1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CodeView.h" 17 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h" 18 #include "llvm/DebugInfo/CodeView/Line.h" 19 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 20 #include "llvm/DebugInfo/CodeView/TypeDumper.h" 21 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 22 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 23 #include "llvm/MC/MCExpr.h" 24 #include "llvm/MC/MCSectionCOFF.h" 25 #include "llvm/MC/MCSymbol.h" 26 #include "llvm/Support/COFF.h" 27 #include "llvm/Support/ScopedPrinter.h" 28 #include "llvm/Target/TargetFrameLowering.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include "llvm/Target/TargetSubtargetInfo.h" 31 32 using namespace llvm; 33 using namespace llvm::codeview; 34 35 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 36 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) { 37 // If module doesn't have named metadata anchors or COFF debug section 38 // is not available, skip any debug info related stuff. 39 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 40 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 41 Asm = nullptr; 42 return; 43 } 44 45 // Tell MMI that we have debug info. 46 MMI->setDebugInfoAvailability(true); 47 } 48 49 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 50 std::string &Filepath = FileToFilepathMap[File]; 51 if (!Filepath.empty()) 52 return Filepath; 53 54 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 55 56 // Clang emits directory and relative filename info into the IR, but CodeView 57 // operates on full paths. We could change Clang to emit full paths too, but 58 // that would increase the IR size and probably not needed for other users. 59 // For now, just concatenate and canonicalize the path here. 60 if (Filename.find(':') == 1) 61 Filepath = Filename; 62 else 63 Filepath = (Dir + "\\" + Filename).str(); 64 65 // Canonicalize the path. We have to do it textually because we may no longer 66 // have access the file in the filesystem. 67 // First, replace all slashes with backslashes. 68 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 69 70 // Remove all "\.\" with "\". 71 size_t Cursor = 0; 72 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 73 Filepath.erase(Cursor, 2); 74 75 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 76 // path should be well-formatted, e.g. start with a drive letter, etc. 77 Cursor = 0; 78 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 79 // Something's wrong if the path starts with "\..\", abort. 80 if (Cursor == 0) 81 break; 82 83 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 84 if (PrevSlash == std::string::npos) 85 // Something's wrong, abort. 86 break; 87 88 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 89 // The next ".." might be following the one we've just erased. 90 Cursor = PrevSlash; 91 } 92 93 // Remove all duplicate backslashes. 94 Cursor = 0; 95 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 96 Filepath.erase(Cursor, 1); 97 98 return Filepath; 99 } 100 101 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 102 unsigned NextId = FileIdMap.size() + 1; 103 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 104 if (Insertion.second) { 105 // We have to compute the full filepath and emit a .cv_file directive. 106 StringRef FullPath = getFullFilepath(F); 107 NextId = OS.EmitCVFileDirective(NextId, FullPath); 108 assert(NextId == FileIdMap.size() && ".cv_file directive failed"); 109 } 110 return Insertion.first->second; 111 } 112 113 CodeViewDebug::InlineSite & 114 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 115 const DISubprogram *Inlinee) { 116 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 117 InlineSite *Site = &SiteInsertion.first->second; 118 if (SiteInsertion.second) { 119 Site->SiteFuncId = NextFuncId++; 120 Site->Inlinee = Inlinee; 121 InlinedSubprograms.insert(Inlinee); 122 getFuncIdForSubprogram(Inlinee); 123 } 124 return *Site; 125 } 126 127 static const DISubprogram *getQualifiedNameComponents( 128 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 129 const DISubprogram *ClosestSubprogram = nullptr; 130 while (Scope != nullptr) { 131 if (ClosestSubprogram == nullptr) 132 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 133 StringRef ScopeName = Scope->getName(); 134 if (!ScopeName.empty()) 135 QualifiedNameComponents.push_back(ScopeName); 136 Scope = Scope->getScope().resolve(); 137 } 138 return ClosestSubprogram; 139 } 140 141 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 142 StringRef TypeName) { 143 std::string FullyQualifiedName; 144 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 145 FullyQualifiedName.append(QualifiedNameComponent); 146 FullyQualifiedName.append("::"); 147 } 148 FullyQualifiedName.append(TypeName); 149 return FullyQualifiedName; 150 } 151 152 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 153 SmallVector<StringRef, 5> QualifiedNameComponents; 154 getQualifiedNameComponents(Scope, QualifiedNameComponents); 155 return getQualifiedName(QualifiedNameComponents, Name); 156 } 157 158 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 159 // No scope means global scope and that uses the zero index. 160 if (!Scope || isa<DIFile>(Scope)) 161 return TypeIndex(); 162 163 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 164 165 // Check if we've already translated this scope. 166 auto I = TypeIndices.find({Scope, nullptr}); 167 if (I != TypeIndices.end()) 168 return I->second; 169 170 // Build the fully qualified name of the scope. 171 std::string ScopeName = 172 getFullyQualifiedName(Scope->getScope().resolve(), Scope->getName()); 173 TypeIndex TI = 174 TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName)); 175 return recordTypeIndexForDINode(Scope, TI); 176 } 177 178 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 179 // It's possible to ask for the FuncId of a function which doesn't have a 180 // subprogram: inlining a function with debug info into a function with none. 181 if (!SP) 182 return TypeIndex::None(); 183 184 // Check if we've already translated this subprogram. 185 auto I = TypeIndices.find({SP, nullptr}); 186 if (I != TypeIndices.end()) 187 return I->second; 188 189 // The display name includes function template arguments. Drop them to match 190 // MSVC. 191 StringRef DisplayName = SP->getDisplayName().split('<').first; 192 193 const DIScope *Scope = SP->getScope().resolve(); 194 TypeIndex TI; 195 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 196 // If the scope is a DICompositeType, then this must be a method. Member 197 // function types take some special handling, and require access to the 198 // subprogram. 199 TypeIndex ClassType = getTypeIndex(Class); 200 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 201 DisplayName); 202 TI = TypeTable.writeMemberFuncId(MFuncId); 203 } else { 204 // Otherwise, this must be a free function. 205 TypeIndex ParentScope = getScopeIndex(Scope); 206 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 207 TI = TypeTable.writeFuncId(FuncId); 208 } 209 210 return recordTypeIndexForDINode(SP, TI); 211 } 212 213 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 214 const DICompositeType *Class) { 215 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 216 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 217 auto I = TypeIndices.find({SP, nullptr}); 218 if (I != TypeIndices.end()) 219 return I->second; 220 221 // FIXME: Get the ThisAdjustment off of SP when it is available. 222 TypeIndex TI = 223 lowerTypeMemberFunction(SP->getType(), Class, /*ThisAdjustment=*/0); 224 225 return recordTypeIndexForDINode(SP, TI, Class); 226 } 227 228 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, TypeIndex TI, 229 const DIType *ClassTy) { 230 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 231 (void)InsertResult; 232 assert(InsertResult.second && "DINode was already assigned a type index"); 233 return TI; 234 } 235 236 unsigned CodeViewDebug::getPointerSizeInBytes() { 237 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 238 } 239 240 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 241 const DILocation *InlinedAt) { 242 if (InlinedAt) { 243 // This variable was inlined. Associate it with the InlineSite. 244 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 245 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 246 Site.InlinedLocals.emplace_back(Var); 247 } else { 248 // This variable goes in the main ProcSym. 