1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/TinyPtrVector.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/BinaryFormat/COFF.h" 25 #include "llvm/BinaryFormat/Dwarf.h" 26 #include "llvm/CodeGen/AsmPrinter.h" 27 #include "llvm/CodeGen/LexicalScopes.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/TargetFrameLowering.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/Config/llvm-config.h" 37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 41 #include "llvm/DebugInfo/CodeView/EnumTables.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/GlobalValue.h" 53 #include "llvm/IR/GlobalVariable.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/MC/MCAsmInfo.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCSectionCOFF.h" 59 #include "llvm/MC/MCStreamer.h" 60 #include "llvm/MC/MCSymbol.h" 61 #include "llvm/Support/BinaryByteStream.h" 62 #include "llvm/Support/BinaryStreamReader.h" 63 #include "llvm/Support/BinaryStreamWriter.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/FormatVariadic.h" 70 #include "llvm/Support/Path.h" 71 #include "llvm/Support/SMLoc.h" 72 #include "llvm/Support/ScopedPrinter.h" 73 #include "llvm/Target/TargetLoweringObjectFile.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <iterator> 80 #include <limits> 81 82 using namespace llvm; 83 using namespace llvm::codeview; 84 85 namespace { 86 class CVMCAdapter : public CodeViewRecordStreamer { 87 public: 88 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 89 : OS(&OS), TypeTable(TypeTable) {} 90 91 void emitBytes(StringRef Data) override { OS->emitBytes(Data); } 92 93 void emitIntValue(uint64_t Value, unsigned Size) override { 94 OS->emitIntValueInHex(Value, Size); 95 } 96 97 void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); } 98 99 void AddComment(const Twine &T) override { OS->AddComment(T); } 100 101 void AddRawComment(const Twine &T) override { OS->emitRawComment(T); } 102 103 bool isVerboseAsm() override { return OS->isVerboseAsm(); } 104 105 std::string getTypeName(TypeIndex TI) override { 106 std::string TypeName; 107 if (!TI.isNoneType()) { 108 if (TI.isSimple()) 109 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 110 else 111 TypeName = std::string(TypeTable.getTypeName(TI)); 112 } 113 return TypeName; 114 } 115 116 private: 117 MCStreamer *OS = nullptr; 118 TypeCollection &TypeTable; 119 }; 120 } // namespace 121 122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 123 switch (Type) { 124 case Triple::ArchType::x86: 125 return CPUType::Pentium3; 126 case Triple::ArchType::x86_64: 127 return CPUType::X64; 128 case Triple::ArchType::thumb: 129 return CPUType::Thumb; 130 case Triple::ArchType::aarch64: 131 return CPUType::ARM64; 132 default: 133 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 134 } 135 } 136 137 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 138 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 139 // If module doesn't have named metadata anchors or COFF debug section 140 // is not available, skip any debug info related stuff. 141 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 142 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 143 Asm = nullptr; 144 MMI->setDebugInfoAvailability(false); 145 return; 146 } 147 // Tell MMI that we have debug info. 148 MMI->setDebugInfoAvailability(true); 149 150 TheCPU = 151 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 152 153 collectGlobalVariableInfo(); 154 155 // Check if we should emit type record hashes. 156 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 157 MMI->getModule()->getModuleFlag("CodeViewGHash")); 158 EmitDebugGlobalHashes = GH && !GH->isZero(); 159 } 160 161 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 162 std::string &Filepath = FileToFilepathMap[File]; 163 if (!Filepath.empty()) 164 return Filepath; 165 166 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 167 168 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 169 // it textually because one of the path components could be a symlink. 170 if (Dir.startswith("/") || Filename.startswith("/")) { 171 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 172 return Filename; 173 Filepath = std::string(Dir); 174 if (Dir.back() != '/') 175 Filepath += '/'; 176 Filepath += Filename; 177 return Filepath; 178 } 179 180 // Clang emits directory and relative filename info into the IR, but CodeView 181 // operates on full paths. We could change Clang to emit full paths too, but 182 // that would increase the IR size and probably not needed for other users. 183 // For now, just concatenate and canonicalize the path here. 184 if (Filename.find(':') == 1) 185 Filepath = std::string(Filename); 186 else 187 Filepath = (Dir + "\\" + Filename).str(); 188 189 // Canonicalize the path. We have to do it textually because we may no longer 190 // have access the file in the filesystem. 191 // First, replace all slashes with backslashes. 192 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 193 194 // Remove all "\.\" with "\". 195 size_t Cursor = 0; 196 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 197 Filepath.erase(Cursor, 2); 198 199 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 200 // path should be well-formatted, e.g. start with a drive letter, etc. 201 Cursor = 0; 202 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 203 // Something's wrong if the path starts with "\..\", abort. 204 if (Cursor == 0) 205 break; 206 207 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 208 if (PrevSlash == std::string::npos) 209 // Something's wrong, abort. 210 break; 211 212 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 213 // The next ".." might be following the one we've just erased. 214 Cursor = PrevSlash; 215 } 216 217 // Remove all duplicate backslashes. 218 Cursor = 0; 219 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 220 Filepath.erase(Cursor, 1); 221 222 return Filepath; 223 } 224 225 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 226 StringRef FullPath = getFullFilepath(F); 227 unsigned NextId = FileIdMap.size() + 1; 228 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 229 if (Insertion.second) { 230 // We have to compute the full filepath and emit a .cv_file directive. 231 ArrayRef<uint8_t> ChecksumAsBytes; 232 FileChecksumKind CSKind = FileChecksumKind::None; 233 if (F->getChecksum()) { 234 std::string Checksum = fromHex(F->getChecksum()->Value); 235 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 236 memcpy(CKMem, Checksum.data(), Checksum.size()); 237 ChecksumAsBytes = ArrayRef<uint8_t>( 238 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 239 switch (F->getChecksum()->Kind) { 240 case DIFile::CSK_MD5: 241 CSKind = FileChecksumKind::MD5; 242 break; 243 case DIFile::CSK_SHA1: 244 CSKind = FileChecksumKind::SHA1; 245 break; 246 case DIFile::CSK_SHA256: 247 CSKind = FileChecksumKind::SHA256; 248 break; 249 } 250 } 251 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 252 static_cast<unsigned>(CSKind)); 253 (void)Success; 254 assert(Success && ".cv_file directive failed"); 255 } 256 return Insertion.first->second; 257 } 258 259 CodeViewDebug::InlineSite & 260 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 261 const DISubprogram *Inlinee) { 262 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 263 InlineSite *Site = &SiteInsertion.first->second; 264 if (SiteInsertion.second) { 265 unsigned ParentFuncId = CurFn->FuncId; 266 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 267 ParentFuncId = 268 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 269 .SiteFuncId; 270 271 Site->SiteFuncId = NextFuncId++; 272 OS.EmitCVInlineSiteIdDirective( 273 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 274 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 275 Site->Inlinee = Inlinee; 276 InlinedSubprograms.insert(Inlinee); 277 getFuncIdForSubprogram(Inlinee); 278 } 279 return *Site; 280 } 281 282 static StringRef getPrettyScopeName(const DIScope *Scope) { 283 StringRef ScopeName = Scope->getName(); 284 if (!ScopeName.empty()) 285 return ScopeName; 286 287 switch (Scope->getTag()) { 288 case dwarf::DW_TAG_enumeration_type: 289 case dwarf::DW_TAG_class_type: 290 case dwarf::DW_TAG_structure_type: 291 case dwarf::DW_TAG_union_type: 292 return "<unnamed-tag>"; 293 case dwarf::DW_TAG_namespace: 294 return "`anonymous namespace'"; 295 } 296 297 return StringRef(); 298 } 299 300 const DISubprogram *CodeViewDebug::collectParentScopeNames( 301 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 302 const DISubprogram *ClosestSubprogram = nullptr; 303 while (Scope != nullptr) { 304 if (ClosestSubprogram == nullptr) 305 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 306 307 // If a type appears in a scope chain, make sure it gets emitted. The 308 // frontend will be responsible for deciding if this should be a forward 309 // declaration or a complete type. 310 if (const auto *Ty = dyn_cast<DICompositeType>(Scope)) 311 DeferredCompleteTypes.push_back(Ty); 312 313 StringRef ScopeName = getPrettyScopeName(Scope); 314 if (!ScopeName.empty()) 315 QualifiedNameComponents.push_back(ScopeName); 316 Scope = Scope->getScope(); 317 } 318 return ClosestSubprogram; 319 } 320 321 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents, 322 StringRef TypeName) { 323 std::string FullyQualifiedName; 324 for (StringRef QualifiedNameComponent : 325 llvm::reverse(QualifiedNameComponents)) { 326 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 327 FullyQualifiedName.append("::"); 328 } 329 FullyQualifiedName.append(std::string(TypeName)); 330 return FullyQualifiedName; 331 } 332 333 struct CodeViewDebug::TypeLoweringScope { 334 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 335 ~TypeLoweringScope() { 336 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 337 // inner TypeLoweringScopes don't attempt to emit deferred types. 338 if (CVD.TypeEmissionLevel == 1) 339 CVD.emitDeferredCompleteTypes(); 340 --CVD.TypeEmissionLevel; 341 } 342 CodeViewDebug &CVD; 343 }; 344 345 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope, 346 StringRef Name) { 347 // Ensure types in the scope chain are emitted as soon as possible. 348 // This can create otherwise a situation where S_UDTs are emitted while 349 // looping in emitDebugInfoForUDTs. 350 TypeLoweringScope S(*this); 351 SmallVector<StringRef, 5> QualifiedNameComponents; 352 collectParentScopeNames(Scope, QualifiedNameComponents); 353 return formatNestedName(QualifiedNameComponents, Name); 354 } 355 356 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) { 357 const DIScope *Scope = Ty->getScope(); 358 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 359 } 360 361 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 362 // No scope means global scope and that uses the zero index. 363 if (!Scope || isa<DIFile>(Scope)) 364 return TypeIndex(); 365 366 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 367 368 // Check if we've already translated this scope. 369 auto I = TypeIndices.find({Scope, nullptr}); 370 if (I != TypeIndices.end()) 371 return I->second; 372 373 // Build the fully qualified name of the scope. 374 std::string ScopeName = getFullyQualifiedName(Scope); 375 StringIdRecord SID(TypeIndex(), ScopeName); 376 auto TI = TypeTable.writeLeafType(SID); 377 return recordTypeIndexForDINode(Scope, TI); 378 } 379 380 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 381 assert(SP); 382 383 // Check if we've already translated this subprogram. 384 auto I = TypeIndices.find({SP, nullptr}); 385 if (I != TypeIndices.end()) 386 return I->second; 387 388 // The display name includes function template arguments. Drop them to match 389 // MSVC. 390 StringRef DisplayName = SP->getName().split('<').first; 391 392 const DIScope *Scope = SP->getScope(); 393 TypeIndex TI; 394 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 395 // If the scope is a DICompositeType, then this must be a method. Member 396 // function types take some special handling, and require access to the 397 // subprogram. 398 TypeIndex ClassType = getTypeIndex(Class); 399 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 400 DisplayName); 401 TI = TypeTable.writeLeafType(MFuncId); 402 } else { 403 // Otherwise, this must be a free function. 404 TypeIndex ParentScope = getScopeIndex(Scope); 405 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 406 TI = TypeTable.writeLeafType(FuncId); 407 } 408 409 return recordTypeIndexForDINode(SP, TI); 410 } 411 412 static bool isNonTrivial(const DICompositeType *DCTy) { 413 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 414 } 415 416 static FunctionOptions 417 getFunctionOptions(const DISubroutineType *Ty, 418 const DICompositeType *ClassTy = nullptr, 419 StringRef SPName = StringRef("")) { 420 FunctionOptions FO = FunctionOptions::None; 421 const DIType *ReturnTy = nullptr; 422 if (auto TypeArray = Ty->getTypeArray()) { 423 if (TypeArray.size()) 424 ReturnTy = TypeArray[0]; 425 } 426 427 // Add CxxReturnUdt option to functions that return nontrivial record types 428 // or methods that return record types. 429 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 430 if (isNonTrivial(ReturnDCTy) || ClassTy) 431 FO |= FunctionOptions::CxxReturnUdt; 432 433 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 434 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 435 FO |= FunctionOptions::Constructor; 436 437 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 438 439 } 440 return FO; 441 } 442 443 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 444 const DICompositeType *Class) { 445 // Always use the method declaration as the key for the function type. The 446 // method declaration contains the this adjustment. 