1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/BinaryFormat/COFF.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/AsmPrinter.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/EnumTables.h" 48 #include "llvm/DebugInfo/CodeView/Line.h" 49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 51 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 52 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfoMetadata.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GlobalValue.h" 61 #include "llvm/IR/GlobalVariable.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCContext.h" 66 #include "llvm/MC/MCSectionCOFF.h" 67 #include "llvm/MC/MCStreamer.h" 68 #include "llvm/MC/MCSymbol.h" 69 #include "llvm/Support/BinaryByteStream.h" 70 #include "llvm/Support/BinaryStreamReader.h" 71 #include "llvm/Support/BinaryStreamWriter.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/Endian.h" 76 #include "llvm/Support/Error.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/FormatVariadic.h" 79 #include "llvm/Support/Path.h" 80 #include "llvm/Support/SMLoc.h" 81 #include "llvm/Support/ScopedPrinter.h" 82 #include "llvm/Target/TargetLoweringObjectFile.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cctype> 87 #include <cstddef> 88 #include <cstdint> 89 #include <iterator> 90 #include <limits> 91 #include <string> 92 #include <utility> 93 #include <vector> 94 95 using namespace llvm; 96 using namespace llvm::codeview; 97 98 namespace { 99 class CVMCAdapter : public CodeViewRecordStreamer { 100 public: 101 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 102 : OS(&OS), TypeTable(TypeTable) {} 103 104 void EmitBytes(StringRef Data) { OS->EmitBytes(Data); } 105 106 void EmitIntValue(uint64_t Value, unsigned Size) { 107 OS->EmitIntValueInHex(Value, Size); 108 } 109 110 void EmitBinaryData(StringRef Data) { OS->EmitBinaryData(Data); } 111 112 void AddComment(const Twine &T) { OS->AddComment(T); } 113 114 void AddRawComment(const Twine &T) { OS->emitRawComment(T); } 115 116 bool isVerboseAsm() { return OS->isVerboseAsm(); } 117 118 std::string getTypeName(TypeIndex TI) { 119 std::string TypeName; 120 if (!TI.isNoneType()) { 121 if (TI.isSimple()) 122 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 123 else 124 TypeName = std::string(TypeTable.getTypeName(TI)); 125 } 126 return TypeName; 127 } 128 129 private: 130 MCStreamer *OS = nullptr; 131 TypeCollection &TypeTable; 132 }; 133 } // namespace 134 135 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 136 switch (Type) { 137 case Triple::ArchType::x86: 138 return CPUType::Pentium3; 139 case Triple::ArchType::x86_64: 140 return CPUType::X64; 141 case Triple::ArchType::thumb: 142 return CPUType::Thumb; 143 case Triple::ArchType::aarch64: 144 return CPUType::ARM64; 145 default: 146 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 147 } 148 } 149 150 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 151 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 152 // If module doesn't have named metadata anchors or COFF debug section 153 // is not available, skip any debug info related stuff. 154 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 155 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 156 Asm = nullptr; 157 MMI->setDebugInfoAvailability(false); 158 return; 159 } 160 // Tell MMI that we have debug info. 161 MMI->setDebugInfoAvailability(true); 162 163 TheCPU = 164 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 165 166 collectGlobalVariableInfo(); 167 168 // Check if we should emit type record hashes. 169 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 170 MMI->getModule()->getModuleFlag("CodeViewGHash")); 171 EmitDebugGlobalHashes = GH && !GH->isZero(); 172 } 173 174 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 175 std::string &Filepath = FileToFilepathMap[File]; 176 if (!Filepath.empty()) 177 return Filepath; 178 179 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 180 181 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 182 // it textually because one of the path components could be a symlink. 183 if (Dir.startswith("/") || Filename.startswith("/")) { 184 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 185 return Filename; 186 Filepath = std::string(Dir); 187 if (Dir.back() != '/') 188 Filepath += '/'; 189 Filepath += Filename; 190 return Filepath; 191 } 192 193 // Clang emits directory and relative filename info into the IR, but CodeView 194 // operates on full paths. We could change Clang to emit full paths too, but 195 // that would increase the IR size and probably not needed for other users. 196 // For now, just concatenate and canonicalize the path here. 197 if (Filename.find(':') == 1) 198 Filepath = std::string(Filename); 199 else 200 Filepath = (Dir + "\\" + Filename).str(); 201 202 // Canonicalize the path. We have to do it textually because we may no longer 203 // have access the file in the filesystem. 204 // First, replace all slashes with backslashes. 205 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 206 207 // Remove all "\.\" with "\". 208 size_t Cursor = 0; 209 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 210 Filepath.erase(Cursor, 2); 211 212 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 213 // path should be well-formatted, e.g. start with a drive letter, etc. 214 Cursor = 0; 215 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 216 // Something's wrong if the path starts with "\..\", abort. 217 if (Cursor == 0) 218 break; 219 220 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 221 if (PrevSlash == std::string::npos) 222 // Something's wrong, abort. 223 break; 224 225 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 226 // The next ".." might be following the one we've just erased. 227 Cursor = PrevSlash; 228 } 229 230 // Remove all duplicate backslashes. 231 Cursor = 0; 232 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 233 Filepath.erase(Cursor, 1); 234 235 return Filepath; 236 } 237 238 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 239 StringRef FullPath = getFullFilepath(F); 240 unsigned NextId = FileIdMap.size() + 1; 241 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 242 if (Insertion.second) { 243 // We have to compute the full filepath and emit a .cv_file directive. 244 ArrayRef<uint8_t> ChecksumAsBytes; 245 FileChecksumKind CSKind = FileChecksumKind::None; 246 if (F->getChecksum()) { 247 std::string Checksum = fromHex(F->getChecksum()->Value); 248 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 249 memcpy(CKMem, Checksum.data(), Checksum.size()); 250 ChecksumAsBytes = ArrayRef<uint8_t>( 251 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 252 switch (F->getChecksum()->Kind) { 253 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 254 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 255 } 256 } 257 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 258 static_cast<unsigned>(CSKind)); 259 (void)Success; 260 assert(Success && ".cv_file directive failed"); 261 } 262 return Insertion.first->second; 263 } 264 265 CodeViewDebug::InlineSite & 266 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 267 const DISubprogram *Inlinee) { 268 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 269 InlineSite *Site = &SiteInsertion.first->second; 270 if (SiteInsertion.second) { 271 unsigned ParentFuncId = CurFn->FuncId; 272 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 273 ParentFuncId = 274 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 275 .SiteFuncId; 276 277 Site->SiteFuncId = NextFuncId++; 278 OS.EmitCVInlineSiteIdDirective( 279 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 280 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 281 Site->Inlinee = Inlinee; 282 InlinedSubprograms.insert(Inlinee); 283 getFuncIdForSubprogram(Inlinee); 284 } 285 return *Site; 286 } 287 288 static StringRef getPrettyScopeName(const DIScope *Scope) { 289 StringRef ScopeName = Scope->getName(); 290 if (!ScopeName.empty()) 291 return ScopeName; 292 293 switch (Scope->getTag()) { 294 case dwarf::DW_TAG_enumeration_type: 295 case dwarf::DW_TAG_class_type: 296 case dwarf::DW_TAG_structure_type: 297 case dwarf::DW_TAG_union_type: 298 return "<unnamed-tag>"; 299 case dwarf::DW_TAG_namespace: 300 return "`anonymous namespace'"; 301 } 302 303 return StringRef(); 304 } 305 306 static const DISubprogram *getQualifiedNameComponents( 307 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 308 const DISubprogram *ClosestSubprogram = nullptr; 309 while (Scope != nullptr) { 310 if (ClosestSubprogram == nullptr) 311 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 312 StringRef ScopeName = getPrettyScopeName(Scope); 313 if (!ScopeName.empty()) 314 QualifiedNameComponents.push_back(ScopeName); 315 Scope = Scope->getScope(); 316 } 317 return ClosestSubprogram; 318 } 319 320 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 321 StringRef TypeName) { 322 std::string FullyQualifiedName; 323 for (StringRef QualifiedNameComponent : 324 llvm::reverse(QualifiedNameComponents)) { 325 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 326 FullyQualifiedName.append("::"); 327 } 328 FullyQualifiedName.append(std::string(TypeName)); 329 return FullyQualifiedName; 330 } 331 332 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 333 SmallVector<StringRef, 5> QualifiedNameComponents; 334 getQualifiedNameComponents(Scope, QualifiedNameComponents); 335 return getQualifiedName(QualifiedNameComponents, Name); 336 } 337 338 struct CodeViewDebug::TypeLoweringScope { 339 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 340 ~TypeLoweringScope() { 341 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 342 // inner TypeLoweringScopes don't attempt to emit deferred types. 343 if (CVD.TypeEmissionLevel == 1) 344 CVD.emitDeferredCompleteTypes(); 345 --CVD.TypeEmissionLevel; 346 } 347 CodeViewDebug &CVD; 348 }; 349 350 static std::string getFullyQualifiedName(const DIScope *Ty) { 351 const DIScope *Scope = Ty->getScope(); 352 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 353 } 354 355 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 356 // No scope means global scope and that uses the zero index. 357 if (!Scope || isa<DIFile>(Scope)) 358 return TypeIndex(); 359 360 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 361 362 // Check if we've already translated this scope. 363 auto I = TypeIndices.find({Scope, nullptr}); 364 if (I != TypeIndices.end()) 365 return I->second; 366 367 // Build the fully qualified name of the scope. 368 std::string ScopeName = getFullyQualifiedName(Scope); 369 StringIdRecord SID(TypeIndex(), ScopeName); 370 auto TI = TypeTable.writeLeafType(SID); 371 return recordTypeIndexForDINode(Scope, TI); 372 } 373 374 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 375 assert(SP); 376 377 // Check if we've already translated this subprogram. 378 auto I = TypeIndices.find({SP, nullptr}); 379 if (I != TypeIndices.end()) 380 return I->second; 381 382 // The display name includes function template arguments. Drop them to match 383 // MSVC. 384 StringRef DisplayName = SP->getName().split('<').first; 385 386 const DIScope *Scope = SP->getScope(); 387 TypeIndex TI; 388 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 389 // If the scope is a DICompositeType, then this must be a method. Member 390 // function types take some special handling, and require access to the 391 // subprogram. 392 TypeIndex ClassType = getTypeIndex(Class); 393 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 394 DisplayName); 395 TI = TypeTable.writeLeafType(MFuncId); 396 } else { 397 // Otherwise, this must be a free function. 398 TypeIndex ParentScope = getScopeIndex(Scope); 399 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 400 TI = TypeTable.writeLeafType(FuncId); 401 } 402 403 return recordTypeIndexForDINode(SP, TI); 404 } 405 406 static bool isNonTrivial(const DICompositeType *DCTy) { 407 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 408 } 409 410 static FunctionOptions 411 getFunctionOptions(const DISubroutineType *Ty, 412 const DICompositeType *ClassTy = nullptr, 413 StringRef SPName = StringRef("")) { 414 FunctionOptions FO = FunctionOptions::None; 415 const DIType *ReturnTy = nullptr; 416 if (auto TypeArray = Ty->getTypeArray()) { 417 if (TypeArray.size()) 418 ReturnTy = TypeArray[0]; 419 } 420 421 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 422 if (isNonTrivial(ReturnDCTy)) 423 FO |= FunctionOptions::CxxReturnUdt; 424 } 425 426 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 427 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 428 FO |= FunctionOptions::Constructor; 429 430 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 431 432 } 433 return FO; 434 } 435 436 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 437 const DICompositeType *Class) { 438 // Always use the method declaration as the key for the function type. The 439 // method declaration contains the this adjustment. 440 if (SP->getDeclaration()) 441 SP = SP->getDeclaration(); 442 assert(!SP->getDeclaration() && "should use declaration as key"); 443 444 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 445 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 446 auto I = TypeIndices.find({SP, Class}); 447 if (I != TypeIndices.end()) 448 return I->second; 449 450 // Make sure complete type info for the class is emitted *after* the member 451 // function type, as the complete class type is likely to reference this 452 // member function type. 453 TypeLoweringScope S(*this); 454 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 455 456 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 457 TypeIndex TI = lowerTypeMemberFunction( 458 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 459 return recordTypeIndexForDINode(SP, TI, Class); 460 } 461 462 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 463 TypeIndex TI, 464 const DIType *ClassTy) { 465 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 466 (void)InsertResult; 467 assert(InsertResult.second && "DINode was already assigned a type index"); 468 return TI; 469 } 470 471 unsigned CodeViewDebug::getPointerSizeInBytes() { 472 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 473 } 474 475 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 476 const LexicalScope *LS) { 477 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 478 // This variable was inlined. Associate it with the InlineSite. 