249 CurFn->Locals.emplace_back(Var); 250 } 251 } 252 253 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 254 const DILocation *Loc) { 255 auto B = Locs.begin(), E = Locs.end(); 256 if (std::find(B, E, Loc) == E) 257 Locs.push_back(Loc); 258 } 259 260 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 261 const MachineFunction *MF) { 262 // Skip this instruction if it has the same location as the previous one. 263 if (DL == CurFn->LastLoc) 264 return; 265 266 const DIScope *Scope = DL.get()->getScope(); 267 if (!Scope) 268 return; 269 270 // Skip this line if it is longer than the maximum we can record. 271 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 272 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 273 LI.isNeverStepInto()) 274 return; 275 276 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 277 if (CI.getStartColumn() != DL.getCol()) 278 return; 279 280 if (!CurFn->HaveLineInfo) 281 CurFn->HaveLineInfo = true; 282 unsigned FileId = 0; 283 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 284 FileId = CurFn->LastFileId; 285 else 286 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 287 CurFn->LastLoc = DL; 288 289 unsigned FuncId = CurFn->FuncId; 290 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 291 const DILocation *Loc = DL.get(); 292 293 // If this location was actually inlined from somewhere else, give it the ID 294 // of the inline call site. 295 FuncId = 296 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 297 298 // Ensure we have links in the tree of inline call sites. 299 bool FirstLoc = true; 300 while ((SiteLoc = Loc->getInlinedAt())) { 301 InlineSite &Site = 302 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 303 if (!FirstLoc) 304 addLocIfNotPresent(Site.ChildSites, Loc); 305 FirstLoc = false; 306 Loc = SiteLoc; 307 } 308 addLocIfNotPresent(CurFn->ChildSites, Loc); 309 } 310 311 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 312 /*PrologueEnd=*/false, 313 /*IsStmt=*/false, DL->getFilename()); 314 } 315 316 void CodeViewDebug::emitCodeViewMagicVersion() { 317 OS.EmitValueToAlignment(4); 318 OS.AddComment("Debug section magic"); 319 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 320 } 321 322 void CodeViewDebug::endModule() { 323 if (!Asm || !MMI->hasDebugInfo()) 324 return; 325 326 assert(Asm != nullptr); 327 328 // The COFF .debug$S section consists of several subsections, each starting 329 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 330 // of the payload followed by the payload itself. The subsections are 4-byte 331 // aligned. 332 333 // Use the generic .debug$S section, and make a subsection for all the inlined 334 // subprograms. 335 switchToDebugSectionForSymbol(nullptr); 336 emitInlineeLinesSubsection(); 337 338 // Emit per-function debug information. 339 for (auto &P : FnDebugInfo) 340 if (!P.first->isDeclarationForLinker()) 341 emitDebugInfoForFunction(P.first, P.second); 342 343 // Emit global variable debug information. 344 setCurrentSubprogram(nullptr); 345 emitDebugInfoForGlobals(); 346 347 // Emit retained types. 348 emitDebugInfoForRetainedTypes(); 349 350 // Switch back to the generic .debug$S section after potentially processing 351 // comdat symbol sections. 352 switchToDebugSectionForSymbol(nullptr); 353 354 // Emit UDT records for any types used by global variables. 355 if (!GlobalUDTs.empty()) { 356 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 357 emitDebugInfoForUDTs(GlobalUDTs); 358 endCVSubsection(SymbolsEnd); 359 } 360 361 // This subsection holds a file index to offset in string table table. 362 OS.AddComment("File index to string table offset subsection"); 363 OS.EmitCVFileChecksumsDirective(); 364 365 // This subsection holds the string table. 366 OS.AddComment("String table"); 367 OS.EmitCVStringTableDirective(); 368 369 // Emit type information last, so that any types we translate while emitting 370 // function info are included. 371 emitTypeInformation(); 372 373 clear(); 374 } 375 376 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 377 // Microsoft's linker seems to have trouble with symbol names longer than 378 // 0xffd8 bytes. 379 S = S.substr(0, 0xffd8); 380 SmallString<32> NullTerminatedString(S); 381 NullTerminatedString.push_back('\0'); 382 OS.EmitBytes(NullTerminatedString); 383 } 384 385 void CodeViewDebug::emitTypeInformation() { 386 // Do nothing if we have no debug info or if no non-trivial types were emitted 387 // to TypeTable during codegen. 388 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 389 if (!CU_Nodes) 390 return; 391 if (TypeTable.empty()) 392 return; 393 394 // Start the .debug$T section with 0x4. 395 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 396 emitCodeViewMagicVersion(); 397 398 SmallString<8> CommentPrefix; 399 if (OS.isVerboseAsm()) { 400 CommentPrefix += '\t'; 401 CommentPrefix += Asm->MAI->getCommentString(); 402 CommentPrefix += ' '; 403 } 404 405 CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false); 406 TypeTable.ForEachRecord( 407 [&](TypeIndex Index, StringRef Record) { 408 if (OS.isVerboseAsm()) { 409 // Emit a block comment describing the type record for readability. 410 SmallString<512> CommentBlock; 411 raw_svector_ostream CommentOS(CommentBlock); 412 ScopedPrinter SP(CommentOS); 413 SP.setPrefix(CommentPrefix); 414 CVTD.setPrinter(&SP); 415 Error EC = CVTD.dump({Record.bytes_begin(), Record.bytes_end()}); 416 assert(!EC && "produced malformed type record"); 417 consumeError(std::move(EC)); 418 // emitRawComment will insert its own tab and comment string before 419 // the first line, so strip off our first one. It also prints its own 420 // newline. 421 OS.emitRawComment( 422 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 423 } 424 OS.EmitBinaryData(Record); 425 }); 426 } 427 428 void CodeViewDebug::emitInlineeLinesSubsection() { 429 if (InlinedSubprograms.empty()) 430 return; 431 432 OS.AddComment("Inlinee lines subsection"); 433 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 434 435 // We don't provide any extra file info. 436 // FIXME: Find out if debuggers use this info. 437 OS.AddComment("Inlinee lines signature"); 438 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 439 440 for (const DISubprogram *SP : InlinedSubprograms) { 441 assert(TypeIndices.count({SP, nullptr})); 442 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 443 444 OS.AddBlankLine(); 445 unsigned FileId = maybeRecordFile(SP->getFile()); 446 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 447 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 448 OS.AddBlankLine(); 449 // The filechecksum table uses 8 byte entries for now, and file ids start at 450 // 1. 451 unsigned FileOffset = (FileId - 1) * 8; 452 OS.AddComment("Type index of inlined function"); 453 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 454 OS.AddComment("Offset into filechecksum table"); 455 OS.EmitIntValue(FileOffset, 4); 456 OS.AddComment("Starting line number"); 457 OS.EmitIntValue(SP->getLine(), 4); 458 } 459 460 endCVSubsection(InlineEnd); 461 } 462 463 void CodeViewDebug::collectInlineSiteChildren( 464 SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI, 465 const InlineSite &Site) { 466 for (const DILocation *ChildSiteLoc : Site.ChildSites) { 467 auto I = FI.InlineSites.find(ChildSiteLoc); 468 const InlineSite &ChildSite = I->second; 469 Children.push_back(ChildSite.SiteFuncId); 470 collectInlineSiteChildren(Children, FI, ChildSite); 471 } 472 } 473 474 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 475 const DILocation *InlinedAt, 476 const InlineSite &Site) { 477 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 478 *InlineEnd = MMI->getContext().createTempSymbol(); 479 480 assert(TypeIndices.count({Site.Inlinee, nullptr})); 481 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 482 483 // SymbolRecord 484 OS.AddComment("Record length"); 485 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 486 OS.EmitLabel(InlineBegin); 487 OS.AddComment("Record kind: S_INLINESITE"); 488 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 489 490 OS.AddComment("PtrParent"); 491 OS.EmitIntValue(0, 4); 492 OS.AddComment("PtrEnd"); 493 OS.EmitIntValue(0, 4); 494 OS.AddComment("Inlinee type index"); 495 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 496 497 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 498 unsigned StartLineNum = Site.Inlinee->getLine(); 499 SmallVector<unsigned, 3> SecondaryFuncIds; 500 collectInlineSiteChildren(SecondaryFuncIds, FI, Site); 501 502 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 503 FI.Begin, FI.End, SecondaryFuncIds); 504 505 OS.EmitLabel(InlineEnd); 506 507 for (const LocalVariable &Var : Site.InlinedLocals) 508 emitLocalVariable(Var); 509 510 // Recurse on child inlined call sites before closing the scope. 