997   assert(FnDebugInfo.count(GV) == false);
998   CurFn = &FnDebugInfo[GV];
999   CurFn->FuncId = NextFuncId++;
1000   CurFn->Begin = Asm->getFunctionBegin();
1001 
1002   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1003 
1004   // Find the end of the function prolog.  First known non-DBG_VALUE and
1005   // non-frame setup location marks the beginning of the function body.
1006   // FIXME: is there a simpler a way to do this? Can we just search
1007   // for the first instruction of the function, not the last of the prolog?
1008   DebugLoc PrologEndLoc;
1009   bool EmptyPrologue = true;
1010   for (const auto &MBB : *MF) {
1011     for (const auto &MI : MBB) {
1012       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1013           MI.getDebugLoc()) {
1014         PrologEndLoc = MI.getDebugLoc();
1015         break;
1016       } else if (!MI.isDebugValue()) {
1017         EmptyPrologue = false;
1018       }
1019     }
1020   }
1021 
1022   // Record beginning of function if we have a non-empty prologue.
1023   if (PrologEndLoc && !EmptyPrologue) {
1024     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1025     maybeRecordLocation(FnStartDL, MF);
1026   }
1027 }
1028 
1029 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1030   // Don't record empty UDTs.
1031   if (Ty->getName().empty())
1032     return;
1033 
1034   SmallVector<StringRef, 5> QualifiedNameComponents;
1035   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1036       Ty->getScope().resolve(), QualifiedNameComponents);
1037 
1038   std::string FullyQualifiedName =
1039       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1040 
1041   if (ClosestSubprogram == nullptr)
1042     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1043   else if (ClosestSubprogram == CurrentSubprogram)
1044     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1045 
1046   // TODO: What if the ClosestSubprogram is neither null or the current
1047   // subprogram?  Currently, the UDT just gets dropped on the floor.
1048   //
1049   // The current behavior is not desirable.  To get maximal fidelity, we would
1050   // need to perform all type translation before beginning emission of .debug$S
1051   // and then make LocalUDTs a member of FunctionInfo
1052 }
1053 
1054 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1055   // Generic dispatch for lowering an unknown type.
1056   switch (Ty->getTag()) {
1057   case dwarf::DW_TAG_array_type:
1058     return lowerTypeArray(cast<DICompositeType>(Ty));
1059   case dwarf::DW_TAG_typedef:
1060     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1061   case dwarf::DW_TAG_base_type:
1062     return lowerTypeBasic(cast<DIBasicType>(Ty));
1063   case dwarf::DW_TAG_pointer_type:
1064     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1065       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1066     LLVM_FALLTHROUGH;
1067   case dwarf::DW_TAG_reference_type:
1068   case dwarf::DW_TAG_rvalue_reference_type:
1069     return lowerTypePointer(cast<DIDerivedType>(Ty));
1070   case dwarf::DW_TAG_ptr_to_member_type:
1071     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1072   case dwarf::DW_TAG_const_type:
1073   case dwarf::DW_TAG_volatile_type:
1074     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1075   case dwarf::DW_TAG_subroutine_type:
1076     if (ClassTy) {
1077       // The member function type of a member function pointer has no
1078       // ThisAdjustment.
1079       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1080                                      /*ThisAdjustment=*/0);
1081     }
1082     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1083   case dwarf::DW_TAG_enumeration_type:
1084     return lowerTypeEnum(cast<DICompositeType>(Ty));
1085   case dwarf::DW_TAG_class_type:
1086   case dwarf::DW_TAG_structure_type:
1087     return lowerTypeClass(cast<DICompositeType>(Ty));
1088   case dwarf::DW_TAG_union_type:
1089     return lowerTypeUnion(cast<DICompositeType>(Ty));
1090   default:
1091     // Use the null type index.
1092     return TypeIndex();
1093   }
1094 }
1095 
1096 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1097   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1098   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1099   StringRef TypeName = Ty->getName();
1100 
1101   addToUDTs(Ty, UnderlyingTypeIndex);
1102 
1103   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1104       TypeName == "HRESULT")
1105     return TypeIndex(SimpleTypeKind::HResult);
1106   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1107       TypeName == "wchar_t")
1108     return TypeIndex(SimpleTypeKind::WideCharacter);
1109 
1110   return UnderlyingTypeIndex;
1111 }
1112 
1113 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1114   DITypeRef ElementTypeRef = Ty->getBaseType();
1115   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1116   // IndexType is size_t, which depends on the bitness of the target.
1117   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
1118                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1119                             : TypeIndex(SimpleTypeKind::UInt32Long);
1120 
1121   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1122 
1123 
1124   // We want to assert that the element type multiplied by the array lengths
1125   // match the size of the overall array. However, if we don't have complete
1126   // type information for the base type, we can't make this assertion. This
1127   // happens if limited debug info is enabled in this case:
1128   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1129   //   VTableOptzn array[3];
1130   // The DICompositeType of VTableOptzn will have size zero, and the array will
1131   // have size 3 * sizeof(void*), and we should avoid asserting.