479 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 480 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 481 Site.InlinedLocals.emplace_back(Var); 482 } else { 483 // This variable goes into the corresponding lexical scope. 484 ScopeVariables[LS].emplace_back(Var); 485 } 486 } 487 488 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 489 const DILocation *Loc) { 490 auto B = Locs.begin(), E = Locs.end(); 491 if (std::find(B, E, Loc) == E) 492 Locs.push_back(Loc); 493 } 494 495 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 496 const MachineFunction *MF) { 497 // Skip this instruction if it has the same location as the previous one. 498 if (!DL || DL == PrevInstLoc) 499 return; 500 501 const DIScope *Scope = DL.get()->getScope(); 502 if (!Scope) 503 return; 504 505 // Skip this line if it is longer than the maximum we can record. 506 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 507 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 508 LI.isNeverStepInto()) 509 return; 510 511 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 512 if (CI.getStartColumn() != DL.getCol()) 513 return; 514 515 if (!CurFn->HaveLineInfo) 516 CurFn->HaveLineInfo = true; 517 unsigned FileId = 0; 518 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 519 FileId = CurFn->LastFileId; 520 else 521 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 522 PrevInstLoc = DL; 523 524 unsigned FuncId = CurFn->FuncId; 525 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 526 const DILocation *Loc = DL.get(); 527 528 // If this location was actually inlined from somewhere else, give it the ID 529 // of the inline call site. 530 FuncId = 531 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 532 533 // Ensure we have links in the tree of inline call sites. 534 bool FirstLoc = true; 535 while ((SiteLoc = Loc->getInlinedAt())) { 536 InlineSite &Site = 537 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 538 if (!FirstLoc) 539 addLocIfNotPresent(Site.ChildSites, Loc); 540 FirstLoc = false; 541 Loc = SiteLoc; 542 } 543 addLocIfNotPresent(CurFn->ChildSites, Loc); 544 } 545 546 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 547 /*PrologueEnd=*/false, /*IsStmt=*/false, 548 DL->getFilename(), SMLoc()); 549 } 550 551 void CodeViewDebug::emitCodeViewMagicVersion() { 552 OS.EmitValueToAlignment(4); 553 OS.AddComment("Debug section magic"); 554 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 555 } 556 557 void CodeViewDebug::endModule() { 558 if (!Asm || !MMI->hasDebugInfo()) 559 return; 560 561 assert(Asm != nullptr); 562 563 // The COFF .debug$S section consists of several subsections, each starting 564 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 565 // of the payload followed by the payload itself. The subsections are 4-byte 566 // aligned. 567 568 // Use the generic .debug$S section, and make a subsection for all the inlined 569 // subprograms. 570 switchToDebugSectionForSymbol(nullptr); 571 572 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 573 emitCompilerInformation(); 574 endCVSubsection(CompilerInfo); 575 576 emitInlineeLinesSubsection(); 577 578 // Emit per-function debug information. 579 for (auto &P : FnDebugInfo) 580 if (!P.first->isDeclarationForLinker()) 581 emitDebugInfoForFunction(P.first, *P.second); 582 583 // Emit global variable debug information. 584 setCurrentSubprogram(nullptr); 585 emitDebugInfoForGlobals(); 586 587 // Emit retained types. 588 emitDebugInfoForRetainedTypes(); 589 590 // Switch back to the generic .debug$S section after potentially processing 591 // comdat symbol sections. 592 switchToDebugSectionForSymbol(nullptr); 593 594 // Emit UDT records for any types used by global variables. 595 if (!GlobalUDTs.empty()) { 596 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 597 emitDebugInfoForUDTs(GlobalUDTs); 598 endCVSubsection(SymbolsEnd); 599 } 600 601 // This subsection holds a file index to offset in string table table. 602 OS.AddComment("File index to string table offset subsection"); 603 OS.EmitCVFileChecksumsDirective(); 604 605 // This subsection holds the string table. 606 OS.AddComment("String table"); 607 OS.EmitCVStringTableDirective(); 608 609 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 610 // subsection in the generic .debug$S section at the end. There is no 611 // particular reason for this ordering other than to match MSVC. 612 emitBuildInfo(); 613 614 // Emit type information and hashes last, so that any types we translate while 615 // emitting function info are included. 616 emitTypeInformation(); 617 618 if (EmitDebugGlobalHashes) 619 emitTypeGlobalHashes(); 620 621 clear(); 622 } 623 624 static void 625 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 626 unsigned MaxFixedRecordLength = 0xF00) { 627 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 628 // after a fixed length portion of the record. The fixed length portion should 629 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 630 // overall record size is less than the maximum allowed. 631 SmallString<32> NullTerminatedString( 632 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 633 NullTerminatedString.push_back('\0'); 634 OS.EmitBytes(NullTerminatedString); 635 } 636 637 void CodeViewDebug::emitTypeInformation() { 638 if (TypeTable.empty()) 639 return; 640 641 // Start the .debug$T or .debug$P section with 0x4. 642 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 643 emitCodeViewMagicVersion(); 644 645 TypeTableCollection Table(TypeTable.records()); 646 TypeVisitorCallbackPipeline Pipeline; 647 648 // To emit type record using Codeview MCStreamer adapter 649 CVMCAdapter CVMCOS(OS, Table); 650 TypeRecordMapping typeMapping(CVMCOS); 651 Pipeline.addCallbackToPipeline(typeMapping); 652 653 Optional<TypeIndex> B = Table.getFirst(); 654 while (B) { 655 // This will fail if the record data is invalid. 656 CVType Record = Table.getType(*B); 657 658 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 659 660 if (E) { 661 logAllUnhandledErrors(std::move(E), errs(), "error: "); 662 llvm_unreachable("produced malformed type record"); 663 } 664 665 B = Table.getNext(*B); 666 } 667 } 668 669 void CodeViewDebug::emitTypeGlobalHashes() { 670 if (TypeTable.empty()) 671 return; 672 673 // Start the .debug$H section with the version and hash algorithm, currently 674 // hardcoded to version 0, SHA1. 675 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 676 677 OS.EmitValueToAlignment(4); 678 OS.AddComment("Magic"); 679 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 680 OS.AddComment("Section Version"); 681 OS.EmitIntValue(0, 2); 682 OS.AddComment("Hash Algorithm"); 683 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 684 685 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 686 for (const auto &GHR : TypeTable.hashes()) { 687 if (OS.isVerboseAsm()) { 688 // Emit an EOL-comment describing which TypeIndex this hash corresponds 689 // to, as well as the stringified SHA1 hash. 690 SmallString<32> Comment; 691 raw_svector_ostream CommentOS(Comment); 692 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 693 OS.AddComment(Comment); 694 ++TI; 695 } 696 assert(GHR.Hash.size() == 8); 697 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 698 GHR.Hash.size()); 699 OS.EmitBinaryData(S); 700 } 701 } 702 703 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 704 switch (DWLang) { 705 case dwarf::DW_LANG_C: 706 case dwarf::DW_LANG_C89: 707 case dwarf::DW_LANG_C99: 708 case dwarf::DW_LANG_C11: 709 case dwarf::DW_LANG_ObjC: 710 return SourceLanguage::C; 711 case dwarf::DW_LANG_C_plus_plus: 712 case dwarf::DW_LANG_C_plus_plus_03: 713 case dwarf::DW_LANG_C_plus_plus_11: 714 case dwarf::DW_LANG_C_plus_plus_14: 715 return SourceLanguage::Cpp; 716 case dwarf::DW_LANG_Fortran77: 717 case dwarf::DW_LANG_Fortran90: 718 case dwarf::DW_LANG_Fortran03: 719 case dwarf::DW_LANG_Fortran08: 720 return SourceLanguage::Fortran; 721 case dwarf::DW_LANG_Pascal83: 722 return SourceLanguage::Pascal; 723 case dwarf::DW_LANG_Cobol74: 724 case dwarf::DW_LANG_Cobol85: 725 return SourceLanguage::Cobol; 726 case dwarf::DW_LANG_Java: 727 return SourceLanguage::Java; 728 case dwarf::DW_LANG_D: 729 return SourceLanguage::D; 730 case dwarf::DW_LANG_Swift: 731 return SourceLanguage::Swift; 732 default: 733 // There's no CodeView representation for this language, and CV doesn't 734 // have an "unknown" option for the language field, so we'll use MASM, 735 // as it's very low level. 736 return SourceLanguage::Masm; 737 } 738 } 739 740 namespace { 741 struct Version { 742 int Part[4]; 743 }; 744 } // end anonymous namespace 745 746 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 747 // the version number. 748 static Version parseVersion(StringRef Name) { 749 Version V = {{0}}; 750 int N = 0; 751 for (const char C : Name) { 752 if (isdigit(C)) { 753 V.Part[N] *= 10; 754 V.Part[N] += C - '0'; 755 } else if (C == '.') { 756 ++N; 757 if (N >= 4) 758 return V; 759 } else if (N > 0) 760 return V; 761 } 762 return V; 763 } 764 765 void CodeViewDebug::emitCompilerInformation() { 766 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 767 uint32_t Flags = 0; 768 769 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 770 const MDNode *Node = *CUs->operands().begin(); 771 const auto *CU = cast<DICompileUnit>(Node); 772 773 // The low byte of the flags indicates the source language. 774 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 775 // TODO: Figure out which other flags need to be set. 776 777 OS.AddComment("Flags and language"); 778 OS.EmitIntValue(Flags, 4); 779 780 OS.AddComment("CPUType"); 781 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 782 783 StringRef CompilerVersion = CU->getProducer(); 784 Version FrontVer = parseVersion(CompilerVersion); 785 OS.AddComment("Frontend version"); 786 for (int N = 0; N < 4; ++N) 787 OS.EmitIntValue(FrontVer.Part[N], 2); 788 789 // Some Microsoft tools, like Binscope, expect a backend version number of at 790 // least 8.something, so we'll coerce the LLVM version into a form that 791 // guarantees it'll be big enough without really lying about the version. 792 int Major = 1000 * LLVM_VERSION_MAJOR + 793 10 * LLVM_VERSION_MINOR + 794 LLVM_VERSION_PATCH; 795 // Clamp it for builds that use unusually large version numbers. 796 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 797 Version BackVer = {{ Major, 0, 0, 0 }}; 798 OS.AddComment("Backend version"); 799 for (int N = 0; N < 4; ++N) 800 OS.EmitIntValue(BackVer.Part[N], 2); 801 802 OS.AddComment("Null-terminated compiler version string"); 803 emitNullTerminatedSymbolName(OS, CompilerVersion); 804 805 endSymbolRecord(CompilerEnd); 806 } 807 808 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 809 StringRef S) { 810 StringIdRecord SIR(TypeIndex(0x0), S); 811 return TypeTable.writeLeafType(SIR); 812 } 813 814 void CodeViewDebug::emitBuildInfo() { 815 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 816 // build info. The known prefix is: 817 // - Absolute path of current directory 818 // - Compiler path 819 // - Main source file path, relative to CWD or absolute 820 // - Type server PDB file 821 // - Canonical compiler command line 822 // If frontend and backend compilation are separated (think llc or LTO), it's 823 // not clear if the compiler path should refer to the executable for the 824 // frontend or the backend. Leave it blank for now. 825 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 826 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 827 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 828 const auto *CU = cast<DICompileUnit>(Node); 829 const DIFile *MainSourceFile = CU->getFile(); 830 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 831 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 832 BuildInfoArgs[BuildInfoRecord::SourceFile] = 833 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 834 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 835 // we implement /Zi type servers. 836 BuildInfoRecord BIR(BuildInfoArgs); 837 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 838 839 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 840 // from the module symbols into the type stream. 841 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 842 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 843 OS.AddComment("LF_BUILDINFO index"); 844 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 845 endSymbolRecord(BIEnd); 846 endCVSubsection(BISubsecEnd); 847 } 848 849 void CodeViewDebug::emitInlineeLinesSubsection() { 850 if (InlinedSubprograms.empty()) 851 return; 852 853 OS.AddComment("Inlinee lines subsection"); 854 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 855 856 // We emit the checksum info for files. This is used by debuggers to 857 // determine if a pdb matches the source before loading it. Visual Studio, 858 // for instance, will display a warning that the breakpoints are not valid if 859 // the pdb does not match the source. 