511 for (const DILocation *ChildSite : Site.ChildSites) { 512 auto I = FI.InlineSites.find(ChildSite); 513 assert(I != FI.InlineSites.end() && 514 "child site not in function inline site map"); 515 emitInlinedCallSite(FI, ChildSite, I->second); 516 } 517 518 // Close the scope. 519 OS.AddComment("Record length"); 520 OS.EmitIntValue(2, 2); // RecordLength 521 OS.AddComment("Record kind: S_INLINESITE_END"); 522 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 523 } 524 525 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 526 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 527 // comdat key. A section may be comdat because of -ffunction-sections or 528 // because it is comdat in the IR. 529 MCSectionCOFF *GVSec = 530 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 531 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 532 533 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 534 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 535 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 536 537 OS.SwitchSection(DebugSec); 538 539 // Emit the magic version number if this is the first time we've switched to 540 // this section. 541 if (ComdatDebugSections.insert(DebugSec).second) 542 emitCodeViewMagicVersion(); 543 } 544 545 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 546 FunctionInfo &FI) { 547 // For each function there is a separate subsection 548 // which holds the PC to file:line table. 549 const MCSymbol *Fn = Asm->getSymbol(GV); 550 assert(Fn); 551 552 // Switch to the to a comdat section, if appropriate. 553 switchToDebugSectionForSymbol(Fn); 554 555 std::string FuncName; 556 auto *SP = GV->getSubprogram(); 557 setCurrentSubprogram(SP); 558 559 // If we have a display name, build the fully qualified name by walking the 560 // chain of scopes. 561 if (SP != nullptr && !SP->getDisplayName().empty()) 562 FuncName = 563 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 564 565 // If our DISubprogram name is empty, use the mangled name. 566 if (FuncName.empty()) 567 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 568 569 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 570 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 571 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 572 { 573 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 574 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 575 OS.AddComment("Record length"); 576 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 577 OS.EmitLabel(ProcRecordBegin); 578 579 OS.AddComment("Record kind: S_GPROC32_ID"); 580 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 581 582 // These fields are filled in by tools like CVPACK which run after the fact. 583 OS.AddComment("PtrParent"); 584 OS.EmitIntValue(0, 4); 585 OS.AddComment("PtrEnd"); 586 OS.EmitIntValue(0, 4); 587 OS.AddComment("PtrNext"); 588 OS.EmitIntValue(0, 4); 589 // This is the important bit that tells the debugger where the function 590 // code is located and what's its size: 591 OS.AddComment("Code size"); 592 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 593 OS.AddComment("Offset after prologue"); 594 OS.EmitIntValue(0, 4); 595 OS.AddComment("Offset before epilogue"); 596 OS.EmitIntValue(0, 4); 597 OS.AddComment("Function type index"); 598 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 599 OS.AddComment("Function section relative address"); 600 OS.EmitCOFFSecRel32(Fn); 601 OS.AddComment("Function section index"); 602 OS.EmitCOFFSectionIndex(Fn); 603 OS.AddComment("Flags"); 604 OS.EmitIntValue(0, 1); 605 // Emit the function display name as a null-terminated string. 606 OS.AddComment("Function name"); 607 // Truncate the name so we won't overflow the record length field. 608 emitNullTerminatedSymbolName(OS, FuncName); 609 OS.EmitLabel(ProcRecordEnd); 610 611 for (const LocalVariable &Var : FI.Locals) 612 emitLocalVariable(Var); 613 614 // Emit inlined call site information. Only emit functions inlined directly 615 // into the parent function. We'll emit the other sites recursively as part 616 // of their parent inline site. 617 for (const DILocation *InlinedAt : FI.ChildSites) { 618 auto I = FI.InlineSites.find(InlinedAt); 619 assert(I != FI.InlineSites.end() && 620 "child site not in function inline site map"); 621 emitInlinedCallSite(FI, InlinedAt, I->second); 622 } 623 624 if (SP != nullptr) 625 emitDebugInfoForUDTs(LocalUDTs); 626 627 // We're done with this function. 628 OS.AddComment("Record length"); 629 OS.EmitIntValue(0x0002, 2); 630 OS.AddComment("Record kind: S_PROC_ID_END"); 631 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 632 } 633 endCVSubsection(SymbolsEnd); 634 635 // We have an assembler directive that takes care of the whole line table. 636 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 637 } 638 639 CodeViewDebug::LocalVarDefRange 640 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 641 LocalVarDefRange DR; 642 DR.InMemory = -1; 643 DR.DataOffset = Offset; 644 assert(DR.DataOffset == Offset && "truncation"); 645 DR.StructOffset = 0; 646 DR.CVRegister = CVRegister; 647 return DR; 648 } 649 650 CodeViewDebug::LocalVarDefRange 651 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) { 652 LocalVarDefRange DR; 653 DR.InMemory = 0; 654 DR.DataOffset = 0; 655 DR.StructOffset = 0; 656 DR.CVRegister = CVRegister; 657 return DR; 658 } 659 660 void CodeViewDebug::collectVariableInfoFromMMITable( 661 DenseSet<InlinedVariable> &Processed) { 662 const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget(); 663 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 664 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 665 666 for (const MachineModuleInfo::VariableDbgInfo &VI : 667 MMI->getVariableDbgInfo()) { 668 if (!VI.Var) 669 continue; 670 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 671 "Expected inlined-at fields to agree"); 672 673 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 674 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 675 676 // If variable scope is not found then skip this variable. 677 if (!Scope) 678 continue; 679 680 // Get the frame register used and the offset. 681 unsigned FrameReg = 0; 682 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 683 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 684 685 // Calculate the label ranges. 686 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 687 for (const InsnRange &Range : Scope->getRanges()) { 688 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 689 const MCSymbol *End = getLabelAfterInsn(Range.second); 690 End = End ? End : Asm->getFunctionEnd(); 691 DefRange.Ranges.emplace_back(Begin, End); 692 } 693 694 LocalVariable Var; 695 Var.DIVar = VI.Var; 696 Var.DefRanges.emplace_back(std::move(DefRange)); 697 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 698 } 699 } 700 701 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 702 DenseSet<InlinedVariable> Processed; 703 // Grab the variable info that was squirreled away in the MMI side-table. 704 collectVariableInfoFromMMITable(Processed); 705 706 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 707 708 for (const auto &I : DbgValues) { 709 InlinedVariable IV = I.first; 710 if (Processed.count(IV)) 711 continue; 712 const DILocalVariable *DIVar = IV.first; 713 const DILocation *InlinedAt = IV.second; 714 715 // Instruction ranges, specifying where IV is accessible. 716 const auto &Ranges = I.second; 717 718 LexicalScope *Scope = nullptr; 719 if (InlinedAt) 720 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 721 else 722 Scope = LScopes.findLexicalScope(DIVar->getScope()); 723 // If variable scope is not found then skip this variable. 724 if (!Scope) 725 continue; 726 727 LocalVariable Var; 728 Var.DIVar = DIVar; 729 730 // Calculate the definition ranges. 