1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/Path.h" 77 #include "llvm/Support/SMLoc.h" 78 #include "llvm/Support/ScopedPrinter.h" 79 #include "llvm/Target/TargetLoweringObjectFile.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cctype> 84 #include <cstddef> 85 #include <cstdint> 86 #include <iterator> 87 #include <limits> 88 #include <string> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 using namespace llvm::codeview; 94 95 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 96 cl::ReallyHidden, cl::init(false)); 97 98 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 99 switch (Type) { 100 case Triple::ArchType::x86: 101 return CPUType::Pentium3; 102 case Triple::ArchType::x86_64: 103 return CPUType::X64; 104 case Triple::ArchType::thumb: 105 return CPUType::Thumb; 106 case Triple::ArchType::aarch64: 107 return CPUType::ARM64; 108 default: 109 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 110 } 111 } 112 113 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 114 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 115 // If module doesn't have named metadata anchors or COFF debug section 116 // is not available, skip any debug info related stuff. 117 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 118 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 119 Asm = nullptr; 120 MMI->setDebugInfoAvailability(false); 121 return; 122 } 123 // Tell MMI that we have debug info. 124 MMI->setDebugInfoAvailability(true); 125 126 TheCPU = 127 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 128 } 129 130 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 131 std::string &Filepath = FileToFilepathMap[File]; 132 if (!Filepath.empty()) 133 return Filepath; 134 135 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 136 137 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 138 // it textually because one of the path components could be a symlink. 139 if (Dir.startswith("/") || Filename.startswith("/")) { 140 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 141 return Filename; 142 Filepath = Dir; 143 if (Dir.back() != '/') 144 Filepath += '/'; 145 Filepath += Filename; 146 return Filepath; 147 } 148 149 // Clang emits directory and relative filename info into the IR, but CodeView 150 // operates on full paths. We could change Clang to emit full paths too, but 151 // that would increase the IR size and probably not needed for other users. 152 // For now, just concatenate and canonicalize the path here. 153 if (Filename.find(':') == 1) 154 Filepath = Filename; 155 else 156 Filepath = (Dir + "\\" + Filename).str(); 157 158 // Canonicalize the path. We have to do it textually because we may no longer 159 // have access the file in the filesystem. 160 // First, replace all slashes with backslashes. 161 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 162 163 // Remove all "\.\" with "\". 164 size_t Cursor = 0; 165 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 166 Filepath.erase(Cursor, 2); 167 168 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 169 // path should be well-formatted, e.g. start with a drive letter, etc. 170 Cursor = 0; 171 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 172 // Something's wrong if the path starts with "\..\", abort. 173 if (Cursor == 0) 174 break; 175 176 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 177 if (PrevSlash == std::string::npos) 178 // Something's wrong, abort. 179 break; 180 181 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 182 // The next ".." might be following the one we've just erased. 183 Cursor = PrevSlash; 184 } 185 186 // Remove all duplicate backslashes. 187 Cursor = 0; 188 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 189 Filepath.erase(Cursor, 1); 190 191 return Filepath; 192 } 193 194 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 195 StringRef FullPath = getFullFilepath(F); 196 unsigned NextId = FileIdMap.size() + 1; 197 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 198 if (Insertion.second) { 199 // We have to compute the full filepath and emit a .cv_file directive. 200 ArrayRef<uint8_t> ChecksumAsBytes; 201 FileChecksumKind CSKind = FileChecksumKind::None; 202 if (F->getChecksum()) { 203 std::string Checksum = fromHex(F->getChecksum()->Value); 204 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 205 memcpy(CKMem, Checksum.data(), Checksum.size()); 206 ChecksumAsBytes = ArrayRef<uint8_t>( 207 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 208 switch (F->getChecksum()->Kind) { 209 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 210 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 211 } 212 } 213 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 214 static_cast<unsigned>(CSKind)); 215 (void)Success; 216 assert(Success && ".cv_file directive failed"); 217 } 218 return Insertion.first->second; 219 } 220 221 CodeViewDebug::InlineSite & 222 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 223 const DISubprogram *Inlinee) { 224 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 225 InlineSite *Site = &SiteInsertion.first->second; 226 if (SiteInsertion.second) { 227 unsigned ParentFuncId = CurFn->FuncId; 228 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 229 ParentFuncId = 230 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 231 .SiteFuncId; 232 233 Site->SiteFuncId = NextFuncId++; 234 OS.EmitCVInlineSiteIdDirective( 235 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 236 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 237 Site->Inlinee = Inlinee; 238 InlinedSubprograms.insert(Inlinee); 239 getFuncIdForSubprogram(Inlinee); 240 } 241 return *Site; 242 } 243 244 static StringRef getPrettyScopeName(const DIScope *Scope) { 245 StringRef ScopeName = Scope->getName(); 246 if (!ScopeName.empty()) 247 return ScopeName; 248 249 switch (Scope->getTag()) { 250 case dwarf::DW_TAG_enumeration_type: 251 case dwarf::DW_TAG_class_type: 252 case dwarf::DW_TAG_structure_type: 253 case dwarf::DW_TAG_union_type: 254 return "<unnamed-tag>"; 255 case dwarf::DW_TAG_namespace: 256 return "`anonymous namespace'"; 257 } 258 259 return StringRef(); 260 } 261 262 static const DISubprogram *getQualifiedNameComponents( 263 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 264 const DISubprogram *ClosestSubprogram = nullptr; 265 while (Scope != nullptr) { 266 if (ClosestSubprogram == nullptr) 267 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 268 StringRef ScopeName = getPrettyScopeName(Scope); 269 if (!ScopeName.empty()) 270 QualifiedNameComponents.push_back(ScopeName); 271 Scope = Scope->getScope().resolve(); 272 } 273 return ClosestSubprogram; 274 } 275 276 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 277 StringRef TypeName) { 278 std::string FullyQualifiedName; 279 for (StringRef QualifiedNameComponent : 280 llvm::reverse(QualifiedNameComponents)) { 281 FullyQualifiedName.append(QualifiedNameComponent); 282 FullyQualifiedName.append("::"); 283 } 284 FullyQualifiedName.append(TypeName); 285 return FullyQualifiedName; 286 } 287 288 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 289 SmallVector<StringRef, 5> QualifiedNameComponents; 290 getQualifiedNameComponents(Scope, QualifiedNameComponents); 291 return getQualifiedName(QualifiedNameComponents, Name); 292 } 293 294 struct CodeViewDebug::TypeLoweringScope { 295 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 296 ~TypeLoweringScope() { 297 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 298 // inner TypeLoweringScopes don't attempt to emit deferred types. 299 if (CVD.TypeEmissionLevel == 1) 300 CVD.emitDeferredCompleteTypes(); 301 --CVD.TypeEmissionLevel; 302 } 303 CodeViewDebug &CVD; 304 }; 305 306 static std::string getFullyQualifiedName(const DIScope *Ty) { 307 const DIScope *Scope = Ty->getScope().resolve(); 308 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 309 } 310 311 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 312 // No scope means global scope and that uses the zero index. 313 if (!Scope || isa<DIFile>(Scope)) 314 return TypeIndex(); 315 316 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 317 318 // Check if we've already translated this scope. 319 auto I = TypeIndices.find({Scope, nullptr}); 320 if (I != TypeIndices.end()) 321 return I->second; 322 323 // Build the fully qualified name of the scope. 324 std::string ScopeName = getFullyQualifiedName(Scope); 325 StringIdRecord SID(TypeIndex(), ScopeName); 326 auto TI = TypeTable.writeLeafType(SID); 327 return recordTypeIndexForDINode(Scope, TI); 328 } 329 330 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 331 assert(SP); 332 333 // Check if we've already translated this subprogram. 334 auto I = TypeIndices.find({SP, nullptr}); 335 if (I != TypeIndices.end()) 336 return I->second; 337 338 // The display name includes function template arguments. Drop them to match 339 // MSVC. 340 StringRef DisplayName = SP->getName().split('<').first; 341 342 const DIScope *Scope = SP->getScope().resolve(); 343 TypeIndex TI; 344 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 345 // If the scope is a DICompositeType, then this must be a method. Member 346 // function types take some special handling, and require access to the 347 // subprogram. 348 TypeIndex ClassType = getTypeIndex(Class); 349 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 350 DisplayName); 351 TI = TypeTable.writeLeafType(MFuncId); 352 } else { 353 // Otherwise, this must be a free function. 354 TypeIndex ParentScope = getScopeIndex(Scope); 355 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 356 TI = TypeTable.writeLeafType(FuncId); 357 } 358 359 return recordTypeIndexForDINode(SP, TI); 360 } 361 362 static bool isTrivial(const DICompositeType *DCTy) { 363 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 364 } 365 366 static FunctionOptions 367 getFunctionOptions(const DISubroutineType *Ty, 368 const DICompositeType *ClassTy = nullptr, 369 StringRef SPName = StringRef("")) { 370 FunctionOptions FO = FunctionOptions::None; 371 const DIType *ReturnTy = nullptr; 372 if (auto TypeArray = Ty->getTypeArray()) { 373 if (TypeArray.size()) 374 ReturnTy = TypeArray[0].resolve(); 375 } 376 377 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 378 if (!isTrivial(ReturnDCTy)) 379 FO |= FunctionOptions::CxxReturnUdt; 380 } 381 382 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 383 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 384 FO |= FunctionOptions::Constructor; 385 386 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 387 388 } 389 return FO; 390 } 391 392 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 393 const DICompositeType *Class) { 394 // Always use the method declaration as the key for the function type. The 395 // method declaration contains the this adjustment. 396 if (SP->getDeclaration()) 397 SP = SP->getDeclaration(); 398 assert(!SP->getDeclaration() && "should use declaration as key"); 399 400 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 401 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 402 auto I = TypeIndices.find({SP, Class}); 403 if (I != TypeIndices.end()) 404 return I->second; 405 406 // Make sure complete type info for the class is emitted *after* the member 407 // function type, as the complete class type is likely to reference this 408 // member function type. 409 TypeLoweringScope S(*this); 410 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 411 412 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 413 TypeIndex TI = lowerTypeMemberFunction( 414 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 415 return recordTypeIndexForDINode(SP, TI, Class); 416 } 417 418 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 419 TypeIndex TI, 420 const DIType *ClassTy) { 421 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 422 (void)InsertResult; 423 assert(InsertResult.second && "DINode was already assigned a type index"); 424 return TI; 425 } 426 427 unsigned CodeViewDebug::getPointerSizeInBytes() { 428 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 429 } 430 431 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 432 const LexicalScope *LS) { 433 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 434 // This variable was inlined. Associate it with the InlineSite. 435 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 436 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 437 Site.InlinedLocals.emplace_back(Var); 438 } else { 439 // This variable goes into the corresponding lexical scope. 440 ScopeVariables[LS].emplace_back(Var); 441 } 442 } 443 444 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 445 const DILocation *Loc) { 446 auto B = Locs.begin(), E = Locs.end(); 447 if (std::find(B, E, Loc) == E) 448 Locs.push_back(Loc); 449 } 450 451 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 452 const MachineFunction *MF) { 453 // Skip this instruction if it has the same location as the previous one. 454 if (!DL || DL == PrevInstLoc) 455 return; 456 457 const DIScope *Scope = DL.get()->getScope(); 458 if (!Scope) 459 return; 460 461 // Skip this line if it is longer than the maximum we can record. 