1132   //
1133   // There is a related bug in the front-end where an array of a structure,
1134   // which was declared as incomplete structure first, ends up not getting a
1135   // size assigned to it. (PR28303)
1136   // Example:
1137   //   struct A(*p)[3];
1138   //   struct A { int f; } a[3];
1139   bool PartiallyIncomplete = false;
1140   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1141     PartiallyIncomplete = true;
1142   }
1143 
1144   // Add subranges to array type.
1145   DINodeArray Elements = Ty->getElements();
1146   for (int i = Elements.size() - 1; i >= 0; --i) {
1147     const DINode *Element = Elements[i];
1148     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1149 
1150     const DISubrange *Subrange = cast<DISubrange>(Element);
1151     assert(Subrange->getLowerBound() == 0 &&
1152            "codeview doesn't support subranges with lower bounds");
1153     int64_t Count = Subrange->getCount();
1154 
1155     // Variable Length Array (VLA) has Count equal to '-1'.
1156     // Replace with Count '1', assume it is the minimum VLA length.
1157     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1158     if (Count == -1) {
1159       Count = 1;
1160       PartiallyIncomplete = true;
1161     }
1162 
1163     // Update the element size and element type index for subsequent subranges.
1164     ElementSize *= Count;
1165 
1166     // If this is the outermost array, use the size from the array. It will be
1167     // more accurate if PartiallyIncomplete is true.
1168     uint64_t ArraySize =
1169         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1170 
1171     StringRef Name = (i == 0) ? Ty->getName() : "";
1172     ElementTypeIndex = TypeTable.writeKnownType(
1173         ArrayRecord(ElementTypeIndex, IndexType, ArraySize, Name));
1174   }
1175 
1176   (void)PartiallyIncomplete;
1177   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1178 
1179   return ElementTypeIndex;
1180 }
1181 
1182 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1183   TypeIndex Index;
1184   dwarf::TypeKind Kind;
1185   uint32_t ByteSize;
1186 
1187   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1188   ByteSize = Ty->getSizeInBits() / 8;
1189 
1190   SimpleTypeKind STK = SimpleTypeKind::None;
1191   switch (Kind) {
1192   case dwarf::DW_ATE_address:
1193     // FIXME: Translate
1194     break;
1195   case dwarf::DW_ATE_boolean:
1196     switch (ByteSize) {
1197     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1198     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1199     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1200     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1201     case 16: STK = SimpleTypeKind::Boolean128; break;
1202     }
1203     break;
1204   case dwarf::DW_ATE_complex_float:
1205     switch (ByteSize) {
1206     case 2:  STK = SimpleTypeKind::Complex16;  break;
1207     case 4:  STK = SimpleTypeKind::Complex32;  break;
1208     case 8:  STK = SimpleTypeKind::Complex64;  break;
1209     case 10: STK = SimpleTypeKind::Complex80;  break;
1210     case 16: STK = SimpleTypeKind::Complex128; break;
1211     }
1212     break;
1213   case dwarf::DW_ATE_float:
1214     switch (ByteSize) {
1215     case 2:  STK = SimpleTypeKind::Float16;  break;
1216     case 4:  STK = SimpleTypeKind::Float32;  break;
1217     case 6:  STK = SimpleTypeKind::Float48;  break;
1218     case 8:  STK = SimpleTypeKind::Float64;  break;
1219     case 10: STK = SimpleTypeKind::Float80;  break;
1220     case 16: STK = SimpleTypeKind::Float128; break;
1221     }
1222     break;
1223   case dwarf::DW_ATE_signed:
1224     switch (ByteSize) {
1225     case 1:  STK = SimpleTypeKind::SByte;      break;
1226     case 2:  STK = SimpleTypeKind::Int16Short; break;
1227     case 4:  STK = SimpleTypeKind::Int32;      break;
1228     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1229     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1230     }
1231     break;
1232   case dwarf::DW_ATE_unsigned:
1233     switch (ByteSize) {
1234     case 1:  STK = SimpleTypeKind::Byte;        break;
1235     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1236     case 4:  STK = SimpleTypeKind::UInt32;      break;
1237     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1238     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1239     }
1240     break;
1241   case dwarf::DW_ATE_UTF:
1242     switch (ByteSize) {
1243     case 2: STK = SimpleTypeKind::Character16; break;
1244     case 4: STK = SimpleTypeKind::Character32; break;
1245     }
1246     break;
1247   case dwarf::DW_ATE_signed_char:
1248     if (ByteSize == 1)
1249       STK = SimpleTypeKind::SignedCharacter;
1250     break;
1251   case dwarf::DW_ATE_unsigned_char:
1252     if (ByteSize == 1)
1253       STK = SimpleTypeKind::UnsignedCharacter;
1254     break;
1255   default:
1256     break;
1257   }
1258 
1259   // Apply some fixups based on the source-level type name.
1260   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1261     STK = SimpleTypeKind::Int32Long;
1262   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1263     STK = SimpleTypeKind::UInt32Long;
1264   if (STK == SimpleTypeKind::UInt16Short &&
1265       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1266     STK = SimpleTypeKind::WideCharacter;
1267   if ((STK == SimpleTypeKind::SignedCharacter ||
1268        STK == SimpleTypeKind::UnsignedCharacter) &&
1269       Ty->getName() == "char")
1270     STK = SimpleTypeKind::NarrowCharacter;
1271 
1272   return TypeIndex(STK);
1273 }
1274 
1275 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1276   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1277 
1278   // Pointers to simple types can use SimpleTypeMode, rather than having a
1279   // dedicated pointer type record.