447 if (SP->getDeclaration()) 448 SP = SP->getDeclaration(); 449 assert(!SP->getDeclaration() && "should use declaration as key"); 450 451 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 452 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 453 auto I = TypeIndices.find({SP, Class}); 454 if (I != TypeIndices.end()) 455 return I->second; 456 457 // Make sure complete type info for the class is emitted *after* the member 458 // function type, as the complete class type is likely to reference this 459 // member function type. 460 TypeLoweringScope S(*this); 461 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 462 463 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 464 TypeIndex TI = lowerTypeMemberFunction( 465 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 466 return recordTypeIndexForDINode(SP, TI, Class); 467 } 468 469 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 470 TypeIndex TI, 471 const DIType *ClassTy) { 472 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 473 (void)InsertResult; 474 assert(InsertResult.second && "DINode was already assigned a type index"); 475 return TI; 476 } 477 478 unsigned CodeViewDebug::getPointerSizeInBytes() { 479 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 480 } 481 482 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 483 const LexicalScope *LS) { 484 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 485 // This variable was inlined. Associate it with the InlineSite. 486 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 487 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 488 Site.InlinedLocals.emplace_back(Var); 489 } else { 490 // This variable goes into the corresponding lexical scope. 491 ScopeVariables[LS].emplace_back(Var); 492 } 493 } 494 495 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 496 const DILocation *Loc) { 497 if (!llvm::is_contained(Locs, Loc)) 498 Locs.push_back(Loc); 499 } 500 501 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 502 const MachineFunction *MF) { 503 // Skip this instruction if it has the same location as the previous one. 504 if (!DL || DL == PrevInstLoc) 505 return; 506 507 const DIScope *Scope = DL.get()->getScope(); 508 if (!Scope) 509 return; 510 511 // Skip this line if it is longer than the maximum we can record. 512 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 513 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 514 LI.isNeverStepInto()) 515 return; 516 517 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 518 if (CI.getStartColumn() != DL.getCol()) 519 return; 520 521 if (!CurFn->HaveLineInfo) 522 CurFn->HaveLineInfo = true; 523 unsigned FileId = 0; 524 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 525 FileId = CurFn->LastFileId; 526 else 527 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 528 PrevInstLoc = DL; 529 530 unsigned FuncId = CurFn->FuncId; 531 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 532 const DILocation *Loc = DL.get(); 533 534 // If this location was actually inlined from somewhere else, give it the ID 535 // of the inline call site. 536 FuncId = 537 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 538 539 // Ensure we have links in the tree of inline call sites. 540 bool FirstLoc = true; 541 while ((SiteLoc = Loc->getInlinedAt())) { 542 InlineSite &Site = 543 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 544 if (!FirstLoc) 545 addLocIfNotPresent(Site.ChildSites, Loc); 546 FirstLoc = false; 547 Loc = SiteLoc; 548 } 549 addLocIfNotPresent(CurFn->ChildSites, Loc); 550 } 551 552 OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 553 /*PrologueEnd=*/false, /*IsStmt=*/false, 554 DL->getFilename(), SMLoc()); 555 } 556 557 void CodeViewDebug::emitCodeViewMagicVersion() { 558 OS.emitValueToAlignment(4); 559 OS.AddComment("Debug section magic"); 560 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 561 } 562 563 void CodeViewDebug::endModule() { 564 if (!Asm || !MMI->hasDebugInfo()) 565 return; 566 567 assert(Asm != nullptr); 568 569 // The COFF .debug$S section consists of several subsections, each starting 570 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 571 // of the payload followed by the payload itself. The subsections are 4-byte 572 // aligned. 573 574 // Use the generic .debug$S section, and make a subsection for all the inlined 575 // subprograms. 576 switchToDebugSectionForSymbol(nullptr); 577 578 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 579 emitCompilerInformation(); 580 endCVSubsection(CompilerInfo); 581 582 emitInlineeLinesSubsection(); 583 584 // Emit per-function debug information. 585 for (auto &P : FnDebugInfo) 586 if (!P.first->isDeclarationForLinker()) 587 emitDebugInfoForFunction(P.first, *P.second); 588 589 // Emit global variable debug information. 590 setCurrentSubprogram(nullptr); 591 emitDebugInfoForGlobals(); 592 593 // Emit retained types. 594 emitDebugInfoForRetainedTypes(); 595 596 // Switch back to the generic .debug$S section after potentially processing 597 // comdat symbol sections. 598 switchToDebugSectionForSymbol(nullptr); 599 600 // Emit UDT records for any types used by global variables. 601 if (!GlobalUDTs.empty()) { 602 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 603 emitDebugInfoForUDTs(GlobalUDTs); 604 endCVSubsection(SymbolsEnd); 605 } 606 607 // This subsection holds a file index to offset in string table table. 608 OS.AddComment("File index to string table offset subsection"); 609 OS.emitCVFileChecksumsDirective(); 610 611 // This subsection holds the string table. 612 OS.AddComment("String table"); 613 OS.emitCVStringTableDirective(); 614 615 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 616 // subsection in the generic .debug$S section at the end. There is no 617 // particular reason for this ordering other than to match MSVC. 618 emitBuildInfo(); 619 620 // Emit type information and hashes last, so that any types we translate while 621 // emitting function info are included. 622 emitTypeInformation(); 623 624 if (EmitDebugGlobalHashes) 625 emitTypeGlobalHashes(); 626 627 clear(); 628 } 629 630 static void 631 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 632 unsigned MaxFixedRecordLength = 0xF00) { 633 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 634 // after a fixed length portion of the record. The fixed length portion should 635 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 636 // overall record size is less than the maximum allowed. 637 SmallString<32> NullTerminatedString( 638 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 639 NullTerminatedString.push_back('\0'); 640 OS.emitBytes(NullTerminatedString); 641 } 642 643 void CodeViewDebug::emitTypeInformation() { 644 if (TypeTable.empty()) 645 return; 646 647 // Start the .debug$T or .debug$P section with 0x4. 648 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 649 emitCodeViewMagicVersion(); 650 651 TypeTableCollection Table(TypeTable.records()); 652 TypeVisitorCallbackPipeline Pipeline; 653 654 // To emit type record using Codeview MCStreamer adapter 655 CVMCAdapter CVMCOS(OS, Table); 656 TypeRecordMapping typeMapping(CVMCOS); 657 Pipeline.addCallbackToPipeline(typeMapping); 658 659 Optional<TypeIndex> B = Table.getFirst(); 660 while (B) { 661 // This will fail if the record data is invalid. 662 CVType Record = Table.getType(*B); 663 664 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 665 666 if (E) { 667 logAllUnhandledErrors(std::move(E), errs(), "error: "); 668 llvm_unreachable("produced malformed type record"); 669 } 670 671 B = Table.getNext(*B); 672 } 673 } 674 675 void CodeViewDebug::emitTypeGlobalHashes() { 676 if (TypeTable.empty()) 677 return; 678 679 // Start the .debug$H section with the version and hash algorithm, currently 680 // hardcoded to version 0, SHA1. 681 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 682 683 OS.emitValueToAlignment(4); 684 OS.AddComment("Magic"); 685 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 686 OS.AddComment("Section Version"); 687 OS.emitInt16(0); 688 OS.AddComment("Hash Algorithm"); 689 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 690 691 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 692 for (const auto &GHR : TypeTable.hashes()) { 693 if (OS.isVerboseAsm()) { 694 // Emit an EOL-comment describing which TypeIndex this hash corresponds 695 // to, as well as the stringified SHA1 hash. 696 SmallString<32> Comment; 697 raw_svector_ostream CommentOS(Comment); 698 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 699 OS.AddComment(Comment); 700 ++TI; 701 } 702 assert(GHR.Hash.size() == 8); 703 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 704 GHR.Hash.size()); 705 OS.emitBinaryData(S); 706 } 707 } 708 709 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 710 switch (DWLang) { 711 case dwarf::DW_LANG_C: 712 case dwarf::DW_LANG_C89: 713 case dwarf::DW_LANG_C99: 714 case dwarf::DW_LANG_C11: 715 case dwarf::DW_LANG_ObjC: 716 return SourceLanguage::C; 717 case dwarf::DW_LANG_C_plus_plus: 718 case dwarf::DW_LANG_C_plus_plus_03: 719 case dwarf::DW_LANG_C_plus_plus_11: 720 case dwarf::DW_LANG_C_plus_plus_14: 721 return SourceLanguage::Cpp; 722 case dwarf::DW_LANG_Fortran77: 723 case dwarf::DW_LANG_Fortran90: 724 case dwarf::DW_LANG_Fortran03: 725 case dwarf::DW_LANG_Fortran08: 726 return SourceLanguage::Fortran; 727 case dwarf::DW_LANG_Pascal83: 728 return SourceLanguage::Pascal; 729 case dwarf::DW_LANG_Cobol74: 730 case dwarf::DW_LANG_Cobol85: 731 return SourceLanguage::Cobol; 732 case dwarf::DW_LANG_Java: 733 return SourceLanguage::Java; 734 case dwarf::DW_LANG_D: 735 return SourceLanguage::D; 736 case dwarf::DW_LANG_Swift: 737 return SourceLanguage::Swift; 738 default: 739 // There's no CodeView representation for this language, and CV doesn't 740 // have an "unknown" option for the language field, so we'll use MASM, 741 // as it's very low level. 742 return SourceLanguage::Masm; 743 } 744 } 745 746 namespace { 747 struct Version { 748 int Part[4]; 749 }; 750 } // end anonymous namespace 751 752 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 753 // the version number. 754 static Version parseVersion(StringRef Name) { 755 Version V = {{0}}; 756 int N = 0; 757 for (const char C : Name) { 758 if (isdigit(C)) { 759 V.Part[N] *= 10; 760 V.Part[N] += C - '0'; 761 } else if (C == '.') { 762 ++N; 763 if (N >= 4) 764 return V; 765 } else if (N > 0) 766 return V; 767 } 768 return V; 769 } 770 771 void CodeViewDebug::emitCompilerInformation() { 772 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 773 uint32_t Flags = 0; 774 775 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 776 const MDNode *Node = *CUs->operands().begin(); 777 const auto *CU = cast<DICompileUnit>(Node); 778 779 // The low byte of the flags indicates the source language. 780 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 781 // TODO: Figure out which other flags need to be set. 782 783 OS.AddComment("Flags and language"); 784 OS.emitInt32(Flags); 785 786 OS.AddComment("CPUType"); 787 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 788 789 StringRef CompilerVersion = CU->getProducer(); 790 Version FrontVer = parseVersion(CompilerVersion); 791 OS.AddComment("Frontend version"); 792 for (int N = 0; N < 4; ++N) 793 OS.emitInt16(FrontVer.Part[N]); 794 795 // Some Microsoft tools, like Binscope, expect a backend version number of at 796 // least 8.something, so we'll coerce the LLVM version into a form that 797 // guarantees it'll be big enough without really lying about the version. 798 int Major = 1000 * LLVM_VERSION_MAJOR + 799 10 * LLVM_VERSION_MINOR + 800 LLVM_VERSION_PATCH; 801 // Clamp it for builds that use unusually large version numbers. 802 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 803 Version BackVer = {{ Major, 0, 0, 0 }}; 804 OS.AddComment("Backend version"); 805 for (int N = 0; N < 4; ++N) 806 OS.emitInt16(BackVer.Part[N]); 807 808 OS.AddComment("Null-terminated compiler version string"); 809 emitNullTerminatedSymbolName(OS, CompilerVersion); 810 811 endSymbolRecord(CompilerEnd); 812 } 813 814 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 815 StringRef S) { 816 StringIdRecord SIR(TypeIndex(0x0), S); 817 return TypeTable.writeLeafType(SIR); 818 } 819 820 void CodeViewDebug::emitBuildInfo() { 821 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 822 // build info. The known prefix is: 823 // - Absolute path of current directory 824 // - Compiler path 825 // - Main source file path, relative to CWD or absolute 826 // - Type server PDB file 827 // - Canonical compiler command line 828 // If frontend and backend compilation are separated (think llc or LTO), it's 829 // not clear if the compiler path should refer to the executable for the 830 // frontend or the backend. Leave it blank for now. 831 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 832 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 833 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 834 const auto *CU = cast<DICompileUnit>(Node); 835 const DIFile *MainSourceFile = CU->getFile(); 836 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 837 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 838 BuildInfoArgs[BuildInfoRecord::SourceFile] = 839 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 840 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 841 // we implement /Zi type servers. 842 BuildInfoRecord BIR(BuildInfoArgs); 843 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 844 845 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 846 // from the module symbols into the type stream. 847 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 848 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 849 OS.AddComment("LF_BUILDINFO index"); 850 OS.emitInt32(BuildInfoIndex.getIndex()); 851 endSymbolRecord(BIEnd); 852 endCVSubsection(BISubsecEnd); 853 } 854 855 void CodeViewDebug::emitInlineeLinesSubsection() { 856 if (InlinedSubprograms.empty()) 857 return; 858 859 OS.AddComment("Inlinee lines subsection"); 860 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 861 862 // We emit the checksum info for files. This is used by debuggers to 863 // determine if a pdb matches the source before loading it. Visual Studio, 864 // for instance, will display a warning that the breakpoints are not valid if 865 // the pdb does not match the source. 