1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 // LLVM currently doesn't support Windows CE and so thumb 130 // here is indiscriminately mapped to ARMNT specifically. 131 return CPUType::ARMNT; 132 case Triple::ArchType::aarch64: 133 return CPUType::ARM64; 134 default: 135 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 136 } 137 } 138 139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 140 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {} 141 142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 143 std::string &Filepath = FileToFilepathMap[File]; 144 if (!Filepath.empty()) 145 return Filepath; 146 147 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 148 149 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 150 // it textually because one of the path components could be a symlink. 151 if (Dir.startswith("/") || Filename.startswith("/")) { 152 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 153 return Filename; 154 Filepath = std::string(Dir); 155 if (Dir.back() != '/') 156 Filepath += '/'; 157 Filepath += Filename; 158 return Filepath; 159 } 160 161 // Clang emits directory and relative filename info into the IR, but CodeView 162 // operates on full paths. We could change Clang to emit full paths too, but 163 // that would increase the IR size and probably not needed for other users. 164 // For now, just concatenate and canonicalize the path here. 165 if (Filename.find(':') == 1) 166 Filepath = std::string(Filename); 167 else 168 Filepath = (Dir + "\\" + Filename).str(); 169 170 // Canonicalize the path. We have to do it textually because we may no longer 171 // have access the file in the filesystem. 172 // First, replace all slashes with backslashes. 173 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 174 175 // Remove all "\.\" with "\". 176 size_t Cursor = 0; 177 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 178 Filepath.erase(Cursor, 2); 179 180 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 181 // path should be well-formatted, e.g. start with a drive letter, etc. 182 Cursor = 0; 183 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 184 // Something's wrong if the path starts with "\..\", abort. 185 if (Cursor == 0) 186 break; 187 188 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 189 if (PrevSlash == std::string::npos) 190 // Something's wrong, abort. 191 break; 192 193 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 194 // The next ".." might be following the one we've just erased. 195 Cursor = PrevSlash; 196 } 197 198 // Remove all duplicate backslashes. 199 Cursor = 0; 200 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 201 Filepath.erase(Cursor, 1); 202 203 return Filepath; 204 } 205 206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 207 StringRef FullPath = getFullFilepath(F); 208 unsigned NextId = FileIdMap.size() + 1; 209 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 210 if (Insertion.second) { 211 // We have to compute the full filepath and emit a .cv_file directive. 212 ArrayRef<uint8_t> ChecksumAsBytes; 213 FileChecksumKind CSKind = FileChecksumKind::None; 214 if (F->getChecksum()) { 215 std::string Checksum = fromHex(F->getChecksum()->Value); 216 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 217 memcpy(CKMem, Checksum.data(), Checksum.size()); 218 ChecksumAsBytes = ArrayRef<uint8_t>( 219 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 220 switch (F->getChecksum()->Kind) { 221 case DIFile::CSK_MD5: 222 CSKind = FileChecksumKind::MD5; 223 break; 224 case DIFile::CSK_SHA1: 225 CSKind = FileChecksumKind::SHA1; 226 break; 227 case DIFile::CSK_SHA256: 228 CSKind = FileChecksumKind::SHA256; 229 break; 230 } 231 } 232 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 233 static_cast<unsigned>(CSKind)); 234 (void)Success; 235 assert(Success && ".cv_file directive failed"); 236 } 237 return Insertion.first->second; 238 } 239 240 CodeViewDebug::InlineSite & 241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 242 const DISubprogram *Inlinee) { 243 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 244 InlineSite *Site = &SiteInsertion.first->second; 245 if (SiteInsertion.second) { 246 unsigned ParentFuncId = CurFn->FuncId; 247 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 248 ParentFuncId = 249 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 250 .SiteFuncId; 251 252 Site->SiteFuncId = NextFuncId++; 253 OS.EmitCVInlineSiteIdDirective( 254 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 255 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 256 Site->Inlinee = Inlinee; 257 InlinedSubprograms.insert(Inlinee); 258 getFuncIdForSubprogram(Inlinee); 259 } 260 return *Site; 261 } 262 263 static StringRef getPrettyScopeName(const DIScope *Scope) { 264 StringRef ScopeName = Scope->getName(); 265 if (!ScopeName.empty()) 266 return ScopeName; 267 268 switch (Scope->getTag()) { 269 case dwarf::DW_TAG_enumeration_type: 270 case dwarf::DW_TAG_class_type: 271 case dwarf::DW_TAG_structure_type: 272 case dwarf::DW_TAG_union_type: 273 return "<unnamed-tag>"; 274 case dwarf::DW_TAG_namespace: 275 return "`anonymous namespace'"; 276 } 277 278 return StringRef(); 279 } 280 281 const DISubprogram *CodeViewDebug::collectParentScopeNames( 282 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 283 const DISubprogram *ClosestSubprogram = nullptr; 284 while (Scope != nullptr) { 285 if (ClosestSubprogram == nullptr) 286 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 287 288 // If a type appears in a scope chain, make sure it gets emitted. The 289 // frontend will be responsible for deciding if this should be a forward 290 // declaration or a complete type. 291 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 292 DeferredCompleteTypes.push_back(Ty); 293 294 StringRef ScopeName = getPrettyScopeName(Scope); 295 if (!ScopeName.empty()) 296 QualifiedNameComponents.push_back(ScopeName); 297 Scope = Scope->getScope(); 298 } 299 return ClosestSubprogram; 300 } 301 302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 303 StringRef TypeName) { 304 std::string FullyQualifiedName; 305 for (StringRef QualifiedNameComponent : 306 llvm::reverse(QualifiedNameComponents)) { 307 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 308 FullyQualifiedName.append("::"); 309 } 310 FullyQualifiedName.append(std::string(TypeName)); 311 return FullyQualifiedName; 312 } 313 314 struct CodeViewDebug::TypeLoweringScope { 315 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 316 ~TypeLoweringScope() { 317 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 318 // inner TypeLoweringScopes don't attempt to emit deferred types. 319 if (CVD.TypeEmissionLevel == 1) 320 CVD.emitDeferredCompleteTypes(); 321 --CVD.TypeEmissionLevel; 322 } 323 CodeViewDebug &CVD; 324 }; 325 326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 327 StringRef Name) { 328 // Ensure types in the scope chain are emitted as soon as possible. 329 // This can create otherwise a situation where S_UDTs are emitted while 330 // looping in emitDebugInfoForUDTs. 331 TypeLoweringScope S(*this); 332 SmallVector<StringRef, 5> QualifiedNameComponents; 333 collectParentScopeNames(Scope, QualifiedNameComponents); 334 return formatNestedName(QualifiedNameComponents, Name); 335 } 336 337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 338 const DIScope *Scope = Ty->getScope(); 339 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 340 } 341 342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 343 // No scope means global scope and that uses the zero index. 344 if (!Scope || isa<DIFile>(Scope)) 345 return TypeIndex(); 346 347 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 348 349 // Check if we've already translated this scope. 350 auto I = TypeIndices.find({Scope, nullptr}); 351 if (I != TypeIndices.end()) 352 return I->second; 353 354 // Build the fully qualified name of the scope. 355 std::string ScopeName = getFullyQualifiedName(Scope); 356 StringIdRecord SID(TypeIndex(), ScopeName); 357 auto TI = TypeTable.writeLeafType(SID); 358 return recordTypeIndexForDINode(Scope, TI); 359 } 360 361 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 362 assert(SP); 363 364 // Check if we've already translated this subprogram. 365 auto I = TypeIndices.find({SP, nullptr}); 366 if (I != TypeIndices.end()) 367 return I->second; 368 369 // The display name includes function template arguments. Drop them to match 370 // MSVC. 371 StringRef DisplayName = SP->getName().split('<').first; 372 373 const DIScope *Scope = SP->getScope(); 374 TypeIndex TI; 375 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 376 // If the scope is a DICompositeType, then this must be a method. Member 377 // function types take some special handling, and require access to the 378 // subprogram. 379 TypeIndex ClassType = getTypeIndex(Class); 380 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 381 DisplayName); 382 TI = TypeTable.writeLeafType(MFuncId); 383 } else { 384 // Otherwise, this must be a free function. 385 TypeIndex ParentScope = getScopeIndex(Scope); 386 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 387 TI = TypeTable.writeLeafType(FuncId); 388 } 389 390 return recordTypeIndexForDINode(SP, TI); 391 } 392 393 static bool isNonTrivial(const DICompositeType *DCTy) { 394 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 395 } 396 397 static FunctionOptions 398 getFunctionOptions(const DISubroutineType *Ty, 399 const DICompositeType *ClassTy = nullptr, 400 StringRef SPName = StringRef("")) { 401 FunctionOptions FO = FunctionOptions::None; 402 const DIType *ReturnTy = nullptr; 403 if (auto TypeArray = Ty->getTypeArray()) { 404 if (TypeArray.size()) 405 ReturnTy = TypeArray[0]; 406 } 407 408 // Add CxxReturnUdt option to functions that return nontrivial record types 409 // or methods that return record types. 410 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 411 if (isNonTrivial(ReturnDCTy) || ClassTy) 412 FO |= FunctionOptions::CxxReturnUdt; 413 414 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 415 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 416 FO |= FunctionOptions::Constructor; 417 418 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 419 420 } 421 return FO; 422 } 423 424 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 425 const DICompositeType *Class) { 426 // Always use the method declaration as the key for the function type. The 427 // method declaration contains the this adjustment. 428 if (SP->getDeclaration()) 429 SP = SP->getDeclaration(); 430 assert(!SP->getDeclaration() && "should use declaration as key"); 431 432 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 433 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 434 auto I = TypeIndices.find({SP, Class}); 435 if (I != TypeIndices.end()) 436 return I->second; 437 438 // Make sure complete type info for the class is emitted *after* the member 439 // function type, as the complete class type is likely to reference this 440 // member function type. 441 TypeLoweringScope S(*this); 442 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 443 444 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 445 TypeIndex TI = lowerTypeMemberFunction( 446 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 447 return recordTypeIndexForDINode(SP, TI, Class); 448 } 449 450 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 451 TypeIndex TI, 452 const DIType *ClassTy) { 453 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 454 (void)InsertResult; 455 assert(InsertResult.second && "DINode was already assigned a type index"); 456 return TI; 457 } 458 459 unsigned CodeViewDebug::getPointerSizeInBytes() { 460 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 461 } 462 463 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 464 const LexicalScope *LS) { 465 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 466 // This variable was inlined. Associate it with the InlineSite. 467 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 468 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 469 Site.InlinedLocals.emplace_back(Var); 470 } else { 471 // This variable goes into the corresponding lexical scope. 472 ScopeVariables[LS].emplace_back(Var); 473 } 474 } 475 476 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 477 const DILocation *Loc) { 478 if (!llvm::is_contained(Locs, Loc)) 479 Locs.push_back(Loc); 480 } 481 482 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 483 const MachineFunction *MF) { 484 // Skip this instruction if it has the same location as the previous one. 485 if (!DL || DL == PrevInstLoc) 486 return; 487 488 const DIScope *Scope = DL.get()->getScope(); 489 if (!Scope) 490 return; 491 492 // Skip this line if it is longer than the maximum we can record. 493 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 494 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 495 LI.isNeverStepInto()) 496 return; 497 498 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 499 if (CI.getStartColumn() != DL.getCol()) 500 return; 501 502 if (!CurFn->HaveLineInfo) 503 CurFn->HaveLineInfo = true; 504 unsigned FileId = 0; 505 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 506 FileId = CurFn->LastFileId; 507 else 508 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 509 PrevInstLoc = DL; 510 511 unsigned FuncId = CurFn->FuncId; 512 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 513 const DILocation *Loc = DL.get(); 514 515 // If this location was actually inlined from somewhere else, give it the ID 516 // of the inline call site. 517 FuncId = 518 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 519 520 // Ensure we have links in the tree of inline call sites. 521 bool FirstLoc = true; 522 while ((SiteLoc = Loc->getInlinedAt())) { 523 InlineSite &Site = 524 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 525 if (!FirstLoc) 526 addLocIfNotPresent(Site.ChildSites, Loc); 527 FirstLoc = false; 528 Loc = SiteLoc; 529 } 530 addLocIfNotPresent(CurFn->ChildSites, Loc); 531 } 532 533 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 534 /*PrologueEnd=*/false, /*IsStmt=*/false, 535 DL->getFilename(), SMLoc()); 536 } 537 538 void CodeViewDebug::emitCodeViewMagicVersion() { 539 OS.emitValueToAlignment(4); 540 OS.AddComment("Debug section magic"); 541 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 542 } 543 544 void CodeViewDebug::beginModule(Module *M) { 545 // If module doesn't have named metadata anchors or COFF debug section 546 // is not available, skip any debug info related stuff. 