1280   if (PointeeTI.isSimple() &&
1281       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1282       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1283     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1284                               ? SimpleTypeMode::NearPointer64
1285                               : SimpleTypeMode::NearPointer32;
1286     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1287   }
1288 
1289   PointerKind PK =
1290       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1291   PointerMode PM = PointerMode::Pointer;
1292   switch (Ty->getTag()) {
1293   default: llvm_unreachable("not a pointer tag type");
1294   case dwarf::DW_TAG_pointer_type:
1295     PM = PointerMode::Pointer;
1296     break;
1297   case dwarf::DW_TAG_reference_type:
1298     PM = PointerMode::LValueReference;
1299     break;
1300   case dwarf::DW_TAG_rvalue_reference_type:
1301     PM = PointerMode::RValueReference;
1302     break;
1303   }
1304   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1305   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1306   // do.
1307   PointerOptions PO = PointerOptions::None;
1308   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1309   return TypeTable.writeKnownType(PR);
1310 }
1311 
1312 static PointerToMemberRepresentation
1313 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1314   // SizeInBytes being zero generally implies that the member pointer type was
1315   // incomplete, which can happen if it is part of a function prototype. In this
1316   // case, use the unknown model instead of the general model.
1317   if (IsPMF) {
1318     switch (Flags & DINode::FlagPtrToMemberRep) {
1319     case 0:
1320       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1321                               : PointerToMemberRepresentation::GeneralFunction;
1322     case DINode::FlagSingleInheritance:
1323       return PointerToMemberRepresentation::SingleInheritanceFunction;
1324     case DINode::FlagMultipleInheritance:
1325       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1326     case DINode::FlagVirtualInheritance:
1327       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1328     }
1329   } else {
1330     switch (Flags & DINode::FlagPtrToMemberRep) {
1331     case 0:
1332       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1333                               : PointerToMemberRepresentation::GeneralData;
1334     case DINode::FlagSingleInheritance:
1335       return PointerToMemberRepresentation::SingleInheritanceData;
1336     case DINode::FlagMultipleInheritance:
1337       return PointerToMemberRepresentation::MultipleInheritanceData;
1338     case DINode::FlagVirtualInheritance:
1339       return PointerToMemberRepresentation::VirtualInheritanceData;
1340     }
1341   }
1342   llvm_unreachable("invalid ptr to member representation");
1343 }
1344 
1345 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1346   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1347   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1348   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1349   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1350                                                    : PointerKind::Near32;
1351   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1352   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1353                          : PointerMode::PointerToDataMember;
1354   PointerOptions PO = PointerOptions::None; // FIXME
1355   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1356   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1357   MemberPointerInfo MPI(
1358       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1359   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1360   return TypeTable.writeKnownType(PR);
1361 }
1362 
1363 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1364 /// have a translation, use the NearC convention.
1365 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1366   switch (DwarfCC) {
1367   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1368   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1369   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1370   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1371   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1372   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1373   }
1374   return CallingConvention::NearC;
1375 }
1376 
1377 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1378   ModifierOptions Mods = ModifierOptions::None;
1379   bool IsModifier = true;
1380   const DIType *BaseTy = Ty;
1381   while (IsModifier && BaseTy) {
1382     // FIXME: Need to add DWARF tag for __unaligned.
1383     switch (BaseTy->getTag()) {
1384     case dwarf::DW_TAG_const_type:
1385       Mods |= ModifierOptions::Const;
1386       break;
1387     case dwarf::DW_TAG_volatile_type:
1388       Mods |= ModifierOptions::Volatile;
1389       break;
1390     default:
1391       IsModifier = false;
1392       break;
1393     }
1394     if (IsModifier)
1395       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1396   }
1397   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1398   return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods));
1399 }
1400 
1401 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1402   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1403   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1404     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1405 
1406   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1407   ArrayRef<TypeIndex> ArgTypeIndices = None;
1408   if (!ReturnAndArgTypeIndices.empty()) {
1409     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1410     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1411     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1412   }
1413 
1414   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1415   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1416 
1417   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1418 
1419   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1420                             ArgTypeIndices.size(), ArgListIndex);
1421   return TypeTable.writeKnownType(Procedure);
1422 }
1423 
1424 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1425                                                  const DIType *ClassTy,
1426                                                  int ThisAdjustment) {
1427   // Lower the containing class type.
1428   TypeIndex ClassType = getTypeIndex(ClassTy);
1429 
1430   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1431   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1432     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1433 
1434   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1435   ArrayRef<TypeIndex> ArgTypeIndices = None;
1436   if (!ReturnAndArgTypeIndices.empty()) {
1437     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1438     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1439     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1440   }
1441   TypeIndex ThisTypeIndex = TypeIndex::Void();
1442   if (!ArgTypeIndices.empty()) {
1443     ThisTypeIndex = ArgTypeIndices.front();
1444     ArgTypeIndices = ArgTypeIndices.drop_front();
1445   }
1446 
1447   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1448   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1449 
1450   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1451 
1452   // TODO: Need to use the correct values for:
1453   //       FunctionOptions
1454   //       ThisPointerAdjustment.