866 OS.AddComment("Inlinee lines signature"); 867 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 868 869 for (const DISubprogram *SP : InlinedSubprograms) { 870 assert(TypeIndices.count({SP, nullptr})); 871 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 872 873 OS.AddBlankLine(); 874 unsigned FileId = maybeRecordFile(SP->getFile()); 875 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 876 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 877 OS.AddBlankLine(); 878 OS.AddComment("Type index of inlined function"); 879 OS.emitInt32(InlineeIdx.getIndex()); 880 OS.AddComment("Offset into filechecksum table"); 881 OS.emitCVFileChecksumOffsetDirective(FileId); 882 OS.AddComment("Starting line number"); 883 OS.emitInt32(SP->getLine()); 884 } 885 886 endCVSubsection(InlineEnd); 887 } 888 889 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 890 const DILocation *InlinedAt, 891 const InlineSite &Site) { 892 assert(TypeIndices.count({Site.Inlinee, nullptr})); 893 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 894 895 // SymbolRecord 896 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 897 898 OS.AddComment("PtrParent"); 899 OS.emitInt32(0); 900 OS.AddComment("PtrEnd"); 901 OS.emitInt32(0); 902 OS.AddComment("Inlinee type index"); 903 OS.emitInt32(InlineeIdx.getIndex()); 904 905 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 906 unsigned StartLineNum = Site.Inlinee->getLine(); 907 908 OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 909 FI.Begin, FI.End); 910 911 endSymbolRecord(InlineEnd); 912 913 emitLocalVariableList(FI, Site.InlinedLocals); 914 915 // Recurse on child inlined call sites before closing the scope. 916 for (const DILocation *ChildSite : Site.ChildSites) { 917 auto I = FI.InlineSites.find(ChildSite); 918 assert(I != FI.InlineSites.end() && 919 "child site not in function inline site map"); 920 emitInlinedCallSite(FI, ChildSite, I->second); 921 } 922 923 // Close the scope. 924 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 925 } 926 927 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 928 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 929 // comdat key. A section may be comdat because of -ffunction-sections or 930 // because it is comdat in the IR. 931 MCSectionCOFF *GVSec = 932 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 933 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 934 935 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 936 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 937 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 938 939 OS.SwitchSection(DebugSec); 940 941 // Emit the magic version number if this is the first time we've switched to 942 // this section. 943 if (ComdatDebugSections.insert(DebugSec).second) 944 emitCodeViewMagicVersion(); 945 } 946 947 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 948 // The only supported thunk ordinal is currently the standard type. 949 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 950 FunctionInfo &FI, 951 const MCSymbol *Fn) { 952 std::string FuncName = 953 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 954 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 955 956 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 957 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 958 959 // Emit S_THUNK32 960 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 961 OS.AddComment("PtrParent"); 962 OS.emitInt32(0); 963 OS.AddComment("PtrEnd"); 964 OS.emitInt32(0); 965 OS.AddComment("PtrNext"); 966 OS.emitInt32(0); 967 OS.AddComment("Thunk section relative address"); 968 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 969 OS.AddComment("Thunk section index"); 970 OS.EmitCOFFSectionIndex(Fn); 971 OS.AddComment("Code size"); 972 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 973 OS.AddComment("Ordinal"); 974 OS.emitInt8(unsigned(ordinal)); 975 OS.AddComment("Function name"); 976 emitNullTerminatedSymbolName(OS, FuncName); 977 // Additional fields specific to the thunk ordinal would go here. 978 endSymbolRecord(ThunkRecordEnd); 979 980 // Local variables/inlined routines are purposely omitted here. The point of 981 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 982 983 // Emit S_PROC_ID_END 984 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 985 986 endCVSubsection(SymbolsEnd); 987 } 988 989 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 990 FunctionInfo &FI) { 991 // For each function there is a separate subsection which holds the PC to 992 // file:line table. 993 const MCSymbol *Fn = Asm->getSymbol(GV); 994 assert(Fn); 995 996 // Switch to the to a comdat section, if appropriate. 997 switchToDebugSectionForSymbol(Fn); 998 999 std::string FuncName; 1000 auto *SP = GV->getSubprogram(); 1001 assert(SP); 1002 setCurrentSubprogram(SP); 1003 1004 if (SP->isThunk()) { 1005 emitDebugInfoForThunk(GV, FI, Fn); 1006 return; 1007 } 1008 1009 // If we have a display name, build the fully qualified name by walking the 1010 // chain of scopes. 1011 if (!SP->getName().empty()) 1012 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1013 1014 // If our DISubprogram name is empty, use the mangled name. 1015 if (FuncName.empty()) 1016 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1017 1018 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1019 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1020 OS.EmitCVFPOData(Fn); 1021 1022 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1023 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1024 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1025 { 1026 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1027 : SymbolKind::S_GPROC32_ID; 1028 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1029 1030 // These fields are filled in by tools like CVPACK which run after the fact. 1031 OS.AddComment("PtrParent"); 1032 OS.emitInt32(0); 1033 OS.AddComment("PtrEnd"); 1034 OS.emitInt32(0); 1035 OS.AddComment("PtrNext"); 1036 OS.emitInt32(0); 1037 // This is the important bit that tells the debugger where the function 1038 // code is located and what's its size: 1039 OS.AddComment("Code size"); 1040 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1041 OS.AddComment("Offset after prologue"); 1042 OS.emitInt32(0); 1043 OS.AddComment("Offset before epilogue"); 1044 OS.emitInt32(0); 1045 OS.AddComment("Function type index"); 1046 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1047 OS.AddComment("Function section relative address"); 1048 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1049 OS.AddComment("Function section index"); 1050 OS.EmitCOFFSectionIndex(Fn); 1051 OS.AddComment("Flags"); 1052 OS.emitInt8(0); 1053 // Emit the function display name as a null-terminated string. 1054 OS.AddComment("Function name"); 1055 // Truncate the name so we won't overflow the record length field. 1056 emitNullTerminatedSymbolName(OS, FuncName); 1057 endSymbolRecord(ProcRecordEnd); 1058 1059 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1060 // Subtract out the CSR size since MSVC excludes that and we include it. 1061 OS.AddComment("FrameSize"); 1062 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1063 OS.AddComment("Padding"); 1064 OS.emitInt32(0); 1065 OS.AddComment("Offset of padding"); 1066 OS.emitInt32(0); 1067 OS.AddComment("Bytes of callee saved registers"); 1068 OS.emitInt32(FI.CSRSize); 1069 OS.AddComment("Exception handler offset"); 1070 OS.emitInt32(0); 1071 OS.AddComment("Exception handler section"); 1072 OS.emitInt16(0); 1073 OS.AddComment("Flags (defines frame register)"); 1074 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1075 endSymbolRecord(FrameProcEnd); 1076 1077 emitLocalVariableList(FI, FI.Locals); 1078 emitGlobalVariableList(FI.Globals); 1079 emitLexicalBlockList(FI.ChildBlocks, FI); 1080 1081 // Emit inlined call site information. Only emit functions inlined directly 1082 // into the parent function. We'll emit the other sites recursively as part 1083 // of their parent inline site. 1084 for (const DILocation *InlinedAt : FI.ChildSites) { 1085 auto I = FI.InlineSites.find(InlinedAt); 1086 assert(I != FI.InlineSites.end() && 1087 "child site not in function inline site map"); 1088 emitInlinedCallSite(FI, InlinedAt, I->second); 1089 } 1090 1091 for (auto Annot : FI.Annotations) { 1092 MCSymbol *Label = Annot.first; 1093 MDTuple *Strs = cast<MDTuple>(Annot.second); 1094 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1095 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1096 // FIXME: Make sure we don't overflow the max record size. 1097 OS.EmitCOFFSectionIndex(Label); 1098 OS.emitInt16(Strs->getNumOperands()); 1099 for (Metadata *MD : Strs->operands()) { 1100 // MDStrings are null terminated, so we can do EmitBytes and get the 1101 // nice .asciz directive. 1102 StringRef Str = cast<MDString>(MD)->getString(); 1103 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1104 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1105 } 1106 endSymbolRecord(AnnotEnd); 1107 } 1108 1109 for (auto HeapAllocSite : FI.HeapAllocSites) { 1110 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1111 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1112 const DIType *DITy = std::get<2>(HeapAllocSite); 1113 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1114 OS.AddComment("Call site offset"); 1115 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1116 OS.AddComment("Call site section index"); 1117 OS.EmitCOFFSectionIndex(BeginLabel); 1118 OS.AddComment("Call instruction length"); 1119 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1120 OS.AddComment("Type index"); 1121 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1122 endSymbolRecord(HeapAllocEnd); 1123 } 1124 1125 if (SP != nullptr) 1126 emitDebugInfoForUDTs(LocalUDTs); 1127 1128 // We're done with this function. 1129 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1130 } 1131 endCVSubsection(SymbolsEnd); 1132 1133 // We have an assembler directive that takes care of the whole line table. 1134 OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1135 } 1136 1137 CodeViewDebug::LocalVarDefRange 1138 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1139 LocalVarDefRange DR; 1140 DR.InMemory = -1; 1141 DR.DataOffset = Offset; 1142 assert(DR.DataOffset == Offset && "truncation"); 1143 DR.IsSubfield = 0; 1144 DR.StructOffset = 0; 1145 DR.CVRegister = CVRegister; 1146 return DR; 1147 } 1148 1149 void CodeViewDebug::collectVariableInfoFromMFTable( 1150 DenseSet<InlinedEntity> &Processed) { 1151 const MachineFunction &MF = *Asm->MF; 1152 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1153 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1154 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1155 1156 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1157 if (!VI.Var) 1158 continue; 1159 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1160 "Expected inlined-at fields to agree"); 1161 1162 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1163 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1164 1165 // If variable scope is not found then skip this variable. 1166 if (!Scope) 1167 continue; 1168 1169 // If the variable has an attached offset expression, extract it. 1170 // FIXME: Try to handle DW_OP_deref as well. 1171 int64_t ExprOffset = 0; 1172 bool Deref = false; 1173 if (VI.Expr) { 1174 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1175 if (VI.Expr->getNumElements() == 1 && 1176 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1177 Deref = true; 1178 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1179 continue; 1180 } 1181 1182 // Get the frame register used and the offset. 1183 Register FrameReg; 1184 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1185 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1186 1187 // Calculate the label ranges. 1188 LocalVarDefRange DefRange = 1189 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1190 1191 for (const InsnRange &Range : Scope->getRanges()) { 1192 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1193 const MCSymbol *End = getLabelAfterInsn(Range.second); 1194 End = End ? End : Asm->getFunctionEnd(); 1195 DefRange.Ranges.emplace_back(Begin, End); 1196 } 1197 1198 LocalVariable Var; 1199 Var.DIVar = VI.Var; 1200 Var.DefRanges.emplace_back(std::move(DefRange)); 1201 if (Deref) 1202 Var.UseReferenceType = true; 1203 1204 recordLocalVariable(std::move(Var), Scope); 1205 } 1206 } 1207 1208 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1209 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1210 } 1211 1212 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1213 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1214 } 1215 1216 void CodeViewDebug::calculateRanges( 1217 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1218 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1219 1220 // Calculate the definition ranges. 1221 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1222 const auto &Entry = *I; 1223 if (!Entry.isDbgValue()) 1224 continue; 1225 const MachineInstr *DVInst = Entry.getInstr(); 1226 assert(DVInst->isDebugValue() && "Invalid History entry"); 1227 // FIXME: Find a way to represent constant variables, since they are 1228 // relatively common. 1229 Optional<DbgVariableLocation> Location = 1230 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1231 if (!Location) 1232 continue; 1233 1234 // CodeView can only express variables in register and variables in memory 1235 // at a constant offset from a register. However, for variables passed 1236 // indirectly by pointer, it is common for that pointer to be spilled to a 1237 // stack location. For the special case of one offseted load followed by a 1238 // zero offset load (a pointer spilled to the stack), we change the type of 1239 // the local variable from a value type to a reference type. This tricks the 1240 // debugger into doing the load for us. 1241 if (Var.UseReferenceType) { 1242 // We're using a reference type. Drop the last zero offset load. 1243 if (canUseReferenceType(*Location)) 1244 Location->LoadChain.pop_back(); 1245 else 1246 continue; 1247 } else if (needsReferenceType(*Location)) { 1248 // This location can't be expressed without switching to a reference type. 1249 // Start over using that. 1250 Var.UseReferenceType = true; 1251 Var.DefRanges.clear(); 1252 calculateRanges(Var, Entries); 1253 return; 1254 } 1255 1256 // We can only handle a register or an offseted load of a register. 