547 if (!M->getNamedMetadata("llvm.dbg.cu") || 548 !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) { 549 Asm = nullptr; 550 return; 551 } 552 // Tell MMI that we have and need debug info. 553 MMI->setDebugInfoAvailability(true); 554 555 TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch()); 556 557 collectGlobalVariableInfo(); 558 559 // Check if we should emit type record hashes. 560 ConstantInt *GH = 561 mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash")); 562 EmitDebugGlobalHashes = GH && !GH->isZero(); 563 } 564 565 void CodeViewDebug::endModule() { 566 if (!Asm || !MMI->hasDebugInfo()) 567 return; 568 569 // The COFF .debug$S section consists of several subsections, each starting 570 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 571 // of the payload followed by the payload itself. The subsections are 4-byte 572 // aligned. 573 574 // Use the generic .debug$S section, and make a subsection for all the inlined 575 // subprograms. 576 switchToDebugSectionForSymbol(nullptr); 577 578 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 579 emitCompilerInformation(); 580 endCVSubsection(CompilerInfo); 581 582 emitInlineeLinesSubsection(); 583 584 // Emit per-function debug information. 585 for (auto &P : FnDebugInfo) 586 if (!P.first->isDeclarationForLinker()) 587 emitDebugInfoForFunction(P.first, *P.second); 588 589 // Get types used by globals without emitting anything. 590 // This is meant to collect all static const data members so they can be 591 // emitted as globals. 592 collectDebugInfoForGlobals(); 593 594 // Emit retained types. 595 emitDebugInfoForRetainedTypes(); 596 597 // Emit global variable debug information. 598 setCurrentSubprogram(nullptr); 599 emitDebugInfoForGlobals(); 600 601 // Switch back to the generic .debug$S section after potentially processing 602 // comdat symbol sections. 603 switchToDebugSectionForSymbol(nullptr); 604 605 // Emit UDT records for any types used by global variables. 606 if (!GlobalUDTs.empty()) { 607 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 608 emitDebugInfoForUDTs(GlobalUDTs); 609 endCVSubsection(SymbolsEnd); 610 } 611 612 // This subsection holds a file index to offset in string table table. 613 OS.AddComment("File index to string table offset subsection"); 614 OS.emitCVFileChecksumsDirective(); 615 616 // This subsection holds the string table. 617 OS.AddComment("String table"); 618 OS.emitCVStringTableDirective(); 619 620 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 621 // subsection in the generic .debug$S section at the end. There is no 622 // particular reason for this ordering other than to match MSVC. 623 emitBuildInfo(); 624 625 // Emit type information and hashes last, so that any types we translate while 626 // emitting function info are included. 627 emitTypeInformation(); 628 629 if (EmitDebugGlobalHashes) 630 emitTypeGlobalHashes(); 631 632 clear(); 633 } 634 635 static void 636 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 637 unsigned MaxFixedRecordLength = 0xF00) { 638 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 639 // after a fixed length portion of the record. The fixed length portion should 640 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 641 // overall record size is less than the maximum allowed. 642 SmallString<32> NullTerminatedString( 643 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 644 NullTerminatedString.push_back('\0'); 645 OS.emitBytes(NullTerminatedString); 646 } 647 648 void CodeViewDebug::emitTypeInformation() { 649 if (TypeTable.empty()) 650 return; 651 652 // Start the .debug$T or .debug$P section with 0x4. 653 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 654 emitCodeViewMagicVersion(); 655 656 TypeTableCollection Table(TypeTable.records()); 657 TypeVisitorCallbackPipeline Pipeline; 658 659 // To emit type record using Codeview MCStreamer adapter 660 CVMCAdapter CVMCOS(OS, Table); 661 TypeRecordMapping typeMapping(CVMCOS); 662 Pipeline.addCallbackToPipeline(typeMapping); 663 664 Optional<TypeIndex> B = Table.getFirst(); 665 while (B) { 666 // This will fail if the record data is invalid. 667 CVType Record = Table.getType(*B); 668 669 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 670 671 if (E) { 672 logAllUnhandledErrors(std::move(E), errs(), "error: "); 673 llvm_unreachable("produced malformed type record"); 674 } 675 676 B = Table.getNext(*B); 677 } 678 } 679 680 void CodeViewDebug::emitTypeGlobalHashes() { 681 if (TypeTable.empty()) 682 return; 683 684 // Start the .debug$H section with the version and hash algorithm, currently 685 // hardcoded to version 0, SHA1. 686 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 687 688 OS.emitValueToAlignment(4); 689 OS.AddComment("Magic"); 690 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 691 OS.AddComment("Section Version"); 692 OS.emitInt16(0); 693 OS.AddComment("Hash Algorithm"); 694 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 695 696 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 697 for (const auto &GHR : TypeTable.hashes()) { 698 if (OS.isVerboseAsm()) { 699 // Emit an EOL-comment describing which TypeIndex this hash corresponds 700 // to, as well as the stringified SHA1 hash. 701 SmallString<32> Comment; 702 raw_svector_ostream CommentOS(Comment); 703 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 704 OS.AddComment(Comment); 705 ++TI; 706 } 707 assert(GHR.Hash.size() == 8); 708 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 709 GHR.Hash.size()); 710 OS.emitBinaryData(S); 711 } 712 } 713 714 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 715 switch (DWLang) { 716 case dwarf::DW_LANG_C: 717 case dwarf::DW_LANG_C89: 718 case dwarf::DW_LANG_C99: 719 case dwarf::DW_LANG_C11: 720 case dwarf::DW_LANG_ObjC: 721 return SourceLanguage::C; 722 case dwarf::DW_LANG_C_plus_plus: 723 case dwarf::DW_LANG_C_plus_plus_03: 724 case dwarf::DW_LANG_C_plus_plus_11: 725 case dwarf::DW_LANG_C_plus_plus_14: 726 return SourceLanguage::Cpp; 727 case dwarf::DW_LANG_Fortran77: 728 case dwarf::DW_LANG_Fortran90: 729 case dwarf::DW_LANG_Fortran03: 730 case dwarf::DW_LANG_Fortran08: 731 return SourceLanguage::Fortran; 732 case dwarf::DW_LANG_Pascal83: 733 return SourceLanguage::Pascal; 734 case dwarf::DW_LANG_Cobol74: 735 case dwarf::DW_LANG_Cobol85: 736 return SourceLanguage::Cobol; 737 case dwarf::DW_LANG_Java: 738 return SourceLanguage::Java; 739 case dwarf::DW_LANG_D: 740 return SourceLanguage::D; 741 case dwarf::DW_LANG_Swift: 742 return SourceLanguage::Swift; 743 default: 744 // There's no CodeView representation for this language, and CV doesn't 745 // have an "unknown" option for the language field, so we'll use MASM, 746 // as it's very low level. 747 return SourceLanguage::Masm; 748 } 749 } 750 751 namespace { 752 struct Version { 753 int Part[4]; 754 }; 755 } // end anonymous namespace 756 757 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 758 // the version number. 759 static Version parseVersion(StringRef Name) { 760 Version V = {{0}}; 761 int N = 0; 762 for (const char C : Name) { 763 if (isdigit(C)) { 764 V.Part[N] *= 10; 765 V.Part[N] += C - '0'; 766 } else if (C == '.') { 767 ++N; 768 if (N >= 4) 769 return V; 770 } else if (N > 0) 771 return V; 772 } 773 return V; 774 } 775 776 void CodeViewDebug::emitCompilerInformation() { 777 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 778 uint32_t Flags = 0; 779 780 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 781 const MDNode *Node = *CUs->operands().begin(); 782 const auto *CU = cast<DICompileUnit>(Node); 783 784 // The low byte of the flags indicates the source language. 785 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 786 // TODO: Figure out which other flags need to be set. 787 788 OS.AddComment("Flags and language"); 789 OS.emitInt32(Flags); 790 791 OS.AddComment("CPUType"); 792 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 793 794 StringRef CompilerVersion = CU->getProducer(); 795 Version FrontVer = parseVersion(CompilerVersion); 796 OS.AddComment("Frontend version"); 797 for (int N = 0; N < 4; ++N) 798 OS.emitInt16(FrontVer.Part[N]); 799 800 // Some Microsoft tools, like Binscope, expect a backend version number of at 801 // least 8.something, so we'll coerce the LLVM version into a form that 802 // guarantees it'll be big enough without really lying about the version. 803 int Major = 1000 * LLVM_VERSION_MAJOR + 804 10 * LLVM_VERSION_MINOR + 805 LLVM_VERSION_PATCH; 806 // Clamp it for builds that use unusually large version numbers. 807 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 808 Version BackVer = {{ Major, 0, 0, 0 }}; 809 OS.AddComment("Backend version"); 810 for (int N = 0; N < 4; ++N) 811 OS.emitInt16(BackVer.Part[N]); 812 813 OS.AddComment("Null-terminated compiler version string"); 814 emitNullTerminatedSymbolName(OS, CompilerVersion); 815 816 endSymbolRecord(CompilerEnd); 817 } 818 819 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 820 StringRef S) { 821 StringIdRecord SIR(TypeIndex(0x0), S); 822 return TypeTable.writeLeafType(SIR); 823 } 824 825 void CodeViewDebug::emitBuildInfo() { 826 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 827 // build info. The known prefix is: 828 // - Absolute path of current directory 829 // - Compiler path 830 // - Main source file path, relative to CWD or absolute 831 // - Type server PDB file 832 // - Canonical compiler command line 833 // If frontend and backend compilation are separated (think llc or LTO), it's 834 // not clear if the compiler path should refer to the executable for the 835 // frontend or the backend. Leave it blank for now. 836 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 837 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 838 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 839 const auto *CU = cast<DICompileUnit>(Node); 840 const DIFile *MainSourceFile = CU->getFile(); 841 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 842 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 843 BuildInfoArgs[BuildInfoRecord::SourceFile] = 844 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 845 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 846 // we implement /Zi type servers. 847 BuildInfoRecord BIR(BuildInfoArgs); 848 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 849 850 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 851 // from the module symbols into the type stream. 852 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 853 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 854 OS.AddComment("LF_BUILDINFO index"); 855 OS.emitInt32(BuildInfoIndex.getIndex()); 856 endSymbolRecord(BIEnd); 857 endCVSubsection(BISubsecEnd); 858 } 859 860 void CodeViewDebug::emitInlineeLinesSubsection() { 861 if (InlinedSubprograms.empty()) 862 return; 863 864 OS.AddComment("Inlinee lines subsection"); 865 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 866 867 // We emit the checksum info for files. This is used by debuggers to 868 // determine if a pdb matches the source before loading it. Visual Studio, 869 // for instance, will display a warning that the breakpoints are not valid if 870 // the pdb does not match the source. 871 OS.AddComment("Inlinee lines signature"); 872 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 873 874 for (const DISubprogram *SP : InlinedSubprograms) { 875 assert(TypeIndices.count({SP, nullptr})); 876 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 877 878 OS.AddBlankLine(); 879 unsigned FileId = maybeRecordFile(SP->getFile()); 880 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 881 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 882 OS.AddBlankLine(); 883 OS.AddComment("Type index of inlined function"); 884 OS.emitInt32(InlineeIdx.getIndex()); 885 OS.AddComment("Offset into filechecksum table"); 886 OS.emitCVFileChecksumOffsetDirective(FileId); 887 OS.AddComment("Starting line number"); 888 OS.emitInt32(SP->getLine()); 889 } 890 891 endCVSubsection(InlineEnd); 892 } 893 894 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 895 const DILocation *InlinedAt, 896 const InlineSite &Site) { 897 assert(TypeIndices.count({Site.Inlinee, nullptr})); 898 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 899 900 // SymbolRecord 901 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 902 903 OS.AddComment("PtrParent"); 904 OS.emitInt32(0); 905 OS.AddComment("PtrEnd"); 906 OS.emitInt32(0); 907 OS.AddComment("Inlinee type index"); 908 OS.emitInt32(InlineeIdx.getIndex()); 909 910 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 911 unsigned StartLineNum = Site.Inlinee->getLine(); 912 913 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 914 FI.Begin, FI.End); 915 916 endSymbolRecord(InlineEnd); 917 918 emitLocalVariableList(FI, Site.InlinedLocals); 919 920 // Recurse on child inlined call sites before closing the scope. 921 for (const DILocation *ChildSite : Site.ChildSites) { 922 auto I = FI.InlineSites.find(ChildSite); 923 assert(I != FI.InlineSites.end() && 924 "child site not in function inline site map"); 925 emitInlinedCallSite(FI, ChildSite, I->second); 926 } 927 928 // Close the scope. 929 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 930 } 931 932 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 933 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 934 // comdat key. A section may be comdat because of -ffunction-sections or 935 // because it is comdat in the IR. 936 MCSectionCOFF *GVSec = 937 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 938 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 939 940 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 941 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 942 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 943 944 OS.SwitchSection(DebugSec); 945 946 // Emit the magic version number if this is the first time we've switched to 947 // this section. 