731 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 732 const InsnRange &Range = *I; 733 const MachineInstr *DVInst = Range.first; 734 assert(DVInst->isDebugValue() && "Invalid History entry"); 735 const DIExpression *DIExpr = DVInst->getDebugExpression(); 736 737 // Bail if there is a complex DWARF expression for now. 738 if (DIExpr && DIExpr->getNumElements() > 0) 739 continue; 740 741 // Bail if operand 0 is not a valid register. This means the variable is a 742 // simple constant, or is described by a complex expression. 743 // FIXME: Find a way to represent constant variables, since they are 744 // relatively common. 745 unsigned Reg = 746 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 747 if (Reg == 0) 748 continue; 749 750 // Handle the two cases we can handle: indirect in memory and in register. 751 bool IsIndirect = DVInst->getOperand(1).isImm(); 752 unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg()); 753 { 754 LocalVarDefRange DefRange; 755 if (IsIndirect) { 756 int64_t Offset = DVInst->getOperand(1).getImm(); 757 DefRange = createDefRangeMem(CVReg, Offset); 758 } else { 759 DefRange = createDefRangeReg(CVReg); 760 } 761 if (Var.DefRanges.empty() || 762 Var.DefRanges.back().isDifferentLocation(DefRange)) { 763 Var.DefRanges.emplace_back(std::move(DefRange)); 764 } 765 } 766 767 // Compute the label range. 768 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 769 const MCSymbol *End = getLabelAfterInsn(Range.second); 770 if (!End) { 771 if (std::next(I) != E) 772 End = getLabelBeforeInsn(std::next(I)->first); 773 else 774 End = Asm->getFunctionEnd(); 775 } 776 777 // If the last range end is our begin, just extend the last range. 778 // Otherwise make a new range. 779 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 780 Var.DefRanges.back().Ranges; 781 if (!Ranges.empty() && Ranges.back().second == Begin) 782 Ranges.back().second = End; 783 else 784 Ranges.emplace_back(Begin, End); 785 786 // FIXME: Do more range combining. 787 } 788 789 recordLocalVariable(std::move(Var), InlinedAt); 790 } 791 } 792 793 void CodeViewDebug::beginFunction(const MachineFunction *MF) { 794 assert(!CurFn && "Can't process two functions at once!"); 795 796 if (!Asm || !MMI->hasDebugInfo()) 797 return; 798 799 DebugHandlerBase::beginFunction(MF); 800 801 const Function *GV = MF->getFunction(); 802 assert(FnDebugInfo.count(GV) == false); 803 CurFn = &FnDebugInfo[GV]; 804 CurFn->FuncId = NextFuncId++; 805 CurFn->Begin = Asm->getFunctionBegin(); 806 807 // Find the end of the function prolog. First known non-DBG_VALUE and 808 // non-frame setup location marks the beginning of the function body. 809 // FIXME: is there a simpler a way to do this? Can we just search 810 // for the first instruction of the function, not the last of the prolog? 811 DebugLoc PrologEndLoc; 812 bool EmptyPrologue = true; 813 for (const auto &MBB : *MF) { 814 for (const auto &MI : MBB) { 815 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 816 MI.getDebugLoc()) { 817 PrologEndLoc = MI.getDebugLoc(); 818 break; 819 } else if (!MI.isDebugValue()) { 820 EmptyPrologue = false; 821 } 822 } 823 } 824 825 // Record beginning of function if we have a non-empty prologue. 826 if (PrologEndLoc && !EmptyPrologue) { 827 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 828 maybeRecordLocation(FnStartDL, MF); 829 } 830 } 831 832 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 833 SmallVector<StringRef, 5> QualifiedNameComponents; 834 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 835 Ty->getScope().resolve(), QualifiedNameComponents); 836 837 std::string FullyQualifiedName = 838 getQualifiedName(QualifiedNameComponents, Ty->getName()); 839 840 if (ClosestSubprogram == nullptr) 841 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 842 else if (ClosestSubprogram == CurrentSubprogram) 843 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 844 845 // TODO: What if the ClosestSubprogram is neither null or the current 846 // subprogram? Currently, the UDT just gets dropped on the floor. 847 // 848 // The current behavior is not desirable. To get maximal fidelity, we would 849 // need to perform all type translation before beginning emission of .debug$S 850 // and then make LocalUDTs a member of FunctionInfo 851 } 852 853 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 854 // Generic dispatch for lowering an unknown type. 855 switch (Ty->getTag()) { 856 case dwarf::DW_TAG_array_type: 857 return lowerTypeArray(cast<DICompositeType>(Ty)); 858 case dwarf::DW_TAG_typedef: 859 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 860 case dwarf::DW_TAG_base_type: 861 return lowerTypeBasic(cast<DIBasicType>(Ty)); 862 case dwarf::DW_TAG_pointer_type: 863 case dwarf::DW_TAG_reference_type: 864 case dwarf::DW_TAG_rvalue_reference_type: 865 return lowerTypePointer(cast<DIDerivedType>(Ty)); 866 case dwarf::DW_TAG_ptr_to_member_type: 867 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 868 case dwarf::DW_TAG_const_type: 869 case dwarf::DW_TAG_volatile_type: 870 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 871 case dwarf::DW_TAG_subroutine_type: 872 if (ClassTy) { 873 // The member function type of a member function pointer has no 874 // ThisAdjustment. 875 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 876 /*ThisAdjustment=*/0); 877 } 878 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 879 case dwarf::DW_TAG_enumeration_type: 880 return lowerTypeEnum(cast<DICompositeType>(Ty)); 881 case dwarf::DW_TAG_class_type: 882 case dwarf::DW_TAG_structure_type: 883 return lowerTypeClass(cast<DICompositeType>(Ty)); 884 case dwarf::DW_TAG_union_type: 885 return lowerTypeUnion(cast<DICompositeType>(Ty)); 886 default: 887 // Use the null type index. 888 return TypeIndex(); 889 } 890 } 891 892 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 893 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 894 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 895 StringRef TypeName = Ty->getName(); 896 897 addToUDTs(Ty, UnderlyingTypeIndex); 898 899 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 900 TypeName == "HRESULT") 901 return TypeIndex(SimpleTypeKind::HResult); 902 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 903 TypeName == "wchar_t") 904 return TypeIndex(SimpleTypeKind::WideCharacter); 905 906 return UnderlyingTypeIndex; 907 } 908 909 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 910 DITypeRef ElementTypeRef = Ty->getBaseType(); 911 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 912 // IndexType is size_t, which depends on the bitness of the target. 913 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 914 ? TypeIndex(SimpleTypeKind::UInt64Quad) 915 : TypeIndex(SimpleTypeKind::UInt32Long); 916 uint64_t Size = Ty->getSizeInBits() / 8; 917 ArrayRecord Record(ElementTypeIndex, IndexType, Size, Ty->getName()); 918 return TypeTable.writeArray(Record); 919 } 920 921 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 922 TypeIndex Index; 923 dwarf::TypeKind Kind; 924 uint32_t ByteSize; 925 926 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 927 ByteSize = Ty->getSizeInBits() / 8; 928 929 SimpleTypeKind STK = SimpleTypeKind::None; 930 switch (Kind) { 931 case dwarf::DW_ATE_address: 932 // FIXME: Translate 933 break; 934 case dwarf::DW_ATE_boolean: 935 switch (ByteSize) { 936 case 1: STK = SimpleTypeKind::Boolean8; break; 937 case 2: STK = SimpleTypeKind::Boolean16; break; 938 case 4: STK = SimpleTypeKind::Boolean32; break; 939 case 8: STK = SimpleTypeKind::Boolean64; break; 940 case 16: STK = SimpleTypeKind::Boolean128; break; 941 } 942 break; 943 case dwarf::DW_ATE_complex_float: 944 switch (ByteSize) { 945 case 2: STK = SimpleTypeKind::Complex16; break; 946 case 4: STK = SimpleTypeKind::Complex32; break; 947 case 8: STK = SimpleTypeKind::Complex64; break; 948 case 10: STK = SimpleTypeKind::Complex80; break; 949 case 16: STK = SimpleTypeKind::Complex128; break; 950 } 951 break; 952 case dwarf::DW_ATE_float: 953 switch (ByteSize) { 954 case 2: STK = SimpleTypeKind::Float16; break; 955 case 4: STK = SimpleTypeKind::Float32; break; 956 case 6: STK = SimpleTypeKind::Float48; break; 957 case 8: STK = SimpleTypeKind::Float64; break; 958 case 10: STK = SimpleTypeKind::Float80; break; 959 case 16: STK = SimpleTypeKind::Float128; break; 960 } 961 break; 962 case dwarf::DW_ATE_signed: 963 switch (ByteSize) { 964 case 1: STK = SimpleTypeKind::SByte; break; 965 case 2: STK = SimpleTypeKind::Int16Short; break; 966 case 4: STK = SimpleTypeKind::Int32; break; 967 case 8: STK = SimpleTypeKind::Int64Quad; break; 968 case 16: STK = SimpleTypeKind::Int128Oct; break; 