860 OS.AddComment("Inlinee lines signature"); 861 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 862 863 for (const DISubprogram *SP : InlinedSubprograms) { 864 assert(TypeIndices.count({SP, nullptr})); 865 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 866 867 OS.AddBlankLine(); 868 unsigned FileId = maybeRecordFile(SP->getFile()); 869 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 870 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 871 OS.AddBlankLine(); 872 OS.AddComment("Type index of inlined function"); 873 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 874 OS.AddComment("Offset into filechecksum table"); 875 OS.EmitCVFileChecksumOffsetDirective(FileId); 876 OS.AddComment("Starting line number"); 877 OS.EmitIntValue(SP->getLine(), 4); 878 } 879 880 endCVSubsection(InlineEnd); 881 } 882 883 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 884 const DILocation *InlinedAt, 885 const InlineSite &Site) { 886 assert(TypeIndices.count({Site.Inlinee, nullptr})); 887 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 888 889 // SymbolRecord 890 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 891 892 OS.AddComment("PtrParent"); 893 OS.EmitIntValue(0, 4); 894 OS.AddComment("PtrEnd"); 895 OS.EmitIntValue(0, 4); 896 OS.AddComment("Inlinee type index"); 897 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 898 899 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 900 unsigned StartLineNum = Site.Inlinee->getLine(); 901 902 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 903 FI.Begin, FI.End); 904 905 endSymbolRecord(InlineEnd); 906 907 emitLocalVariableList(FI, Site.InlinedLocals); 908 909 // Recurse on child inlined call sites before closing the scope. 910 for (const DILocation *ChildSite : Site.ChildSites) { 911 auto I = FI.InlineSites.find(ChildSite); 912 assert(I != FI.InlineSites.end() && 913 "child site not in function inline site map"); 914 emitInlinedCallSite(FI, ChildSite, I->second); 915 } 916 917 // Close the scope. 918 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 919 } 920 921 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 922 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 923 // comdat key. A section may be comdat because of -ffunction-sections or 924 // because it is comdat in the IR. 925 MCSectionCOFF *GVSec = 926 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 927 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 928 929 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 930 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 931 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 932 933 OS.SwitchSection(DebugSec); 934 935 // Emit the magic version number if this is the first time we've switched to 936 // this section. 937 if (ComdatDebugSections.insert(DebugSec).second) 938 emitCodeViewMagicVersion(); 939 } 940 941 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 942 // The only supported thunk ordinal is currently the standard type. 943 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 944 FunctionInfo &FI, 945 const MCSymbol *Fn) { 946 std::string FuncName = 947 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 948 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 949 950 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 951 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 952 953 // Emit S_THUNK32 954 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 955 OS.AddComment("PtrParent"); 956 OS.EmitIntValue(0, 4); 957 OS.AddComment("PtrEnd"); 958 OS.EmitIntValue(0, 4); 959 OS.AddComment("PtrNext"); 960 OS.EmitIntValue(0, 4); 961 OS.AddComment("Thunk section relative address"); 962 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 963 OS.AddComment("Thunk section index"); 964 OS.EmitCOFFSectionIndex(Fn); 965 OS.AddComment("Code size"); 966 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 967 OS.AddComment("Ordinal"); 968 OS.EmitIntValue(unsigned(ordinal), 1); 969 OS.AddComment("Function name"); 970 emitNullTerminatedSymbolName(OS, FuncName); 971 // Additional fields specific to the thunk ordinal would go here. 972 endSymbolRecord(ThunkRecordEnd); 973 974 // Local variables/inlined routines are purposely omitted here. The point of 975 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 976 977 // Emit S_PROC_ID_END 978 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 979 980 endCVSubsection(SymbolsEnd); 981 } 982 983 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 984 FunctionInfo &FI) { 985 // For each function there is a separate subsection which holds the PC to 986 // file:line table. 987 const MCSymbol *Fn = Asm->getSymbol(GV); 988 assert(Fn); 989 990 // Switch to the to a comdat section, if appropriate. 991 switchToDebugSectionForSymbol(Fn); 992 993 std::string FuncName; 994 auto *SP = GV->getSubprogram(); 995 assert(SP); 996 setCurrentSubprogram(SP); 997 998 if (SP->isThunk()) { 999 emitDebugInfoForThunk(GV, FI, Fn); 1000 return; 1001 } 1002 1003 // If we have a display name, build the fully qualified name by walking the 1004 // chain of scopes. 1005 if (!SP->getName().empty()) 1006 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1007 1008 // If our DISubprogram name is empty, use the mangled name. 1009 if (FuncName.empty()) 1010 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1011 1012 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1013 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1014 OS.EmitCVFPOData(Fn); 1015 1016 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1017 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1018 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1019 { 1020 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1021 : SymbolKind::S_GPROC32_ID; 1022 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1023 1024 // These fields are filled in by tools like CVPACK which run after the fact. 1025 OS.AddComment("PtrParent"); 1026 OS.EmitIntValue(0, 4); 1027 OS.AddComment("PtrEnd"); 1028 OS.EmitIntValue(0, 4); 1029 OS.AddComment("PtrNext"); 1030 OS.EmitIntValue(0, 4); 1031 // This is the important bit that tells the debugger where the function 1032 // code is located and what's its size: 1033 OS.AddComment("Code size"); 1034 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1035 OS.AddComment("Offset after prologue"); 1036 OS.EmitIntValue(0, 4); 1037 OS.AddComment("Offset before epilogue"); 1038 OS.EmitIntValue(0, 4); 1039 OS.AddComment("Function type index"); 1040 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1041 OS.AddComment("Function section relative address"); 1042 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1043 OS.AddComment("Function section index"); 1044 OS.EmitCOFFSectionIndex(Fn); 1045 OS.AddComment("Flags"); 1046 OS.EmitIntValue(0, 1); 1047 // Emit the function display name as a null-terminated string. 1048 OS.AddComment("Function name"); 1049 // Truncate the name so we won't overflow the record length field. 1050 emitNullTerminatedSymbolName(OS, FuncName); 1051 endSymbolRecord(ProcRecordEnd); 1052 1053 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1054 // Subtract out the CSR size since MSVC excludes that and we include it. 1055 OS.AddComment("FrameSize"); 1056 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1057 OS.AddComment("Padding"); 1058 OS.EmitIntValue(0, 4); 1059 OS.AddComment("Offset of padding"); 1060 OS.EmitIntValue(0, 4); 1061 OS.AddComment("Bytes of callee saved registers"); 1062 OS.EmitIntValue(FI.CSRSize, 4); 1063 OS.AddComment("Exception handler offset"); 1064 OS.EmitIntValue(0, 4); 1065 OS.AddComment("Exception handler section"); 1066 OS.EmitIntValue(0, 2); 1067 OS.AddComment("Flags (defines frame register)"); 1068 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1069 endSymbolRecord(FrameProcEnd); 1070 1071 emitLocalVariableList(FI, FI.Locals); 1072 emitGlobalVariableList(FI.Globals); 1073 emitLexicalBlockList(FI.ChildBlocks, FI); 1074 1075 // Emit inlined call site information. Only emit functions inlined directly 1076 // into the parent function. We'll emit the other sites recursively as part 1077 // of their parent inline site. 1078 for (const DILocation *InlinedAt : FI.ChildSites) { 1079 auto I = FI.InlineSites.find(InlinedAt); 1080 assert(I != FI.InlineSites.end() && 1081 "child site not in function inline site map"); 1082 emitInlinedCallSite(FI, InlinedAt, I->second); 1083 } 1084 1085 for (auto Annot : FI.Annotations) { 1086 MCSymbol *Label = Annot.first; 1087 MDTuple *Strs = cast<MDTuple>(Annot.second); 1088 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1089 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1090 // FIXME: Make sure we don't overflow the max record size. 1091 OS.EmitCOFFSectionIndex(Label); 1092 OS.EmitIntValue(Strs->getNumOperands(), 2); 1093 for (Metadata *MD : Strs->operands()) { 1094 // MDStrings are null terminated, so we can do EmitBytes and get the 1095 // nice .asciz directive. 1096 StringRef Str = cast<MDString>(MD)->getString(); 1097 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1098 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1099 } 1100 endSymbolRecord(AnnotEnd); 1101 } 1102 1103 for (auto HeapAllocSite : FI.HeapAllocSites) { 1104 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1105 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1106 const DIType *DITy = std::get<2>(HeapAllocSite); 1107 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1108 OS.AddComment("Call site offset"); 1109 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1110 OS.AddComment("Call site section index"); 1111 OS.EmitCOFFSectionIndex(BeginLabel); 1112 OS.AddComment("Call instruction length"); 1113 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1114 OS.AddComment("Type index"); 1115 OS.EmitIntValue(getCompleteTypeIndex(DITy).getIndex(), 4); 1116 endSymbolRecord(HeapAllocEnd); 1117 } 1118 1119 if (SP != nullptr) 1120 emitDebugInfoForUDTs(LocalUDTs); 1121 1122 // We're done with this function. 1123 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1124 } 1125 endCVSubsection(SymbolsEnd); 1126 1127 // We have an assembler directive that takes care of the whole line table. 1128 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1129 } 1130 1131 CodeViewDebug::LocalVarDefRange 1132 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1133 LocalVarDefRange DR; 1134 DR.InMemory = -1; 1135 DR.DataOffset = Offset; 1136 assert(DR.DataOffset == Offset && "truncation"); 1137 DR.IsSubfield = 0; 1138 DR.StructOffset = 0; 1139 DR.CVRegister = CVRegister; 1140 return DR; 1141 } 1142 1143 void CodeViewDebug::collectVariableInfoFromMFTable( 1144 DenseSet<InlinedEntity> &Processed) { 1145 const MachineFunction &MF = *Asm->MF; 1146 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1147 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1148 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1149 1150 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1151 if (!VI.Var) 1152 continue; 1153 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1154 "Expected inlined-at fields to agree"); 1155 1156 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1157 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1158 1159 // If variable scope is not found then skip this variable. 1160 if (!Scope) 1161 continue; 1162 1163 // If the variable has an attached offset expression, extract it. 1164 // FIXME: Try to handle DW_OP_deref as well. 1165 int64_t ExprOffset = 0; 1166 bool Deref = false; 1167 if (VI.Expr) { 1168 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1169 if (VI.Expr->getNumElements() == 1 && 1170 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1171 Deref = true; 1172 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1173 continue; 1174 } 1175 1176 // Get the frame register used and the offset. 1177 unsigned FrameReg = 0; 1178 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1179 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1180 1181 // Calculate the label ranges. 1182 LocalVarDefRange DefRange = 1183 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1184 1185 for (const InsnRange &Range : Scope->getRanges()) { 1186 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1187 const MCSymbol *End = getLabelAfterInsn(Range.second); 1188 End = End ? End : Asm->getFunctionEnd(); 1189 DefRange.Ranges.emplace_back(Begin, End); 1190 } 1191 1192 LocalVariable Var; 1193 Var.DIVar = VI.Var; 1194 Var.DefRanges.emplace_back(std::move(DefRange)); 1195 if (Deref) 1196 Var.UseReferenceType = true; 1197 1198 recordLocalVariable(std::move(Var), Scope); 1199 } 1200 } 1201 1202 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1203 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1204 } 1205 1206 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1207 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1208 } 1209 1210 void CodeViewDebug::calculateRanges( 1211 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1212 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1213 1214 // Calculate the definition ranges. 1215 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1216 const auto &Entry = *I; 1217 if (!Entry.isDbgValue()) 1218 continue; 1219 const MachineInstr *DVInst = Entry.getInstr(); 1220 assert(DVInst->isDebugValue() && "Invalid History entry"); 1221 // FIXME: Find a way to represent constant variables, since they are 1222 // relatively common. 1223 Optional<DbgVariableLocation> Location = 1224 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1225 if (!Location) 1226 continue; 1227 1228 // CodeView can only express variables in register and variables in memory 1229 // at a constant offset from a register. However, for variables passed 1230 // indirectly by pointer, it is common for that pointer to be spilled to a 1231 // stack location. For the special case of one offseted load followed by a 1232 // zero offset load (a pointer spilled to the stack), we change the type of 1233 // the local variable from a value type to a reference type. This tricks the 1234 // debugger into doing the load for us. 1235 if (Var.UseReferenceType) { 1236 // We're using a reference type. Drop the last zero offset load. 1237 if (canUseReferenceType(*Location)) 1238 Location->LoadChain.pop_back(); 1239 else 1240 continue; 1241 } else if (needsReferenceType(*Location)) { 1242 // This location can't be expressed without switching to a reference type. 1243 // Start over using that. 1244 Var.UseReferenceType = true; 1245 Var.DefRanges.clear(); 1246 calculateRanges(Var, Entries); 1247 return; 1248 } 1249 1250 // We can only handle a register or an offseted load of a register. 