1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 std::string Checksum = fromHex(F->getChecksum()); 163 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 164 memcpy(CKMem, Checksum.data(), Checksum.size()); 165 ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem), 166 Checksum.size()); 167 DIFile::ChecksumKind ChecksumKind = F->getChecksumKind(); 168 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 169 static_cast<unsigned>(ChecksumKind)); 170 (void)Success; 171 assert(Success && ".cv_file directive failed"); 172 } 173 return Insertion.first->second; 174 } 175 176 CodeViewDebug::InlineSite & 177 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 178 const DISubprogram *Inlinee) { 179 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 180 InlineSite *Site = &SiteInsertion.first->second; 181 if (SiteInsertion.second) { 182 unsigned ParentFuncId = CurFn->FuncId; 183 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 184 ParentFuncId = 185 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 186 .SiteFuncId; 187 188 Site->SiteFuncId = NextFuncId++; 189 OS.EmitCVInlineSiteIdDirective( 190 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 191 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 192 Site->Inlinee = Inlinee; 193 InlinedSubprograms.insert(Inlinee); 194 getFuncIdForSubprogram(Inlinee); 195 } 196 return *Site; 197 } 198 199 static StringRef getPrettyScopeName(const DIScope *Scope) { 200 StringRef ScopeName = Scope->getName(); 201 if (!ScopeName.empty()) 202 return ScopeName; 203 204 switch (Scope->getTag()) { 205 case dwarf::DW_TAG_enumeration_type: 206 case dwarf::DW_TAG_class_type: 207 case dwarf::DW_TAG_structure_type: 208 case dwarf::DW_TAG_union_type: 209 return "<unnamed-tag>"; 210 case dwarf::DW_TAG_namespace: 211 return "`anonymous namespace'"; 212 } 213 214 return StringRef(); 215 } 216 217 static const DISubprogram *getQualifiedNameComponents( 218 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 219 const DISubprogram *ClosestSubprogram = nullptr; 220 while (Scope != nullptr) { 221 if (ClosestSubprogram == nullptr) 222 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 223 StringRef ScopeName = getPrettyScopeName(Scope); 224 if (!ScopeName.empty()) 225 QualifiedNameComponents.push_back(ScopeName); 226 Scope = Scope->getScope().resolve(); 227 } 228 return ClosestSubprogram; 229 } 230 231 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 232 StringRef TypeName) { 233 std::string FullyQualifiedName; 234 for (StringRef QualifiedNameComponent : 235 llvm::reverse(QualifiedNameComponents)) { 236 FullyQualifiedName.append(QualifiedNameComponent); 237 FullyQualifiedName.append("::"); 238 } 239 FullyQualifiedName.append(TypeName); 240 return FullyQualifiedName; 241 } 242 243 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 244 SmallVector<StringRef, 5> QualifiedNameComponents; 245 getQualifiedNameComponents(Scope, QualifiedNameComponents); 246 return getQualifiedName(QualifiedNameComponents, Name); 247 } 248 249 struct CodeViewDebug::TypeLoweringScope { 250 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 251 ~TypeLoweringScope() { 252 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 253 // inner TypeLoweringScopes don't attempt to emit deferred types. 254 if (CVD.TypeEmissionLevel == 1) 255 CVD.emitDeferredCompleteTypes(); 256 --CVD.TypeEmissionLevel; 257 } 258 CodeViewDebug &CVD; 259 }; 260 261 static std::string getFullyQualifiedName(const DIScope *Ty) { 262 const DIScope *Scope = Ty->getScope().resolve(); 263 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 264 } 265 266 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 267 // No scope means global scope and that uses the zero index. 268 if (!Scope || isa<DIFile>(Scope)) 269 return TypeIndex(); 270 271 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 272 273 // Check if we've already translated this scope. 274 auto I = TypeIndices.find({Scope, nullptr}); 275 if (I != TypeIndices.end()) 276 return I->second; 277 278 // Build the fully qualified name of the scope. 279 std::string ScopeName = getFullyQualifiedName(Scope); 280 StringIdRecord SID(TypeIndex(), ScopeName); 281 auto TI = TypeTable.writeKnownType(SID); 282 return recordTypeIndexForDINode(Scope, TI); 283 } 284 285 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 286 assert(SP); 287 288 // Check if we've already translated this subprogram. 289 auto I = TypeIndices.find({SP, nullptr}); 290 if (I != TypeIndices.end()) 291 return I->second; 292 293 // The display name includes function template arguments. Drop them to match 294 // MSVC. 295 StringRef DisplayName = SP->getName().split('<').first; 296 297 const DIScope *Scope = SP->getScope().resolve(); 298 TypeIndex TI; 299 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 300 // If the scope is a DICompositeType, then this must be a method. Member 301 // function types take some special handling, and require access to the 302 // subprogram. 303 TypeIndex ClassType = getTypeIndex(Class); 304 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 305 DisplayName); 306 TI = TypeTable.writeKnownType(MFuncId); 307 } else { 308 // Otherwise, this must be a free function. 309 TypeIndex ParentScope = getScopeIndex(Scope); 310 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 311 TI = TypeTable.writeKnownType(FuncId); 312 } 313 314 return recordTypeIndexForDINode(SP, TI); 315 } 316 317 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 318 const DICompositeType *Class) { 319 // Always use the method declaration as the key for the function type. The 320 // method declaration contains the this adjustment. 321 if (SP->getDeclaration()) 322 SP = SP->getDeclaration(); 323 assert(!SP->getDeclaration() && "should use declaration as key"); 324 325 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 326 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 327 auto I = TypeIndices.find({SP, Class}); 328 if (I != TypeIndices.end()) 329 return I->second; 330 331 // Make sure complete type info for the class is emitted *after* the member 332 // function type, as the complete class type is likely to reference this 333 // member function type. 334 TypeLoweringScope S(*this); 335 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 336 TypeIndex TI = lowerTypeMemberFunction( 337 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 338 return recordTypeIndexForDINode(SP, TI, Class); 339 } 340 341 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 342 TypeIndex TI, 343 const DIType *ClassTy) { 344 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 345 (void)InsertResult; 346 assert(InsertResult.second && "DINode was already assigned a type index"); 347 return TI; 348 } 349 350 unsigned CodeViewDebug::getPointerSizeInBytes() { 351 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 352 } 353 354 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 355 const DILocation *InlinedAt) { 356 if (InlinedAt) { 357 // This variable was inlined. Associate it with the InlineSite. 358 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 359 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 360 Site.InlinedLocals.emplace_back(Var); 361 } else { 362 // This variable goes in the main ProcSym. 363 CurFn->Locals.emplace_back(Var); 364 } 365 } 366 367 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 368 const DILocation *Loc) { 369 auto B = Locs.begin(), E = Locs.end(); 370 if (std::find(B, E, Loc) == E) 371 Locs.push_back(Loc); 372 } 373 374 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 375 const MachineFunction *MF) { 376 // Skip this instruction if it has the same location as the previous one. 377 if (!DL || DL == PrevInstLoc) 378 return; 379 380 const DIScope *Scope = DL.get()->getScope(); 381 if (!Scope) 382 return; 383 384 // Skip this line if it is longer than the maximum we can record. 385 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 386 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 387 LI.isNeverStepInto()) 388 return; 389 390 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 391 if (CI.getStartColumn() != DL.getCol()) 392 return; 393 394 if (!CurFn->HaveLineInfo) 395 CurFn->HaveLineInfo = true; 396 unsigned FileId = 0; 397 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 398 FileId = CurFn->LastFileId; 399 else 400 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 401 PrevInstLoc = DL; 402 403 unsigned FuncId = CurFn->FuncId; 404 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 405 const DILocation *Loc = DL.get(); 406 407 // If this location was actually inlined from somewhere else, give it the ID 408 // of the inline call site. 409 FuncId = 410 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 411 412 // Ensure we have links in the tree of inline call sites. 413 bool FirstLoc = true; 414 while ((SiteLoc = Loc->getInlinedAt())) { 415 InlineSite &Site = 416 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 417 if (!FirstLoc) 418 addLocIfNotPresent(Site.ChildSites, Loc); 419 FirstLoc = false; 420 Loc = SiteLoc; 421 } 422 addLocIfNotPresent(CurFn->ChildSites, Loc); 423 } 424 425 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 426 /*PrologueEnd=*/false, /*IsStmt=*/false, 427 DL->getFilename(), SMLoc()); 428 } 429 430 void CodeViewDebug::emitCodeViewMagicVersion() { 431 OS.EmitValueToAlignment(4); 432 OS.AddComment("Debug section magic"); 433 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 434 } 435 436 void CodeViewDebug::endModule() { 437 if (!Asm || !MMI->hasDebugInfo()) 438 return; 439 440 assert(Asm != nullptr); 441 442 // The COFF .debug$S section consists of several subsections, each starting 443 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 444 // of the payload followed by the payload itself. The subsections are 4-byte 445 // aligned. 446 447 // Use the generic .debug$S section, and make a subsection for all the inlined 448 // subprograms. 449 switchToDebugSectionForSymbol(nullptr); 450 451 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 452 emitCompilerInformation(); 453 endCVSubsection(CompilerInfo); 454 455 emitInlineeLinesSubsection(); 456 457 // Emit per-function debug information. 