1455   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1456       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1457       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1458 
1459   return TI;
1460 }
1461 
1462 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1463   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1464   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1465   return TypeTable.writeKnownType(VFTableShapeRecord(Slots));
1466 }
1467 
1468 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1469   switch (Flags & DINode::FlagAccessibility) {
1470   case DINode::FlagPrivate:   return MemberAccess::Private;
1471   case DINode::FlagPublic:    return MemberAccess::Public;
1472   case DINode::FlagProtected: return MemberAccess::Protected;
1473   case 0:
1474     // If there was no explicit access control, provide the default for the tag.
1475     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1476                                                  : MemberAccess::Public;
1477   }
1478   llvm_unreachable("access flags are exclusive");
1479 }
1480 
1481 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1482   if (SP->isArtificial())
1483     return MethodOptions::CompilerGenerated;
1484 
1485   // FIXME: Handle other MethodOptions.
1486 
1487   return MethodOptions::None;
1488 }
1489 
1490 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1491                                            bool Introduced) {
1492   switch (SP->getVirtuality()) {
1493   case dwarf::DW_VIRTUALITY_none:
1494     break;
1495   case dwarf::DW_VIRTUALITY_virtual:
1496     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1497   case dwarf::DW_VIRTUALITY_pure_virtual:
1498     return Introduced ? MethodKind::PureIntroducingVirtual
1499                       : MethodKind::PureVirtual;
1500   default:
1501     llvm_unreachable("unhandled virtuality case");
1502   }
1503 
1504   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1505 
1506   return MethodKind::Vanilla;
1507 }
1508 
1509 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1510   switch (Ty->getTag()) {
1511   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1512   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1513   }
1514   llvm_unreachable("unexpected tag");
1515 }
1516 
1517 /// Return ClassOptions that should be present on both the forward declaration
1518 /// and the defintion of a tag type.
1519 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1520   ClassOptions CO = ClassOptions::None;
1521 
1522   // MSVC always sets this flag, even for local types. Clang doesn't always
1523   // appear to give every type a linkage name, which may be problematic for us.
1524   // FIXME: Investigate the consequences of not following them here.
1525   if (!Ty->getIdentifier().empty())
1526     CO |= ClassOptions::HasUniqueName;
1527 
1528   // Put the Nested flag on a type if it appears immediately inside a tag type.
1529   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1530   // here. That flag is only set on definitions, and not forward declarations.
1531   const DIScope *ImmediateScope = Ty->getScope().resolve();
1532   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1533     CO |= ClassOptions::Nested;
1534 
1535   // Put the Scoped flag on function-local types.
1536   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1537        Scope = Scope->getScope().resolve()) {
1538     if (isa<DISubprogram>(Scope)) {
1539       CO |= ClassOptions::Scoped;
1540       break;
1541     }
1542   }
1543 
1544   return CO;
1545 }
1546 
1547 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1548   ClassOptions CO = getCommonClassOptions(Ty);
1549   TypeIndex FTI;
1550   unsigned EnumeratorCount = 0;
1551 
1552   if (Ty->isForwardDecl()) {
1553     CO |= ClassOptions::ForwardReference;
1554   } else {
1555     FieldListRecordBuilder Fields;
1556     for (const DINode *Element : Ty->getElements()) {
1557       // We assume that the frontend provides all members in source declaration
1558       // order, which is what MSVC does.
1559       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1560         Fields.writeMemberType(EnumeratorRecord(
1561             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1562             Enumerator->getName()));
1563         EnumeratorCount++;
1564       }
1565     }
1566     FTI = TypeTable.writeFieldList(Fields);
1567   }
1568 
1569   std::string FullName = getFullyQualifiedName(Ty);
1570 
1571   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1572                                              Ty->getIdentifier(),
1573                                              getTypeIndex(Ty->getBaseType())));
1574 }
1575 
1576 //===----------------------------------------------------------------------===//
1577 // ClassInfo
1578 //===----------------------------------------------------------------------===//
1579 
1580 struct llvm::ClassInfo {
1581   struct MemberInfo {
1582     const DIDerivedType *MemberTypeNode;
1583     uint64_t BaseOffset;
1584   };
1585   // [MemberInfo]
1586   typedef std::vector<MemberInfo> MemberList;
1587 
1588   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1589   // MethodName -> MethodsList
1590   typedef MapVector<MDString *, MethodsList> MethodsMap;
1591 
1592   /// Base classes.
1593   std::vector<const DIDerivedType *> Inheritance;
1594 
1595   /// Direct members.
1596   MemberList Members;
1597   // Direct overloaded methods gathered by name.