1251 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1252 continue; 1253 { 1254 LocalVarDefRange DR; 1255 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1256 DR.InMemory = !Location->LoadChain.empty(); 1257 DR.DataOffset = 1258 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1259 if (Location->FragmentInfo) { 1260 DR.IsSubfield = true; 1261 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1262 } else { 1263 DR.IsSubfield = false; 1264 DR.StructOffset = 0; 1265 } 1266 1267 if (Var.DefRanges.empty() || 1268 Var.DefRanges.back().isDifferentLocation(DR)) { 1269 Var.DefRanges.emplace_back(std::move(DR)); 1270 } 1271 } 1272 1273 // Compute the label range. 1274 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1275 const MCSymbol *End; 1276 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1277 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1278 End = EndingEntry.isDbgValue() 1279 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1280 : getLabelAfterInsn(EndingEntry.getInstr()); 1281 } else 1282 End = Asm->getFunctionEnd(); 1283 1284 // If the last range end is our begin, just extend the last range. 1285 // Otherwise make a new range. 1286 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1287 Var.DefRanges.back().Ranges; 1288 if (!R.empty() && R.back().second == Begin) 1289 R.back().second = End; 1290 else 1291 R.emplace_back(Begin, End); 1292 1293 // FIXME: Do more range combining. 1294 } 1295 } 1296 1297 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1298 DenseSet<InlinedEntity> Processed; 1299 // Grab the variable info that was squirreled away in the MMI side-table. 1300 collectVariableInfoFromMFTable(Processed); 1301 1302 for (const auto &I : DbgValues) { 1303 InlinedEntity IV = I.first; 1304 if (Processed.count(IV)) 1305 continue; 1306 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1307 const DILocation *InlinedAt = IV.second; 1308 1309 // Instruction ranges, specifying where IV is accessible. 1310 const auto &Entries = I.second; 1311 1312 LexicalScope *Scope = nullptr; 1313 if (InlinedAt) 1314 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1315 else 1316 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1317 // If variable scope is not found then skip this variable. 1318 if (!Scope) 1319 continue; 1320 1321 LocalVariable Var; 1322 Var.DIVar = DIVar; 1323 1324 calculateRanges(Var, Entries); 1325 recordLocalVariable(std::move(Var), Scope); 1326 } 1327 } 1328 1329 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1330 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1331 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1332 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1333 const Function &GV = MF->getFunction(); 1334 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1335 assert(Insertion.second && "function already has info"); 1336 CurFn = Insertion.first->second.get(); 1337 CurFn->FuncId = NextFuncId++; 1338 CurFn->Begin = Asm->getFunctionBegin(); 1339 1340 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1341 // callee-saved registers were used. For targets that don't use a PUSH 1342 // instruction (AArch64), this will be zero. 1343 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1344 CurFn->FrameSize = MFI.getStackSize(); 1345 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1346 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1347 1348 // For this function S_FRAMEPROC record, figure out which codeview register 1349 // will be the frame pointer. 1350 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1351 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1352 if (CurFn->FrameSize > 0) { 1353 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1354 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1355 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1356 } else { 1357 // If there is an FP, parameters are always relative to it. 1358 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1359 if (CurFn->HasStackRealignment) { 1360 // If the stack needs realignment, locals are relative to SP or VFRAME. 1361 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1362 } else { 1363 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1364 // other stack adjustments. 1365 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1366 } 1367 } 1368 } 1369 1370 // Compute other frame procedure options. 1371 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1372 if (MFI.hasVarSizedObjects()) 1373 FPO |= FrameProcedureOptions::HasAlloca; 1374 if (MF->exposesReturnsTwice()) 1375 FPO |= FrameProcedureOptions::HasSetJmp; 1376 // FIXME: Set HasLongJmp if we ever track that info. 1377 if (MF->hasInlineAsm()) 1378 FPO |= FrameProcedureOptions::HasInlineAssembly; 1379 if (GV.hasPersonalityFn()) { 1380 if (isAsynchronousEHPersonality( 1381 classifyEHPersonality(GV.getPersonalityFn()))) 1382 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1383 else 1384 FPO |= FrameProcedureOptions::HasExceptionHandling; 1385 } 1386 if (GV.hasFnAttribute(Attribute::InlineHint)) 1387 FPO |= FrameProcedureOptions::MarkedInline; 1388 if (GV.hasFnAttribute(Attribute::Naked)) 1389 FPO |= FrameProcedureOptions::Naked; 1390 if (MFI.hasStackProtectorIndex()) 1391 FPO |= FrameProcedureOptions::SecurityChecks; 1392 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1393 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1394 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1395 !GV.hasOptSize() && !GV.hasOptNone()) 1396 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1397 // FIXME: Set GuardCfg when it is implemented. 1398 CurFn->FrameProcOpts = FPO; 1399 1400 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1401 1402 // Find the end of the function prolog. First known non-DBG_VALUE and 1403 // non-frame setup location marks the beginning of the function body. 1404 // FIXME: is there a simpler a way to do this? Can we just search 1405 // for the first instruction of the function, not the last of the prolog? 1406 DebugLoc PrologEndLoc; 1407 bool EmptyPrologue = true; 1408 for (const auto &MBB : *MF) { 1409 for (const auto &MI : MBB) { 1410 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1411 MI.getDebugLoc()) { 1412 PrologEndLoc = MI.getDebugLoc(); 1413 break; 1414 } else if (!MI.isMetaInstruction()) { 1415 EmptyPrologue = false; 1416 } 1417 } 1418 } 1419 1420 // Record beginning of function if we have a non-empty prologue. 1421 if (PrologEndLoc && !EmptyPrologue) { 1422 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1423 maybeRecordLocation(FnStartDL, MF); 1424 } 1425 1426 // Find heap alloc sites and emit labels around them. 1427 for (const auto &MBB : *MF) { 1428 for (const auto &MI : MBB) { 1429 if (MI.getHeapAllocMarker()) { 1430 requestLabelBeforeInsn(&MI); 1431 requestLabelAfterInsn(&MI); 1432 } 1433 } 1434 } 1435 } 1436 1437 static bool shouldEmitUdt(const DIType *T) { 1438 if (!T) 1439 return false; 1440 1441 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1442 if (T->getTag() == dwarf::DW_TAG_typedef) { 1443 if (DIScope *Scope = T->getScope()) { 1444 switch (Scope->getTag()) { 1445 case dwarf::DW_TAG_structure_type: 1446 case dwarf::DW_TAG_class_type: 1447 case dwarf::DW_TAG_union_type: 1448 return false; 1449 } 1450 } 1451 } 1452 1453 while (true) { 1454 if (!T || T->isForwardDecl()) 1455 return false; 1456 1457 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1458 if (!DT) 1459 return true; 1460 T = DT->getBaseType(); 1461 } 1462 return true; 1463 } 1464 1465 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1466 // Don't record empty UDTs. 1467 if (Ty->getName().empty()) 1468 return; 1469 if (!shouldEmitUdt(Ty)) 1470 return; 1471 1472 SmallVector<StringRef, 5> QualifiedNameComponents; 1473 const DISubprogram *ClosestSubprogram = 1474 getQualifiedNameComponents(Ty->getScope(), QualifiedNameComponents); 1475 1476 std::string FullyQualifiedName = 1477 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1478 1479 if (ClosestSubprogram == nullptr) { 1480 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1481 } else if (ClosestSubprogram == CurrentSubprogram) { 1482 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1483 } 1484 1485 // TODO: What if the ClosestSubprogram is neither null or the current 1486 // subprogram? Currently, the UDT just gets dropped on the floor. 1487 // 1488 // The current behavior is not desirable. To get maximal fidelity, we would 1489 // need to perform all type translation before beginning emission of .debug$S 1490 // and then make LocalUDTs a member of FunctionInfo 1491 } 1492 1493 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1494 // Generic dispatch for lowering an unknown type. 1495 switch (Ty->getTag()) { 1496 case dwarf::DW_TAG_array_type: 1497 return lowerTypeArray(cast<DICompositeType>(Ty)); 1498 case dwarf::DW_TAG_typedef: 1499 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1500 case dwarf::DW_TAG_base_type: 1501 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1502 case dwarf::DW_TAG_pointer_type: 1503 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1504 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1505 LLVM_FALLTHROUGH; 1506 case dwarf::DW_TAG_reference_type: 1507 case dwarf::DW_TAG_rvalue_reference_type: 1508 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1509 case dwarf::DW_TAG_ptr_to_member_type: 1510 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1511 case dwarf::DW_TAG_restrict_type: 1512 case dwarf::DW_TAG_const_type: 1513 case dwarf::DW_TAG_volatile_type: 1514 // TODO: add support for DW_TAG_atomic_type here 1515 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1516 case dwarf::DW_TAG_subroutine_type: 1517 if (ClassTy) { 1518 // The member function type of a member function pointer has no 1519 // ThisAdjustment. 1520 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1521 /*ThisAdjustment=*/0, 1522 /*IsStaticMethod=*/false); 1523 } 1524 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1525 case dwarf::DW_TAG_enumeration_type: 1526 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1527 case dwarf::DW_TAG_class_type: 1528 case dwarf::DW_TAG_structure_type: 1529 return lowerTypeClass(cast<DICompositeType>(Ty)); 1530 case dwarf::DW_TAG_union_type: 1531 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1532 case dwarf::DW_TAG_unspecified_type: 1533 if (Ty->getName() == "decltype(nullptr)") 1534 return TypeIndex::NullptrT(); 1535 return TypeIndex::None(); 1536 default: 1537 // Use the null type index. 1538 return TypeIndex(); 1539 } 1540 } 1541 1542 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1543 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1544 StringRef TypeName = Ty->getName(); 1545 1546 addToUDTs(Ty); 1547 1548 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1549 TypeName == "HRESULT") 1550 return TypeIndex(SimpleTypeKind::HResult); 1551 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1552 TypeName == "wchar_t") 1553 return TypeIndex(SimpleTypeKind::WideCharacter); 1554 1555 return UnderlyingTypeIndex; 1556 } 1557 1558 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1559 const DIType *ElementType = Ty->getBaseType(); 1560 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1561 // IndexType is size_t, which depends on the bitness of the target. 1562 TypeIndex IndexType = getPointerSizeInBytes() == 8 1563 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1564 : TypeIndex(SimpleTypeKind::UInt32Long); 1565 1566 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1567 1568 // Add subranges to array type. 1569 DINodeArray Elements = Ty->getElements(); 1570 for (int i = Elements.size() - 1; i >= 0; --i) { 1571 const DINode *Element = Elements[i]; 1572 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1573 1574 const DISubrange *Subrange = cast<DISubrange>(Element); 1575 assert(Subrange->getLowerBound() == 0 && 1576 "codeview doesn't support subranges with lower bounds"); 1577 int64_t Count = -1; 1578 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1579 Count = CI->getSExtValue(); 1580 1581 // Forward declarations of arrays without a size and VLAs use a count of -1. 1582 // Emit a count of zero in these cases to match what MSVC does for arrays 1583 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1584 // should do for them even if we could distinguish them. 1585 if (Count == -1) 1586 Count = 0; 1587 1588 // Update the element size and element type index for subsequent subranges. 