462 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 463 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 464 LI.isNeverStepInto()) 465 return; 466 467 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 468 if (CI.getStartColumn() != DL.getCol()) 469 return; 470 471 if (!CurFn->HaveLineInfo) 472 CurFn->HaveLineInfo = true; 473 unsigned FileId = 0; 474 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 475 FileId = CurFn->LastFileId; 476 else 477 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 478 PrevInstLoc = DL; 479 480 unsigned FuncId = CurFn->FuncId; 481 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 482 const DILocation *Loc = DL.get(); 483 484 // If this location was actually inlined from somewhere else, give it the ID 485 // of the inline call site. 486 FuncId = 487 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 488 489 // Ensure we have links in the tree of inline call sites. 490 bool FirstLoc = true; 491 while ((SiteLoc = Loc->getInlinedAt())) { 492 InlineSite &Site = 493 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 494 if (!FirstLoc) 495 addLocIfNotPresent(Site.ChildSites, Loc); 496 FirstLoc = false; 497 Loc = SiteLoc; 498 } 499 addLocIfNotPresent(CurFn->ChildSites, Loc); 500 } 501 502 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 503 /*PrologueEnd=*/false, /*IsStmt=*/false, 504 DL->getFilename(), SMLoc()); 505 } 506 507 void CodeViewDebug::emitCodeViewMagicVersion() { 508 OS.EmitValueToAlignment(4); 509 OS.AddComment("Debug section magic"); 510 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 511 } 512 513 void CodeViewDebug::endModule() { 514 if (!Asm || !MMI->hasDebugInfo()) 515 return; 516 517 assert(Asm != nullptr); 518 519 // The COFF .debug$S section consists of several subsections, each starting 520 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 521 // of the payload followed by the payload itself. The subsections are 4-byte 522 // aligned. 523 524 // Use the generic .debug$S section, and make a subsection for all the inlined 525 // subprograms. 526 switchToDebugSectionForSymbol(nullptr); 527 528 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 529 emitCompilerInformation(); 530 endCVSubsection(CompilerInfo); 531 532 emitInlineeLinesSubsection(); 533 534 // Emit per-function debug information. 535 for (auto &P : FnDebugInfo) 536 if (!P.first->isDeclarationForLinker()) 537 emitDebugInfoForFunction(P.first, *P.second); 538 539 // Emit global variable debug information. 540 setCurrentSubprogram(nullptr); 541 emitDebugInfoForGlobals(); 542 543 // Emit retained types. 544 emitDebugInfoForRetainedTypes(); 545 546 // Switch back to the generic .debug$S section after potentially processing 547 // comdat symbol sections. 548 switchToDebugSectionForSymbol(nullptr); 549 550 // Emit UDT records for any types used by global variables. 551 if (!GlobalUDTs.empty()) { 552 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 553 emitDebugInfoForUDTs(GlobalUDTs); 554 endCVSubsection(SymbolsEnd); 555 } 556 557 // This subsection holds a file index to offset in string table table. 558 OS.AddComment("File index to string table offset subsection"); 559 OS.EmitCVFileChecksumsDirective(); 560 561 // This subsection holds the string table. 562 OS.AddComment("String table"); 563 OS.EmitCVStringTableDirective(); 564 565 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 566 // subsection in the generic .debug$S section at the end. There is no 567 // particular reason for this ordering other than to match MSVC. 568 emitBuildInfo(); 569 570 // Emit type information and hashes last, so that any types we translate while 571 // emitting function info are included. 572 emitTypeInformation(); 573 574 if (EmitDebugGlobalHashes) 575 emitTypeGlobalHashes(); 576 577 clear(); 578 } 579 580 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 581 unsigned MaxFixedRecordLength = 0xF00) { 582 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 583 // after a fixed length portion of the record. The fixed length portion should 584 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 585 // overall record size is less than the maximum allowed. 586 SmallString<32> NullTerminatedString( 587 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 588 NullTerminatedString.push_back('\0'); 589 OS.EmitBytes(NullTerminatedString); 590 } 591 592 void CodeViewDebug::emitTypeInformation() { 593 if (TypeTable.empty()) 594 return; 595 596 // Start the .debug$T or .debug$P section with 0x4. 597 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 598 emitCodeViewMagicVersion(); 599 600 SmallString<8> CommentPrefix; 601 if (OS.isVerboseAsm()) { 602 CommentPrefix += '\t'; 603 CommentPrefix += Asm->MAI->getCommentString(); 604 CommentPrefix += ' '; 605 } 606 607 TypeTableCollection Table(TypeTable.records()); 608 Optional<TypeIndex> B = Table.getFirst(); 609 while (B) { 610 // This will fail if the record data is invalid. 611 CVType Record = Table.getType(*B); 612 613 if (OS.isVerboseAsm()) { 614 // Emit a block comment describing the type record for readability. 615 SmallString<512> CommentBlock; 616 raw_svector_ostream CommentOS(CommentBlock); 617 ScopedPrinter SP(CommentOS); 618 SP.setPrefix(CommentPrefix); 619 TypeDumpVisitor TDV(Table, &SP, false); 620 621 Error E = codeview::visitTypeRecord(Record, *B, TDV); 622 if (E) { 623 logAllUnhandledErrors(std::move(E), errs(), "error: "); 624 llvm_unreachable("produced malformed type record"); 625 } 626 // emitRawComment will insert its own tab and comment string before 627 // the first line, so strip off our first one. It also prints its own 628 // newline. 629 OS.emitRawComment( 630 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 631 } 632 OS.EmitBinaryData(Record.str_data()); 633 B = Table.getNext(*B); 634 } 635 } 636 637 void CodeViewDebug::emitTypeGlobalHashes() { 638 if (TypeTable.empty()) 639 return; 640 641 // Start the .debug$H section with the version and hash algorithm, currently 642 // hardcoded to version 0, SHA1. 643 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 644 645 OS.EmitValueToAlignment(4); 646 OS.AddComment("Magic"); 647 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 648 OS.AddComment("Section Version"); 649 OS.EmitIntValue(0, 2); 650 OS.AddComment("Hash Algorithm"); 651 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 652 653 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 654 for (const auto &GHR : TypeTable.hashes()) { 655 if (OS.isVerboseAsm()) { 656 // Emit an EOL-comment describing which TypeIndex this hash corresponds 657 // to, as well as the stringified SHA1 hash. 658 SmallString<32> Comment; 659 raw_svector_ostream CommentOS(Comment); 660 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 661 OS.AddComment(Comment); 662 ++TI; 663 } 664 assert(GHR.Hash.size() == 8); 665 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 666 GHR.Hash.size()); 667 OS.EmitBinaryData(S); 668 } 669 } 670 671 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 672 switch (DWLang) { 673 case dwarf::DW_LANG_C: 674 case dwarf::DW_LANG_C89: 675 case dwarf::DW_LANG_C99: 676 case dwarf::DW_LANG_C11: 677 case dwarf::DW_LANG_ObjC: 678 return SourceLanguage::C; 679 case dwarf::DW_LANG_C_plus_plus: 680 case dwarf::DW_LANG_C_plus_plus_03: 681 case dwarf::DW_LANG_C_plus_plus_11: 682 case dwarf::DW_LANG_C_plus_plus_14: 683 return SourceLanguage::Cpp; 684 case dwarf::DW_LANG_Fortran77: 685 case dwarf::DW_LANG_Fortran90: 686 case dwarf::DW_LANG_Fortran03: 687 case dwarf::DW_LANG_Fortran08: 688 return SourceLanguage::Fortran; 689 case dwarf::DW_LANG_Pascal83: 690 return SourceLanguage::Pascal; 691 case dwarf::DW_LANG_Cobol74: 692 case dwarf::DW_LANG_Cobol85: 693 return SourceLanguage::Cobol; 694 case dwarf::DW_LANG_Java: 695 return SourceLanguage::Java; 696 case dwarf::DW_LANG_D: 697 return SourceLanguage::D; 698 default: 699 // There's no CodeView representation for this language, and CV doesn't 700 // have an "unknown" option for the language field, so we'll use MASM, 701 // as it's very low level. 702 return SourceLanguage::Masm; 703 } 704 } 705 706 namespace { 707 struct Version { 708 int Part[4]; 709 }; 710 } // end anonymous namespace 711 712 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 713 // the version number. 714 static Version parseVersion(StringRef Name) { 715 Version V = {{0}}; 716 int N = 0; 717 for (const char C : Name) { 718 if (isdigit(C)) { 719 V.Part[N] *= 10; 720 V.Part[N] += C - '0'; 721 } else if (C == '.') { 722 ++N; 723 if (N >= 4) 724 return V; 725 } else if (N > 0) 726 return V; 727 } 728 return V; 729 } 730 731 void CodeViewDebug::emitCompilerInformation() { 732 MCContext &Context = MMI->getContext(); 733 MCSymbol *CompilerBegin = Context.createTempSymbol(), 734 *CompilerEnd = Context.createTempSymbol(); 735 OS.AddComment("Record length"); 736 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 737 OS.EmitLabel(CompilerBegin); 738 OS.AddComment("Record kind: S_COMPILE3"); 739 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 740 uint32_t Flags = 0; 741 742 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 743 const MDNode *Node = *CUs->operands().begin(); 744 const auto *CU = cast<DICompileUnit>(Node); 745 746 // The low byte of the flags indicates the source language. 747 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 748 // TODO: Figure out which other flags need to be set. 749 750 OS.AddComment("Flags and language"); 751 OS.EmitIntValue(Flags, 4); 752 753 OS.AddComment("CPUType"); 754 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 755 756 StringRef CompilerVersion = CU->getProducer(); 757 Version FrontVer = parseVersion(CompilerVersion); 758 OS.AddComment("Frontend version"); 759 for (int N = 0; N < 4; ++N) 760 OS.EmitIntValue(FrontVer.Part[N], 2); 761 762 // Some Microsoft tools, like Binscope, expect a backend version number of at 763 // least 8.something, so we'll coerce the LLVM version into a form that 764 // guarantees it'll be big enough without really lying about the version. 765 int Major = 1000 * LLVM_VERSION_MAJOR + 766 10 * LLVM_VERSION_MINOR + 767 LLVM_VERSION_PATCH; 768 // Clamp it for builds that use unusually large version numbers. 769 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 770 Version BackVer = {{ Major, 0, 0, 0 }}; 771 OS.AddComment("Backend version"); 772 for (int N = 0; N < 4; ++N) 773 OS.EmitIntValue(BackVer.Part[N], 2); 774 775 OS.AddComment("Null-terminated compiler version string"); 776 emitNullTerminatedSymbolName(OS, CompilerVersion); 777 778 OS.EmitLabel(CompilerEnd); 779 } 780 781 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 782 StringRef S) { 783 StringIdRecord SIR(TypeIndex(0x0), S); 784 return TypeTable.writeLeafType(SIR); 785 } 786 787 void CodeViewDebug::emitBuildInfo() { 788 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 789 // build info. The known prefix is: 790 // - Absolute path of current directory 791 // - Compiler path 792 // - Main source file path, relative to CWD or absolute 793 // - Type server PDB file 794 // - Canonical compiler command line 795 // If frontend and backend compilation are separated (think llc or LTO), it's 796 // not clear if the compiler path should refer to the executable for the 797 // frontend or the backend. Leave it blank for now. 798 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 799 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 800 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 801 const auto *CU = cast<DICompileUnit>(Node); 802 const DIFile *MainSourceFile = CU->getFile(); 803 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 804 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 805 BuildInfoArgs[BuildInfoRecord::SourceFile] = 806 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 807 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 808 // we implement /Zi type servers. 809 BuildInfoRecord BIR(BuildInfoArgs); 810 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 811 812 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 813 // from the module symbols into the type stream. 814 MCSymbol *BuildInfoEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 815 OS.AddComment("Record length"); 816 OS.EmitIntValue(6, 2); 817 OS.AddComment("Record kind: S_BUILDINFO"); 818 OS.EmitIntValue(unsigned(SymbolKind::S_BUILDINFO), 2); 819 OS.AddComment("LF_BUILDINFO index"); 820 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 821 endCVSubsection(BuildInfoEnd); 822 } 823 824 void CodeViewDebug::emitInlineeLinesSubsection() { 825 if (InlinedSubprograms.empty()) 826 return; 827 828 OS.AddComment("Inlinee lines subsection"); 829 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 830 831 // We emit the checksum info for files. This is used by debuggers to 832 // determine if a pdb matches the source before loading it. Visual Studio, 833 // for instance, will display a warning that the breakpoints are not valid if 834 // the pdb does not match the source. 