458 for (auto &P : FnDebugInfo) 459 if (!P.first->isDeclarationForLinker()) 460 emitDebugInfoForFunction(P.first, P.second); 461 462 // Emit global variable debug information. 463 setCurrentSubprogram(nullptr); 464 emitDebugInfoForGlobals(); 465 466 // Emit retained types. 467 emitDebugInfoForRetainedTypes(); 468 469 // Switch back to the generic .debug$S section after potentially processing 470 // comdat symbol sections. 471 switchToDebugSectionForSymbol(nullptr); 472 473 // Emit UDT records for any types used by global variables. 474 if (!GlobalUDTs.empty()) { 475 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 476 emitDebugInfoForUDTs(GlobalUDTs); 477 endCVSubsection(SymbolsEnd); 478 } 479 480 // This subsection holds a file index to offset in string table table. 481 OS.AddComment("File index to string table offset subsection"); 482 OS.EmitCVFileChecksumsDirective(); 483 484 // This subsection holds the string table. 485 OS.AddComment("String table"); 486 OS.EmitCVStringTableDirective(); 487 488 // Emit type information last, so that any types we translate while emitting 489 // function info are included. 490 emitTypeInformation(); 491 492 clear(); 493 } 494 495 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 496 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 497 // after a fixed length portion of the record. The fixed length portion should 498 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 499 // overall record size is less than the maximum allowed. 500 unsigned MaxFixedRecordLength = 0xF00; 501 SmallString<32> NullTerminatedString( 502 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 503 NullTerminatedString.push_back('\0'); 504 OS.EmitBytes(NullTerminatedString); 505 } 506 507 void CodeViewDebug::emitTypeInformation() { 508 // Do nothing if we have no debug info or if no non-trivial types were emitted 509 // to TypeTable during codegen. 510 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 511 if (!CU_Nodes) 512 return; 513 if (TypeTable.empty()) 514 return; 515 516 // Start the .debug$T section with 0x4. 517 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 518 emitCodeViewMagicVersion(); 519 520 SmallString<8> CommentPrefix; 521 if (OS.isVerboseAsm()) { 522 CommentPrefix += '\t'; 523 CommentPrefix += Asm->MAI->getCommentString(); 524 CommentPrefix += ' '; 525 } 526 527 TypeTableCollection Table(TypeTable.records()); 528 Optional<TypeIndex> B = Table.getFirst(); 529 while (B) { 530 // This will fail if the record data is invalid. 531 CVType Record = Table.getType(*B); 532 533 if (OS.isVerboseAsm()) { 534 // Emit a block comment describing the type record for readability. 535 SmallString<512> CommentBlock; 536 raw_svector_ostream CommentOS(CommentBlock); 537 ScopedPrinter SP(CommentOS); 538 SP.setPrefix(CommentPrefix); 539 TypeDumpVisitor TDV(Table, &SP, false); 540 541 Error E = codeview::visitTypeRecord(Record, *B, TDV); 542 if (E) { 543 logAllUnhandledErrors(std::move(E), errs(), "error: "); 544 llvm_unreachable("produced malformed type record"); 545 } 546 // emitRawComment will insert its own tab and comment string before 547 // the first line, so strip off our first one. It also prints its own 548 // newline. 549 OS.emitRawComment( 550 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 551 } 552 OS.EmitBinaryData(Record.str_data()); 553 B = Table.getNext(*B); 554 } 555 } 556 557 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 558 switch (DWLang) { 559 case dwarf::DW_LANG_C: 560 case dwarf::DW_LANG_C89: 561 case dwarf::DW_LANG_C99: 562 case dwarf::DW_LANG_C11: 563 case dwarf::DW_LANG_ObjC: 564 return SourceLanguage::C; 565 case dwarf::DW_LANG_C_plus_plus: 566 case dwarf::DW_LANG_C_plus_plus_03: 567 case dwarf::DW_LANG_C_plus_plus_11: 568 case dwarf::DW_LANG_C_plus_plus_14: 569 return SourceLanguage::Cpp; 570 case dwarf::DW_LANG_Fortran77: 571 case dwarf::DW_LANG_Fortran90: 572 case dwarf::DW_LANG_Fortran03: 573 case dwarf::DW_LANG_Fortran08: 574 return SourceLanguage::Fortran; 575 case dwarf::DW_LANG_Pascal83: 576 return SourceLanguage::Pascal; 577 case dwarf::DW_LANG_Cobol74: 578 case dwarf::DW_LANG_Cobol85: 579 return SourceLanguage::Cobol; 580 case dwarf::DW_LANG_Java: 581 return SourceLanguage::Java; 582 case dwarf::DW_LANG_D: 583 return SourceLanguage::D; 584 default: 585 // There's no CodeView representation for this language, and CV doesn't 586 // have an "unknown" option for the language field, so we'll use MASM, 587 // as it's very low level. 588 return SourceLanguage::Masm; 589 } 590 } 591 592 namespace { 593 struct Version { 594 int Part[4]; 595 }; 596 } // end anonymous namespace 597 598 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 599 // the version number. 600 static Version parseVersion(StringRef Name) { 601 Version V = {{0}}; 602 int N = 0; 603 for (const char C : Name) { 604 if (isdigit(C)) { 605 V.Part[N] *= 10; 606 V.Part[N] += C - '0'; 607 } else if (C == '.') { 608 ++N; 609 if (N >= 4) 610 return V; 611 } else if (N > 0) 612 return V; 613 } 614 return V; 615 } 616 617 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 618 switch (Type) { 619 case Triple::ArchType::x86: 620 return CPUType::Pentium3; 621 case Triple::ArchType::x86_64: 622 return CPUType::X64; 623 case Triple::ArchType::thumb: 624 return CPUType::Thumb; 625 case Triple::ArchType::aarch64: 626 return CPUType::ARM64; 627 default: 628 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 629 } 630 } 631 632 void CodeViewDebug::emitCompilerInformation() { 633 MCContext &Context = MMI->getContext(); 634 MCSymbol *CompilerBegin = Context.createTempSymbol(), 635 *CompilerEnd = Context.createTempSymbol(); 636 OS.AddComment("Record length"); 637 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 638 OS.EmitLabel(CompilerBegin); 639 OS.AddComment("Record kind: S_COMPILE3"); 640 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 641 uint32_t Flags = 0; 642 643 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 644 const MDNode *Node = *CUs->operands().begin(); 645 const auto *CU = cast<DICompileUnit>(Node); 646 647 // The low byte of the flags indicates the source language. 648 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 649 // TODO: Figure out which other flags need to be set. 650 651 OS.AddComment("Flags and language"); 652 OS.EmitIntValue(Flags, 4); 653 654 OS.AddComment("CPUType"); 655 CPUType CPU = 656 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 657 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 658 659 StringRef CompilerVersion = CU->getProducer(); 660 Version FrontVer = parseVersion(CompilerVersion); 661 OS.AddComment("Frontend version"); 662 for (int N = 0; N < 4; ++N) 663 OS.EmitIntValue(FrontVer.Part[N], 2); 664 665 // Some Microsoft tools, like Binscope, expect a backend version number of at 666 // least 8.something, so we'll coerce the LLVM version into a form that 667 // guarantees it'll be big enough without really lying about the version. 668 int Major = 1000 * LLVM_VERSION_MAJOR + 669 10 * LLVM_VERSION_MINOR + 670 LLVM_VERSION_PATCH; 671 // Clamp it for builds that use unusually large version numbers. 672 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 673 Version BackVer = {{ Major, 0, 0, 0 }}; 674 OS.AddComment("Backend version"); 675 for (int N = 0; N < 4; ++N) 676 OS.EmitIntValue(BackVer.Part[N], 2); 677 678 OS.AddComment("Null-terminated compiler version string"); 679 emitNullTerminatedSymbolName(OS, CompilerVersion); 680 681 OS.EmitLabel(CompilerEnd); 682 } 683 684 void CodeViewDebug::emitInlineeLinesSubsection() { 685 if (InlinedSubprograms.empty()) 686 return; 687 688 OS.AddComment("Inlinee lines subsection"); 689 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 690 691 // We emit the checksum info for files. This is used by debuggers to 692 // determine if a pdb matches the source before loading it. Visual Studio, 693 // for instance, will display a warning that the breakpoints are not valid if 694 // the pdb does not match the source. 695 OS.AddComment("Inlinee lines signature"); 696 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 697 698 for (const DISubprogram *SP : InlinedSubprograms) { 699 assert(TypeIndices.count({SP, nullptr})); 700 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 701 702 OS.AddBlankLine(); 703 unsigned FileId = maybeRecordFile(SP->getFile()); 704 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 705 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 706 OS.AddBlankLine(); 707 OS.AddComment("Type index of inlined function"); 708 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 709 OS.AddComment("Offset into filechecksum table"); 710 OS.EmitCVFileChecksumOffsetDirective(FileId); 711 OS.AddComment("Starting line number"); 712 OS.EmitIntValue(SP->getLine(), 4); 713 } 714 715 endCVSubsection(InlineEnd); 716 } 717 718 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 719 const DILocation *InlinedAt, 720 const InlineSite &Site) { 721 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 722 *InlineEnd = MMI->getContext().createTempSymbol(); 723 724 assert(TypeIndices.count({Site.Inlinee, nullptr})); 725 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 726 727 // SymbolRecord 728 OS.AddComment("Record length"); 729 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 730 OS.EmitLabel(InlineBegin); 731 OS.AddComment("Record kind: S_INLINESITE"); 732 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 733 734 OS.AddComment("PtrParent"); 735 OS.EmitIntValue(0, 4); 736 OS.AddComment("PtrEnd"); 737 OS.EmitIntValue(0, 4); 738 OS.AddComment("Inlinee type index"); 739 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 740 741 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 742 unsigned StartLineNum = Site.Inlinee->getLine(); 743 744 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 745 FI.Begin, FI.End); 746 747 OS.EmitLabel(InlineEnd); 748 749 emitLocalVariableList(Site.InlinedLocals); 750 751 // Recurse on child inlined call sites before closing the scope. 