948 if (ComdatDebugSections.insert(DebugSec).second) 949 emitCodeViewMagicVersion(); 950 } 951 952 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 953 // The only supported thunk ordinal is currently the standard type. 954 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 955 FunctionInfo &FI, 956 const MCSymbol *Fn) { 957 std::string FuncName = 958 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 959 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 960 961 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 962 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 963 964 // Emit S_THUNK32 965 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 966 OS.AddComment("PtrParent"); 967 OS.emitInt32(0); 968 OS.AddComment("PtrEnd"); 969 OS.emitInt32(0); 970 OS.AddComment("PtrNext"); 971 OS.emitInt32(0); 972 OS.AddComment("Thunk section relative address"); 973 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 974 OS.AddComment("Thunk section index"); 975 OS.EmitCOFFSectionIndex(Fn); 976 OS.AddComment("Code size"); 977 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 978 OS.AddComment("Ordinal"); 979 OS.emitInt8(unsigned(ordinal)); 980 OS.AddComment("Function name"); 981 emitNullTerminatedSymbolName(OS, FuncName); 982 // Additional fields specific to the thunk ordinal would go here. 983 endSymbolRecord(ThunkRecordEnd); 984 985 // Local variables/inlined routines are purposely omitted here. The point of 986 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 987 988 // Emit S_PROC_ID_END 989 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 990 991 endCVSubsection(SymbolsEnd); 992 } 993 994 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 995 FunctionInfo &FI) { 996 // For each function there is a separate subsection which holds the PC to 997 // file:line table. 998 const MCSymbol *Fn = Asm->getSymbol(GV); 999 assert(Fn); 1000 1001 // Switch to the to a comdat section, if appropriate. 1002 switchToDebugSectionForSymbol(Fn); 1003 1004 std::string FuncName; 1005 auto *SP = GV->getSubprogram(); 1006 assert(SP); 1007 setCurrentSubprogram(SP); 1008 1009 if (SP->isThunk()) { 1010 emitDebugInfoForThunk(GV, FI, Fn); 1011 return; 1012 } 1013 1014 // If we have a display name, build the fully qualified name by walking the 1015 // chain of scopes. 1016 if (!SP->getName().empty()) 1017 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1018 1019 // If our DISubprogram name is empty, use the mangled name. 1020 if (FuncName.empty()) 1021 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1022 1023 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1024 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1025 OS.EmitCVFPOData(Fn); 1026 1027 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1028 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1029 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1030 { 1031 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1032 : SymbolKind::S_GPROC32_ID; 1033 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1034 1035 // These fields are filled in by tools like CVPACK which run after the fact. 1036 OS.AddComment("PtrParent"); 1037 OS.emitInt32(0); 1038 OS.AddComment("PtrEnd"); 1039 OS.emitInt32(0); 1040 OS.AddComment("PtrNext"); 1041 OS.emitInt32(0); 1042 // This is the important bit that tells the debugger where the function 1043 // code is located and what's its size: 1044 OS.AddComment("Code size"); 1045 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1046 OS.AddComment("Offset after prologue"); 1047 OS.emitInt32(0); 1048 OS.AddComment("Offset before epilogue"); 1049 OS.emitInt32(0); 1050 OS.AddComment("Function type index"); 1051 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1052 OS.AddComment("Function section relative address"); 1053 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1054 OS.AddComment("Function section index"); 1055 OS.EmitCOFFSectionIndex(Fn); 1056 OS.AddComment("Flags"); 1057 OS.emitInt8(0); 1058 // Emit the function display name as a null-terminated string. 1059 OS.AddComment("Function name"); 1060 // Truncate the name so we won't overflow the record length field. 1061 emitNullTerminatedSymbolName(OS, FuncName); 1062 endSymbolRecord(ProcRecordEnd); 1063 1064 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1065 // Subtract out the CSR size since MSVC excludes that and we include it. 1066 OS.AddComment("FrameSize"); 1067 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1068 OS.AddComment("Padding"); 1069 OS.emitInt32(0); 1070 OS.AddComment("Offset of padding"); 1071 OS.emitInt32(0); 1072 OS.AddComment("Bytes of callee saved registers"); 1073 OS.emitInt32(FI.CSRSize); 1074 OS.AddComment("Exception handler offset"); 1075 OS.emitInt32(0); 1076 OS.AddComment("Exception handler section"); 1077 OS.emitInt16(0); 1078 OS.AddComment("Flags (defines frame register)"); 1079 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1080 endSymbolRecord(FrameProcEnd); 1081 1082 emitLocalVariableList(FI, FI.Locals); 1083 emitGlobalVariableList(FI.Globals); 1084 emitLexicalBlockList(FI.ChildBlocks, FI); 1085 1086 // Emit inlined call site information. Only emit functions inlined directly 1087 // into the parent function. We'll emit the other sites recursively as part 1088 // of their parent inline site. 1089 for (const DILocation *InlinedAt : FI.ChildSites) { 1090 auto I = FI.InlineSites.find(InlinedAt); 1091 assert(I != FI.InlineSites.end() && 1092 "child site not in function inline site map"); 1093 emitInlinedCallSite(FI, InlinedAt, I->second); 1094 } 1095 1096 for (auto Annot : FI.Annotations) { 1097 MCSymbol *Label = Annot.first; 1098 MDTuple *Strs = cast<MDTuple>(Annot.second); 1099 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1100 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1101 // FIXME: Make sure we don't overflow the max record size. 1102 OS.EmitCOFFSectionIndex(Label); 1103 OS.emitInt16(Strs->getNumOperands()); 1104 for (Metadata *MD : Strs->operands()) { 1105 // MDStrings are null terminated, so we can do EmitBytes and get the 1106 // nice .asciz directive. 1107 StringRef Str = cast<MDString>(MD)->getString(); 1108 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1109 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1110 } 1111 endSymbolRecord(AnnotEnd); 1112 } 1113 1114 for (auto HeapAllocSite : FI.HeapAllocSites) { 1115 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1116 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1117 const DIType *DITy = std::get<2>(HeapAllocSite); 1118 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1119 OS.AddComment("Call site offset"); 1120 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1121 OS.AddComment("Call site section index"); 1122 OS.EmitCOFFSectionIndex(BeginLabel); 1123 OS.AddComment("Call instruction length"); 1124 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1125 OS.AddComment("Type index"); 1126 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1127 endSymbolRecord(HeapAllocEnd); 1128 } 1129 1130 if (SP != nullptr) 1131 emitDebugInfoForUDTs(LocalUDTs); 1132 1133 // We're done with this function. 1134 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1135 } 1136 endCVSubsection(SymbolsEnd); 1137 1138 // We have an assembler directive that takes care of the whole line table. 1139 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1140 } 1141 1142 CodeViewDebug::LocalVarDefRange 1143 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1144 LocalVarDefRange DR; 1145 DR.InMemory = -1; 1146 DR.DataOffset = Offset; 1147 assert(DR.DataOffset == Offset && "truncation"); 1148 DR.IsSubfield = 0; 1149 DR.StructOffset = 0; 1150 DR.CVRegister = CVRegister; 1151 return DR; 1152 } 1153 1154 void CodeViewDebug::collectVariableInfoFromMFTable( 1155 DenseSet<InlinedEntity> &Processed) { 1156 const MachineFunction &MF = *Asm->MF; 1157 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1158 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1159 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1160 1161 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1162 if (!VI.Var) 1163 continue; 1164 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1165 "Expected inlined-at fields to agree"); 1166 1167 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1168 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1169 1170 // If variable scope is not found then skip this variable. 1171 if (!Scope) 1172 continue; 1173 1174 // If the variable has an attached offset expression, extract it. 1175 // FIXME: Try to handle DW_OP_deref as well. 1176 int64_t ExprOffset = 0; 1177 bool Deref = false; 1178 if (VI.Expr) { 1179 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1180 if (VI.Expr->getNumElements() == 1 && 1181 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1182 Deref = true; 1183 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1184 continue; 1185 } 1186 1187 // Get the frame register used and the offset. 1188 Register FrameReg; 1189 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1190 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1191 1192 // Calculate the label ranges. 1193 LocalVarDefRange DefRange = 1194 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1195 1196 for (const InsnRange &Range : Scope->getRanges()) { 1197 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1198 const MCSymbol *End = getLabelAfterInsn(Range.second); 1199 End = End ? End : Asm->getFunctionEnd(); 1200 DefRange.Ranges.emplace_back(Begin, End); 1201 } 1202 1203 LocalVariable Var; 1204 Var.DIVar = VI.Var; 1205 Var.DefRanges.emplace_back(std::move(DefRange)); 1206 if (Deref) 1207 Var.UseReferenceType = true; 1208 1209 recordLocalVariable(std::move(Var), Scope); 1210 } 1211 } 1212 1213 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1214 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1215 } 1216 1217 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1218 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1219 } 1220 1221 void CodeViewDebug::calculateRanges( 1222 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1223 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1224 1225 // Calculate the definition ranges. 1226 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1227 const auto &Entry = *I; 1228 if (!Entry.isDbgValue()) 1229 continue; 1230 const MachineInstr *DVInst = Entry.getInstr(); 1231 assert(DVInst->isDebugValue() && "Invalid History entry"); 1232 // FIXME: Find a way to represent constant variables, since they are 1233 // relatively common. 1234 Optional<DbgVariableLocation> Location = 1235 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1236 if (!Location) 1237 continue; 1238 1239 // CodeView can only express variables in register and variables in memory 1240 // at a constant offset from a register. However, for variables passed 1241 // indirectly by pointer, it is common for that pointer to be spilled to a 1242 // stack location. For the special case of one offseted load followed by a 1243 // zero offset load (a pointer spilled to the stack), we change the type of 1244 // the local variable from a value type to a reference type. This tricks the 1245 // debugger into doing the load for us. 1246 if (Var.UseReferenceType) { 1247 // We're using a reference type. Drop the last zero offset load. 1248 if (canUseReferenceType(*Location)) 1249 Location->LoadChain.pop_back(); 1250 else 1251 continue; 1252 } else if (needsReferenceType(*Location)) { 1253 // This location can't be expressed without switching to a reference type. 1254 // Start over using that. 1255 Var.UseReferenceType = true; 1256 Var.DefRanges.clear(); 1257 calculateRanges(Var, Entries); 1258 return; 1259 } 1260 1261 // We can only handle a register or an offseted load of a register. 1262 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1263 continue; 1264 { 1265 LocalVarDefRange DR; 1266 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1267 DR.InMemory = !Location->LoadChain.empty(); 1268 DR.DataOffset = 1269 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1270 if (Location->FragmentInfo) { 1271 DR.IsSubfield = true; 1272 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1273 } else { 1274 DR.IsSubfield = false; 1275 DR.StructOffset = 0; 1276 } 1277 1278 if (Var.DefRanges.empty() || 1279 Var.DefRanges.back().isDifferentLocation(DR)) { 1280 Var.DefRanges.emplace_back(std::move(DR)); 1281 } 1282 } 1283 1284 // Compute the label range. 1285 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1286 const MCSymbol *End; 1287 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1288 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1289 End = EndingEntry.isDbgValue() 1290 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1291 : getLabelAfterInsn(EndingEntry.getInstr()); 1292 } else 1293 End = Asm->getFunctionEnd(); 1294 1295 // If the last range end is our begin, just extend the last range. 1296 // Otherwise make a new range. 1297 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1298 Var.DefRanges.back().Ranges; 1299 if (!R.empty() && R.back().second == Begin) 1300 R.back().second = End; 1301 else 1302 R.emplace_back(Begin, End); 1303 1304 // FIXME: Do more range combining. 1305 } 1306 } 1307 1308 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1309 DenseSet<InlinedEntity> Processed; 1310 // Grab the variable info that was squirreled away in the MMI side-table. 1311 collectVariableInfoFromMFTable(Processed); 1312 1313 for (const auto &I : DbgValues) { 1314 InlinedEntity IV = I.first; 1315 if (Processed.count(IV)) 1316 continue; 1317 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1318 const DILocation *InlinedAt = IV.second; 1319 1320 // Instruction ranges, specifying where IV is accessible. 1321 const auto &Entries = I.second; 1322 1323 LexicalScope *Scope = nullptr; 1324 if (InlinedAt) 1325 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1326 else 1327 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1328 // If variable scope is not found then skip this variable. 