835 OS.AddComment("Inlinee lines signature"); 836 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 837 838 for (const DISubprogram *SP : InlinedSubprograms) { 839 assert(TypeIndices.count({SP, nullptr})); 840 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 841 842 OS.AddBlankLine(); 843 unsigned FileId = maybeRecordFile(SP->getFile()); 844 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 845 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 846 OS.AddBlankLine(); 847 OS.AddComment("Type index of inlined function"); 848 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 849 OS.AddComment("Offset into filechecksum table"); 850 OS.EmitCVFileChecksumOffsetDirective(FileId); 851 OS.AddComment("Starting line number"); 852 OS.EmitIntValue(SP->getLine(), 4); 853 } 854 855 endCVSubsection(InlineEnd); 856 } 857 858 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 859 const DILocation *InlinedAt, 860 const InlineSite &Site) { 861 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 862 *InlineEnd = MMI->getContext().createTempSymbol(); 863 864 assert(TypeIndices.count({Site.Inlinee, nullptr})); 865 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 866 867 // SymbolRecord 868 OS.AddComment("Record length"); 869 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 870 OS.EmitLabel(InlineBegin); 871 OS.AddComment("Record kind: S_INLINESITE"); 872 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 873 874 OS.AddComment("PtrParent"); 875 OS.EmitIntValue(0, 4); 876 OS.AddComment("PtrEnd"); 877 OS.EmitIntValue(0, 4); 878 OS.AddComment("Inlinee type index"); 879 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 880 881 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 882 unsigned StartLineNum = Site.Inlinee->getLine(); 883 884 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 885 FI.Begin, FI.End); 886 887 OS.EmitLabel(InlineEnd); 888 889 emitLocalVariableList(FI, Site.InlinedLocals); 890 891 // Recurse on child inlined call sites before closing the scope. 892 for (const DILocation *ChildSite : Site.ChildSites) { 893 auto I = FI.InlineSites.find(ChildSite); 894 assert(I != FI.InlineSites.end() && 895 "child site not in function inline site map"); 896 emitInlinedCallSite(FI, ChildSite, I->second); 897 } 898 899 // Close the scope. 900 OS.AddComment("Record length"); 901 OS.EmitIntValue(2, 2); // RecordLength 902 OS.AddComment("Record kind: S_INLINESITE_END"); 903 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 904 } 905 906 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 907 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 908 // comdat key. A section may be comdat because of -ffunction-sections or 909 // because it is comdat in the IR. 910 MCSectionCOFF *GVSec = 911 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 912 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 913 914 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 915 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 916 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 917 918 OS.SwitchSection(DebugSec); 919 920 // Emit the magic version number if this is the first time we've switched to 921 // this section. 922 if (ComdatDebugSections.insert(DebugSec).second) 923 emitCodeViewMagicVersion(); 924 } 925 926 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 927 // The only supported thunk ordinal is currently the standard type. 928 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 929 FunctionInfo &FI, 930 const MCSymbol *Fn) { 931 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 932 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 933 934 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 935 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 936 937 // Emit S_THUNK32 938 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 939 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 940 OS.AddComment("Record length"); 941 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 942 OS.EmitLabel(ThunkRecordBegin); 943 OS.AddComment("Record kind: S_THUNK32"); 944 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 945 OS.AddComment("PtrParent"); 946 OS.EmitIntValue(0, 4); 947 OS.AddComment("PtrEnd"); 948 OS.EmitIntValue(0, 4); 949 OS.AddComment("PtrNext"); 950 OS.EmitIntValue(0, 4); 951 OS.AddComment("Thunk section relative address"); 952 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 953 OS.AddComment("Thunk section index"); 954 OS.EmitCOFFSectionIndex(Fn); 955 OS.AddComment("Code size"); 956 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 957 OS.AddComment("Ordinal"); 958 OS.EmitIntValue(unsigned(ordinal), 1); 959 OS.AddComment("Function name"); 960 emitNullTerminatedSymbolName(OS, FuncName); 961 // Additional fields specific to the thunk ordinal would go here. 962 OS.EmitLabel(ThunkRecordEnd); 963 964 // Local variables/inlined routines are purposely omitted here. The point of 965 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 966 967 // Emit S_PROC_ID_END 968 const unsigned RecordLengthForSymbolEnd = 2; 969 OS.AddComment("Record length"); 970 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 971 OS.AddComment("Record kind: S_PROC_ID_END"); 972 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 973 974 endCVSubsection(SymbolsEnd); 975 } 976 977 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 978 FunctionInfo &FI) { 979 // For each function there is a separate subsection which holds the PC to 980 // file:line table. 981 const MCSymbol *Fn = Asm->getSymbol(GV); 982 assert(Fn); 983 984 // Switch to the to a comdat section, if appropriate. 985 switchToDebugSectionForSymbol(Fn); 986 987 std::string FuncName; 988 auto *SP = GV->getSubprogram(); 989 assert(SP); 990 setCurrentSubprogram(SP); 991 992 if (SP->isThunk()) { 993 emitDebugInfoForThunk(GV, FI, Fn); 994 return; 995 } 996 997 // If we have a display name, build the fully qualified name by walking the 998 // chain of scopes. 999 if (!SP->getName().empty()) 1000 FuncName = 1001 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 1002 1003 // If our DISubprogram name is empty, use the mangled name. 1004 if (FuncName.empty()) 1005 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 1006 1007 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1008 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1009 OS.EmitCVFPOData(Fn); 1010 1011 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1012 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1013 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1014 { 1015 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 1016 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 1017 OS.AddComment("Record length"); 1018 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 1019 OS.EmitLabel(ProcRecordBegin); 1020 1021 if (GV->hasLocalLinkage()) { 1022 OS.AddComment("Record kind: S_LPROC32_ID"); 1023 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 1024 } else { 1025 OS.AddComment("Record kind: S_GPROC32_ID"); 1026 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 1027 } 1028 1029 // These fields are filled in by tools like CVPACK which run after the fact. 1030 OS.AddComment("PtrParent"); 1031 OS.EmitIntValue(0, 4); 1032 OS.AddComment("PtrEnd"); 1033 OS.EmitIntValue(0, 4); 1034 OS.AddComment("PtrNext"); 1035 OS.EmitIntValue(0, 4); 1036 // This is the important bit that tells the debugger where the function 1037 // code is located and what's its size: 1038 OS.AddComment("Code size"); 1039 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1040 OS.AddComment("Offset after prologue"); 1041 OS.EmitIntValue(0, 4); 1042 OS.AddComment("Offset before epilogue"); 1043 OS.EmitIntValue(0, 4); 1044 OS.AddComment("Function type index"); 1045 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1046 OS.AddComment("Function section relative address"); 1047 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1048 OS.AddComment("Function section index"); 1049 OS.EmitCOFFSectionIndex(Fn); 1050 OS.AddComment("Flags"); 1051 OS.EmitIntValue(0, 1); 1052 // Emit the function display name as a null-terminated string. 1053 OS.AddComment("Function name"); 1054 // Truncate the name so we won't overflow the record length field. 1055 emitNullTerminatedSymbolName(OS, FuncName); 1056 OS.EmitLabel(ProcRecordEnd); 1057 1058 MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(), 1059 *FrameProcEnd = MMI->getContext().createTempSymbol(); 1060 OS.AddComment("Record length"); 1061 OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2); 1062 OS.EmitLabel(FrameProcBegin); 1063 OS.AddComment("Record kind: S_FRAMEPROC"); 1064 OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2); 1065 // Subtract out the CSR size since MSVC excludes that and we include it. 1066 OS.AddComment("FrameSize"); 1067 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1068 OS.AddComment("Padding"); 1069 OS.EmitIntValue(0, 4); 1070 OS.AddComment("Offset of padding"); 1071 OS.EmitIntValue(0, 4); 1072 OS.AddComment("Bytes of callee saved registers"); 1073 OS.EmitIntValue(FI.CSRSize, 4); 1074 OS.AddComment("Exception handler offset"); 1075 OS.EmitIntValue(0, 4); 1076 OS.AddComment("Exception handler section"); 1077 OS.EmitIntValue(0, 2); 1078 OS.AddComment("Flags (defines frame register)"); 1079 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1080 OS.EmitLabel(FrameProcEnd); 1081 1082 emitLocalVariableList(FI, FI.Locals); 1083 emitLexicalBlockList(FI.ChildBlocks, FI); 1084 1085 // Emit inlined call site information. Only emit functions inlined directly 1086 // into the parent function. We'll emit the other sites recursively as part 1087 // of their parent inline site. 1088 for (const DILocation *InlinedAt : FI.ChildSites) { 1089 auto I = FI.InlineSites.find(InlinedAt); 1090 assert(I != FI.InlineSites.end() && 1091 "child site not in function inline site map"); 1092 emitInlinedCallSite(FI, InlinedAt, I->second); 1093 } 1094 1095 for (auto Annot : FI.Annotations) { 1096 MCSymbol *Label = Annot.first; 1097 MDTuple *Strs = cast<MDTuple>(Annot.second); 1098 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 1099 *AnnotEnd = MMI->getContext().createTempSymbol(); 1100 OS.AddComment("Record length"); 1101 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 1102 OS.EmitLabel(AnnotBegin); 1103 OS.AddComment("Record kind: S_ANNOTATION"); 1104 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 1105 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1106 // FIXME: Make sure we don't overflow the max record size. 1107 OS.EmitCOFFSectionIndex(Label); 1108 OS.EmitIntValue(Strs->getNumOperands(), 2); 1109 for (Metadata *MD : Strs->operands()) { 1110 // MDStrings are null terminated, so we can do EmitBytes and get the 1111 // nice .asciz directive. 1112 StringRef Str = cast<MDString>(MD)->getString(); 1113 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1114 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1115 } 1116 OS.EmitLabel(AnnotEnd); 1117 } 1118 1119 if (SP != nullptr) 1120 emitDebugInfoForUDTs(LocalUDTs); 1121 1122 // We're done with this function. 1123 OS.AddComment("Record length"); 1124 OS.EmitIntValue(0x0002, 2); 1125 OS.AddComment("Record kind: S_PROC_ID_END"); 1126 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1127 } 1128 endCVSubsection(SymbolsEnd); 1129 1130 // We have an assembler directive that takes care of the whole line table. 1131 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1132 } 1133 1134 CodeViewDebug::LocalVarDefRange 1135 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1136 LocalVarDefRange DR; 1137 DR.InMemory = -1; 1138 DR.DataOffset = Offset; 1139 assert(DR.DataOffset == Offset && "truncation"); 1140 DR.IsSubfield = 0; 1141 DR.StructOffset = 0; 1142 DR.CVRegister = CVRegister; 1143 return DR; 1144 } 1145 1146 void CodeViewDebug::collectVariableInfoFromMFTable( 1147 DenseSet<InlinedEntity> &Processed) { 1148 const MachineFunction &MF = *Asm->MF; 1149 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1150 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1151 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1152 1153 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1154 if (!VI.Var) 1155 continue; 1156 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1157 "Expected inlined-at fields to agree"); 1158 1159 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1160 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1161 1162 // If variable scope is not found then skip this variable. 1163 if (!Scope) 1164 continue; 1165 1166 // If the variable has an attached offset expression, extract it. 1167 // FIXME: Try to handle DW_OP_deref as well. 1168 int64_t ExprOffset = 0; 1169 if (VI.Expr) 1170 if (!VI.Expr->extractIfOffset(ExprOffset)) 1171 continue; 1172 1173 // Get the frame register used and the offset. 1174 unsigned FrameReg = 0; 1175 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1176 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1177 1178 // Calculate the label ranges. 1179 LocalVarDefRange DefRange = 1180 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1181 for (const InsnRange &Range : Scope->getRanges()) { 1182 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1183 const MCSymbol *End = getLabelAfterInsn(Range.second); 1184 End = End ? End : Asm->getFunctionEnd(); 1185 DefRange.Ranges.emplace_back(Begin, End); 1186 } 1187 1188 LocalVariable Var; 1189 Var.DIVar = VI.Var; 1190 Var.DefRanges.emplace_back(std::move(DefRange)); 1191 recordLocalVariable(std::move(Var), Scope); 1192 } 1193 } 1194 1195 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1196 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1197 } 1198 1199 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1200 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1201 } 1202 1203 void CodeViewDebug::calculateRanges( 1204 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1205 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1206 1207 // Calculate the definition ranges. 