752 for (const DILocation *ChildSite : Site.ChildSites) { 753 auto I = FI.InlineSites.find(ChildSite); 754 assert(I != FI.InlineSites.end() && 755 "child site not in function inline site map"); 756 emitInlinedCallSite(FI, ChildSite, I->second); 757 } 758 759 // Close the scope. 760 OS.AddComment("Record length"); 761 OS.EmitIntValue(2, 2); // RecordLength 762 OS.AddComment("Record kind: S_INLINESITE_END"); 763 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 764 } 765 766 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 767 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 768 // comdat key. A section may be comdat because of -ffunction-sections or 769 // because it is comdat in the IR. 770 MCSectionCOFF *GVSec = 771 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 772 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 773 774 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 775 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 776 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 777 778 OS.SwitchSection(DebugSec); 779 780 // Emit the magic version number if this is the first time we've switched to 781 // this section. 782 if (ComdatDebugSections.insert(DebugSec).second) 783 emitCodeViewMagicVersion(); 784 } 785 786 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 787 FunctionInfo &FI) { 788 // For each function there is a separate subsection 789 // which holds the PC to file:line table. 790 const MCSymbol *Fn = Asm->getSymbol(GV); 791 assert(Fn); 792 793 // Switch to the to a comdat section, if appropriate. 794 switchToDebugSectionForSymbol(Fn); 795 796 std::string FuncName; 797 auto *SP = GV->getSubprogram(); 798 assert(SP); 799 setCurrentSubprogram(SP); 800 801 // If we have a display name, build the fully qualified name by walking the 802 // chain of scopes. 803 if (!SP->getName().empty()) 804 FuncName = 805 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 806 807 // If our DISubprogram name is empty, use the mangled name. 808 if (FuncName.empty()) 809 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 810 811 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 812 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 813 OS.EmitCVFPOData(Fn); 814 815 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 816 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 817 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 818 { 819 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 820 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 821 OS.AddComment("Record length"); 822 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 823 OS.EmitLabel(ProcRecordBegin); 824 825 if (GV->hasLocalLinkage()) { 826 OS.AddComment("Record kind: S_LPROC32_ID"); 827 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 828 } else { 829 OS.AddComment("Record kind: S_GPROC32_ID"); 830 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 831 } 832 833 // These fields are filled in by tools like CVPACK which run after the fact. 834 OS.AddComment("PtrParent"); 835 OS.EmitIntValue(0, 4); 836 OS.AddComment("PtrEnd"); 837 OS.EmitIntValue(0, 4); 838 OS.AddComment("PtrNext"); 839 OS.EmitIntValue(0, 4); 840 // This is the important bit that tells the debugger where the function 841 // code is located and what's its size: 842 OS.AddComment("Code size"); 843 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 844 OS.AddComment("Offset after prologue"); 845 OS.EmitIntValue(0, 4); 846 OS.AddComment("Offset before epilogue"); 847 OS.EmitIntValue(0, 4); 848 OS.AddComment("Function type index"); 849 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 850 OS.AddComment("Function section relative address"); 851 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 852 OS.AddComment("Function section index"); 853 OS.EmitCOFFSectionIndex(Fn); 854 OS.AddComment("Flags"); 855 OS.EmitIntValue(0, 1); 856 // Emit the function display name as a null-terminated string. 857 OS.AddComment("Function name"); 858 // Truncate the name so we won't overflow the record length field. 859 emitNullTerminatedSymbolName(OS, FuncName); 860 OS.EmitLabel(ProcRecordEnd); 861 862 emitLocalVariableList(FI.Locals); 863 864 // Emit inlined call site information. Only emit functions inlined directly 865 // into the parent function. We'll emit the other sites recursively as part 866 // of their parent inline site. 867 for (const DILocation *InlinedAt : FI.ChildSites) { 868 auto I = FI.InlineSites.find(InlinedAt); 869 assert(I != FI.InlineSites.end() && 870 "child site not in function inline site map"); 871 emitInlinedCallSite(FI, InlinedAt, I->second); 872 } 873 874 for (auto Annot : FI.Annotations) { 875 MCSymbol *Label = Annot.first; 876 MDTuple *Strs = cast<MDTuple>(Annot.second); 877 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 878 *AnnotEnd = MMI->getContext().createTempSymbol(); 879 OS.AddComment("Record length"); 880 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 881 OS.EmitLabel(AnnotBegin); 882 OS.AddComment("Record kind: S_ANNOTATION"); 883 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 884 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 885 // FIXME: Make sure we don't overflow the max record size. 886 OS.EmitCOFFSectionIndex(Label); 887 OS.EmitIntValue(Strs->getNumOperands(), 2); 888 for (Metadata *MD : Strs->operands()) { 889 // MDStrings are null terminated, so we can do EmitBytes and get the 890 // nice .asciz directive. 891 StringRef Str = cast<MDString>(MD)->getString(); 892 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 893 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 894 } 895 OS.EmitLabel(AnnotEnd); 896 } 897 898 if (SP != nullptr) 899 emitDebugInfoForUDTs(LocalUDTs); 900 901 // We're done with this function. 902 OS.AddComment("Record length"); 903 OS.EmitIntValue(0x0002, 2); 904 OS.AddComment("Record kind: S_PROC_ID_END"); 905 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 906 } 907 endCVSubsection(SymbolsEnd); 908 909 // We have an assembler directive that takes care of the whole line table. 910 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 911 } 912 913 CodeViewDebug::LocalVarDefRange 914 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 915 LocalVarDefRange DR; 916 DR.InMemory = -1; 917 DR.DataOffset = Offset; 918 assert(DR.DataOffset == Offset && "truncation"); 919 DR.IsSubfield = 0; 920 DR.StructOffset = 0; 921 DR.CVRegister = CVRegister; 922 return DR; 923 } 924 925 CodeViewDebug::LocalVarDefRange 926 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 927 int Offset, bool IsSubfield, 928 uint16_t StructOffset) { 929 LocalVarDefRange DR; 930 DR.InMemory = InMemory; 931 DR.DataOffset = Offset; 932 DR.IsSubfield = IsSubfield; 933 DR.StructOffset = StructOffset; 934 DR.CVRegister = CVRegister; 935 return DR; 936 } 937 938 void CodeViewDebug::collectVariableInfoFromMFTable( 939 DenseSet<InlinedVariable> &Processed) { 940 const MachineFunction &MF = *Asm->MF; 941 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 942 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 943 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 944 945 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 946 if (!VI.Var) 947 continue; 948 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 949 "Expected inlined-at fields to agree"); 950 951 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 952 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 953 954 // If variable scope is not found then skip this variable. 955 if (!Scope) 956 continue; 957 958 // If the variable has an attached offset expression, extract it. 959 // FIXME: Try to handle DW_OP_deref as well. 960 int64_t ExprOffset = 0; 961 if (VI.Expr) 962 if (!VI.Expr->extractIfOffset(ExprOffset)) 963 continue; 964 965 // Get the frame register used and the offset. 966 unsigned FrameReg = 0; 967 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 968 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 969 970 // Calculate the label ranges. 971 LocalVarDefRange DefRange = 972 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 973 for (const InsnRange &Range : Scope->getRanges()) { 974 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 975 const MCSymbol *End = getLabelAfterInsn(Range.second); 976 End = End ? End : Asm->getFunctionEnd(); 977 DefRange.Ranges.emplace_back(Begin, End); 978 } 979 980 LocalVariable Var; 981 Var.DIVar = VI.Var; 982 Var.DefRanges.emplace_back(std::move(DefRange)); 983 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 984 } 985 } 986 987 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 988 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 989 } 990 991 static bool needsReferenceType(const DbgVariableLocation &Loc) { 992 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 993 } 994 995 void CodeViewDebug::calculateRanges( 996 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 997 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 998 999 // Calculate the definition ranges. 1000 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1001 const InsnRange &Range = *I; 1002 const MachineInstr *DVInst = Range.first; 1003 assert(DVInst->isDebugValue() && "Invalid History entry"); 1004 // FIXME: Find a way to represent constant variables, since they are 1005 // relatively common. 1006 Optional<DbgVariableLocation> Location = 1007 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1008 if (!Location) 1009 continue; 1010 1011 // CodeView can only express variables in register and variables in memory 1012 // at a constant offset from a register. However, for variables passed 1013 // indirectly by pointer, it is common for that pointer to be spilled to a 1014 // stack location. For the special case of one offseted load followed by a 1015 // zero offset load (a pointer spilled to the stack), we change the type of 1016 // the local variable from a value type to a reference type. This tricks the 1017 // debugger into doing the load for us. 1018 if (Var.UseReferenceType) { 1019 // We're using a reference type. Drop the last zero offset load. 1020 if (canUseReferenceType(*Location)) 1021 Location->LoadChain.pop_back(); 1022 else 1023 continue; 1024 } else if (needsReferenceType(*Location)) { 1025 // This location can't be expressed without switching to a reference type. 1026 // Start over using that. 1027 Var.UseReferenceType = true; 1028 Var.DefRanges.clear(); 1029 calculateRanges(Var, Ranges); 1030 return; 1031 } 1032 1033 // We can only handle a register or an offseted load of a register. 