1329 if (!Scope) 1330 continue; 1331 1332 LocalVariable Var; 1333 Var.DIVar = DIVar; 1334 1335 calculateRanges(Var, Entries); 1336 recordLocalVariable(std::move(Var), Scope); 1337 } 1338 } 1339 1340 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1341 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1342 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1343 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1344 const Function &GV = MF->getFunction(); 1345 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1346 assert(Insertion.second && "function already has info"); 1347 CurFn = Insertion.first->second.get(); 1348 CurFn->FuncId = NextFuncId++; 1349 CurFn->Begin = Asm->getFunctionBegin(); 1350 1351 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1352 // callee-saved registers were used. For targets that don't use a PUSH 1353 // instruction (AArch64), this will be zero. 1354 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1355 CurFn->FrameSize = MFI.getStackSize(); 1356 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1357 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1358 1359 // For this function S_FRAMEPROC record, figure out which codeview register 1360 // will be the frame pointer. 1361 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1362 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1363 if (CurFn->FrameSize > 0) { 1364 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1365 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1366 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1367 } else { 1368 // If there is an FP, parameters are always relative to it. 1369 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1370 if (CurFn->HasStackRealignment) { 1371 // If the stack needs realignment, locals are relative to SP or VFRAME. 1372 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1373 } else { 1374 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1375 // other stack adjustments. 1376 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1377 } 1378 } 1379 } 1380 1381 // Compute other frame procedure options. 1382 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1383 if (MFI.hasVarSizedObjects()) 1384 FPO |= FrameProcedureOptions::HasAlloca; 1385 if (MF->exposesReturnsTwice()) 1386 FPO |= FrameProcedureOptions::HasSetJmp; 1387 // FIXME: Set HasLongJmp if we ever track that info. 1388 if (MF->hasInlineAsm()) 1389 FPO |= FrameProcedureOptions::HasInlineAssembly; 1390 if (GV.hasPersonalityFn()) { 1391 if (isAsynchronousEHPersonality( 1392 classifyEHPersonality(GV.getPersonalityFn()))) 1393 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1394 else 1395 FPO |= FrameProcedureOptions::HasExceptionHandling; 1396 } 1397 if (GV.hasFnAttribute(Attribute::InlineHint)) 1398 FPO |= FrameProcedureOptions::MarkedInline; 1399 if (GV.hasFnAttribute(Attribute::Naked)) 1400 FPO |= FrameProcedureOptions::Naked; 1401 if (MFI.hasStackProtectorIndex()) 1402 FPO |= FrameProcedureOptions::SecurityChecks; 1403 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1404 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1405 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1406 !GV.hasOptSize() && !GV.hasOptNone()) 1407 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1408 // FIXME: Set GuardCfg when it is implemented. 1409 CurFn->FrameProcOpts = FPO; 1410 1411 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1412 1413 // Find the end of the function prolog. First known non-DBG_VALUE and 1414 // non-frame setup location marks the beginning of the function body. 1415 // FIXME: is there a simpler a way to do this? Can we just search 1416 // for the first instruction of the function, not the last of the prolog? 1417 DebugLoc PrologEndLoc; 1418 bool EmptyPrologue = true; 1419 for (const auto &MBB : *MF) { 1420 for (const auto &MI : MBB) { 1421 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1422 MI.getDebugLoc()) { 1423 PrologEndLoc = MI.getDebugLoc(); 1424 break; 1425 } else if (!MI.isMetaInstruction()) { 1426 EmptyPrologue = false; 1427 } 1428 } 1429 } 1430 1431 // Record beginning of function if we have a non-empty prologue. 1432 if (PrologEndLoc && !EmptyPrologue) { 1433 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1434 maybeRecordLocation(FnStartDL, MF); 1435 } 1436 1437 // Find heap alloc sites and emit labels around them. 1438 for (const auto &MBB : *MF) { 1439 for (const auto &MI : MBB) { 1440 if (MI.getHeapAllocMarker()) { 1441 requestLabelBeforeInsn(&MI); 1442 requestLabelAfterInsn(&MI); 1443 } 1444 } 1445 } 1446 } 1447 1448 static bool shouldEmitUdt(const DIType *T) { 1449 if (!T) 1450 return false; 1451 1452 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1453 if (T->getTag() == dwarf::DW_TAG_typedef) { 1454 if (DIScope *Scope = T->getScope()) { 1455 switch (Scope->getTag()) { 1456 case dwarf::DW_TAG_structure_type: 1457 case dwarf::DW_TAG_class_type: 1458 case dwarf::DW_TAG_union_type: 1459 return false; 1460 } 1461 } 1462 } 1463 1464 while (true) { 1465 if (!T || T->isForwardDecl()) 1466 return false; 1467 1468 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1469 if (!DT) 1470 return true; 1471 T = DT->getBaseType(); 1472 } 1473 return true; 1474 } 1475 1476 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1477 // Don't record empty UDTs. 1478 if (Ty->getName().empty()) 1479 return; 1480 if (!shouldEmitUdt(Ty)) 1481 return; 1482 1483 SmallVector<StringRef, 5> ParentScopeNames; 1484 const DISubprogram *ClosestSubprogram = 1485 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1486 1487 std::string FullyQualifiedName = 1488 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1489 1490 if (ClosestSubprogram == nullptr) { 1491 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1492 } else if (ClosestSubprogram == CurrentSubprogram) { 1493 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1494 } 1495 1496 // TODO: What if the ClosestSubprogram is neither null or the current 1497 // subprogram? Currently, the UDT just gets dropped on the floor. 1498 // 1499 // The current behavior is not desirable. To get maximal fidelity, we would 1500 // need to perform all type translation before beginning emission of .debug$S 1501 // and then make LocalUDTs a member of FunctionInfo 1502 } 1503 1504 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1505 // Generic dispatch for lowering an unknown type. 1506 switch (Ty->getTag()) { 1507 case dwarf::DW_TAG_array_type: 1508 return lowerTypeArray(cast<DICompositeType>(Ty)); 1509 case dwarf::DW_TAG_typedef: 1510 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1511 case dwarf::DW_TAG_base_type: 1512 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1513 case dwarf::DW_TAG_pointer_type: 1514 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1515 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1516 LLVM_FALLTHROUGH; 1517 case dwarf::DW_TAG_reference_type: 1518 case dwarf::DW_TAG_rvalue_reference_type: 1519 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1520 case dwarf::DW_TAG_ptr_to_member_type: 1521 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1522 case dwarf::DW_TAG_restrict_type: 1523 case dwarf::DW_TAG_const_type: 1524 case dwarf::DW_TAG_volatile_type: 1525 // TODO: add support for DW_TAG_atomic_type here 1526 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1527 case dwarf::DW_TAG_subroutine_type: 1528 if (ClassTy) { 1529 // The member function type of a member function pointer has no 1530 // ThisAdjustment. 1531 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1532 /*ThisAdjustment=*/0, 1533 /*IsStaticMethod=*/false); 1534 } 1535 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1536 case dwarf::DW_TAG_enumeration_type: 1537 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1538 case dwarf::DW_TAG_class_type: 1539 case dwarf::DW_TAG_structure_type: 1540 return lowerTypeClass(cast<DICompositeType>(Ty)); 1541 case dwarf::DW_TAG_union_type: 1542 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1543 case dwarf::DW_TAG_unspecified_type: 1544 if (Ty->getName() == "decltype(nullptr)") 1545 return TypeIndex::NullptrT(); 1546 return TypeIndex::None(); 1547 default: 1548 // Use the null type index. 1549 return TypeIndex(); 1550 } 1551 } 1552 1553 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1554 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1555 StringRef TypeName = Ty->getName(); 1556 1557 addToUDTs(Ty); 1558 1559 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1560 TypeName == "HRESULT") 1561 return TypeIndex(SimpleTypeKind::HResult); 1562 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1563 TypeName == "wchar_t") 1564 return TypeIndex(SimpleTypeKind::WideCharacter); 1565 1566 return UnderlyingTypeIndex; 1567 } 1568 1569 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1570 const DIType *ElementType = Ty->getBaseType(); 1571 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1572 // IndexType is size_t, which depends on the bitness of the target. 1573 TypeIndex IndexType = getPointerSizeInBytes() == 8 1574 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1575 : TypeIndex(SimpleTypeKind::UInt32Long); 1576 1577 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1578 1579 // Add subranges to array type. 1580 DINodeArray Elements = Ty->getElements(); 1581 for (int i = Elements.size() - 1; i >= 0; --i) { 1582 const DINode *Element = Elements[i]; 1583 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1584 1585 const DISubrange *Subrange = cast<DISubrange>(Element); 1586 int64_t Count = -1; 1587 // Calculate the count if either LowerBound is absent or is zero and 1588 // either of Count or UpperBound are constant. 1589 auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>(); 1590 if (!Subrange->getRawLowerBound() || (LI && (LI->getSExtValue() == 0))) { 1591 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1592 Count = CI->getSExtValue(); 1593 else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt*>()) 1594 Count = UI->getSExtValue() + 1; // LowerBound is zero 1595 } 1596 1597 // Forward declarations of arrays without a size and VLAs use a count of -1. 1598 // Emit a count of zero in these cases to match what MSVC does for arrays 1599 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1600 // should do for them even if we could distinguish them. 1601 if (Count == -1) 1602 Count = 0; 1603 1604 // Update the element size and element type index for subsequent subranges. 1605 ElementSize *= Count; 1606 1607 // If this is the outermost array, use the size from the array. It will be 1608 // more accurate if we had a VLA or an incomplete element type size. 1609 uint64_t ArraySize = 1610 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1611 1612 StringRef Name = (i == 0) ? Ty->getName() : ""; 1613 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1614 ElementTypeIndex = TypeTable.writeLeafType(AR); 1615 } 1616 1617 return ElementTypeIndex; 1618 } 1619 1620 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1621 TypeIndex Index; 1622 dwarf::TypeKind Kind; 1623 uint32_t ByteSize; 1624 1625 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1626 ByteSize = Ty->getSizeInBits() / 8; 1627 1628 SimpleTypeKind STK = SimpleTypeKind::None; 1629 switch (Kind) { 1630 case dwarf::DW_ATE_address: 1631 // FIXME: Translate 1632 break; 1633 case dwarf::DW_ATE_boolean: 1634 switch (ByteSize) { 1635 case 1: STK = SimpleTypeKind::Boolean8; break; 1636 case 2: STK = SimpleTypeKind::Boolean16; break; 1637 case 4: STK = SimpleTypeKind::Boolean32; break; 1638 case 8: STK = SimpleTypeKind::Boolean64; break; 1639 case 16: STK = SimpleTypeKind::Boolean128; break; 1640 } 1641 break; 1642 case dwarf::DW_ATE_complex_float: 1643 switch (ByteSize) { 1644 case 2: STK = SimpleTypeKind::Complex16; break; 1645 case 4: STK = SimpleTypeKind::Complex32; break; 1646 case 8: STK = SimpleTypeKind::Complex64; break; 1647 case 10: STK = SimpleTypeKind::Complex80; break; 1648 case 16: STK = SimpleTypeKind::Complex128; break; 1649 } 1650 break; 1651 case dwarf::DW_ATE_float: 1652 switch (ByteSize) { 1653 case 2: STK = SimpleTypeKind::Float16; break; 1654 case 4: STK = SimpleTypeKind::Float32; break; 1655 case 6: STK = SimpleTypeKind::Float48; break; 1656 case 8: STK = SimpleTypeKind::Float64; break; 1657 case 10: STK = SimpleTypeKind::Float80; break; 1658 case 16: STK = SimpleTypeKind::Float128; break; 1659 } 1660 break; 1661 case dwarf::DW_ATE_signed: 1662 switch (ByteSize) { 1663 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1664 case 2: STK = SimpleTypeKind::Int16Short; break; 1665 case 4: STK = SimpleTypeKind::Int32; break; 1666 case 8: STK = SimpleTypeKind::Int64Quad; break; 1667 case 16: STK = SimpleTypeKind::Int128Oct; break; 1668 } 1669 break; 1670 case dwarf::DW_ATE_unsigned: 1671 switch (ByteSize) { 1672 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1673 case 2: STK = SimpleTypeKind::UInt16Short; break; 1674 case 4: STK = SimpleTypeKind::UInt32; break; 1675 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1676 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1677 } 1678 break; 1679 case dwarf::DW_ATE_UTF: 1680 switch (ByteSize) { 1681 case 2: STK = SimpleTypeKind::Character16; break; 1682 case 4: STK = SimpleTypeKind::Character32; break; 1683 } 1684 break; 1685 case dwarf::DW_ATE_signed_char: 1686 if (ByteSize == 1) 1687 STK = SimpleTypeKind::SignedCharacter; 1688 break; 1689 case dwarf::DW_ATE_unsigned_char: 1690 if (ByteSize == 1) 1691 STK = SimpleTypeKind::UnsignedCharacter; 1692 break; 1693 default: 1694 break; 1695 } 1696 1697 // Apply some fixups based on the source-level type name. 1698 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1699 STK = SimpleTypeKind::Int32Long; 1700 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1701 STK = SimpleTypeKind::UInt32Long; 1702 if (STK == SimpleTypeKind::UInt16Short && 1703 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1704 STK = SimpleTypeKind::WideCharacter; 1705 if ((STK == SimpleTypeKind::SignedCharacter || 1706 STK == SimpleTypeKind::UnsignedCharacter) && 1707 Ty->getName() == "char") 1708 STK = SimpleTypeKind::NarrowCharacter; 1709 1710 return TypeIndex(STK); 1711 } 1712 1713 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1714 PointerOptions PO) { 1715 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1716 1717 // Pointers to simple types without any options can use SimpleTypeMode, rather 1718 // than having a dedicated pointer type record. 