1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineModuleInfo.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/Config/llvm-config.h"
38 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
39 #include "llvm/DebugInfo/CodeView/CodeView.h"
40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
41 #include "llvm/DebugInfo/CodeView/Line.h"
42 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
43 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
44 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
45 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfoMetadata.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/MC/MCAsmInfo.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSectionCOFF.h"
59 #include "llvm/MC/MCStreamer.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/BinaryByteStream.h"
62 #include "llvm/Support/BinaryStreamReader.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ScopedPrinter.h"
69 #include "llvm/Support/SMLoc.h"
70 #include "llvm/Target/TargetFrameLowering.h"
71 #include "llvm/Target/TargetLoweringObjectFile.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include "llvm/Target/TargetRegisterInfo.h"
74 #include "llvm/Target/TargetSubtargetInfo.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <iterator>
81 #include <limits>
82 #include <string>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 using namespace llvm::codeview;
88 
89 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
90     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
91   // If module doesn't have named metadata anchors or COFF debug section
92   // is not available, skip any debug info related stuff.
93   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
94       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
95     Asm = nullptr;
96     return;
97   }
98 
99   // Tell MMI that we have debug info.
100   MMI->setDebugInfoAvailability(true);
101 }
102 
103 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
104   std::string &Filepath = FileToFilepathMap[File];
105   if (!Filepath.empty())
106     return Filepath;
107 
108   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
109 
110   // Clang emits directory and relative filename info into the IR, but CodeView
111   // operates on full paths.  We could change Clang to emit full paths too, but
112   // that would increase the IR size and probably not needed for other users.
113   // For now, just concatenate and canonicalize the path here.
114   if (Filename.find(':') == 1)
115     Filepath = Filename;
116   else
117     Filepath = (Dir + "\\" + Filename).str();
118 
119   // Canonicalize the path.  We have to do it textually because we may no longer
120   // have access the file in the filesystem.
121   // First, replace all slashes with backslashes.
122   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
123 
124   // Remove all "\.\" with "\".
125   size_t Cursor = 0;
126   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
127     Filepath.erase(Cursor, 2);
128 
129   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
130   // path should be well-formatted, e.g. start with a drive letter, etc.
131   Cursor = 0;
132   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
133     // Something's wrong if the path starts with "\..\", abort.
134     if (Cursor == 0)
135       break;
136 
137     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
138     if (PrevSlash == std::string::npos)
139       // Something's wrong, abort.
140       break;
141 
142     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
143     // The next ".." might be following the one we've just erased.
144     Cursor = PrevSlash;
145   }
146 
147   // Remove all duplicate backslashes.
148   Cursor = 0;
149   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
150     Filepath.erase(Cursor, 1);
151 
152   return Filepath;
153 }
154 
155 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
156   unsigned NextId = FileIdMap.size() + 1;
157   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
158   if (Insertion.second) {
159     // We have to compute the full filepath and emit a .cv_file directive.
160     StringRef FullPath = getFullFilepath(F);
161     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
162     (void)Success;
163     assert(Success && ".cv_file directive failed");
164   }
165   return Insertion.first->second;
166 }
167 
168 CodeViewDebug::InlineSite &
169 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
170                              const DISubprogram *Inlinee) {
171   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
172   InlineSite *Site = &SiteInsertion.first->second;
173   if (SiteInsertion.second) {
174     unsigned ParentFuncId = CurFn->FuncId;
175     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
176       ParentFuncId =
177           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
178               .SiteFuncId;
179 
180     Site->SiteFuncId = NextFuncId++;
181     OS.EmitCVInlineSiteIdDirective(
182         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
183         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
184     Site->Inlinee = Inlinee;
185     InlinedSubprograms.insert(Inlinee);
186     getFuncIdForSubprogram(Inlinee);
187   }
188   return *Site;
189 }
190 
191 static StringRef getPrettyScopeName(const DIScope *Scope) {
192   StringRef ScopeName = Scope->getName();
193   if (!ScopeName.empty())
194     return ScopeName;
195 
196   switch (Scope->getTag()) {
197   case dwarf::DW_TAG_enumeration_type:
198   case dwarf::DW_TAG_class_type:
199   case dwarf::DW_TAG_structure_type:
200   case dwarf::DW_TAG_union_type:
201     return "<unnamed-tag>";
202   case dwarf::DW_TAG_namespace:
203     return "`anonymous namespace'";
204   }
205 
206   return StringRef();
207 }
208 
209 static const DISubprogram *getQualifiedNameComponents(
210     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
211   const DISubprogram *ClosestSubprogram = nullptr;
212   while (Scope != nullptr) {
213     if (ClosestSubprogram == nullptr)
214       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
215     StringRef ScopeName = getPrettyScopeName(Scope);
216     if (!ScopeName.empty())
217       QualifiedNameComponents.push_back(ScopeName);
218     Scope = Scope->getScope().resolve();
219   }
220   return ClosestSubprogram;
221 }
222 
223 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
224                                     StringRef TypeName) {
225   std::string FullyQualifiedName;
226   for (StringRef QualifiedNameComponent :
227        llvm::reverse(QualifiedNameComponents)) {
228     FullyQualifiedName.append(QualifiedNameComponent);
229     FullyQualifiedName.append("::");
230   }
231   FullyQualifiedName.append(TypeName);
232   return FullyQualifiedName;
233 }
234 
235 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
236   SmallVector<StringRef, 5> QualifiedNameComponents;
237   getQualifiedNameComponents(Scope, QualifiedNameComponents);
238   return getQualifiedName(QualifiedNameComponents, Name);
239 }
240 
241 struct CodeViewDebug::TypeLoweringScope {
242   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
243   ~TypeLoweringScope() {
244     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
245     // inner TypeLoweringScopes don't attempt to emit deferred types.
246     if (CVD.TypeEmissionLevel == 1)
247       CVD.emitDeferredCompleteTypes();
248     --CVD.TypeEmissionLevel;
249   }
250   CodeViewDebug &CVD;
251 };
252 
253 static std::string getFullyQualifiedName(const DIScope *Ty) {
254   const DIScope *Scope = Ty->getScope().resolve();
255   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
256 }
257 
258 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
259   // No scope means global scope and that uses the zero index.
260   if (!Scope || isa<DIFile>(Scope))
261     return TypeIndex();
262 
263   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
264 
265   // Check if we've already translated this scope.
266   auto I = TypeIndices.find({Scope, nullptr});
267   if (I != TypeIndices.end())
268     return I->second;
269 
270   // Build the fully qualified name of the scope.
271   std::string ScopeName = getFullyQualifiedName(Scope);
272   StringIdRecord SID(TypeIndex(), ScopeName);
273   auto TI = TypeTable.writeKnownType(SID);
274   return recordTypeIndexForDINode(Scope, TI);
275 }
276 
277 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
278   assert(SP);
279 
280   // Check if we've already translated this subprogram.
281   auto I = TypeIndices.find({SP, nullptr});
282   if (I != TypeIndices.end())
283     return I->second;
284 
285   // The display name includes function template arguments. Drop them to match
286   // MSVC.
287   StringRef DisplayName = SP->getName().split('<').first;
288 
289   const DIScope *Scope = SP->getScope().resolve();
290   TypeIndex TI;
291   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
292     // If the scope is a DICompositeType, then this must be a method. Member
293     // function types take some special handling, and require access to the
294     // subprogram.
295     TypeIndex ClassType = getTypeIndex(Class);
296     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
297                                DisplayName);
298     TI = TypeTable.writeKnownType(MFuncId);
299   } else {
300     // Otherwise, this must be a free function.
301     TypeIndex ParentScope = getScopeIndex(Scope);
302     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
303     TI = TypeTable.writeKnownType(FuncId);
304   }
305 
306   return recordTypeIndexForDINode(SP, TI);
307 }
308 
309 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
310                                                const DICompositeType *Class) {
311   // Always use the method declaration as the key for the function type. The
312   // method declaration contains the this adjustment.
313   if (SP->getDeclaration())
314     SP = SP->getDeclaration();
315   assert(!SP->getDeclaration() && "should use declaration as key");
316 
317   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
318   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
319   auto I = TypeIndices.find({SP, Class});
320   if (I != TypeIndices.end())
321     return I->second;
322 
323   // Make sure complete type info for the class is emitted *after* the member
324   // function type, as the complete class type is likely to reference this
325   // member function type.
326   TypeLoweringScope S(*this);
327   TypeIndex TI =
328       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
329   return recordTypeIndexForDINode(SP, TI, Class);
330 }
331 
332 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
333                                                   TypeIndex TI,
334                                                   const DIType *ClassTy) {
335   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
336   (void)InsertResult;
337   assert(InsertResult.second && "DINode was already assigned a type index");
338   return TI;
339 }
340 
341 unsigned CodeViewDebug::getPointerSizeInBytes() {
342   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
343 }
344 
345 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
346                                         const DILocation *InlinedAt) {
347   if (InlinedAt) {
348     // This variable was inlined. Associate it with the InlineSite.
349     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
350     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
351     Site.InlinedLocals.emplace_back(Var);
352   } else {
353     // This variable goes in the main ProcSym.