1589 ElementSize *= Count; 1590 1591 // If this is the outermost array, use the size from the array. It will be 1592 // more accurate if we had a VLA or an incomplete element type size. 1593 uint64_t ArraySize = 1594 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1595 1596 StringRef Name = (i == 0) ? Ty->getName() : ""; 1597 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1598 ElementTypeIndex = TypeTable.writeLeafType(AR); 1599 } 1600 1601 return ElementTypeIndex; 1602 } 1603 1604 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1605 TypeIndex Index; 1606 dwarf::TypeKind Kind; 1607 uint32_t ByteSize; 1608 1609 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1610 ByteSize = Ty->getSizeInBits() / 8; 1611 1612 SimpleTypeKind STK = SimpleTypeKind::None; 1613 switch (Kind) { 1614 case dwarf::DW_ATE_address: 1615 // FIXME: Translate 1616 break; 1617 case dwarf::DW_ATE_boolean: 1618 switch (ByteSize) { 1619 case 1: STK = SimpleTypeKind::Boolean8; break; 1620 case 2: STK = SimpleTypeKind::Boolean16; break; 1621 case 4: STK = SimpleTypeKind::Boolean32; break; 1622 case 8: STK = SimpleTypeKind::Boolean64; break; 1623 case 16: STK = SimpleTypeKind::Boolean128; break; 1624 } 1625 break; 1626 case dwarf::DW_ATE_complex_float: 1627 switch (ByteSize) { 1628 case 2: STK = SimpleTypeKind::Complex16; break; 1629 case 4: STK = SimpleTypeKind::Complex32; break; 1630 case 8: STK = SimpleTypeKind::Complex64; break; 1631 case 10: STK = SimpleTypeKind::Complex80; break; 1632 case 16: STK = SimpleTypeKind::Complex128; break; 1633 } 1634 break; 1635 case dwarf::DW_ATE_float: 1636 switch (ByteSize) { 1637 case 2: STK = SimpleTypeKind::Float16; break; 1638 case 4: STK = SimpleTypeKind::Float32; break; 1639 case 6: STK = SimpleTypeKind::Float48; break; 1640 case 8: STK = SimpleTypeKind::Float64; break; 1641 case 10: STK = SimpleTypeKind::Float80; break; 1642 case 16: STK = SimpleTypeKind::Float128; break; 1643 } 1644 break; 1645 case dwarf::DW_ATE_signed: 1646 switch (ByteSize) { 1647 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1648 case 2: STK = SimpleTypeKind::Int16Short; break; 1649 case 4: STK = SimpleTypeKind::Int32; break; 1650 case 8: STK = SimpleTypeKind::Int64Quad; break; 1651 case 16: STK = SimpleTypeKind::Int128Oct; break; 1652 } 1653 break; 1654 case dwarf::DW_ATE_unsigned: 1655 switch (ByteSize) { 1656 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1657 case 2: STK = SimpleTypeKind::UInt16Short; break; 1658 case 4: STK = SimpleTypeKind::UInt32; break; 1659 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1660 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1661 } 1662 break; 1663 case dwarf::DW_ATE_UTF: 1664 switch (ByteSize) { 1665 case 2: STK = SimpleTypeKind::Character16; break; 1666 case 4: STK = SimpleTypeKind::Character32; break; 1667 } 1668 break; 1669 case dwarf::DW_ATE_signed_char: 1670 if (ByteSize == 1) 1671 STK = SimpleTypeKind::SignedCharacter; 1672 break; 1673 case dwarf::DW_ATE_unsigned_char: 1674 if (ByteSize == 1) 1675 STK = SimpleTypeKind::UnsignedCharacter; 1676 break; 1677 default: 1678 break; 1679 } 1680 1681 // Apply some fixups based on the source-level type name. 1682 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1683 STK = SimpleTypeKind::Int32Long; 1684 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1685 STK = SimpleTypeKind::UInt32Long; 1686 if (STK == SimpleTypeKind::UInt16Short && 1687 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1688 STK = SimpleTypeKind::WideCharacter; 1689 if ((STK == SimpleTypeKind::SignedCharacter || 1690 STK == SimpleTypeKind::UnsignedCharacter) && 1691 Ty->getName() == "char") 1692 STK = SimpleTypeKind::NarrowCharacter; 1693 1694 return TypeIndex(STK); 1695 } 1696 1697 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1698 PointerOptions PO) { 1699 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1700 1701 // Pointers to simple types without any options can use SimpleTypeMode, rather 1702 // than having a dedicated pointer type record. 1703 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1704 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1705 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1706 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1707 ? SimpleTypeMode::NearPointer64 1708 : SimpleTypeMode::NearPointer32; 1709 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1710 } 1711 1712 PointerKind PK = 1713 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1714 PointerMode PM = PointerMode::Pointer; 1715 switch (Ty->getTag()) { 1716 default: llvm_unreachable("not a pointer tag type"); 1717 case dwarf::DW_TAG_pointer_type: 1718 PM = PointerMode::Pointer; 1719 break; 1720 case dwarf::DW_TAG_reference_type: 1721 PM = PointerMode::LValueReference; 1722 break; 1723 case dwarf::DW_TAG_rvalue_reference_type: 1724 PM = PointerMode::RValueReference; 1725 break; 1726 } 1727 1728 if (Ty->isObjectPointer()) 1729 PO |= PointerOptions::Const; 1730 1731 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1732 return TypeTable.writeLeafType(PR); 1733 } 1734 1735 static PointerToMemberRepresentation 1736 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1737 // SizeInBytes being zero generally implies that the member pointer type was 1738 // incomplete, which can happen if it is part of a function prototype. In this 1739 // case, use the unknown model instead of the general model. 1740 if (IsPMF) { 1741 switch (Flags & DINode::FlagPtrToMemberRep) { 1742 case 0: 1743 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1744 : PointerToMemberRepresentation::GeneralFunction; 1745 case DINode::FlagSingleInheritance: 1746 return PointerToMemberRepresentation::SingleInheritanceFunction; 1747 case DINode::FlagMultipleInheritance: 1748 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1749 case DINode::FlagVirtualInheritance: 1750 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1751 } 1752 } else { 1753 switch (Flags & DINode::FlagPtrToMemberRep) { 1754 case 0: 1755 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1756 : PointerToMemberRepresentation::GeneralData; 1757 case DINode::FlagSingleInheritance: 1758 return PointerToMemberRepresentation::SingleInheritanceData; 1759 case DINode::FlagMultipleInheritance: 1760 return PointerToMemberRepresentation::MultipleInheritanceData; 1761 case DINode::FlagVirtualInheritance: 1762 return PointerToMemberRepresentation::VirtualInheritanceData; 1763 } 1764 } 1765 llvm_unreachable("invalid ptr to member representation"); 1766 } 1767 1768 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1769 PointerOptions PO) { 1770 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1771 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1772 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1773 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1774 : PointerKind::Near32; 1775 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1776 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1777 : PointerMode::PointerToDataMember; 1778 1779 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1780 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1781 MemberPointerInfo MPI( 1782 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1783 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1784 return TypeTable.writeLeafType(PR); 1785 } 1786 1787 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1788 /// have a translation, use the NearC convention. 1789 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1790 switch (DwarfCC) { 1791 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1792 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1793 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1794 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1795 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1796 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1797 } 1798 return CallingConvention::NearC; 1799 } 1800 1801 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1802 ModifierOptions Mods = ModifierOptions::None; 1803 PointerOptions PO = PointerOptions::None; 1804 bool IsModifier = true; 1805 const DIType *BaseTy = Ty; 1806 while (IsModifier && BaseTy) { 1807 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1808 switch (BaseTy->getTag()) { 1809 case dwarf::DW_TAG_const_type: 1810 Mods |= ModifierOptions::Const; 1811 PO |= PointerOptions::Const; 1812 break; 1813 case dwarf::DW_TAG_volatile_type: 1814 Mods |= ModifierOptions::Volatile; 1815 PO |= PointerOptions::Volatile; 1816 break; 1817 case dwarf::DW_TAG_restrict_type: 1818 // Only pointer types be marked with __restrict. There is no known flag 1819 // for __restrict in LF_MODIFIER records. 1820 PO |= PointerOptions::Restrict; 1821 break; 1822 default: 1823 IsModifier = false; 1824 break; 1825 } 1826 if (IsModifier) 1827 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1828 } 1829 1830 // Check if the inner type will use an LF_POINTER record. If so, the 1831 // qualifiers will go in the LF_POINTER record. This comes up for types like 1832 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1833 // char *'. 1834 if (BaseTy) { 1835 switch (BaseTy->getTag()) { 1836 case dwarf::DW_TAG_pointer_type: 1837 case dwarf::DW_TAG_reference_type: 1838 case dwarf::DW_TAG_rvalue_reference_type: 1839 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1840 case dwarf::DW_TAG_ptr_to_member_type: 1841 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1842 default: 1843 break; 1844 } 1845 } 1846 1847 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1848 1849 // Return the base type index if there aren't any modifiers. For example, the 1850 // metadata could contain restrict wrappers around non-pointer types. 1851 if (Mods == ModifierOptions::None) 1852 return ModifiedTI; 1853 1854 ModifierRecord MR(ModifiedTI, Mods); 1855 return TypeTable.writeLeafType(MR); 1856 } 1857 1858 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1859 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1860 for (const DIType *ArgType : Ty->getTypeArray()) 1861 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1862 1863 // MSVC uses type none for variadic argument. 1864 if (ReturnAndArgTypeIndices.size() > 1 && 1865 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1866 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1867 } 1868 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1869 ArrayRef<TypeIndex> ArgTypeIndices = None; 1870 if (!ReturnAndArgTypeIndices.empty()) { 1871 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1872 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1873 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1874 } 1875 1876 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1877 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1878 1879 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1880 1881 FunctionOptions FO = getFunctionOptions(Ty); 1882 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1883 ArgListIndex); 1884 return TypeTable.writeLeafType(Procedure); 1885 } 1886 1887 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1888 const DIType *ClassTy, 1889 int ThisAdjustment, 1890 bool IsStaticMethod, 1891 FunctionOptions FO) { 1892 // Lower the containing class type. 1893 TypeIndex ClassType = getTypeIndex(ClassTy); 1894 1895 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1896 1897 unsigned Index = 0; 1898 SmallVector<TypeIndex, 8> ArgTypeIndices; 1899 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1900 if (ReturnAndArgs.size() > Index) { 1901 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1902 } 1903 1904 // If the first argument is a pointer type and this isn't a static method, 1905 // treat it as the special 'this' parameter, which is encoded separately from 1906 // the arguments. 1907 TypeIndex ThisTypeIndex; 1908 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1909 if (const DIDerivedType *PtrTy = 1910 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1911 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1912 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1913 Index++; 1914 } 1915 } 1916 } 1917 1918 while (Index < ReturnAndArgs.size()) 1919 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1920 1921 // MSVC uses type none for variadic argument. 1922 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1923 ArgTypeIndices.back() = TypeIndex::None(); 1924 1925 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1926 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1927 1928 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1929 1930 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1931 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1932 return TypeTable.writeLeafType(MFR); 1933 } 1934 1935 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1936 unsigned VSlotCount = 1937 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1938 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1939 1940 VFTableShapeRecord VFTSR(Slots); 1941 return TypeTable.writeLeafType(VFTSR); 1942 } 1943 1944 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1945 switch (Flags & DINode::FlagAccessibility) { 1946 case DINode::FlagPrivate: return MemberAccess::Private; 1947 case DINode::FlagPublic: return MemberAccess::Public; 1948 case DINode::FlagProtected: return MemberAccess::Protected; 1949 case 0: 1950 // If there was no explicit access control, provide the default for the tag. 1951 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1952 : MemberAccess::Public; 1953 } 1954 llvm_unreachable("access flags are exclusive"); 1955 } 1956 1957 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1958 if (SP->isArtificial()) 1959 return MethodOptions::CompilerGenerated; 1960 1961 // FIXME: Handle other MethodOptions. 1962 1963 return MethodOptions::None; 1964 } 1965 1966 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1967 bool Introduced) { 1968 if (SP->getFlags() & DINode::FlagStaticMember) 1969 return MethodKind::Static; 1970 1971 switch (SP->getVirtuality()) { 1972 case dwarf::DW_VIRTUALITY_none: 1973 break; 1974 case dwarf::DW_VIRTUALITY_virtual: 1975 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1976 case dwarf::DW_VIRTUALITY_pure_virtual: 1977 return Introduced ? MethodKind::PureIntroducingVirtual 1978 : MethodKind::PureVirtual; 1979 default: 1980 llvm_unreachable("unhandled virtuality case"); 1981 } 1982 1983 return MethodKind::Vanilla; 1984 } 1985 1986 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1987 switch (Ty->getTag()) { 1988 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1989 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1990 } 1991 llvm_unreachable("unexpected tag"); 1992 } 1993 1994 /// Return ClassOptions that should be present on both the forward declaration 1995 /// and the defintion of a tag type. 1996 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1997 ClassOptions CO = ClassOptions::None; 1998 1999 // MSVC always sets this flag, even for local types. Clang doesn't always 2000 // appear to give every type a linkage name, which may be problematic for us. 2001 // FIXME: Investigate the consequences of not following them here. 2002 if (!Ty->getIdentifier().empty()) 2003 CO |= ClassOptions::HasUniqueName; 2004 2005 // Put the Nested flag on a type if it appears immediately inside a tag type. 2006 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2007 // here. That flag is only set on definitions, and not forward declarations. 