1598   MethodsMap Methods;
1599 
1600   TypeIndex VShapeTI;
1601 
1602   std::vector<const DICompositeType *> NestedClasses;
1603 };
1604 
1605 void CodeViewDebug::clear() {
1606   assert(CurFn == nullptr);
1607   FileIdMap.clear();
1608   FnDebugInfo.clear();
1609   FileToFilepathMap.clear();
1610   LocalUDTs.clear();
1611   GlobalUDTs.clear();
1612   TypeIndices.clear();
1613   CompleteTypeIndices.clear();
1614 }
1615 
1616 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1617                                       const DIDerivedType *DDTy) {
1618   if (!DDTy->getName().empty()) {
1619     Info.Members.push_back({DDTy, 0});
1620     return;
1621   }
1622   // An unnamed member must represent a nested struct or union. Add all the
1623   // indirect fields to the current record.
1624   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1625   uint64_t Offset = DDTy->getOffsetInBits();
1626   const DIType *Ty = DDTy->getBaseType().resolve();
1627   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1628   ClassInfo NestedInfo = collectClassInfo(DCTy);
1629   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1630     Info.Members.push_back(
1631         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1632 }
1633 
1634 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1635   ClassInfo Info;
1636   // Add elements to structure type.
1637   DINodeArray Elements = Ty->getElements();
1638   for (auto *Element : Elements) {
1639     // We assume that the frontend provides all members in source declaration
1640     // order, which is what MSVC does.
1641     if (!Element)
1642       continue;
1643     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1644       Info.Methods[SP->getRawName()].push_back(SP);
1645     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1646       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1647         collectMemberInfo(Info, DDTy);
1648       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1649         Info.Inheritance.push_back(DDTy);
1650       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1651                  DDTy->getName() == "__vtbl_ptr_type") {
1652         Info.VShapeTI = getTypeIndex(DDTy);
1653       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1654         // Ignore friend members. It appears that MSVC emitted info about
1655         // friends in the past, but modern versions do not.
1656       }
1657     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1658       Info.NestedClasses.push_back(Composite);
1659     }
1660     // Skip other unrecognized kinds of elements.
1661   }
1662   return Info;
1663 }
1664 
1665 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1666   // First, construct the forward decl.  Don't look into Ty to compute the
1667   // forward decl options, since it might not be available in all TUs.
1668   TypeRecordKind Kind = getRecordKind(Ty);
1669   ClassOptions CO =
1670       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1671   std::string FullName = getFullyQualifiedName(Ty);
1672   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1673       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1674       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1675   if (!Ty->isForwardDecl())
1676     DeferredCompleteTypes.push_back(Ty);
1677   return FwdDeclTI;
1678 }
1679 
1680 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1681   // Construct the field list and complete type record.
1682   TypeRecordKind Kind = getRecordKind(Ty);
1683   ClassOptions CO = getCommonClassOptions(Ty);
1684   TypeIndex FieldTI;
1685   TypeIndex VShapeTI;
1686   unsigned FieldCount;
1687   bool ContainsNestedClass;
1688   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1689       lowerRecordFieldList(Ty);
1690 
1691   if (ContainsNestedClass)
1692     CO |= ClassOptions::ContainsNestedClass;
1693 
1694   std::string FullName = getFullyQualifiedName(Ty);
1695 
1696   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1697 
1698   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1699       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1700       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1701 
1702   TypeTable.writeKnownType(UdtSourceLineRecord(
1703       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1704                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1705       Ty->getLine()));
1706 
1707   addToUDTs(Ty, ClassTI);
1708 
1709   return ClassTI;
1710 }
1711 
1712 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1713   ClassOptions CO =
1714       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1715   std::string FullName = getFullyQualifiedName(Ty);
1716   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1717       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1718   if (!Ty->isForwardDecl())
1719     DeferredCompleteTypes.push_back(Ty);
1720   return FwdDeclTI;
1721 }
1722 
1723 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1724   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1725   TypeIndex FieldTI;
1726   unsigned FieldCount;
1727   bool ContainsNestedClass;
1728   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1729       lowerRecordFieldList(Ty);
1730 
1731   if (ContainsNestedClass)
1732     CO |= ClassOptions::ContainsNestedClass;
1733 
1734   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1735   std::string FullName = getFullyQualifiedName(Ty);
1736 
1737   TypeIndex UnionTI = TypeTable.writeKnownType(
1738       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1739                   Ty->getIdentifier()));
1740 
1741   TypeTable.writeKnownType(UdtSourceLineRecord(
1742       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1743                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1744       Ty->getLine()));
1745 
1746   addToUDTs(Ty, UnionTI);
1747 
1748   return UnionTI;
1749 }
1750 
1751 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1752 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1753   // Manually count members. MSVC appears to count everything that generates a
1754   // field list record. Each individual overload in a method overload group
1755   // contributes to this count, even though the overload group is a single field
1756   // list record.
1757   unsigned MemberCount = 0;
1758   ClassInfo Info = collectClassInfo(Ty);
1759   FieldListRecordBuilder Fields;
1760 
1761   // Create base classes.
1762   for (const DIDerivedType *I : Info.Inheritance) {
1763     if (I->getFlags() & DINode::FlagVirtual) {
1764       // Virtual base.
1765       // FIXME: Emit VBPtrOffset when the frontend provides it.