354     CurFn->Locals.emplace_back(Var);
355   }
356 }
357 
358 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
359                                const DILocation *Loc) {
360   auto B = Locs.begin(), E = Locs.end();
361   if (std::find(B, E, Loc) == E)
362     Locs.push_back(Loc);
363 }
364 
365 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
366                                         const MachineFunction *MF) {
367   // Skip this instruction if it has the same location as the previous one.
368   if (!DL || DL == PrevInstLoc)
369     return;
370 
371   const DIScope *Scope = DL.get()->getScope();
372   if (!Scope)
373     return;
374 
375   // Skip this line if it is longer than the maximum we can record.
376   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
377   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
378       LI.isNeverStepInto())
379     return;
380 
381   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
382   if (CI.getStartColumn() != DL.getCol())
383     return;
384 
385   if (!CurFn->HaveLineInfo)
386     CurFn->HaveLineInfo = true;
387   unsigned FileId = 0;
388   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
389     FileId = CurFn->LastFileId;
390   else
391     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
392   PrevInstLoc = DL;
393 
394   unsigned FuncId = CurFn->FuncId;
395   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
396     const DILocation *Loc = DL.get();
397 
398     // If this location was actually inlined from somewhere else, give it the ID
399     // of the inline call site.
400     FuncId =
401         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
402 
403     // Ensure we have links in the tree of inline call sites.
404     bool FirstLoc = true;
405     while ((SiteLoc = Loc->getInlinedAt())) {
406       InlineSite &Site =
407           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
408       if (!FirstLoc)
409         addLocIfNotPresent(Site.ChildSites, Loc);
410       FirstLoc = false;
411       Loc = SiteLoc;
412     }
413     addLocIfNotPresent(CurFn->ChildSites, Loc);
414   }
415 
416   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
417                         /*PrologueEnd=*/false, /*IsStmt=*/false,
418                         DL->getFilename(), SMLoc());
419 }
420 
421 void CodeViewDebug::emitCodeViewMagicVersion() {
422   OS.EmitValueToAlignment(4);
423   OS.AddComment("Debug section magic");
424   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
425 }
426 
427 void CodeViewDebug::endModule() {
428   if (!Asm || !MMI->hasDebugInfo())
429     return;
430 
431   assert(Asm != nullptr);
432 
433   // The COFF .debug$S section consists of several subsections, each starting
434   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
435   // of the payload followed by the payload itself.  The subsections are 4-byte
436   // aligned.
437 
438   // Use the generic .debug$S section, and make a subsection for all the inlined
439   // subprograms.
440   switchToDebugSectionForSymbol(nullptr);
441 
442   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
443   emitCompilerInformation();
444   endCVSubsection(CompilerInfo);
445 
446   emitInlineeLinesSubsection();
447 
448   // Emit per-function debug information.
449   for (auto &P : FnDebugInfo)
450     if (!P.first->isDeclarationForLinker())
451       emitDebugInfoForFunction(P.first, P.second);
452 
453   // Emit global variable debug information.
454   setCurrentSubprogram(nullptr);
455   emitDebugInfoForGlobals();
456 
457   // Emit retained types.
458   emitDebugInfoForRetainedTypes();
459 
460   // Switch back to the generic .debug$S section after potentially processing
461   // comdat symbol sections.
462   switchToDebugSectionForSymbol(nullptr);
463 
464   // Emit UDT records for any types used by global variables.
465   if (!GlobalUDTs.empty()) {
466     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
467     emitDebugInfoForUDTs(GlobalUDTs);
468     endCVSubsection(SymbolsEnd);
469   }
470 
471   // This subsection holds a file index to offset in string table table.
472   OS.AddComment("File index to string table offset subsection");
473   OS.EmitCVFileChecksumsDirective();
474 
475   // This subsection holds the string table.
476   OS.AddComment("String table");
477   OS.EmitCVStringTableDirective();
478 
479   // Emit type information last, so that any types we translate while emitting
480   // function info are included.
481   emitTypeInformation();
482 
483   clear();
484 }
485 
486 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
487   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
488   // after a fixed length portion of the record. The fixed length portion should
489   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
490   // overall record size is less than the maximum allowed.
491   unsigned MaxFixedRecordLength = 0xF00;
492   SmallString<32> NullTerminatedString(
493       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
494   NullTerminatedString.push_back('\0');
495   OS.EmitBytes(NullTerminatedString);
496 }
497 
498 void CodeViewDebug::emitTypeInformation() {
499   // Do nothing if we have no debug info or if no non-trivial types were emitted
500   // to TypeTable during codegen.
501   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
502   if (!CU_Nodes)
503     return;
504   if (TypeTable.empty())
505     return;
506 
507   // Start the .debug$T section with 0x4.
508   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
509   emitCodeViewMagicVersion();
510 
511   SmallString<8> CommentPrefix;
512   if (OS.isVerboseAsm()) {
513     CommentPrefix += '\t';
514     CommentPrefix += Asm->MAI->getCommentString();
515     CommentPrefix += ' ';
516   }
517 
518   TypeTableCollection Table(TypeTable.records());
519   Optional<TypeIndex> B = Table.getFirst();
520   while (B) {
521     // This will fail if the record data is invalid.
522     CVType Record = Table.getType(*B);
523 
524     if (OS.isVerboseAsm()) {
525       // Emit a block comment describing the type record for readability.
526       SmallString<512> CommentBlock;
527       raw_svector_ostream CommentOS(CommentBlock);
528       ScopedPrinter SP(CommentOS);
529       SP.setPrefix(CommentPrefix);
530       TypeDumpVisitor TDV(Table, &SP, false);
531 
532       Error E = codeview::visitTypeRecord(Record, *B, TDV);
533       if (E) {
534         logAllUnhandledErrors(std::move(E), errs(), "error: ");
535         llvm_unreachable("produced malformed type record");
536       }
537       // emitRawComment will insert its own tab and comment string before
538       // the first line, so strip off our first one. It also prints its own
539       // newline.
540       OS.emitRawComment(
541           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
542     }
543     OS.EmitBinaryData(Record.str_data());
544     B = Table.getNext(*B);
545   }
546 }
547 
548 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
549   switch (DWLang) {
550   case dwarf::DW_LANG_C:
551   case dwarf::DW_LANG_C89:
552   case dwarf::DW_LANG_C99:
553   case dwarf::DW_LANG_C11:
554   case dwarf::DW_LANG_ObjC:
555     return SourceLanguage::C;
556   case dwarf::DW_LANG_C_plus_plus:
557   case dwarf::DW_LANG_C_plus_plus_03:
558   case dwarf::DW_LANG_C_plus_plus_11:
559   case dwarf::DW_LANG_C_plus_plus_14:
560     return SourceLanguage::Cpp;
561   case dwarf::DW_LANG_Fortran77:
562   case dwarf::DW_LANG_Fortran90:
563   case dwarf::DW_LANG_Fortran03:
564   case dwarf::DW_LANG_Fortran08:
565     return SourceLanguage::Fortran;
566   case dwarf::DW_LANG_Pascal83:
567     return SourceLanguage::Pascal;
568   case dwarf::DW_LANG_Cobol74:
569   case dwarf::DW_LANG_Cobol85:
570     return SourceLanguage::Cobol;
571   case dwarf::DW_LANG_Java:
572     return SourceLanguage::Java;
573   default:
574     // There's no CodeView representation for this language, and CV doesn't
575     // have an "unknown" option for the language field, so we'll use MASM,
576     // as it's very low level.
577     return SourceLanguage::Masm;
578   }
579 }
580 
581 namespace {
582 struct Version {
583   int Part[4];
584 };
585 } // end anonymous namespace
586 
587 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
588 // the version number.
589 static Version parseVersion(StringRef Name) {
590   Version V = {{0}};
591   int N = 0;
592   for (const char C : Name) {
593     if (isdigit(C)) {
594       V.Part[N] *= 10;
595       V.Part[N] += C - '0';
596     } else if (C == '.') {
597       ++N;
598       if (N >= 4)
599         return V;
600     } else if (N > 0)
601       return V;
602   }
603   return V;
604 }
605 
606 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
607   switch (Type) {
608   case Triple::ArchType::x86:
609     return CPUType::Pentium3;
610   case Triple::ArchType::x86_64:
611     return CPUType::X64;
612   case Triple::ArchType::thumb:
613     return CPUType::Thumb;
614   case Triple::ArchType::aarch64:
615     return CPUType::ARM64;
616   default:
617     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
618   }
619 }
620 
621 void CodeViewDebug::emitCompilerInformation() {
622   MCContext &Context = MMI->getContext();
623   MCSymbol *CompilerBegin = Context.createTempSymbol(),
624            *CompilerEnd = Context.createTempSymbol();
625   OS.AddComment("Record length");
626   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
627   OS.EmitLabel(CompilerBegin);
628   OS.AddComment("Record kind: S_COMPILE3");
629   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
630   uint32_t Flags = 0;
631 
632   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
633   const MDNode *Node = *CUs->operands().begin();
634   const auto *CU = cast<DICompileUnit>(Node);
635 
636   // The low byte of the flags indicates the source language.
637   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
638   // TODO:  Figure out which other flags need to be set.