2008 const DIScope *ImmediateScope = Ty->getScope(); 2009 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2010 CO |= ClassOptions::Nested; 2011 2012 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2013 // type only when it has an immediate function scope. Clang never puts enums 2014 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2015 // always in function, class, or file scopes. 2016 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2017 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2018 CO |= ClassOptions::Scoped; 2019 } else { 2020 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2021 Scope = Scope->getScope()) { 2022 if (isa<DISubprogram>(Scope)) { 2023 CO |= ClassOptions::Scoped; 2024 break; 2025 } 2026 } 2027 } 2028 2029 return CO; 2030 } 2031 2032 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2033 switch (Ty->getTag()) { 2034 case dwarf::DW_TAG_class_type: 2035 case dwarf::DW_TAG_structure_type: 2036 case dwarf::DW_TAG_union_type: 2037 case dwarf::DW_TAG_enumeration_type: 2038 break; 2039 default: 2040 return; 2041 } 2042 2043 if (const auto *File = Ty->getFile()) { 2044 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2045 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2046 2047 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2048 TypeTable.writeLeafType(USLR); 2049 } 2050 } 2051 2052 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2053 ClassOptions CO = getCommonClassOptions(Ty); 2054 TypeIndex FTI; 2055 unsigned EnumeratorCount = 0; 2056 2057 if (Ty->isForwardDecl()) { 2058 CO |= ClassOptions::ForwardReference; 2059 } else { 2060 ContinuationRecordBuilder ContinuationBuilder; 2061 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2062 for (const DINode *Element : Ty->getElements()) { 2063 // We assume that the frontend provides all members in source declaration 2064 // order, which is what MSVC does. 2065 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2066 EnumeratorRecord ER(MemberAccess::Public, 2067 APSInt::getUnsigned(Enumerator->getValue()), 2068 Enumerator->getName()); 2069 ContinuationBuilder.writeMemberType(ER); 2070 EnumeratorCount++; 2071 } 2072 } 2073 FTI = TypeTable.insertRecord(ContinuationBuilder); 2074 } 2075 2076 std::string FullName = getFullyQualifiedName(Ty); 2077 2078 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2079 getTypeIndex(Ty->getBaseType())); 2080 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2081 2082 addUDTSrcLine(Ty, EnumTI); 2083 2084 return EnumTI; 2085 } 2086 2087 //===----------------------------------------------------------------------===// 2088 // ClassInfo 2089 //===----------------------------------------------------------------------===// 2090 2091 struct llvm::ClassInfo { 2092 struct MemberInfo { 2093 const DIDerivedType *MemberTypeNode; 2094 uint64_t BaseOffset; 2095 }; 2096 // [MemberInfo] 2097 using MemberList = std::vector<MemberInfo>; 2098 2099 using MethodsList = TinyPtrVector<const DISubprogram *>; 2100 // MethodName -> MethodsList 2101 using MethodsMap = MapVector<MDString *, MethodsList>; 2102 2103 /// Base classes. 2104 std::vector<const DIDerivedType *> Inheritance; 2105 2106 /// Direct members. 2107 MemberList Members; 2108 // Direct overloaded methods gathered by name. 2109 MethodsMap Methods; 2110 2111 TypeIndex VShapeTI; 2112 2113 std::vector<const DIType *> NestedTypes; 2114 }; 2115 2116 void CodeViewDebug::clear() { 2117 assert(CurFn == nullptr); 2118 FileIdMap.clear(); 2119 FnDebugInfo.clear(); 2120 FileToFilepathMap.clear(); 2121 LocalUDTs.clear(); 2122 GlobalUDTs.clear(); 2123 TypeIndices.clear(); 2124 CompleteTypeIndices.clear(); 2125 ScopeGlobals.clear(); 2126 } 2127 2128 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2129 const DIDerivedType *DDTy) { 2130 if (!DDTy->getName().empty()) { 2131 Info.Members.push_back({DDTy, 0}); 2132 return; 2133 } 2134 2135 // An unnamed member may represent a nested struct or union. Attempt to 2136 // interpret the unnamed member as a DICompositeType possibly wrapped in 2137 // qualifier types. Add all the indirect fields to the current record if that 2138 // succeeds, and drop the member if that fails. 2139 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2140 uint64_t Offset = DDTy->getOffsetInBits(); 2141 const DIType *Ty = DDTy->getBaseType(); 2142 bool FullyResolved = false; 2143 while (!FullyResolved) { 2144 switch (Ty->getTag()) { 2145 case dwarf::DW_TAG_const_type: 2146 case dwarf::DW_TAG_volatile_type: 2147 // FIXME: we should apply the qualifier types to the indirect fields 2148 // rather than dropping them. 2149 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2150 break; 2151 default: 2152 FullyResolved = true; 2153 break; 2154 } 2155 } 2156 2157 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2158 if (!DCTy) 2159 return; 2160 2161 ClassInfo NestedInfo = collectClassInfo(DCTy); 2162 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2163 Info.Members.push_back( 2164 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2165 } 2166 2167 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2168 ClassInfo Info; 2169 // Add elements to structure type. 2170 DINodeArray Elements = Ty->getElements(); 2171 for (auto *Element : Elements) { 2172 // We assume that the frontend provides all members in source declaration 2173 // order, which is what MSVC does. 2174 if (!Element) 2175 continue; 2176 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2177 Info.Methods[SP->getRawName()].push_back(SP); 2178 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2179 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2180 collectMemberInfo(Info, DDTy); 2181 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2182 Info.Inheritance.push_back(DDTy); 2183 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2184 DDTy->getName() == "__vtbl_ptr_type") { 2185 Info.VShapeTI = getTypeIndex(DDTy); 2186 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2187 Info.NestedTypes.push_back(DDTy); 2188 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2189 // Ignore friend members. It appears that MSVC emitted info about 2190 // friends in the past, but modern versions do not. 2191 } 2192 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2193 Info.NestedTypes.push_back(Composite); 2194 } 2195 // Skip other unrecognized kinds of elements. 2196 } 2197 return Info; 2198 } 2199 2200 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2201 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2202 // if a complete type should be emitted instead of a forward reference. 2203 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2204 !Ty->isForwardDecl(); 2205 } 2206 2207 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2208 // Emit the complete type for unnamed structs. C++ classes with methods 2209 // which have a circular reference back to the class type are expected to 2210 // be named by the front-end and should not be "unnamed". C unnamed 2211 // structs should not have circular references. 2212 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2213 // If this unnamed complete type is already in the process of being defined 2214 // then the description of the type is malformed and cannot be emitted 2215 // into CodeView correctly so report a fatal error. 2216 auto I = CompleteTypeIndices.find(Ty); 2217 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2218 report_fatal_error("cannot debug circular reference to unnamed type"); 2219 return getCompleteTypeIndex(Ty); 2220 } 2221 2222 // First, construct the forward decl. Don't look into Ty to compute the 2223 // forward decl options, since it might not be available in all TUs. 2224 TypeRecordKind Kind = getRecordKind(Ty); 2225 ClassOptions CO = 2226 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2227 std::string FullName = getFullyQualifiedName(Ty); 2228 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2229 FullName, Ty->getIdentifier()); 2230 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2231 if (!Ty->isForwardDecl()) 2232 DeferredCompleteTypes.push_back(Ty); 2233 return FwdDeclTI; 2234 } 2235 2236 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2237 // Construct the field list and complete type record. 2238 TypeRecordKind Kind = getRecordKind(Ty); 2239 ClassOptions CO = getCommonClassOptions(Ty); 2240 TypeIndex FieldTI; 2241 TypeIndex VShapeTI; 2242 unsigned FieldCount; 2243 bool ContainsNestedClass; 2244 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2245 lowerRecordFieldList(Ty); 2246 2247 if (ContainsNestedClass) 2248 CO |= ClassOptions::ContainsNestedClass; 2249 2250 // MSVC appears to set this flag by searching any destructor or method with 2251 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2252 // the members, however special member functions are not yet emitted into 2253 // debug information. For now checking a class's non-triviality seems enough. 2254 // FIXME: not true for a nested unnamed struct. 2255 if (isNonTrivial(Ty)) 2256 CO |= ClassOptions::HasConstructorOrDestructor; 2257 2258 std::string FullName = getFullyQualifiedName(Ty); 2259 2260 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2261 2262 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2263 SizeInBytes, FullName, Ty->getIdentifier()); 2264 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2265 2266 addUDTSrcLine(Ty, ClassTI); 2267 2268 addToUDTs(Ty); 2269 2270 return ClassTI; 2271 } 2272 2273 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2274 // Emit the complete type for unnamed unions. 2275 if (shouldAlwaysEmitCompleteClassType(Ty)) 2276 return getCompleteTypeIndex(Ty); 2277 2278 ClassOptions CO = 2279 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2280 std::string FullName = getFullyQualifiedName(Ty); 2281 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2282 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2283 if (!Ty->isForwardDecl()) 2284 DeferredCompleteTypes.push_back(Ty); 2285 return FwdDeclTI; 2286 } 2287 2288 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2289 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2290 TypeIndex FieldTI; 2291 unsigned FieldCount; 2292 bool ContainsNestedClass; 2293 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2294 lowerRecordFieldList(Ty); 2295 2296 if (ContainsNestedClass) 2297 CO |= ClassOptions::ContainsNestedClass; 2298 2299 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2300 std::string FullName = getFullyQualifiedName(Ty); 2301 2302 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2303 Ty->getIdentifier()); 2304 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2305 2306 addUDTSrcLine(Ty, UnionTI); 2307 2308 addToUDTs(Ty); 2309 2310 return UnionTI; 2311 } 2312 2313 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2314 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2315 // Manually count members. MSVC appears to count everything that generates a 2316 // field list record. Each individual overload in a method overload group 2317 // contributes to this count, even though the overload group is a single field 2318 // list record. 2319 unsigned MemberCount = 0; 2320 ClassInfo Info = collectClassInfo(Ty); 2321 ContinuationRecordBuilder ContinuationBuilder; 2322 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2323 2324 // Create base classes. 2325 for (const DIDerivedType *I : Info.Inheritance) { 2326 if (I->getFlags() & DINode::FlagVirtual) { 2327 // Virtual base. 2328 unsigned VBPtrOffset = I->getVBPtrOffset(); 2329 // FIXME: Despite the accessor name, the offset is really in bytes. 2330 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2331 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2332 ? TypeRecordKind::IndirectVirtualBaseClass 2333 : TypeRecordKind::VirtualBaseClass; 2334 VirtualBaseClassRecord VBCR( 2335 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2336 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2337 VBTableIndex); 2338 2339 ContinuationBuilder.writeMemberType(VBCR); 2340 MemberCount++; 2341 } else { 2342 assert(I->getOffsetInBits() % 8 == 0 && 2343 "bases must be on byte boundaries"); 2344 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2345 getTypeIndex(I->getBaseType()), 2346 I->getOffsetInBits() / 8); 2347 ContinuationBuilder.writeMemberType(BCR); 2348 MemberCount++; 2349 } 2350 } 2351 2352 // Create members. 2353 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2354 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2355 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2356 StringRef MemberName = Member->getName(); 2357 MemberAccess Access = 2358 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2359 2360 if (Member->isStaticMember()) { 2361 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2362 ContinuationBuilder.writeMemberType(SDMR); 2363 MemberCount++; 2364 continue; 2365 } 2366 2367 // Virtual function pointer member. 2368 if ((Member->getFlags() & DINode::FlagArtificial) && 2369 Member->getName().startswith("_vptr$")) { 2370 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2371 ContinuationBuilder.writeMemberType(VFPR); 2372 MemberCount++; 2373 continue; 2374 } 2375 2376 // Data member. 