1719 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1720 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1721 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1722 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1723 ? SimpleTypeMode::NearPointer64 1724 : SimpleTypeMode::NearPointer32; 1725 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1726 } 1727 1728 PointerKind PK = 1729 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1730 PointerMode PM = PointerMode::Pointer; 1731 switch (Ty->getTag()) { 1732 default: llvm_unreachable("not a pointer tag type"); 1733 case dwarf::DW_TAG_pointer_type: 1734 PM = PointerMode::Pointer; 1735 break; 1736 case dwarf::DW_TAG_reference_type: 1737 PM = PointerMode::LValueReference; 1738 break; 1739 case dwarf::DW_TAG_rvalue_reference_type: 1740 PM = PointerMode::RValueReference; 1741 break; 1742 } 1743 1744 if (Ty->isObjectPointer()) 1745 PO |= PointerOptions::Const; 1746 1747 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1748 return TypeTable.writeLeafType(PR); 1749 } 1750 1751 static PointerToMemberRepresentation 1752 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1753 // SizeInBytes being zero generally implies that the member pointer type was 1754 // incomplete, which can happen if it is part of a function prototype. In this 1755 // case, use the unknown model instead of the general model. 1756 if (IsPMF) { 1757 switch (Flags & DINode::FlagPtrToMemberRep) { 1758 case 0: 1759 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1760 : PointerToMemberRepresentation::GeneralFunction; 1761 case DINode::FlagSingleInheritance: 1762 return PointerToMemberRepresentation::SingleInheritanceFunction; 1763 case DINode::FlagMultipleInheritance: 1764 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1765 case DINode::FlagVirtualInheritance: 1766 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1767 } 1768 } else { 1769 switch (Flags & DINode::FlagPtrToMemberRep) { 1770 case 0: 1771 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1772 : PointerToMemberRepresentation::GeneralData; 1773 case DINode::FlagSingleInheritance: 1774 return PointerToMemberRepresentation::SingleInheritanceData; 1775 case DINode::FlagMultipleInheritance: 1776 return PointerToMemberRepresentation::MultipleInheritanceData; 1777 case DINode::FlagVirtualInheritance: 1778 return PointerToMemberRepresentation::VirtualInheritanceData; 1779 } 1780 } 1781 llvm_unreachable("invalid ptr to member representation"); 1782 } 1783 1784 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1785 PointerOptions PO) { 1786 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1787 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1788 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1789 TypeIndex PointeeTI = 1790 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1791 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1792 : PointerKind::Near32; 1793 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1794 : PointerMode::PointerToDataMember; 1795 1796 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1797 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1798 MemberPointerInfo MPI( 1799 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1800 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1801 return TypeTable.writeLeafType(PR); 1802 } 1803 1804 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1805 /// have a translation, use the NearC convention. 1806 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1807 switch (DwarfCC) { 1808 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1809 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1810 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1811 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1812 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1813 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1814 } 1815 return CallingConvention::NearC; 1816 } 1817 1818 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1819 ModifierOptions Mods = ModifierOptions::None; 1820 PointerOptions PO = PointerOptions::None; 1821 bool IsModifier = true; 1822 const DIType *BaseTy = Ty; 1823 while (IsModifier && BaseTy) { 1824 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1825 switch (BaseTy->getTag()) { 1826 case dwarf::DW_TAG_const_type: 1827 Mods |= ModifierOptions::Const; 1828 PO |= PointerOptions::Const; 1829 break; 1830 case dwarf::DW_TAG_volatile_type: 1831 Mods |= ModifierOptions::Volatile; 1832 PO |= PointerOptions::Volatile; 1833 break; 1834 case dwarf::DW_TAG_restrict_type: 1835 // Only pointer types be marked with __restrict. There is no known flag 1836 // for __restrict in LF_MODIFIER records. 1837 PO |= PointerOptions::Restrict; 1838 break; 1839 default: 1840 IsModifier = false; 1841 break; 1842 } 1843 if (IsModifier) 1844 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1845 } 1846 1847 // Check if the inner type will use an LF_POINTER record. If so, the 1848 // qualifiers will go in the LF_POINTER record. This comes up for types like 1849 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1850 // char *'. 1851 if (BaseTy) { 1852 switch (BaseTy->getTag()) { 1853 case dwarf::DW_TAG_pointer_type: 1854 case dwarf::DW_TAG_reference_type: 1855 case dwarf::DW_TAG_rvalue_reference_type: 1856 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1857 case dwarf::DW_TAG_ptr_to_member_type: 1858 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1859 default: 1860 break; 1861 } 1862 } 1863 1864 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1865 1866 // Return the base type index if there aren't any modifiers. For example, the 1867 // metadata could contain restrict wrappers around non-pointer types. 1868 if (Mods == ModifierOptions::None) 1869 return ModifiedTI; 1870 1871 ModifierRecord MR(ModifiedTI, Mods); 1872 return TypeTable.writeLeafType(MR); 1873 } 1874 1875 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1876 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1877 for (const DIType *ArgType : Ty->getTypeArray()) 1878 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1879 1880 // MSVC uses type none for variadic argument. 1881 if (ReturnAndArgTypeIndices.size() > 1 && 1882 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1883 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1884 } 1885 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1886 ArrayRef<TypeIndex> ArgTypeIndices = None; 1887 if (!ReturnAndArgTypeIndices.empty()) { 1888 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1889 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1890 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1891 } 1892 1893 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1894 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1895 1896 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1897 1898 FunctionOptions FO = getFunctionOptions(Ty); 1899 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1900 ArgListIndex); 1901 return TypeTable.writeLeafType(Procedure); 1902 } 1903 1904 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1905 const DIType *ClassTy, 1906 int ThisAdjustment, 1907 bool IsStaticMethod, 1908 FunctionOptions FO) { 1909 // Lower the containing class type. 1910 TypeIndex ClassType = getTypeIndex(ClassTy); 1911 1912 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1913 1914 unsigned Index = 0; 1915 SmallVector<TypeIndex, 8> ArgTypeIndices; 1916 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1917 if (ReturnAndArgs.size() > Index) { 1918 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1919 } 1920 1921 // If the first argument is a pointer type and this isn't a static method, 1922 // treat it as the special 'this' parameter, which is encoded separately from 1923 // the arguments. 1924 TypeIndex ThisTypeIndex; 1925 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1926 if (const DIDerivedType *PtrTy = 1927 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1928 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1929 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1930 Index++; 1931 } 1932 } 1933 } 1934 1935 while (Index < ReturnAndArgs.size()) 1936 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1937 1938 // MSVC uses type none for variadic argument. 1939 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1940 ArgTypeIndices.back() = TypeIndex::None(); 1941 1942 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1943 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1944 1945 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1946 1947 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1948 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1949 return TypeTable.writeLeafType(MFR); 1950 } 1951 1952 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1953 unsigned VSlotCount = 1954 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1955 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1956 1957 VFTableShapeRecord VFTSR(Slots); 1958 return TypeTable.writeLeafType(VFTSR); 1959 } 1960 1961 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1962 switch (Flags & DINode::FlagAccessibility) { 1963 case DINode::FlagPrivate: return MemberAccess::Private; 1964 case DINode::FlagPublic: return MemberAccess::Public; 1965 case DINode::FlagProtected: return MemberAccess::Protected; 1966 case 0: 1967 // If there was no explicit access control, provide the default for the tag. 1968 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1969 : MemberAccess::Public; 1970 } 1971 llvm_unreachable("access flags are exclusive"); 1972 } 1973 1974 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1975 if (SP->isArtificial()) 1976 return MethodOptions::CompilerGenerated; 1977 1978 // FIXME: Handle other MethodOptions. 1979 1980 return MethodOptions::None; 1981 } 1982 1983 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1984 bool Introduced) { 1985 if (SP->getFlags() & DINode::FlagStaticMember) 1986 return MethodKind::Static; 1987 1988 switch (SP->getVirtuality()) { 1989 case dwarf::DW_VIRTUALITY_none: 1990 break; 1991 case dwarf::DW_VIRTUALITY_virtual: 1992 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1993 case dwarf::DW_VIRTUALITY_pure_virtual: 1994 return Introduced ? MethodKind::PureIntroducingVirtual 1995 : MethodKind::PureVirtual; 1996 default: 1997 llvm_unreachable("unhandled virtuality case"); 1998 } 1999 2000 return MethodKind::Vanilla; 2001 } 2002 2003 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 2004 switch (Ty->getTag()) { 2005 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 2006 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 2007 } 2008 llvm_unreachable("unexpected tag"); 2009 } 2010 2011 /// Return ClassOptions that should be present on both the forward declaration 2012 /// and the defintion of a tag type. 2013 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2014 ClassOptions CO = ClassOptions::None; 2015 2016 // MSVC always sets this flag, even for local types. Clang doesn't always 2017 // appear to give every type a linkage name, which may be problematic for us. 2018 // FIXME: Investigate the consequences of not following them here. 2019 if (!Ty->getIdentifier().empty()) 2020 CO |= ClassOptions::HasUniqueName; 2021 2022 // Put the Nested flag on a type if it appears immediately inside a tag type. 2023 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2024 // here. That flag is only set on definitions, and not forward declarations. 2025 const DIScope *ImmediateScope = Ty->getScope(); 2026 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2027 CO |= ClassOptions::Nested; 2028 2029 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2030 // type only when it has an immediate function scope. Clang never puts enums 2031 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2032 // always in function, class, or file scopes. 2033 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2034 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2035 CO |= ClassOptions::Scoped; 2036 } else { 2037 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2038 Scope = Scope->getScope()) { 2039 if (isa<DISubprogram>(Scope)) { 2040 CO |= ClassOptions::Scoped; 2041 break; 2042 } 2043 } 2044 } 2045 2046 return CO; 2047 } 2048 2049 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2050 switch (Ty->getTag()) { 2051 case dwarf::DW_TAG_class_type: 2052 case dwarf::DW_TAG_structure_type: 2053 case dwarf::DW_TAG_union_type: 2054 case dwarf::DW_TAG_enumeration_type: 2055 break; 2056 default: 2057 return; 2058 } 2059 2060 if (const auto *File = Ty->getFile()) { 2061 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2062 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2063 2064 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2065 TypeTable.writeLeafType(USLR); 2066 } 2067 } 2068 2069 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2070 ClassOptions CO = getCommonClassOptions(Ty); 2071 TypeIndex FTI; 2072 unsigned EnumeratorCount = 0; 2073 2074 if (Ty->isForwardDecl()) { 2075 CO |= ClassOptions::ForwardReference; 2076 } else { 2077 ContinuationRecordBuilder ContinuationBuilder; 2078 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2079 for (const DINode *Element : Ty->getElements()) { 2080 // We assume that the frontend provides all members in source declaration 2081 // order, which is what MSVC does. 2082 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2083 EnumeratorRecord ER(MemberAccess::Public, 2084 APSInt(Enumerator->getValue(), true), 2085 Enumerator->getName()); 2086 ContinuationBuilder.writeMemberType(ER); 2087 EnumeratorCount++; 2088 } 2089 } 2090 FTI = TypeTable.insertRecord(ContinuationBuilder); 2091 } 2092 2093 std::string FullName = getFullyQualifiedName(Ty); 2094 2095 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2096 getTypeIndex(Ty->getBaseType())); 2097 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2098 2099 addUDTSrcLine(Ty, EnumTI); 2100 2101 return EnumTI; 2102 } 2103 2104 //===----------------------------------------------------------------------===// 2105 // ClassInfo 2106 //===----------------------------------------------------------------------===// 2107 2108 struct llvm::ClassInfo { 2109 struct MemberInfo { 2110 const DIDerivedType *MemberTypeNode; 2111 uint64_t BaseOffset; 2112 }; 2113 // [MemberInfo] 2114 using MemberList = std::vector<MemberInfo>; 2115 2116 using MethodsList = TinyPtrVector<const DISubprogram *>; 2117 // MethodName -> MethodsList 2118 using MethodsMap = MapVector<MDString *, MethodsList>; 2119 2120 /// Base classes. 