1034 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1035 continue; 1036 { 1037 LocalVarDefRange DR; 1038 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1039 DR.InMemory = !Location->LoadChain.empty(); 1040 DR.DataOffset = 1041 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1042 if (Location->FragmentInfo) { 1043 DR.IsSubfield = true; 1044 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1045 } else { 1046 DR.IsSubfield = false; 1047 DR.StructOffset = 0; 1048 } 1049 1050 if (Var.DefRanges.empty() || 1051 Var.DefRanges.back().isDifferentLocation(DR)) { 1052 Var.DefRanges.emplace_back(std::move(DR)); 1053 } 1054 } 1055 1056 // Compute the label range. 1057 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1058 const MCSymbol *End = getLabelAfterInsn(Range.second); 1059 if (!End) { 1060 // This range is valid until the next overlapping bitpiece. In the 1061 // common case, ranges will not be bitpieces, so they will overlap. 1062 auto J = std::next(I); 1063 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1064 while (J != E && 1065 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1066 ++J; 1067 if (J != E) 1068 End = getLabelBeforeInsn(J->first); 1069 else 1070 End = Asm->getFunctionEnd(); 1071 } 1072 1073 // If the last range end is our begin, just extend the last range. 1074 // Otherwise make a new range. 1075 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1076 Var.DefRanges.back().Ranges; 1077 if (!R.empty() && R.back().second == Begin) 1078 R.back().second = End; 1079 else 1080 R.emplace_back(Begin, End); 1081 1082 // FIXME: Do more range combining. 1083 } 1084 } 1085 1086 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1087 DenseSet<InlinedVariable> Processed; 1088 // Grab the variable info that was squirreled away in the MMI side-table. 1089 collectVariableInfoFromMFTable(Processed); 1090 1091 for (const auto &I : DbgValues) { 1092 InlinedVariable IV = I.first; 1093 if (Processed.count(IV)) 1094 continue; 1095 const DILocalVariable *DIVar = IV.first; 1096 const DILocation *InlinedAt = IV.second; 1097 1098 // Instruction ranges, specifying where IV is accessible. 1099 const auto &Ranges = I.second; 1100 1101 LexicalScope *Scope = nullptr; 1102 if (InlinedAt) 1103 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1104 else 1105 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1106 // If variable scope is not found then skip this variable. 1107 if (!Scope) 1108 continue; 1109 1110 LocalVariable Var; 1111 Var.DIVar = DIVar; 1112 1113 calculateRanges(Var, Ranges); 1114 recordLocalVariable(std::move(Var), InlinedAt); 1115 } 1116 } 1117 1118 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1119 const Function *GV = MF->getFunction(); 1120 assert(FnDebugInfo.count(GV) == false); 1121 CurFn = &FnDebugInfo[GV]; 1122 CurFn->FuncId = NextFuncId++; 1123 CurFn->Begin = Asm->getFunctionBegin(); 1124 1125 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1126 1127 // Find the end of the function prolog. First known non-DBG_VALUE and 1128 // non-frame setup location marks the beginning of the function body. 1129 // FIXME: is there a simpler a way to do this? Can we just search 1130 // for the first instruction of the function, not the last of the prolog? 1131 DebugLoc PrologEndLoc; 1132 bool EmptyPrologue = true; 1133 for (const auto &MBB : *MF) { 1134 for (const auto &MI : MBB) { 1135 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1136 MI.getDebugLoc()) { 1137 PrologEndLoc = MI.getDebugLoc(); 1138 break; 1139 } else if (!MI.isMetaInstruction()) { 1140 EmptyPrologue = false; 1141 } 1142 } 1143 } 1144 1145 // Record beginning of function if we have a non-empty prologue. 1146 if (PrologEndLoc && !EmptyPrologue) { 1147 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1148 maybeRecordLocation(FnStartDL, MF); 1149 } 1150 } 1151 1152 static bool shouldEmitUdt(const DIType *T) { 1153 if (!T) 1154 return false; 1155 1156 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1157 if (T->getTag() == dwarf::DW_TAG_typedef) { 1158 if (DIScope *Scope = T->getScope().resolve()) { 1159 switch (Scope->getTag()) { 1160 case dwarf::DW_TAG_structure_type: 1161 case dwarf::DW_TAG_class_type: 1162 case dwarf::DW_TAG_union_type: 1163 return false; 1164 } 1165 } 1166 } 1167 1168 while (true) { 1169 if (!T || T->isForwardDecl()) 1170 return false; 1171 1172 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1173 if (!DT) 1174 return true; 1175 T = DT->getBaseType().resolve(); 1176 } 1177 return true; 1178 } 1179 1180 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1181 // Don't record empty UDTs. 1182 if (Ty->getName().empty()) 1183 return; 1184 if (!shouldEmitUdt(Ty)) 1185 return; 1186 1187 SmallVector<StringRef, 5> QualifiedNameComponents; 1188 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1189 Ty->getScope().resolve(), QualifiedNameComponents); 1190 1191 std::string FullyQualifiedName = 1192 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1193 1194 if (ClosestSubprogram == nullptr) { 1195 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1196 } else if (ClosestSubprogram == CurrentSubprogram) { 1197 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1198 } 1199 1200 // TODO: What if the ClosestSubprogram is neither null or the current 1201 // subprogram? Currently, the UDT just gets dropped on the floor. 1202 // 1203 // The current behavior is not desirable. To get maximal fidelity, we would 1204 // need to perform all type translation before beginning emission of .debug$S 1205 // and then make LocalUDTs a member of FunctionInfo 1206 } 1207 1208 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1209 // Generic dispatch for lowering an unknown type. 1210 switch (Ty->getTag()) { 1211 case dwarf::DW_TAG_array_type: 1212 return lowerTypeArray(cast<DICompositeType>(Ty)); 1213 case dwarf::DW_TAG_typedef: 1214 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1215 case dwarf::DW_TAG_base_type: 1216 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1217 case dwarf::DW_TAG_pointer_type: 1218 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1219 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1220 LLVM_FALLTHROUGH; 1221 case dwarf::DW_TAG_reference_type: 1222 case dwarf::DW_TAG_rvalue_reference_type: 1223 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1224 case dwarf::DW_TAG_ptr_to_member_type: 1225 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1226 case dwarf::DW_TAG_const_type: 1227 case dwarf::DW_TAG_volatile_type: 1228 // TODO: add support for DW_TAG_atomic_type here 1229 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1230 case dwarf::DW_TAG_subroutine_type: 1231 if (ClassTy) { 1232 // The member function type of a member function pointer has no 1233 // ThisAdjustment. 1234 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1235 /*ThisAdjustment=*/0, 1236 /*IsStaticMethod=*/false); 1237 } 1238 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1239 case dwarf::DW_TAG_enumeration_type: 1240 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1241 case dwarf::DW_TAG_class_type: 1242 case dwarf::DW_TAG_structure_type: 1243 return lowerTypeClass(cast<DICompositeType>(Ty)); 1244 case dwarf::DW_TAG_union_type: 1245 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1246 default: 1247 // Use the null type index. 1248 return TypeIndex(); 1249 } 1250 } 1251 1252 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1253 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1254 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1255 StringRef TypeName = Ty->getName(); 1256 1257 addToUDTs(Ty); 1258 1259 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1260 TypeName == "HRESULT") 1261 return TypeIndex(SimpleTypeKind::HResult); 1262 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1263 TypeName == "wchar_t") 1264 return TypeIndex(SimpleTypeKind::WideCharacter); 1265 1266 return UnderlyingTypeIndex; 1267 } 1268 1269 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1270 DITypeRef ElementTypeRef = Ty->getBaseType(); 1271 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1272 // IndexType is size_t, which depends on the bitness of the target. 1273 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1274 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1275 : TypeIndex(SimpleTypeKind::UInt32Long); 1276 1277 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1278 1279 // Add subranges to array type. 1280 DINodeArray Elements = Ty->getElements(); 1281 for (int i = Elements.size() - 1; i >= 0; --i) { 1282 const DINode *Element = Elements[i]; 1283 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1284 1285 const DISubrange *Subrange = cast<DISubrange>(Element); 1286 assert(Subrange->getLowerBound() == 0 && 1287 "codeview doesn't support subranges with lower bounds"); 1288 int64_t Count = Subrange->getCount(); 1289 1290 // Forward declarations of arrays without a size and VLAs use a count of -1. 1291 // Emit a count of zero in these cases to match what MSVC does for arrays 1292 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1293 // should do for them even if we could distinguish them. 1294 if (Count == -1) 1295 Count = 0; 1296 1297 // Update the element size and element type index for subsequent subranges. 