2377 uint64_t MemberOffsetInBits = 2378 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2379 if (Member->isBitField()) { 2380 uint64_t StartBitOffset = MemberOffsetInBits; 2381 if (const auto *CI = 2382 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2383 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2384 } 2385 StartBitOffset -= MemberOffsetInBits; 2386 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2387 StartBitOffset); 2388 MemberBaseType = TypeTable.writeLeafType(BFR); 2389 } 2390 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2391 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2392 MemberName); 2393 ContinuationBuilder.writeMemberType(DMR); 2394 MemberCount++; 2395 } 2396 2397 // Create methods 2398 for (auto &MethodItr : Info.Methods) { 2399 StringRef Name = MethodItr.first->getString(); 2400 2401 std::vector<OneMethodRecord> Methods; 2402 for (const DISubprogram *SP : MethodItr.second) { 2403 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2404 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2405 2406 unsigned VFTableOffset = -1; 2407 if (Introduced) 2408 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2409 2410 Methods.push_back(OneMethodRecord( 2411 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2412 translateMethodKindFlags(SP, Introduced), 2413 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2414 MemberCount++; 2415 } 2416 assert(!Methods.empty() && "Empty methods map entry"); 2417 if (Methods.size() == 1) 2418 ContinuationBuilder.writeMemberType(Methods[0]); 2419 else { 2420 // FIXME: Make this use its own ContinuationBuilder so that 2421 // MethodOverloadList can be split correctly. 2422 MethodOverloadListRecord MOLR(Methods); 2423 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2424 2425 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2426 ContinuationBuilder.writeMemberType(OMR); 2427 } 2428 } 2429 2430 // Create nested classes. 2431 for (const DIType *Nested : Info.NestedTypes) { 2432 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2433 ContinuationBuilder.writeMemberType(R); 2434 MemberCount++; 2435 } 2436 2437 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2438 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2439 !Info.NestedTypes.empty()); 2440 } 2441 2442 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2443 if (!VBPType.getIndex()) { 2444 // Make a 'const int *' type. 2445 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2446 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2447 2448 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2449 : PointerKind::Near32; 2450 PointerMode PM = PointerMode::Pointer; 2451 PointerOptions PO = PointerOptions::None; 2452 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2453 VBPType = TypeTable.writeLeafType(PR); 2454 } 2455 2456 return VBPType; 2457 } 2458 2459 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2460 // The null DIType is the void type. Don't try to hash it. 2461 if (!Ty) 2462 return TypeIndex::Void(); 2463 2464 // Check if we've already translated this type. Don't try to do a 2465 // get-or-create style insertion that caches the hash lookup across the 2466 // lowerType call. It will update the TypeIndices map. 2467 auto I = TypeIndices.find({Ty, ClassTy}); 2468 if (I != TypeIndices.end()) 2469 return I->second; 2470 2471 TypeLoweringScope S(*this); 2472 TypeIndex TI = lowerType(Ty, ClassTy); 2473 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2474 } 2475 2476 codeview::TypeIndex 2477 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2478 const DISubroutineType *SubroutineTy) { 2479 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2480 "this type must be a pointer type"); 2481 2482 PointerOptions Options = PointerOptions::None; 2483 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2484 Options = PointerOptions::LValueRefThisPointer; 2485 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2486 Options = PointerOptions::RValueRefThisPointer; 2487 2488 // Check if we've already translated this type. If there is no ref qualifier 2489 // on the function then we look up this pointer type with no associated class 2490 // so that the TypeIndex for the this pointer can be shared with the type 2491 // index for other pointers to this class type. If there is a ref qualifier 2492 // then we lookup the pointer using the subroutine as the parent type. 2493 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2494 if (I != TypeIndices.end()) 2495 return I->second; 2496 2497 TypeLoweringScope S(*this); 2498 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2499 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2500 } 2501 2502 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2503 PointerRecord PR(getTypeIndex(Ty), 2504 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2505 : PointerKind::Near32, 2506 PointerMode::LValueReference, PointerOptions::None, 2507 Ty->getSizeInBits() / 8); 2508 return TypeTable.writeLeafType(PR); 2509 } 2510 2511 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2512 // The null DIType is the void type. Don't try to hash it. 2513 if (!Ty) 2514 return TypeIndex::Void(); 2515 2516 // Look through typedefs when getting the complete type index. Call 2517 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2518 // emitted only once. 2519 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2520 (void)getTypeIndex(Ty); 2521 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2522 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2523 2524 // If this is a non-record type, the complete type index is the same as the 2525 // normal type index. Just call getTypeIndex. 2526 switch (Ty->getTag()) { 2527 case dwarf::DW_TAG_class_type: 2528 case dwarf::DW_TAG_structure_type: 2529 case dwarf::DW_TAG_union_type: 2530 break; 2531 default: 2532 return getTypeIndex(Ty); 2533 } 2534 2535 const auto *CTy = cast<DICompositeType>(Ty); 2536 2537 TypeLoweringScope S(*this); 2538 2539 // Make sure the forward declaration is emitted first. It's unclear if this 2540 // is necessary, but MSVC does it, and we should follow suit until we can show 2541 // otherwise. 2542 // We only emit a forward declaration for named types. 2543 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2544 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2545 2546 // Just use the forward decl if we don't have complete type info. This 2547 // might happen if the frontend is using modules and expects the complete 2548 // definition to be emitted elsewhere. 2549 if (CTy->isForwardDecl()) 2550 return FwdDeclTI; 2551 } 2552 2553 // Check if we've already translated the complete record type. 2554 // Insert the type with a null TypeIndex to signify that the type is currently 2555 // being lowered. 2556 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2557 if (!InsertResult.second) 2558 return InsertResult.first->second; 2559 2560 TypeIndex TI; 2561 switch (CTy->getTag()) { 2562 case dwarf::DW_TAG_class_type: 2563 case dwarf::DW_TAG_structure_type: 2564 TI = lowerCompleteTypeClass(CTy); 2565 break; 2566 case dwarf::DW_TAG_union_type: 2567 TI = lowerCompleteTypeUnion(CTy); 2568 break; 2569 default: 2570 llvm_unreachable("not a record"); 2571 } 2572 2573 // Update the type index associated with this CompositeType. This cannot 2574 // use the 'InsertResult' iterator above because it is potentially 2575 // invalidated by map insertions which can occur while lowering the class 2576 // type above. 2577 CompleteTypeIndices[CTy] = TI; 2578 return TI; 2579 } 2580 2581 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2582 /// and do this until fixpoint, as each complete record type typically 2583 /// references 2584 /// many other record types. 2585 void CodeViewDebug::emitDeferredCompleteTypes() { 2586 SmallVector<const DICompositeType *, 4> TypesToEmit; 2587 while (!DeferredCompleteTypes.empty()) { 2588 std::swap(DeferredCompleteTypes, TypesToEmit); 2589 for (const DICompositeType *RecordTy : TypesToEmit) 2590 getCompleteTypeIndex(RecordTy); 2591 TypesToEmit.clear(); 2592 } 2593 } 2594 2595 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2596 ArrayRef<LocalVariable> Locals) { 2597 // Get the sorted list of parameters and emit them first. 2598 SmallVector<const LocalVariable *, 6> Params; 2599 for (const LocalVariable &L : Locals) 2600 if (L.DIVar->isParameter()) 2601 Params.push_back(&L); 2602 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2603 return L->DIVar->getArg() < R->DIVar->getArg(); 2604 }); 2605 for (const LocalVariable *L : Params) 2606 emitLocalVariable(FI, *L); 2607 2608 // Next emit all non-parameters in the order that we found them. 2609 for (const LocalVariable &L : Locals) 2610 if (!L.DIVar->isParameter()) 2611 emitLocalVariable(FI, L); 2612 } 2613 2614 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2615 const LocalVariable &Var) { 2616 // LocalSym record, see SymbolRecord.h for more info. 2617 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2618 2619 LocalSymFlags Flags = LocalSymFlags::None; 2620 if (Var.DIVar->isParameter()) 2621 Flags |= LocalSymFlags::IsParameter; 2622 if (Var.DefRanges.empty()) 2623 Flags |= LocalSymFlags::IsOptimizedOut; 2624 2625 OS.AddComment("TypeIndex"); 2626 TypeIndex TI = Var.UseReferenceType 2627 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2628 : getCompleteTypeIndex(Var.DIVar->getType()); 2629 OS.EmitIntValue(TI.getIndex(), 4); 2630 OS.AddComment("Flags"); 2631 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2632 // Truncate the name so we won't overflow the record length field. 2633 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2634 endSymbolRecord(LocalEnd); 2635 2636 // Calculate the on disk prefix of the appropriate def range record. The 2637 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2638 // should be big enough to hold all forms without memory allocation. 2639 SmallString<20> BytePrefix; 2640 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2641 BytePrefix.clear(); 2642 if (DefRange.InMemory) { 2643 int Offset = DefRange.DataOffset; 2644 unsigned Reg = DefRange.CVRegister; 2645 2646 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2647 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2648 // instead. In frames without stack realignment, $T0 will be the CFA. 2649 if (RegisterId(Reg) == RegisterId::ESP) { 2650 Reg = unsigned(RegisterId::VFRAME); 2651 Offset += FI.OffsetAdjustment; 2652 } 2653 2654 // If we can use the chosen frame pointer for the frame and this isn't a 2655 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2656 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2657 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2658 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2659 (bool(Flags & LocalSymFlags::IsParameter) 2660 ? (EncFP == FI.EncodedParamFramePtrReg) 2661 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2662 DefRangeFramePointerRelHeader DRHdr; 2663 DRHdr.Offset = Offset; 2664 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2665 } else { 2666 uint16_t RegRelFlags = 0; 2667 if (DefRange.IsSubfield) { 2668 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2669 (DefRange.StructOffset 2670 << DefRangeRegisterRelSym::OffsetInParentShift); 2671 } 2672 DefRangeRegisterRelHeader DRHdr; 2673 DRHdr.Register = Reg; 2674 DRHdr.Flags = RegRelFlags; 2675 DRHdr.BasePointerOffset = Offset; 2676 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2677 } 2678 } else { 2679 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2680 if (DefRange.IsSubfield) { 2681 DefRangeSubfieldRegisterHeader DRHdr; 2682 DRHdr.Register = DefRange.CVRegister; 2683 DRHdr.MayHaveNoName = 0; 2684 DRHdr.OffsetInParent = DefRange.StructOffset; 2685 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2686 } else { 2687 DefRangeRegisterHeader DRHdr; 2688 DRHdr.Register = DefRange.CVRegister; 2689 DRHdr.MayHaveNoName = 0; 2690 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2691 } 2692 } 2693 } 2694 } 2695 2696 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2697 const FunctionInfo& FI) { 2698 for (LexicalBlock *Block : Blocks) 2699 emitLexicalBlock(*Block, FI); 2700 } 2701 2702 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2703 /// lexical block scope. 2704 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2705 const FunctionInfo& FI) { 2706 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2707 OS.AddComment("PtrParent"); 2708 OS.EmitIntValue(0, 4); // PtrParent 2709 OS.AddComment("PtrEnd"); 2710 OS.EmitIntValue(0, 4); // PtrEnd 2711 OS.AddComment("Code size"); 2712 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2713 OS.AddComment("Function section relative address"); 2714 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2715 OS.AddComment("Function section index"); 2716 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2717 OS.AddComment("Lexical block name"); 2718 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2719 endSymbolRecord(RecordEnd); 2720 2721 // Emit variables local to this lexical block. 2722 emitLocalVariableList(FI, Block.Locals); 2723 emitGlobalVariableList(Block.Globals); 2724 2725 // Emit lexical blocks contained within this block. 2726 emitLexicalBlockList(Block.Children, FI); 2727 2728 // Close the lexical block scope. 2729 emitEndSymbolRecord(SymbolKind::S_END); 2730 } 2731 2732 /// Convenience routine for collecting lexical block information for a list 2733 /// of lexical scopes. 2734 void CodeViewDebug::collectLexicalBlockInfo( 2735 SmallVectorImpl<LexicalScope *> &Scopes, 2736 SmallVectorImpl<LexicalBlock *> &Blocks, 2737 SmallVectorImpl<LocalVariable> &Locals, 2738 SmallVectorImpl<CVGlobalVariable> &Globals) { 2739 for (LexicalScope *Scope : Scopes) 2740 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2741 } 2742 2743 /// Populate the lexical blocks and local variable lists of the parent with 2744 /// information about the specified lexical scope. 2745 void CodeViewDebug::collectLexicalBlockInfo( 2746 LexicalScope &Scope, 2747 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2748 SmallVectorImpl<LocalVariable> &ParentLocals, 2749 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2750 if (Scope.isAbstractScope()) 2751 return; 2752 2753 // Gather information about the lexical scope including local variables, 2754 // global variables, and address ranges. 2755 bool IgnoreScope = false; 2756 auto LI = ScopeVariables.find(&Scope); 2757 SmallVectorImpl<LocalVariable> *Locals = 2758 LI != ScopeVariables.end() ? &LI->second : nullptr; 2759 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2760 SmallVectorImpl<CVGlobalVariable> *Globals = 2761 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2762 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2763 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2764 2765 // Ignore lexical scopes which do not contain variables. 