2121 std::vector<const DIDerivedType *> Inheritance; 2122 2123 /// Direct members. 2124 MemberList Members; 2125 // Direct overloaded methods gathered by name. 2126 MethodsMap Methods; 2127 2128 TypeIndex VShapeTI; 2129 2130 std::vector<const DIType *> NestedTypes; 2131 }; 2132 2133 void CodeViewDebug::clear() { 2134 assert(CurFn == nullptr); 2135 FileIdMap.clear(); 2136 FnDebugInfo.clear(); 2137 FileToFilepathMap.clear(); 2138 LocalUDTs.clear(); 2139 GlobalUDTs.clear(); 2140 TypeIndices.clear(); 2141 CompleteTypeIndices.clear(); 2142 ScopeGlobals.clear(); 2143 } 2144 2145 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2146 const DIDerivedType *DDTy) { 2147 if (!DDTy->getName().empty()) { 2148 Info.Members.push_back({DDTy, 0}); 2149 2150 // Collect static const data members. 2151 if ((DDTy->getFlags() & DINode::FlagStaticMember) == 2152 DINode::FlagStaticMember) 2153 StaticConstMembers.push_back(DDTy); 2154 2155 return; 2156 } 2157 2158 // An unnamed member may represent a nested struct or union. Attempt to 2159 // interpret the unnamed member as a DICompositeType possibly wrapped in 2160 // qualifier types. Add all the indirect fields to the current record if that 2161 // succeeds, and drop the member if that fails. 2162 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2163 uint64_t Offset = DDTy->getOffsetInBits(); 2164 const DIType *Ty = DDTy->getBaseType(); 2165 bool FullyResolved = false; 2166 while (!FullyResolved) { 2167 switch (Ty->getTag()) { 2168 case dwarf::DW_TAG_const_type: 2169 case dwarf::DW_TAG_volatile_type: 2170 // FIXME: we should apply the qualifier types to the indirect fields 2171 // rather than dropping them. 2172 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2173 break; 2174 default: 2175 FullyResolved = true; 2176 break; 2177 } 2178 } 2179 2180 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2181 if (!DCTy) 2182 return; 2183 2184 ClassInfo NestedInfo = collectClassInfo(DCTy); 2185 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2186 Info.Members.push_back( 2187 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2188 } 2189 2190 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2191 ClassInfo Info; 2192 // Add elements to structure type. 2193 DINodeArray Elements = Ty->getElements(); 2194 for (auto *Element : Elements) { 2195 // We assume that the frontend provides all members in source declaration 2196 // order, which is what MSVC does. 2197 if (!Element) 2198 continue; 2199 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2200 Info.Methods[SP->getRawName()].push_back(SP); 2201 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2202 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2203 collectMemberInfo(Info, DDTy); 2204 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2205 Info.Inheritance.push_back(DDTy); 2206 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2207 DDTy->getName() == "__vtbl_ptr_type") { 2208 Info.VShapeTI = getTypeIndex(DDTy); 2209 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2210 Info.NestedTypes.push_back(DDTy); 2211 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2212 // Ignore friend members. It appears that MSVC emitted info about 2213 // friends in the past, but modern versions do not. 2214 } 2215 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2216 Info.NestedTypes.push_back(Composite); 2217 } 2218 // Skip other unrecognized kinds of elements. 2219 } 2220 return Info; 2221 } 2222 2223 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2224 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2225 // if a complete type should be emitted instead of a forward reference. 2226 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2227 !Ty->isForwardDecl(); 2228 } 2229 2230 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2231 // Emit the complete type for unnamed structs. C++ classes with methods 2232 // which have a circular reference back to the class type are expected to 2233 // be named by the front-end and should not be "unnamed". C unnamed 2234 // structs should not have circular references. 2235 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2236 // If this unnamed complete type is already in the process of being defined 2237 // then the description of the type is malformed and cannot be emitted 2238 // into CodeView correctly so report a fatal error. 2239 auto I = CompleteTypeIndices.find(Ty); 2240 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2241 report_fatal_error("cannot debug circular reference to unnamed type"); 2242 return getCompleteTypeIndex(Ty); 2243 } 2244 2245 // First, construct the forward decl. Don't look into Ty to compute the 2246 // forward decl options, since it might not be available in all TUs. 2247 TypeRecordKind Kind = getRecordKind(Ty); 2248 ClassOptions CO = 2249 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2250 std::string FullName = getFullyQualifiedName(Ty); 2251 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2252 FullName, Ty->getIdentifier()); 2253 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2254 if (!Ty->isForwardDecl()) 2255 DeferredCompleteTypes.push_back(Ty); 2256 return FwdDeclTI; 2257 } 2258 2259 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2260 // Construct the field list and complete type record. 2261 TypeRecordKind Kind = getRecordKind(Ty); 2262 ClassOptions CO = getCommonClassOptions(Ty); 2263 TypeIndex FieldTI; 2264 TypeIndex VShapeTI; 2265 unsigned FieldCount; 2266 bool ContainsNestedClass; 2267 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2268 lowerRecordFieldList(Ty); 2269 2270 if (ContainsNestedClass) 2271 CO |= ClassOptions::ContainsNestedClass; 2272 2273 // MSVC appears to set this flag by searching any destructor or method with 2274 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2275 // the members, however special member functions are not yet emitted into 2276 // debug information. For now checking a class's non-triviality seems enough. 2277 // FIXME: not true for a nested unnamed struct. 2278 if (isNonTrivial(Ty)) 2279 CO |= ClassOptions::HasConstructorOrDestructor; 2280 2281 std::string FullName = getFullyQualifiedName(Ty); 2282 2283 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2284 2285 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2286 SizeInBytes, FullName, Ty->getIdentifier()); 2287 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2288 2289 addUDTSrcLine(Ty, ClassTI); 2290 2291 addToUDTs(Ty); 2292 2293 return ClassTI; 2294 } 2295 2296 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2297 // Emit the complete type for unnamed unions. 2298 if (shouldAlwaysEmitCompleteClassType(Ty)) 2299 return getCompleteTypeIndex(Ty); 2300 2301 ClassOptions CO = 2302 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2303 std::string FullName = getFullyQualifiedName(Ty); 2304 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2305 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2306 if (!Ty->isForwardDecl()) 2307 DeferredCompleteTypes.push_back(Ty); 2308 return FwdDeclTI; 2309 } 2310 2311 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2312 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2313 TypeIndex FieldTI; 2314 unsigned FieldCount; 2315 bool ContainsNestedClass; 2316 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2317 lowerRecordFieldList(Ty); 2318 2319 if (ContainsNestedClass) 2320 CO |= ClassOptions::ContainsNestedClass; 2321 2322 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2323 std::string FullName = getFullyQualifiedName(Ty); 2324 2325 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2326 Ty->getIdentifier()); 2327 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2328 2329 addUDTSrcLine(Ty, UnionTI); 2330 2331 addToUDTs(Ty); 2332 2333 return UnionTI; 2334 } 2335 2336 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2337 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2338 // Manually count members. MSVC appears to count everything that generates a 2339 // field list record. Each individual overload in a method overload group 2340 // contributes to this count, even though the overload group is a single field 2341 // list record. 2342 unsigned MemberCount = 0; 2343 ClassInfo Info = collectClassInfo(Ty); 2344 ContinuationRecordBuilder ContinuationBuilder; 2345 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2346 2347 // Create base classes. 2348 for (const DIDerivedType *I : Info.Inheritance) { 2349 if (I->getFlags() & DINode::FlagVirtual) { 2350 // Virtual base. 2351 unsigned VBPtrOffset = I->getVBPtrOffset(); 2352 // FIXME: Despite the accessor name, the offset is really in bytes. 2353 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2354 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2355 ? TypeRecordKind::IndirectVirtualBaseClass 2356 : TypeRecordKind::VirtualBaseClass; 2357 VirtualBaseClassRecord VBCR( 2358 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2359 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2360 VBTableIndex); 2361 2362 ContinuationBuilder.writeMemberType(VBCR); 2363 MemberCount++; 2364 } else { 2365 assert(I->getOffsetInBits() % 8 == 0 && 2366 "bases must be on byte boundaries"); 2367 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2368 getTypeIndex(I->getBaseType()), 2369 I->getOffsetInBits() / 8); 2370 ContinuationBuilder.writeMemberType(BCR); 2371 MemberCount++; 2372 } 2373 } 2374 2375 // Create members. 2376 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2377 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2378 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2379 StringRef MemberName = Member->getName(); 2380 MemberAccess Access = 2381 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2382 2383 if (Member->isStaticMember()) { 2384 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2385 ContinuationBuilder.writeMemberType(SDMR); 2386 MemberCount++; 2387 continue; 2388 } 2389 2390 // Virtual function pointer member. 2391 if ((Member->getFlags() & DINode::FlagArtificial) && 2392 Member->getName().startswith("_vptr$")) { 2393 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2394 ContinuationBuilder.writeMemberType(VFPR); 2395 MemberCount++; 2396 continue; 2397 } 2398 2399 // Data member. 2400 uint64_t MemberOffsetInBits = 2401 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2402 if (Member->isBitField()) { 2403 uint64_t StartBitOffset = MemberOffsetInBits; 2404 if (const auto *CI = 2405 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2406 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2407 } 2408 StartBitOffset -= MemberOffsetInBits; 2409 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2410 StartBitOffset); 2411 MemberBaseType = TypeTable.writeLeafType(BFR); 2412 } 2413 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2414 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2415 MemberName); 2416 ContinuationBuilder.writeMemberType(DMR); 2417 MemberCount++; 2418 } 2419 2420 // Create methods 2421 for (auto &MethodItr : Info.Methods) { 2422 StringRef Name = MethodItr.first->getString(); 2423 2424 std::vector<OneMethodRecord> Methods; 2425 for (const DISubprogram *SP : MethodItr.second) { 2426 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2427 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2428 2429 unsigned VFTableOffset = -1; 2430 if (Introduced) 2431 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2432 2433 Methods.push_back(OneMethodRecord( 2434 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2435 translateMethodKindFlags(SP, Introduced), 2436 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2437 MemberCount++; 2438 } 2439 assert(!Methods.empty() && "Empty methods map entry"); 2440 if (Methods.size() == 1) 2441 ContinuationBuilder.writeMemberType(Methods[0]); 2442 else { 2443 // FIXME: Make this use its own ContinuationBuilder so that 2444 // MethodOverloadList can be split correctly. 2445 MethodOverloadListRecord MOLR(Methods); 2446 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2447 2448 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2449 ContinuationBuilder.writeMemberType(OMR); 2450 } 2451 } 2452 2453 // Create nested classes. 