1298 ElementSize *= Count; 1299 1300 // If this is the outermost array, use the size from the array. It will be 1301 // more accurate if we had a VLA or an incomplete element type size. 1302 uint64_t ArraySize = 1303 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1304 1305 StringRef Name = (i == 0) ? Ty->getName() : ""; 1306 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1307 ElementTypeIndex = TypeTable.writeKnownType(AR); 1308 } 1309 1310 return ElementTypeIndex; 1311 } 1312 1313 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1314 TypeIndex Index; 1315 dwarf::TypeKind Kind; 1316 uint32_t ByteSize; 1317 1318 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1319 ByteSize = Ty->getSizeInBits() / 8; 1320 1321 SimpleTypeKind STK = SimpleTypeKind::None; 1322 switch (Kind) { 1323 case dwarf::DW_ATE_address: 1324 // FIXME: Translate 1325 break; 1326 case dwarf::DW_ATE_boolean: 1327 switch (ByteSize) { 1328 case 1: STK = SimpleTypeKind::Boolean8; break; 1329 case 2: STK = SimpleTypeKind::Boolean16; break; 1330 case 4: STK = SimpleTypeKind::Boolean32; break; 1331 case 8: STK = SimpleTypeKind::Boolean64; break; 1332 case 16: STK = SimpleTypeKind::Boolean128; break; 1333 } 1334 break; 1335 case dwarf::DW_ATE_complex_float: 1336 switch (ByteSize) { 1337 case 2: STK = SimpleTypeKind::Complex16; break; 1338 case 4: STK = SimpleTypeKind::Complex32; break; 1339 case 8: STK = SimpleTypeKind::Complex64; break; 1340 case 10: STK = SimpleTypeKind::Complex80; break; 1341 case 16: STK = SimpleTypeKind::Complex128; break; 1342 } 1343 break; 1344 case dwarf::DW_ATE_float: 1345 switch (ByteSize) { 1346 case 2: STK = SimpleTypeKind::Float16; break; 1347 case 4: STK = SimpleTypeKind::Float32; break; 1348 case 6: STK = SimpleTypeKind::Float48; break; 1349 case 8: STK = SimpleTypeKind::Float64; break; 1350 case 10: STK = SimpleTypeKind::Float80; break; 1351 case 16: STK = SimpleTypeKind::Float128; break; 1352 } 1353 break; 1354 case dwarf::DW_ATE_signed: 1355 switch (ByteSize) { 1356 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1357 case 2: STK = SimpleTypeKind::Int16Short; break; 1358 case 4: STK = SimpleTypeKind::Int32; break; 1359 case 8: STK = SimpleTypeKind::Int64Quad; break; 1360 case 16: STK = SimpleTypeKind::Int128Oct; break; 1361 } 1362 break; 1363 case dwarf::DW_ATE_unsigned: 1364 switch (ByteSize) { 1365 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1366 case 2: STK = SimpleTypeKind::UInt16Short; break; 1367 case 4: STK = SimpleTypeKind::UInt32; break; 1368 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1369 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1370 } 1371 break; 1372 case dwarf::DW_ATE_UTF: 1373 switch (ByteSize) { 1374 case 2: STK = SimpleTypeKind::Character16; break; 1375 case 4: STK = SimpleTypeKind::Character32; break; 1376 } 1377 break; 1378 case dwarf::DW_ATE_signed_char: 1379 if (ByteSize == 1) 1380 STK = SimpleTypeKind::SignedCharacter; 1381 break; 1382 case dwarf::DW_ATE_unsigned_char: 1383 if (ByteSize == 1) 1384 STK = SimpleTypeKind::UnsignedCharacter; 1385 break; 1386 default: 1387 break; 1388 } 1389 1390 // Apply some fixups based on the source-level type name. 1391 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1392 STK = SimpleTypeKind::Int32Long; 1393 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1394 STK = SimpleTypeKind::UInt32Long; 1395 if (STK == SimpleTypeKind::UInt16Short && 1396 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1397 STK = SimpleTypeKind::WideCharacter; 1398 if ((STK == SimpleTypeKind::SignedCharacter || 1399 STK == SimpleTypeKind::UnsignedCharacter) && 1400 Ty->getName() == "char") 1401 STK = SimpleTypeKind::NarrowCharacter; 1402 1403 return TypeIndex(STK); 1404 } 1405 1406 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1407 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1408 1409 // Pointers to simple types can use SimpleTypeMode, rather than having a 1410 // dedicated pointer type record. 1411 if (PointeeTI.isSimple() && 1412 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1413 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1414 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1415 ? SimpleTypeMode::NearPointer64 1416 : SimpleTypeMode::NearPointer32; 1417 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1418 } 1419 1420 PointerKind PK = 1421 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1422 PointerMode PM = PointerMode::Pointer; 1423 switch (Ty->getTag()) { 1424 default: llvm_unreachable("not a pointer tag type"); 1425 case dwarf::DW_TAG_pointer_type: 1426 PM = PointerMode::Pointer; 1427 break; 1428 case dwarf::DW_TAG_reference_type: 1429 PM = PointerMode::LValueReference; 1430 break; 1431 case dwarf::DW_TAG_rvalue_reference_type: 1432 PM = PointerMode::RValueReference; 1433 break; 1434 } 1435 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1436 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1437 // do. 1438 PointerOptions PO = PointerOptions::None; 1439 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1440 return TypeTable.writeKnownType(PR); 1441 } 1442 1443 static PointerToMemberRepresentation 1444 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1445 // SizeInBytes being zero generally implies that the member pointer type was 1446 // incomplete, which can happen if it is part of a function prototype. In this 1447 // case, use the unknown model instead of the general model. 1448 if (IsPMF) { 1449 switch (Flags & DINode::FlagPtrToMemberRep) { 1450 case 0: 1451 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1452 : PointerToMemberRepresentation::GeneralFunction; 1453 case DINode::FlagSingleInheritance: 1454 return PointerToMemberRepresentation::SingleInheritanceFunction; 1455 case DINode::FlagMultipleInheritance: 1456 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1457 case DINode::FlagVirtualInheritance: 1458 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1459 } 1460 } else { 1461 switch (Flags & DINode::FlagPtrToMemberRep) { 1462 case 0: 1463 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1464 : PointerToMemberRepresentation::GeneralData; 1465 case DINode::FlagSingleInheritance: 1466 return PointerToMemberRepresentation::SingleInheritanceData; 1467 case DINode::FlagMultipleInheritance: 1468 return PointerToMemberRepresentation::MultipleInheritanceData; 1469 case DINode::FlagVirtualInheritance: 1470 return PointerToMemberRepresentation::VirtualInheritanceData; 1471 } 1472 } 1473 llvm_unreachable("invalid ptr to member representation"); 1474 } 1475 1476 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1477 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1478 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1479 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1480 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1481 : PointerKind::Near32; 1482 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1483 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1484 : PointerMode::PointerToDataMember; 1485 PointerOptions PO = PointerOptions::None; // FIXME 1486 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1487 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1488 MemberPointerInfo MPI( 1489 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1490 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1491 return TypeTable.writeKnownType(PR); 1492 } 1493 1494 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1495 /// have a translation, use the NearC convention. 1496 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1497 switch (DwarfCC) { 1498 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1499 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1500 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1501 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1502 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1503 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1504 } 1505 return CallingConvention::NearC; 1506 } 1507 1508 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1509 ModifierOptions Mods = ModifierOptions::None; 1510 bool IsModifier = true; 1511 const DIType *BaseTy = Ty; 1512 while (IsModifier && BaseTy) { 1513 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1514 switch (BaseTy->getTag()) { 1515 case dwarf::DW_TAG_const_type: 1516 Mods |= ModifierOptions::Const; 1517 break; 1518 case dwarf::DW_TAG_volatile_type: 1519 Mods |= ModifierOptions::Volatile; 1520 break; 1521 default: 1522 IsModifier = false; 1523 break; 1524 } 1525 if (IsModifier) 1526 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1527 } 1528 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1529 ModifierRecord MR(ModifiedTI, Mods); 1530 return TypeTable.writeKnownType(MR); 1531 } 1532 1533 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1534 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1535 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1536 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1537 1538 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1539 ArrayRef<TypeIndex> ArgTypeIndices = None; 1540 if (!ReturnAndArgTypeIndices.empty()) { 1541 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1542 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1543 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1544 } 1545 1546 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1547 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1548 1549 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1550 1551 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1552 ArgTypeIndices.size(), ArgListIndex); 1553 return TypeTable.writeKnownType(Procedure); 1554 } 1555 1556 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1557 const DIType *ClassTy, 1558 int ThisAdjustment, 1559 bool IsStaticMethod) { 1560 // Lower the containing class type. 1561 TypeIndex ClassType = getTypeIndex(ClassTy); 1562 1563 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1564 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1565 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1566 1567 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1568 ArrayRef<TypeIndex> ArgTypeIndices = None; 1569 if (!ReturnAndArgTypeIndices.empty()) { 1570 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1571 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1572 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1573 } 1574 TypeIndex ThisTypeIndex; 1575 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1576 ThisTypeIndex = ArgTypeIndices.front(); 1577 ArgTypeIndices = ArgTypeIndices.drop_front(); 1578 } 1579 1580 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1581 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1582 1583 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1584 1585 // TODO: Need to use the correct values for FunctionOptions. 