969 } 970 break; 971 case dwarf::DW_ATE_unsigned: 972 switch (ByteSize) { 973 case 1: STK = SimpleTypeKind::Byte; break; 974 case 2: STK = SimpleTypeKind::UInt16Short; break; 975 case 4: STK = SimpleTypeKind::UInt32; break; 976 case 8: STK = SimpleTypeKind::UInt64Quad; break; 977 case 16: STK = SimpleTypeKind::UInt128Oct; break; 978 } 979 break; 980 case dwarf::DW_ATE_UTF: 981 switch (ByteSize) { 982 case 2: STK = SimpleTypeKind::Character16; break; 983 case 4: STK = SimpleTypeKind::Character32; break; 984 } 985 break; 986 case dwarf::DW_ATE_signed_char: 987 if (ByteSize == 1) 988 STK = SimpleTypeKind::SignedCharacter; 989 break; 990 case dwarf::DW_ATE_unsigned_char: 991 if (ByteSize == 1) 992 STK = SimpleTypeKind::UnsignedCharacter; 993 break; 994 default: 995 break; 996 } 997 998 // Apply some fixups based on the source-level type name. 999 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1000 STK = SimpleTypeKind::Int32Long; 1001 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1002 STK = SimpleTypeKind::UInt32Long; 1003 if (STK == SimpleTypeKind::UInt16Short && 1004 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1005 STK = SimpleTypeKind::WideCharacter; 1006 if ((STK == SimpleTypeKind::SignedCharacter || 1007 STK == SimpleTypeKind::UnsignedCharacter) && 1008 Ty->getName() == "char") 1009 STK = SimpleTypeKind::NarrowCharacter; 1010 1011 return TypeIndex(STK); 1012 } 1013 1014 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1015 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1016 1017 // While processing the type being pointed to it is possible we already 1018 // created this pointer type. If so, we check here and return the existing 1019 // pointer type. 1020 auto I = TypeIndices.find({Ty, nullptr}); 1021 if (I != TypeIndices.end()) 1022 return I->second; 1023 1024 // Pointers to simple types can use SimpleTypeMode, rather than having a 1025 // dedicated pointer type record. 1026 if (PointeeTI.isSimple() && 1027 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1028 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1029 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1030 ? SimpleTypeMode::NearPointer64 1031 : SimpleTypeMode::NearPointer32; 1032 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1033 } 1034 1035 PointerKind PK = 1036 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1037 PointerMode PM = PointerMode::Pointer; 1038 switch (Ty->getTag()) { 1039 default: llvm_unreachable("not a pointer tag type"); 1040 case dwarf::DW_TAG_pointer_type: 1041 PM = PointerMode::Pointer; 1042 break; 1043 case dwarf::DW_TAG_reference_type: 1044 PM = PointerMode::LValueReference; 1045 break; 1046 case dwarf::DW_TAG_rvalue_reference_type: 1047 PM = PointerMode::RValueReference; 1048 break; 1049 } 1050 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1051 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1052 // do. 1053 PointerOptions PO = PointerOptions::None; 1054 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1055 return TypeTable.writePointer(PR); 1056 } 1057 1058 static PointerToMemberRepresentation 1059 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1060 // SizeInBytes being zero generally implies that the member pointer type was 1061 // incomplete, which can happen if it is part of a function prototype. In this 1062 // case, use the unknown model instead of the general model. 1063 if (IsPMF) { 1064 switch (Flags & DINode::FlagPtrToMemberRep) { 1065 case 0: 1066 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1067 : PointerToMemberRepresentation::GeneralFunction; 1068 case DINode::FlagSingleInheritance: 1069 return PointerToMemberRepresentation::SingleInheritanceFunction; 1070 case DINode::FlagMultipleInheritance: 1071 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1072 case DINode::FlagVirtualInheritance: 1073 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1074 } 1075 } else { 1076 switch (Flags & DINode::FlagPtrToMemberRep) { 1077 case 0: 1078 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1079 : PointerToMemberRepresentation::GeneralData; 1080 case DINode::FlagSingleInheritance: 1081 return PointerToMemberRepresentation::SingleInheritanceData; 1082 case DINode::FlagMultipleInheritance: 1083 return PointerToMemberRepresentation::MultipleInheritanceData; 1084 case DINode::FlagVirtualInheritance: 1085 return PointerToMemberRepresentation::VirtualInheritanceData; 1086 } 1087 } 1088 llvm_unreachable("invalid ptr to member representation"); 1089 } 1090 1091 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1092 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1093 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1094 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1095 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1096 : PointerKind::Near32; 1097 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1098 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1099 : PointerMode::PointerToDataMember; 1100 PointerOptions PO = PointerOptions::None; // FIXME 1101 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1102 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1103 MemberPointerInfo MPI( 1104 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1105 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1106 return TypeTable.writePointer(PR); 1107 } 1108 1109 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1110 /// have a translation, use the NearC convention. 1111 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1112 switch (DwarfCC) { 1113 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1114 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1115 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1116 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1117 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1118 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1119 } 1120 return CallingConvention::NearC; 1121 } 1122 1123 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1124 ModifierOptions Mods = ModifierOptions::None; 1125 bool IsModifier = true; 1126 const DIType *BaseTy = Ty; 1127 while (IsModifier && BaseTy) { 1128 // FIXME: Need to add DWARF tag for __unaligned. 1129 switch (BaseTy->getTag()) { 1130 case dwarf::DW_TAG_const_type: 1131 Mods |= ModifierOptions::Const; 1132 break; 1133 case dwarf::DW_TAG_volatile_type: 1134 Mods |= ModifierOptions::Volatile; 1135 break; 1136 default: 1137 IsModifier = false; 1138 break; 1139 } 1140 if (IsModifier) 1141 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1142 } 1143 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1144 1145 // While processing the type being pointed to, it is possible we already 1146 // created this modifier type. If so, we check here and return the existing 1147 // modifier type. 1148 auto I = TypeIndices.find({Ty, nullptr}); 1149 if (I != TypeIndices.end()) 1150 return I->second; 1151 1152 ModifierRecord MR(ModifiedTI, Mods); 1153 return TypeTable.writeModifier(MR); 1154 } 1155 1156 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1157 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1158 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1159 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1160 1161 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1162 ArrayRef<TypeIndex> ArgTypeIndices = None; 1163 if (!ReturnAndArgTypeIndices.empty()) { 1164 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1165 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1166 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1167 } 1168 1169 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1170 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1171 1172 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1173 1174 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1175 ArgTypeIndices.size(), ArgListIndex); 1176 return TypeTable.writeProcedure(Procedure); 1177 } 1178 1179 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1180 const DIType *ClassTy, 1181 int ThisAdjustment) { 1182 // Lower the containing class type. 1183 TypeIndex ClassType = getTypeIndex(ClassTy); 1184 1185 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1186 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1187 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1188 1189 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1190 ArrayRef<TypeIndex> ArgTypeIndices = None; 1191 if (!ReturnAndArgTypeIndices.empty()) { 1192 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1193 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1194 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1195 } 1196 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1197 if (!ArgTypeIndices.empty()) { 1198 ThisTypeIndex = ArgTypeIndices.front(); 1199 ArgTypeIndices = ArgTypeIndices.drop_front(); 1200 } 1201 1202 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1203 TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec); 1204 1205 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1206 1207 // TODO: Need to use the correct values for: 1208 // FunctionOptions 1209 // ThisPointerAdjustment. 