639 
640   OS.AddComment("Flags and language");
641   OS.EmitIntValue(Flags, 4);
642 
643   OS.AddComment("CPUType");
644   CPUType CPU =
645       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
646   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
647 
648   StringRef CompilerVersion = CU->getProducer();
649   Version FrontVer = parseVersion(CompilerVersion);
650   OS.AddComment("Frontend version");
651   for (int N = 0; N < 4; ++N)
652     OS.EmitIntValue(FrontVer.Part[N], 2);
653 
654   // Some Microsoft tools, like Binscope, expect a backend version number of at
655   // least 8.something, so we'll coerce the LLVM version into a form that
656   // guarantees it'll be big enough without really lying about the version.
657   int Major = 1000 * LLVM_VERSION_MAJOR +
658               10 * LLVM_VERSION_MINOR +
659               LLVM_VERSION_PATCH;
660   // Clamp it for builds that use unusually large version numbers.
661   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
662   Version BackVer = {{ Major, 0, 0, 0 }};
663   OS.AddComment("Backend version");
664   for (int N = 0; N < 4; ++N)
665     OS.EmitIntValue(BackVer.Part[N], 2);
666 
667   OS.AddComment("Null-terminated compiler version string");
668   emitNullTerminatedSymbolName(OS, CompilerVersion);
669 
670   OS.EmitLabel(CompilerEnd);
671 }
672 
673 void CodeViewDebug::emitInlineeLinesSubsection() {
674   if (InlinedSubprograms.empty())
675     return;
676 
677   OS.AddComment("Inlinee lines subsection");
678   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
679 
680   // We don't provide any extra file info.
681   // FIXME: Find out if debuggers use this info.
682   OS.AddComment("Inlinee lines signature");
683   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
684 
685   for (const DISubprogram *SP : InlinedSubprograms) {
686     assert(TypeIndices.count({SP, nullptr}));
687     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
688 
689     OS.AddBlankLine();
690     unsigned FileId = maybeRecordFile(SP->getFile());
691     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
692                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
693     OS.AddBlankLine();
694     // The filechecksum table uses 8 byte entries for now, and file ids start at
695     // 1.
696     unsigned FileOffset = (FileId - 1) * 8;
697     OS.AddComment("Type index of inlined function");
698     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
699     OS.AddComment("Offset into filechecksum table");
700     OS.EmitIntValue(FileOffset, 4);
701     OS.AddComment("Starting line number");
702     OS.EmitIntValue(SP->getLine(), 4);
703   }
704 
705   endCVSubsection(InlineEnd);
706 }
707 
708 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
709                                         const DILocation *InlinedAt,
710                                         const InlineSite &Site) {
711   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
712            *InlineEnd = MMI->getContext().createTempSymbol();
713 
714   assert(TypeIndices.count({Site.Inlinee, nullptr}));
715   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
716 
717   // SymbolRecord
718   OS.AddComment("Record length");
719   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
720   OS.EmitLabel(InlineBegin);
721   OS.AddComment("Record kind: S_INLINESITE");
722   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
723 
724   OS.AddComment("PtrParent");
725   OS.EmitIntValue(0, 4);
726   OS.AddComment("PtrEnd");
727   OS.EmitIntValue(0, 4);
728   OS.AddComment("Inlinee type index");
729   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
730 
731   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
732   unsigned StartLineNum = Site.Inlinee->getLine();
733 
734   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
735                                     FI.Begin, FI.End);
736 
737   OS.EmitLabel(InlineEnd);
738 
739   emitLocalVariableList(Site.InlinedLocals);
740 
741   // Recurse on child inlined call sites before closing the scope.
742   for (const DILocation *ChildSite : Site.ChildSites) {
743     auto I = FI.InlineSites.find(ChildSite);
744     assert(I != FI.InlineSites.end() &&
745            "child site not in function inline site map");
746     emitInlinedCallSite(FI, ChildSite, I->second);
747   }
748 
749   // Close the scope.
750   OS.AddComment("Record length");
751   OS.EmitIntValue(2, 2);                                  // RecordLength
752   OS.AddComment("Record kind: S_INLINESITE_END");
753   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
754 }
755 
756 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
757   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
758   // comdat key. A section may be comdat because of -ffunction-sections or
759   // because it is comdat in the IR.
760   MCSectionCOFF *GVSec =
761       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
762   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
763 
764   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
765       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
766   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
767 
768   OS.SwitchSection(DebugSec);
769 
770   // Emit the magic version number if this is the first time we've switched to
771   // this section.
772   if (ComdatDebugSections.insert(DebugSec).second)
773     emitCodeViewMagicVersion();
774 }
775 
776 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
777                                              FunctionInfo &FI) {
778   // For each function there is a separate subsection
779   // which holds the PC to file:line table.
780   const MCSymbol *Fn = Asm->getSymbol(GV);
781   assert(Fn);
782 
783   // Switch to the to a comdat section, if appropriate.
784   switchToDebugSectionForSymbol(Fn);
785 
786   std::string FuncName;
787   auto *SP = GV->getSubprogram();
788   assert(SP);
789   setCurrentSubprogram(SP);
790 
791   // If we have a display name, build the fully qualified name by walking the
792   // chain of scopes.
793   if (!SP->getName().empty())
794     FuncName =
795         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
796 
797   // If our DISubprogram name is empty, use the mangled name.
798   if (FuncName.empty())
799     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
800 
801   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
802   OS.AddComment("Symbol subsection for " + Twine(FuncName));
803   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
804   {
805     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
806              *ProcRecordEnd = MMI->getContext().createTempSymbol();
807     OS.AddComment("Record length");
808     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
809     OS.EmitLabel(ProcRecordBegin);
810 
811     if (GV->hasLocalLinkage()) {
812       OS.AddComment("Record kind: S_LPROC32_ID");
813       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
814     } else {
815       OS.AddComment("Record kind: S_GPROC32_ID");
816       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
817     }
818 
819     // These fields are filled in by tools like CVPACK which run after the fact.
820     OS.AddComment("PtrParent");
821     OS.EmitIntValue(0, 4);
822     OS.AddComment("PtrEnd");
823     OS.EmitIntValue(0, 4);
824     OS.AddComment("PtrNext");
825     OS.EmitIntValue(0, 4);
826     // This is the important bit that tells the debugger where the function
827     // code is located and what's its size:
828     OS.AddComment("Code size");
829     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
830     OS.AddComment("Offset after prologue");
831     OS.EmitIntValue(0, 4);
832     OS.AddComment("Offset before epilogue");
833     OS.EmitIntValue(0, 4);
834     OS.AddComment("Function type index");
835     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
836     OS.AddComment("Function section relative address");
837     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
838     OS.AddComment("Function section index");
839     OS.EmitCOFFSectionIndex(Fn);
840     OS.AddComment("Flags");
841     OS.EmitIntValue(0, 1);
842     // Emit the function display name as a null-terminated string.
843     OS.AddComment("Function name");
844     // Truncate the name so we won't overflow the record length field.
845     emitNullTerminatedSymbolName(OS, FuncName);
846     OS.EmitLabel(ProcRecordEnd);
847 
848     emitLocalVariableList(FI.Locals);
849 
850     // Emit inlined call site information. Only emit functions inlined directly
851     // into the parent function. We'll emit the other sites recursively as part
852     // of their parent inline site.
853     for (const DILocation *InlinedAt : FI.ChildSites) {
854       auto I = FI.InlineSites.find(InlinedAt);
855       assert(I != FI.InlineSites.end() &&
856              "child site not in function inline site map");
857       emitInlinedCallSite(FI, InlinedAt, I->second);
858     }
859 
860     if (SP != nullptr)
861       emitDebugInfoForUDTs(LocalUDTs);
862 
863     // We're done with this function.
864     OS.AddComment("Record length");
865     OS.EmitIntValue(0x0002, 2);
866     OS.AddComment("Record kind: S_PROC_ID_END");
867     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
868   }
869   endCVSubsection(SymbolsEnd);
870 
871   // We have an assembler directive that takes care of the whole line table.
872   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
873 }
874 
875 CodeViewDebug::LocalVarDefRange
876 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
877   LocalVarDefRange DR;
878   DR.InMemory = -1;
879   DR.DataOffset = Offset;
880   assert(DR.DataOffset == Offset && "truncation");
881   DR.IsSubfield = 0;
882   DR.StructOffset = 0;
883   DR.CVRegister = CVRegister;
884   return DR;
885 }
886 
887 CodeViewDebug::LocalVarDefRange
888 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
889                                      int Offset, bool IsSubfield,
890                                      uint16_t StructOffset) {
891   LocalVarDefRange DR;
892   DR.InMemory = InMemory;
893   DR.DataOffset = Offset;
894   DR.IsSubfield = IsSubfield;
895   DR.StructOffset = StructOffset;
896   DR.CVRegister = CVRegister;
897   return DR;
898 }
899 
900 void CodeViewDebug::collectVariableInfoFromMFTable(
901     DenseSet<InlinedVariable> &Processed) {
902   const MachineFunction &MF = *Asm->MF;
903   const TargetSubtargetInfo &TSI = MF.getSubtarget();
904   const TargetFrameLowering *TFI = TSI.getFrameLowering();
905   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
906 
907   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
908     if (!VI.Var)
909       continue;
910     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
911            "Expected inlined-at fields to agree");
912 
913     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
914     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
915 
916     // If variable scope is not found then skip this variable.