1586 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1587 FunctionOptions::None, ArgTypeIndices.size(), 1588 ArgListIndex, ThisAdjustment); 1589 TypeIndex TI = TypeTable.writeKnownType(MFR); 1590 1591 return TI; 1592 } 1593 1594 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1595 unsigned VSlotCount = 1596 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1597 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1598 1599 VFTableShapeRecord VFTSR(Slots); 1600 return TypeTable.writeKnownType(VFTSR); 1601 } 1602 1603 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1604 switch (Flags & DINode::FlagAccessibility) { 1605 case DINode::FlagPrivate: return MemberAccess::Private; 1606 case DINode::FlagPublic: return MemberAccess::Public; 1607 case DINode::FlagProtected: return MemberAccess::Protected; 1608 case 0: 1609 // If there was no explicit access control, provide the default for the tag. 1610 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1611 : MemberAccess::Public; 1612 } 1613 llvm_unreachable("access flags are exclusive"); 1614 } 1615 1616 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1617 if (SP->isArtificial()) 1618 return MethodOptions::CompilerGenerated; 1619 1620 // FIXME: Handle other MethodOptions. 1621 1622 return MethodOptions::None; 1623 } 1624 1625 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1626 bool Introduced) { 1627 if (SP->getFlags() & DINode::FlagStaticMember) 1628 return MethodKind::Static; 1629 1630 switch (SP->getVirtuality()) { 1631 case dwarf::DW_VIRTUALITY_none: 1632 break; 1633 case dwarf::DW_VIRTUALITY_virtual: 1634 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1635 case dwarf::DW_VIRTUALITY_pure_virtual: 1636 return Introduced ? MethodKind::PureIntroducingVirtual 1637 : MethodKind::PureVirtual; 1638 default: 1639 llvm_unreachable("unhandled virtuality case"); 1640 } 1641 1642 return MethodKind::Vanilla; 1643 } 1644 1645 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1646 switch (Ty->getTag()) { 1647 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1648 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1649 } 1650 llvm_unreachable("unexpected tag"); 1651 } 1652 1653 /// Return ClassOptions that should be present on both the forward declaration 1654 /// and the defintion of a tag type. 1655 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1656 ClassOptions CO = ClassOptions::None; 1657 1658 // MSVC always sets this flag, even for local types. Clang doesn't always 1659 // appear to give every type a linkage name, which may be problematic for us. 1660 // FIXME: Investigate the consequences of not following them here. 1661 if (!Ty->getIdentifier().empty()) 1662 CO |= ClassOptions::HasUniqueName; 1663 1664 // Put the Nested flag on a type if it appears immediately inside a tag type. 1665 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1666 // here. That flag is only set on definitions, and not forward declarations. 1667 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1668 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1669 CO |= ClassOptions::Nested; 1670 1671 // Put the Scoped flag on function-local types. 1672 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1673 Scope = Scope->getScope().resolve()) { 1674 if (isa<DISubprogram>(Scope)) { 1675 CO |= ClassOptions::Scoped; 1676 break; 1677 } 1678 } 1679 1680 return CO; 1681 } 1682 1683 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1684 ClassOptions CO = getCommonClassOptions(Ty); 1685 TypeIndex FTI; 1686 unsigned EnumeratorCount = 0; 1687 1688 if (Ty->isForwardDecl()) { 1689 CO |= ClassOptions::ForwardReference; 1690 } else { 1691 FieldListRecordBuilder FLRB(TypeTable); 1692 1693 FLRB.begin(); 1694 for (const DINode *Element : Ty->getElements()) { 1695 // We assume that the frontend provides all members in source declaration 1696 // order, which is what MSVC does. 1697 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1698 EnumeratorRecord ER(MemberAccess::Public, 1699 APSInt::getUnsigned(Enumerator->getValue()), 1700 Enumerator->getName()); 1701 FLRB.writeMemberType(ER); 1702 EnumeratorCount++; 1703 } 1704 } 1705 FTI = FLRB.end(true); 1706 } 1707 1708 std::string FullName = getFullyQualifiedName(Ty); 1709 1710 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1711 getTypeIndex(Ty->getBaseType())); 1712 return TypeTable.writeKnownType(ER); 1713 } 1714 1715 //===----------------------------------------------------------------------===// 1716 // ClassInfo 1717 //===----------------------------------------------------------------------===// 1718 1719 struct llvm::ClassInfo { 1720 struct MemberInfo { 1721 const DIDerivedType *MemberTypeNode; 1722 uint64_t BaseOffset; 1723 }; 1724 // [MemberInfo] 1725 using MemberList = std::vector<MemberInfo>; 1726 1727 using MethodsList = TinyPtrVector<const DISubprogram *>; 1728 // MethodName -> MethodsList 1729 using MethodsMap = MapVector<MDString *, MethodsList>; 1730 1731 /// Base classes. 1732 std::vector<const DIDerivedType *> Inheritance; 1733 1734 /// Direct members. 1735 MemberList Members; 1736 // Direct overloaded methods gathered by name. 1737 MethodsMap Methods; 1738 1739 TypeIndex VShapeTI; 1740 1741 std::vector<const DIType *> NestedTypes; 1742 }; 1743 1744 void CodeViewDebug::clear() { 1745 assert(CurFn == nullptr); 1746 FileIdMap.clear(); 1747 FnDebugInfo.clear(); 1748 FileToFilepathMap.clear(); 1749 LocalUDTs.clear(); 1750 GlobalUDTs.clear(); 1751 TypeIndices.clear(); 1752 CompleteTypeIndices.clear(); 1753 } 1754 1755 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1756 const DIDerivedType *DDTy) { 1757 if (!DDTy->getName().empty()) { 1758 Info.Members.push_back({DDTy, 0}); 1759 return; 1760 } 1761 // An unnamed member must represent a nested struct or union. Add all the 1762 // indirect fields to the current record. 1763 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1764 uint64_t Offset = DDTy->getOffsetInBits(); 1765 const DIType *Ty = DDTy->getBaseType().resolve(); 1766 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1767 ClassInfo NestedInfo = collectClassInfo(DCTy); 1768 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1769 Info.Members.push_back( 1770 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1771 } 1772 1773 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1774 ClassInfo Info; 1775 // Add elements to structure type. 1776 DINodeArray Elements = Ty->getElements(); 1777 for (auto *Element : Elements) { 1778 // We assume that the frontend provides all members in source declaration 1779 // order, which is what MSVC does. 1780 if (!Element) 1781 continue; 1782 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1783 Info.Methods[SP->getRawName()].push_back(SP); 1784 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1785 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1786 collectMemberInfo(Info, DDTy); 1787 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1788 Info.Inheritance.push_back(DDTy); 1789 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1790 DDTy->getName() == "__vtbl_ptr_type") { 1791 Info.VShapeTI = getTypeIndex(DDTy); 1792 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1793 Info.NestedTypes.push_back(DDTy); 1794 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1795 // Ignore friend members. It appears that MSVC emitted info about 1796 // friends in the past, but modern versions do not. 1797 } 1798 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1799 Info.NestedTypes.push_back(Composite); 1800 } 1801 // Skip other unrecognized kinds of elements. 1802 } 1803 return Info; 1804 } 1805 1806 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1807 // First, construct the forward decl. Don't look into Ty to compute the 1808 // forward decl options, since it might not be available in all TUs. 1809 TypeRecordKind Kind = getRecordKind(Ty); 1810 ClassOptions CO = 1811 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1812 std::string FullName = getFullyQualifiedName(Ty); 1813 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1814 FullName, Ty->getIdentifier()); 1815 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1816 if (!Ty->isForwardDecl()) 1817 DeferredCompleteTypes.push_back(Ty); 1818 return FwdDeclTI; 1819 } 1820 1821 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1822 // Construct the field list and complete type record. 