1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineModuleInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/TargetFrameLowering.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/Config/llvm-config.h" 43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 44 #include "llvm/DebugInfo/CodeView/CodeView.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/Path.h" 77 #include "llvm/Support/SMLoc.h" 78 #include "llvm/Support/ScopedPrinter.h" 79 #include "llvm/Target/TargetLoweringObjectFile.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cctype> 84 #include <cstddef> 85 #include <cstdint> 86 #include <iterator> 87 #include <limits> 88 #include <string> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 using namespace llvm::codeview; 94 95 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section", 96 cl::ReallyHidden, cl::init(false)); 97 98 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 99 switch (Type) { 100 case Triple::ArchType::x86: 101 return CPUType::Pentium3; 102 case Triple::ArchType::x86_64: 103 return CPUType::X64; 104 case Triple::ArchType::thumb: 105 return CPUType::Thumb; 106 case Triple::ArchType::aarch64: 107 return CPUType::ARM64; 108 default: 109 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 110 } 111 } 112 113 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 114 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 115 // If module doesn't have named metadata anchors or COFF debug section 116 // is not available, skip any debug info related stuff. 117 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 118 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 119 Asm = nullptr; 120 return; 121 } 122 // Tell MMI that we have debug info. 123 MMI->setDebugInfoAvailability(true); 124 125 TheCPU = 126 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 127 } 128 129 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 130 std::string &Filepath = FileToFilepathMap[File]; 131 if (!Filepath.empty()) 132 return Filepath; 133 134 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 135 136 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 137 // it textually because one of the path components could be a symlink. 138 if (Dir.startswith("/") || Filename.startswith("/")) { 139 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 140 return Filename; 141 Filepath = Dir; 142 if (Dir.back() != '/') 143 Filepath += '/'; 144 Filepath += Filename; 145 return Filepath; 146 } 147 148 // Clang emits directory and relative filename info into the IR, but CodeView 149 // operates on full paths. We could change Clang to emit full paths too, but 150 // that would increase the IR size and probably not needed for other users. 151 // For now, just concatenate and canonicalize the path here. 152 if (Filename.find(':') == 1) 153 Filepath = Filename; 154 else 155 Filepath = (Dir + "\\" + Filename).str(); 156 157 // Canonicalize the path. We have to do it textually because we may no longer 158 // have access the file in the filesystem. 159 // First, replace all slashes with backslashes. 160 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 161 162 // Remove all "\.\" with "\". 163 size_t Cursor = 0; 164 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 165 Filepath.erase(Cursor, 2); 166 167 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 168 // path should be well-formatted, e.g. start with a drive letter, etc. 169 Cursor = 0; 170 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 171 // Something's wrong if the path starts with "\..\", abort. 172 if (Cursor == 0) 173 break; 174 175 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 176 if (PrevSlash == std::string::npos) 177 // Something's wrong, abort. 178 break; 179 180 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 181 // The next ".." might be following the one we've just erased. 182 Cursor = PrevSlash; 183 } 184 185 // Remove all duplicate backslashes. 186 Cursor = 0; 187 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 188 Filepath.erase(Cursor, 1); 189 190 return Filepath; 191 } 192 193 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 194 StringRef FullPath = getFullFilepath(F); 195 unsigned NextId = FileIdMap.size() + 1; 196 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 197 if (Insertion.second) { 198 // We have to compute the full filepath and emit a .cv_file directive. 199 ArrayRef<uint8_t> ChecksumAsBytes; 200 FileChecksumKind CSKind = FileChecksumKind::None; 201 if (F->getChecksum()) { 202 std::string Checksum = fromHex(F->getChecksum()->Value); 203 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 204 memcpy(CKMem, Checksum.data(), Checksum.size()); 205 ChecksumAsBytes = ArrayRef<uint8_t>( 206 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 207 switch (F->getChecksum()->Kind) { 208 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 209 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 210 } 211 } 212 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 213 static_cast<unsigned>(CSKind)); 214 (void)Success; 215 assert(Success && ".cv_file directive failed"); 216 } 217 return Insertion.first->second; 218 } 219 220 CodeViewDebug::InlineSite & 221 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 222 const DISubprogram *Inlinee) { 223 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 224 InlineSite *Site = &SiteInsertion.first->second; 225 if (SiteInsertion.second) { 226 unsigned ParentFuncId = CurFn->FuncId; 227 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 228 ParentFuncId = 229 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 230 .SiteFuncId; 231 232 Site->SiteFuncId = NextFuncId++; 233 OS.EmitCVInlineSiteIdDirective( 234 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 235 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 236 Site->Inlinee = Inlinee; 237 InlinedSubprograms.insert(Inlinee); 238 getFuncIdForSubprogram(Inlinee); 239 } 240 return *Site; 241 } 242 243 static StringRef getPrettyScopeName(const DIScope *Scope) { 244 StringRef ScopeName = Scope->getName(); 245 if (!ScopeName.empty()) 246 return ScopeName; 247 248 switch (Scope->getTag()) { 249 case dwarf::DW_TAG_enumeration_type: 250 case dwarf::DW_TAG_class_type: 251 case dwarf::DW_TAG_structure_type: 252 case dwarf::DW_TAG_union_type: 253 return "<unnamed-tag>"; 254 case dwarf::DW_TAG_namespace: 255 return "`anonymous namespace'"; 256 } 257 258 return StringRef(); 259 } 260 261 static const DISubprogram *getQualifiedNameComponents( 262 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 263 const DISubprogram *ClosestSubprogram = nullptr; 264 while (Scope != nullptr) { 265 if (ClosestSubprogram == nullptr) 266 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 267 StringRef ScopeName = getPrettyScopeName(Scope); 268 if (!ScopeName.empty()) 269 QualifiedNameComponents.push_back(ScopeName); 270 Scope = Scope->getScope().resolve(); 271 } 272 return ClosestSubprogram; 273 } 274 275 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 276 StringRef TypeName) { 277 std::string FullyQualifiedName; 278 for (StringRef QualifiedNameComponent : 279 llvm::reverse(QualifiedNameComponents)) { 280 FullyQualifiedName.append(QualifiedNameComponent); 281 FullyQualifiedName.append("::"); 282 } 283 FullyQualifiedName.append(TypeName); 284 return FullyQualifiedName; 285 } 286 287 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 288 SmallVector<StringRef, 5> QualifiedNameComponents; 289 getQualifiedNameComponents(Scope, QualifiedNameComponents); 290 return getQualifiedName(QualifiedNameComponents, Name); 291 } 292 293 struct CodeViewDebug::TypeLoweringScope { 294 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 295 ~TypeLoweringScope() { 296 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 297 // inner TypeLoweringScopes don't attempt to emit deferred types. 298 if (CVD.TypeEmissionLevel == 1) 299 CVD.emitDeferredCompleteTypes(); 300 --CVD.TypeEmissionLevel; 301 } 302 CodeViewDebug &CVD; 303 }; 304 305 static std::string getFullyQualifiedName(const DIScope *Ty) { 306 const DIScope *Scope = Ty->getScope().resolve(); 307 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 308 } 309 310 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 311 // No scope means global scope and that uses the zero index. 312 if (!Scope || isa<DIFile>(Scope)) 313 return TypeIndex(); 314 315 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 316 317 // Check if we've already translated this scope. 318 auto I = TypeIndices.find({Scope, nullptr}); 319 if (I != TypeIndices.end()) 320 return I->second; 321 322 // Build the fully qualified name of the scope. 323 std::string ScopeName = getFullyQualifiedName(Scope); 324 StringIdRecord SID(TypeIndex(), ScopeName); 325 auto TI = TypeTable.writeLeafType(SID); 326 return recordTypeIndexForDINode(Scope, TI); 327 } 328 329 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 330 assert(SP); 331 332 // Check if we've already translated this subprogram. 333 auto I = TypeIndices.find({SP, nullptr}); 334 if (I != TypeIndices.end()) 335 return I->second; 336 337 // The display name includes function template arguments. Drop them to match 338 // MSVC. 339 StringRef DisplayName = SP->getName().split('<').first; 340 341 const DIScope *Scope = SP->getScope().resolve(); 342 TypeIndex TI; 343 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 344 // If the scope is a DICompositeType, then this must be a method. Member 345 // function types take some special handling, and require access to the 346 // subprogram. 347 TypeIndex ClassType = getTypeIndex(Class); 348 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 349 DisplayName); 350 TI = TypeTable.writeLeafType(MFuncId); 351 } else { 352 // Otherwise, this must be a free function. 353 TypeIndex ParentScope = getScopeIndex(Scope); 354 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 355 TI = TypeTable.writeLeafType(FuncId); 356 } 357 358 return recordTypeIndexForDINode(SP, TI); 359 } 360 361 static bool isTrivial(const DICompositeType *DCTy) { 362 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 363 } 364 365 static FunctionOptions 366 getFunctionOptions(const DISubroutineType *Ty, 367 const DICompositeType *ClassTy = nullptr, 368 StringRef SPName = StringRef("")) { 369 FunctionOptions FO = FunctionOptions::None; 370 const DIType *ReturnTy = nullptr; 371 if (auto TypeArray = Ty->getTypeArray()) { 372 if (TypeArray.size()) 373 ReturnTy = TypeArray[0].resolve(); 374 } 375 376 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 377 if (!isTrivial(ReturnDCTy)) 378 FO |= FunctionOptions::CxxReturnUdt; 379 } 380 381 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 382 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 383 FO |= FunctionOptions::Constructor; 384 385 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 386 387 } 388 return FO; 389 } 390 391 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 392 const DICompositeType *Class) { 393 // Always use the method declaration as the key for the function type. The 394 // method declaration contains the this adjustment. 395 if (SP->getDeclaration()) 396 SP = SP->getDeclaration(); 397 assert(!SP->getDeclaration() && "should use declaration as key"); 398 399 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 400 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 401 auto I = TypeIndices.find({SP, Class}); 402 if (I != TypeIndices.end()) 403 return I->second; 404 405 // Make sure complete type info for the class is emitted *after* the member 406 // function type, as the complete class type is likely to reference this 407 // member function type. 408 TypeLoweringScope S(*this); 409 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 410 411 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 412 TypeIndex TI = lowerTypeMemberFunction( 413 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 414 return recordTypeIndexForDINode(SP, TI, Class); 415 } 416 417 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 418 TypeIndex TI, 419 const DIType *ClassTy) { 420 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 421 (void)InsertResult; 422 assert(InsertResult.second && "DINode was already assigned a type index"); 423 return TI; 424 } 425 426 unsigned CodeViewDebug::getPointerSizeInBytes() { 427 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 428 } 429 430 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 431 const LexicalScope *LS) { 432 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 433 // This variable was inlined. Associate it with the InlineSite. 434 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 435 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 436 Site.InlinedLocals.emplace_back(Var); 437 } else { 438 // This variable goes into the corresponding lexical scope. 439 ScopeVariables[LS].emplace_back(Var); 440 } 441 } 442 443 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 444 const DILocation *Loc) { 445 auto B = Locs.begin(), E = Locs.end(); 446 if (std::find(B, E, Loc) == E) 447 Locs.push_back(Loc); 448 } 449 450 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 451 const MachineFunction *MF) { 452 // Skip this instruction if it has the same location as the previous one. 453 if (!DL || DL == PrevInstLoc) 454 return; 455 456 const DIScope *Scope = DL.get()->getScope(); 457 if (!Scope) 458 return; 459 460 // Skip this line if it is longer than the maximum we can record. 