2766 if (!Locals && !Globals) 2767 IgnoreScope = true; 2768 2769 // Ignore lexical scopes which are not lexical blocks. 2770 if (!DILB) 2771 IgnoreScope = true; 2772 2773 // Ignore scopes which have too many address ranges to represent in the 2774 // current CodeView format or do not have a valid address range. 2775 // 2776 // For lexical scopes with multiple address ranges you may be tempted to 2777 // construct a single range covering every instruction where the block is 2778 // live and everything in between. Unfortunately, Visual Studio only 2779 // displays variables from the first matching lexical block scope. If the 2780 // first lexical block contains exception handling code or cold code which 2781 // is moved to the bottom of the routine creating a single range covering 2782 // nearly the entire routine, then it will hide all other lexical blocks 2783 // and the variables they contain. 2784 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2785 IgnoreScope = true; 2786 2787 if (IgnoreScope) { 2788 // This scope can be safely ignored and eliminating it will reduce the 2789 // size of the debug information. Be sure to collect any variable and scope 2790 // information from the this scope or any of its children and collapse them 2791 // into the parent scope. 2792 if (Locals) 2793 ParentLocals.append(Locals->begin(), Locals->end()); 2794 if (Globals) 2795 ParentGlobals.append(Globals->begin(), Globals->end()); 2796 collectLexicalBlockInfo(Scope.getChildren(), 2797 ParentBlocks, 2798 ParentLocals, 2799 ParentGlobals); 2800 return; 2801 } 2802 2803 // Create a new CodeView lexical block for this lexical scope. If we've 2804 // seen this DILexicalBlock before then the scope tree is malformed and 2805 // we can handle this gracefully by not processing it a second time. 2806 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2807 if (!BlockInsertion.second) 2808 return; 2809 2810 // Create a lexical block containing the variables and collect the the 2811 // lexical block information for the children. 2812 const InsnRange &Range = Ranges.front(); 2813 assert(Range.first && Range.second); 2814 LexicalBlock &Block = BlockInsertion.first->second; 2815 Block.Begin = getLabelBeforeInsn(Range.first); 2816 Block.End = getLabelAfterInsn(Range.second); 2817 assert(Block.Begin && "missing label for scope begin"); 2818 assert(Block.End && "missing label for scope end"); 2819 Block.Name = DILB->getName(); 2820 if (Locals) 2821 Block.Locals = std::move(*Locals); 2822 if (Globals) 2823 Block.Globals = std::move(*Globals); 2824 ParentBlocks.push_back(&Block); 2825 collectLexicalBlockInfo(Scope.getChildren(), 2826 Block.Children, 2827 Block.Locals, 2828 Block.Globals); 2829 } 2830 2831 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2832 const Function &GV = MF->getFunction(); 2833 assert(FnDebugInfo.count(&GV)); 2834 assert(CurFn == FnDebugInfo[&GV].get()); 2835 2836 collectVariableInfo(GV.getSubprogram()); 2837 2838 // Build the lexical block structure to emit for this routine. 2839 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2840 collectLexicalBlockInfo(*CFS, 2841 CurFn->ChildBlocks, 2842 CurFn->Locals, 2843 CurFn->Globals); 2844 2845 // Clear the scope and variable information from the map which will not be 2846 // valid after we have finished processing this routine. This also prepares 2847 // the map for the subsequent routine. 2848 ScopeVariables.clear(); 2849 2850 // Don't emit anything if we don't have any line tables. 2851 // Thunks are compiler-generated and probably won't have source correlation. 2852 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2853 FnDebugInfo.erase(&GV); 2854 CurFn = nullptr; 2855 return; 2856 } 2857 2858 // Find heap alloc sites and add to list. 2859 for (const auto &MBB : *MF) { 2860 for (const auto &MI : MBB) { 2861 if (MDNode *MD = MI.getHeapAllocMarker()) { 2862 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2863 getLabelAfterInsn(&MI), 2864 dyn_cast<DIType>(MD))); 2865 } 2866 } 2867 } 2868 2869 CurFn->Annotations = MF->getCodeViewAnnotations(); 2870 2871 CurFn->End = Asm->getFunctionEnd(); 2872 2873 CurFn = nullptr; 2874 } 2875 2876 // Usable locations are valid with non-zero line numbers. A line number of zero 2877 // corresponds to optimized code that doesn't have a distinct source location. 2878 // In this case, we try to use the previous or next source location depending on 2879 // the context. 2880 static bool isUsableDebugLoc(DebugLoc DL) { 2881 return DL && DL.getLine() != 0; 2882 } 2883 2884 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2885 DebugHandlerBase::beginInstruction(MI); 2886 2887 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2888 if (!Asm || !CurFn || MI->isDebugInstr() || 2889 MI->getFlag(MachineInstr::FrameSetup)) 2890 return; 2891 2892 // If the first instruction of a new MBB has no location, find the first 2893 // instruction with a location and use that. 2894 DebugLoc DL = MI->getDebugLoc(); 2895 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2896 for (const auto &NextMI : *MI->getParent()) { 2897 if (NextMI.isDebugInstr()) 2898 continue; 2899 DL = NextMI.getDebugLoc(); 2900 if (isUsableDebugLoc(DL)) 2901 break; 2902 } 2903 // FIXME: Handle the case where the BB has no valid locations. This would 2904 // probably require doing a real dataflow analysis. 2905 } 2906 PrevInstBB = MI->getParent(); 2907 2908 // If we still don't have a debug location, don't record a location. 2909 if (!isUsableDebugLoc(DL)) 2910 return; 2911 2912 maybeRecordLocation(DL, Asm->MF); 2913 } 2914 2915 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2916 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2917 *EndLabel = MMI->getContext().createTempSymbol(); 2918 OS.EmitIntValue(unsigned(Kind), 4); 2919 OS.AddComment("Subsection size"); 2920 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2921 OS.EmitLabel(BeginLabel); 2922 return EndLabel; 2923 } 2924 2925 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2926 OS.EmitLabel(EndLabel); 2927 // Every subsection must be aligned to a 4-byte boundary. 2928 OS.EmitValueToAlignment(4); 2929 } 2930 2931 static StringRef getSymbolName(SymbolKind SymKind) { 2932 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2933 if (EE.Value == SymKind) 2934 return EE.Name; 2935 return ""; 2936 } 2937 2938 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2939 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2940 *EndLabel = MMI->getContext().createTempSymbol(); 2941 OS.AddComment("Record length"); 2942 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2943 OS.EmitLabel(BeginLabel); 2944 if (OS.isVerboseAsm()) 2945 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2946 OS.EmitIntValue(unsigned(SymKind), 2); 2947 return EndLabel; 2948 } 2949 2950 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2951 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2952 // an extra copy of every symbol record in LLD. This increases object file 2953 // size by less than 1% in the clang build, and is compatible with the Visual 2954 // C++ linker. 2955 OS.EmitValueToAlignment(4); 2956 OS.EmitLabel(SymEnd); 2957 } 2958 2959 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2960 OS.AddComment("Record length"); 2961 OS.EmitIntValue(2, 2); 2962 if (OS.isVerboseAsm()) 2963 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2964 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind 2965 } 2966 2967 void CodeViewDebug::emitDebugInfoForUDTs( 2968 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2969 for (const auto &UDT : UDTs) { 2970 const DIType *T = UDT.second; 2971 assert(shouldEmitUdt(T)); 2972 2973 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2974 OS.AddComment("Type"); 2975 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2976 emitNullTerminatedSymbolName(OS, UDT.first); 2977 endSymbolRecord(UDTRecordEnd); 2978 } 2979 } 2980 2981 void CodeViewDebug::collectGlobalVariableInfo() { 2982 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2983 GlobalMap; 2984 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2985 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2986 GV.getDebugInfo(GVEs); 2987 for (const auto *GVE : GVEs) 2988 GlobalMap[GVE] = &GV; 2989 } 2990 2991 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2992 for (const MDNode *Node : CUs->operands()) { 2993 const auto *CU = cast<DICompileUnit>(Node); 2994 for (const auto *GVE : CU->getGlobalVariables()) { 2995 const DIGlobalVariable *DIGV = GVE->getVariable(); 2996 const DIExpression *DIE = GVE->getExpression(); 2997 2998 // Emit constant global variables in a global symbol section. 2999 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3000 CVGlobalVariable CVGV = {DIGV, DIE}; 3001 GlobalVariables.emplace_back(std::move(CVGV)); 3002 } 3003 3004 const auto *GV = GlobalMap.lookup(GVE); 3005 if (!GV || GV->isDeclarationForLinker()) 3006 continue; 3007 3008 DIScope *Scope = DIGV->getScope(); 3009 SmallVector<CVGlobalVariable, 1> *VariableList; 3010 if (Scope && isa<DILocalScope>(Scope)) { 3011 // Locate a global variable list for this scope, creating one if 3012 // necessary. 3013 auto Insertion = ScopeGlobals.insert( 3014 {Scope, std::unique_ptr<GlobalVariableList>()}); 3015 if (Insertion.second) 3016 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3017 VariableList = Insertion.first->second.get(); 3018 } else if (GV->hasComdat()) 3019 // Emit this global variable into a COMDAT section. 3020 VariableList = &ComdatVariables; 3021 else 3022 // Emit this global variable in a single global symbol section. 3023 VariableList = &GlobalVariables; 3024 CVGlobalVariable CVGV = {DIGV, GV}; 3025 VariableList->emplace_back(std::move(CVGV)); 3026 } 3027 } 3028 } 3029 3030 void CodeViewDebug::emitDebugInfoForGlobals() { 3031 // First, emit all globals that are not in a comdat in a single symbol 3032 // substream. MSVC doesn't like it if the substream is empty, so only open 3033 // it if we have at least one global to emit. 3034 switchToDebugSectionForSymbol(nullptr); 3035 if (!GlobalVariables.empty()) { 3036 OS.AddComment("Symbol subsection for globals"); 3037 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3038 emitGlobalVariableList(GlobalVariables); 3039 endCVSubsection(EndLabel); 3040 } 3041 3042 // Second, emit each global that is in a comdat into its own .debug$S 3043 // section along with its own symbol substream. 3044 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3045 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3046 MCSymbol *GVSym = Asm->getSymbol(GV); 3047 OS.AddComment("Symbol subsection for " + 3048 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3049 switchToDebugSectionForSymbol(GVSym); 3050 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3051 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3052 emitDebugInfoForGlobal(CVGV); 3053 endCVSubsection(EndLabel); 3054 } 3055 } 3056 3057 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3058 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3059 for (const MDNode *Node : CUs->operands()) { 3060 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3061 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3062 getTypeIndex(RT); 3063 // FIXME: Add to global/local DTU list. 3064 } 3065 } 3066 } 3067 } 3068 3069 // Emit each global variable in the specified array. 3070 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3071 for (const CVGlobalVariable &CVGV : Globals) { 3072 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3073 emitDebugInfoForGlobal(CVGV); 3074 } 3075 } 3076 3077 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3078 const DIGlobalVariable *DIGV = CVGV.DIGV; 3079 if (const GlobalVariable *GV = 3080 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3081 // DataSym record, see SymbolRecord.h for more info. Thread local data 3082 // happens to have the same format as global data. 3083 MCSymbol *GVSym = Asm->getSymbol(GV); 3084 SymbolKind DataSym = GV->isThreadLocal() 3085 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3086 : SymbolKind::S_GTHREAD32) 3087 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3088 : SymbolKind::S_GDATA32); 3089 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3090 OS.AddComment("Type"); 3091 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 3092 OS.AddComment("DataOffset"); 3093 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3094 OS.AddComment("Segment"); 3095 OS.EmitCOFFSectionIndex(GVSym); 3096 OS.AddComment("Name"); 3097 const unsigned LengthOfDataRecord = 12; 3098 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); 3099 endSymbolRecord(DataEnd); 3100 } else { 3101 // FIXME: Currently this only emits the global variables in the IR metadata. 3102 // This should also emit enums and static data members. 3103 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3104 assert(DIE->isConstant() && 3105 "Global constant variables must contain a constant expression."); 3106 uint64_t Val = DIE->getElement(1); 3107 3108 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3109 OS.AddComment("Type"); 3110 OS.EmitIntValue(getTypeIndex(DIGV->getType()).getIndex(), 4); 3111 OS.AddComment("Value"); 3112 3113 // Encoded integers shouldn't need more than 10 bytes. 3114 uint8_t data[10]; 3115 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3116 CodeViewRecordIO IO(Writer); 3117 cantFail(IO.mapEncodedInteger(Val)); 3118 StringRef SRef((char *)data, Writer.getOffset()); 3119 OS.EmitBinaryData(SRef); 3120 3121 OS.AddComment("Name"); 3122 const DIScope *Scope = DIGV->getScope(); 3123 // For static data members, get the scope from the declaration. 3124 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3125 DIGV->getRawStaticDataMemberDeclaration())) 3126 Scope = MemberDecl->getScope(); 3127 emitNullTerminatedSymbolName(OS, 3128 getFullyQualifiedName(Scope, DIGV->getName())); 3129 endSymbolRecord(SConstantEnd); 3130 } 3131 } 3132