1823 TypeRecordKind Kind = getRecordKind(Ty); 1824 ClassOptions CO = getCommonClassOptions(Ty); 1825 TypeIndex FieldTI; 1826 TypeIndex VShapeTI; 1827 unsigned FieldCount; 1828 bool ContainsNestedClass; 1829 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1830 lowerRecordFieldList(Ty); 1831 1832 if (ContainsNestedClass) 1833 CO |= ClassOptions::ContainsNestedClass; 1834 1835 std::string FullName = getFullyQualifiedName(Ty); 1836 1837 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1838 1839 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1840 SizeInBytes, FullName, Ty->getIdentifier()); 1841 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1842 1843 if (const auto *File = Ty->getFile()) { 1844 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1845 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1846 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1847 TypeTable.writeKnownType(USLR); 1848 } 1849 1850 addToUDTs(Ty); 1851 1852 return ClassTI; 1853 } 1854 1855 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1856 ClassOptions CO = 1857 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1858 std::string FullName = getFullyQualifiedName(Ty); 1859 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1860 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1861 if (!Ty->isForwardDecl()) 1862 DeferredCompleteTypes.push_back(Ty); 1863 return FwdDeclTI; 1864 } 1865 1866 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1867 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1868 TypeIndex FieldTI; 1869 unsigned FieldCount; 1870 bool ContainsNestedClass; 1871 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1872 lowerRecordFieldList(Ty); 1873 1874 if (ContainsNestedClass) 1875 CO |= ClassOptions::ContainsNestedClass; 1876 1877 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1878 std::string FullName = getFullyQualifiedName(Ty); 1879 1880 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1881 Ty->getIdentifier()); 1882 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1883 1884 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1885 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1886 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1887 TypeTable.writeKnownType(USLR); 1888 1889 addToUDTs(Ty); 1890 1891 return UnionTI; 1892 } 1893 1894 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1895 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1896 // Manually count members. MSVC appears to count everything that generates a 1897 // field list record. Each individual overload in a method overload group 1898 // contributes to this count, even though the overload group is a single field 1899 // list record. 1900 unsigned MemberCount = 0; 1901 ClassInfo Info = collectClassInfo(Ty); 1902 FieldListRecordBuilder FLBR(TypeTable); 1903 FLBR.begin(); 1904 1905 // Create base classes. 1906 for (const DIDerivedType *I : Info.Inheritance) { 1907 if (I->getFlags() & DINode::FlagVirtual) { 1908 // Virtual base. 1909 // FIXME: Emit VBPtrOffset when the frontend provides it. 1910 unsigned VBPtrOffset = 0; 1911 // FIXME: Despite the accessor name, the offset is really in bytes. 1912 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1913 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1914 ? TypeRecordKind::IndirectVirtualBaseClass 1915 : TypeRecordKind::VirtualBaseClass; 1916 VirtualBaseClassRecord VBCR( 1917 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1918 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1919 VBTableIndex); 1920 1921 FLBR.writeMemberType(VBCR); 1922 } else { 1923 assert(I->getOffsetInBits() % 8 == 0 && 1924 "bases must be on byte boundaries"); 1925 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1926 getTypeIndex(I->getBaseType()), 1927 I->getOffsetInBits() / 8); 1928 FLBR.writeMemberType(BCR); 1929 } 1930 } 1931 1932 // Create members. 1933 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1934 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1935 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1936 StringRef MemberName = Member->getName(); 1937 MemberAccess Access = 1938 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1939 1940 if (Member->isStaticMember()) { 1941 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1942 FLBR.writeMemberType(SDMR); 1943 MemberCount++; 1944 continue; 1945 } 1946 1947 // Virtual function pointer member. 1948 if ((Member->getFlags() & DINode::FlagArtificial) && 1949 Member->getName().startswith("_vptr$")) { 1950 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1951 FLBR.writeMemberType(VFPR); 1952 MemberCount++; 1953 continue; 1954 } 1955 1956 // Data member. 1957 uint64_t MemberOffsetInBits = 1958 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1959 if (Member->isBitField()) { 1960 uint64_t StartBitOffset = MemberOffsetInBits; 1961 if (const auto *CI = 1962 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1963 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1964 } 1965 StartBitOffset -= MemberOffsetInBits; 1966 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1967 StartBitOffset); 1968 MemberBaseType = TypeTable.writeKnownType(BFR); 1969 } 1970 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1971 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1972 MemberName); 1973 FLBR.writeMemberType(DMR); 1974 MemberCount++; 1975 } 1976 1977 // Create methods 1978 for (auto &MethodItr : Info.Methods) { 1979 StringRef Name = MethodItr.first->getString(); 1980 1981 std::vector<OneMethodRecord> Methods; 1982 for (const DISubprogram *SP : MethodItr.second) { 1983 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1984 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1985 1986 unsigned VFTableOffset = -1; 1987 if (Introduced) 1988 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1989 1990 Methods.push_back(OneMethodRecord( 1991 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1992 translateMethodKindFlags(SP, Introduced), 1993 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1994 MemberCount++; 1995 } 1996 assert(!Methods.empty() && "Empty methods map entry"); 1997 if (Methods.size() == 1) 1998 FLBR.writeMemberType(Methods[0]); 1999 else { 2000 MethodOverloadListRecord MOLR(Methods); 2001 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 2002 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2003 FLBR.writeMemberType(OMR); 2004 } 2005 } 2006 2007 // Create nested classes. 2008 for (const DIType *Nested : Info.NestedTypes) { 2009 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2010 FLBR.writeMemberType(R); 2011 MemberCount++; 2012 } 2013 2014 TypeIndex FieldTI = FLBR.end(true); 2015 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2016 !Info.NestedTypes.empty()); 2017 } 2018 2019 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2020 if (!VBPType.getIndex()) { 2021 // Make a 'const int *' type. 2022 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2023 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 2024 2025 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2026 : PointerKind::Near32; 2027 PointerMode PM = PointerMode::Pointer; 2028 PointerOptions PO = PointerOptions::None; 2029 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2030 2031 VBPType = TypeTable.writeKnownType(PR); 2032 } 2033 2034 return VBPType; 2035 } 2036 2037 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2038 const DIType *Ty = TypeRef.resolve(); 2039 const DIType *ClassTy = ClassTyRef.resolve(); 2040 2041 // The null DIType is the void type. Don't try to hash it. 2042 if (!Ty) 2043 return TypeIndex::Void(); 2044 2045 // Check if we've already translated this type. Don't try to do a 2046 // get-or-create style insertion that caches the hash lookup across the 2047 // lowerType call. It will update the TypeIndices map. 2048 auto I = TypeIndices.find({Ty, ClassTy}); 2049 if (I != TypeIndices.end()) 2050 return I->second; 2051 2052 TypeLoweringScope S(*this); 2053 TypeIndex TI = lowerType(Ty, ClassTy); 2054 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2055 } 2056 2057 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2058 DIType *Ty = TypeRef.resolve(); 2059 PointerRecord PR(getTypeIndex(Ty), 2060 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2061 : PointerKind::Near32, 2062 PointerMode::LValueReference, PointerOptions::None, 2063 Ty->getSizeInBits() / 8); 2064 return TypeTable.writeKnownType(PR); 2065 } 2066 2067 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2068 const DIType *Ty = TypeRef.resolve(); 2069 2070 // The null DIType is the void type. Don't try to hash it. 2071 if (!Ty) 2072 return TypeIndex::Void(); 2073 2074 // If this is a non-record type, the complete type index is the same as the 2075 // normal type index. Just call getTypeIndex. 2076 switch (Ty->getTag()) { 2077 case dwarf::DW_TAG_class_type: 2078 case dwarf::DW_TAG_structure_type: 2079 case dwarf::DW_TAG_union_type: 2080 break; 2081 default: 2082 return getTypeIndex(Ty); 2083 } 2084 2085 // Check if we've already translated the complete record type. Lowering a 2086 // complete type should never trigger lowering another complete type, so we 2087 // can reuse the hash table lookup result. 2088 const auto *CTy = cast<DICompositeType>(Ty); 2089 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2090 if (!InsertResult.second) 2091 return InsertResult.first->second; 2092 2093 TypeLoweringScope S(*this); 2094 2095 // Make sure the forward declaration is emitted first. It's unclear if this 2096 // is necessary, but MSVC does it, and we should follow suit until we can show 2097 // otherwise. 2098 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2099 2100 // Just use the forward decl if we don't have complete type info. This might 2101 // happen if the frontend is using modules and expects the complete definition 2102 // to be emitted elsewhere. 2103 if (CTy->isForwardDecl()) 2104 return FwdDeclTI; 2105 2106 TypeIndex TI; 2107 switch (CTy->getTag()) { 2108 case dwarf::DW_TAG_class_type: 2109 case dwarf::DW_TAG_structure_type: 2110 TI = lowerCompleteTypeClass(CTy); 2111 break; 2112 case dwarf::DW_TAG_union_type: 2113 TI = lowerCompleteTypeUnion(CTy); 2114 break; 2115 default: 2116 llvm_unreachable("not a record"); 2117 } 2118 2119 InsertResult.first->second = TI; 2120 return TI; 2121 } 2122 2123 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2124 /// and do this until fixpoint, as each complete record type typically 2125 /// references 2126 /// many other record types. 2127 void CodeViewDebug::emitDeferredCompleteTypes() { 2128 SmallVector<const DICompositeType *, 4> TypesToEmit; 2129 while (!DeferredCompleteTypes.empty()) { 2130 std::swap(DeferredCompleteTypes, TypesToEmit); 2131 for (const DICompositeType *RecordTy : TypesToEmit) 2132 getCompleteTypeIndex(RecordTy); 2133 TypesToEmit.clear(); 2134 } 2135 } 2136 2137 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2138 // Get the sorted list of parameters and emit them first. 