461 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 462 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 463 LI.isNeverStepInto()) 464 return; 465 466 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 467 if (CI.getStartColumn() != DL.getCol()) 468 return; 469 470 if (!CurFn->HaveLineInfo) 471 CurFn->HaveLineInfo = true; 472 unsigned FileId = 0; 473 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 474 FileId = CurFn->LastFileId; 475 else 476 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 477 PrevInstLoc = DL; 478 479 unsigned FuncId = CurFn->FuncId; 480 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 481 const DILocation *Loc = DL.get(); 482 483 // If this location was actually inlined from somewhere else, give it the ID 484 // of the inline call site. 485 FuncId = 486 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 487 488 // Ensure we have links in the tree of inline call sites. 489 bool FirstLoc = true; 490 while ((SiteLoc = Loc->getInlinedAt())) { 491 InlineSite &Site = 492 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 493 if (!FirstLoc) 494 addLocIfNotPresent(Site.ChildSites, Loc); 495 FirstLoc = false; 496 Loc = SiteLoc; 497 } 498 addLocIfNotPresent(CurFn->ChildSites, Loc); 499 } 500 501 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 502 /*PrologueEnd=*/false, /*IsStmt=*/false, 503 DL->getFilename(), SMLoc()); 504 } 505 506 void CodeViewDebug::emitCodeViewMagicVersion() { 507 OS.EmitValueToAlignment(4); 508 OS.AddComment("Debug section magic"); 509 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 510 } 511 512 void CodeViewDebug::endModule() { 513 if (!Asm || !MMI->hasDebugInfo()) 514 return; 515 516 assert(Asm != nullptr); 517 518 // The COFF .debug$S section consists of several subsections, each starting 519 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 520 // of the payload followed by the payload itself. The subsections are 4-byte 521 // aligned. 522 523 // Use the generic .debug$S section, and make a subsection for all the inlined 524 // subprograms. 525 switchToDebugSectionForSymbol(nullptr); 526 527 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 528 emitCompilerInformation(); 529 endCVSubsection(CompilerInfo); 530 531 emitInlineeLinesSubsection(); 532 533 // Emit per-function debug information. 534 for (auto &P : FnDebugInfo) 535 if (!P.first->isDeclarationForLinker()) 536 emitDebugInfoForFunction(P.first, *P.second); 537 538 // Emit global variable debug information. 539 setCurrentSubprogram(nullptr); 540 emitDebugInfoForGlobals(); 541 542 // Emit retained types. 543 emitDebugInfoForRetainedTypes(); 544 545 // Switch back to the generic .debug$S section after potentially processing 546 // comdat symbol sections. 547 switchToDebugSectionForSymbol(nullptr); 548 549 // Emit UDT records for any types used by global variables. 550 if (!GlobalUDTs.empty()) { 551 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 552 emitDebugInfoForUDTs(GlobalUDTs); 553 endCVSubsection(SymbolsEnd); 554 } 555 556 // This subsection holds a file index to offset in string table table. 557 OS.AddComment("File index to string table offset subsection"); 558 OS.EmitCVFileChecksumsDirective(); 559 560 // This subsection holds the string table. 561 OS.AddComment("String table"); 562 OS.EmitCVStringTableDirective(); 563 564 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 565 // subsection in the generic .debug$S section at the end. There is no 566 // particular reason for this ordering other than to match MSVC. 567 emitBuildInfo(); 568 569 // Emit type information and hashes last, so that any types we translate while 570 // emitting function info are included. 571 emitTypeInformation(); 572 573 if (EmitDebugGlobalHashes) 574 emitTypeGlobalHashes(); 575 576 clear(); 577 } 578 579 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 580 unsigned MaxFixedRecordLength = 0xF00) { 581 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 582 // after a fixed length portion of the record. The fixed length portion should 583 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 584 // overall record size is less than the maximum allowed. 585 SmallString<32> NullTerminatedString( 586 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 587 NullTerminatedString.push_back('\0'); 588 OS.EmitBytes(NullTerminatedString); 589 } 590 591 void CodeViewDebug::emitTypeInformation() { 592 if (TypeTable.empty()) 593 return; 594 595 // Start the .debug$T or .debug$P section with 0x4. 596 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 597 emitCodeViewMagicVersion(); 598 599 SmallString<8> CommentPrefix; 600 if (OS.isVerboseAsm()) { 601 CommentPrefix += '\t'; 602 CommentPrefix += Asm->MAI->getCommentString(); 603 CommentPrefix += ' '; 604 } 605 606 TypeTableCollection Table(TypeTable.records()); 607 Optional<TypeIndex> B = Table.getFirst(); 608 while (B) { 609 // This will fail if the record data is invalid. 610 CVType Record = Table.getType(*B); 611 612 if (OS.isVerboseAsm()) { 613 // Emit a block comment describing the type record for readability. 614 SmallString<512> CommentBlock; 615 raw_svector_ostream CommentOS(CommentBlock); 616 ScopedPrinter SP(CommentOS); 617 SP.setPrefix(CommentPrefix); 618 TypeDumpVisitor TDV(Table, &SP, false); 619 620 Error E = codeview::visitTypeRecord(Record, *B, TDV); 621 if (E) { 622 logAllUnhandledErrors(std::move(E), errs(), "error: "); 623 llvm_unreachable("produced malformed type record"); 624 } 625 // emitRawComment will insert its own tab and comment string before 626 // the first line, so strip off our first one. It also prints its own 627 // newline. 628 OS.emitRawComment( 629 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 630 } 631 OS.EmitBinaryData(Record.str_data()); 632 B = Table.getNext(*B); 633 } 634 } 635 636 void CodeViewDebug::emitTypeGlobalHashes() { 637 if (TypeTable.empty()) 638 return; 639 640 // Start the .debug$H section with the version and hash algorithm, currently 641 // hardcoded to version 0, SHA1. 642 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 643 644 OS.EmitValueToAlignment(4); 645 OS.AddComment("Magic"); 646 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 647 OS.AddComment("Section Version"); 648 OS.EmitIntValue(0, 2); 649 OS.AddComment("Hash Algorithm"); 650 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 651 652 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 653 for (const auto &GHR : TypeTable.hashes()) { 654 if (OS.isVerboseAsm()) { 655 // Emit an EOL-comment describing which TypeIndex this hash corresponds 656 // to, as well as the stringified SHA1 hash. 657 SmallString<32> Comment; 658 raw_svector_ostream CommentOS(Comment); 659 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 660 OS.AddComment(Comment); 661 ++TI; 662 } 663 assert(GHR.Hash.size() == 8); 664 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 665 GHR.Hash.size()); 666 OS.EmitBinaryData(S); 667 } 668 } 669 670 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 671 switch (DWLang) { 672 case dwarf::DW_LANG_C: 673 case dwarf::DW_LANG_C89: 674 case dwarf::DW_LANG_C99: 675 case dwarf::DW_LANG_C11: 676 case dwarf::DW_LANG_ObjC: 677 return SourceLanguage::C; 678 case dwarf::DW_LANG_C_plus_plus: 679 case dwarf::DW_LANG_C_plus_plus_03: 680 case dwarf::DW_LANG_C_plus_plus_11: 681 case dwarf::DW_LANG_C_plus_plus_14: 682 return SourceLanguage::Cpp; 683 case dwarf::DW_LANG_Fortran77: 684 case dwarf::DW_LANG_Fortran90: 685 case dwarf::DW_LANG_Fortran03: 686 case dwarf::DW_LANG_Fortran08: 687 return SourceLanguage::Fortran; 688 case dwarf::DW_LANG_Pascal83: 689 return SourceLanguage::Pascal; 690 case dwarf::DW_LANG_Cobol74: 691 case dwarf::DW_LANG_Cobol85: 692 return SourceLanguage::Cobol; 693 case dwarf::DW_LANG_Java: 694 return SourceLanguage::Java; 695 case dwarf::DW_LANG_D: 696 return SourceLanguage::D; 697 default: 698 // There's no CodeView representation for this language, and CV doesn't 699 // have an "unknown" option for the language field, so we'll use MASM, 700 // as it's very low level. 701 return SourceLanguage::Masm; 702 } 703 } 704 705 namespace { 706 struct Version { 707 int Part[4]; 708 }; 709 } // end anonymous namespace 710 711 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 712 // the version number. 713 static Version parseVersion(StringRef Name) { 714 Version V = {{0}}; 715 int N = 0; 716 for (const char C : Name) { 717 if (isdigit(C)) { 718 V.Part[N] *= 10; 719 V.Part[N] += C - '0'; 720 } else if (C == '.') { 721 ++N; 722 if (N >= 4) 723 return V; 724 } else if (N > 0) 725 return V; 726 } 727 return V; 728 } 729 730 void CodeViewDebug::emitCompilerInformation() { 731 MCContext &Context = MMI->getContext(); 732 MCSymbol *CompilerBegin = Context.createTempSymbol(), 733 *CompilerEnd = Context.createTempSymbol(); 734 OS.AddComment("Record length"); 735 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 736 OS.EmitLabel(CompilerBegin); 737 OS.AddComment("Record kind: S_COMPILE3"); 738 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 739 uint32_t Flags = 0; 740 741 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 742 const MDNode *Node = *CUs->operands().begin(); 743 const auto *CU = cast<DICompileUnit>(Node); 744 745 // The low byte of the flags indicates the source language. 746 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 747 // TODO: Figure out which other flags need to be set. 748 749 OS.AddComment("Flags and language"); 750 OS.EmitIntValue(Flags, 4); 751 752 OS.AddComment("CPUType"); 753 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 754 755 StringRef CompilerVersion = CU->getProducer(); 756 Version FrontVer = parseVersion(CompilerVersion); 757 OS.AddComment("Frontend version"); 758 for (int N = 0; N < 4; ++N) 759 OS.EmitIntValue(FrontVer.Part[N], 2); 760 761 // Some Microsoft tools, like Binscope, expect a backend version number of at 762 // least 8.something, so we'll coerce the LLVM version into a form that 763 // guarantees it'll be big enough without really lying about the version. 764 int Major = 1000 * LLVM_VERSION_MAJOR + 765 10 * LLVM_VERSION_MINOR + 766 LLVM_VERSION_PATCH; 767 // Clamp it for builds that use unusually large version numbers. 768 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 769 Version BackVer = {{ Major, 0, 0, 0 }}; 770 OS.AddComment("Backend version"); 771 for (int N = 0; N < 4; ++N) 772 OS.EmitIntValue(BackVer.Part[N], 2); 773 774 OS.AddComment("Null-terminated compiler version string"); 775 emitNullTerminatedSymbolName(OS, CompilerVersion); 776 777 OS.EmitLabel(CompilerEnd); 778 } 779 780 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 781 StringRef S) { 782 StringIdRecord SIR(TypeIndex(0x0), S); 783 return TypeTable.writeLeafType(SIR); 784 } 785 786 void CodeViewDebug::emitBuildInfo() { 787 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 788 // build info. The known prefix is: 789 // - Absolute path of current directory 790 // - Compiler path 791 // - Main source file path, relative to CWD or absolute 792 // - Type server PDB file 793 // - Canonical compiler command line 794 // If frontend and backend compilation are separated (think llc or LTO), it's 795 // not clear if the compiler path should refer to the executable for the 796 // frontend or the backend. Leave it blank for now. 797 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 798 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 799 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 800 const auto *CU = cast<DICompileUnit>(Node); 801 const DIFile *MainSourceFile = CU->getFile(); 802 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 803 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 804 BuildInfoArgs[BuildInfoRecord::SourceFile] = 805 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 806 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 807 // we implement /Zi type servers. 808 BuildInfoRecord BIR(BuildInfoArgs); 809 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 810 811 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 812 // from the module symbols into the type stream. 813 MCSymbol *BuildInfoEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 814 OS.AddComment("Record length"); 815 OS.EmitIntValue(6, 2); 816 OS.AddComment("Record kind: S_BUILDINFO"); 817 OS.EmitIntValue(unsigned(SymbolKind::S_BUILDINFO), 2); 818 OS.AddComment("LF_BUILDINFO index"); 819 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 820 endCVSubsection(BuildInfoEnd); 821 } 822 823 void CodeViewDebug::emitInlineeLinesSubsection() { 824 if (InlinedSubprograms.empty()) 825 return; 826 827 OS.AddComment("Inlinee lines subsection"); 828 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 829 830 // We emit the checksum info for files. This is used by debuggers to 831 // determine if a pdb matches the source before loading it. Visual Studio, 832 // for instance, will display a warning that the breakpoints are not valid if 833 // the pdb does not match the source. 