1208 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1209 const InsnRange &Range = *I; 1210 const MachineInstr *DVInst = Range.first; 1211 assert(DVInst->isDebugValue() && "Invalid History entry"); 1212 // FIXME: Find a way to represent constant variables, since they are 1213 // relatively common. 1214 Optional<DbgVariableLocation> Location = 1215 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1216 if (!Location) 1217 continue; 1218 1219 // CodeView can only express variables in register and variables in memory 1220 // at a constant offset from a register. However, for variables passed 1221 // indirectly by pointer, it is common for that pointer to be spilled to a 1222 // stack location. For the special case of one offseted load followed by a 1223 // zero offset load (a pointer spilled to the stack), we change the type of 1224 // the local variable from a value type to a reference type. This tricks the 1225 // debugger into doing the load for us. 1226 if (Var.UseReferenceType) { 1227 // We're using a reference type. Drop the last zero offset load. 1228 if (canUseReferenceType(*Location)) 1229 Location->LoadChain.pop_back(); 1230 else 1231 continue; 1232 } else if (needsReferenceType(*Location)) { 1233 // This location can't be expressed without switching to a reference type. 1234 // Start over using that. 1235 Var.UseReferenceType = true; 1236 Var.DefRanges.clear(); 1237 calculateRanges(Var, Ranges); 1238 return; 1239 } 1240 1241 // We can only handle a register or an offseted load of a register. 1242 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1243 continue; 1244 { 1245 LocalVarDefRange DR; 1246 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1247 DR.InMemory = !Location->LoadChain.empty(); 1248 DR.DataOffset = 1249 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1250 if (Location->FragmentInfo) { 1251 DR.IsSubfield = true; 1252 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1253 } else { 1254 DR.IsSubfield = false; 1255 DR.StructOffset = 0; 1256 } 1257 1258 if (Var.DefRanges.empty() || 1259 Var.DefRanges.back().isDifferentLocation(DR)) { 1260 Var.DefRanges.emplace_back(std::move(DR)); 1261 } 1262 } 1263 1264 // Compute the label range. 1265 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1266 const MCSymbol *End = getLabelAfterInsn(Range.second); 1267 if (!End) { 1268 // This range is valid until the next overlapping bitpiece. In the 1269 // common case, ranges will not be bitpieces, so they will overlap. 1270 auto J = std::next(I); 1271 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1272 while (J != E && 1273 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1274 ++J; 1275 if (J != E) 1276 End = getLabelBeforeInsn(J->first); 1277 else 1278 End = Asm->getFunctionEnd(); 1279 } 1280 1281 // If the last range end is our begin, just extend the last range. 1282 // Otherwise make a new range. 1283 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1284 Var.DefRanges.back().Ranges; 1285 if (!R.empty() && R.back().second == Begin) 1286 R.back().second = End; 1287 else 1288 R.emplace_back(Begin, End); 1289 1290 // FIXME: Do more range combining. 1291 } 1292 } 1293 1294 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1295 DenseSet<InlinedEntity> Processed; 1296 // Grab the variable info that was squirreled away in the MMI side-table. 1297 collectVariableInfoFromMFTable(Processed); 1298 1299 for (const auto &I : DbgValues) { 1300 InlinedEntity IV = I.first; 1301 if (Processed.count(IV)) 1302 continue; 1303 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1304 const DILocation *InlinedAt = IV.second; 1305 1306 // Instruction ranges, specifying where IV is accessible. 1307 const auto &Ranges = I.second; 1308 1309 LexicalScope *Scope = nullptr; 1310 if (InlinedAt) 1311 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1312 else 1313 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1314 // If variable scope is not found then skip this variable. 1315 if (!Scope) 1316 continue; 1317 1318 LocalVariable Var; 1319 Var.DIVar = DIVar; 1320 1321 calculateRanges(Var, Ranges); 1322 recordLocalVariable(std::move(Var), Scope); 1323 } 1324 } 1325 1326 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1327 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1328 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1329 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1330 const Function &GV = MF->getFunction(); 1331 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1332 assert(Insertion.second && "function already has info"); 1333 CurFn = Insertion.first->second.get(); 1334 CurFn->FuncId = NextFuncId++; 1335 CurFn->Begin = Asm->getFunctionBegin(); 1336 1337 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1338 // callee-saved registers were used. For targets that don't use a PUSH 1339 // instruction (AArch64), this will be zero. 1340 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1341 CurFn->FrameSize = MFI.getStackSize(); 1342 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1343 1344 // For this function S_FRAMEPROC record, figure out which codeview register 1345 // will be the frame pointer. 1346 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1347 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1348 if (CurFn->FrameSize > 0) { 1349 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1350 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1351 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1352 } else { 1353 // If there is an FP, parameters are always relative to it. 1354 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1355 if (CurFn->HasStackRealignment) { 1356 // If the stack needs realignment, locals are relative to SP or VFRAME. 1357 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1358 } else { 1359 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1360 // other stack adjustments. 1361 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1362 } 1363 } 1364 } 1365 1366 // Compute other frame procedure options. 1367 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1368 if (MFI.hasVarSizedObjects()) 1369 FPO |= FrameProcedureOptions::HasAlloca; 1370 if (MF->exposesReturnsTwice()) 1371 FPO |= FrameProcedureOptions::HasSetJmp; 1372 // FIXME: Set HasLongJmp if we ever track that info. 1373 if (MF->hasInlineAsm()) 1374 FPO |= FrameProcedureOptions::HasInlineAssembly; 1375 if (GV.hasPersonalityFn()) { 1376 if (isAsynchronousEHPersonality( 1377 classifyEHPersonality(GV.getPersonalityFn()))) 1378 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1379 else 1380 FPO |= FrameProcedureOptions::HasExceptionHandling; 1381 } 1382 if (GV.hasFnAttribute(Attribute::InlineHint)) 1383 FPO |= FrameProcedureOptions::MarkedInline; 1384 if (GV.hasFnAttribute(Attribute::Naked)) 1385 FPO |= FrameProcedureOptions::Naked; 1386 if (MFI.hasStackProtectorIndex()) 1387 FPO |= FrameProcedureOptions::SecurityChecks; 1388 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1389 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1390 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1391 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1392 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1393 // FIXME: Set GuardCfg when it is implemented. 1394 CurFn->FrameProcOpts = FPO; 1395 1396 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1397 1398 // Find the end of the function prolog. First known non-DBG_VALUE and 1399 // non-frame setup location marks the beginning of the function body. 1400 // FIXME: is there a simpler a way to do this? Can we just search 1401 // for the first instruction of the function, not the last of the prolog? 1402 DebugLoc PrologEndLoc; 1403 bool EmptyPrologue = true; 1404 for (const auto &MBB : *MF) { 1405 for (const auto &MI : MBB) { 1406 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1407 MI.getDebugLoc()) { 1408 PrologEndLoc = MI.getDebugLoc(); 1409 break; 1410 } else if (!MI.isMetaInstruction()) { 1411 EmptyPrologue = false; 1412 } 1413 } 1414 } 1415 1416 // Record beginning of function if we have a non-empty prologue. 1417 if (PrologEndLoc && !EmptyPrologue) { 1418 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1419 maybeRecordLocation(FnStartDL, MF); 1420 } 1421 } 1422 1423 static bool shouldEmitUdt(const DIType *T) { 1424 if (!T) 1425 return false; 1426 1427 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1428 if (T->getTag() == dwarf::DW_TAG_typedef) { 1429 if (DIScope *Scope = T->getScope().resolve()) { 1430 switch (Scope->getTag()) { 1431 case dwarf::DW_TAG_structure_type: 1432 case dwarf::DW_TAG_class_type: 1433 case dwarf::DW_TAG_union_type: 1434 return false; 1435 } 1436 } 1437 } 1438 1439 while (true) { 1440 if (!T || T->isForwardDecl()) 1441 return false; 1442 1443 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1444 if (!DT) 1445 return true; 1446 T = DT->getBaseType().resolve(); 1447 } 1448 return true; 1449 } 1450 1451 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1452 // Don't record empty UDTs. 1453 if (Ty->getName().empty()) 1454 return; 1455 if (!shouldEmitUdt(Ty)) 1456 return; 1457 1458 SmallVector<StringRef, 5> QualifiedNameComponents; 1459 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1460 Ty->getScope().resolve(), QualifiedNameComponents); 1461 1462 std::string FullyQualifiedName = 1463 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1464 1465 if (ClosestSubprogram == nullptr) { 1466 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1467 } else if (ClosestSubprogram == CurrentSubprogram) { 1468 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1469 } 1470 1471 // TODO: What if the ClosestSubprogram is neither null or the current 1472 // subprogram? Currently, the UDT just gets dropped on the floor. 1473 // 1474 // The current behavior is not desirable. To get maximal fidelity, we would 1475 // need to perform all type translation before beginning emission of .debug$S 1476 // and then make LocalUDTs a member of FunctionInfo 1477 } 1478 1479 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1480 // Generic dispatch for lowering an unknown type. 1481 switch (Ty->getTag()) { 1482 case dwarf::DW_TAG_array_type: 1483 return lowerTypeArray(cast<DICompositeType>(Ty)); 1484 case dwarf::DW_TAG_typedef: 1485 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1486 case dwarf::DW_TAG_base_type: 1487 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1488 case dwarf::DW_TAG_pointer_type: 1489 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1490 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1491 LLVM_FALLTHROUGH; 1492 case dwarf::DW_TAG_reference_type: 1493 case dwarf::DW_TAG_rvalue_reference_type: 1494 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1495 case dwarf::DW_TAG_ptr_to_member_type: 1496 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1497 case dwarf::DW_TAG_restrict_type: 1498 case dwarf::DW_TAG_const_type: 1499 case dwarf::DW_TAG_volatile_type: 1500 // TODO: add support for DW_TAG_atomic_type here 1501 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1502 case dwarf::DW_TAG_subroutine_type: 1503 if (ClassTy) { 1504 // The member function type of a member function pointer has no 1505 // ThisAdjustment. 1506 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1507 /*ThisAdjustment=*/0, 1508 /*IsStaticMethod=*/false); 1509 } 1510 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1511 case dwarf::DW_TAG_enumeration_type: 1512 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1513 case dwarf::DW_TAG_class_type: 1514 case dwarf::DW_TAG_structure_type: 1515 return lowerTypeClass(cast<DICompositeType>(Ty)); 1516 case dwarf::DW_TAG_union_type: 1517 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1518 case dwarf::DW_TAG_unspecified_type: 1519 return TypeIndex::None(); 1520 default: 1521 // Use the null type index. 1522 return TypeIndex(); 1523 } 1524 } 1525 1526 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1527 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1528 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1529 StringRef TypeName = Ty->getName(); 1530 1531 addToUDTs(Ty); 1532 1533 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1534 TypeName == "HRESULT") 1535 return TypeIndex(SimpleTypeKind::HResult); 1536 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1537 TypeName == "wchar_t") 1538 return TypeIndex(SimpleTypeKind::WideCharacter); 1539 1540 return UnderlyingTypeIndex; 1541 } 1542 1543 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1544 DITypeRef ElementTypeRef = Ty->getBaseType(); 1545 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1546 // IndexType is size_t, which depends on the bitness of the target. 