1257 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1258 continue; 1259 { 1260 LocalVarDefRange DR; 1261 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1262 DR.InMemory = !Location->LoadChain.empty(); 1263 DR.DataOffset = 1264 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1265 if (Location->FragmentInfo) { 1266 DR.IsSubfield = true; 1267 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1268 } else { 1269 DR.IsSubfield = false; 1270 DR.StructOffset = 0; 1271 } 1272 1273 if (Var.DefRanges.empty() || 1274 Var.DefRanges.back().isDifferentLocation(DR)) { 1275 Var.DefRanges.emplace_back(std::move(DR)); 1276 } 1277 } 1278 1279 // Compute the label range. 1280 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1281 const MCSymbol *End; 1282 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1283 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1284 End = EndingEntry.isDbgValue() 1285 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1286 : getLabelAfterInsn(EndingEntry.getInstr()); 1287 } else 1288 End = Asm->getFunctionEnd(); 1289 1290 // If the last range end is our begin, just extend the last range. 1291 // Otherwise make a new range. 1292 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1293 Var.DefRanges.back().Ranges; 1294 if (!R.empty() && R.back().second == Begin) 1295 R.back().second = End; 1296 else 1297 R.emplace_back(Begin, End); 1298 1299 // FIXME: Do more range combining. 1300 } 1301 } 1302 1303 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1304 DenseSet<InlinedEntity> Processed; 1305 // Grab the variable info that was squirreled away in the MMI side-table. 1306 collectVariableInfoFromMFTable(Processed); 1307 1308 for (const auto &I : DbgValues) { 1309 InlinedEntity IV = I.first; 1310 if (Processed.count(IV)) 1311 continue; 1312 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1313 const DILocation *InlinedAt = IV.second; 1314 1315 // Instruction ranges, specifying where IV is accessible. 1316 const auto &Entries = I.second; 1317 1318 LexicalScope *Scope = nullptr; 1319 if (InlinedAt) 1320 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1321 else 1322 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1323 // If variable scope is not found then skip this variable. 1324 if (!Scope) 1325 continue; 1326 1327 LocalVariable Var; 1328 Var.DIVar = DIVar; 1329 1330 calculateRanges(Var, Entries); 1331 recordLocalVariable(std::move(Var), Scope); 1332 } 1333 } 1334 1335 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1336 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1337 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1338 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1339 const Function &GV = MF->getFunction(); 1340 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1341 assert(Insertion.second && "function already has info"); 1342 CurFn = Insertion.first->second.get(); 1343 CurFn->FuncId = NextFuncId++; 1344 CurFn->Begin = Asm->getFunctionBegin(); 1345 1346 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1347 // callee-saved registers were used. For targets that don't use a PUSH 1348 // instruction (AArch64), this will be zero. 1349 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1350 CurFn->FrameSize = MFI.getStackSize(); 1351 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1352 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1353 1354 // For this function S_FRAMEPROC record, figure out which codeview register 1355 // will be the frame pointer. 1356 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1357 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1358 if (CurFn->FrameSize > 0) { 1359 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1360 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1361 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1362 } else { 1363 // If there is an FP, parameters are always relative to it. 1364 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1365 if (CurFn->HasStackRealignment) { 1366 // If the stack needs realignment, locals are relative to SP or VFRAME. 1367 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1368 } else { 1369 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1370 // other stack adjustments. 1371 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1372 } 1373 } 1374 } 1375 1376 // Compute other frame procedure options. 1377 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1378 if (MFI.hasVarSizedObjects()) 1379 FPO |= FrameProcedureOptions::HasAlloca; 1380 if (MF->exposesReturnsTwice()) 1381 FPO |= FrameProcedureOptions::HasSetJmp; 1382 // FIXME: Set HasLongJmp if we ever track that info. 1383 if (MF->hasInlineAsm()) 1384 FPO |= FrameProcedureOptions::HasInlineAssembly; 1385 if (GV.hasPersonalityFn()) { 1386 if (isAsynchronousEHPersonality( 1387 classifyEHPersonality(GV.getPersonalityFn()))) 1388 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1389 else 1390 FPO |= FrameProcedureOptions::HasExceptionHandling; 1391 } 1392 if (GV.hasFnAttribute(Attribute::InlineHint)) 1393 FPO |= FrameProcedureOptions::MarkedInline; 1394 if (GV.hasFnAttribute(Attribute::Naked)) 1395 FPO |= FrameProcedureOptions::Naked; 1396 if (MFI.hasStackProtectorIndex()) 1397 FPO |= FrameProcedureOptions::SecurityChecks; 1398 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1399 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1400 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1401 !GV.hasOptSize() && !GV.hasOptNone()) 1402 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1403 // FIXME: Set GuardCfg when it is implemented. 1404 CurFn->FrameProcOpts = FPO; 1405 1406 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1407 1408 // Find the end of the function prolog. First known non-DBG_VALUE and 1409 // non-frame setup location marks the beginning of the function body. 1410 // FIXME: is there a simpler a way to do this? Can we just search 1411 // for the first instruction of the function, not the last of the prolog? 1412 DebugLoc PrologEndLoc; 1413 bool EmptyPrologue = true; 1414 for (const auto &MBB : *MF) { 1415 for (const auto &MI : MBB) { 1416 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1417 MI.getDebugLoc()) { 1418 PrologEndLoc = MI.getDebugLoc(); 1419 break; 1420 } else if (!MI.isMetaInstruction()) { 1421 EmptyPrologue = false; 1422 } 1423 } 1424 } 1425 1426 // Record beginning of function if we have a non-empty prologue. 1427 if (PrologEndLoc && !EmptyPrologue) { 1428 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1429 maybeRecordLocation(FnStartDL, MF); 1430 } 1431 1432 // Find heap alloc sites and emit labels around them. 1433 for (const auto &MBB : *MF) { 1434 for (const auto &MI : MBB) { 1435 if (MI.getHeapAllocMarker()) { 1436 requestLabelBeforeInsn(&MI); 1437 requestLabelAfterInsn(&MI); 1438 } 1439 } 1440 } 1441 } 1442 1443 static bool shouldEmitUdt(const DIType *T) { 1444 if (!T) 1445 return false; 1446 1447 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1448 if (T->getTag() == dwarf::DW_TAG_typedef) { 1449 if (DIScope *Scope = T->getScope()) { 1450 switch (Scope->getTag()) { 1451 case dwarf::DW_TAG_structure_type: 1452 case dwarf::DW_TAG_class_type: 1453 case dwarf::DW_TAG_union_type: 1454 return false; 1455 } 1456 } 1457 } 1458 1459 while (true) { 1460 if (!T || T->isForwardDecl()) 1461 return false; 1462 1463 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1464 if (!DT) 1465 return true; 1466 T = DT->getBaseType(); 1467 } 1468 return true; 1469 } 1470 1471 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1472 // Don't record empty UDTs. 1473 if (Ty->getName().empty()) 1474 return; 1475 if (!shouldEmitUdt(Ty)) 1476 return; 1477 1478 SmallVector<StringRef, 5> ParentScopeNames; 1479 const DISubprogram *ClosestSubprogram = 1480 collectParentScopeNames(Ty->getScope(), ParentScopeNames); 1481 1482 std::string FullyQualifiedName = 1483 formatNestedName(ParentScopeNames, getPrettyScopeName(Ty)); 1484 1485 if (ClosestSubprogram == nullptr) { 1486 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1487 } else if (ClosestSubprogram == CurrentSubprogram) { 1488 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1489 } 1490 1491 // TODO: What if the ClosestSubprogram is neither null or the current 1492 // subprogram? Currently, the UDT just gets dropped on the floor. 1493 // 1494 // The current behavior is not desirable. To get maximal fidelity, we would 1495 // need to perform all type translation before beginning emission of .debug$S 1496 // and then make LocalUDTs a member of FunctionInfo 1497 } 1498 1499 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1500 // Generic dispatch for lowering an unknown type. 1501 switch (Ty->getTag()) { 1502 case dwarf::DW_TAG_array_type: 1503 return lowerTypeArray(cast<DICompositeType>(Ty)); 1504 case dwarf::DW_TAG_typedef: 1505 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1506 case dwarf::DW_TAG_base_type: 1507 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1508 case dwarf::DW_TAG_pointer_type: 1509 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1510 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1511 LLVM_FALLTHROUGH; 1512 case dwarf::DW_TAG_reference_type: 1513 case dwarf::DW_TAG_rvalue_reference_type: 1514 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1515 case dwarf::DW_TAG_ptr_to_member_type: 1516 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1517 case dwarf::DW_TAG_restrict_type: 1518 case dwarf::DW_TAG_const_type: 1519 case dwarf::DW_TAG_volatile_type: 1520 // TODO: add support for DW_TAG_atomic_type here 1521 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1522 case dwarf::DW_TAG_subroutine_type: 1523 if (ClassTy) { 1524 // The member function type of a member function pointer has no 1525 // ThisAdjustment. 1526 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1527 /*ThisAdjustment=*/0, 1528 /*IsStaticMethod=*/false); 1529 } 1530 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1531 case dwarf::DW_TAG_enumeration_type: 1532 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1533 case dwarf::DW_TAG_class_type: 1534 case dwarf::DW_TAG_structure_type: 1535 return lowerTypeClass(cast<DICompositeType>(Ty)); 1536 case dwarf::DW_TAG_union_type: 1537 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1538 case dwarf::DW_TAG_unspecified_type: 1539 if (Ty->getName() == "decltype(nullptr)") 1540 return TypeIndex::NullptrT(); 1541 return TypeIndex::None(); 1542 default: 1543 // Use the null type index. 1544 return TypeIndex(); 1545 } 1546 } 1547 1548 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1549 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1550 StringRef TypeName = Ty->getName(); 1551 1552 addToUDTs(Ty); 1553 1554 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1555 TypeName == "HRESULT") 1556 return TypeIndex(SimpleTypeKind::HResult); 1557 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1558 TypeName == "wchar_t") 1559 return TypeIndex(SimpleTypeKind::WideCharacter); 1560 1561 return UnderlyingTypeIndex; 1562 } 1563 1564 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1565 const DIType *ElementType = Ty->getBaseType(); 1566 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1567 // IndexType is size_t, which depends on the bitness of the target. 1568 TypeIndex IndexType = getPointerSizeInBytes() == 8 1569 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1570 : TypeIndex(SimpleTypeKind::UInt32Long); 1571 1572 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1573 1574 // Add subranges to array type. 1575 DINodeArray Elements = Ty->getElements(); 1576 for (int i = Elements.size() - 1; i >= 0; --i) { 1577 const DINode *Element = Elements[i]; 1578 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1579 1580 const DISubrange *Subrange = cast<DISubrange>(Element); 1581 assert(!Subrange->getRawLowerBound() && 1582 "codeview doesn't support subranges with lower bounds"); 1583 int64_t Count = -1; 1584 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1585 Count = CI->getSExtValue(); 1586 1587 // Forward declarations of arrays without a size and VLAs use a count of -1. 1588 // Emit a count of zero in these cases to match what MSVC does for arrays 1589 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1590 // should do for them even if we could distinguish them. 1591 if (Count == -1) 1592 Count = 0; 1593 1594 // Update the element size and element type index for subsequent subranges. 