834 OS.AddComment("Inlinee lines signature"); 835 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 836 837 for (const DISubprogram *SP : InlinedSubprograms) { 838 assert(TypeIndices.count({SP, nullptr})); 839 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 840 841 OS.AddBlankLine(); 842 unsigned FileId = maybeRecordFile(SP->getFile()); 843 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 844 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 845 OS.AddBlankLine(); 846 OS.AddComment("Type index of inlined function"); 847 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 848 OS.AddComment("Offset into filechecksum table"); 849 OS.EmitCVFileChecksumOffsetDirective(FileId); 850 OS.AddComment("Starting line number"); 851 OS.EmitIntValue(SP->getLine(), 4); 852 } 853 854 endCVSubsection(InlineEnd); 855 } 856 857 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 858 const DILocation *InlinedAt, 859 const InlineSite &Site) { 860 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 861 *InlineEnd = MMI->getContext().createTempSymbol(); 862 863 assert(TypeIndices.count({Site.Inlinee, nullptr})); 864 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 865 866 // SymbolRecord 867 OS.AddComment("Record length"); 868 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 869 OS.EmitLabel(InlineBegin); 870 OS.AddComment("Record kind: S_INLINESITE"); 871 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 872 873 OS.AddComment("PtrParent"); 874 OS.EmitIntValue(0, 4); 875 OS.AddComment("PtrEnd"); 876 OS.EmitIntValue(0, 4); 877 OS.AddComment("Inlinee type index"); 878 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 879 880 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 881 unsigned StartLineNum = Site.Inlinee->getLine(); 882 883 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 884 FI.Begin, FI.End); 885 886 OS.EmitLabel(InlineEnd); 887 888 emitLocalVariableList(FI, Site.InlinedLocals); 889 890 // Recurse on child inlined call sites before closing the scope. 891 for (const DILocation *ChildSite : Site.ChildSites) { 892 auto I = FI.InlineSites.find(ChildSite); 893 assert(I != FI.InlineSites.end() && 894 "child site not in function inline site map"); 895 emitInlinedCallSite(FI, ChildSite, I->second); 896 } 897 898 // Close the scope. 899 OS.AddComment("Record length"); 900 OS.EmitIntValue(2, 2); // RecordLength 901 OS.AddComment("Record kind: S_INLINESITE_END"); 902 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 903 } 904 905 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 906 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 907 // comdat key. A section may be comdat because of -ffunction-sections or 908 // because it is comdat in the IR. 909 MCSectionCOFF *GVSec = 910 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 911 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 912 913 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 914 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 915 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 916 917 OS.SwitchSection(DebugSec); 918 919 // Emit the magic version number if this is the first time we've switched to 920 // this section. 921 if (ComdatDebugSections.insert(DebugSec).second) 922 emitCodeViewMagicVersion(); 923 } 924 925 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 926 // The only supported thunk ordinal is currently the standard type. 927 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 928 FunctionInfo &FI, 929 const MCSymbol *Fn) { 930 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 931 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 932 933 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 934 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 935 936 // Emit S_THUNK32 937 MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(), 938 *ThunkRecordEnd = MMI->getContext().createTempSymbol(); 939 OS.AddComment("Record length"); 940 OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2); 941 OS.EmitLabel(ThunkRecordBegin); 942 OS.AddComment("Record kind: S_THUNK32"); 943 OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2); 944 OS.AddComment("PtrParent"); 945 OS.EmitIntValue(0, 4); 946 OS.AddComment("PtrEnd"); 947 OS.EmitIntValue(0, 4); 948 OS.AddComment("PtrNext"); 949 OS.EmitIntValue(0, 4); 950 OS.AddComment("Thunk section relative address"); 951 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 952 OS.AddComment("Thunk section index"); 953 OS.EmitCOFFSectionIndex(Fn); 954 OS.AddComment("Code size"); 955 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 956 OS.AddComment("Ordinal"); 957 OS.EmitIntValue(unsigned(ordinal), 1); 958 OS.AddComment("Function name"); 959 emitNullTerminatedSymbolName(OS, FuncName); 960 // Additional fields specific to the thunk ordinal would go here. 961 OS.EmitLabel(ThunkRecordEnd); 962 963 // Local variables/inlined routines are purposely omitted here. The point of 964 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 965 966 // Emit S_PROC_ID_END 967 const unsigned RecordLengthForSymbolEnd = 2; 968 OS.AddComment("Record length"); 969 OS.EmitIntValue(RecordLengthForSymbolEnd, 2); 970 OS.AddComment("Record kind: S_PROC_ID_END"); 971 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 972 973 endCVSubsection(SymbolsEnd); 974 } 975 976 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 977 FunctionInfo &FI) { 978 // For each function there is a separate subsection which holds the PC to 979 // file:line table. 980 const MCSymbol *Fn = Asm->getSymbol(GV); 981 assert(Fn); 982 983 // Switch to the to a comdat section, if appropriate. 984 switchToDebugSectionForSymbol(Fn); 985 986 std::string FuncName; 987 auto *SP = GV->getSubprogram(); 988 assert(SP); 989 setCurrentSubprogram(SP); 990 991 if (SP->isThunk()) { 992 emitDebugInfoForThunk(GV, FI, Fn); 993 return; 994 } 995 996 // If we have a display name, build the fully qualified name by walking the 997 // chain of scopes. 998 if (!SP->getName().empty()) 999 FuncName = 1000 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 1001 1002 // If our DISubprogram name is empty, use the mangled name. 1003 if (FuncName.empty()) 1004 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 1005 1006 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1007 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1008 OS.EmitCVFPOData(Fn); 1009 1010 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1011 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1012 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1013 { 1014 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 1015 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 1016 OS.AddComment("Record length"); 1017 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 1018 OS.EmitLabel(ProcRecordBegin); 1019 1020 if (GV->hasLocalLinkage()) { 1021 OS.AddComment("Record kind: S_LPROC32_ID"); 1022 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 1023 } else { 1024 OS.AddComment("Record kind: S_GPROC32_ID"); 1025 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 1026 } 1027 1028 // These fields are filled in by tools like CVPACK which run after the fact. 1029 OS.AddComment("PtrParent"); 1030 OS.EmitIntValue(0, 4); 1031 OS.AddComment("PtrEnd"); 1032 OS.EmitIntValue(0, 4); 1033 OS.AddComment("PtrNext"); 1034 OS.EmitIntValue(0, 4); 1035 // This is the important bit that tells the debugger where the function 1036 // code is located and what's its size: 1037 OS.AddComment("Code size"); 1038 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1039 OS.AddComment("Offset after prologue"); 1040 OS.EmitIntValue(0, 4); 1041 OS.AddComment("Offset before epilogue"); 1042 OS.EmitIntValue(0, 4); 1043 OS.AddComment("Function type index"); 1044 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1045 OS.AddComment("Function section relative address"); 1046 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1047 OS.AddComment("Function section index"); 1048 OS.EmitCOFFSectionIndex(Fn); 1049 OS.AddComment("Flags"); 1050 OS.EmitIntValue(0, 1); 1051 // Emit the function display name as a null-terminated string. 1052 OS.AddComment("Function name"); 1053 // Truncate the name so we won't overflow the record length field. 1054 emitNullTerminatedSymbolName(OS, FuncName); 1055 OS.EmitLabel(ProcRecordEnd); 1056 1057 MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(), 1058 *FrameProcEnd = MMI->getContext().createTempSymbol(); 1059 OS.AddComment("Record length"); 1060 OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2); 1061 OS.EmitLabel(FrameProcBegin); 1062 OS.AddComment("Record kind: S_FRAMEPROC"); 1063 OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2); 1064 // Subtract out the CSR size since MSVC excludes that and we include it. 1065 OS.AddComment("FrameSize"); 1066 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1067 OS.AddComment("Padding"); 1068 OS.EmitIntValue(0, 4); 1069 OS.AddComment("Offset of padding"); 1070 OS.EmitIntValue(0, 4); 1071 OS.AddComment("Bytes of callee saved registers"); 1072 OS.EmitIntValue(FI.CSRSize, 4); 1073 OS.AddComment("Exception handler offset"); 1074 OS.EmitIntValue(0, 4); 1075 OS.AddComment("Exception handler section"); 1076 OS.EmitIntValue(0, 2); 1077 OS.AddComment("Flags (defines frame register)"); 1078 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1079 OS.EmitLabel(FrameProcEnd); 1080 1081 emitLocalVariableList(FI, FI.Locals); 1082 emitLexicalBlockList(FI.ChildBlocks, FI); 1083 1084 // Emit inlined call site information. Only emit functions inlined directly 1085 // into the parent function. We'll emit the other sites recursively as part 1086 // of their parent inline site. 1087 for (const DILocation *InlinedAt : FI.ChildSites) { 1088 auto I = FI.InlineSites.find(InlinedAt); 1089 assert(I != FI.InlineSites.end() && 1090 "child site not in function inline site map"); 1091 emitInlinedCallSite(FI, InlinedAt, I->second); 1092 } 1093 1094 for (auto Annot : FI.Annotations) { 1095 MCSymbol *Label = Annot.first; 1096 MDTuple *Strs = cast<MDTuple>(Annot.second); 1097 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 1098 *AnnotEnd = MMI->getContext().createTempSymbol(); 1099 OS.AddComment("Record length"); 1100 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 1101 OS.EmitLabel(AnnotBegin); 1102 OS.AddComment("Record kind: S_ANNOTATION"); 1103 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 1104 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1105 // FIXME: Make sure we don't overflow the max record size. 1106 OS.EmitCOFFSectionIndex(Label); 1107 OS.EmitIntValue(Strs->getNumOperands(), 2); 1108 for (Metadata *MD : Strs->operands()) { 1109 // MDStrings are null terminated, so we can do EmitBytes and get the 1110 // nice .asciz directive. 1111 StringRef Str = cast<MDString>(MD)->getString(); 1112 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1113 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1114 } 1115 OS.EmitLabel(AnnotEnd); 1116 } 1117 1118 if (SP != nullptr) 1119 emitDebugInfoForUDTs(LocalUDTs); 1120 1121 // We're done with this function. 1122 OS.AddComment("Record length"); 1123 OS.EmitIntValue(0x0002, 2); 1124 OS.AddComment("Record kind: S_PROC_ID_END"); 1125 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 1126 } 1127 endCVSubsection(SymbolsEnd); 1128 1129 // We have an assembler directive that takes care of the whole line table. 1130 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1131 } 1132 1133 CodeViewDebug::LocalVarDefRange 1134 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1135 LocalVarDefRange DR; 1136 DR.InMemory = -1; 1137 DR.DataOffset = Offset; 1138 assert(DR.DataOffset == Offset && "truncation"); 1139 DR.IsSubfield = 0; 1140 DR.StructOffset = 0; 1141 DR.CVRegister = CVRegister; 1142 return DR; 1143 } 1144 1145 void CodeViewDebug::collectVariableInfoFromMFTable( 1146 DenseSet<InlinedEntity> &Processed) { 1147 const MachineFunction &MF = *Asm->MF; 1148 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1149 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1150 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1151 1152 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1153 if (!VI.Var) 1154 continue; 1155 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1156 "Expected inlined-at fields to agree"); 1157 1158 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1159 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1160 1161 // If variable scope is not found then skip this variable. 1162 if (!Scope) 1163 continue; 1164 1165 // If the variable has an attached offset expression, extract it. 1166 // FIXME: Try to handle DW_OP_deref as well. 1167 int64_t ExprOffset = 0; 1168 if (VI.Expr) 1169 if (!VI.Expr->extractIfOffset(ExprOffset)) 1170 continue; 1171 1172 // Get the frame register used and the offset. 1173 unsigned FrameReg = 0; 1174 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1175 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1176 1177 // Calculate the label ranges. 