1547 TypeIndex IndexType = getPointerSizeInBytes() == 8 1548 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1549 : TypeIndex(SimpleTypeKind::UInt32Long); 1550 1551 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1552 1553 // Add subranges to array type. 1554 DINodeArray Elements = Ty->getElements(); 1555 for (int i = Elements.size() - 1; i >= 0; --i) { 1556 const DINode *Element = Elements[i]; 1557 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1558 1559 const DISubrange *Subrange = cast<DISubrange>(Element); 1560 assert(Subrange->getLowerBound() == 0 && 1561 "codeview doesn't support subranges with lower bounds"); 1562 int64_t Count = -1; 1563 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1564 Count = CI->getSExtValue(); 1565 1566 // Forward declarations of arrays without a size and VLAs use a count of -1. 1567 // Emit a count of zero in these cases to match what MSVC does for arrays 1568 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1569 // should do for them even if we could distinguish them. 1570 if (Count == -1) 1571 Count = 0; 1572 1573 // Update the element size and element type index for subsequent subranges. 1574 ElementSize *= Count; 1575 1576 // If this is the outermost array, use the size from the array. It will be 1577 // more accurate if we had a VLA or an incomplete element type size. 1578 uint64_t ArraySize = 1579 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1580 1581 StringRef Name = (i == 0) ? Ty->getName() : ""; 1582 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1583 ElementTypeIndex = TypeTable.writeLeafType(AR); 1584 } 1585 1586 return ElementTypeIndex; 1587 } 1588 1589 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1590 TypeIndex Index; 1591 dwarf::TypeKind Kind; 1592 uint32_t ByteSize; 1593 1594 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1595 ByteSize = Ty->getSizeInBits() / 8; 1596 1597 SimpleTypeKind STK = SimpleTypeKind::None; 1598 switch (Kind) { 1599 case dwarf::DW_ATE_address: 1600 // FIXME: Translate 1601 break; 1602 case dwarf::DW_ATE_boolean: 1603 switch (ByteSize) { 1604 case 1: STK = SimpleTypeKind::Boolean8; break; 1605 case 2: STK = SimpleTypeKind::Boolean16; break; 1606 case 4: STK = SimpleTypeKind::Boolean32; break; 1607 case 8: STK = SimpleTypeKind::Boolean64; break; 1608 case 16: STK = SimpleTypeKind::Boolean128; break; 1609 } 1610 break; 1611 case dwarf::DW_ATE_complex_float: 1612 switch (ByteSize) { 1613 case 2: STK = SimpleTypeKind::Complex16; break; 1614 case 4: STK = SimpleTypeKind::Complex32; break; 1615 case 8: STK = SimpleTypeKind::Complex64; break; 1616 case 10: STK = SimpleTypeKind::Complex80; break; 1617 case 16: STK = SimpleTypeKind::Complex128; break; 1618 } 1619 break; 1620 case dwarf::DW_ATE_float: 1621 switch (ByteSize) { 1622 case 2: STK = SimpleTypeKind::Float16; break; 1623 case 4: STK = SimpleTypeKind::Float32; break; 1624 case 6: STK = SimpleTypeKind::Float48; break; 1625 case 8: STK = SimpleTypeKind::Float64; break; 1626 case 10: STK = SimpleTypeKind::Float80; break; 1627 case 16: STK = SimpleTypeKind::Float128; break; 1628 } 1629 break; 1630 case dwarf::DW_ATE_signed: 1631 switch (ByteSize) { 1632 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1633 case 2: STK = SimpleTypeKind::Int16Short; break; 1634 case 4: STK = SimpleTypeKind::Int32; break; 1635 case 8: STK = SimpleTypeKind::Int64Quad; break; 1636 case 16: STK = SimpleTypeKind::Int128Oct; break; 1637 } 1638 break; 1639 case dwarf::DW_ATE_unsigned: 1640 switch (ByteSize) { 1641 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1642 case 2: STK = SimpleTypeKind::UInt16Short; break; 1643 case 4: STK = SimpleTypeKind::UInt32; break; 1644 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1645 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1646 } 1647 break; 1648 case dwarf::DW_ATE_UTF: 1649 switch (ByteSize) { 1650 case 2: STK = SimpleTypeKind::Character16; break; 1651 case 4: STK = SimpleTypeKind::Character32; break; 1652 } 1653 break; 1654 case dwarf::DW_ATE_signed_char: 1655 if (ByteSize == 1) 1656 STK = SimpleTypeKind::SignedCharacter; 1657 break; 1658 case dwarf::DW_ATE_unsigned_char: 1659 if (ByteSize == 1) 1660 STK = SimpleTypeKind::UnsignedCharacter; 1661 break; 1662 default: 1663 break; 1664 } 1665 1666 // Apply some fixups based on the source-level type name. 1667 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1668 STK = SimpleTypeKind::Int32Long; 1669 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1670 STK = SimpleTypeKind::UInt32Long; 1671 if (STK == SimpleTypeKind::UInt16Short && 1672 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1673 STK = SimpleTypeKind::WideCharacter; 1674 if ((STK == SimpleTypeKind::SignedCharacter || 1675 STK == SimpleTypeKind::UnsignedCharacter) && 1676 Ty->getName() == "char") 1677 STK = SimpleTypeKind::NarrowCharacter; 1678 1679 return TypeIndex(STK); 1680 } 1681 1682 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1683 PointerOptions PO) { 1684 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1685 1686 // Pointers to simple types without any options can use SimpleTypeMode, rather 1687 // than having a dedicated pointer type record. 1688 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1689 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1690 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1691 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1692 ? SimpleTypeMode::NearPointer64 1693 : SimpleTypeMode::NearPointer32; 1694 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1695 } 1696 1697 PointerKind PK = 1698 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1699 PointerMode PM = PointerMode::Pointer; 1700 switch (Ty->getTag()) { 1701 default: llvm_unreachable("not a pointer tag type"); 1702 case dwarf::DW_TAG_pointer_type: 1703 PM = PointerMode::Pointer; 1704 break; 1705 case dwarf::DW_TAG_reference_type: 1706 PM = PointerMode::LValueReference; 1707 break; 1708 case dwarf::DW_TAG_rvalue_reference_type: 1709 PM = PointerMode::RValueReference; 1710 break; 1711 } 1712 1713 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1714 return TypeTable.writeLeafType(PR); 1715 } 1716 1717 static PointerToMemberRepresentation 1718 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1719 // SizeInBytes being zero generally implies that the member pointer type was 1720 // incomplete, which can happen if it is part of a function prototype. In this 1721 // case, use the unknown model instead of the general model. 1722 if (IsPMF) { 1723 switch (Flags & DINode::FlagPtrToMemberRep) { 1724 case 0: 1725 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1726 : PointerToMemberRepresentation::GeneralFunction; 1727 case DINode::FlagSingleInheritance: 1728 return PointerToMemberRepresentation::SingleInheritanceFunction; 1729 case DINode::FlagMultipleInheritance: 1730 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1731 case DINode::FlagVirtualInheritance: 1732 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1733 } 1734 } else { 1735 switch (Flags & DINode::FlagPtrToMemberRep) { 1736 case 0: 1737 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1738 : PointerToMemberRepresentation::GeneralData; 1739 case DINode::FlagSingleInheritance: 1740 return PointerToMemberRepresentation::SingleInheritanceData; 1741 case DINode::FlagMultipleInheritance: 1742 return PointerToMemberRepresentation::MultipleInheritanceData; 1743 case DINode::FlagVirtualInheritance: 1744 return PointerToMemberRepresentation::VirtualInheritanceData; 1745 } 1746 } 1747 llvm_unreachable("invalid ptr to member representation"); 1748 } 1749 1750 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1751 PointerOptions PO) { 1752 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1753 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1754 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1755 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1756 : PointerKind::Near32; 1757 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1758 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1759 : PointerMode::PointerToDataMember; 1760 1761 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1762 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1763 MemberPointerInfo MPI( 1764 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1765 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1766 return TypeTable.writeLeafType(PR); 1767 } 1768 1769 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1770 /// have a translation, use the NearC convention. 1771 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1772 switch (DwarfCC) { 1773 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1774 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1775 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1776 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1777 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1778 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1779 } 1780 return CallingConvention::NearC; 1781 } 1782 1783 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1784 ModifierOptions Mods = ModifierOptions::None; 1785 PointerOptions PO = PointerOptions::None; 1786 bool IsModifier = true; 1787 const DIType *BaseTy = Ty; 1788 while (IsModifier && BaseTy) { 1789 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1790 switch (BaseTy->getTag()) { 1791 case dwarf::DW_TAG_const_type: 1792 Mods |= ModifierOptions::Const; 1793 PO |= PointerOptions::Const; 1794 break; 1795 case dwarf::DW_TAG_volatile_type: 1796 Mods |= ModifierOptions::Volatile; 1797 PO |= PointerOptions::Volatile; 1798 break; 1799 case dwarf::DW_TAG_restrict_type: 1800 // Only pointer types be marked with __restrict. There is no known flag 1801 // for __restrict in LF_MODIFIER records. 1802 PO |= PointerOptions::Restrict; 1803 break; 1804 default: 1805 IsModifier = false; 1806 break; 1807 } 1808 if (IsModifier) 1809 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1810 } 1811 1812 // Check if the inner type will use an LF_POINTER record. If so, the 1813 // qualifiers will go in the LF_POINTER record. This comes up for types like 1814 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1815 // char *'. 1816 if (BaseTy) { 1817 switch (BaseTy->getTag()) { 1818 case dwarf::DW_TAG_pointer_type: 1819 case dwarf::DW_TAG_reference_type: 1820 case dwarf::DW_TAG_rvalue_reference_type: 1821 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1822 case dwarf::DW_TAG_ptr_to_member_type: 1823 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1824 default: 1825 break; 1826 } 1827 } 1828 1829 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1830 1831 // Return the base type index if there aren't any modifiers. For example, the 1832 // metadata could contain restrict wrappers around non-pointer types. 1833 if (Mods == ModifierOptions::None) 1834 return ModifiedTI; 1835 1836 ModifierRecord MR(ModifiedTI, Mods); 1837 return TypeTable.writeLeafType(MR); 1838 } 1839 1840 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1841 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1842 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1843 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1844 1845 // MSVC uses type none for variadic argument. 1846 if (ReturnAndArgTypeIndices.size() > 1 && 1847 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1848 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1849 } 1850 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1851 ArrayRef<TypeIndex> ArgTypeIndices = None; 1852 if (!ReturnAndArgTypeIndices.empty()) { 1853 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1854 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1855 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1856 } 1857 1858 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1859 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1860 1861 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1862 1863 FunctionOptions FO = getFunctionOptions(Ty); 1864 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1865 ArgListIndex); 1866 return TypeTable.writeLeafType(Procedure); 1867 } 1868 1869 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1870 const DIType *ClassTy, 1871 int ThisAdjustment, 1872 bool IsStaticMethod, 1873 FunctionOptions FO) { 1874 // Lower the containing class type. 1875 TypeIndex ClassType = getTypeIndex(ClassTy); 1876 1877 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1878 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1879 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1880 1881 // MSVC uses type none for variadic argument. 