2454 for (const DIType *Nested : Info.NestedTypes) { 2455 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2456 ContinuationBuilder.writeMemberType(R); 2457 MemberCount++; 2458 } 2459 2460 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2461 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2462 !Info.NestedTypes.empty()); 2463 } 2464 2465 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2466 if (!VBPType.getIndex()) { 2467 // Make a 'const int *' type. 2468 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2469 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2470 2471 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2472 : PointerKind::Near32; 2473 PointerMode PM = PointerMode::Pointer; 2474 PointerOptions PO = PointerOptions::None; 2475 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2476 VBPType = TypeTable.writeLeafType(PR); 2477 } 2478 2479 return VBPType; 2480 } 2481 2482 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2483 // The null DIType is the void type. Don't try to hash it. 2484 if (!Ty) 2485 return TypeIndex::Void(); 2486 2487 // Check if we've already translated this type. Don't try to do a 2488 // get-or-create style insertion that caches the hash lookup across the 2489 // lowerType call. It will update the TypeIndices map. 2490 auto I = TypeIndices.find({Ty, ClassTy}); 2491 if (I != TypeIndices.end()) 2492 return I->second; 2493 2494 TypeLoweringScope S(*this); 2495 TypeIndex TI = lowerType(Ty, ClassTy); 2496 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2497 } 2498 2499 codeview::TypeIndex 2500 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2501 const DISubroutineType *SubroutineTy) { 2502 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2503 "this type must be a pointer type"); 2504 2505 PointerOptions Options = PointerOptions::None; 2506 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2507 Options = PointerOptions::LValueRefThisPointer; 2508 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2509 Options = PointerOptions::RValueRefThisPointer; 2510 2511 // Check if we've already translated this type. If there is no ref qualifier 2512 // on the function then we look up this pointer type with no associated class 2513 // so that the TypeIndex for the this pointer can be shared with the type 2514 // index for other pointers to this class type. If there is a ref qualifier 2515 // then we lookup the pointer using the subroutine as the parent type. 2516 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2517 if (I != TypeIndices.end()) 2518 return I->second; 2519 2520 TypeLoweringScope S(*this); 2521 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2522 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2523 } 2524 2525 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2526 PointerRecord PR(getTypeIndex(Ty), 2527 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2528 : PointerKind::Near32, 2529 PointerMode::LValueReference, PointerOptions::None, 2530 Ty->getSizeInBits() / 8); 2531 return TypeTable.writeLeafType(PR); 2532 } 2533 2534 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2535 // The null DIType is the void type. Don't try to hash it. 2536 if (!Ty) 2537 return TypeIndex::Void(); 2538 2539 // Look through typedefs when getting the complete type index. Call 2540 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2541 // emitted only once. 2542 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2543 (void)getTypeIndex(Ty); 2544 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2545 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2546 2547 // If this is a non-record type, the complete type index is the same as the 2548 // normal type index. Just call getTypeIndex. 2549 switch (Ty->getTag()) { 2550 case dwarf::DW_TAG_class_type: 2551 case dwarf::DW_TAG_structure_type: 2552 case dwarf::DW_TAG_union_type: 2553 break; 2554 default: 2555 return getTypeIndex(Ty); 2556 } 2557 2558 const auto *CTy = cast<DICompositeType>(Ty); 2559 2560 TypeLoweringScope S(*this); 2561 2562 // Make sure the forward declaration is emitted first. It's unclear if this 2563 // is necessary, but MSVC does it, and we should follow suit until we can show 2564 // otherwise. 2565 // We only emit a forward declaration for named types. 2566 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2567 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2568 2569 // Just use the forward decl if we don't have complete type info. This 2570 // might happen if the frontend is using modules and expects the complete 2571 // definition to be emitted elsewhere. 2572 if (CTy->isForwardDecl()) 2573 return FwdDeclTI; 2574 } 2575 2576 // Check if we've already translated the complete record type. 2577 // Insert the type with a null TypeIndex to signify that the type is currently 2578 // being lowered. 2579 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2580 if (!InsertResult.second) 2581 return InsertResult.first->second; 2582 2583 TypeIndex TI; 2584 switch (CTy->getTag()) { 2585 case dwarf::DW_TAG_class_type: 2586 case dwarf::DW_TAG_structure_type: 2587 TI = lowerCompleteTypeClass(CTy); 2588 break; 2589 case dwarf::DW_TAG_union_type: 2590 TI = lowerCompleteTypeUnion(CTy); 2591 break; 2592 default: 2593 llvm_unreachable("not a record"); 2594 } 2595 2596 // Update the type index associated with this CompositeType. This cannot 2597 // use the 'InsertResult' iterator above because it is potentially 2598 // invalidated by map insertions which can occur while lowering the class 2599 // type above. 2600 CompleteTypeIndices[CTy] = TI; 2601 return TI; 2602 } 2603 2604 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2605 /// and do this until fixpoint, as each complete record type typically 2606 /// references 2607 /// many other record types. 2608 void CodeViewDebug::emitDeferredCompleteTypes() { 2609 SmallVector<const DICompositeType *, 4> TypesToEmit; 2610 while (!DeferredCompleteTypes.empty()) { 2611 std::swap(DeferredCompleteTypes, TypesToEmit); 2612 for (const DICompositeType *RecordTy : TypesToEmit) 2613 getCompleteTypeIndex(RecordTy); 2614 TypesToEmit.clear(); 2615 } 2616 } 2617 2618 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2619 ArrayRef<LocalVariable> Locals) { 2620 // Get the sorted list of parameters and emit them first. 2621 SmallVector<const LocalVariable *, 6> Params; 2622 for (const LocalVariable &L : Locals) 2623 if (L.DIVar->isParameter()) 2624 Params.push_back(&L); 2625 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2626 return L->DIVar->getArg() < R->DIVar->getArg(); 2627 }); 2628 for (const LocalVariable *L : Params) 2629 emitLocalVariable(FI, *L); 2630 2631 // Next emit all non-parameters in the order that we found them. 2632 for (const LocalVariable &L : Locals) 2633 if (!L.DIVar->isParameter()) 2634 emitLocalVariable(FI, L); 2635 } 2636 2637 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2638 const LocalVariable &Var) { 2639 // LocalSym record, see SymbolRecord.h for more info. 2640 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2641 2642 LocalSymFlags Flags = LocalSymFlags::None; 2643 if (Var.DIVar->isParameter()) 2644 Flags |= LocalSymFlags::IsParameter; 2645 if (Var.DefRanges.empty()) 2646 Flags |= LocalSymFlags::IsOptimizedOut; 2647 2648 OS.AddComment("TypeIndex"); 2649 TypeIndex TI = Var.UseReferenceType 2650 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2651 : getCompleteTypeIndex(Var.DIVar->getType()); 2652 OS.emitInt32(TI.getIndex()); 2653 OS.AddComment("Flags"); 2654 OS.emitInt16(static_cast<uint16_t>(Flags)); 2655 // Truncate the name so we won't overflow the record length field. 2656 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2657 endSymbolRecord(LocalEnd); 2658 2659 // Calculate the on disk prefix of the appropriate def range record. The 2660 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2661 // should be big enough to hold all forms without memory allocation. 2662 SmallString<20> BytePrefix; 2663 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2664 BytePrefix.clear(); 2665 if (DefRange.InMemory) { 2666 int Offset = DefRange.DataOffset; 2667 unsigned Reg = DefRange.CVRegister; 2668 2669 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2670 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2671 // instead. In frames without stack realignment, $T0 will be the CFA. 2672 if (RegisterId(Reg) == RegisterId::ESP) { 2673 Reg = unsigned(RegisterId::VFRAME); 2674 Offset += FI.OffsetAdjustment; 2675 } 2676 2677 // If we can use the chosen frame pointer for the frame and this isn't a 2678 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2679 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2680 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2681 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2682 (bool(Flags & LocalSymFlags::IsParameter) 2683 ? (EncFP == FI.EncodedParamFramePtrReg) 2684 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2685 DefRangeFramePointerRelHeader DRHdr; 2686 DRHdr.Offset = Offset; 2687 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2688 } else { 2689 uint16_t RegRelFlags = 0; 2690 if (DefRange.IsSubfield) { 2691 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2692 (DefRange.StructOffset 2693 << DefRangeRegisterRelSym::OffsetInParentShift); 2694 } 2695 DefRangeRegisterRelHeader DRHdr; 2696 DRHdr.Register = Reg; 2697 DRHdr.Flags = RegRelFlags; 2698 DRHdr.BasePointerOffset = Offset; 2699 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2700 } 2701 } else { 2702 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2703 if (DefRange.IsSubfield) { 2704 DefRangeSubfieldRegisterHeader DRHdr; 2705 DRHdr.Register = DefRange.CVRegister; 2706 DRHdr.MayHaveNoName = 0; 2707 DRHdr.OffsetInParent = DefRange.StructOffset; 2708 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2709 } else { 2710 DefRangeRegisterHeader DRHdr; 2711 DRHdr.Register = DefRange.CVRegister; 2712 DRHdr.MayHaveNoName = 0; 2713 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2714 } 2715 } 2716 } 2717 } 2718 2719 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2720 const FunctionInfo& FI) { 2721 for (LexicalBlock *Block : Blocks) 2722 emitLexicalBlock(*Block, FI); 2723 } 2724 2725 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2726 /// lexical block scope. 2727 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2728 const FunctionInfo& FI) { 2729 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2730 OS.AddComment("PtrParent"); 2731 OS.emitInt32(0); // PtrParent 2732 OS.AddComment("PtrEnd"); 2733 OS.emitInt32(0); // PtrEnd 2734 OS.AddComment("Code size"); 2735 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2736 OS.AddComment("Function section relative address"); 2737 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2738 OS.AddComment("Function section index"); 2739 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2740 OS.AddComment("Lexical block name"); 2741 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2742 endSymbolRecord(RecordEnd); 2743 2744 // Emit variables local to this lexical block. 2745 emitLocalVariableList(FI, Block.Locals); 2746 emitGlobalVariableList(Block.Globals); 2747 2748 // Emit lexical blocks contained within this block. 2749 emitLexicalBlockList(Block.Children, FI); 2750 2751 // Close the lexical block scope. 2752 emitEndSymbolRecord(SymbolKind::S_END); 2753 } 2754 2755 /// Convenience routine for collecting lexical block information for a list 2756 /// of lexical scopes. 2757 void CodeViewDebug::collectLexicalBlockInfo( 2758 SmallVectorImpl<LexicalScope *> &Scopes, 2759 SmallVectorImpl<LexicalBlock *> &Blocks, 2760 SmallVectorImpl<LocalVariable> &Locals, 2761 SmallVectorImpl<CVGlobalVariable> &Globals) { 2762 for (LexicalScope *Scope : Scopes) 2763 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2764 } 2765 2766 /// Populate the lexical blocks and local variable lists of the parent with 2767 /// information about the specified lexical scope. 2768 void CodeViewDebug::collectLexicalBlockInfo( 2769 LexicalScope &Scope, 2770 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2771 SmallVectorImpl<LocalVariable> &ParentLocals, 2772 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2773 if (Scope.isAbstractScope()) 2774 return; 2775 2776 // Gather information about the lexical scope including local variables, 2777 // global variables, and address ranges. 2778 bool IgnoreScope = false; 2779 auto LI = ScopeVariables.find(&Scope); 2780 SmallVectorImpl<LocalVariable> *Locals = 2781 LI != ScopeVariables.end() ? &LI->second : nullptr; 2782 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2783 SmallVectorImpl<CVGlobalVariable> *Globals = 2784 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2785 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2786 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2787 2788 // Ignore lexical scopes which do not contain variables. 2789 if (!Locals && !Globals) 2790 IgnoreScope = true; 2791 2792 // Ignore lexical scopes which are not lexical blocks. 2793 if (!DILB) 2794 IgnoreScope = true; 2795 2796 // Ignore scopes which have too many address ranges to represent in the 2797 // current CodeView format or do not have a valid address range. 2798 // 2799 // For lexical scopes with multiple address ranges you may be tempted to 2800 // construct a single range covering every instruction where the block is 2801 // live and everything in between. Unfortunately, Visual Studio only 2802 // displays variables from the first matching lexical block scope. If the 2803 // first lexical block contains exception handling code or cold code which 2804 // is moved to the bottom of the routine creating a single range covering 2805 // nearly the entire routine, then it will hide all other lexical blocks 2806 // and the variables they contain. 2807 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2808 IgnoreScope = true; 2809 2810 if (IgnoreScope) { 2811 // This scope can be safely ignored and eliminating it will reduce the 2812 // size of the debug information. Be sure to collect any variable and scope 2813 // information from the this scope or any of its children and collapse them 2814 // into the parent scope. 2815 if (Locals) 2816 ParentLocals.append(Locals->begin(), Locals->end()); 2817 if (Globals) 2818 ParentGlobals.append(Globals->begin(), Globals->end()); 2819 collectLexicalBlockInfo(Scope.getChildren(), 2820 ParentBlocks, 2821 ParentLocals, 2822 ParentGlobals); 2823 return; 2824 } 2825 2826 // Create a new CodeView lexical block for this lexical scope. If we've 2827 // seen this DILexicalBlock before then the scope tree is malformed and 2828 // we can handle this gracefully by not processing it a second time. 2829 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2830 if (!BlockInsertion.second) 2831 return; 2832 2833 // Create a lexical block containing the variables and collect the the 2834 // lexical block information for the children. 2835 const InsnRange &Range = Ranges.front(); 2836 assert(Range.first && Range.second); 2837 LexicalBlock &Block = BlockInsertion.first->second; 2838 Block.Begin = getLabelBeforeInsn(Range.first); 2839 Block.End = getLabelAfterInsn(Range.second); 2840 assert(Block.Begin && "missing label for scope begin"); 2841 assert(Block.End && "missing label for scope end"); 2842 Block.Name = DILB->getName(); 2843 if (Locals) 2844 Block.Locals = std::move(*Locals); 2845 if (Globals) 2846 Block.Globals = std::move(*Globals); 2847 ParentBlocks.push_back(&Block); 2848 collectLexicalBlockInfo(Scope.getChildren(), 2849 Block.Children, 2850 Block.Locals, 2851 Block.Globals); 2852 } 2853 2854 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2855 const Function &GV = MF->getFunction(); 2856 assert(FnDebugInfo.count(&GV)); 2857 assert(CurFn == FnDebugInfo[&GV].get()); 2858 2859 collectVariableInfo(GV.getSubprogram()); 2860 2861 // Build the lexical block structure to emit for this routine. 