1595 ElementSize *= Count; 1596 1597 // If this is the outermost array, use the size from the array. It will be 1598 // more accurate if we had a VLA or an incomplete element type size. 1599 uint64_t ArraySize = 1600 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1601 1602 StringRef Name = (i == 0) ? Ty->getName() : ""; 1603 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1604 ElementTypeIndex = TypeTable.writeLeafType(AR); 1605 } 1606 1607 return ElementTypeIndex; 1608 } 1609 1610 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1611 TypeIndex Index; 1612 dwarf::TypeKind Kind; 1613 uint32_t ByteSize; 1614 1615 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1616 ByteSize = Ty->getSizeInBits() / 8; 1617 1618 SimpleTypeKind STK = SimpleTypeKind::None; 1619 switch (Kind) { 1620 case dwarf::DW_ATE_address: 1621 // FIXME: Translate 1622 break; 1623 case dwarf::DW_ATE_boolean: 1624 switch (ByteSize) { 1625 case 1: STK = SimpleTypeKind::Boolean8; break; 1626 case 2: STK = SimpleTypeKind::Boolean16; break; 1627 case 4: STK = SimpleTypeKind::Boolean32; break; 1628 case 8: STK = SimpleTypeKind::Boolean64; break; 1629 case 16: STK = SimpleTypeKind::Boolean128; break; 1630 } 1631 break; 1632 case dwarf::DW_ATE_complex_float: 1633 switch (ByteSize) { 1634 case 2: STK = SimpleTypeKind::Complex16; break; 1635 case 4: STK = SimpleTypeKind::Complex32; break; 1636 case 8: STK = SimpleTypeKind::Complex64; break; 1637 case 10: STK = SimpleTypeKind::Complex80; break; 1638 case 16: STK = SimpleTypeKind::Complex128; break; 1639 } 1640 break; 1641 case dwarf::DW_ATE_float: 1642 switch (ByteSize) { 1643 case 2: STK = SimpleTypeKind::Float16; break; 1644 case 4: STK = SimpleTypeKind::Float32; break; 1645 case 6: STK = SimpleTypeKind::Float48; break; 1646 case 8: STK = SimpleTypeKind::Float64; break; 1647 case 10: STK = SimpleTypeKind::Float80; break; 1648 case 16: STK = SimpleTypeKind::Float128; break; 1649 } 1650 break; 1651 case dwarf::DW_ATE_signed: 1652 switch (ByteSize) { 1653 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1654 case 2: STK = SimpleTypeKind::Int16Short; break; 1655 case 4: STK = SimpleTypeKind::Int32; break; 1656 case 8: STK = SimpleTypeKind::Int64Quad; break; 1657 case 16: STK = SimpleTypeKind::Int128Oct; break; 1658 } 1659 break; 1660 case dwarf::DW_ATE_unsigned: 1661 switch (ByteSize) { 1662 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1663 case 2: STK = SimpleTypeKind::UInt16Short; break; 1664 case 4: STK = SimpleTypeKind::UInt32; break; 1665 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1666 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1667 } 1668 break; 1669 case dwarf::DW_ATE_UTF: 1670 switch (ByteSize) { 1671 case 2: STK = SimpleTypeKind::Character16; break; 1672 case 4: STK = SimpleTypeKind::Character32; break; 1673 } 1674 break; 1675 case dwarf::DW_ATE_signed_char: 1676 if (ByteSize == 1) 1677 STK = SimpleTypeKind::SignedCharacter; 1678 break; 1679 case dwarf::DW_ATE_unsigned_char: 1680 if (ByteSize == 1) 1681 STK = SimpleTypeKind::UnsignedCharacter; 1682 break; 1683 default: 1684 break; 1685 } 1686 1687 // Apply some fixups based on the source-level type name. 1688 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1689 STK = SimpleTypeKind::Int32Long; 1690 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1691 STK = SimpleTypeKind::UInt32Long; 1692 if (STK == SimpleTypeKind::UInt16Short && 1693 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1694 STK = SimpleTypeKind::WideCharacter; 1695 if ((STK == SimpleTypeKind::SignedCharacter || 1696 STK == SimpleTypeKind::UnsignedCharacter) && 1697 Ty->getName() == "char") 1698 STK = SimpleTypeKind::NarrowCharacter; 1699 1700 return TypeIndex(STK); 1701 } 1702 1703 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1704 PointerOptions PO) { 1705 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1706 1707 // Pointers to simple types without any options can use SimpleTypeMode, rather 1708 // than having a dedicated pointer type record. 1709 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1710 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1711 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1712 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1713 ? SimpleTypeMode::NearPointer64 1714 : SimpleTypeMode::NearPointer32; 1715 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1716 } 1717 1718 PointerKind PK = 1719 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1720 PointerMode PM = PointerMode::Pointer; 1721 switch (Ty->getTag()) { 1722 default: llvm_unreachable("not a pointer tag type"); 1723 case dwarf::DW_TAG_pointer_type: 1724 PM = PointerMode::Pointer; 1725 break; 1726 case dwarf::DW_TAG_reference_type: 1727 PM = PointerMode::LValueReference; 1728 break; 1729 case dwarf::DW_TAG_rvalue_reference_type: 1730 PM = PointerMode::RValueReference; 1731 break; 1732 } 1733 1734 if (Ty->isObjectPointer()) 1735 PO |= PointerOptions::Const; 1736 1737 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1738 return TypeTable.writeLeafType(PR); 1739 } 1740 1741 static PointerToMemberRepresentation 1742 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1743 // SizeInBytes being zero generally implies that the member pointer type was 1744 // incomplete, which can happen if it is part of a function prototype. In this 1745 // case, use the unknown model instead of the general model. 1746 if (IsPMF) { 1747 switch (Flags & DINode::FlagPtrToMemberRep) { 1748 case 0: 1749 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1750 : PointerToMemberRepresentation::GeneralFunction; 1751 case DINode::FlagSingleInheritance: 1752 return PointerToMemberRepresentation::SingleInheritanceFunction; 1753 case DINode::FlagMultipleInheritance: 1754 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1755 case DINode::FlagVirtualInheritance: 1756 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1757 } 1758 } else { 1759 switch (Flags & DINode::FlagPtrToMemberRep) { 1760 case 0: 1761 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1762 : PointerToMemberRepresentation::GeneralData; 1763 case DINode::FlagSingleInheritance: 1764 return PointerToMemberRepresentation::SingleInheritanceData; 1765 case DINode::FlagMultipleInheritance: 1766 return PointerToMemberRepresentation::MultipleInheritanceData; 1767 case DINode::FlagVirtualInheritance: 1768 return PointerToMemberRepresentation::VirtualInheritanceData; 1769 } 1770 } 1771 llvm_unreachable("invalid ptr to member representation"); 1772 } 1773 1774 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1775 PointerOptions PO) { 1776 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1777 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1778 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1779 TypeIndex PointeeTI = 1780 getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr); 1781 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1782 : PointerKind::Near32; 1783 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1784 : PointerMode::PointerToDataMember; 1785 1786 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1787 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1788 MemberPointerInfo MPI( 1789 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1790 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1791 return TypeTable.writeLeafType(PR); 1792 } 1793 1794 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1795 /// have a translation, use the NearC convention. 1796 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1797 switch (DwarfCC) { 1798 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1799 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1800 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1801 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1802 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1803 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1804 } 1805 return CallingConvention::NearC; 1806 } 1807 1808 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1809 ModifierOptions Mods = ModifierOptions::None; 1810 PointerOptions PO = PointerOptions::None; 1811 bool IsModifier = true; 1812 const DIType *BaseTy = Ty; 1813 while (IsModifier && BaseTy) { 1814 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1815 switch (BaseTy->getTag()) { 1816 case dwarf::DW_TAG_const_type: 1817 Mods |= ModifierOptions::Const; 1818 PO |= PointerOptions::Const; 1819 break; 1820 case dwarf::DW_TAG_volatile_type: 1821 Mods |= ModifierOptions::Volatile; 1822 PO |= PointerOptions::Volatile; 1823 break; 1824 case dwarf::DW_TAG_restrict_type: 1825 // Only pointer types be marked with __restrict. There is no known flag 1826 // for __restrict in LF_MODIFIER records. 1827 PO |= PointerOptions::Restrict; 1828 break; 1829 default: 1830 IsModifier = false; 1831 break; 1832 } 1833 if (IsModifier) 1834 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1835 } 1836 1837 // Check if the inner type will use an LF_POINTER record. If so, the 1838 // qualifiers will go in the LF_POINTER record. This comes up for types like 1839 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1840 // char *'. 1841 if (BaseTy) { 1842 switch (BaseTy->getTag()) { 1843 case dwarf::DW_TAG_pointer_type: 1844 case dwarf::DW_TAG_reference_type: 1845 case dwarf::DW_TAG_rvalue_reference_type: 1846 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1847 case dwarf::DW_TAG_ptr_to_member_type: 1848 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1849 default: 1850 break; 1851 } 1852 } 1853 1854 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1855 1856 // Return the base type index if there aren't any modifiers. For example, the 1857 // metadata could contain restrict wrappers around non-pointer types. 1858 if (Mods == ModifierOptions::None) 1859 return ModifiedTI; 1860 1861 ModifierRecord MR(ModifiedTI, Mods); 1862 return TypeTable.writeLeafType(MR); 1863 } 1864 1865 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1866 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1867 for (const DIType *ArgType : Ty->getTypeArray()) 1868 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1869 1870 // MSVC uses type none for variadic argument. 1871 if (ReturnAndArgTypeIndices.size() > 1 && 1872 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1873 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1874 } 1875 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1876 ArrayRef<TypeIndex> ArgTypeIndices = None; 1877 if (!ReturnAndArgTypeIndices.empty()) { 1878 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1879 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1880 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1881 } 1882 1883 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1884 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1885 1886 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1887 1888 FunctionOptions FO = getFunctionOptions(Ty); 1889 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1890 ArgListIndex); 1891 return TypeTable.writeLeafType(Procedure); 1892 } 1893 1894 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1895 const DIType *ClassTy, 1896 int ThisAdjustment, 1897 bool IsStaticMethod, 1898 FunctionOptions FO) { 1899 // Lower the containing class type. 1900 TypeIndex ClassType = getTypeIndex(ClassTy); 1901 1902 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1903 1904 unsigned Index = 0; 1905 SmallVector<TypeIndex, 8> ArgTypeIndices; 1906 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1907 if (ReturnAndArgs.size() > Index) { 1908 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1909 } 1910 1911 // If the first argument is a pointer type and this isn't a static method, 1912 // treat it as the special 'this' parameter, which is encoded separately from 1913 // the arguments. 1914 TypeIndex ThisTypeIndex; 1915 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1916 if (const DIDerivedType *PtrTy = 1917 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1918 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1919 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1920 Index++; 1921 } 1922 } 1923 } 1924 1925 while (Index < ReturnAndArgs.size()) 1926 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1927 1928 // MSVC uses type none for variadic argument. 1929 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1930 ArgTypeIndices.back() = TypeIndex::None(); 1931 1932 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1933 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1934 1935 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1936 1937 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1938 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1939 return TypeTable.writeLeafType(MFR); 1940 } 1941 1942 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1943 unsigned VSlotCount = 1944 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1945 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1946 1947 VFTableShapeRecord VFTSR(Slots); 1948 return TypeTable.writeLeafType(VFTSR); 1949 } 1950 1951 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1952 switch (Flags & DINode::FlagAccessibility) { 1953 case DINode::FlagPrivate: return MemberAccess::Private; 1954 case DINode::FlagPublic: return MemberAccess::Public; 1955 case DINode::FlagProtected: return MemberAccess::Protected; 1956 case 0: 1957 // If there was no explicit access control, provide the default for the tag. 1958 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1959 : MemberAccess::Public; 1960 } 1961 llvm_unreachable("access flags are exclusive"); 1962 } 1963 1964 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1965 if (SP->isArtificial()) 1966 return MethodOptions::CompilerGenerated; 1967 1968 // FIXME: Handle other MethodOptions. 1969 1970 return MethodOptions::None; 1971 } 1972 1973 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1974 bool Introduced) { 1975 if (SP->getFlags() & DINode::FlagStaticMember) 1976 return MethodKind::Static; 1977 1978 switch (SP->getVirtuality()) { 1979 case dwarf::DW_VIRTUALITY_none: 1980 break; 1981 case dwarf::DW_VIRTUALITY_virtual: 1982 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1983 case dwarf::DW_VIRTUALITY_pure_virtual: 1984 return Introduced ? MethodKind::PureIntroducingVirtual 1985 : MethodKind::PureVirtual; 1986 default: 1987 llvm_unreachable("unhandled virtuality case"); 1988 } 1989 1990 return MethodKind::Vanilla; 1991 } 1992 1993 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1994 switch (Ty->getTag()) { 1995 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1996 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1997 } 1998 llvm_unreachable("unexpected tag"); 1999 } 2000 2001 /// Return ClassOptions that should be present on both the forward declaration 2002 /// and the defintion of a tag type. 2003 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2004 ClassOptions CO = ClassOptions::None; 2005 2006 // MSVC always sets this flag, even for local types. Clang doesn't always 2007 // appear to give every type a linkage name, which may be problematic for us. 2008 // FIXME: Investigate the consequences of not following them here. 2009 if (!Ty->getIdentifier().empty()) 2010 CO |= ClassOptions::HasUniqueName; 2011 2012 // Put the Nested flag on a type if it appears immediately inside a tag type. 2013 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2014 // here. That flag is only set on definitions, and not forward declarations. 