1766       unsigned VBPtrOffset = 0;
1767       // FIXME: Despite the accessor name, the offset is really in bytes.
1768       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1769       Fields.writeMemberType(VirtualBaseClassRecord(
1770           translateAccessFlags(Ty->getTag(), I->getFlags()),
1771           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1772           VBTableIndex));
1773     } else {
1774       assert(I->getOffsetInBits() % 8 == 0 &&
1775              "bases must be on byte boundaries");
1776       Fields.writeMemberType(BaseClassRecord(
1777           translateAccessFlags(Ty->getTag(), I->getFlags()),
1778           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1779     }
1780   }
1781 
1782   // Create members.
1783   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1784     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1785     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1786     StringRef MemberName = Member->getName();
1787     MemberAccess Access =
1788         translateAccessFlags(Ty->getTag(), Member->getFlags());
1789 
1790     if (Member->isStaticMember()) {
1791       Fields.writeMemberType(
1792           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1793       MemberCount++;
1794       continue;
1795     }
1796 
1797     // Virtual function pointer member.
1798     if ((Member->getFlags() & DINode::FlagArtificial) &&
1799         Member->getName().startswith("_vptr$")) {
1800       Fields.writeMemberType(VFPtrRecord(getTypeIndex(Member->getBaseType())));
1801       MemberCount++;
1802       continue;
1803     }
1804 
1805     // Data member.
1806     uint64_t MemberOffsetInBits =
1807         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1808     if (Member->isBitField()) {
1809       uint64_t StartBitOffset = MemberOffsetInBits;
1810       if (const auto *CI =
1811               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1812         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1813       }
1814       StartBitOffset -= MemberOffsetInBits;
1815       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1816           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1817     }
1818     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1819     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1820                                             MemberOffsetInBytes, MemberName));
1821     MemberCount++;
1822   }
1823 
1824   // Create methods
1825   for (auto &MethodItr : Info.Methods) {
1826     StringRef Name = MethodItr.first->getString();
1827 
1828     std::vector<OneMethodRecord> Methods;
1829     for (const DISubprogram *SP : MethodItr.second) {
1830       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1831       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1832 
1833       unsigned VFTableOffset = -1;
1834       if (Introduced)
1835         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1836 
1837       Methods.push_back(
1838           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1839                           translateMethodOptionFlags(SP),
1840                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1841                           VFTableOffset, Name));
1842       MemberCount++;
1843     }
1844     assert(Methods.size() > 0 && "Empty methods map entry");
1845     if (Methods.size() == 1)
1846       Fields.writeMemberType(Methods[0]);
1847     else {
1848       TypeIndex MethodList =
1849           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1850       Fields.writeMemberType(
1851           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1852     }
1853   }
1854 
1855   // Create nested classes.
1856   for (const DICompositeType *Nested : Info.NestedClasses) {
1857     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1858     Fields.writeMemberType(R);
1859     MemberCount++;
1860   }
1861 
1862   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1863   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1864                          !Info.NestedClasses.empty());
1865 }
1866 
1867 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1868   if (!VBPType.getIndex()) {
1869     // Make a 'const int *' type.
1870     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1871     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1872 
1873     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1874                                                   : PointerKind::Near32;
1875     PointerMode PM = PointerMode::Pointer;
1876     PointerOptions PO = PointerOptions::None;
1877     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1878 
1879     VBPType = TypeTable.writeKnownType(PR);
1880   }
1881 
1882   return VBPType;
1883 }
1884 
1885 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1886   const DIType *Ty = TypeRef.resolve();
1887   const DIType *ClassTy = ClassTyRef.resolve();
1888 
1889   // The null DIType is the void type. Don't try to hash it.
1890   if (!Ty)
1891     return TypeIndex::Void();
1892 
1893   // Check if we've already translated this type. Don't try to do a
1894   // get-or-create style insertion that caches the hash lookup across the
1895   // lowerType call. It will update the TypeIndices map.
1896   auto I = TypeIndices.find({Ty, ClassTy});
1897   if (I != TypeIndices.end())
1898     return I->second;
1899 
1900   TypeLoweringScope S(*this);
1901   TypeIndex TI = lowerType(Ty, ClassTy);
1902   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1903 }
1904 
1905 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1906   const DIType *Ty = TypeRef.resolve();
1907 
1908   // The null DIType is the void type. Don't try to hash it.
1909   if (!Ty)
1910     return TypeIndex::Void();
1911 
1912   // If this is a non-record type, the complete type index is the same as the
1913   // normal type index. Just call getTypeIndex.
1914   switch (Ty->getTag()) {
1915   case dwarf::DW_TAG_class_type:
1916   case dwarf::DW_TAG_structure_type:
1917   case dwarf::DW_TAG_union_type:
1918     break;
1919   default:
1920     return getTypeIndex(Ty);
1921   }
1922 
1923   // Check if we've already translated the complete record type.  Lowering a
1924   // complete type should never trigger lowering another complete type, so we
1925   // can reuse the hash table lookup result.
1926   const auto *CTy = cast<DICompositeType>(Ty);
1927   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1928   if (!InsertResult.second)
1929     return InsertResult.first->second;
1930 
1931   TypeLoweringScope S(*this);
1932 
1933   // Make sure the forward declaration is emitted first. It's unclear if this
1934   // is necessary, but MSVC does it, and we should follow suit until we can show
1935   // otherwise.