2862 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2863 collectLexicalBlockInfo(*CFS, 2864 CurFn->ChildBlocks, 2865 CurFn->Locals, 2866 CurFn->Globals); 2867 2868 // Clear the scope and variable information from the map which will not be 2869 // valid after we have finished processing this routine. This also prepares 2870 // the map for the subsequent routine. 2871 ScopeVariables.clear(); 2872 2873 // Don't emit anything if we don't have any line tables. 2874 // Thunks are compiler-generated and probably won't have source correlation. 2875 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2876 FnDebugInfo.erase(&GV); 2877 CurFn = nullptr; 2878 return; 2879 } 2880 2881 // Find heap alloc sites and add to list. 2882 for (const auto &MBB : *MF) { 2883 for (const auto &MI : MBB) { 2884 if (MDNode *MD = MI.getHeapAllocMarker()) { 2885 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2886 getLabelAfterInsn(&MI), 2887 dyn_cast<DIType>(MD))); 2888 } 2889 } 2890 } 2891 2892 CurFn->Annotations = MF->getCodeViewAnnotations(); 2893 2894 CurFn->End = Asm->getFunctionEnd(); 2895 2896 CurFn = nullptr; 2897 } 2898 2899 // Usable locations are valid with non-zero line numbers. A line number of zero 2900 // corresponds to optimized code that doesn't have a distinct source location. 2901 // In this case, we try to use the previous or next source location depending on 2902 // the context. 2903 static bool isUsableDebugLoc(DebugLoc DL) { 2904 return DL && DL.getLine() != 0; 2905 } 2906 2907 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2908 DebugHandlerBase::beginInstruction(MI); 2909 2910 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2911 if (!Asm || !CurFn || MI->isDebugInstr() || 2912 MI->getFlag(MachineInstr::FrameSetup)) 2913 return; 2914 2915 // If the first instruction of a new MBB has no location, find the first 2916 // instruction with a location and use that. 2917 DebugLoc DL = MI->getDebugLoc(); 2918 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2919 for (const auto &NextMI : *MI->getParent()) { 2920 if (NextMI.isDebugInstr()) 2921 continue; 2922 DL = NextMI.getDebugLoc(); 2923 if (isUsableDebugLoc(DL)) 2924 break; 2925 } 2926 // FIXME: Handle the case where the BB has no valid locations. This would 2927 // probably require doing a real dataflow analysis. 2928 } 2929 PrevInstBB = MI->getParent(); 2930 2931 // If we still don't have a debug location, don't record a location. 2932 if (!isUsableDebugLoc(DL)) 2933 return; 2934 2935 maybeRecordLocation(DL, Asm->MF); 2936 } 2937 2938 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2939 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2940 *EndLabel = MMI->getContext().createTempSymbol(); 2941 OS.emitInt32(unsigned(Kind)); 2942 OS.AddComment("Subsection size"); 2943 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2944 OS.emitLabel(BeginLabel); 2945 return EndLabel; 2946 } 2947 2948 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2949 OS.emitLabel(EndLabel); 2950 // Every subsection must be aligned to a 4-byte boundary. 2951 OS.emitValueToAlignment(4); 2952 } 2953 2954 static StringRef getSymbolName(SymbolKind SymKind) { 2955 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2956 if (EE.Value == SymKind) 2957 return EE.Name; 2958 return ""; 2959 } 2960 2961 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2962 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2963 *EndLabel = MMI->getContext().createTempSymbol(); 2964 OS.AddComment("Record length"); 2965 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2966 OS.emitLabel(BeginLabel); 2967 if (OS.isVerboseAsm()) 2968 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2969 OS.emitInt16(unsigned(SymKind)); 2970 return EndLabel; 2971 } 2972 2973 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2974 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2975 // an extra copy of every symbol record in LLD. This increases object file 2976 // size by less than 1% in the clang build, and is compatible with the Visual 2977 // C++ linker. 2978 OS.emitValueToAlignment(4); 2979 OS.emitLabel(SymEnd); 2980 } 2981 2982 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2983 OS.AddComment("Record length"); 2984 OS.emitInt16(2); 2985 if (OS.isVerboseAsm()) 2986 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2987 OS.emitInt16(uint16_t(EndKind)); // Record Kind 2988 } 2989 2990 void CodeViewDebug::emitDebugInfoForUDTs( 2991 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 2992 #ifndef NDEBUG 2993 size_t OriginalSize = UDTs.size(); 2994 #endif 2995 for (const auto &UDT : UDTs) { 2996 const DIType *T = UDT.second; 2997 assert(shouldEmitUdt(T)); 2998 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2999 OS.AddComment("Type"); 3000 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 3001 assert(OriginalSize == UDTs.size() && 3002 "getCompleteTypeIndex found new UDTs!"); 3003 emitNullTerminatedSymbolName(OS, UDT.first); 3004 endSymbolRecord(UDTRecordEnd); 3005 } 3006 } 3007 3008 void CodeViewDebug::collectGlobalVariableInfo() { 3009 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 3010 GlobalMap; 3011 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 3012 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 3013 GV.getDebugInfo(GVEs); 3014 for (const auto *GVE : GVEs) 3015 GlobalMap[GVE] = &GV; 3016 } 3017 3018 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3019 for (const MDNode *Node : CUs->operands()) { 3020 const auto *CU = cast<DICompileUnit>(Node); 3021 for (const auto *GVE : CU->getGlobalVariables()) { 3022 const DIGlobalVariable *DIGV = GVE->getVariable(); 3023 const DIExpression *DIE = GVE->getExpression(); 3024 3025 // Emit constant global variables in a global symbol section. 3026 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3027 CVGlobalVariable CVGV = {DIGV, DIE}; 3028 GlobalVariables.emplace_back(std::move(CVGV)); 3029 } 3030 3031 const auto *GV = GlobalMap.lookup(GVE); 3032 if (!GV || GV->isDeclarationForLinker()) 3033 continue; 3034 3035 DIScope *Scope = DIGV->getScope(); 3036 SmallVector<CVGlobalVariable, 1> *VariableList; 3037 if (Scope && isa<DILocalScope>(Scope)) { 3038 // Locate a global variable list for this scope, creating one if 3039 // necessary. 3040 auto Insertion = ScopeGlobals.insert( 3041 {Scope, std::unique_ptr<GlobalVariableList>()}); 3042 if (Insertion.second) 3043 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3044 VariableList = Insertion.first->second.get(); 3045 } else if (GV->hasComdat()) 3046 // Emit this global variable into a COMDAT section. 3047 VariableList = &ComdatVariables; 3048 else 3049 // Emit this global variable in a single global symbol section. 3050 VariableList = &GlobalVariables; 3051 CVGlobalVariable CVGV = {DIGV, GV}; 3052 VariableList->emplace_back(std::move(CVGV)); 3053 } 3054 } 3055 } 3056 3057 void CodeViewDebug::collectDebugInfoForGlobals() { 3058 for (const CVGlobalVariable &CVGV : GlobalVariables) { 3059 const DIGlobalVariable *DIGV = CVGV.DIGV; 3060 const DIScope *Scope = DIGV->getScope(); 3061 getCompleteTypeIndex(DIGV->getType()); 3062 getFullyQualifiedName(Scope, DIGV->getName()); 3063 } 3064 3065 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3066 const DIGlobalVariable *DIGV = CVGV.DIGV; 3067 const DIScope *Scope = DIGV->getScope(); 3068 getCompleteTypeIndex(DIGV->getType()); 3069 getFullyQualifiedName(Scope, DIGV->getName()); 3070 } 3071 } 3072 3073 void CodeViewDebug::emitDebugInfoForGlobals() { 3074 // First, emit all globals that are not in a comdat in a single symbol 3075 // substream. MSVC doesn't like it if the substream is empty, so only open 3076 // it if we have at least one global to emit. 3077 switchToDebugSectionForSymbol(nullptr); 3078 if (!GlobalVariables.empty() || !StaticConstMembers.empty()) { 3079 OS.AddComment("Symbol subsection for globals"); 3080 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3081 emitGlobalVariableList(GlobalVariables); 3082 emitStaticConstMemberList(); 3083 endCVSubsection(EndLabel); 3084 } 3085 3086 // Second, emit each global that is in a comdat into its own .debug$S 3087 // section along with its own symbol substream. 3088 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3089 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3090 MCSymbol *GVSym = Asm->getSymbol(GV); 3091 OS.AddComment("Symbol subsection for " + 3092 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3093 switchToDebugSectionForSymbol(GVSym); 3094 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3095 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3096 emitDebugInfoForGlobal(CVGV); 3097 endCVSubsection(EndLabel); 3098 } 3099 } 3100 3101 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3102 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3103 for (const MDNode *Node : CUs->operands()) { 3104 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3105 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3106 getTypeIndex(RT); 3107 // FIXME: Add to global/local DTU list. 3108 } 3109 } 3110 } 3111 } 3112 3113 // Emit each global variable in the specified array. 3114 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3115 for (const CVGlobalVariable &CVGV : Globals) { 3116 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3117 emitDebugInfoForGlobal(CVGV); 3118 } 3119 } 3120 3121 void CodeViewDebug::emitStaticConstMemberList() { 3122 for (const DIDerivedType *DTy : StaticConstMembers) { 3123 const DIScope *Scope = DTy->getScope(); 3124 3125 APSInt Value; 3126 if (const ConstantInt *CI = 3127 dyn_cast_or_null<ConstantInt>(DTy->getConstant())) 3128 Value = APSInt(CI->getValue(), 3129 DebugHandlerBase::isUnsignedDIType(DTy->getBaseType())); 3130 else if (const ConstantFP *CFP = 3131 dyn_cast_or_null<ConstantFP>(DTy->getConstant())) 3132 Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true); 3133 else 3134 continue; 3135 3136 std::string QualifiedName = getFullyQualifiedName(Scope, DTy->getName()); 3137 3138 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3139 OS.AddComment("Type"); 3140 OS.emitInt32(getTypeIndex(DTy->getBaseType()).getIndex()); 3141 OS.AddComment("Value"); 3142 3143 // Encoded integers shouldn't need more than 10 bytes. 3144 uint8_t Data[10]; 3145 BinaryStreamWriter Writer(Data, llvm::support::endianness::little); 3146 CodeViewRecordIO IO(Writer); 3147 cantFail(IO.mapEncodedInteger(Value)); 3148 StringRef SRef((char *)Data, Writer.getOffset()); 3149 OS.emitBinaryData(SRef); 3150 3151 OS.AddComment("Name"); 3152 emitNullTerminatedSymbolName(OS, QualifiedName); 3153 endSymbolRecord(SConstantEnd); 3154 } 3155 } 3156 3157 static bool isFloatDIType(const DIType *Ty) { 3158 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) 3159 return false; 3160 3161 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) { 3162 dwarf::Tag T = (dwarf::Tag)Ty->getTag(); 3163 if (T == dwarf::DW_TAG_pointer_type || 3164 T == dwarf::DW_TAG_ptr_to_member_type || 3165 T == dwarf::DW_TAG_reference_type || 3166 T == dwarf::DW_TAG_rvalue_reference_type) 3167 return false; 3168 assert(DTy->getBaseType() && "Expected valid base type"); 3169 return isFloatDIType(DTy->getBaseType()); 3170 } 3171 3172 auto *BTy = cast<DIBasicType>(Ty); 3173 return (BTy->getEncoding() == dwarf::DW_ATE_float); 3174 } 3175 3176 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3177 const DIGlobalVariable *DIGV = CVGV.DIGV; 3178 3179 const DIScope *Scope = DIGV->getScope(); 3180 // For static data members, get the scope from the declaration. 3181 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3182 DIGV->getRawStaticDataMemberDeclaration())) 3183 Scope = MemberDecl->getScope(); 3184 std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName()); 3185 3186 if (const GlobalVariable *GV = 3187 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3188 // DataSym record, see SymbolRecord.h for more info. Thread local data 3189 // happens to have the same format as global data. 3190 MCSymbol *GVSym = Asm->getSymbol(GV); 3191 SymbolKind DataSym = GV->isThreadLocal() 3192 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3193 : SymbolKind::S_GTHREAD32) 3194 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3195 : SymbolKind::S_GDATA32); 3196 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3197 OS.AddComment("Type"); 3198 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3199 OS.AddComment("DataOffset"); 3200 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3201 OS.AddComment("Segment"); 3202 OS.EmitCOFFSectionIndex(GVSym); 3203 OS.AddComment("Name"); 3204 const unsigned LengthOfDataRecord = 12; 3205 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3206 endSymbolRecord(DataEnd); 3207 } else { 3208 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3209 assert(DIE->isConstant() && 3210 "Global constant variables must contain a constant expression."); 3211 3212 // Use unsigned for floats. 3213 bool isUnsigned = isFloatDIType(DIGV->getType()) 3214 ? true 3215 : DebugHandlerBase::isUnsignedDIType(DIGV->getType()); 3216 APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned); 3217 3218 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3219 OS.AddComment("Type"); 3220 OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex()); 3221 OS.AddComment("Value"); 3222 3223 // Encoded integers shouldn't need more than 10 bytes. 3224 uint8_t data[10]; 3225 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3226 CodeViewRecordIO IO(Writer); 3227 cantFail(IO.mapEncodedInteger(Value)); 3228 StringRef SRef((char *)data, Writer.getOffset()); 3229 OS.emitBinaryData(SRef); 3230 3231 OS.AddComment("Name"); 3232 emitNullTerminatedSymbolName(OS, QualifiedName); 3233 endSymbolRecord(SConstantEnd); 3234 } 3235 } 3236