1178 LocalVarDefRange DefRange = 1179 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1180 for (const InsnRange &Range : Scope->getRanges()) { 1181 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1182 const MCSymbol *End = getLabelAfterInsn(Range.second); 1183 End = End ? End : Asm->getFunctionEnd(); 1184 DefRange.Ranges.emplace_back(Begin, End); 1185 } 1186 1187 LocalVariable Var; 1188 Var.DIVar = VI.Var; 1189 Var.DefRanges.emplace_back(std::move(DefRange)); 1190 recordLocalVariable(std::move(Var), Scope); 1191 } 1192 } 1193 1194 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1195 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1196 } 1197 1198 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1199 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1200 } 1201 1202 void CodeViewDebug::calculateRanges( 1203 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1204 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1205 1206 // Calculate the definition ranges. 1207 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1208 const InsnRange &Range = *I; 1209 const MachineInstr *DVInst = Range.first; 1210 assert(DVInst->isDebugValue() && "Invalid History entry"); 1211 // FIXME: Find a way to represent constant variables, since they are 1212 // relatively common. 1213 Optional<DbgVariableLocation> Location = 1214 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1215 if (!Location) 1216 continue; 1217 1218 // CodeView can only express variables in register and variables in memory 1219 // at a constant offset from a register. However, for variables passed 1220 // indirectly by pointer, it is common for that pointer to be spilled to a 1221 // stack location. For the special case of one offseted load followed by a 1222 // zero offset load (a pointer spilled to the stack), we change the type of 1223 // the local variable from a value type to a reference type. This tricks the 1224 // debugger into doing the load for us. 1225 if (Var.UseReferenceType) { 1226 // We're using a reference type. Drop the last zero offset load. 1227 if (canUseReferenceType(*Location)) 1228 Location->LoadChain.pop_back(); 1229 else 1230 continue; 1231 } else if (needsReferenceType(*Location)) { 1232 // This location can't be expressed without switching to a reference type. 1233 // Start over using that. 1234 Var.UseReferenceType = true; 1235 Var.DefRanges.clear(); 1236 calculateRanges(Var, Ranges); 1237 return; 1238 } 1239 1240 // We can only handle a register or an offseted load of a register. 1241 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1242 continue; 1243 { 1244 LocalVarDefRange DR; 1245 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1246 DR.InMemory = !Location->LoadChain.empty(); 1247 DR.DataOffset = 1248 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1249 if (Location->FragmentInfo) { 1250 DR.IsSubfield = true; 1251 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1252 } else { 1253 DR.IsSubfield = false; 1254 DR.StructOffset = 0; 1255 } 1256 1257 if (Var.DefRanges.empty() || 1258 Var.DefRanges.back().isDifferentLocation(DR)) { 1259 Var.DefRanges.emplace_back(std::move(DR)); 1260 } 1261 } 1262 1263 // Compute the label range. 1264 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1265 const MCSymbol *End = getLabelAfterInsn(Range.second); 1266 if (!End) { 1267 // This range is valid until the next overlapping bitpiece. In the 1268 // common case, ranges will not be bitpieces, so they will overlap. 1269 auto J = std::next(I); 1270 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1271 while (J != E && 1272 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1273 ++J; 1274 if (J != E) 1275 End = getLabelBeforeInsn(J->first); 1276 else 1277 End = Asm->getFunctionEnd(); 1278 } 1279 1280 // If the last range end is our begin, just extend the last range. 1281 // Otherwise make a new range. 1282 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1283 Var.DefRanges.back().Ranges; 1284 if (!R.empty() && R.back().second == Begin) 1285 R.back().second = End; 1286 else 1287 R.emplace_back(Begin, End); 1288 1289 // FIXME: Do more range combining. 1290 } 1291 } 1292 1293 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1294 DenseSet<InlinedEntity> Processed; 1295 // Grab the variable info that was squirreled away in the MMI side-table. 1296 collectVariableInfoFromMFTable(Processed); 1297 1298 for (const auto &I : DbgValues) { 1299 InlinedEntity IV = I.first; 1300 if (Processed.count(IV)) 1301 continue; 1302 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1303 const DILocation *InlinedAt = IV.second; 1304 1305 // Instruction ranges, specifying where IV is accessible. 1306 const auto &Ranges = I.second; 1307 1308 LexicalScope *Scope = nullptr; 1309 if (InlinedAt) 1310 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1311 else 1312 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1313 // If variable scope is not found then skip this variable. 1314 if (!Scope) 1315 continue; 1316 1317 LocalVariable Var; 1318 Var.DIVar = DIVar; 1319 1320 calculateRanges(Var, Ranges); 1321 recordLocalVariable(std::move(Var), Scope); 1322 } 1323 } 1324 1325 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1326 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1327 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1328 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1329 const Function &GV = MF->getFunction(); 1330 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1331 assert(Insertion.second && "function already has info"); 1332 CurFn = Insertion.first->second.get(); 1333 CurFn->FuncId = NextFuncId++; 1334 CurFn->Begin = Asm->getFunctionBegin(); 1335 1336 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1337 // callee-saved registers were used. For targets that don't use a PUSH 1338 // instruction (AArch64), this will be zero. 1339 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1340 CurFn->FrameSize = MFI.getStackSize(); 1341 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1342 1343 // For this function S_FRAMEPROC record, figure out which codeview register 1344 // will be the frame pointer. 1345 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1346 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1347 if (CurFn->FrameSize > 0) { 1348 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1349 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1350 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1351 } else { 1352 // If there is an FP, parameters are always relative to it. 1353 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1354 if (CurFn->HasStackRealignment) { 1355 // If the stack needs realignment, locals are relative to SP or VFRAME. 1356 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1357 } else { 1358 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1359 // other stack adjustments. 1360 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1361 } 1362 } 1363 } 1364 1365 // Compute other frame procedure options. 1366 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1367 if (MFI.hasVarSizedObjects()) 1368 FPO |= FrameProcedureOptions::HasAlloca; 1369 if (MF->exposesReturnsTwice()) 1370 FPO |= FrameProcedureOptions::HasSetJmp; 1371 // FIXME: Set HasLongJmp if we ever track that info. 1372 if (MF->hasInlineAsm()) 1373 FPO |= FrameProcedureOptions::HasInlineAssembly; 1374 if (GV.hasPersonalityFn()) { 1375 if (isAsynchronousEHPersonality( 1376 classifyEHPersonality(GV.getPersonalityFn()))) 1377 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1378 else 1379 FPO |= FrameProcedureOptions::HasExceptionHandling; 1380 } 1381 if (GV.hasFnAttribute(Attribute::InlineHint)) 1382 FPO |= FrameProcedureOptions::MarkedInline; 1383 if (GV.hasFnAttribute(Attribute::Naked)) 1384 FPO |= FrameProcedureOptions::Naked; 1385 if (MFI.hasStackProtectorIndex()) 1386 FPO |= FrameProcedureOptions::SecurityChecks; 1387 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1388 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1389 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1390 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1391 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1392 // FIXME: Set GuardCfg when it is implemented. 1393 CurFn->FrameProcOpts = FPO; 1394 1395 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1396 1397 // Find the end of the function prolog. First known non-DBG_VALUE and 1398 // non-frame setup location marks the beginning of the function body. 1399 // FIXME: is there a simpler a way to do this? Can we just search 1400 // for the first instruction of the function, not the last of the prolog? 1401 DebugLoc PrologEndLoc; 1402 bool EmptyPrologue = true; 1403 for (const auto &MBB : *MF) { 1404 for (const auto &MI : MBB) { 1405 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1406 MI.getDebugLoc()) { 1407 PrologEndLoc = MI.getDebugLoc(); 1408 break; 1409 } else if (!MI.isMetaInstruction()) { 1410 EmptyPrologue = false; 1411 } 1412 } 1413 } 1414 1415 // Record beginning of function if we have a non-empty prologue. 1416 if (PrologEndLoc && !EmptyPrologue) { 1417 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1418 maybeRecordLocation(FnStartDL, MF); 1419 } 1420 } 1421 1422 static bool shouldEmitUdt(const DIType *T) { 1423 if (!T) 1424 return false; 1425 1426 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1427 if (T->getTag() == dwarf::DW_TAG_typedef) { 1428 if (DIScope *Scope = T->getScope().resolve()) { 1429 switch (Scope->getTag()) { 1430 case dwarf::DW_TAG_structure_type: 1431 case dwarf::DW_TAG_class_type: 1432 case dwarf::DW_TAG_union_type: 1433 return false; 1434 } 1435 } 1436 } 1437 1438 while (true) { 1439 if (!T || T->isForwardDecl()) 1440 return false; 1441 1442 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1443 if (!DT) 1444 return true; 1445 T = DT->getBaseType().resolve(); 1446 } 1447 return true; 1448 } 1449 1450 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1451 // Don't record empty UDTs. 1452 if (Ty->getName().empty()) 1453 return; 1454 if (!shouldEmitUdt(Ty)) 1455 return; 1456 1457 SmallVector<StringRef, 5> QualifiedNameComponents; 1458 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1459 Ty->getScope().resolve(), QualifiedNameComponents); 1460 1461 std::string FullyQualifiedName = 1462 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1463 1464 if (ClosestSubprogram == nullptr) { 1465 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1466 } else if (ClosestSubprogram == CurrentSubprogram) { 1467 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1468 } 1469 1470 // TODO: What if the ClosestSubprogram is neither null or the current 1471 // subprogram? Currently, the UDT just gets dropped on the floor. 1472 // 1473 // The current behavior is not desirable. To get maximal fidelity, we would 1474 // need to perform all type translation before beginning emission of .debug$S 1475 // and then make LocalUDTs a member of FunctionInfo 1476 } 1477 1478 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1479 // Generic dispatch for lowering an unknown type. 1480 switch (Ty->getTag()) { 1481 case dwarf::DW_TAG_array_type: 1482 return lowerTypeArray(cast<DICompositeType>(Ty)); 1483 case dwarf::DW_TAG_typedef: 1484 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1485 case dwarf::DW_TAG_base_type: 1486 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1487 case dwarf::DW_TAG_pointer_type: 1488 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1489 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1490 LLVM_FALLTHROUGH; 1491 case dwarf::DW_TAG_reference_type: 1492 case dwarf::DW_TAG_rvalue_reference_type: 1493 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1494 case dwarf::DW_TAG_ptr_to_member_type: 1495 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1496 case dwarf::DW_TAG_restrict_type: 1497 case dwarf::DW_TAG_const_type: 1498 case dwarf::DW_TAG_volatile_type: 1499 // TODO: add support for DW_TAG_atomic_type here 1500 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1501 case dwarf::DW_TAG_subroutine_type: 1502 if (ClassTy) { 1503 // The member function type of a member function pointer has no 1504 // ThisAdjustment. 1505 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1506 /*ThisAdjustment=*/0, 1507 /*IsStaticMethod=*/false); 1508 } 1509 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1510 case dwarf::DW_TAG_enumeration_type: 1511 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1512 case dwarf::DW_TAG_class_type: 1513 case dwarf::DW_TAG_structure_type: 1514 return lowerTypeClass(cast<DICompositeType>(Ty)); 1515 case dwarf::DW_TAG_union_type: 1516 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1517 case dwarf::DW_TAG_unspecified_type: 1518 return TypeIndex::None(); 1519 default: 1520 // Use the null type index. 1521 return TypeIndex(); 1522 } 1523 } 1524 1525 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1526 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1527 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1528 StringRef TypeName = Ty->getName(); 1529 1530 addToUDTs(Ty); 1531 1532 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1533 TypeName == "HRESULT") 1534 return TypeIndex(SimpleTypeKind::HResult); 1535 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1536 TypeName == "wchar_t") 1537 return TypeIndex(SimpleTypeKind::WideCharacter); 1538 1539 return UnderlyingTypeIndex; 1540 } 1541 1542 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1543 DITypeRef ElementTypeRef = Ty->getBaseType(); 1544 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1545 // IndexType is size_t, which depends on the bitness of the target. 