1882 if (ReturnAndArgTypeIndices.size() > 1 && 1883 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1884 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1885 } 1886 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1887 ArrayRef<TypeIndex> ArgTypeIndices = None; 1888 if (!ReturnAndArgTypeIndices.empty()) { 1889 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1890 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1891 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1892 } 1893 TypeIndex ThisTypeIndex; 1894 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1895 ThisTypeIndex = ArgTypeIndices.front(); 1896 ArgTypeIndices = ArgTypeIndices.drop_front(); 1897 } 1898 1899 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1900 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1901 1902 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1903 1904 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1905 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1906 return TypeTable.writeLeafType(MFR); 1907 } 1908 1909 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1910 unsigned VSlotCount = 1911 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1912 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1913 1914 VFTableShapeRecord VFTSR(Slots); 1915 return TypeTable.writeLeafType(VFTSR); 1916 } 1917 1918 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1919 switch (Flags & DINode::FlagAccessibility) { 1920 case DINode::FlagPrivate: return MemberAccess::Private; 1921 case DINode::FlagPublic: return MemberAccess::Public; 1922 case DINode::FlagProtected: return MemberAccess::Protected; 1923 case 0: 1924 // If there was no explicit access control, provide the default for the tag. 1925 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1926 : MemberAccess::Public; 1927 } 1928 llvm_unreachable("access flags are exclusive"); 1929 } 1930 1931 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1932 if (SP->isArtificial()) 1933 return MethodOptions::CompilerGenerated; 1934 1935 // FIXME: Handle other MethodOptions. 1936 1937 return MethodOptions::None; 1938 } 1939 1940 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1941 bool Introduced) { 1942 if (SP->getFlags() & DINode::FlagStaticMember) 1943 return MethodKind::Static; 1944 1945 switch (SP->getVirtuality()) { 1946 case dwarf::DW_VIRTUALITY_none: 1947 break; 1948 case dwarf::DW_VIRTUALITY_virtual: 1949 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1950 case dwarf::DW_VIRTUALITY_pure_virtual: 1951 return Introduced ? MethodKind::PureIntroducingVirtual 1952 : MethodKind::PureVirtual; 1953 default: 1954 llvm_unreachable("unhandled virtuality case"); 1955 } 1956 1957 return MethodKind::Vanilla; 1958 } 1959 1960 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1961 switch (Ty->getTag()) { 1962 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1963 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1964 } 1965 llvm_unreachable("unexpected tag"); 1966 } 1967 1968 /// Return ClassOptions that should be present on both the forward declaration 1969 /// and the defintion of a tag type. 1970 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1971 ClassOptions CO = ClassOptions::None; 1972 1973 // MSVC always sets this flag, even for local types. Clang doesn't always 1974 // appear to give every type a linkage name, which may be problematic for us. 1975 // FIXME: Investigate the consequences of not following them here. 1976 if (!Ty->getIdentifier().empty()) 1977 CO |= ClassOptions::HasUniqueName; 1978 1979 // Put the Nested flag on a type if it appears immediately inside a tag type. 1980 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1981 // here. That flag is only set on definitions, and not forward declarations. 1982 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1983 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1984 CO |= ClassOptions::Nested; 1985 1986 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1987 // type only when it has an immediate function scope. Clang never puts enums 1988 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1989 // always in function, class, or file scopes. 1990 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1991 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1992 CO |= ClassOptions::Scoped; 1993 } else { 1994 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1995 Scope = Scope->getScope().resolve()) { 1996 if (isa<DISubprogram>(Scope)) { 1997 CO |= ClassOptions::Scoped; 1998 break; 1999 } 2000 } 2001 } 2002 2003 return CO; 2004 } 2005 2006 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2007 switch (Ty->getTag()) { 2008 case dwarf::DW_TAG_class_type: 2009 case dwarf::DW_TAG_structure_type: 2010 case dwarf::DW_TAG_union_type: 2011 case dwarf::DW_TAG_enumeration_type: 2012 break; 2013 default: 2014 return; 2015 } 2016 2017 if (const auto *File = Ty->getFile()) { 2018 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2019 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2020 2021 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2022 TypeTable.writeLeafType(USLR); 2023 } 2024 } 2025 2026 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2027 ClassOptions CO = getCommonClassOptions(Ty); 2028 TypeIndex FTI; 2029 unsigned EnumeratorCount = 0; 2030 2031 if (Ty->isForwardDecl()) { 2032 CO |= ClassOptions::ForwardReference; 2033 } else { 2034 ContinuationRecordBuilder ContinuationBuilder; 2035 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2036 for (const DINode *Element : Ty->getElements()) { 2037 // We assume that the frontend provides all members in source declaration 2038 // order, which is what MSVC does. 2039 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2040 EnumeratorRecord ER(MemberAccess::Public, 2041 APSInt::getUnsigned(Enumerator->getValue()), 2042 Enumerator->getName()); 2043 ContinuationBuilder.writeMemberType(ER); 2044 EnumeratorCount++; 2045 } 2046 } 2047 FTI = TypeTable.insertRecord(ContinuationBuilder); 2048 } 2049 2050 std::string FullName = getFullyQualifiedName(Ty); 2051 2052 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2053 getTypeIndex(Ty->getBaseType())); 2054 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2055 2056 addUDTSrcLine(Ty, EnumTI); 2057 2058 return EnumTI; 2059 } 2060 2061 //===----------------------------------------------------------------------===// 2062 // ClassInfo 2063 //===----------------------------------------------------------------------===// 2064 2065 struct llvm::ClassInfo { 2066 struct MemberInfo { 2067 const DIDerivedType *MemberTypeNode; 2068 uint64_t BaseOffset; 2069 }; 2070 // [MemberInfo] 2071 using MemberList = std::vector<MemberInfo>; 2072 2073 using MethodsList = TinyPtrVector<const DISubprogram *>; 2074 // MethodName -> MethodsList 2075 using MethodsMap = MapVector<MDString *, MethodsList>; 2076 2077 /// Base classes. 2078 std::vector<const DIDerivedType *> Inheritance; 2079 2080 /// Direct members. 2081 MemberList Members; 2082 // Direct overloaded methods gathered by name. 2083 MethodsMap Methods; 2084 2085 TypeIndex VShapeTI; 2086 2087 std::vector<const DIType *> NestedTypes; 2088 }; 2089 2090 void CodeViewDebug::clear() { 2091 assert(CurFn == nullptr); 2092 FileIdMap.clear(); 2093 FnDebugInfo.clear(); 2094 FileToFilepathMap.clear(); 2095 LocalUDTs.clear(); 2096 GlobalUDTs.clear(); 2097 TypeIndices.clear(); 2098 CompleteTypeIndices.clear(); 2099 } 2100 2101 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2102 const DIDerivedType *DDTy) { 2103 if (!DDTy->getName().empty()) { 2104 Info.Members.push_back({DDTy, 0}); 2105 return; 2106 } 2107 2108 // An unnamed member may represent a nested struct or union. Attempt to 2109 // interpret the unnamed member as a DICompositeType possibly wrapped in 2110 // qualifier types. Add all the indirect fields to the current record if that 2111 // succeeds, and drop the member if that fails. 2112 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2113 uint64_t Offset = DDTy->getOffsetInBits(); 2114 const DIType *Ty = DDTy->getBaseType().resolve(); 2115 bool FullyResolved = false; 2116 while (!FullyResolved) { 2117 switch (Ty->getTag()) { 2118 case dwarf::DW_TAG_const_type: 2119 case dwarf::DW_TAG_volatile_type: 2120 // FIXME: we should apply the qualifier types to the indirect fields 2121 // rather than dropping them. 2122 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2123 break; 2124 default: 2125 FullyResolved = true; 2126 break; 2127 } 2128 } 2129 2130 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2131 if (!DCTy) 2132 return; 2133 2134 ClassInfo NestedInfo = collectClassInfo(DCTy); 2135 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2136 Info.Members.push_back( 2137 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2138 } 2139 2140 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2141 ClassInfo Info; 2142 // Add elements to structure type. 2143 DINodeArray Elements = Ty->getElements(); 2144 for (auto *Element : Elements) { 2145 // We assume that the frontend provides all members in source declaration 2146 // order, which is what MSVC does. 2147 if (!Element) 2148 continue; 2149 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2150 Info.Methods[SP->getRawName()].push_back(SP); 2151 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2152 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2153 collectMemberInfo(Info, DDTy); 2154 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2155 Info.Inheritance.push_back(DDTy); 2156 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2157 DDTy->getName() == "__vtbl_ptr_type") { 2158 Info.VShapeTI = getTypeIndex(DDTy); 2159 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2160 Info.NestedTypes.push_back(DDTy); 2161 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2162 // Ignore friend members. It appears that MSVC emitted info about 2163 // friends in the past, but modern versions do not. 2164 } 2165 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2166 Info.NestedTypes.push_back(Composite); 2167 } 2168 // Skip other unrecognized kinds of elements. 2169 } 2170 return Info; 2171 } 2172 2173 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2174 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2175 // if a complete type should be emitted instead of a forward reference. 2176 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2177 !Ty->isForwardDecl(); 2178 } 2179 2180 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2181 // Emit the complete type for unnamed structs. C++ classes with methods 2182 // which have a circular reference back to the class type are expected to 2183 // be named by the front-end and should not be "unnamed". C unnamed 2184 // structs should not have circular references. 2185 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2186 // If this unnamed complete type is already in the process of being defined 2187 // then the description of the type is malformed and cannot be emitted 2188 // into CodeView correctly so report a fatal error. 2189 auto I = CompleteTypeIndices.find(Ty); 2190 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2191 report_fatal_error("cannot debug circular reference to unnamed type"); 2192 return getCompleteTypeIndex(Ty); 2193 } 2194 2195 // First, construct the forward decl. Don't look into Ty to compute the 2196 // forward decl options, since it might not be available in all TUs. 2197 TypeRecordKind Kind = getRecordKind(Ty); 2198 ClassOptions CO = 2199 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2200 std::string FullName = getFullyQualifiedName(Ty); 2201 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2202 FullName, Ty->getIdentifier()); 2203 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2204 if (!Ty->isForwardDecl()) 2205 DeferredCompleteTypes.push_back(Ty); 2206 return FwdDeclTI; 2207 } 2208 2209 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2210 // Construct the field list and complete type record. 2211 TypeRecordKind Kind = getRecordKind(Ty); 2212 ClassOptions CO = getCommonClassOptions(Ty); 2213 TypeIndex FieldTI; 2214 TypeIndex VShapeTI; 2215 unsigned FieldCount; 2216 bool ContainsNestedClass; 2217 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2218 lowerRecordFieldList(Ty); 2219 2220 if (ContainsNestedClass) 2221 CO |= ClassOptions::ContainsNestedClass; 2222 2223 std::string FullName = getFullyQualifiedName(Ty); 2224 2225 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2226 2227 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2228 SizeInBytes, FullName, Ty->getIdentifier()); 2229 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2230 2231 addUDTSrcLine(Ty, ClassTI); 2232 2233 addToUDTs(Ty); 2234 2235 return ClassTI; 2236 } 2237 2238 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2239 // Emit the complete type for unnamed unions. 2240 if (shouldAlwaysEmitCompleteClassType(Ty)) 2241 return getCompleteTypeIndex(Ty); 2242 2243 ClassOptions CO = 2244 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2245 std::string FullName = getFullyQualifiedName(Ty); 2246 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2247 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2248 if (!Ty->isForwardDecl()) 2249 DeferredCompleteTypes.push_back(Ty); 2250 return FwdDeclTI; 2251 } 2252 2253 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2254 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2255 TypeIndex FieldTI; 2256 unsigned FieldCount; 2257 bool ContainsNestedClass; 2258 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2259 lowerRecordFieldList(Ty); 2260 2261 if (ContainsNestedClass) 2262 CO |= ClassOptions::ContainsNestedClass; 2263 2264 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2265 std::string FullName = getFullyQualifiedName(Ty); 2266 2267 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2268 Ty->getIdentifier()); 2269 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2270 2271 addUDTSrcLine(Ty, UnionTI); 2272 2273 addToUDTs(Ty); 2274 2275 return UnionTI; 2276 } 2277 2278 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2279 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2280 // Manually count members. MSVC appears to count everything that generates a 2281 // field list record. Each individual overload in a method overload group 2282 // contributes to this count, even though the overload group is a single field 2283 // list record. 