917     if (!Scope)
918       continue;
919 
920     // If the variable has an attached offset expression, extract it.
921     // FIXME: Try to handle DW_OP_deref as well.
922     int64_t ExprOffset = 0;
923     if (VI.Expr)
924       if (!VI.Expr->extractIfOffset(ExprOffset))
925         continue;
926 
927     // Get the frame register used and the offset.
928     unsigned FrameReg = 0;
929     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
930     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
931 
932     // Calculate the label ranges.
933     LocalVarDefRange DefRange =
934         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
935     for (const InsnRange &Range : Scope->getRanges()) {
936       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
937       const MCSymbol *End = getLabelAfterInsn(Range.second);
938       End = End ? End : Asm->getFunctionEnd();
939       DefRange.Ranges.emplace_back(Begin, End);
940     }
941 
942     LocalVariable Var;
943     Var.DIVar = VI.Var;
944     Var.DefRanges.emplace_back(std::move(DefRange));
945     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
946   }
947 }
948 
949 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
950   DenseSet<InlinedVariable> Processed;
951   // Grab the variable info that was squirreled away in the MMI side-table.
952   collectVariableInfoFromMFTable(Processed);
953 
954   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
955 
956   for (const auto &I : DbgValues) {
957     InlinedVariable IV = I.first;
958     if (Processed.count(IV))
959       continue;
960     const DILocalVariable *DIVar = IV.first;
961     const DILocation *InlinedAt = IV.second;
962 
963     // Instruction ranges, specifying where IV is accessible.
964     const auto &Ranges = I.second;
965 
966     LexicalScope *Scope = nullptr;
967     if (InlinedAt)
968       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
969     else
970       Scope = LScopes.findLexicalScope(DIVar->getScope());
971     // If variable scope is not found then skip this variable.
972     if (!Scope)
973       continue;
974 
975     LocalVariable Var;
976     Var.DIVar = DIVar;
977 
978     // Calculate the definition ranges.
979     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
980       const InsnRange &Range = *I;
981       const MachineInstr *DVInst = Range.first;
982       assert(DVInst->isDebugValue() && "Invalid History entry");
983       const DIExpression *DIExpr = DVInst->getDebugExpression();
984       bool IsSubfield = false;
985       unsigned StructOffset = 0;
986 
987       // Handle fragments.
988       auto Fragment = DIExpr->getFragmentInfo();
989       if (Fragment) {
990         IsSubfield = true;
991         StructOffset = Fragment->OffsetInBits / 8;
992       } else if (DIExpr->getNumElements() > 0) {
993         continue; // Ignore unrecognized exprs.
994       }
995 
996       // Bail if operand 0 is not a valid register. This means the variable is a
997       // simple constant, or is described by a complex expression.
998       // FIXME: Find a way to represent constant variables, since they are
999       // relatively common.
1000       unsigned Reg =
1001           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
1002       if (Reg == 0)
1003         continue;
1004 
1005       // Handle the two cases we can handle: indirect in memory and in register.
1006       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
1007       bool InMemory = DVInst->getOperand(1).isImm();
1008       int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
1009       {
1010         LocalVarDefRange DR;
1011         DR.CVRegister = CVReg;
1012         DR.InMemory = InMemory;
1013         DR.DataOffset = Offset;
1014         DR.IsSubfield = IsSubfield;
1015         DR.StructOffset = StructOffset;
1016 
1017         if (Var.DefRanges.empty() ||
1018             Var.DefRanges.back().isDifferentLocation(DR)) {
1019           Var.DefRanges.emplace_back(std::move(DR));
1020         }
1021       }
1022 
1023       // Compute the label range.
1024       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1025       const MCSymbol *End = getLabelAfterInsn(Range.second);
1026       if (!End) {
1027         // This range is valid until the next overlapping bitpiece. In the
1028         // common case, ranges will not be bitpieces, so they will overlap.
1029         auto J = std::next(I);
1030         while (J != E &&
1031                !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1032           ++J;
1033         if (J != E)
1034           End = getLabelBeforeInsn(J->first);
1035         else
1036           End = Asm->getFunctionEnd();
1037       }
1038 
1039       // If the last range end is our begin, just extend the last range.
1040       // Otherwise make a new range.
1041       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
1042           Var.DefRanges.back().Ranges;
1043       if (!Ranges.empty() && Ranges.back().second == Begin)
1044         Ranges.back().second = End;
1045       else
1046         Ranges.emplace_back(Begin, End);
1047 
1048       // FIXME: Do more range combining.
1049     }
1050 
1051     recordLocalVariable(std::move(Var), InlinedAt);
1052   }
1053 }
1054 
1055 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1056   const Function *GV = MF->getFunction();
1057   assert(FnDebugInfo.count(GV) == false);
1058   CurFn = &FnDebugInfo[GV];
1059   CurFn->FuncId = NextFuncId++;
1060   CurFn->Begin = Asm->getFunctionBegin();
1061 
1062   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1063 
1064   // Find the end of the function prolog.  First known non-DBG_VALUE and
1065   // non-frame setup location marks the beginning of the function body.
1066   // FIXME: is there a simpler a way to do this? Can we just search
1067   // for the first instruction of the function, not the last of the prolog?
1068   DebugLoc PrologEndLoc;
1069   bool EmptyPrologue = true;
1070   for (const auto &MBB : *MF) {
1071     for (const auto &MI : MBB) {
1072       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1073           MI.getDebugLoc()) {
1074         PrologEndLoc = MI.getDebugLoc();
1075         break;
1076       } else if (!MI.isMetaInstruction()) {
1077         EmptyPrologue = false;
1078       }
1079     }
1080   }
1081 
1082   // Record beginning of function if we have a non-empty prologue.
1083   if (PrologEndLoc && !EmptyPrologue) {
1084     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1085     maybeRecordLocation(FnStartDL, MF);
1086   }
1087 }
1088 
1089 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1090   // Don't record empty UDTs.
1091   if (Ty->getName().empty())
1092     return;
1093 
1094   SmallVector<StringRef, 5> QualifiedNameComponents;
1095   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1096       Ty->getScope().resolve(), QualifiedNameComponents);
1097 
1098   std::string FullyQualifiedName =
1099       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1100 
1101   if (ClosestSubprogram == nullptr)
1102     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1103   else if (ClosestSubprogram == CurrentSubprogram)
1104     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1105 
1106   // TODO: What if the ClosestSubprogram is neither null or the current
1107   // subprogram?  Currently, the UDT just gets dropped on the floor.
1108   //
1109   // The current behavior is not desirable.  To get maximal fidelity, we would
1110   // need to perform all type translation before beginning emission of .debug$S
1111   // and then make LocalUDTs a member of FunctionInfo
1112 }
1113 
1114 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1115   // Generic dispatch for lowering an unknown type.
1116   switch (Ty->getTag()) {
1117   case dwarf::DW_TAG_array_type:
1118     return lowerTypeArray(cast<DICompositeType>(Ty));
1119   case dwarf::DW_TAG_typedef:
1120     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1121   case dwarf::DW_TAG_base_type:
1122     return lowerTypeBasic(cast<DIBasicType>(Ty));
1123   case dwarf::DW_TAG_pointer_type:
1124     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1125       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1126     LLVM_FALLTHROUGH;
1127   case dwarf::DW_TAG_reference_type:
1128   case dwarf::DW_TAG_rvalue_reference_type:
1129     return lowerTypePointer(cast<DIDerivedType>(Ty));
1130   case dwarf::DW_TAG_ptr_to_member_type:
1131     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1132   case dwarf::DW_TAG_const_type:
1133   case dwarf::DW_TAG_volatile_type:
1134   // TODO: add support for DW_TAG_atomic_type here
1135     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1136   case dwarf::DW_TAG_subroutine_type:
1137     if (ClassTy) {
1138       // The member function type of a member function pointer has no
1139       // ThisAdjustment.
1140       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1141                                      /*ThisAdjustment=*/0);
1142     }
1143     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1144   case dwarf::DW_TAG_enumeration_type:
1145     return lowerTypeEnum(cast<DICompositeType>(Ty));
1146   case dwarf::DW_TAG_class_type:
1147   case dwarf::DW_TAG_structure_type:
1148     return lowerTypeClass(cast<DICompositeType>(Ty));
1149   case dwarf::DW_TAG_union_type:
1150     return lowerTypeUnion(cast<DICompositeType>(Ty));
1151   default:
1152     // Use the null type index.
1153     return TypeIndex();
1154   }
1155 }
1156 
1157 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1158   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1159   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1160   StringRef TypeName = Ty->getName();
1161 
1162   addToUDTs(Ty, UnderlyingTypeIndex);
1163 
1164   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1165       TypeName == "HRESULT")
1166     return TypeIndex(SimpleTypeKind::HResult);
1167   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1168       TypeName == "wchar_t")
1169     return TypeIndex(SimpleTypeKind::WideCharacter);
1170 
1171   return UnderlyingTypeIndex;
1172 }
1173 
1174 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1175   DITypeRef ElementTypeRef = Ty->getBaseType();
1176   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1177   // IndexType is size_t, which depends on the bitness of the target.