1936   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1937 
1938   // Just use the forward decl if we don't have complete type info. This might
1939   // happen if the frontend is using modules and expects the complete definition
1940   // to be emitted elsewhere.
1941   if (CTy->isForwardDecl())
1942     return FwdDeclTI;
1943 
1944   TypeIndex TI;
1945   switch (CTy->getTag()) {
1946   case dwarf::DW_TAG_class_type:
1947   case dwarf::DW_TAG_structure_type:
1948     TI = lowerCompleteTypeClass(CTy);
1949     break;
1950   case dwarf::DW_TAG_union_type:
1951     TI = lowerCompleteTypeUnion(CTy);
1952     break;
1953   default:
1954     llvm_unreachable("not a record");
1955   }
1956 
1957   InsertResult.first->second = TI;
1958   return TI;
1959 }
1960 
1961 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1962 /// and do this until fixpoint, as each complete record type typically
1963 /// references
1964 /// many other record types.
1965 void CodeViewDebug::emitDeferredCompleteTypes() {
1966   SmallVector<const DICompositeType *, 4> TypesToEmit;
1967   while (!DeferredCompleteTypes.empty()) {
1968     std::swap(DeferredCompleteTypes, TypesToEmit);
1969     for (const DICompositeType *RecordTy : TypesToEmit)
1970       getCompleteTypeIndex(RecordTy);
1971     TypesToEmit.clear();
1972   }
1973 }
1974 
1975 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1976   // Get the sorted list of parameters and emit them first.
1977   SmallVector<const LocalVariable *, 6> Params;
1978   for (const LocalVariable &L : Locals)
1979     if (L.DIVar->isParameter())
1980       Params.push_back(&L);
1981   std::sort(Params.begin(), Params.end(),
1982             [](const LocalVariable *L, const LocalVariable *R) {
1983               return L->DIVar->getArg() < R->DIVar->getArg();
1984             });
1985   for (const LocalVariable *L : Params)
1986     emitLocalVariable(*L);
1987 
1988   // Next emit all non-parameters in the order that we found them.
1989   for (const LocalVariable &L : Locals)
1990     if (!L.DIVar->isParameter())
1991       emitLocalVariable(L);
1992 }
1993 
1994 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1995   // LocalSym record, see SymbolRecord.h for more info.
1996   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1997            *LocalEnd = MMI->getContext().createTempSymbol();
1998   OS.AddComment("Record length");
1999   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2000   OS.EmitLabel(LocalBegin);
2001 
2002   OS.AddComment("Record kind: S_LOCAL");
2003   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2004 
2005   LocalSymFlags Flags = LocalSymFlags::None;
2006   if (Var.DIVar->isParameter())
2007     Flags |= LocalSymFlags::IsParameter;
2008   if (Var.DefRanges.empty())
2009     Flags |= LocalSymFlags::IsOptimizedOut;
2010 
2011   OS.AddComment("TypeIndex");
2012   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2013   OS.EmitIntValue(TI.getIndex(), 4);
2014   OS.AddComment("Flags");
2015   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2016   // Truncate the name so we won't overflow the record length field.
2017   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2018   OS.EmitLabel(LocalEnd);
2019 
2020   // Calculate the on disk prefix of the appropriate def range record. The
2021   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2022   // should be big enough to hold all forms without memory allocation.
2023   SmallString<20> BytePrefix;
2024   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2025     BytePrefix.clear();
2026     // FIXME: Handle bitpieces.
2027     if (DefRange.StructOffset != 0)
2028       continue;
2029 
2030     if (DefRange.InMemory) {
2031       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
2032                                  0, 0, ArrayRef<LocalVariableAddrGap>());
2033       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2034       BytePrefix +=
2035           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2036       BytePrefix +=
2037           StringRef(reinterpret_cast<const char *>(&Sym.Header),
2038                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2039     } else {
2040       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2041       // Unclear what matters here.
2042       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
2043                               ArrayRef<LocalVariableAddrGap>());
2044       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2045       BytePrefix +=
2046           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2047       BytePrefix +=
2048           StringRef(reinterpret_cast<const char *>(&Sym.Header),
2049                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2050     }
2051     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2052   }
2053 }
2054 
2055 void CodeViewDebug::endFunction(const MachineFunction *MF) {
2056   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
2057     return;
2058 
2059   const Function *GV = MF->getFunction();
2060   assert(FnDebugInfo.count(GV));
2061   assert(CurFn == &FnDebugInfo[GV]);
2062 
2063   collectVariableInfo(GV->getSubprogram());
2064 
2065   DebugHandlerBase::endFunction(MF);
2066 
2067   // Don't emit anything if we don't have any line tables.
2068   if (!CurFn->HaveLineInfo) {
2069     FnDebugInfo.erase(GV);
2070     CurFn = nullptr;
2071     return;
2072   }
2073 
2074   CurFn->End = Asm->getFunctionEnd();
2075 
2076   CurFn = nullptr;
2077 }
2078 
2079 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2080   DebugHandlerBase::beginInstruction(MI);
2081 
2082   // Ignore DBG_VALUE locations and function prologue.