2284 unsigned MemberCount = 0; 2285 ClassInfo Info = collectClassInfo(Ty); 2286 ContinuationRecordBuilder ContinuationBuilder; 2287 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2288 2289 // Create base classes. 2290 for (const DIDerivedType *I : Info.Inheritance) { 2291 if (I->getFlags() & DINode::FlagVirtual) { 2292 // Virtual base. 2293 unsigned VBPtrOffset = I->getVBPtrOffset(); 2294 // FIXME: Despite the accessor name, the offset is really in bytes. 2295 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2296 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2297 ? TypeRecordKind::IndirectVirtualBaseClass 2298 : TypeRecordKind::VirtualBaseClass; 2299 VirtualBaseClassRecord VBCR( 2300 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2301 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2302 VBTableIndex); 2303 2304 ContinuationBuilder.writeMemberType(VBCR); 2305 MemberCount++; 2306 } else { 2307 assert(I->getOffsetInBits() % 8 == 0 && 2308 "bases must be on byte boundaries"); 2309 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2310 getTypeIndex(I->getBaseType()), 2311 I->getOffsetInBits() / 8); 2312 ContinuationBuilder.writeMemberType(BCR); 2313 MemberCount++; 2314 } 2315 } 2316 2317 // Create members. 2318 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2319 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2320 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2321 StringRef MemberName = Member->getName(); 2322 MemberAccess Access = 2323 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2324 2325 if (Member->isStaticMember()) { 2326 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2327 ContinuationBuilder.writeMemberType(SDMR); 2328 MemberCount++; 2329 continue; 2330 } 2331 2332 // Virtual function pointer member. 2333 if ((Member->getFlags() & DINode::FlagArtificial) && 2334 Member->getName().startswith("_vptr$")) { 2335 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2336 ContinuationBuilder.writeMemberType(VFPR); 2337 MemberCount++; 2338 continue; 2339 } 2340 2341 // Data member. 2342 uint64_t MemberOffsetInBits = 2343 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2344 if (Member->isBitField()) { 2345 uint64_t StartBitOffset = MemberOffsetInBits; 2346 if (const auto *CI = 2347 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2348 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2349 } 2350 StartBitOffset -= MemberOffsetInBits; 2351 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2352 StartBitOffset); 2353 MemberBaseType = TypeTable.writeLeafType(BFR); 2354 } 2355 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2356 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2357 MemberName); 2358 ContinuationBuilder.writeMemberType(DMR); 2359 MemberCount++; 2360 } 2361 2362 // Create methods 2363 for (auto &MethodItr : Info.Methods) { 2364 StringRef Name = MethodItr.first->getString(); 2365 2366 std::vector<OneMethodRecord> Methods; 2367 for (const DISubprogram *SP : MethodItr.second) { 2368 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2369 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2370 2371 unsigned VFTableOffset = -1; 2372 if (Introduced) 2373 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2374 2375 Methods.push_back(OneMethodRecord( 2376 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2377 translateMethodKindFlags(SP, Introduced), 2378 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2379 MemberCount++; 2380 } 2381 assert(!Methods.empty() && "Empty methods map entry"); 2382 if (Methods.size() == 1) 2383 ContinuationBuilder.writeMemberType(Methods[0]); 2384 else { 2385 // FIXME: Make this use its own ContinuationBuilder so that 2386 // MethodOverloadList can be split correctly. 2387 MethodOverloadListRecord MOLR(Methods); 2388 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2389 2390 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2391 ContinuationBuilder.writeMemberType(OMR); 2392 } 2393 } 2394 2395 // Create nested classes. 2396 for (const DIType *Nested : Info.NestedTypes) { 2397 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2398 ContinuationBuilder.writeMemberType(R); 2399 MemberCount++; 2400 } 2401 2402 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2403 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2404 !Info.NestedTypes.empty()); 2405 } 2406 2407 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2408 if (!VBPType.getIndex()) { 2409 // Make a 'const int *' type. 2410 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2411 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2412 2413 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2414 : PointerKind::Near32; 2415 PointerMode PM = PointerMode::Pointer; 2416 PointerOptions PO = PointerOptions::None; 2417 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2418 VBPType = TypeTable.writeLeafType(PR); 2419 } 2420 2421 return VBPType; 2422 } 2423 2424 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2425 const DIType *Ty = TypeRef.resolve(); 2426 const DIType *ClassTy = ClassTyRef.resolve(); 2427 2428 // The null DIType is the void type. Don't try to hash it. 2429 if (!Ty) 2430 return TypeIndex::Void(); 2431 2432 // Check if we've already translated this type. Don't try to do a 2433 // get-or-create style insertion that caches the hash lookup across the 2434 // lowerType call. It will update the TypeIndices map. 2435 auto I = TypeIndices.find({Ty, ClassTy}); 2436 if (I != TypeIndices.end()) 2437 return I->second; 2438 2439 TypeLoweringScope S(*this); 2440 TypeIndex TI = lowerType(Ty, ClassTy); 2441 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2442 } 2443 2444 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2445 DIType *Ty = TypeRef.resolve(); 2446 PointerRecord PR(getTypeIndex(Ty), 2447 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2448 : PointerKind::Near32, 2449 PointerMode::LValueReference, PointerOptions::None, 2450 Ty->getSizeInBits() / 8); 2451 return TypeTable.writeLeafType(PR); 2452 } 2453 2454 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2455 const DIType *Ty = TypeRef.resolve(); 2456 2457 // The null DIType is the void type. Don't try to hash it. 2458 if (!Ty) 2459 return TypeIndex::Void(); 2460 2461 // If this is a non-record type, the complete type index is the same as the 2462 // normal type index. Just call getTypeIndex. 2463 switch (Ty->getTag()) { 2464 case dwarf::DW_TAG_class_type: 2465 case dwarf::DW_TAG_structure_type: 2466 case dwarf::DW_TAG_union_type: 2467 break; 2468 default: 2469 return getTypeIndex(Ty); 2470 } 2471 2472 // Check if we've already translated the complete record type. 2473 const auto *CTy = cast<DICompositeType>(Ty); 2474 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2475 if (!InsertResult.second) 2476 return InsertResult.first->second; 2477 2478 TypeLoweringScope S(*this); 2479 2480 // Make sure the forward declaration is emitted first. It's unclear if this 2481 // is necessary, but MSVC does it, and we should follow suit until we can show 2482 // otherwise. 2483 // We only emit a forward declaration for named types. 2484 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2485 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2486 2487 // Just use the forward decl if we don't have complete type info. This 2488 // might happen if the frontend is using modules and expects the complete 2489 // definition to be emitted elsewhere. 2490 if (CTy->isForwardDecl()) 2491 return FwdDeclTI; 2492 } 2493 2494 TypeIndex TI; 2495 switch (CTy->getTag()) { 2496 case dwarf::DW_TAG_class_type: 2497 case dwarf::DW_TAG_structure_type: 2498 TI = lowerCompleteTypeClass(CTy); 2499 break; 2500 case dwarf::DW_TAG_union_type: 2501 TI = lowerCompleteTypeUnion(CTy); 2502 break; 2503 default: 2504 llvm_unreachable("not a record"); 2505 } 2506 2507 // Update the type index associated with this CompositeType. This cannot 2508 // use the 'InsertResult' iterator above because it is potentially 2509 // invalidated by map insertions which can occur while lowering the class 2510 // type above. 2511 CompleteTypeIndices[CTy] = TI; 2512 return TI; 2513 } 2514 2515 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2516 /// and do this until fixpoint, as each complete record type typically 2517 /// references 2518 /// many other record types. 2519 void CodeViewDebug::emitDeferredCompleteTypes() { 2520 SmallVector<const DICompositeType *, 4> TypesToEmit; 2521 while (!DeferredCompleteTypes.empty()) { 2522 std::swap(DeferredCompleteTypes, TypesToEmit); 2523 for (const DICompositeType *RecordTy : TypesToEmit) 2524 getCompleteTypeIndex(RecordTy); 2525 TypesToEmit.clear(); 2526 } 2527 } 2528 2529 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2530 ArrayRef<LocalVariable> Locals) { 2531 // Get the sorted list of parameters and emit them first. 2532 SmallVector<const LocalVariable *, 6> Params; 2533 for (const LocalVariable &L : Locals) 2534 if (L.DIVar->isParameter()) 2535 Params.push_back(&L); 2536 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2537 return L->DIVar->getArg() < R->DIVar->getArg(); 2538 }); 2539 for (const LocalVariable *L : Params) 2540 emitLocalVariable(FI, *L); 2541 2542 // Next emit all non-parameters in the order that we found them. 2543 for (const LocalVariable &L : Locals) 2544 if (!L.DIVar->isParameter()) 2545 emitLocalVariable(FI, L); 2546 } 2547 2548 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2549 /// structs composed of them. 2550 template <typename T> 2551 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2552 SymbolKind SymKind, const T &DefRangeHeader) { 2553 BytePrefix.resize(2 + sizeof(T)); 2554 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2555 memcpy(&BytePrefix[0], &SymKindLE, 2); 2556 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2557 } 2558 2559 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2560 const LocalVariable &Var) { 2561 // LocalSym record, see SymbolRecord.h for more info. 2562 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2563 *LocalEnd = MMI->getContext().createTempSymbol(); 2564 OS.AddComment("Record length"); 2565 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2566 OS.EmitLabel(LocalBegin); 2567 2568 OS.AddComment("Record kind: S_LOCAL"); 2569 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2570 2571 LocalSymFlags Flags = LocalSymFlags::None; 2572 if (Var.DIVar->isParameter()) 2573 Flags |= LocalSymFlags::IsParameter; 2574 if (Var.DefRanges.empty()) 2575 Flags |= LocalSymFlags::IsOptimizedOut; 2576 2577 OS.AddComment("TypeIndex"); 2578 TypeIndex TI = Var.UseReferenceType 2579 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2580 : getCompleteTypeIndex(Var.DIVar->getType()); 2581 OS.EmitIntValue(TI.getIndex(), 4); 2582 OS.AddComment("Flags"); 2583 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2584 // Truncate the name so we won't overflow the record length field. 2585 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2586 OS.EmitLabel(LocalEnd); 2587 2588 // Calculate the on disk prefix of the appropriate def range record. The 2589 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2590 // should be big enough to hold all forms without memory allocation. 2591 SmallString<20> BytePrefix; 2592 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2593 BytePrefix.clear(); 2594 if (DefRange.InMemory) { 2595 int Offset = DefRange.DataOffset; 2596 unsigned Reg = DefRange.CVRegister; 2597 2598 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2599 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2600 // instead. In simple cases, $T0 will be the CFA. 2601 if (RegisterId(Reg) == RegisterId::ESP) { 2602 Reg = unsigned(RegisterId::VFRAME); 2603 Offset -= FI.FrameSize; 2604 2605 // If the frame requires realignment, VFRAME will be ESP after it is 2606 // aligned. We have to remove the ESP adjustments made to push CSRs and 2607 // EBP. EBP is not included in CSRSize. 