1178   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1179                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1180                             : TypeIndex(SimpleTypeKind::UInt32Long);
1181 
1182   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1183 
1184   // Add subranges to array type.
1185   DINodeArray Elements = Ty->getElements();
1186   for (int i = Elements.size() - 1; i >= 0; --i) {
1187     const DINode *Element = Elements[i];
1188     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1189 
1190     const DISubrange *Subrange = cast<DISubrange>(Element);
1191     assert(Subrange->getLowerBound() == 0 &&
1192            "codeview doesn't support subranges with lower bounds");
1193     int64_t Count = Subrange->getCount();
1194 
1195     // Variable Length Array (VLA) has Count equal to '-1'.
1196     // Replace with Count '1', assume it is the minimum VLA length.
1197     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1198     if (Count == -1)
1199       Count = 1;
1200 
1201     // Update the element size and element type index for subsequent subranges.
1202     ElementSize *= Count;
1203 
1204     // If this is the outermost array, use the size from the array. It will be
1205     // more accurate if we had a VLA or an incomplete element type size.
1206     uint64_t ArraySize =
1207         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1208 
1209     StringRef Name = (i == 0) ? Ty->getName() : "";
1210     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1211     ElementTypeIndex = TypeTable.writeKnownType(AR);
1212   }
1213 
1214   return ElementTypeIndex;
1215 }
1216 
1217 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1218   TypeIndex Index;
1219   dwarf::TypeKind Kind;
1220   uint32_t ByteSize;
1221 
1222   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1223   ByteSize = Ty->getSizeInBits() / 8;
1224 
1225   SimpleTypeKind STK = SimpleTypeKind::None;
1226   switch (Kind) {
1227   case dwarf::DW_ATE_address:
1228     // FIXME: Translate
1229     break;
1230   case dwarf::DW_ATE_boolean:
1231     switch (ByteSize) {
1232     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1233     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1234     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1235     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1236     case 16: STK = SimpleTypeKind::Boolean128; break;
1237     }
1238     break;
1239   case dwarf::DW_ATE_complex_float:
1240     switch (ByteSize) {
1241     case 2:  STK = SimpleTypeKind::Complex16;  break;
1242     case 4:  STK = SimpleTypeKind::Complex32;  break;
1243     case 8:  STK = SimpleTypeKind::Complex64;  break;
1244     case 10: STK = SimpleTypeKind::Complex80;  break;
1245     case 16: STK = SimpleTypeKind::Complex128; break;
1246     }
1247     break;
1248   case dwarf::DW_ATE_float:
1249     switch (ByteSize) {
1250     case 2:  STK = SimpleTypeKind::Float16;  break;
1251     case 4:  STK = SimpleTypeKind::Float32;  break;
1252     case 6:  STK = SimpleTypeKind::Float48;  break;
1253     case 8:  STK = SimpleTypeKind::Float64;  break;
1254     case 10: STK = SimpleTypeKind::Float80;  break;
1255     case 16: STK = SimpleTypeKind::Float128; break;
1256     }
1257     break;
1258   case dwarf::DW_ATE_signed:
1259     switch (ByteSize) {
1260     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1261     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1262     case 4:  STK = SimpleTypeKind::Int32;           break;
1263     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1264     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1265     }
1266     break;
1267   case dwarf::DW_ATE_unsigned:
1268     switch (ByteSize) {
1269     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1270     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1271     case 4:  STK = SimpleTypeKind::UInt32;            break;
1272     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1273     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1274     }
1275     break;
1276   case dwarf::DW_ATE_UTF:
1277     switch (ByteSize) {
1278     case 2: STK = SimpleTypeKind::Character16; break;
1279     case 4: STK = SimpleTypeKind::Character32; break;
1280     }
1281     break;
1282   case dwarf::DW_ATE_signed_char:
1283     if (ByteSize == 1)
1284       STK = SimpleTypeKind::SignedCharacter;
1285     break;
1286   case dwarf::DW_ATE_unsigned_char:
1287     if (ByteSize == 1)
1288       STK = SimpleTypeKind::UnsignedCharacter;
1289     break;
1290   default:
1291     break;
1292   }
1293 
1294   // Apply some fixups based on the source-level type name.
1295   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1296     STK = SimpleTypeKind::Int32Long;
1297   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1298     STK = SimpleTypeKind::UInt32Long;
1299   if (STK == SimpleTypeKind::UInt16Short &&
1300       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1301     STK = SimpleTypeKind::WideCharacter;
1302   if ((STK == SimpleTypeKind::SignedCharacter ||
1303        STK == SimpleTypeKind::UnsignedCharacter) &&
1304       Ty->getName() == "char")
1305     STK = SimpleTypeKind::NarrowCharacter;
1306 
1307   return TypeIndex(STK);
1308 }
1309 
1310 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1311   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1312 
1313   // Pointers to simple types can use SimpleTypeMode, rather than having a
1314   // dedicated pointer type record.
1315   if (PointeeTI.isSimple() &&
1316       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1317       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1318     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1319                               ? SimpleTypeMode::NearPointer64
1320                               : SimpleTypeMode::NearPointer32;
1321     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1322   }
1323 
1324   PointerKind PK =
1325       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1326   PointerMode PM = PointerMode::Pointer;
1327   switch (Ty->getTag()) {
1328   default: llvm_unreachable("not a pointer tag type");
1329   case dwarf::DW_TAG_pointer_type:
1330     PM = PointerMode::Pointer;
1331     break;
1332   case dwarf::DW_TAG_reference_type:
1333     PM = PointerMode::LValueReference;
1334     break;
1335   case dwarf::DW_TAG_rvalue_reference_type:
1336     PM = PointerMode::RValueReference;
1337     break;
1338   }
1339   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1340   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1341   // do.
1342   PointerOptions PO = PointerOptions::None;
1343   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1344   return TypeTable.writeKnownType(PR);
1345 }
1346 
1347 static PointerToMemberRepresentation
1348 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1349   // SizeInBytes being zero generally implies that the member pointer type was
1350   // incomplete, which can happen if it is part of a function prototype. In this
1351   // case, use the unknown model instead of the general model.
1352   if (IsPMF) {
1353     switch (Flags & DINode::FlagPtrToMemberRep) {
1354     case 0:
1355       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1356                               : PointerToMemberRepresentation::GeneralFunction;
1357     case DINode::FlagSingleInheritance:
1358       return PointerToMemberRepresentation::SingleInheritanceFunction;
1359     case DINode::FlagMultipleInheritance:
1360       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1361     case DINode::FlagVirtualInheritance:
1362       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1363     }
1364   } else {
1365     switch (Flags & DINode::FlagPtrToMemberRep) {
1366     case 0:
1367       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1368                               : PointerToMemberRepresentation::GeneralData;
1369     case DINode::FlagSingleInheritance:
1370       return PointerToMemberRepresentation::SingleInheritanceData;
1371     case DINode::FlagMultipleInheritance:
1372       return PointerToMemberRepresentation::MultipleInheritanceData;
1373     case DINode::FlagVirtualInheritance:
1374       return PointerToMemberRepresentation::VirtualInheritanceData;
1375     }
1376   }
1377   llvm_unreachable("invalid ptr to member representation");
1378 }
1379 
1380 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1381   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1382   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1383   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1384   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1385                                                  : PointerKind::Near32;
1386   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1387   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1388                          : PointerMode::PointerToDataMember;
1389   PointerOptions PO = PointerOptions::None; // FIXME
1390   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1391   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1392   MemberPointerInfo MPI(
1393       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1394   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1395   return TypeTable.writeKnownType(PR);
1396 }
1397 
1398 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1399 /// have a translation, use the NearC convention.
1400 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1401   switch (DwarfCC) {
1402   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1403   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1404   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1405   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1406   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1407   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1408   }
1409   return CallingConvention::NearC;
1410 }
1411 
1412 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1413   ModifierOptions Mods = ModifierOptions::None;
1414   bool IsModifier = true;
1415   const DIType *BaseTy = Ty;
1416   while (IsModifier && BaseTy) {
1417     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1418     switch (BaseTy->getTag()) {
1419     case dwarf::DW_TAG_const_type:
1420       Mods |= ModifierOptions::Const;
1421       break;
1422     case dwarf::DW_TAG_volatile_type:
1423       Mods |= ModifierOptions::Volatile;
1424       break;
1425     default:
1426       IsModifier = false;
1427       break;
1428     }
1429     if (IsModifier)
1430       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1431   }
1432   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1433   ModifierRecord MR(ModifiedTI, Mods);
1434   return TypeTable.writeKnownType(MR);
1435 }
1436 
1437 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1438   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1439   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1440     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1441 
1442   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1443   ArrayRef<TypeIndex> ArgTypeIndices = None;
1444   if (!ReturnAndArgTypeIndices.empty()) {
1445     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1446     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1447     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1448   }
1449 
1450   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1451   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1452 
1453   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1454 
1455   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1456                             ArgTypeIndices.size(), ArgListIndex);
1457   return TypeTable.writeKnownType(Procedure);
1458 }
1459 
1460 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1461                                                  const DIType *ClassTy,
1462                                                  int ThisAdjustment) {
1463   // Lower the containing class type.