2015 const DIScope *ImmediateScope = Ty->getScope(); 2016 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2017 CO |= ClassOptions::Nested; 2018 2019 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2020 // type only when it has an immediate function scope. Clang never puts enums 2021 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2022 // always in function, class, or file scopes. 2023 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2024 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2025 CO |= ClassOptions::Scoped; 2026 } else { 2027 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2028 Scope = Scope->getScope()) { 2029 if (isa<DISubprogram>(Scope)) { 2030 CO |= ClassOptions::Scoped; 2031 break; 2032 } 2033 } 2034 } 2035 2036 return CO; 2037 } 2038 2039 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2040 switch (Ty->getTag()) { 2041 case dwarf::DW_TAG_class_type: 2042 case dwarf::DW_TAG_structure_type: 2043 case dwarf::DW_TAG_union_type: 2044 case dwarf::DW_TAG_enumeration_type: 2045 break; 2046 default: 2047 return; 2048 } 2049 2050 if (const auto *File = Ty->getFile()) { 2051 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2052 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2053 2054 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2055 TypeTable.writeLeafType(USLR); 2056 } 2057 } 2058 2059 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2060 ClassOptions CO = getCommonClassOptions(Ty); 2061 TypeIndex FTI; 2062 unsigned EnumeratorCount = 0; 2063 2064 if (Ty->isForwardDecl()) { 2065 CO |= ClassOptions::ForwardReference; 2066 } else { 2067 ContinuationRecordBuilder ContinuationBuilder; 2068 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2069 for (const DINode *Element : Ty->getElements()) { 2070 // We assume that the frontend provides all members in source declaration 2071 // order, which is what MSVC does. 2072 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2073 EnumeratorRecord ER(MemberAccess::Public, 2074 APSInt(Enumerator->getValue(), true), 2075 Enumerator->getName()); 2076 ContinuationBuilder.writeMemberType(ER); 2077 EnumeratorCount++; 2078 } 2079 } 2080 FTI = TypeTable.insertRecord(ContinuationBuilder); 2081 } 2082 2083 std::string FullName = getFullyQualifiedName(Ty); 2084 2085 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2086 getTypeIndex(Ty->getBaseType())); 2087 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2088 2089 addUDTSrcLine(Ty, EnumTI); 2090 2091 return EnumTI; 2092 } 2093 2094 //===----------------------------------------------------------------------===// 2095 // ClassInfo 2096 //===----------------------------------------------------------------------===// 2097 2098 struct llvm::ClassInfo { 2099 struct MemberInfo { 2100 const DIDerivedType *MemberTypeNode; 2101 uint64_t BaseOffset; 2102 }; 2103 // [MemberInfo] 2104 using MemberList = std::vector<MemberInfo>; 2105 2106 using MethodsList = TinyPtrVector<const DISubprogram *>; 2107 // MethodName -> MethodsList 2108 using MethodsMap = MapVector<MDString *, MethodsList>; 2109 2110 /// Base classes. 2111 std::vector<const DIDerivedType *> Inheritance; 2112 2113 /// Direct members. 2114 MemberList Members; 2115 // Direct overloaded methods gathered by name. 2116 MethodsMap Methods; 2117 2118 TypeIndex VShapeTI; 2119 2120 std::vector<const DIType *> NestedTypes; 2121 }; 2122 2123 void CodeViewDebug::clear() { 2124 assert(CurFn == nullptr); 2125 FileIdMap.clear(); 2126 FnDebugInfo.clear(); 2127 FileToFilepathMap.clear(); 2128 LocalUDTs.clear(); 2129 GlobalUDTs.clear(); 2130 TypeIndices.clear(); 2131 CompleteTypeIndices.clear(); 2132 ScopeGlobals.clear(); 2133 } 2134 2135 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2136 const DIDerivedType *DDTy) { 2137 if (!DDTy->getName().empty()) { 2138 Info.Members.push_back({DDTy, 0}); 2139 return; 2140 } 2141 2142 // An unnamed member may represent a nested struct or union. Attempt to 2143 // interpret the unnamed member as a DICompositeType possibly wrapped in 2144 // qualifier types. Add all the indirect fields to the current record if that 2145 // succeeds, and drop the member if that fails. 2146 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2147 uint64_t Offset = DDTy->getOffsetInBits(); 2148 const DIType *Ty = DDTy->getBaseType(); 2149 bool FullyResolved = false; 2150 while (!FullyResolved) { 2151 switch (Ty->getTag()) { 2152 case dwarf::DW_TAG_const_type: 2153 case dwarf::DW_TAG_volatile_type: 2154 // FIXME: we should apply the qualifier types to the indirect fields 2155 // rather than dropping them. 2156 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2157 break; 2158 default: 2159 FullyResolved = true; 2160 break; 2161 } 2162 } 2163 2164 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2165 if (!DCTy) 2166 return; 2167 2168 ClassInfo NestedInfo = collectClassInfo(DCTy); 2169 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2170 Info.Members.push_back( 2171 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2172 } 2173 2174 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2175 ClassInfo Info; 2176 // Add elements to structure type. 2177 DINodeArray Elements = Ty->getElements(); 2178 for (auto *Element : Elements) { 2179 // We assume that the frontend provides all members in source declaration 2180 // order, which is what MSVC does. 2181 if (!Element) 2182 continue; 2183 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2184 Info.Methods[SP->getRawName()].push_back(SP); 2185 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2186 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2187 collectMemberInfo(Info, DDTy); 2188 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2189 Info.Inheritance.push_back(DDTy); 2190 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2191 DDTy->getName() == "__vtbl_ptr_type") { 2192 Info.VShapeTI = getTypeIndex(DDTy); 2193 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2194 Info.NestedTypes.push_back(DDTy); 2195 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2196 // Ignore friend members. It appears that MSVC emitted info about 2197 // friends in the past, but modern versions do not. 2198 } 2199 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2200 Info.NestedTypes.push_back(Composite); 2201 } 2202 // Skip other unrecognized kinds of elements. 2203 } 2204 return Info; 2205 } 2206 2207 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2208 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2209 // if a complete type should be emitted instead of a forward reference. 2210 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2211 !Ty->isForwardDecl(); 2212 } 2213 2214 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2215 // Emit the complete type for unnamed structs. C++ classes with methods 2216 // which have a circular reference back to the class type are expected to 2217 // be named by the front-end and should not be "unnamed". C unnamed 2218 // structs should not have circular references. 2219 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2220 // If this unnamed complete type is already in the process of being defined 2221 // then the description of the type is malformed and cannot be emitted 2222 // into CodeView correctly so report a fatal error. 2223 auto I = CompleteTypeIndices.find(Ty); 2224 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2225 report_fatal_error("cannot debug circular reference to unnamed type"); 2226 return getCompleteTypeIndex(Ty); 2227 } 2228 2229 // First, construct the forward decl. Don't look into Ty to compute the 2230 // forward decl options, since it might not be available in all TUs. 2231 TypeRecordKind Kind = getRecordKind(Ty); 2232 ClassOptions CO = 2233 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2234 std::string FullName = getFullyQualifiedName(Ty); 2235 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2236 FullName, Ty->getIdentifier()); 2237 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2238 if (!Ty->isForwardDecl()) 2239 DeferredCompleteTypes.push_back(Ty); 2240 return FwdDeclTI; 2241 } 2242 2243 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2244 // Construct the field list and complete type record. 2245 TypeRecordKind Kind = getRecordKind(Ty); 2246 ClassOptions CO = getCommonClassOptions(Ty); 2247 TypeIndex FieldTI; 2248 TypeIndex VShapeTI; 2249 unsigned FieldCount; 2250 bool ContainsNestedClass; 2251 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2252 lowerRecordFieldList(Ty); 2253 2254 if (ContainsNestedClass) 2255 CO |= ClassOptions::ContainsNestedClass; 2256 2257 // MSVC appears to set this flag by searching any destructor or method with 2258 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2259 // the members, however special member functions are not yet emitted into 2260 // debug information. For now checking a class's non-triviality seems enough. 2261 // FIXME: not true for a nested unnamed struct. 2262 if (isNonTrivial(Ty)) 2263 CO |= ClassOptions::HasConstructorOrDestructor; 2264 2265 std::string FullName = getFullyQualifiedName(Ty); 2266 2267 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2268 2269 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2270 SizeInBytes, FullName, Ty->getIdentifier()); 2271 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2272 2273 addUDTSrcLine(Ty, ClassTI); 2274 2275 addToUDTs(Ty); 2276 2277 return ClassTI; 2278 } 2279 2280 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2281 // Emit the complete type for unnamed unions. 2282 if (shouldAlwaysEmitCompleteClassType(Ty)) 2283 return getCompleteTypeIndex(Ty); 2284 2285 ClassOptions CO = 2286 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2287 std::string FullName = getFullyQualifiedName(Ty); 2288 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2289 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2290 if (!Ty->isForwardDecl()) 2291 DeferredCompleteTypes.push_back(Ty); 2292 return FwdDeclTI; 2293 } 2294 2295 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2296 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2297 TypeIndex FieldTI; 2298 unsigned FieldCount; 2299 bool ContainsNestedClass; 2300 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2301 lowerRecordFieldList(Ty); 2302 2303 if (ContainsNestedClass) 2304 CO |= ClassOptions::ContainsNestedClass; 2305 2306 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2307 std::string FullName = getFullyQualifiedName(Ty); 2308 2309 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2310 Ty->getIdentifier()); 2311 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2312 2313 addUDTSrcLine(Ty, UnionTI); 2314 2315 addToUDTs(Ty); 2316 2317 return UnionTI; 2318 } 2319 2320 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2321 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2322 // Manually count members. MSVC appears to count everything that generates a 2323 // field list record. Each individual overload in a method overload group 2324 // contributes to this count, even though the overload group is a single field 2325 // list record. 2326 unsigned MemberCount = 0; 2327 ClassInfo Info = collectClassInfo(Ty); 2328 ContinuationRecordBuilder ContinuationBuilder; 2329 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2330 2331 // Create base classes. 2332 for (const DIDerivedType *I : Info.Inheritance) { 2333 if (I->getFlags() & DINode::FlagVirtual) { 2334 // Virtual base. 2335 unsigned VBPtrOffset = I->getVBPtrOffset(); 2336 // FIXME: Despite the accessor name, the offset is really in bytes. 2337 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2338 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2339 ? TypeRecordKind::IndirectVirtualBaseClass 2340 : TypeRecordKind::VirtualBaseClass; 2341 VirtualBaseClassRecord VBCR( 2342 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2343 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2344 VBTableIndex); 2345 2346 ContinuationBuilder.writeMemberType(VBCR); 2347 MemberCount++; 2348 } else { 2349 assert(I->getOffsetInBits() % 8 == 0 && 2350 "bases must be on byte boundaries"); 2351 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2352 getTypeIndex(I->getBaseType()), 2353 I->getOffsetInBits() / 8); 2354 ContinuationBuilder.writeMemberType(BCR); 2355 MemberCount++; 2356 } 2357 } 2358 2359 // Create members. 2360 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2361 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2362 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2363 StringRef MemberName = Member->getName(); 2364 MemberAccess Access = 2365 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2366 2367 if (Member->isStaticMember()) { 2368 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2369 ContinuationBuilder.writeMemberType(SDMR); 2370 MemberCount++; 2371 continue; 2372 } 2373 2374 // Virtual function pointer member. 2375 if ((Member->getFlags() & DINode::FlagArtificial) && 2376 Member->getName().startswith("_vptr$")) { 2377 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2378 ContinuationBuilder.writeMemberType(VFPR); 2379 MemberCount++; 2380 continue; 2381 } 2382 2383 // Data member. 