1210 TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord( 1211 ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None, 1212 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment)); 1213 1214 return TI; 1215 } 1216 1217 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1218 switch (Flags & DINode::FlagAccessibility) { 1219 case DINode::FlagPrivate: return MemberAccess::Private; 1220 case DINode::FlagPublic: return MemberAccess::Public; 1221 case DINode::FlagProtected: return MemberAccess::Protected; 1222 case 0: 1223 // If there was no explicit access control, provide the default for the tag. 1224 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1225 : MemberAccess::Public; 1226 } 1227 llvm_unreachable("access flags are exclusive"); 1228 } 1229 1230 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1231 if (SP->isArtificial()) 1232 return MethodOptions::CompilerGenerated; 1233 1234 // FIXME: Handle other MethodOptions. 1235 1236 return MethodOptions::None; 1237 } 1238 1239 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1240 bool Introduced) { 1241 switch (SP->getVirtuality()) { 1242 case dwarf::DW_VIRTUALITY_none: 1243 break; 1244 case dwarf::DW_VIRTUALITY_virtual: 1245 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1246 case dwarf::DW_VIRTUALITY_pure_virtual: 1247 return Introduced ? MethodKind::PureIntroducingVirtual 1248 : MethodKind::PureVirtual; 1249 default: 1250 llvm_unreachable("unhandled virtuality case"); 1251 } 1252 1253 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1254 1255 return MethodKind::Vanilla; 1256 } 1257 1258 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1259 switch (Ty->getTag()) { 1260 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1261 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1262 } 1263 llvm_unreachable("unexpected tag"); 1264 } 1265 1266 /// Return the HasUniqueName option if it should be present in ClassOptions, or 1267 /// None otherwise. 1268 static ClassOptions getRecordUniqueNameOption(const DICompositeType *Ty) { 1269 // MSVC always sets this flag now, even for local types. Clang doesn't always 1270 // appear to give every type a linkage name, which may be problematic for us. 1271 // FIXME: Investigate the consequences of not following them here. 1272 return !Ty->getIdentifier().empty() ? ClassOptions::HasUniqueName 1273 : ClassOptions::None; 1274 } 1275 1276 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1277 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1278 TypeIndex FTI; 1279 unsigned EnumeratorCount = 0; 1280 1281 if (Ty->isForwardDecl()) { 1282 CO |= ClassOptions::ForwardReference; 1283 } else { 1284 FieldListRecordBuilder Fields; 1285 for (const DINode *Element : Ty->getElements()) { 1286 // We assume that the frontend provides all members in source declaration 1287 // order, which is what MSVC does. 1288 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1289 Fields.writeEnumerator(EnumeratorRecord( 1290 MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()), 1291 Enumerator->getName())); 1292 EnumeratorCount++; 1293 } 1294 } 1295 FTI = TypeTable.writeFieldList(Fields); 1296 } 1297 1298 std::string FullName = 1299 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1300 1301 return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName, 1302 Ty->getIdentifier(), 1303 getTypeIndex(Ty->getBaseType()))); 1304 } 1305 1306 //===----------------------------------------------------------------------===// 1307 // ClassInfo 1308 //===----------------------------------------------------------------------===// 1309 1310 struct llvm::ClassInfo { 1311 struct MemberInfo { 1312 const DIDerivedType *MemberTypeNode; 1313 unsigned BaseOffset; 1314 }; 1315 // [MemberInfo] 1316 typedef std::vector<MemberInfo> MemberList; 1317 1318 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1319 // MethodName -> MethodsList 1320 typedef MapVector<MDString *, MethodsList> MethodsMap; 1321 1322 /// Base classes. 1323 std::vector<const DIDerivedType *> Inheritance; 1324 1325 /// Direct members. 1326 MemberList Members; 1327 // Direct overloaded methods gathered by name. 1328 MethodsMap Methods; 1329 }; 1330 1331 void CodeViewDebug::clear() { 1332 assert(CurFn == nullptr); 1333 FileIdMap.clear(); 1334 FnDebugInfo.clear(); 1335 FileToFilepathMap.clear(); 1336 LocalUDTs.clear(); 1337 GlobalUDTs.clear(); 1338 TypeIndices.clear(); 1339 CompleteTypeIndices.clear(); 1340 } 1341 1342 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1343 const DIDerivedType *DDTy) { 1344 if (!DDTy->getName().empty()) { 1345 Info.Members.push_back({DDTy, 0}); 1346 return; 1347 } 1348 // An unnamed member must represent a nested struct or union. Add all the 1349 // indirect fields to the current record. 1350 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1351 unsigned Offset = DDTy->getOffsetInBits() / 8; 1352 const DIType *Ty = DDTy->getBaseType().resolve(); 1353 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1354 ClassInfo NestedInfo = collectClassInfo(DCTy); 1355 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1356 Info.Members.push_back( 1357 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1358 } 1359 1360 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1361 ClassInfo Info; 1362 // Add elements to structure type. 1363 DINodeArray Elements = Ty->getElements(); 1364 for (auto *Element : Elements) { 1365 // We assume that the frontend provides all members in source declaration 1366 // order, which is what MSVC does. 1367 if (!Element) 1368 continue; 1369 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1370 Info.Methods[SP->getRawName()].push_back(SP); 1371 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1372 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1373 collectMemberInfo(Info, DDTy); 1374 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1375 Info.Inheritance.push_back(DDTy); 1376 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1377 // Ignore friend members. It appears that MSVC emitted info about 1378 // friends in the past, but modern versions do not. 1379 } 1380 // FIXME: Get Clang to emit function virtual table here and handle it. 1381 // FIXME: Get clang to emit nested types here and do something with 1382 // them. 1383 } 1384 // Skip other unrecognized kinds of elements. 1385 } 1386 return Info; 1387 } 1388 1389 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1390 // First, construct the forward decl. Don't look into Ty to compute the 1391 // forward decl options, since it might not be available in all TUs. 1392 TypeRecordKind Kind = getRecordKind(Ty); 1393 ClassOptions CO = 1394 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1395 std::string FullName = 1396 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1397 TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord( 1398 Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(), 1399 TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier())); 1400 if (!Ty->isForwardDecl()) 1401 DeferredCompleteTypes.push_back(Ty); 1402 return FwdDeclTI; 1403 } 1404 1405 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1406 // Construct the field list and complete type record. 1407 TypeRecordKind Kind = getRecordKind(Ty); 1408 // FIXME: Other ClassOptions, like ContainsNestedClass and NestedClass. 