1464   TypeIndex ClassType = getTypeIndex(ClassTy);
1465 
1466   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1467   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1468     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1469 
1470   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1471   ArrayRef<TypeIndex> ArgTypeIndices = None;
1472   if (!ReturnAndArgTypeIndices.empty()) {
1473     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1474     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1475     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1476   }
1477   TypeIndex ThisTypeIndex = TypeIndex::Void();
1478   if (!ArgTypeIndices.empty()) {
1479     ThisTypeIndex = ArgTypeIndices.front();
1480     ArgTypeIndices = ArgTypeIndices.drop_front();
1481   }
1482 
1483   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1484   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1485 
1486   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1487 
1488   // TODO: Need to use the correct values for:
1489   //       FunctionOptions
1490   //       ThisPointerAdjustment.
1491   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1492                            FunctionOptions::None, ArgTypeIndices.size(),
1493                            ArgListIndex, ThisAdjustment);
1494   TypeIndex TI = TypeTable.writeKnownType(MFR);
1495 
1496   return TI;
1497 }
1498 
1499 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1500   unsigned VSlotCount =
1501       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1502   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1503 
1504   VFTableShapeRecord VFTSR(Slots);
1505   return TypeTable.writeKnownType(VFTSR);
1506 }
1507 
1508 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1509   switch (Flags & DINode::FlagAccessibility) {
1510   case DINode::FlagPrivate:   return MemberAccess::Private;
1511   case DINode::FlagPublic:    return MemberAccess::Public;
1512   case DINode::FlagProtected: return MemberAccess::Protected;
1513   case 0:
1514     // If there was no explicit access control, provide the default for the tag.
1515     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1516                                                  : MemberAccess::Public;
1517   }
1518   llvm_unreachable("access flags are exclusive");
1519 }
1520 
1521 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1522   if (SP->isArtificial())
1523     return MethodOptions::CompilerGenerated;
1524 
1525   // FIXME: Handle other MethodOptions.
1526 
1527   return MethodOptions::None;
1528 }
1529 
1530 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1531                                            bool Introduced) {
1532   switch (SP->getVirtuality()) {
1533   case dwarf::DW_VIRTUALITY_none:
1534     break;
1535   case dwarf::DW_VIRTUALITY_virtual:
1536     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1537   case dwarf::DW_VIRTUALITY_pure_virtual:
1538     return Introduced ? MethodKind::PureIntroducingVirtual
1539                       : MethodKind::PureVirtual;
1540   default:
1541     llvm_unreachable("unhandled virtuality case");
1542   }
1543 
1544   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1545 
1546   return MethodKind::Vanilla;
1547 }
1548 
1549 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1550   switch (Ty->getTag()) {
1551   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1552   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1553   }
1554   llvm_unreachable("unexpected tag");
1555 }
1556 
1557 /// Return ClassOptions that should be present on both the forward declaration
1558 /// and the defintion of a tag type.
1559 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1560   ClassOptions CO = ClassOptions::None;
1561 
1562   // MSVC always sets this flag, even for local types. Clang doesn't always
1563   // appear to give every type a linkage name, which may be problematic for us.
1564   // FIXME: Investigate the consequences of not following them here.
1565   if (!Ty->getIdentifier().empty())
1566     CO |= ClassOptions::HasUniqueName;
1567 
1568   // Put the Nested flag on a type if it appears immediately inside a tag type.
1569   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1570   // here. That flag is only set on definitions, and not forward declarations.
1571   const DIScope *ImmediateScope = Ty->getScope().resolve();
1572   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1573     CO |= ClassOptions::Nested;
1574 
1575   // Put the Scoped flag on function-local types.
1576   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1577        Scope = Scope->getScope().resolve()) {
1578     if (isa<DISubprogram>(Scope)) {
1579       CO |= ClassOptions::Scoped;
1580       break;
1581     }
1582   }
1583 
1584   return CO;
1585 }
1586 
1587 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1588   ClassOptions CO = getCommonClassOptions(Ty);
1589   TypeIndex FTI;
1590   unsigned EnumeratorCount = 0;
1591 
1592   if (Ty->isForwardDecl()) {
1593     CO |= ClassOptions::ForwardReference;
1594   } else {
1595     FieldListRecordBuilder FLRB(TypeTable);
1596 
1597     FLRB.begin();
1598     for (const DINode *Element : Ty->getElements()) {
1599       // We assume that the frontend provides all members in source declaration
1600       // order, which is what MSVC does.
1601       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1602         EnumeratorRecord ER(MemberAccess::Public,
1603                             APSInt::getUnsigned(Enumerator->getValue()),
1604                             Enumerator->getName());
1605         FLRB.writeMemberType(ER);
1606         EnumeratorCount++;
1607       }
1608     }
1609     FTI = FLRB.end(true);
1610   }
1611 
1612   std::string FullName = getFullyQualifiedName(Ty);
1613 
1614   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1615                 getTypeIndex(Ty->getBaseType()));
1616   return TypeTable.writeKnownType(ER);
1617 }
1618 
1619 //===----------------------------------------------------------------------===//
1620 // ClassInfo
1621 //===----------------------------------------------------------------------===//
1622 
1623 struct llvm::ClassInfo {
1624   struct MemberInfo {
1625     const DIDerivedType *MemberTypeNode;
1626     uint64_t BaseOffset;
1627   };
1628   // [MemberInfo]
1629   using MemberList = std::vector<MemberInfo>;
1630 
1631   using MethodsList = TinyPtrVector<const DISubprogram *>;
1632   // MethodName -> MethodsList
1633   using MethodsMap = MapVector<MDString *, MethodsList>;
1634 
1635   /// Base classes.
1636   std::vector<const DIDerivedType *> Inheritance;
1637 
1638   /// Direct members.
1639   MemberList Members;
1640   // Direct overloaded methods gathered by name.
1641   MethodsMap Methods;
1642 
1643   TypeIndex VShapeTI;
1644 
1645   std::vector<const DICompositeType *> NestedClasses;
1646 };
1647 
1648 void CodeViewDebug::clear() {
1649   assert(CurFn == nullptr);
1650   FileIdMap.clear();
1651   FnDebugInfo.clear();
1652   FileToFilepathMap.clear();
1653   LocalUDTs.clear();
1654   GlobalUDTs.clear();
1655   TypeIndices.clear();
1656   CompleteTypeIndices.clear();
1657 }
1658 
1659 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1660                                       const DIDerivedType *DDTy) {
1661   if (!DDTy->getName().empty()) {
1662     Info.Members.push_back({DDTy, 0});
1663     return;
1664   }
1665   // An unnamed member must represent a nested struct or union. Add all the
1666   // indirect fields to the current record.
1667   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1668   uint64_t Offset = DDTy->getOffsetInBits();
1669   const DIType *Ty = DDTy->getBaseType().resolve();
1670   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1671   ClassInfo NestedInfo = collectClassInfo(DCTy);
1672   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1673     Info.Members.push_back(
1674         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1675 }
1676 
1677 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1678   ClassInfo Info;
1679   // Add elements to structure type.
1680   DINodeArray Elements = Ty->getElements();
1681   for (auto *Element : Elements) {
1682     // We assume that the frontend provides all members in source declaration
1683     // order, which is what MSVC does.
1684     if (!Element)
1685       continue;
1686     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1687       Info.Methods[SP->getRawName()].push_back(SP);
1688     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1689       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1690         collectMemberInfo(Info, DDTy);
1691       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1692         Info.Inheritance.push_back(DDTy);
1693       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1694                  DDTy->getName() == "__vtbl_ptr_type") {
1695         Info.VShapeTI = getTypeIndex(DDTy);
1696       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1697         // Ignore friend members. It appears that MSVC emitted info about
1698         // friends in the past, but modern versions do not.
1699       }
1700     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1701       Info.NestedClasses.push_back(Composite);
1702     }
1703     // Skip other unrecognized kinds of elements.
1704   }
1705   return Info;
1706 }
1707 
1708 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1709   // First, construct the forward decl.  Don't look into Ty to compute the
1710   // forward decl options, since it might not be available in all TUs.
1711   TypeRecordKind Kind = getRecordKind(Ty);
1712   ClassOptions CO =
1713       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1714   std::string FullName = getFullyQualifiedName(Ty);
1715   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1716                  FullName, Ty->getIdentifier());
1717   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1718   if (!Ty->isForwardDecl())
1719     DeferredCompleteTypes.push_back(Ty);
1720   return FwdDeclTI;
1721 }
1722 
1723 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1724   // Construct the field list and complete type record.