1546 TypeIndex IndexType = getPointerSizeInBytes() == 8 1547 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1548 : TypeIndex(SimpleTypeKind::UInt32Long); 1549 1550 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1551 1552 // Add subranges to array type. 1553 DINodeArray Elements = Ty->getElements(); 1554 for (int i = Elements.size() - 1; i >= 0; --i) { 1555 const DINode *Element = Elements[i]; 1556 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1557 1558 const DISubrange *Subrange = cast<DISubrange>(Element); 1559 assert(Subrange->getLowerBound() == 0 && 1560 "codeview doesn't support subranges with lower bounds"); 1561 int64_t Count = -1; 1562 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1563 Count = CI->getSExtValue(); 1564 1565 // Forward declarations of arrays without a size and VLAs use a count of -1. 1566 // Emit a count of zero in these cases to match what MSVC does for arrays 1567 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1568 // should do for them even if we could distinguish them. 1569 if (Count == -1) 1570 Count = 0; 1571 1572 // Update the element size and element type index for subsequent subranges. 1573 ElementSize *= Count; 1574 1575 // If this is the outermost array, use the size from the array. It will be 1576 // more accurate if we had a VLA or an incomplete element type size. 1577 uint64_t ArraySize = 1578 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1579 1580 StringRef Name = (i == 0) ? Ty->getName() : ""; 1581 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1582 ElementTypeIndex = TypeTable.writeLeafType(AR); 1583 } 1584 1585 return ElementTypeIndex; 1586 } 1587 1588 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1589 TypeIndex Index; 1590 dwarf::TypeKind Kind; 1591 uint32_t ByteSize; 1592 1593 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1594 ByteSize = Ty->getSizeInBits() / 8; 1595 1596 SimpleTypeKind STK = SimpleTypeKind::None; 1597 switch (Kind) { 1598 case dwarf::DW_ATE_address: 1599 // FIXME: Translate 1600 break; 1601 case dwarf::DW_ATE_boolean: 1602 switch (ByteSize) { 1603 case 1: STK = SimpleTypeKind::Boolean8; break; 1604 case 2: STK = SimpleTypeKind::Boolean16; break; 1605 case 4: STK = SimpleTypeKind::Boolean32; break; 1606 case 8: STK = SimpleTypeKind::Boolean64; break; 1607 case 16: STK = SimpleTypeKind::Boolean128; break; 1608 } 1609 break; 1610 case dwarf::DW_ATE_complex_float: 1611 switch (ByteSize) { 1612 case 2: STK = SimpleTypeKind::Complex16; break; 1613 case 4: STK = SimpleTypeKind::Complex32; break; 1614 case 8: STK = SimpleTypeKind::Complex64; break; 1615 case 10: STK = SimpleTypeKind::Complex80; break; 1616 case 16: STK = SimpleTypeKind::Complex128; break; 1617 } 1618 break; 1619 case dwarf::DW_ATE_float: 1620 switch (ByteSize) { 1621 case 2: STK = SimpleTypeKind::Float16; break; 1622 case 4: STK = SimpleTypeKind::Float32; break; 1623 case 6: STK = SimpleTypeKind::Float48; break; 1624 case 8: STK = SimpleTypeKind::Float64; break; 1625 case 10: STK = SimpleTypeKind::Float80; break; 1626 case 16: STK = SimpleTypeKind::Float128; break; 1627 } 1628 break; 1629 case dwarf::DW_ATE_signed: 1630 switch (ByteSize) { 1631 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1632 case 2: STK = SimpleTypeKind::Int16Short; break; 1633 case 4: STK = SimpleTypeKind::Int32; break; 1634 case 8: STK = SimpleTypeKind::Int64Quad; break; 1635 case 16: STK = SimpleTypeKind::Int128Oct; break; 1636 } 1637 break; 1638 case dwarf::DW_ATE_unsigned: 1639 switch (ByteSize) { 1640 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1641 case 2: STK = SimpleTypeKind::UInt16Short; break; 1642 case 4: STK = SimpleTypeKind::UInt32; break; 1643 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1644 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1645 } 1646 break; 1647 case dwarf::DW_ATE_UTF: 1648 switch (ByteSize) { 1649 case 2: STK = SimpleTypeKind::Character16; break; 1650 case 4: STK = SimpleTypeKind::Character32; break; 1651 } 1652 break; 1653 case dwarf::DW_ATE_signed_char: 1654 if (ByteSize == 1) 1655 STK = SimpleTypeKind::SignedCharacter; 1656 break; 1657 case dwarf::DW_ATE_unsigned_char: 1658 if (ByteSize == 1) 1659 STK = SimpleTypeKind::UnsignedCharacter; 1660 break; 1661 default: 1662 break; 1663 } 1664 1665 // Apply some fixups based on the source-level type name. 1666 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1667 STK = SimpleTypeKind::Int32Long; 1668 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1669 STK = SimpleTypeKind::UInt32Long; 1670 if (STK == SimpleTypeKind::UInt16Short && 1671 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1672 STK = SimpleTypeKind::WideCharacter; 1673 if ((STK == SimpleTypeKind::SignedCharacter || 1674 STK == SimpleTypeKind::UnsignedCharacter) && 1675 Ty->getName() == "char") 1676 STK = SimpleTypeKind::NarrowCharacter; 1677 1678 return TypeIndex(STK); 1679 } 1680 1681 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1682 PointerOptions PO) { 1683 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1684 1685 // Pointers to simple types without any options can use SimpleTypeMode, rather 1686 // than having a dedicated pointer type record. 1687 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1688 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1689 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1690 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1691 ? SimpleTypeMode::NearPointer64 1692 : SimpleTypeMode::NearPointer32; 1693 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1694 } 1695 1696 PointerKind PK = 1697 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1698 PointerMode PM = PointerMode::Pointer; 1699 switch (Ty->getTag()) { 1700 default: llvm_unreachable("not a pointer tag type"); 1701 case dwarf::DW_TAG_pointer_type: 1702 PM = PointerMode::Pointer; 1703 break; 1704 case dwarf::DW_TAG_reference_type: 1705 PM = PointerMode::LValueReference; 1706 break; 1707 case dwarf::DW_TAG_rvalue_reference_type: 1708 PM = PointerMode::RValueReference; 1709 break; 1710 } 1711 1712 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1713 return TypeTable.writeLeafType(PR); 1714 } 1715 1716 static PointerToMemberRepresentation 1717 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1718 // SizeInBytes being zero generally implies that the member pointer type was 1719 // incomplete, which can happen if it is part of a function prototype. In this 1720 // case, use the unknown model instead of the general model. 1721 if (IsPMF) { 1722 switch (Flags & DINode::FlagPtrToMemberRep) { 1723 case 0: 1724 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1725 : PointerToMemberRepresentation::GeneralFunction; 1726 case DINode::FlagSingleInheritance: 1727 return PointerToMemberRepresentation::SingleInheritanceFunction; 1728 case DINode::FlagMultipleInheritance: 1729 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1730 case DINode::FlagVirtualInheritance: 1731 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1732 } 1733 } else { 1734 switch (Flags & DINode::FlagPtrToMemberRep) { 1735 case 0: 1736 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1737 : PointerToMemberRepresentation::GeneralData; 1738 case DINode::FlagSingleInheritance: 1739 return PointerToMemberRepresentation::SingleInheritanceData; 1740 case DINode::FlagMultipleInheritance: 1741 return PointerToMemberRepresentation::MultipleInheritanceData; 1742 case DINode::FlagVirtualInheritance: 1743 return PointerToMemberRepresentation::VirtualInheritanceData; 1744 } 1745 } 1746 llvm_unreachable("invalid ptr to member representation"); 1747 } 1748 1749 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1750 PointerOptions PO) { 1751 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1752 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1753 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1754 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1755 : PointerKind::Near32; 1756 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1757 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1758 : PointerMode::PointerToDataMember; 1759 1760 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1761 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1762 MemberPointerInfo MPI( 1763 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1764 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1765 return TypeTable.writeLeafType(PR); 1766 } 1767 1768 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1769 /// have a translation, use the NearC convention. 1770 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1771 switch (DwarfCC) { 1772 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1773 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1774 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1775 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1776 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1777 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1778 } 1779 return CallingConvention::NearC; 1780 } 1781 1782 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1783 ModifierOptions Mods = ModifierOptions::None; 1784 PointerOptions PO = PointerOptions::None; 1785 bool IsModifier = true; 1786 const DIType *BaseTy = Ty; 1787 while (IsModifier && BaseTy) { 1788 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1789 switch (BaseTy->getTag()) { 1790 case dwarf::DW_TAG_const_type: 1791 Mods |= ModifierOptions::Const; 1792 PO |= PointerOptions::Const; 1793 break; 1794 case dwarf::DW_TAG_volatile_type: 1795 Mods |= ModifierOptions::Volatile; 1796 PO |= PointerOptions::Volatile; 1797 break; 1798 case dwarf::DW_TAG_restrict_type: 1799 // Only pointer types be marked with __restrict. There is no known flag 1800 // for __restrict in LF_MODIFIER records. 1801 PO |= PointerOptions::Restrict; 1802 break; 1803 default: 1804 IsModifier = false; 1805 break; 1806 } 1807 if (IsModifier) 1808 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1809 } 1810 1811 // Check if the inner type will use an LF_POINTER record. If so, the 1812 // qualifiers will go in the LF_POINTER record. This comes up for types like 1813 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1814 // char *'. 1815 if (BaseTy) { 1816 switch (BaseTy->getTag()) { 1817 case dwarf::DW_TAG_pointer_type: 1818 case dwarf::DW_TAG_reference_type: 1819 case dwarf::DW_TAG_rvalue_reference_type: 1820 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1821 case dwarf::DW_TAG_ptr_to_member_type: 1822 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1823 default: 1824 break; 1825 } 1826 } 1827 1828 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1829 1830 // Return the base type index if there aren't any modifiers. For example, the 1831 // metadata could contain restrict wrappers around non-pointer types. 1832 if (Mods == ModifierOptions::None) 1833 return ModifiedTI; 1834 1835 ModifierRecord MR(ModifiedTI, Mods); 1836 return TypeTable.writeLeafType(MR); 1837 } 1838 1839 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1840 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1841 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1842 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1843 1844 // MSVC uses type none for variadic argument. 1845 if (ReturnAndArgTypeIndices.size() > 1 && 1846 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1847 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1848 } 1849 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1850 ArrayRef<TypeIndex> ArgTypeIndices = None; 1851 if (!ReturnAndArgTypeIndices.empty()) { 1852 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1853 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1854 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1855 } 1856 1857 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1858 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1859 1860 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1861 1862 FunctionOptions FO = getFunctionOptions(Ty); 1863 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1864 ArgListIndex); 1865 return TypeTable.writeLeafType(Procedure); 1866 } 1867 1868 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1869 const DIType *ClassTy, 1870 int ThisAdjustment, 1871 bool IsStaticMethod, 1872 FunctionOptions FO) { 1873 // Lower the containing class type. 1874 TypeIndex ClassType = getTypeIndex(ClassTy); 1875 1876 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1877 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1878 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1879 1880 // MSVC uses type none for variadic argument. 