1409 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1410 TypeIndex FieldTI; 1411 TypeIndex VShapeTI; 1412 unsigned FieldCount; 1413 std::tie(FieldTI, VShapeTI, FieldCount) = lowerRecordFieldList(Ty); 1414 1415 std::string FullName = 1416 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1417 1418 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1419 1420 TypeIndex ClassTI = TypeTable.writeClass(ClassRecord( 1421 Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI, 1422 TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier())); 1423 1424 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1425 ClassTI, TypeTable.writeStringId(StringIdRecord( 1426 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1427 Ty->getLine())); 1428 1429 addToUDTs(Ty, ClassTI); 1430 1431 return ClassTI; 1432 } 1433 1434 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1435 ClassOptions CO = 1436 ClassOptions::ForwardReference | getRecordUniqueNameOption(Ty); 1437 std::string FullName = 1438 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1439 TypeIndex FwdDeclTI = 1440 TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0, 1441 FullName, Ty->getIdentifier())); 1442 if (!Ty->isForwardDecl()) 1443 DeferredCompleteTypes.push_back(Ty); 1444 return FwdDeclTI; 1445 } 1446 1447 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1448 ClassOptions CO = ClassOptions::None | getRecordUniqueNameOption(Ty); 1449 TypeIndex FieldTI; 1450 unsigned FieldCount; 1451 std::tie(FieldTI, std::ignore, FieldCount) = lowerRecordFieldList(Ty); 1452 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1453 std::string FullName = 1454 getFullyQualifiedName(Ty->getScope().resolve(), Ty->getName()); 1455 1456 TypeIndex UnionTI = TypeTable.writeUnion( 1457 UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName, 1458 Ty->getIdentifier())); 1459 1460 TypeTable.writeUdtSourceLine(UdtSourceLineRecord( 1461 UnionTI, TypeTable.writeStringId(StringIdRecord( 1462 TypeIndex(0x0), getFullFilepath(Ty->getFile()))), 1463 Ty->getLine())); 1464 1465 addToUDTs(Ty, UnionTI); 1466 1467 return UnionTI; 1468 } 1469 1470 std::tuple<TypeIndex, TypeIndex, unsigned> 1471 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1472 // Manually count members. MSVC appears to count everything that generates a 1473 // field list record. Each individual overload in a method overload group 1474 // contributes to this count, even though the overload group is a single field 1475 // list record. 1476 unsigned MemberCount = 0; 1477 ClassInfo Info = collectClassInfo(Ty); 1478 FieldListRecordBuilder Fields; 1479 1480 // Create base classes. 1481 for (const DIDerivedType *I : Info.Inheritance) { 1482 if (I->getFlags() & DINode::FlagVirtual) { 1483 // Virtual base. 1484 // FIXME: Emit VBPtrOffset when the frontend provides it. 1485 unsigned VBPtrOffset = 0; 1486 // FIXME: Despite the accessor name, the offset is really in bytes. 1487 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1488 Fields.writeVirtualBaseClass(VirtualBaseClassRecord( 1489 translateAccessFlags(Ty->getTag(), I->getFlags()), 1490 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1491 VBTableIndex)); 1492 } else { 1493 assert(I->getOffsetInBits() % 8 == 0 && 1494 "bases must be on byte boundaries"); 1495 Fields.writeBaseClass(BaseClassRecord( 1496 translateAccessFlags(Ty->getTag(), I->getFlags()), 1497 getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8)); 1498 } 1499 } 1500 1501 // Create members. 1502 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1503 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1504 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1505 1506 if (Member->isStaticMember()) { 1507 Fields.writeStaticDataMember(StaticDataMemberRecord( 1508 translateAccessFlags(Ty->getTag(), Member->getFlags()), 1509 MemberBaseType, Member->getName())); 1510 MemberCount++; 1511 continue; 1512 } 1513 1514 uint64_t OffsetInBytes = MemberInfo.BaseOffset; 1515 1516 // FIXME: Handle bitfield type memeber. 1517 OffsetInBytes += Member->getOffsetInBits() / 8; 1518 1519 Fields.writeDataMember( 1520 DataMemberRecord(translateAccessFlags(Ty->getTag(), Member->getFlags()), 1521 MemberBaseType, OffsetInBytes, Member->getName())); 1522 MemberCount++; 1523 } 1524 1525 // Create methods 1526 for (auto &MethodItr : Info.Methods) { 1527 StringRef Name = MethodItr.first->getString(); 1528 1529 std::vector<OneMethodRecord> Methods; 1530 for (const DISubprogram *SP : MethodItr.second) { 1531 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1532 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1533 1534 unsigned VFTableOffset = -1; 1535 if (Introduced) 1536 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1537 1538 Methods.push_back( 1539 OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced), 1540 translateMethodOptionFlags(SP), 1541 translateAccessFlags(Ty->getTag(), SP->getFlags()), 1542 VFTableOffset, Name)); 1543 MemberCount++; 1544 } 1545 assert(Methods.size() > 0 && "Empty methods map entry"); 1546 if (Methods.size() == 1) 1547 Fields.writeOneMethod(Methods[0]); 1548 else { 1549 TypeIndex MethodList = 1550 TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods)); 1551 Fields.writeOverloadedMethod( 1552 OverloadedMethodRecord(Methods.size(), MethodList, Name)); 1553 } 1554 } 1555 TypeIndex FieldTI = TypeTable.writeFieldList(Fields); 1556 return std::make_tuple(FieldTI, TypeIndex(), MemberCount); 1557 } 1558 1559 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1560 if (!VBPType.getIndex()) { 1561 // Make a 'const int *' type. 1562 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1563 TypeIndex ModifiedTI = TypeTable.writeModifier(MR); 1564 1565 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1566 : PointerKind::Near32; 1567 PointerMode PM = PointerMode::Pointer; 1568 PointerOptions PO = PointerOptions::None; 1569 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1570 1571 VBPType = TypeTable.writePointer(PR); 1572 } 1573 1574 return VBPType; 1575 } 1576 1577 struct CodeViewDebug::TypeLoweringScope { 1578 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 1579 ~TypeLoweringScope() { 1580 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 1581 // inner TypeLoweringScopes don't attempt to emit deferred types. 1582 if (CVD.TypeEmissionLevel == 1) 1583 CVD.emitDeferredCompleteTypes(); 1584 --CVD.TypeEmissionLevel; 1585 } 1586 CodeViewDebug &CVD; 1587 }; 1588 1589 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1590 const DIType *Ty = TypeRef.resolve(); 1591 const DIType *ClassTy = ClassTyRef.resolve(); 1592 1593 // The null DIType is the void type. Don't try to hash it. 1594 if (!Ty) 1595 return TypeIndex::Void(); 1596 1597 // Check if we've already translated this type. Don't try to do a 1598 // get-or-create style insertion that caches the hash lookup across the 1599 // lowerType call. It will update the TypeIndices map. 1600 auto I = TypeIndices.find({Ty, ClassTy}); 1601 if (I != TypeIndices.end()) 1602 return I->second; 1603 1604 TypeIndex TI; 1605 { 1606 TypeLoweringScope S(*this); 1607 TI = lowerType(Ty, ClassTy); 1608 recordTypeIndexForDINode(Ty, TI, ClassTy); 1609 } 1610 1611 return TI; 1612 } 1613 1614 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1615 const DIType *Ty = TypeRef.resolve(); 1616 1617 // The null DIType is the void type. Don't try to hash it. 1618 if (!Ty) 1619 return TypeIndex::Void(); 1620 1621 // If this is a non-record type, the complete type index is the same as the 1622 // normal type index. Just call getTypeIndex. 1623 switch (Ty->getTag()) { 1624 case dwarf::DW_TAG_class_type: 1625 case dwarf::DW_TAG_structure_type: 1626 case dwarf::DW_TAG_union_type: 1627 break; 1628 default: 1629 return getTypeIndex(Ty); 1630 } 1631 1632 // Check if we've already translated the complete record type. Lowering a 1633 // complete type should never trigger lowering another complete type, so we 1634 // can reuse the hash table lookup result. 1635 const auto *CTy = cast<DICompositeType>(Ty); 1636 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1637 if (!InsertResult.second) 1638 return InsertResult.first->second; 1639 1640 TypeLoweringScope S(*this); 1641 1642 // Make sure the forward declaration is emitted first. It's unclear if this 1643 // is necessary, but MSVC does it, and we should follow suit until we can show 1644 // otherwise. 1645 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1646 1647 // Just use the forward decl if we don't have complete type info. This might 1648 // happen if the frontend is using modules and expects the complete definition 1649 // to be emitted elsewhere. 