1725   TypeRecordKind Kind = getRecordKind(Ty);
1726   ClassOptions CO = getCommonClassOptions(Ty);
1727   TypeIndex FieldTI;
1728   TypeIndex VShapeTI;
1729   unsigned FieldCount;
1730   bool ContainsNestedClass;
1731   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1732       lowerRecordFieldList(Ty);
1733 
1734   if (ContainsNestedClass)
1735     CO |= ClassOptions::ContainsNestedClass;
1736 
1737   std::string FullName = getFullyQualifiedName(Ty);
1738 
1739   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1740 
1741   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1742                  SizeInBytes, FullName, Ty->getIdentifier());
1743   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1744 
1745   if (const auto *File = Ty->getFile()) {
1746     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1747     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1748     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1749     TypeTable.writeKnownType(USLR);
1750   }
1751 
1752   addToUDTs(Ty, ClassTI);
1753 
1754   return ClassTI;
1755 }
1756 
1757 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1758   ClassOptions CO =
1759       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1760   std::string FullName = getFullyQualifiedName(Ty);
1761   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1762   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1763   if (!Ty->isForwardDecl())
1764     DeferredCompleteTypes.push_back(Ty);
1765   return FwdDeclTI;
1766 }
1767 
1768 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1769   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1770   TypeIndex FieldTI;
1771   unsigned FieldCount;
1772   bool ContainsNestedClass;
1773   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1774       lowerRecordFieldList(Ty);
1775 
1776   if (ContainsNestedClass)
1777     CO |= ClassOptions::ContainsNestedClass;
1778 
1779   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1780   std::string FullName = getFullyQualifiedName(Ty);
1781 
1782   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1783                  Ty->getIdentifier());
1784   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1785 
1786   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1787   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1788   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1789   TypeTable.writeKnownType(USLR);
1790 
1791   addToUDTs(Ty, UnionTI);
1792 
1793   return UnionTI;
1794 }
1795 
1796 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1797 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1798   // Manually count members. MSVC appears to count everything that generates a
1799   // field list record. Each individual overload in a method overload group
1800   // contributes to this count, even though the overload group is a single field
1801   // list record.
1802   unsigned MemberCount = 0;
1803   ClassInfo Info = collectClassInfo(Ty);
1804   FieldListRecordBuilder FLBR(TypeTable);
1805   FLBR.begin();
1806 
1807   // Create base classes.
1808   for (const DIDerivedType *I : Info.Inheritance) {
1809     if (I->getFlags() & DINode::FlagVirtual) {
1810       // Virtual base.
1811       // FIXME: Emit VBPtrOffset when the frontend provides it.
1812       unsigned VBPtrOffset = 0;
1813       // FIXME: Despite the accessor name, the offset is really in bytes.
1814       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1815       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1816                             ? TypeRecordKind::IndirectVirtualBaseClass
1817                             : TypeRecordKind::VirtualBaseClass;
1818       VirtualBaseClassRecord VBCR(
1819           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1820           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1821           VBTableIndex);
1822 
1823       FLBR.writeMemberType(VBCR);
1824     } else {
1825       assert(I->getOffsetInBits() % 8 == 0 &&
1826              "bases must be on byte boundaries");
1827       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1828                           getTypeIndex(I->getBaseType()),
1829                           I->getOffsetInBits() / 8);
1830       FLBR.writeMemberType(BCR);
1831     }
1832   }
1833 
1834   // Create members.
1835   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1836     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1837     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1838     StringRef MemberName = Member->getName();
1839     MemberAccess Access =
1840         translateAccessFlags(Ty->getTag(), Member->getFlags());
1841 
1842     if (Member->isStaticMember()) {
1843       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1844       FLBR.writeMemberType(SDMR);
1845       MemberCount++;
1846       continue;
1847     }
1848 
1849     // Virtual function pointer member.
1850     if ((Member->getFlags() & DINode::FlagArtificial) &&
1851         Member->getName().startswith("_vptr$")) {
1852       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1853       FLBR.writeMemberType(VFPR);
1854       MemberCount++;
1855       continue;
1856     }
1857 
1858     // Data member.
1859     uint64_t MemberOffsetInBits =
1860         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1861     if (Member->isBitField()) {
1862       uint64_t StartBitOffset = MemberOffsetInBits;
1863       if (const auto *CI =
1864               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1865         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1866       }
1867       StartBitOffset -= MemberOffsetInBits;
1868       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1869                          StartBitOffset);
1870       MemberBaseType = TypeTable.writeKnownType(BFR);
1871     }
1872     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1873     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1874                          MemberName);
1875     FLBR.writeMemberType(DMR);
1876     MemberCount++;
1877   }
1878 
1879   // Create methods
1880   for (auto &MethodItr : Info.Methods) {
1881     StringRef Name = MethodItr.first->getString();
1882 
1883     std::vector<OneMethodRecord> Methods;
1884     for (const DISubprogram *SP : MethodItr.second) {
1885       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1886       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1887 
1888       unsigned VFTableOffset = -1;
1889       if (Introduced)
1890         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1891 
1892       Methods.push_back(OneMethodRecord(
1893           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1894           translateMethodKindFlags(SP, Introduced),
1895           translateMethodOptionFlags(SP), VFTableOffset, Name));
1896       MemberCount++;
1897     }
1898     assert(!Methods.empty() && "Empty methods map entry");
1899     if (Methods.size() == 1)
1900       FLBR.writeMemberType(Methods[0]);
1901     else {
1902       MethodOverloadListRecord MOLR(Methods);
1903       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1904       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1905       FLBR.writeMemberType(OMR);
1906     }
1907   }
1908 
1909   // Create nested classes.
1910   for (const DICompositeType *Nested : Info.NestedClasses) {
1911     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1912     FLBR.writeMemberType(R);
1913     MemberCount++;
1914   }
1915 
1916   TypeIndex FieldTI = FLBR.end(true);
1917   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1918                          !Info.NestedClasses.empty());
1919 }
1920 
1921 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1922   if (!VBPType.getIndex()) {
1923     // Make a 'const int *' type.
1924     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1925     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1926 
1927     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1928                                                   : PointerKind::Near32;
1929     PointerMode PM = PointerMode::Pointer;
1930     PointerOptions PO = PointerOptions::None;
1931     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1932 
1933     VBPType = TypeTable.writeKnownType(PR);
1934   }
1935 
1936   return VBPType;
1937 }
1938 
1939 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1940   const DIType *Ty = TypeRef.resolve();
1941   const DIType *ClassTy = ClassTyRef.resolve();
1942 
1943   // The null DIType is the void type. Don't try to hash it.
1944   if (!Ty)
1945     return TypeIndex::Void();
1946 
1947   // Check if we've already translated this type. Don't try to do a
1948   // get-or-create style insertion that caches the hash lookup across the
1949   // lowerType call. It will update the TypeIndices map.
1950   auto I = TypeIndices.find({Ty, ClassTy});
1951   if (I != TypeIndices.end())
1952     return I->second;
1953 
1954   TypeLoweringScope S(*this);
1955   TypeIndex TI = lowerType(Ty, ClassTy);
1956   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1957 }
1958 
1959 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1960   const DIType *Ty = TypeRef.resolve();
1961 
1962   // The null DIType is the void type. Don't try to hash it.
1963   if (!Ty)
1964     return TypeIndex::Void();
1965 
1966   // If this is a non-record type, the complete type index is the same as the
1967   // normal type index. Just call getTypeIndex.
1968   switch (Ty->getTag()) {
1969   case dwarf::DW_TAG_class_type:
1970   case dwarf::DW_TAG_structure_type:
1971   case dwarf::DW_TAG_union_type:
1972     break;
1973   default:
1974     return getTypeIndex(Ty);
1975   }
1976 
1977   // Check if we've already translated the complete record type.  Lowering a
1978   // complete type should never trigger lowering another complete type, so we
1979   // can reuse the hash table lookup result.
1980   const auto *CTy = cast<DICompositeType>(Ty);
1981   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1982   if (!InsertResult.second)
1983     return InsertResult.first->second;
1984 
1985   TypeLoweringScope S(*this);
1986 
1987   // Make sure the forward declaration is emitted first. It's unclear if this
1988   // is necessary, but MSVC does it, and we should follow suit until we can show
1989   // otherwise.
1990   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1991 
1992   // Just use the forward decl if we don't have complete type info. This might
1993   // happen if the frontend is using modules and expects the complete definition
1994   // to be emitted elsewhere.
1995   if (CTy->isForwardDecl())
1996     return FwdDeclTI;
1997 
1998   TypeIndex TI;
1999   switch (CTy->getTag()) {
2000   case dwarf::DW_TAG_class_type:
2001   case dwarf::DW_TAG_structure_type:
2002     TI = lowerCompleteTypeClass(CTy);
2003     break;
2004   case dwarf::DW_TAG_union_type:
2005     TI = lowerCompleteTypeUnion(CTy);
2006     break;
2007   default:
2008     llvm_unreachable("not a record");
2009   }
2010 
2011   InsertResult.first->second = TI;
2012   return TI;
2013 }
2014 
2015 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2016 /// and do this until fixpoint, as each complete record type typically
2017 /// references
2018 /// many other record types.
2019 void CodeViewDebug::emitDeferredCompleteTypes() {
2020   SmallVector<const DICompositeType *, 4> TypesToEmit;
2021   while (!DeferredCompleteTypes.empty()) {
2022     std::swap(DeferredCompleteTypes, TypesToEmit);
2023     for (const DICompositeType *RecordTy : TypesToEmit)
2024       getCompleteTypeIndex(RecordTy);
2025     TypesToEmit.clear();
2026   }
2027 }
2028 
2029 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2030   // Get the sorted list of parameters and emit them first.