1881 if (ReturnAndArgTypeIndices.size() > 1 && 1882 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1883 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1884 } 1885 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1886 ArrayRef<TypeIndex> ArgTypeIndices = None; 1887 if (!ReturnAndArgTypeIndices.empty()) { 1888 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1889 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1890 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1891 } 1892 TypeIndex ThisTypeIndex; 1893 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1894 ThisTypeIndex = ArgTypeIndices.front(); 1895 ArgTypeIndices = ArgTypeIndices.drop_front(); 1896 } 1897 1898 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1899 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1900 1901 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1902 1903 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1904 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1905 return TypeTable.writeLeafType(MFR); 1906 } 1907 1908 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1909 unsigned VSlotCount = 1910 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1911 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1912 1913 VFTableShapeRecord VFTSR(Slots); 1914 return TypeTable.writeLeafType(VFTSR); 1915 } 1916 1917 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1918 switch (Flags & DINode::FlagAccessibility) { 1919 case DINode::FlagPrivate: return MemberAccess::Private; 1920 case DINode::FlagPublic: return MemberAccess::Public; 1921 case DINode::FlagProtected: return MemberAccess::Protected; 1922 case 0: 1923 // If there was no explicit access control, provide the default for the tag. 1924 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1925 : MemberAccess::Public; 1926 } 1927 llvm_unreachable("access flags are exclusive"); 1928 } 1929 1930 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1931 if (SP->isArtificial()) 1932 return MethodOptions::CompilerGenerated; 1933 1934 // FIXME: Handle other MethodOptions. 1935 1936 return MethodOptions::None; 1937 } 1938 1939 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1940 bool Introduced) { 1941 if (SP->getFlags() & DINode::FlagStaticMember) 1942 return MethodKind::Static; 1943 1944 switch (SP->getVirtuality()) { 1945 case dwarf::DW_VIRTUALITY_none: 1946 break; 1947 case dwarf::DW_VIRTUALITY_virtual: 1948 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1949 case dwarf::DW_VIRTUALITY_pure_virtual: 1950 return Introduced ? MethodKind::PureIntroducingVirtual 1951 : MethodKind::PureVirtual; 1952 default: 1953 llvm_unreachable("unhandled virtuality case"); 1954 } 1955 1956 return MethodKind::Vanilla; 1957 } 1958 1959 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1960 switch (Ty->getTag()) { 1961 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1962 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1963 } 1964 llvm_unreachable("unexpected tag"); 1965 } 1966 1967 /// Return ClassOptions that should be present on both the forward declaration 1968 /// and the defintion of a tag type. 1969 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1970 ClassOptions CO = ClassOptions::None; 1971 1972 // MSVC always sets this flag, even for local types. Clang doesn't always 1973 // appear to give every type a linkage name, which may be problematic for us. 1974 // FIXME: Investigate the consequences of not following them here. 1975 if (!Ty->getIdentifier().empty()) 1976 CO |= ClassOptions::HasUniqueName; 1977 1978 // Put the Nested flag on a type if it appears immediately inside a tag type. 1979 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1980 // here. That flag is only set on definitions, and not forward declarations. 1981 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1982 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1983 CO |= ClassOptions::Nested; 1984 1985 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1986 // type only when it has an immediate function scope. Clang never puts enums 1987 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1988 // always in function, class, or file scopes. 1989 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1990 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1991 CO |= ClassOptions::Scoped; 1992 } else { 1993 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1994 Scope = Scope->getScope().resolve()) { 1995 if (isa<DISubprogram>(Scope)) { 1996 CO |= ClassOptions::Scoped; 1997 break; 1998 } 1999 } 2000 } 2001 2002 return CO; 2003 } 2004 2005 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2006 switch (Ty->getTag()) { 2007 case dwarf::DW_TAG_class_type: 2008 case dwarf::DW_TAG_structure_type: 2009 case dwarf::DW_TAG_union_type: 2010 case dwarf::DW_TAG_enumeration_type: 2011 break; 2012 default: 2013 return; 2014 } 2015 2016 if (const auto *File = Ty->getFile()) { 2017 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2018 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2019 2020 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2021 TypeTable.writeLeafType(USLR); 2022 } 2023 } 2024 2025 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2026 ClassOptions CO = getCommonClassOptions(Ty); 2027 TypeIndex FTI; 2028 unsigned EnumeratorCount = 0; 2029 2030 if (Ty->isForwardDecl()) { 2031 CO |= ClassOptions::ForwardReference; 2032 } else { 2033 ContinuationRecordBuilder ContinuationBuilder; 2034 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2035 for (const DINode *Element : Ty->getElements()) { 2036 // We assume that the frontend provides all members in source declaration 2037 // order, which is what MSVC does. 2038 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2039 EnumeratorRecord ER(MemberAccess::Public, 2040 APSInt::getUnsigned(Enumerator->getValue()), 2041 Enumerator->getName()); 2042 ContinuationBuilder.writeMemberType(ER); 2043 EnumeratorCount++; 2044 } 2045 } 2046 FTI = TypeTable.insertRecord(ContinuationBuilder); 2047 } 2048 2049 std::string FullName = getFullyQualifiedName(Ty); 2050 2051 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2052 getTypeIndex(Ty->getBaseType())); 2053 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2054 2055 addUDTSrcLine(Ty, EnumTI); 2056 2057 return EnumTI; 2058 } 2059 2060 //===----------------------------------------------------------------------===// 2061 // ClassInfo 2062 //===----------------------------------------------------------------------===// 2063 2064 struct llvm::ClassInfo { 2065 struct MemberInfo { 2066 const DIDerivedType *MemberTypeNode; 2067 uint64_t BaseOffset; 2068 }; 2069 // [MemberInfo] 2070 using MemberList = std::vector<MemberInfo>; 2071 2072 using MethodsList = TinyPtrVector<const DISubprogram *>; 2073 // MethodName -> MethodsList 2074 using MethodsMap = MapVector<MDString *, MethodsList>; 2075 2076 /// Base classes. 2077 std::vector<const DIDerivedType *> Inheritance; 2078 2079 /// Direct members. 2080 MemberList Members; 2081 // Direct overloaded methods gathered by name. 2082 MethodsMap Methods; 2083 2084 TypeIndex VShapeTI; 2085 2086 std::vector<const DIType *> NestedTypes; 2087 }; 2088 2089 void CodeViewDebug::clear() { 2090 assert(CurFn == nullptr); 2091 FileIdMap.clear(); 2092 FnDebugInfo.clear(); 2093 FileToFilepathMap.clear(); 2094 LocalUDTs.clear(); 2095 GlobalUDTs.clear(); 2096 TypeIndices.clear(); 2097 CompleteTypeIndices.clear(); 2098 } 2099 2100 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2101 const DIDerivedType *DDTy) { 2102 if (!DDTy->getName().empty()) { 2103 Info.Members.push_back({DDTy, 0}); 2104 return; 2105 } 2106 2107 // An unnamed member may represent a nested struct or union. Attempt to 2108 // interpret the unnamed member as a DICompositeType possibly wrapped in 2109 // qualifier types. Add all the indirect fields to the current record if that 2110 // succeeds, and drop the member if that fails. 2111 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2112 uint64_t Offset = DDTy->getOffsetInBits(); 2113 const DIType *Ty = DDTy->getBaseType().resolve(); 2114 bool FullyResolved = false; 2115 while (!FullyResolved) { 2116 switch (Ty->getTag()) { 2117 case dwarf::DW_TAG_const_type: 2118 case dwarf::DW_TAG_volatile_type: 2119 // FIXME: we should apply the qualifier types to the indirect fields 2120 // rather than dropping them. 2121 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2122 break; 2123 default: 2124 FullyResolved = true; 2125 break; 2126 } 2127 } 2128 2129 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2130 if (!DCTy) 2131 return; 2132 2133 ClassInfo NestedInfo = collectClassInfo(DCTy); 2134 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2135 Info.Members.push_back( 2136 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2137 } 2138 2139 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2140 ClassInfo Info; 2141 // Add elements to structure type. 2142 DINodeArray Elements = Ty->getElements(); 2143 for (auto *Element : Elements) { 2144 // We assume that the frontend provides all members in source declaration 2145 // order, which is what MSVC does. 2146 if (!Element) 2147 continue; 2148 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2149 Info.Methods[SP->getRawName()].push_back(SP); 2150 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2151 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2152 collectMemberInfo(Info, DDTy); 2153 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2154 Info.Inheritance.push_back(DDTy); 2155 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2156 DDTy->getName() == "__vtbl_ptr_type") { 2157 Info.VShapeTI = getTypeIndex(DDTy); 2158 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2159 Info.NestedTypes.push_back(DDTy); 2160 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2161 // Ignore friend members. It appears that MSVC emitted info about 2162 // friends in the past, but modern versions do not. 2163 } 2164 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2165 Info.NestedTypes.push_back(Composite); 2166 } 2167 // Skip other unrecognized kinds of elements. 2168 } 2169 return Info; 2170 } 2171 2172 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2173 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2174 // if a complete type should be emitted instead of a forward reference. 2175 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2176 !Ty->isForwardDecl(); 2177 } 2178 2179 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2180 // Emit the complete type for unnamed structs. C++ classes with methods 2181 // which have a circular reference back to the class type are expected to 2182 // be named by the front-end and should not be "unnamed". C unnamed 2183 // structs should not have circular references. 2184 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2185 // If this unnamed complete type is already in the process of being defined 2186 // then the description of the type is malformed and cannot be emitted 2187 // into CodeView correctly so report a fatal error. 2188 auto I = CompleteTypeIndices.find(Ty); 2189 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2190 report_fatal_error("cannot debug circular reference to unnamed type"); 2191 return getCompleteTypeIndex(Ty); 2192 } 2193 2194 // First, construct the forward decl. Don't look into Ty to compute the 2195 // forward decl options, since it might not be available in all TUs. 2196 TypeRecordKind Kind = getRecordKind(Ty); 2197 ClassOptions CO = 2198 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2199 std::string FullName = getFullyQualifiedName(Ty); 2200 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2201 FullName, Ty->getIdentifier()); 2202 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2203 if (!Ty->isForwardDecl()) 2204 DeferredCompleteTypes.push_back(Ty); 2205 return FwdDeclTI; 2206 } 2207 2208 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2209 // Construct the field list and complete type record. 2210 TypeRecordKind Kind = getRecordKind(Ty); 2211 ClassOptions CO = getCommonClassOptions(Ty); 2212 TypeIndex FieldTI; 2213 TypeIndex VShapeTI; 2214 unsigned FieldCount; 2215 bool ContainsNestedClass; 2216 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2217 lowerRecordFieldList(Ty); 2218 2219 if (ContainsNestedClass) 2220 CO |= ClassOptions::ContainsNestedClass; 2221 2222 std::string FullName = getFullyQualifiedName(Ty); 2223 2224 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2225 2226 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2227 SizeInBytes, FullName, Ty->getIdentifier()); 2228 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2229 2230 addUDTSrcLine(Ty, ClassTI); 2231 2232 addToUDTs(Ty); 2233 2234 return ClassTI; 2235 } 2236 2237 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2238 // Emit the complete type for unnamed unions. 2239 if (shouldAlwaysEmitCompleteClassType(Ty)) 2240 return getCompleteTypeIndex(Ty); 2241 2242 ClassOptions CO = 2243 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2244 std::string FullName = getFullyQualifiedName(Ty); 2245 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2246 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2247 if (!Ty->isForwardDecl()) 2248 DeferredCompleteTypes.push_back(Ty); 2249 return FwdDeclTI; 2250 } 2251 2252 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2253 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2254 TypeIndex FieldTI; 2255 unsigned FieldCount; 2256 bool ContainsNestedClass; 2257 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2258 lowerRecordFieldList(Ty); 2259 2260 if (ContainsNestedClass) 2261 CO |= ClassOptions::ContainsNestedClass; 2262 2263 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2264 std::string FullName = getFullyQualifiedName(Ty); 2265 2266 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2267 Ty->getIdentifier()); 2268 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2269 2270 addUDTSrcLine(Ty, UnionTI); 2271 2272 addToUDTs(Ty); 2273 2274 return UnionTI; 2275 } 2276 2277 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2278 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2279 // Manually count members. MSVC appears to count everything that generates a 2280 // field list record. Each individual overload in a method overload group 2281 // contributes to this count, even though the overload group is a single field 2282 // list record. 