2083   if (!Asm || !CurFn || MI->isDebugValue() ||
2084       MI->getFlag(MachineInstr::FrameSetup))
2085     return;
2086   DebugLoc DL = MI->getDebugLoc();
2087   if (DL == PrevInstLoc || !DL)
2088     return;
2089   maybeRecordLocation(DL, Asm->MF);
2090 }
2091 
2092 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
2093   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2094            *EndLabel = MMI->getContext().createTempSymbol();
2095   OS.EmitIntValue(unsigned(Kind), 4);
2096   OS.AddComment("Subsection size");
2097   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2098   OS.EmitLabel(BeginLabel);
2099   if (Kind == ModuleSubstreamKind::Symbols)
2100     emitCompilerInformation();
2101   return EndLabel;
2102 }
2103 
2104 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2105   OS.EmitLabel(EndLabel);
2106   // Every subsection must be aligned to a 4-byte boundary.
2107   OS.EmitValueToAlignment(4);
2108 }
2109 
2110 void CodeViewDebug::emitDebugInfoForUDTs(
2111     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2112   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2113     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2114              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2115     OS.AddComment("Record length");
2116     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2117     OS.EmitLabel(UDTRecordBegin);
2118 
2119     OS.AddComment("Record kind: S_UDT");
2120     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2121 
2122     OS.AddComment("Type");
2123     OS.EmitIntValue(UDT.second.getIndex(), 4);
2124 
2125     emitNullTerminatedSymbolName(OS, UDT.first);
2126     OS.EmitLabel(UDTRecordEnd);
2127   }
2128 }
2129 
2130 void CodeViewDebug::emitDebugInfoForGlobals() {
2131   DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap;
2132   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2133     SmallVector<MDNode *, 1> MDs;
2134     GV.getMetadata(LLVMContext::MD_dbg, MDs);
2135     for (MDNode *MD : MDs)
2136       GlobalMap[cast<DIGlobalVariable>(MD)] = &GV;
2137   }
2138 
2139   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2140   for (const MDNode *Node : CUs->operands()) {
2141     const auto *CU = cast<DICompileUnit>(Node);
2142 
2143     // First, emit all globals that are not in a comdat in a single symbol
2144     // substream. MSVC doesn't like it if the substream is empty, so only open
2145     // it if we have at least one global to emit.
2146     switchToDebugSectionForSymbol(nullptr);
2147     MCSymbol *EndLabel = nullptr;
2148     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2149       if (const auto *GV = GlobalMap.lookup(G))
2150         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2151           if (!EndLabel) {
2152             OS.AddComment("Symbol subsection for globals");
2153             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2154           }
2155           emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV));
2156         }
2157     }
2158     if (EndLabel)
2159       endCVSubsection(EndLabel);
2160 
2161     // Second, emit each global that is in a comdat into its own .debug$S
2162     // section along with its own symbol substream.
2163     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2164       if (const auto *GV = GlobalMap.lookup(G)) {
2165         if (GV->hasComdat()) {
2166           MCSymbol *GVSym = Asm->getSymbol(GV);
2167           OS.AddComment("Symbol subsection for " +
2168                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2169           switchToDebugSectionForSymbol(GVSym);
2170           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2171           emitDebugInfoForGlobal(G, GV, GVSym);
2172           endCVSubsection(EndLabel);
2173         }
2174       }
2175     }
2176   }
2177 }
2178 
2179 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2180   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2181   for (const MDNode *Node : CUs->operands()) {
2182     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2183       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2184         getTypeIndex(RT);
2185         // FIXME: Add to global/local DTU list.
2186       }
2187     }
2188   }
2189 }
2190 
2191 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2192                                            const GlobalVariable *GV,
2193                                            MCSymbol *GVSym) {
2194   // DataSym record, see SymbolRecord.h for more info.
2195   // FIXME: Thread local data, etc
2196   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2197            *DataEnd = MMI->getContext().createTempSymbol();
2198   OS.AddComment("Record length");
2199   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2200   OS.EmitLabel(DataBegin);
2201   if (DIGV->isLocalToUnit()) {
2202     if (GV->isThreadLocal()) {
2203       OS.AddComment("Record kind: S_LTHREAD32");
2204       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2205     } else {
2206       OS.AddComment("Record kind: S_LDATA32");
2207       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2208     }
2209   } else {
2210     if (GV->isThreadLocal()) {
2211       OS.AddComment("Record kind: S_GTHREAD32");
2212       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2213     } else {
2214       OS.AddComment("Record kind: S_GDATA32");
2215       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2216     }
2217   }
2218   OS.AddComment("Type");
2219   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2220   OS.AddComment("DataOffset");
2221   OS.EmitCOFFSecRel32(GVSym);
2222   OS.AddComment("Segment");
2223   OS.EmitCOFFSectionIndex(GVSym);
2224   OS.AddComment("Name");
2225   emitNullTerminatedSymbolName(OS, DIGV->getName());
2226   OS.EmitLabel(DataEnd);
2227 }
2228