2031   SmallVector<const LocalVariable *, 6> Params;
2032   for (const LocalVariable &L : Locals)
2033     if (L.DIVar->isParameter())
2034       Params.push_back(&L);
2035   std::sort(Params.begin(), Params.end(),
2036             [](const LocalVariable *L, const LocalVariable *R) {
2037               return L->DIVar->getArg() < R->DIVar->getArg();
2038             });
2039   for (const LocalVariable *L : Params)
2040     emitLocalVariable(*L);
2041 
2042   // Next emit all non-parameters in the order that we found them.
2043   for (const LocalVariable &L : Locals)
2044     if (!L.DIVar->isParameter())
2045       emitLocalVariable(L);
2046 }
2047 
2048 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2049   // LocalSym record, see SymbolRecord.h for more info.
2050   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2051            *LocalEnd = MMI->getContext().createTempSymbol();
2052   OS.AddComment("Record length");
2053   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2054   OS.EmitLabel(LocalBegin);
2055 
2056   OS.AddComment("Record kind: S_LOCAL");
2057   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2058 
2059   LocalSymFlags Flags = LocalSymFlags::None;
2060   if (Var.DIVar->isParameter())
2061     Flags |= LocalSymFlags::IsParameter;
2062   if (Var.DefRanges.empty())
2063     Flags |= LocalSymFlags::IsOptimizedOut;
2064 
2065   OS.AddComment("TypeIndex");
2066   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2067   OS.EmitIntValue(TI.getIndex(), 4);
2068   OS.AddComment("Flags");
2069   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2070   // Truncate the name so we won't overflow the record length field.
2071   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2072   OS.EmitLabel(LocalEnd);
2073 
2074   // Calculate the on disk prefix of the appropriate def range record. The
2075   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2076   // should be big enough to hold all forms without memory allocation.
2077   SmallString<20> BytePrefix;
2078   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2079     BytePrefix.clear();
2080     if (DefRange.InMemory) {
2081       uint16_t RegRelFlags = 0;
2082       if (DefRange.IsSubfield) {
2083         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2084                       (DefRange.StructOffset
2085                        << DefRangeRegisterRelSym::OffsetInParentShift);
2086       }
2087       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2088       Sym.Hdr.Register = DefRange.CVRegister;
2089       Sym.Hdr.Flags = RegRelFlags;
2090       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2091       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2092       BytePrefix +=
2093           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2094       BytePrefix +=
2095           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2096     } else {
2097       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2098       if (DefRange.IsSubfield) {
2099         // Unclear what matters here.
2100         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2101         Sym.Hdr.Register = DefRange.CVRegister;
2102         Sym.Hdr.MayHaveNoName = 0;
2103         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2104 
2105         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2106         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2107                                 sizeof(SymKind));
2108         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2109                                 sizeof(Sym.Hdr));
2110       } else {
2111         // Unclear what matters here.
2112         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2113         Sym.Hdr.Register = DefRange.CVRegister;
2114         Sym.Hdr.MayHaveNoName = 0;
2115         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2116         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2117                                 sizeof(SymKind));
2118         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2119                                 sizeof(Sym.Hdr));
2120       }
2121     }
2122     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2123   }
2124 }
2125 
2126 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2127   const Function *GV = MF->getFunction();
2128   assert(FnDebugInfo.count(GV));
2129   assert(CurFn == &FnDebugInfo[GV]);
2130 
2131   collectVariableInfo(GV->getSubprogram());
2132 
2133   // Don't emit anything if we don't have any line tables.
2134   if (!CurFn->HaveLineInfo) {
2135     FnDebugInfo.erase(GV);
2136     CurFn = nullptr;
2137     return;
2138   }
2139 
2140   CurFn->End = Asm->getFunctionEnd();
2141 
2142   CurFn = nullptr;
2143 }
2144 
2145 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2146   DebugHandlerBase::beginInstruction(MI);
2147 
2148   // Ignore DBG_VALUE locations and function prologue.
2149   if (!Asm || !CurFn || MI->isDebugValue() ||
2150       MI->getFlag(MachineInstr::FrameSetup))
2151     return;
2152 
2153   // If the first instruction of a new MBB has no location, find the first
2154   // instruction with a location and use that.
2155   DebugLoc DL = MI->getDebugLoc();
2156   if (!DL && MI->getParent() != PrevInstBB) {
2157     for (const auto &NextMI : *MI->getParent()) {
2158       DL = NextMI.getDebugLoc();
2159       if (DL)
2160         break;
2161     }
2162   }
2163   PrevInstBB = MI->getParent();
2164 
2165   // If we still don't have a debug location, don't record a location.
2166   if (!DL)
2167     return;
2168 
2169   maybeRecordLocation(DL, Asm->MF);
2170 }
2171 
2172 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2173   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2174            *EndLabel = MMI->getContext().createTempSymbol();
2175   OS.EmitIntValue(unsigned(Kind), 4);
2176   OS.AddComment("Subsection size");
2177   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2178   OS.EmitLabel(BeginLabel);
2179   return EndLabel;
2180 }
2181 
2182 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2183   OS.EmitLabel(EndLabel);
2184   // Every subsection must be aligned to a 4-byte boundary.
2185   OS.EmitValueToAlignment(4);
2186 }
2187 
2188 void CodeViewDebug::emitDebugInfoForUDTs(
2189     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2190   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2191     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2192              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2193     OS.AddComment("Record length");
2194     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2195     OS.EmitLabel(UDTRecordBegin);
2196 
2197     OS.AddComment("Record kind: S_UDT");
2198     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2199 
2200     OS.AddComment("Type");
2201     OS.EmitIntValue(UDT.second.getIndex(), 4);
2202 
2203     emitNullTerminatedSymbolName(OS, UDT.first);
2204     OS.EmitLabel(UDTRecordEnd);
2205   }
2206 }
2207 
2208 void CodeViewDebug::emitDebugInfoForGlobals() {
2209   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2210       GlobalMap;
2211   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2212     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2213     GV.getDebugInfo(GVEs);
2214     for (const auto *GVE : GVEs)
2215       GlobalMap[GVE] = &GV;
2216   }
2217 
2218   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2219   for (const MDNode *Node : CUs->operands()) {
2220     const auto *CU = cast<DICompileUnit>(Node);
2221 
2222     // First, emit all globals that are not in a comdat in a single symbol
2223     // substream. MSVC doesn't like it if the substream is empty, so only open
2224     // it if we have at least one global to emit.
2225     switchToDebugSectionForSymbol(nullptr);
2226     MCSymbol *EndLabel = nullptr;
2227     for (const auto *GVE : CU->getGlobalVariables()) {
2228       if (const auto *GV = GlobalMap.lookup(GVE))
2229         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2230           if (!EndLabel) {
2231             OS.AddComment("Symbol subsection for globals");
2232             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2233           }
2234           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2235           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2236         }
2237     }
2238     if (EndLabel)
2239       endCVSubsection(EndLabel);
2240 
2241     // Second, emit each global that is in a comdat into its own .debug$S
2242     // section along with its own symbol substream.
2243     for (const auto *GVE : CU->getGlobalVariables()) {
2244       if (const auto *GV = GlobalMap.lookup(GVE)) {
2245         if (GV->hasComdat()) {
2246           MCSymbol *GVSym = Asm->getSymbol(GV);
2247           OS.AddComment("Symbol subsection for " +
2248                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2249           switchToDebugSectionForSymbol(GVSym);
2250           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2251           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2252           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2253           endCVSubsection(EndLabel);
2254         }
2255       }
2256     }
2257   }
2258 }
2259 
2260 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2261   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2262   for (const MDNode *Node : CUs->operands()) {
2263     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2264       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2265         getTypeIndex(RT);
2266         // FIXME: Add to global/local DTU list.
2267       }
2268     }
2269   }
2270 }
2271 
2272 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2273                                            const GlobalVariable *GV,
2274                                            MCSymbol *GVSym) {
2275   // DataSym record, see SymbolRecord.h for more info.
2276   // FIXME: Thread local data, etc
2277   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2278            *DataEnd = MMI->getContext().createTempSymbol();
2279   OS.AddComment("Record length");
2280   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2281   OS.EmitLabel(DataBegin);
2282   if (DIGV->isLocalToUnit()) {
2283     if (GV->isThreadLocal()) {
2284       OS.AddComment("Record kind: S_LTHREAD32");
2285       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2286     } else {
2287       OS.AddComment("Record kind: S_LDATA32");
2288       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2289     }
2290   } else {
2291     if (GV->isThreadLocal()) {
2292       OS.AddComment("Record kind: S_GTHREAD32");
2293       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2294     } else {
2295       OS.AddComment("Record kind: S_GDATA32");
2296       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2297     }
2298   }
2299   OS.AddComment("Type");
2300   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2301   OS.AddComment("DataOffset");
2302   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2303   OS.AddComment("Segment");
2304   OS.EmitCOFFSectionIndex(GVSym);
2305   OS.AddComment("Name");
2306   emitNullTerminatedSymbolName(OS, DIGV->getName());
2307   OS.EmitLabel(DataEnd);
2308 }
2309