2384 uint64_t MemberOffsetInBits = 2385 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2386 if (Member->isBitField()) { 2387 uint64_t StartBitOffset = MemberOffsetInBits; 2388 if (const auto *CI = 2389 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2390 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2391 } 2392 StartBitOffset -= MemberOffsetInBits; 2393 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2394 StartBitOffset); 2395 MemberBaseType = TypeTable.writeLeafType(BFR); 2396 } 2397 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2398 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2399 MemberName); 2400 ContinuationBuilder.writeMemberType(DMR); 2401 MemberCount++; 2402 } 2403 2404 // Create methods 2405 for (auto &MethodItr : Info.Methods) { 2406 StringRef Name = MethodItr.first->getString(); 2407 2408 std::vector<OneMethodRecord> Methods; 2409 for (const DISubprogram *SP : MethodItr.second) { 2410 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2411 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2412 2413 unsigned VFTableOffset = -1; 2414 if (Introduced) 2415 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2416 2417 Methods.push_back(OneMethodRecord( 2418 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2419 translateMethodKindFlags(SP, Introduced), 2420 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2421 MemberCount++; 2422 } 2423 assert(!Methods.empty() && "Empty methods map entry"); 2424 if (Methods.size() == 1) 2425 ContinuationBuilder.writeMemberType(Methods[0]); 2426 else { 2427 // FIXME: Make this use its own ContinuationBuilder so that 2428 // MethodOverloadList can be split correctly. 2429 MethodOverloadListRecord MOLR(Methods); 2430 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2431 2432 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2433 ContinuationBuilder.writeMemberType(OMR); 2434 } 2435 } 2436 2437 // Create nested classes. 2438 for (const DIType *Nested : Info.NestedTypes) { 2439 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2440 ContinuationBuilder.writeMemberType(R); 2441 MemberCount++; 2442 } 2443 2444 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2445 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2446 !Info.NestedTypes.empty()); 2447 } 2448 2449 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2450 if (!VBPType.getIndex()) { 2451 // Make a 'const int *' type. 2452 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2453 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2454 2455 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2456 : PointerKind::Near32; 2457 PointerMode PM = PointerMode::Pointer; 2458 PointerOptions PO = PointerOptions::None; 2459 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2460 VBPType = TypeTable.writeLeafType(PR); 2461 } 2462 2463 return VBPType; 2464 } 2465 2466 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2467 // The null DIType is the void type. Don't try to hash it. 2468 if (!Ty) 2469 return TypeIndex::Void(); 2470 2471 // Check if we've already translated this type. Don't try to do a 2472 // get-or-create style insertion that caches the hash lookup across the 2473 // lowerType call. It will update the TypeIndices map. 2474 auto I = TypeIndices.find({Ty, ClassTy}); 2475 if (I != TypeIndices.end()) 2476 return I->second; 2477 2478 TypeLoweringScope S(*this); 2479 TypeIndex TI = lowerType(Ty, ClassTy); 2480 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2481 } 2482 2483 codeview::TypeIndex 2484 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2485 const DISubroutineType *SubroutineTy) { 2486 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2487 "this type must be a pointer type"); 2488 2489 PointerOptions Options = PointerOptions::None; 2490 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2491 Options = PointerOptions::LValueRefThisPointer; 2492 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2493 Options = PointerOptions::RValueRefThisPointer; 2494 2495 // Check if we've already translated this type. If there is no ref qualifier 2496 // on the function then we look up this pointer type with no associated class 2497 // so that the TypeIndex for the this pointer can be shared with the type 2498 // index for other pointers to this class type. If there is a ref qualifier 2499 // then we lookup the pointer using the subroutine as the parent type. 2500 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2501 if (I != TypeIndices.end()) 2502 return I->second; 2503 2504 TypeLoweringScope S(*this); 2505 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2506 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2507 } 2508 2509 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2510 PointerRecord PR(getTypeIndex(Ty), 2511 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2512 : PointerKind::Near32, 2513 PointerMode::LValueReference, PointerOptions::None, 2514 Ty->getSizeInBits() / 8); 2515 return TypeTable.writeLeafType(PR); 2516 } 2517 2518 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2519 // The null DIType is the void type. Don't try to hash it. 2520 if (!Ty) 2521 return TypeIndex::Void(); 2522 2523 // Look through typedefs when getting the complete type index. Call 2524 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2525 // emitted only once. 2526 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2527 (void)getTypeIndex(Ty); 2528 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2529 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2530 2531 // If this is a non-record type, the complete type index is the same as the 2532 // normal type index. Just call getTypeIndex. 2533 switch (Ty->getTag()) { 2534 case dwarf::DW_TAG_class_type: 2535 case dwarf::DW_TAG_structure_type: 2536 case dwarf::DW_TAG_union_type: 2537 break; 2538 default: 2539 return getTypeIndex(Ty); 2540 } 2541 2542 const auto *CTy = cast<DICompositeType>(Ty); 2543 2544 TypeLoweringScope S(*this); 2545 2546 // Make sure the forward declaration is emitted first. It's unclear if this 2547 // is necessary, but MSVC does it, and we should follow suit until we can show 2548 // otherwise. 2549 // We only emit a forward declaration for named types. 2550 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2551 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2552 2553 // Just use the forward decl if we don't have complete type info. This 2554 // might happen if the frontend is using modules and expects the complete 2555 // definition to be emitted elsewhere. 2556 if (CTy->isForwardDecl()) 2557 return FwdDeclTI; 2558 } 2559 2560 // Check if we've already translated the complete record type. 2561 // Insert the type with a null TypeIndex to signify that the type is currently 2562 // being lowered. 2563 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2564 if (!InsertResult.second) 2565 return InsertResult.first->second; 2566 2567 TypeIndex TI; 2568 switch (CTy->getTag()) { 2569 case dwarf::DW_TAG_class_type: 2570 case dwarf::DW_TAG_structure_type: 2571 TI = lowerCompleteTypeClass(CTy); 2572 break; 2573 case dwarf::DW_TAG_union_type: 2574 TI = lowerCompleteTypeUnion(CTy); 2575 break; 2576 default: 2577 llvm_unreachable("not a record"); 2578 } 2579 2580 // Update the type index associated with this CompositeType. This cannot 2581 // use the 'InsertResult' iterator above because it is potentially 2582 // invalidated by map insertions which can occur while lowering the class 2583 // type above. 2584 CompleteTypeIndices[CTy] = TI; 2585 return TI; 2586 } 2587 2588 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2589 /// and do this until fixpoint, as each complete record type typically 2590 /// references 2591 /// many other record types. 2592 void CodeViewDebug::emitDeferredCompleteTypes() { 2593 SmallVector<const DICompositeType *, 4> TypesToEmit; 2594 while (!DeferredCompleteTypes.empty()) { 2595 std::swap(DeferredCompleteTypes, TypesToEmit); 2596 for (const DICompositeType *RecordTy : TypesToEmit) 2597 getCompleteTypeIndex(RecordTy); 2598 TypesToEmit.clear(); 2599 } 2600 } 2601 2602 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2603 ArrayRef<LocalVariable> Locals) { 2604 // Get the sorted list of parameters and emit them first. 2605 SmallVector<const LocalVariable *, 6> Params; 2606 for (const LocalVariable &L : Locals) 2607 if (L.DIVar->isParameter()) 2608 Params.push_back(&L); 2609 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2610 return L->DIVar->getArg() < R->DIVar->getArg(); 2611 }); 2612 for (const LocalVariable *L : Params) 2613 emitLocalVariable(FI, *L); 2614 2615 // Next emit all non-parameters in the order that we found them. 2616 for (const LocalVariable &L : Locals) 2617 if (!L.DIVar->isParameter()) 2618 emitLocalVariable(FI, L); 2619 } 2620 2621 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2622 const LocalVariable &Var) { 2623 // LocalSym record, see SymbolRecord.h for more info. 2624 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2625 2626 LocalSymFlags Flags = LocalSymFlags::None; 2627 if (Var.DIVar->isParameter()) 2628 Flags |= LocalSymFlags::IsParameter; 2629 if (Var.DefRanges.empty()) 2630 Flags |= LocalSymFlags::IsOptimizedOut; 2631 2632 OS.AddComment("TypeIndex"); 2633 TypeIndex TI = Var.UseReferenceType 2634 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2635 : getCompleteTypeIndex(Var.DIVar->getType()); 2636 OS.emitInt32(TI.getIndex()); 2637 OS.AddComment("Flags"); 2638 OS.emitInt16(static_cast<uint16_t>(Flags)); 2639 // Truncate the name so we won't overflow the record length field. 2640 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2641 endSymbolRecord(LocalEnd); 2642 2643 // Calculate the on disk prefix of the appropriate def range record. The 2644 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2645 // should be big enough to hold all forms without memory allocation. 2646 SmallString<20> BytePrefix; 2647 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2648 BytePrefix.clear(); 2649 if (DefRange.InMemory) { 2650 int Offset = DefRange.DataOffset; 2651 unsigned Reg = DefRange.CVRegister; 2652 2653 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2654 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2655 // instead. In frames without stack realignment, $T0 will be the CFA. 2656 if (RegisterId(Reg) == RegisterId::ESP) { 2657 Reg = unsigned(RegisterId::VFRAME); 2658 Offset += FI.OffsetAdjustment; 2659 } 2660 2661 // If we can use the chosen frame pointer for the frame and this isn't a 2662 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2663 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2664 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2665 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2666 (bool(Flags & LocalSymFlags::IsParameter) 2667 ? (EncFP == FI.EncodedParamFramePtrReg) 2668 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2669 DefRangeFramePointerRelHeader DRHdr; 2670 DRHdr.Offset = Offset; 2671 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2672 } else { 2673 uint16_t RegRelFlags = 0; 2674 if (DefRange.IsSubfield) { 2675 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2676 (DefRange.StructOffset 2677 << DefRangeRegisterRelSym::OffsetInParentShift); 2678 } 2679 DefRangeRegisterRelHeader DRHdr; 2680 DRHdr.Register = Reg; 2681 DRHdr.Flags = RegRelFlags; 2682 DRHdr.BasePointerOffset = Offset; 2683 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2684 } 2685 } else { 2686 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2687 if (DefRange.IsSubfield) { 2688 DefRangeSubfieldRegisterHeader DRHdr; 2689 DRHdr.Register = DefRange.CVRegister; 2690 DRHdr.MayHaveNoName = 0; 2691 DRHdr.OffsetInParent = DefRange.StructOffset; 2692 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2693 } else { 2694 DefRangeRegisterHeader DRHdr; 2695 DRHdr.Register = DefRange.CVRegister; 2696 DRHdr.MayHaveNoName = 0; 2697 OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2698 } 2699 } 2700 } 2701 } 2702 2703 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2704 const FunctionInfo& FI) { 2705 for (LexicalBlock *Block : Blocks) 2706 emitLexicalBlock(*Block, FI); 2707 } 2708 2709 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2710 /// lexical block scope. 2711 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2712 const FunctionInfo& FI) { 2713 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2714 OS.AddComment("PtrParent"); 2715 OS.emitInt32(0); // PtrParent 2716 OS.AddComment("PtrEnd"); 2717 OS.emitInt32(0); // PtrEnd 2718 OS.AddComment("Code size"); 2719 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2720 OS.AddComment("Function section relative address"); 2721 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2722 OS.AddComment("Function section index"); 2723 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2724 OS.AddComment("Lexical block name"); 2725 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2726 endSymbolRecord(RecordEnd); 2727 2728 // Emit variables local to this lexical block. 2729 emitLocalVariableList(FI, Block.Locals); 2730 emitGlobalVariableList(Block.Globals); 2731 2732 // Emit lexical blocks contained within this block. 2733 emitLexicalBlockList(Block.Children, FI); 2734 2735 // Close the lexical block scope. 2736 emitEndSymbolRecord(SymbolKind::S_END); 2737 } 2738 2739 /// Convenience routine for collecting lexical block information for a list 2740 /// of lexical scopes. 2741 void CodeViewDebug::collectLexicalBlockInfo( 2742 SmallVectorImpl<LexicalScope *> &Scopes, 2743 SmallVectorImpl<LexicalBlock *> &Blocks, 2744 SmallVectorImpl<LocalVariable> &Locals, 2745 SmallVectorImpl<CVGlobalVariable> &Globals) { 2746 for (LexicalScope *Scope : Scopes) 2747 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2748 } 2749 2750 /// Populate the lexical blocks and local variable lists of the parent with 2751 /// information about the specified lexical scope. 2752 void CodeViewDebug::collectLexicalBlockInfo( 2753 LexicalScope &Scope, 2754 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2755 SmallVectorImpl<LocalVariable> &ParentLocals, 2756 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2757 if (Scope.isAbstractScope()) 2758 return; 2759 2760 // Gather information about the lexical scope including local variables, 2761 // global variables, and address ranges. 2762 bool IgnoreScope = false; 2763 auto LI = ScopeVariables.find(&Scope); 2764 SmallVectorImpl<LocalVariable> *Locals = 2765 LI != ScopeVariables.end() ? &LI->second : nullptr; 2766 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2767 SmallVectorImpl<CVGlobalVariable> *Globals = 2768 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2769 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2770 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2771 2772 // Ignore lexical scopes which do not contain variables. 