2139 SmallVector<const LocalVariable *, 6> Params; 2140 for (const LocalVariable &L : Locals) 2141 if (L.DIVar->isParameter()) 2142 Params.push_back(&L); 2143 std::sort(Params.begin(), Params.end(), 2144 [](const LocalVariable *L, const LocalVariable *R) { 2145 return L->DIVar->getArg() < R->DIVar->getArg(); 2146 }); 2147 for (const LocalVariable *L : Params) 2148 emitLocalVariable(*L); 2149 2150 // Next emit all non-parameters in the order that we found them. 2151 for (const LocalVariable &L : Locals) 2152 if (!L.DIVar->isParameter()) 2153 emitLocalVariable(L); 2154 } 2155 2156 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2157 // LocalSym record, see SymbolRecord.h for more info. 2158 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2159 *LocalEnd = MMI->getContext().createTempSymbol(); 2160 OS.AddComment("Record length"); 2161 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2162 OS.EmitLabel(LocalBegin); 2163 2164 OS.AddComment("Record kind: S_LOCAL"); 2165 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2166 2167 LocalSymFlags Flags = LocalSymFlags::None; 2168 if (Var.DIVar->isParameter()) 2169 Flags |= LocalSymFlags::IsParameter; 2170 if (Var.DefRanges.empty()) 2171 Flags |= LocalSymFlags::IsOptimizedOut; 2172 2173 OS.AddComment("TypeIndex"); 2174 TypeIndex TI = Var.UseReferenceType 2175 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2176 : getCompleteTypeIndex(Var.DIVar->getType()); 2177 OS.EmitIntValue(TI.getIndex(), 4); 2178 OS.AddComment("Flags"); 2179 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2180 // Truncate the name so we won't overflow the record length field. 2181 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2182 OS.EmitLabel(LocalEnd); 2183 2184 // Calculate the on disk prefix of the appropriate def range record. The 2185 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2186 // should be big enough to hold all forms without memory allocation. 2187 SmallString<20> BytePrefix; 2188 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2189 BytePrefix.clear(); 2190 if (DefRange.InMemory) { 2191 uint16_t RegRelFlags = 0; 2192 if (DefRange.IsSubfield) { 2193 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2194 (DefRange.StructOffset 2195 << DefRangeRegisterRelSym::OffsetInParentShift); 2196 } 2197 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2198 Sym.Hdr.Register = DefRange.CVRegister; 2199 Sym.Hdr.Flags = RegRelFlags; 2200 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2201 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2202 BytePrefix += 2203 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2204 BytePrefix += 2205 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2206 } else { 2207 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2208 if (DefRange.IsSubfield) { 2209 // Unclear what matters here. 2210 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2211 Sym.Hdr.Register = DefRange.CVRegister; 2212 Sym.Hdr.MayHaveNoName = 0; 2213 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2214 2215 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2216 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2217 sizeof(SymKind)); 2218 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2219 sizeof(Sym.Hdr)); 2220 } else { 2221 // Unclear what matters here. 2222 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2223 Sym.Hdr.Register = DefRange.CVRegister; 2224 Sym.Hdr.MayHaveNoName = 0; 2225 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2226 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2227 sizeof(SymKind)); 2228 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2229 sizeof(Sym.Hdr)); 2230 } 2231 } 2232 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2233 } 2234 } 2235 2236 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2237 const Function *GV = MF->getFunction(); 2238 assert(FnDebugInfo.count(GV)); 2239 assert(CurFn == &FnDebugInfo[GV]); 2240 2241 collectVariableInfo(GV->getSubprogram()); 2242 2243 // Don't emit anything if we don't have any line tables. 2244 if (!CurFn->HaveLineInfo) { 2245 FnDebugInfo.erase(GV); 2246 CurFn = nullptr; 2247 return; 2248 } 2249 2250 CurFn->Annotations = MF->getCodeViewAnnotations(); 2251 2252 CurFn->End = Asm->getFunctionEnd(); 2253 2254 CurFn = nullptr; 2255 } 2256 2257 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2258 DebugHandlerBase::beginInstruction(MI); 2259 2260 // Ignore DBG_VALUE locations and function prologue. 2261 if (!Asm || !CurFn || MI->isDebugValue() || 2262 MI->getFlag(MachineInstr::FrameSetup)) 2263 return; 2264 2265 // If the first instruction of a new MBB has no location, find the first 2266 // instruction with a location and use that. 2267 DebugLoc DL = MI->getDebugLoc(); 2268 if (!DL && MI->getParent() != PrevInstBB) { 2269 for (const auto &NextMI : *MI->getParent()) { 2270 if (NextMI.isDebugValue()) 2271 continue; 2272 DL = NextMI.getDebugLoc(); 2273 if (DL) 2274 break; 2275 } 2276 } 2277 PrevInstBB = MI->getParent(); 2278 2279 // If we still don't have a debug location, don't record a location. 2280 if (!DL) 2281 return; 2282 2283 maybeRecordLocation(DL, Asm->MF); 2284 } 2285 2286 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2287 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2288 *EndLabel = MMI->getContext().createTempSymbol(); 2289 OS.EmitIntValue(unsigned(Kind), 4); 2290 OS.AddComment("Subsection size"); 2291 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2292 OS.EmitLabel(BeginLabel); 2293 return EndLabel; 2294 } 2295 2296 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2297 OS.EmitLabel(EndLabel); 2298 // Every subsection must be aligned to a 4-byte boundary. 2299 OS.EmitValueToAlignment(4); 2300 } 2301 2302 void CodeViewDebug::emitDebugInfoForUDTs( 2303 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2304 for (const auto &UDT : UDTs) { 2305 const DIType *T = UDT.second; 2306 assert(shouldEmitUdt(T)); 2307 2308 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2309 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2310 OS.AddComment("Record length"); 2311 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2312 OS.EmitLabel(UDTRecordBegin); 2313 2314 OS.AddComment("Record kind: S_UDT"); 2315 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2316 2317 OS.AddComment("Type"); 2318 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2319 2320 emitNullTerminatedSymbolName(OS, UDT.first); 2321 OS.EmitLabel(UDTRecordEnd); 2322 } 2323 } 2324 2325 void CodeViewDebug::emitDebugInfoForGlobals() { 2326 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2327 GlobalMap; 2328 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2329 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2330 GV.getDebugInfo(GVEs); 2331 for (const auto *GVE : GVEs) 2332 GlobalMap[GVE] = &GV; 2333 } 2334 2335 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2336 for (const MDNode *Node : CUs->operands()) { 2337 const auto *CU = cast<DICompileUnit>(Node); 2338 2339 // First, emit all globals that are not in a comdat in a single symbol 2340 // substream. MSVC doesn't like it if the substream is empty, so only open 2341 // it if we have at least one global to emit. 2342 switchToDebugSectionForSymbol(nullptr); 2343 MCSymbol *EndLabel = nullptr; 2344 for (const auto *GVE : CU->getGlobalVariables()) { 2345 if (const auto *GV = GlobalMap.lookup(GVE)) 2346 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2347 if (!EndLabel) { 2348 OS.AddComment("Symbol subsection for globals"); 2349 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2350 } 2351 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2352 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2353 } 2354 } 2355 if (EndLabel) 2356 endCVSubsection(EndLabel); 2357 2358 // Second, emit each global that is in a comdat into its own .debug$S 2359 // section along with its own symbol substream. 2360 for (const auto *GVE : CU->getGlobalVariables()) { 2361 if (const auto *GV = GlobalMap.lookup(GVE)) { 2362 if (GV->hasComdat()) { 2363 MCSymbol *GVSym = Asm->getSymbol(GV); 2364 OS.AddComment("Symbol subsection for " + 2365 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2366 switchToDebugSectionForSymbol(GVSym); 2367 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2368 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2369 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2370 endCVSubsection(EndLabel); 2371 } 2372 } 2373 } 2374 } 2375 } 2376 2377 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2378 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2379 for (const MDNode *Node : CUs->operands()) { 2380 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2381 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2382 getTypeIndex(RT); 2383 // FIXME: Add to global/local DTU list. 2384 } 2385 } 2386 } 2387 } 2388 2389 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2390 const GlobalVariable *GV, 2391 MCSymbol *GVSym) { 2392 // DataSym record, see SymbolRecord.h for more info. 2393 // FIXME: Thread local data, etc 2394 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2395 *DataEnd = MMI->getContext().createTempSymbol(); 2396 OS.AddComment("Record length"); 2397 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2398 OS.EmitLabel(DataBegin); 2399 if (DIGV->isLocalToUnit()) { 2400 if (GV->isThreadLocal()) { 2401 OS.AddComment("Record kind: S_LTHREAD32"); 2402 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2403 } else { 2404 OS.AddComment("Record kind: S_LDATA32"); 2405 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2406 } 2407 } else { 2408 if (GV->isThreadLocal()) { 2409 OS.AddComment("Record kind: S_GTHREAD32"); 2410 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2411 } else { 2412 OS.AddComment("Record kind: S_GDATA32"); 2413 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2414 } 2415 } 2416 OS.AddComment("Type"); 2417 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2418 OS.AddComment("DataOffset"); 2419 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2420 OS.AddComment("Segment"); 2421 OS.EmitCOFFSectionIndex(GVSym); 2422 OS.AddComment("Name"); 2423 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2424 OS.EmitLabel(DataEnd); 2425 } 2426