2283 unsigned MemberCount = 0; 2284 ClassInfo Info = collectClassInfo(Ty); 2285 ContinuationRecordBuilder ContinuationBuilder; 2286 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2287 2288 // Create base classes. 2289 for (const DIDerivedType *I : Info.Inheritance) { 2290 if (I->getFlags() & DINode::FlagVirtual) { 2291 // Virtual base. 2292 unsigned VBPtrOffset = I->getVBPtrOffset(); 2293 // FIXME: Despite the accessor name, the offset is really in bytes. 2294 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2295 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2296 ? TypeRecordKind::IndirectVirtualBaseClass 2297 : TypeRecordKind::VirtualBaseClass; 2298 VirtualBaseClassRecord VBCR( 2299 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2300 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2301 VBTableIndex); 2302 2303 ContinuationBuilder.writeMemberType(VBCR); 2304 MemberCount++; 2305 } else { 2306 assert(I->getOffsetInBits() % 8 == 0 && 2307 "bases must be on byte boundaries"); 2308 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2309 getTypeIndex(I->getBaseType()), 2310 I->getOffsetInBits() / 8); 2311 ContinuationBuilder.writeMemberType(BCR); 2312 MemberCount++; 2313 } 2314 } 2315 2316 // Create members. 2317 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2318 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2319 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2320 StringRef MemberName = Member->getName(); 2321 MemberAccess Access = 2322 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2323 2324 if (Member->isStaticMember()) { 2325 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2326 ContinuationBuilder.writeMemberType(SDMR); 2327 MemberCount++; 2328 continue; 2329 } 2330 2331 // Virtual function pointer member. 2332 if ((Member->getFlags() & DINode::FlagArtificial) && 2333 Member->getName().startswith("_vptr$")) { 2334 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2335 ContinuationBuilder.writeMemberType(VFPR); 2336 MemberCount++; 2337 continue; 2338 } 2339 2340 // Data member. 2341 uint64_t MemberOffsetInBits = 2342 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2343 if (Member->isBitField()) { 2344 uint64_t StartBitOffset = MemberOffsetInBits; 2345 if (const auto *CI = 2346 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2347 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2348 } 2349 StartBitOffset -= MemberOffsetInBits; 2350 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2351 StartBitOffset); 2352 MemberBaseType = TypeTable.writeLeafType(BFR); 2353 } 2354 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2355 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2356 MemberName); 2357 ContinuationBuilder.writeMemberType(DMR); 2358 MemberCount++; 2359 } 2360 2361 // Create methods 2362 for (auto &MethodItr : Info.Methods) { 2363 StringRef Name = MethodItr.first->getString(); 2364 2365 std::vector<OneMethodRecord> Methods; 2366 for (const DISubprogram *SP : MethodItr.second) { 2367 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2368 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2369 2370 unsigned VFTableOffset = -1; 2371 if (Introduced) 2372 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2373 2374 Methods.push_back(OneMethodRecord( 2375 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2376 translateMethodKindFlags(SP, Introduced), 2377 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2378 MemberCount++; 2379 } 2380 assert(!Methods.empty() && "Empty methods map entry"); 2381 if (Methods.size() == 1) 2382 ContinuationBuilder.writeMemberType(Methods[0]); 2383 else { 2384 // FIXME: Make this use its own ContinuationBuilder so that 2385 // MethodOverloadList can be split correctly. 2386 MethodOverloadListRecord MOLR(Methods); 2387 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2388 2389 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2390 ContinuationBuilder.writeMemberType(OMR); 2391 } 2392 } 2393 2394 // Create nested classes. 2395 for (const DIType *Nested : Info.NestedTypes) { 2396 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2397 ContinuationBuilder.writeMemberType(R); 2398 MemberCount++; 2399 } 2400 2401 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2402 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2403 !Info.NestedTypes.empty()); 2404 } 2405 2406 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2407 if (!VBPType.getIndex()) { 2408 // Make a 'const int *' type. 2409 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2410 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2411 2412 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2413 : PointerKind::Near32; 2414 PointerMode PM = PointerMode::Pointer; 2415 PointerOptions PO = PointerOptions::None; 2416 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2417 VBPType = TypeTable.writeLeafType(PR); 2418 } 2419 2420 return VBPType; 2421 } 2422 2423 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2424 const DIType *Ty = TypeRef.resolve(); 2425 const DIType *ClassTy = ClassTyRef.resolve(); 2426 2427 // The null DIType is the void type. Don't try to hash it. 2428 if (!Ty) 2429 return TypeIndex::Void(); 2430 2431 // Check if we've already translated this type. Don't try to do a 2432 // get-or-create style insertion that caches the hash lookup across the 2433 // lowerType call. It will update the TypeIndices map. 2434 auto I = TypeIndices.find({Ty, ClassTy}); 2435 if (I != TypeIndices.end()) 2436 return I->second; 2437 2438 TypeLoweringScope S(*this); 2439 TypeIndex TI = lowerType(Ty, ClassTy); 2440 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2441 } 2442 2443 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2444 DIType *Ty = TypeRef.resolve(); 2445 PointerRecord PR(getTypeIndex(Ty), 2446 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2447 : PointerKind::Near32, 2448 PointerMode::LValueReference, PointerOptions::None, 2449 Ty->getSizeInBits() / 8); 2450 return TypeTable.writeLeafType(PR); 2451 } 2452 2453 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2454 const DIType *Ty = TypeRef.resolve(); 2455 2456 // The null DIType is the void type. Don't try to hash it. 2457 if (!Ty) 2458 return TypeIndex::Void(); 2459 2460 // If this is a non-record type, the complete type index is the same as the 2461 // normal type index. Just call getTypeIndex. 2462 switch (Ty->getTag()) { 2463 case dwarf::DW_TAG_class_type: 2464 case dwarf::DW_TAG_structure_type: 2465 case dwarf::DW_TAG_union_type: 2466 break; 2467 default: 2468 return getTypeIndex(Ty); 2469 } 2470 2471 // Check if we've already translated the complete record type. 2472 const auto *CTy = cast<DICompositeType>(Ty); 2473 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2474 if (!InsertResult.second) 2475 return InsertResult.first->second; 2476 2477 TypeLoweringScope S(*this); 2478 2479 // Make sure the forward declaration is emitted first. It's unclear if this 2480 // is necessary, but MSVC does it, and we should follow suit until we can show 2481 // otherwise. 2482 // We only emit a forward declaration for named types. 2483 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2484 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2485 2486 // Just use the forward decl if we don't have complete type info. This 2487 // might happen if the frontend is using modules and expects the complete 2488 // definition to be emitted elsewhere. 2489 if (CTy->isForwardDecl()) 2490 return FwdDeclTI; 2491 } 2492 2493 TypeIndex TI; 2494 switch (CTy->getTag()) { 2495 case dwarf::DW_TAG_class_type: 2496 case dwarf::DW_TAG_structure_type: 2497 TI = lowerCompleteTypeClass(CTy); 2498 break; 2499 case dwarf::DW_TAG_union_type: 2500 TI = lowerCompleteTypeUnion(CTy); 2501 break; 2502 default: 2503 llvm_unreachable("not a record"); 2504 } 2505 2506 // Update the type index associated with this CompositeType. This cannot 2507 // use the 'InsertResult' iterator above because it is potentially 2508 // invalidated by map insertions which can occur while lowering the class 2509 // type above. 2510 CompleteTypeIndices[CTy] = TI; 2511 return TI; 2512 } 2513 2514 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2515 /// and do this until fixpoint, as each complete record type typically 2516 /// references 2517 /// many other record types. 2518 void CodeViewDebug::emitDeferredCompleteTypes() { 2519 SmallVector<const DICompositeType *, 4> TypesToEmit; 2520 while (!DeferredCompleteTypes.empty()) { 2521 std::swap(DeferredCompleteTypes, TypesToEmit); 2522 for (const DICompositeType *RecordTy : TypesToEmit) 2523 getCompleteTypeIndex(RecordTy); 2524 TypesToEmit.clear(); 2525 } 2526 } 2527 2528 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2529 ArrayRef<LocalVariable> Locals) { 2530 // Get the sorted list of parameters and emit them first. 2531 SmallVector<const LocalVariable *, 6> Params; 2532 for (const LocalVariable &L : Locals) 2533 if (L.DIVar->isParameter()) 2534 Params.push_back(&L); 2535 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2536 return L->DIVar->getArg() < R->DIVar->getArg(); 2537 }); 2538 for (const LocalVariable *L : Params) 2539 emitLocalVariable(FI, *L); 2540 2541 // Next emit all non-parameters in the order that we found them. 2542 for (const LocalVariable &L : Locals) 2543 if (!L.DIVar->isParameter()) 2544 emitLocalVariable(FI, L); 2545 } 2546 2547 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2548 /// structs composed of them. 2549 template <typename T> 2550 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2551 SymbolKind SymKind, const T &DefRangeHeader) { 2552 BytePrefix.resize(2 + sizeof(T)); 2553 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2554 memcpy(&BytePrefix[0], &SymKindLE, 2); 2555 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2556 } 2557 2558 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2559 const LocalVariable &Var) { 2560 // LocalSym record, see SymbolRecord.h for more info. 2561 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2562 *LocalEnd = MMI->getContext().createTempSymbol(); 2563 OS.AddComment("Record length"); 2564 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2565 OS.EmitLabel(LocalBegin); 2566 2567 OS.AddComment("Record kind: S_LOCAL"); 2568 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2569 2570 LocalSymFlags Flags = LocalSymFlags::None; 2571 if (Var.DIVar->isParameter()) 2572 Flags |= LocalSymFlags::IsParameter; 2573 if (Var.DefRanges.empty()) 2574 Flags |= LocalSymFlags::IsOptimizedOut; 2575 2576 OS.AddComment("TypeIndex"); 2577 TypeIndex TI = Var.UseReferenceType 2578 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2579 : getCompleteTypeIndex(Var.DIVar->getType()); 2580 OS.EmitIntValue(TI.getIndex(), 4); 2581 OS.AddComment("Flags"); 2582 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2583 // Truncate the name so we won't overflow the record length field. 2584 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2585 OS.EmitLabel(LocalEnd); 2586 2587 // Calculate the on disk prefix of the appropriate def range record. The 2588 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2589 // should be big enough to hold all forms without memory allocation. 2590 SmallString<20> BytePrefix; 2591 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2592 BytePrefix.clear(); 2593 if (DefRange.InMemory) { 2594 int Offset = DefRange.DataOffset; 2595 unsigned Reg = DefRange.CVRegister; 2596 2597 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2598 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2599 // instead. In simple cases, $T0 will be the CFA. 2600 if (RegisterId(Reg) == RegisterId::ESP) { 2601 Reg = unsigned(RegisterId::VFRAME); 2602 Offset -= FI.FrameSize; 2603 2604 // If the frame requires realignment, VFRAME will be ESP after it is 2605 // aligned. We have to remove the ESP adjustments made to push CSRs and 2606 // EBP. EBP is not included in CSRSize. 