2773 if (!Locals && !Globals) 2774 IgnoreScope = true; 2775 2776 // Ignore lexical scopes which are not lexical blocks. 2777 if (!DILB) 2778 IgnoreScope = true; 2779 2780 // Ignore scopes which have too many address ranges to represent in the 2781 // current CodeView format or do not have a valid address range. 2782 // 2783 // For lexical scopes with multiple address ranges you may be tempted to 2784 // construct a single range covering every instruction where the block is 2785 // live and everything in between. Unfortunately, Visual Studio only 2786 // displays variables from the first matching lexical block scope. If the 2787 // first lexical block contains exception handling code or cold code which 2788 // is moved to the bottom of the routine creating a single range covering 2789 // nearly the entire routine, then it will hide all other lexical blocks 2790 // and the variables they contain. 2791 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2792 IgnoreScope = true; 2793 2794 if (IgnoreScope) { 2795 // This scope can be safely ignored and eliminating it will reduce the 2796 // size of the debug information. Be sure to collect any variable and scope 2797 // information from the this scope or any of its children and collapse them 2798 // into the parent scope. 2799 if (Locals) 2800 ParentLocals.append(Locals->begin(), Locals->end()); 2801 if (Globals) 2802 ParentGlobals.append(Globals->begin(), Globals->end()); 2803 collectLexicalBlockInfo(Scope.getChildren(), 2804 ParentBlocks, 2805 ParentLocals, 2806 ParentGlobals); 2807 return; 2808 } 2809 2810 // Create a new CodeView lexical block for this lexical scope. If we've 2811 // seen this DILexicalBlock before then the scope tree is malformed and 2812 // we can handle this gracefully by not processing it a second time. 2813 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2814 if (!BlockInsertion.second) 2815 return; 2816 2817 // Create a lexical block containing the variables and collect the the 2818 // lexical block information for the children. 2819 const InsnRange &Range = Ranges.front(); 2820 assert(Range.first && Range.second); 2821 LexicalBlock &Block = BlockInsertion.first->second; 2822 Block.Begin = getLabelBeforeInsn(Range.first); 2823 Block.End = getLabelAfterInsn(Range.second); 2824 assert(Block.Begin && "missing label for scope begin"); 2825 assert(Block.End && "missing label for scope end"); 2826 Block.Name = DILB->getName(); 2827 if (Locals) 2828 Block.Locals = std::move(*Locals); 2829 if (Globals) 2830 Block.Globals = std::move(*Globals); 2831 ParentBlocks.push_back(&Block); 2832 collectLexicalBlockInfo(Scope.getChildren(), 2833 Block.Children, 2834 Block.Locals, 2835 Block.Globals); 2836 } 2837 2838 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2839 const Function &GV = MF->getFunction(); 2840 assert(FnDebugInfo.count(&GV)); 2841 assert(CurFn == FnDebugInfo[&GV].get()); 2842 2843 collectVariableInfo(GV.getSubprogram()); 2844 2845 // Build the lexical block structure to emit for this routine. 2846 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2847 collectLexicalBlockInfo(*CFS, 2848 CurFn->ChildBlocks, 2849 CurFn->Locals, 2850 CurFn->Globals); 2851 2852 // Clear the scope and variable information from the map which will not be 2853 // valid after we have finished processing this routine. This also prepares 2854 // the map for the subsequent routine. 2855 ScopeVariables.clear(); 2856 2857 // Don't emit anything if we don't have any line tables. 2858 // Thunks are compiler-generated and probably won't have source correlation. 2859 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2860 FnDebugInfo.erase(&GV); 2861 CurFn = nullptr; 2862 return; 2863 } 2864 2865 // Find heap alloc sites and add to list. 2866 for (const auto &MBB : *MF) { 2867 for (const auto &MI : MBB) { 2868 if (MDNode *MD = MI.getHeapAllocMarker()) { 2869 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2870 getLabelAfterInsn(&MI), 2871 dyn_cast<DIType>(MD))); 2872 } 2873 } 2874 } 2875 2876 CurFn->Annotations = MF->getCodeViewAnnotations(); 2877 2878 CurFn->End = Asm->getFunctionEnd(); 2879 2880 CurFn = nullptr; 2881 } 2882 2883 // Usable locations are valid with non-zero line numbers. A line number of zero 2884 // corresponds to optimized code that doesn't have a distinct source location. 2885 // In this case, we try to use the previous or next source location depending on 2886 // the context. 2887 static bool isUsableDebugLoc(DebugLoc DL) { 2888 return DL && DL.getLine() != 0; 2889 } 2890 2891 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2892 DebugHandlerBase::beginInstruction(MI); 2893 2894 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2895 if (!Asm || !CurFn || MI->isDebugInstr() || 2896 MI->getFlag(MachineInstr::FrameSetup)) 2897 return; 2898 2899 // If the first instruction of a new MBB has no location, find the first 2900 // instruction with a location and use that. 2901 DebugLoc DL = MI->getDebugLoc(); 2902 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2903 for (const auto &NextMI : *MI->getParent()) { 2904 if (NextMI.isDebugInstr()) 2905 continue; 2906 DL = NextMI.getDebugLoc(); 2907 if (isUsableDebugLoc(DL)) 2908 break; 2909 } 2910 // FIXME: Handle the case where the BB has no valid locations. This would 2911 // probably require doing a real dataflow analysis. 2912 } 2913 PrevInstBB = MI->getParent(); 2914 2915 // If we still don't have a debug location, don't record a location. 2916 if (!isUsableDebugLoc(DL)) 2917 return; 2918 2919 maybeRecordLocation(DL, Asm->MF); 2920 } 2921 2922 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2923 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2924 *EndLabel = MMI->getContext().createTempSymbol(); 2925 OS.emitInt32(unsigned(Kind)); 2926 OS.AddComment("Subsection size"); 2927 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2928 OS.emitLabel(BeginLabel); 2929 return EndLabel; 2930 } 2931 2932 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2933 OS.emitLabel(EndLabel); 2934 // Every subsection must be aligned to a 4-byte boundary. 2935 OS.emitValueToAlignment(4); 2936 } 2937 2938 static StringRef getSymbolName(SymbolKind SymKind) { 2939 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2940 if (EE.Value == SymKind) 2941 return EE.Name; 2942 return ""; 2943 } 2944 2945 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2946 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2947 *EndLabel = MMI->getContext().createTempSymbol(); 2948 OS.AddComment("Record length"); 2949 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2950 OS.emitLabel(BeginLabel); 2951 if (OS.isVerboseAsm()) 2952 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2953 OS.emitInt16(unsigned(SymKind)); 2954 return EndLabel; 2955 } 2956 2957 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2958 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2959 // an extra copy of every symbol record in LLD. This increases object file 2960 // size by less than 1% in the clang build, and is compatible with the Visual 2961 // C++ linker. 2962 OS.emitValueToAlignment(4); 2963 OS.emitLabel(SymEnd); 2964 } 2965 2966 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2967 OS.AddComment("Record length"); 2968 OS.emitInt16(2); 2969 if (OS.isVerboseAsm()) 2970 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2971 OS.emitInt16(uint16_t(EndKind)); // Record Kind 2972 } 2973 2974 void CodeViewDebug::emitDebugInfoForUDTs( 2975 const std::vector<std::pair<std::string, const DIType *>> &UDTs) { 2976 #ifndef NDEBUG 2977 size_t OriginalSize = UDTs.size(); 2978 #endif 2979 for (const auto &UDT : UDTs) { 2980 const DIType *T = UDT.second; 2981 assert(shouldEmitUdt(T)); 2982 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2983 OS.AddComment("Type"); 2984 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 2985 assert(OriginalSize == UDTs.size() && 2986 "getCompleteTypeIndex found new UDTs!"); 2987 emitNullTerminatedSymbolName(OS, UDT.first); 2988 endSymbolRecord(UDTRecordEnd); 2989 } 2990 } 2991 2992 void CodeViewDebug::collectGlobalVariableInfo() { 2993 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2994 GlobalMap; 2995 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2996 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2997 GV.getDebugInfo(GVEs); 2998 for (const auto *GVE : GVEs) 2999 GlobalMap[GVE] = &GV; 3000 } 3001 3002 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3003 for (const MDNode *Node : CUs->operands()) { 3004 const auto *CU = cast<DICompileUnit>(Node); 3005 for (const auto *GVE : CU->getGlobalVariables()) { 3006 const DIGlobalVariable *DIGV = GVE->getVariable(); 3007 const DIExpression *DIE = GVE->getExpression(); 3008 3009 // Emit constant global variables in a global symbol section. 3010 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3011 CVGlobalVariable CVGV = {DIGV, DIE}; 3012 GlobalVariables.emplace_back(std::move(CVGV)); 3013 } 3014 3015 const auto *GV = GlobalMap.lookup(GVE); 3016 if (!GV || GV->isDeclarationForLinker()) 3017 continue; 3018 3019 DIScope *Scope = DIGV->getScope(); 3020 SmallVector<CVGlobalVariable, 1> *VariableList; 3021 if (Scope && isa<DILocalScope>(Scope)) { 3022 // Locate a global variable list for this scope, creating one if 3023 // necessary. 3024 auto Insertion = ScopeGlobals.insert( 3025 {Scope, std::unique_ptr<GlobalVariableList>()}); 3026 if (Insertion.second) 3027 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3028 VariableList = Insertion.first->second.get(); 3029 } else if (GV->hasComdat()) 3030 // Emit this global variable into a COMDAT section. 3031 VariableList = &ComdatVariables; 3032 else 3033 // Emit this global variable in a single global symbol section. 3034 VariableList = &GlobalVariables; 3035 CVGlobalVariable CVGV = {DIGV, GV}; 3036 VariableList->emplace_back(std::move(CVGV)); 3037 } 3038 } 3039 } 3040 3041 void CodeViewDebug::emitDebugInfoForGlobals() { 3042 // First, emit all globals that are not in a comdat in a single symbol 3043 // substream. MSVC doesn't like it if the substream is empty, so only open 3044 // it if we have at least one global to emit. 3045 switchToDebugSectionForSymbol(nullptr); 3046 if (!GlobalVariables.empty()) { 3047 OS.AddComment("Symbol subsection for globals"); 3048 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3049 emitGlobalVariableList(GlobalVariables); 3050 endCVSubsection(EndLabel); 3051 } 3052 3053 // Second, emit each global that is in a comdat into its own .debug$S 3054 // section along with its own symbol substream. 3055 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3056 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3057 MCSymbol *GVSym = Asm->getSymbol(GV); 3058 OS.AddComment("Symbol subsection for " + 3059 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3060 switchToDebugSectionForSymbol(GVSym); 3061 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3062 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3063 emitDebugInfoForGlobal(CVGV); 3064 endCVSubsection(EndLabel); 3065 } 3066 } 3067 3068 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3069 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3070 for (const MDNode *Node : CUs->operands()) { 3071 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3072 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3073 getTypeIndex(RT); 3074 // FIXME: Add to global/local DTU list. 3075 } 3076 } 3077 } 3078 } 3079 3080 // Emit each global variable in the specified array. 3081 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3082 for (const CVGlobalVariable &CVGV : Globals) { 3083 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3084 emitDebugInfoForGlobal(CVGV); 3085 } 3086 } 3087 3088 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3089 const DIGlobalVariable *DIGV = CVGV.DIGV; 3090 3091 const DIScope *Scope = DIGV->getScope(); 3092 // For static data members, get the scope from the declaration. 3093 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3094 DIGV->getRawStaticDataMemberDeclaration())) 3095 Scope = MemberDecl->getScope(); 3096 std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName()); 3097 3098 if (const GlobalVariable *GV = 3099 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3100 // DataSym record, see SymbolRecord.h for more info. Thread local data 3101 // happens to have the same format as global data. 3102 MCSymbol *GVSym = Asm->getSymbol(GV); 3103 SymbolKind DataSym = GV->isThreadLocal() 3104 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3105 : SymbolKind::S_GTHREAD32) 3106 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3107 : SymbolKind::S_GDATA32); 3108 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3109 OS.AddComment("Type"); 3110 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3111 OS.AddComment("DataOffset"); 3112 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3113 OS.AddComment("Segment"); 3114 OS.EmitCOFFSectionIndex(GVSym); 3115 OS.AddComment("Name"); 3116 const unsigned LengthOfDataRecord = 12; 3117 emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord); 3118 endSymbolRecord(DataEnd); 3119 } else { 3120 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3121 assert(DIE->isConstant() && 3122 "Global constant variables must contain a constant expression."); 3123 uint64_t Val = DIE->getElement(1); 3124 3125 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3126 OS.AddComment("Type"); 3127 OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex()); 3128 OS.AddComment("Value"); 3129 3130 // Encoded integers shouldn't need more than 10 bytes. 3131 uint8_t data[10]; 3132 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3133 CodeViewRecordIO IO(Writer); 3134 cantFail(IO.mapEncodedInteger(Val)); 3135 StringRef SRef((char *)data, Writer.getOffset()); 3136 OS.emitBinaryData(SRef); 3137 3138 OS.AddComment("Name"); 3139 emitNullTerminatedSymbolName(OS, QualifiedName); 3140 endSymbolRecord(SConstantEnd); 3141 } 3142 } 3143