1650 if (CTy->isForwardDecl()) 1651 return FwdDeclTI; 1652 1653 TypeIndex TI; 1654 switch (CTy->getTag()) { 1655 case dwarf::DW_TAG_class_type: 1656 case dwarf::DW_TAG_structure_type: 1657 TI = lowerCompleteTypeClass(CTy); 1658 break; 1659 case dwarf::DW_TAG_union_type: 1660 TI = lowerCompleteTypeUnion(CTy); 1661 break; 1662 default: 1663 llvm_unreachable("not a record"); 1664 } 1665 1666 InsertResult.first->second = TI; 1667 return TI; 1668 } 1669 1670 /// Emit all the deferred complete record types. Try to do this in FIFO order, 1671 /// and do this until fixpoint, as each complete record type typically references 1672 /// many other record types. 1673 void CodeViewDebug::emitDeferredCompleteTypes() { 1674 SmallVector<const DICompositeType *, 4> TypesToEmit; 1675 while (!DeferredCompleteTypes.empty()) { 1676 std::swap(DeferredCompleteTypes, TypesToEmit); 1677 for (const DICompositeType *RecordTy : TypesToEmit) 1678 getCompleteTypeIndex(RecordTy); 1679 TypesToEmit.clear(); 1680 } 1681 } 1682 1683 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 1684 // LocalSym record, see SymbolRecord.h for more info. 1685 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 1686 *LocalEnd = MMI->getContext().createTempSymbol(); 1687 OS.AddComment("Record length"); 1688 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 1689 OS.EmitLabel(LocalBegin); 1690 1691 OS.AddComment("Record kind: S_LOCAL"); 1692 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 1693 1694 LocalSymFlags Flags = LocalSymFlags::None; 1695 if (Var.DIVar->isParameter()) 1696 Flags |= LocalSymFlags::IsParameter; 1697 if (Var.DefRanges.empty()) 1698 Flags |= LocalSymFlags::IsOptimizedOut; 1699 1700 OS.AddComment("TypeIndex"); 1701 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 1702 OS.EmitIntValue(TI.getIndex(), 4); 1703 OS.AddComment("Flags"); 1704 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 1705 // Truncate the name so we won't overflow the record length field. 1706 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 1707 OS.EmitLabel(LocalEnd); 1708 1709 // Calculate the on disk prefix of the appropriate def range record. The 1710 // records and on disk formats are described in SymbolRecords.h. BytePrefix 1711 // should be big enough to hold all forms without memory allocation. 1712 SmallString<20> BytePrefix; 1713 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 1714 BytePrefix.clear(); 1715 // FIXME: Handle bitpieces. 1716 if (DefRange.StructOffset != 0) 1717 continue; 1718 1719 if (DefRange.InMemory) { 1720 DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0, 1721 0, 0, ArrayRef<LocalVariableAddrGap>()); 1722 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 1723 BytePrefix += 1724 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1725 BytePrefix += 1726 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1727 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1728 } else { 1729 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 1730 // Unclear what matters here. 1731 DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0, 1732 ArrayRef<LocalVariableAddrGap>()); 1733 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 1734 BytePrefix += 1735 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 1736 BytePrefix += 1737 StringRef(reinterpret_cast<const char *>(&Sym.Header), 1738 sizeof(Sym.Header) - sizeof(LocalVariableAddrRange)); 1739 } 1740 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 1741 } 1742 } 1743 1744 void CodeViewDebug::endFunction(const MachineFunction *MF) { 1745 if (!Asm || !CurFn) // We haven't created any debug info for this function. 1746 return; 1747 1748 const Function *GV = MF->getFunction(); 1749 assert(FnDebugInfo.count(GV)); 1750 assert(CurFn == &FnDebugInfo[GV]); 1751 1752 collectVariableInfo(GV->getSubprogram()); 1753 1754 DebugHandlerBase::endFunction(MF); 1755 1756 // Don't emit anything if we don't have any line tables. 1757 if (!CurFn->HaveLineInfo) { 1758 FnDebugInfo.erase(GV); 1759 CurFn = nullptr; 1760 return; 1761 } 1762 1763 CurFn->End = Asm->getFunctionEnd(); 1764 1765 CurFn = nullptr; 1766 } 1767 1768 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 1769 DebugHandlerBase::beginInstruction(MI); 1770 1771 // Ignore DBG_VALUE locations and function prologue. 1772 if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup)) 1773 return; 1774 DebugLoc DL = MI->getDebugLoc(); 1775 if (DL == PrevInstLoc || !DL) 1776 return; 1777 maybeRecordLocation(DL, Asm->MF); 1778 } 1779 1780 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 1781 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 1782 *EndLabel = MMI->getContext().createTempSymbol(); 1783 OS.EmitIntValue(unsigned(Kind), 4); 1784 OS.AddComment("Subsection size"); 1785 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 1786 OS.EmitLabel(BeginLabel); 1787 return EndLabel; 1788 } 1789 1790 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 1791 OS.EmitLabel(EndLabel); 1792 // Every subsection must be aligned to a 4-byte boundary. 1793 OS.EmitValueToAlignment(4); 1794 } 1795 1796 void CodeViewDebug::emitDebugInfoForUDTs( 1797 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 1798 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 1799 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 1800 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 1801 OS.AddComment("Record length"); 1802 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 1803 OS.EmitLabel(UDTRecordBegin); 1804 1805 OS.AddComment("Record kind: S_UDT"); 1806 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 1807 1808 OS.AddComment("Type"); 1809 OS.EmitIntValue(UDT.second.getIndex(), 4); 1810 1811 emitNullTerminatedSymbolName(OS, UDT.first); 1812 OS.EmitLabel(UDTRecordEnd); 1813 } 1814 } 1815 1816 void CodeViewDebug::emitDebugInfoForGlobals() { 1817 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1818 for (const MDNode *Node : CUs->operands()) { 1819 const auto *CU = cast<DICompileUnit>(Node); 1820 1821 // First, emit all globals that are not in a comdat in a single symbol 1822 // substream. MSVC doesn't like it if the substream is empty, so only open 1823 // it if we have at least one global to emit. 1824 switchToDebugSectionForSymbol(nullptr); 1825 MCSymbol *EndLabel = nullptr; 1826 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1827 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1828 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 1829 if (!EndLabel) { 1830 OS.AddComment("Symbol subsection for globals"); 1831 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1832 } 1833 emitDebugInfoForGlobal(G, Asm->getSymbol(GV)); 1834 } 1835 } 1836 } 1837 if (EndLabel) 1838 endCVSubsection(EndLabel); 1839 1840 // Second, emit each global that is in a comdat into its own .debug$S 1841 // section along with its own symbol substream. 1842 for (const DIGlobalVariable *G : CU->getGlobalVariables()) { 1843 if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) { 1844 if (GV->hasComdat()) { 1845 MCSymbol *GVSym = Asm->getSymbol(GV); 1846 OS.AddComment("Symbol subsection for " + 1847 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 1848 switchToDebugSectionForSymbol(GVSym); 1849 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 1850 emitDebugInfoForGlobal(G, GVSym); 1851 endCVSubsection(EndLabel); 1852 } 1853 } 1854 } 1855 } 1856 } 1857 1858 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 1859 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 1860 for (const MDNode *Node : CUs->operands()) { 1861 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 1862 if (DIType *RT = dyn_cast<DIType>(Ty)) { 1863 getTypeIndex(RT); 1864 // FIXME: Add to global/local DTU list. 1865 } 1866 } 1867 } 1868 } 1869 1870 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 1871 MCSymbol *GVSym) { 1872 // DataSym record, see SymbolRecord.h for more info. 1873 // FIXME: Thread local data, etc 1874 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 1875 *DataEnd = MMI->getContext().createTempSymbol(); 1876 OS.AddComment("Record length"); 1877 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 1878 OS.EmitLabel(DataBegin); 1879 OS.AddComment("Record kind: S_GDATA32"); 1880 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 1881 OS.AddComment("Type"); 1882 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 1883 OS.AddComment("DataOffset"); 1884 OS.EmitCOFFSecRel32(GVSym); 1885 OS.AddComment("Segment"); 1886 OS.EmitCOFFSectionIndex(GVSym); 1887 OS.AddComment("Name"); 1888 emitNullTerminatedSymbolName(OS, DIGV->getName()); 1889 OS.EmitLabel(DataEnd); 1890 } 1891