2607 if (FI.HasStackRealignment) 2608 Offset += FI.CSRSize + 4; 2609 } 2610 2611 // If we can use the chosen frame pointer for the frame and this isn't a 2612 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2613 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2614 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2615 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2616 (bool(Flags & LocalSymFlags::IsParameter) 2617 ? (EncFP == FI.EncodedParamFramePtrReg) 2618 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2619 little32_t FPOffset = little32_t(Offset); 2620 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2621 } else { 2622 uint16_t RegRelFlags = 0; 2623 if (DefRange.IsSubfield) { 2624 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2625 (DefRange.StructOffset 2626 << DefRangeRegisterRelSym::OffsetInParentShift); 2627 } 2628 DefRangeRegisterRelSym::Header DRHdr; 2629 DRHdr.Register = Reg; 2630 DRHdr.Flags = RegRelFlags; 2631 DRHdr.BasePointerOffset = Offset; 2632 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2633 } 2634 } else { 2635 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2636 if (DefRange.IsSubfield) { 2637 DefRangeSubfieldRegisterSym::Header DRHdr; 2638 DRHdr.Register = DefRange.CVRegister; 2639 DRHdr.MayHaveNoName = 0; 2640 DRHdr.OffsetInParent = DefRange.StructOffset; 2641 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2642 } else { 2643 DefRangeRegisterSym::Header DRHdr; 2644 DRHdr.Register = DefRange.CVRegister; 2645 DRHdr.MayHaveNoName = 0; 2646 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2647 } 2648 } 2649 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2650 } 2651 } 2652 2653 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2654 const FunctionInfo& FI) { 2655 for (LexicalBlock *Block : Blocks) 2656 emitLexicalBlock(*Block, FI); 2657 } 2658 2659 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2660 /// lexical block scope. 2661 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2662 const FunctionInfo& FI) { 2663 MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(), 2664 *RecordEnd = MMI->getContext().createTempSymbol(); 2665 2666 // Lexical block symbol record. 2667 OS.AddComment("Record length"); 2668 OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2); // Record Length 2669 OS.EmitLabel(RecordBegin); 2670 OS.AddComment("Record kind: S_BLOCK32"); 2671 OS.EmitIntValue(SymbolKind::S_BLOCK32, 2); // Record Kind 2672 OS.AddComment("PtrParent"); 2673 OS.EmitIntValue(0, 4); // PtrParent 2674 OS.AddComment("PtrEnd"); 2675 OS.EmitIntValue(0, 4); // PtrEnd 2676 OS.AddComment("Code size"); 2677 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2678 OS.AddComment("Function section relative address"); 2679 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2680 OS.AddComment("Function section index"); 2681 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2682 OS.AddComment("Lexical block name"); 2683 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2684 OS.EmitLabel(RecordEnd); 2685 2686 // Emit variables local to this lexical block. 2687 emitLocalVariableList(FI, Block.Locals); 2688 2689 // Emit lexical blocks contained within this block. 2690 emitLexicalBlockList(Block.Children, FI); 2691 2692 // Close the lexical block scope. 2693 OS.AddComment("Record length"); 2694 OS.EmitIntValue(2, 2); // Record Length 2695 OS.AddComment("Record kind: S_END"); 2696 OS.EmitIntValue(SymbolKind::S_END, 2); // Record Kind 2697 } 2698 2699 /// Convenience routine for collecting lexical block information for a list 2700 /// of lexical scopes. 2701 void CodeViewDebug::collectLexicalBlockInfo( 2702 SmallVectorImpl<LexicalScope *> &Scopes, 2703 SmallVectorImpl<LexicalBlock *> &Blocks, 2704 SmallVectorImpl<LocalVariable> &Locals) { 2705 for (LexicalScope *Scope : Scopes) 2706 collectLexicalBlockInfo(*Scope, Blocks, Locals); 2707 } 2708 2709 /// Populate the lexical blocks and local variable lists of the parent with 2710 /// information about the specified lexical scope. 2711 void CodeViewDebug::collectLexicalBlockInfo( 2712 LexicalScope &Scope, 2713 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2714 SmallVectorImpl<LocalVariable> &ParentLocals) { 2715 if (Scope.isAbstractScope()) 2716 return; 2717 2718 auto LocalsIter = ScopeVariables.find(&Scope); 2719 if (LocalsIter == ScopeVariables.end()) { 2720 // This scope does not contain variables and can be eliminated. 2721 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2722 return; 2723 } 2724 SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second; 2725 2726 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2727 if (!DILB) { 2728 // This scope is not a lexical block and can be eliminated, but keep any 2729 // local variables it contains. 2730 ParentLocals.append(Locals.begin(), Locals.end()); 2731 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2732 return; 2733 } 2734 2735 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2736 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) { 2737 // This lexical block scope has too many address ranges to represent in the 2738 // current CodeView format or does not have a valid address range. 2739 // Eliminate this lexical scope and promote any locals it contains to the 2740 // parent scope. 2741 // 2742 // For lexical scopes with multiple address ranges you may be tempted to 2743 // construct a single range covering every instruction where the block is 2744 // live and everything in between. Unfortunately, Visual Studio only 2745 // displays variables from the first matching lexical block scope. If the 2746 // first lexical block contains exception handling code or cold code which 2747 // is moved to the bottom of the routine creating a single range covering 2748 // nearly the entire routine, then it will hide all other lexical blocks 2749 // and the variables they contain. 2750 // 2751 ParentLocals.append(Locals.begin(), Locals.end()); 2752 collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals); 2753 return; 2754 } 2755 2756 // Create a new CodeView lexical block for this lexical scope. If we've 2757 // seen this DILexicalBlock before then the scope tree is malformed and 2758 // we can handle this gracefully by not processing it a second time. 2759 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2760 if (!BlockInsertion.second) 2761 return; 2762 2763 // Create a lexical block containing the local variables and collect the 2764 // the lexical block information for the children. 2765 const InsnRange &Range = Ranges.front(); 2766 assert(Range.first && Range.second); 2767 LexicalBlock &Block = BlockInsertion.first->second; 2768 Block.Begin = getLabelBeforeInsn(Range.first); 2769 Block.End = getLabelAfterInsn(Range.second); 2770 assert(Block.Begin && "missing label for scope begin"); 2771 assert(Block.End && "missing label for scope end"); 2772 Block.Name = DILB->getName(); 2773 Block.Locals = std::move(Locals); 2774 ParentBlocks.push_back(&Block); 2775 collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals); 2776 } 2777 2778 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2779 const Function &GV = MF->getFunction(); 2780 assert(FnDebugInfo.count(&GV)); 2781 assert(CurFn == FnDebugInfo[&GV].get()); 2782 2783 collectVariableInfo(GV.getSubprogram()); 2784 2785 // Build the lexical block structure to emit for this routine. 2786 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2787 collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals); 2788 2789 // Clear the scope and variable information from the map which will not be 2790 // valid after we have finished processing this routine. This also prepares 2791 // the map for the subsequent routine. 2792 ScopeVariables.clear(); 2793 2794 // Don't emit anything if we don't have any line tables. 2795 // Thunks are compiler-generated and probably won't have source correlation. 2796 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2797 FnDebugInfo.erase(&GV); 2798 CurFn = nullptr; 2799 return; 2800 } 2801 2802 CurFn->Annotations = MF->getCodeViewAnnotations(); 2803 2804 CurFn->End = Asm->getFunctionEnd(); 2805 2806 CurFn = nullptr; 2807 } 2808 2809 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2810 DebugHandlerBase::beginInstruction(MI); 2811 2812 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2813 if (!Asm || !CurFn || MI->isDebugInstr() || 2814 MI->getFlag(MachineInstr::FrameSetup)) 2815 return; 2816 2817 // If the first instruction of a new MBB has no location, find the first 2818 // instruction with a location and use that. 2819 DebugLoc DL = MI->getDebugLoc(); 2820 if (!DL && MI->getParent() != PrevInstBB) { 2821 for (const auto &NextMI : *MI->getParent()) { 2822 if (NextMI.isDebugInstr()) 2823 continue; 2824 DL = NextMI.getDebugLoc(); 2825 if (DL) 2826 break; 2827 } 2828 } 2829 PrevInstBB = MI->getParent(); 2830 2831 // If we still don't have a debug location, don't record a location. 2832 if (!DL) 2833 return; 2834 2835 maybeRecordLocation(DL, Asm->MF); 2836 } 2837 2838 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2839 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2840 *EndLabel = MMI->getContext().createTempSymbol(); 2841 OS.EmitIntValue(unsigned(Kind), 4); 2842 OS.AddComment("Subsection size"); 2843 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2844 OS.EmitLabel(BeginLabel); 2845 return EndLabel; 2846 } 2847 2848 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2849 OS.EmitLabel(EndLabel); 2850 // Every subsection must be aligned to a 4-byte boundary. 2851 OS.EmitValueToAlignment(4); 2852 } 2853 2854 void CodeViewDebug::emitDebugInfoForUDTs( 2855 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2856 for (const auto &UDT : UDTs) { 2857 const DIType *T = UDT.second; 2858 assert(shouldEmitUdt(T)); 2859 2860 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2861 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2862 OS.AddComment("Record length"); 2863 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2864 OS.EmitLabel(UDTRecordBegin); 2865 2866 OS.AddComment("Record kind: S_UDT"); 2867 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2868 2869 OS.AddComment("Type"); 2870 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2871 2872 emitNullTerminatedSymbolName(OS, UDT.first); 2873 OS.EmitLabel(UDTRecordEnd); 2874 } 2875 } 2876 2877 void CodeViewDebug::emitDebugInfoForGlobals() { 2878 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2879 GlobalMap; 2880 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2881 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2882 GV.getDebugInfo(GVEs); 2883 for (const auto *GVE : GVEs) 2884 GlobalMap[GVE] = &GV; 2885 } 2886 2887 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2888 for (const MDNode *Node : CUs->operands()) { 2889 const auto *CU = cast<DICompileUnit>(Node); 2890 2891 // First, emit all globals that are not in a comdat in a single symbol 2892 // substream. MSVC doesn't like it if the substream is empty, so only open 2893 // it if we have at least one global to emit. 2894 switchToDebugSectionForSymbol(nullptr); 2895 MCSymbol *EndLabel = nullptr; 2896 for (const auto *GVE : CU->getGlobalVariables()) { 2897 if (const auto *GV = GlobalMap.lookup(GVE)) 2898 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2899 if (!EndLabel) { 2900 OS.AddComment("Symbol subsection for globals"); 2901 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2902 } 2903 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2904 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2905 } 2906 } 2907 if (EndLabel) 2908 endCVSubsection(EndLabel); 2909 2910 // Second, emit each global that is in a comdat into its own .debug$S 2911 // section along with its own symbol substream. 2912 for (const auto *GVE : CU->getGlobalVariables()) { 2913 if (const auto *GV = GlobalMap.lookup(GVE)) { 2914 if (GV->hasComdat()) { 2915 MCSymbol *GVSym = Asm->getSymbol(GV); 2916 OS.AddComment("Symbol subsection for " + 2917 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2918 switchToDebugSectionForSymbol(GVSym); 2919 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2920 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2921 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2922 endCVSubsection(EndLabel); 2923 } 2924 } 2925 } 2926 } 2927 } 2928 2929 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2930 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2931 for (const MDNode *Node : CUs->operands()) { 2932 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2933 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2934 getTypeIndex(RT); 2935 // FIXME: Add to global/local DTU list. 2936 } 2937 } 2938 } 2939 } 2940 2941 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2942 const GlobalVariable *GV, 2943 MCSymbol *GVSym) { 2944 // DataSym record, see SymbolRecord.h for more info. 2945 // FIXME: Thread local data, etc 2946 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2947 *DataEnd = MMI->getContext().createTempSymbol(); 2948 const unsigned FixedLengthOfThisRecord = 12; 2949 OS.AddComment("Record length"); 2950 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2951 OS.EmitLabel(DataBegin); 2952 if (DIGV->isLocalToUnit()) { 2953 if (GV->isThreadLocal()) { 2954 OS.AddComment("Record kind: S_LTHREAD32"); 2955 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2956 } else { 2957 OS.AddComment("Record kind: S_LDATA32"); 2958 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2959 } 2960 } else { 2961 if (GV->isThreadLocal()) { 2962 OS.AddComment("Record kind: S_GTHREAD32"); 2963 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2964 } else { 2965 OS.AddComment("Record kind: S_GDATA32"); 2966 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2967 } 2968 } 2969 OS.AddComment("Type"); 2970 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2971 OS.AddComment("DataOffset"); 2972 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2973 OS.AddComment("Segment"); 2974 OS.EmitCOFFSectionIndex(GVSym); 2975 OS.AddComment("Name"); 2976 emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord); 2977 OS.EmitLabel(DataEnd); 2978 } 2979