2608 if (FI.HasStackRealignment) 2609 Offset += FI.CSRSize + 4; 2610 } 2611 2612 // If we can use the chosen frame pointer for the frame and this isn't a 2613 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2614 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2615 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2616 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2617 (bool(Flags & LocalSymFlags::IsParameter) 2618 ? (EncFP == FI.EncodedParamFramePtrReg) 2619 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2620 little32_t FPOffset = little32_t(Offset); 2621 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2622 } else { 2623 uint16_t RegRelFlags = 0; 2624 if (DefRange.IsSubfield) { 2625 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2626 (DefRange.StructOffset 2627 << DefRangeRegisterRelSym::OffsetInParentShift); 2628 } 2629 DefRangeRegisterRelSym::Header DRHdr; 2630 DRHdr.Register = Reg; 2631 DRHdr.Flags = RegRelFlags; 2632 DRHdr.BasePointerOffset = Offset; 2633 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2634 } 2635 } else { 2636 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2637 if (DefRange.IsSubfield) { 2638 DefRangeSubfieldRegisterSym::Header DRHdr; 2639 DRHdr.Register = DefRange.CVRegister; 2640 DRHdr.MayHaveNoName = 0; 2641 DRHdr.OffsetInParent = DefRange.StructOffset; 2642 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2643 } else { 2644 DefRangeRegisterSym::Header DRHdr; 2645 DRHdr.Register = DefRange.CVRegister; 2646 DRHdr.MayHaveNoName = 0; 2647 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2648 } 2649 } 2650 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2651 } 2652 } 2653 2654 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2655 const FunctionInfo& FI) { 2656 for (LexicalBlock *Block : Blocks) 2657 emitLexicalBlock(*Block, FI); 2658 } 2659 2660 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2661 /// lexical block scope. 2662 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2663 const FunctionInfo& FI) { 2664 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2665 *RecordEnd = MMI->getContext().createTempSymbol(); 2666 2667 // Lexical block symbol record. 2668 OS.AddComment("Record length"); 2669 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2670 OS.EmitLabel(RecordBegin); 2671 OS.AddComment("Record kind: S_BLOCK32"); 2672 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2673 OS.AddComment("PtrParent"); 2674 OS.EmitIntValue(0, 4); // PtrParent 2675 OS.AddComment("PtrEnd"); 2676 OS.EmitIntValue(0, 4); // PtrEnd 2677 OS.AddComment("Code size"); 2678 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2679 OS.AddComment("Function section relative address"); 2680 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2681 OS.AddComment("Function section index"); 2682 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2683 OS.AddComment("Lexical block name"); 2684 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2685 OS.EmitLabel(RecordEnd); 2686 2687 // Emit variables local to this lexical block. 2688 emitLocalVariableList(FI, Block.Locals); 2689 2690 // Emit lexical blocks contained within this block. 2691 emitLexicalBlockList(Block.Children, FI); 2692 2693 // Close the lexical block scope. 2694 OS.AddComment("Record length"); 2695 OS.EmitIntValue(2, 2); // Record Length 2696 OS.AddComment("Record kind: S_END"); 2697 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2698 } 2699 2700 /// Convenience routine for collecting lexical block information for a list 2701 /// of lexical scopes. 2702 void CodeViewDebug::collectLexicalBlockInfo( 2703 SmallVectorImpl<LexicalScope *> &Scopes, 2704 SmallVectorImpl<LexicalBlock *> &Blocks, 2705 SmallVectorImpl<LocalVariable> &Locals) { 2706 for (LexicalScope *Scope : Scopes) 2707 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2708 } 2709 2710 /// Populate the lexical blocks and local variable lists of the parent with 2711 /// information about the specified lexical scope. 2712 void CodeViewDebug::collectLexicalBlockInfo( 2713 LexicalScope &Scope, 2714 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2715 SmallVectorImpl<LocalVariable> &ParentLocals) { 2716 if (Scope.isAbstractScope()) 2717 return; 2718 2719 auto LocalsIter = ScopeVariables.find(&Scope); 2720 if (LocalsIter == ScopeVariables.end()) { 2721 // This scope does not contain variables and can be eliminated. 2722 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2723 return; 2724 } 2725 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2726 2727 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2728 if (!DILB) { 2729 // This scope is not a lexical block and can be eliminated, but keep any 2730 // local variables it contains. 2731 ParentLocals.append(Locals.begin(), Locals.end()); 2732 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2733 return; 2734 } 2735 2736 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2737 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2738 // This lexical block scope has too many address ranges to represent in the 2739 // current CodeView format or does not have a valid address range. 2740 // Eliminate this lexical scope and promote any locals it contains to the 2741 // parent scope. 2742 // 2743 // For lexical scopes with multiple address ranges you may be tempted to 2744 // construct a single range covering every instruction where the block is 2745 // live and everything in between. Unfortunately, Visual Studio only 2746 // displays variables from the first matching lexical block scope. If the 2747 // first lexical block contains exception handling code or cold code which 2748 // is moved to the bottom of the routine creating a single range covering 2749 // nearly the entire routine, then it will hide all other lexical blocks 2750 // and the variables they contain. 2751 // 2752 ParentLocals.append(Locals.begin(), Locals.end()); 2753 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2754 return; 2755 } 2756 2757 // Create a new CodeView lexical block for this lexical scope. If we've 2758 // seen this DILexicalBlock before then the scope tree is malformed and 2759 // we can handle this gracefully by not processing it a second time. 2760 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2761 if (!BlockInsertion.second) 2762 return; 2763 2764 // Create a lexical block containing the local variables and collect the 2765 // the lexical block information for the children. 2766 const InsnRange &Range = Ranges.front(); 2767 assert(Range.first && Range.second); 2768 LexicalBlock &Block = BlockInsertion.first->second; 2769 Block.Begin = getLabelBeforeInsn(Range.first); 2770 Block.End = getLabelAfterInsn(Range.second); 2771 assert(Block.Begin && "missing label for scope begin"); 2772 assert(Block.End && "missing label for scope end"); 2773 Block.Name = DILB->getName(); 2774 Block.Locals = std::move(Locals); 2775 ParentBlocks.push_back(&Block); 2776 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2777 } 2778 2779 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2780 const Function &GV = MF->getFunction(); 2781 assert(FnDebugInfo.count(&GV)); 2782 assert(CurFn == FnDebugInfo[&GV].get()); 2783 2784 collectVariableInfo(GV.getSubprogram()); 2785 2786 // Build the lexical block structure to emit for this routine. 2787 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2788 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2789 2790 // Clear the scope and variable information from the map which will not be 2791 // valid after we have finished processing this routine. This also prepares 2792 // the map for the subsequent routine. 2793 ScopeVariables.clear(); 2794 2795 // Don't emit anything if we don't have any line tables. 2796 // Thunks are compiler-generated and probably won't have source correlation. 2797 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2798 FnDebugInfo.erase(&GV); 2799 CurFn = nullptr; 2800 return; 2801 } 2802 2803 CurFn->Annotations = MF->getCodeViewAnnotations(); 2804 2805 CurFn->End = Asm->getFunctionEnd(); 2806 2807 CurFn = nullptr; 2808 } 2809 2810 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2811 DebugHandlerBase::beginInstruction(MI); 2812 2813 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2814 if (!Asm || !CurFn || MI->isDebugInstr() || 2815 MI->getFlag(MachineInstr::FrameSetup)) 2816 return; 2817 2818 // If the first instruction of a new MBB has no location, find the first 2819 // instruction with a location and use that. 2820 DebugLoc DL = MI->getDebugLoc(); 2821 if (!DL && MI->getParent() != PrevInstBB) { 2822 for (const auto &NextMI : *MI->getParent()) { 2823 if (NextMI.isDebugInstr()) 2824 continue; 2825 DL = NextMI.getDebugLoc(); 2826 if (DL) 2827 break; 2828 } 2829 } 2830 PrevInstBB = MI->getParent(); 2831 2832 // If we still don't have a debug location, don't record a location. 2833 if (!DL) 2834 return; 2835 2836 maybeRecordLocation(DL, Asm->MF); 2837 } 2838 2839 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2840 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2841 *EndLabel = MMI->getContext().createTempSymbol(); 2842 OS.EmitIntValue(unsigned(Kind), 4); 2843 OS.AddComment("Subsection size"); 2844 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2845 OS.EmitLabel(BeginLabel); 2846 return EndLabel; 2847 } 2848 2849 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2850 OS.EmitLabel(EndLabel); 2851 // Every subsection must be aligned to a 4-byte boundary. 2852 OS.EmitValueToAlignment(4); 2853 } 2854 2855 void CodeViewDebug::emitDebugInfoForUDTs( 2856 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2857 for (const auto &UDT : UDTs) { 2858 const DIType *T = UDT.second; 2859 assert(shouldEmitUdt(T)); 2860 2861 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2862 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2863 OS.AddComment("Record length"); 2864 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2865 OS.EmitLabel(UDTRecordBegin); 2866 2867 OS.AddComment("Record kind: S_UDT"); 2868 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2869 2870 OS.AddComment("Type"); 2871 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2872 2873 emitNullTerminatedSymbolName(OS, UDT.first); 2874 OS.EmitLabel(UDTRecordEnd); 2875 } 2876 } 2877 2878 void CodeViewDebug::emitDebugInfoForGlobals() { 2879 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2880 GlobalMap; 2881 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2882 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2883 GV.getDebugInfo(GVEs); 2884 for (const auto *GVE : GVEs) 2885 GlobalMap[GVE] = &GV; 2886 } 2887 2888 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2889 for (const MDNode *Node : CUs->operands()) { 2890 const auto *CU = cast<DICompileUnit>(Node); 2891 2892 // First, emit all globals that are not in a comdat in a single symbol 2893 // substream. MSVC doesn't like it if the substream is empty, so only open 2894 // it if we have at least one global to emit. 2895 switchToDebugSectionForSymbol(nullptr); 2896 MCSymbol *EndLabel = nullptr; 2897 for (const auto *GVE : CU->getGlobalVariables()) { 2898 if (const auto *GV = GlobalMap.lookup(GVE)) 2899 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2900 if (!EndLabel) { 2901 OS.AddComment("Symbol subsection for globals"); 2902 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2903 } 2904 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2905 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2906 } 2907 } 2908 if (EndLabel) 2909 endCVSubsection(EndLabel); 2910 2911 // Second, emit each global that is in a comdat into its own .debug$S 2912 // section along with its own symbol substream. 2913 for (const auto *GVE : CU->getGlobalVariables()) { 2914 if (const auto *GV = GlobalMap.lookup(GVE)) { 2915 if (GV->hasComdat()) { 2916 MCSymbol *GVSym = Asm->getSymbol(GV); 2917 OS.AddComment("Symbol subsection for " + 2918 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2919 switchToDebugSectionForSymbol(GVSym); 2920 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2921 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2922 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2923 endCVSubsection(EndLabel); 2924 } 2925 } 2926 } 2927 } 2928 } 2929 2930 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2931 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2932 for (const MDNode *Node : CUs->operands()) { 2933 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2934 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2935 getTypeIndex(RT); 2936 // FIXME: Add to global/local DTU list. 2937 } 2938 } 2939 } 2940 } 2941 2942 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2943 const GlobalVariable *GV, 2944 MCSymbol *GVSym) { 2945 // DataSym record, see SymbolRecord.h for more info. 2946 // FIXME: Thread local data, etc 2947 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2948 *DataEnd = MMI->getContext().createTempSymbol(); 2949 const unsigned FixedLengthOfThisRecord = 12; 2950 OS.AddComment("Record length"); 2951 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2952 OS.EmitLabel(DataBegin); 2953 if (DIGV->isLocalToUnit()) { 2954 if (GV->isThreadLocal()) { 2955 OS.AddComment("Record kind: S_LTHREAD32"); 2956 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2957 } else { 2958 OS.AddComment("Record kind: S_LDATA32"); 2959 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2960 } 2961 } else { 2962 if (GV->isThreadLocal()) { 2963 OS.AddComment("Record kind: S_GTHREAD32"); 2964 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2965 } else { 2966 OS.AddComment("Record kind: S_GDATA32"); 2967 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2968 } 2969 } 2970 OS.AddComment("Type"); 2971 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2972 OS.AddComment("DataOffset"); 2973 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2974 OS.AddComment("Segment"); 2975 OS.EmitCOFFSectionIndex(GVSym); 2976 OS.AddComment("Name"); 2977 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2978 OS.EmitLabel(DataEnd); 2979 } 2980