1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/BinaryFormat/COFF.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/AsmPrinter.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h" 45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 47 #include "llvm/DebugInfo/CodeView/EnumTables.h" 48 #include "llvm/DebugInfo/CodeView/Line.h" 49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 51 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 52 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfoMetadata.h" 58 #include "llvm/IR/DebugLoc.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/GlobalValue.h" 61 #include "llvm/IR/GlobalVariable.h" 62 #include "llvm/IR/Metadata.h" 63 #include "llvm/IR/Module.h" 64 #include "llvm/MC/MCAsmInfo.h" 65 #include "llvm/MC/MCContext.h" 66 #include "llvm/MC/MCSectionCOFF.h" 67 #include "llvm/MC/MCStreamer.h" 68 #include "llvm/MC/MCSymbol.h" 69 #include "llvm/Support/BinaryByteStream.h" 70 #include "llvm/Support/BinaryStreamReader.h" 71 #include "llvm/Support/BinaryStreamWriter.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/Endian.h" 76 #include "llvm/Support/Error.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/FormatVariadic.h" 79 #include "llvm/Support/Path.h" 80 #include "llvm/Support/SMLoc.h" 81 #include "llvm/Support/ScopedPrinter.h" 82 #include "llvm/Target/TargetLoweringObjectFile.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cctype> 87 #include <cstddef> 88 #include <cstdint> 89 #include <iterator> 90 #include <limits> 91 #include <string> 92 #include <utility> 93 #include <vector> 94 95 using namespace llvm; 96 using namespace llvm::codeview; 97 98 namespace { 99 class CVMCAdapter : public CodeViewRecordStreamer { 100 public: 101 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable) 102 : OS(&OS), TypeTable(TypeTable) {} 103 104 void emitBytes(StringRef Data) { OS->emitBytes(Data); } 105 106 void emitIntValue(uint64_t Value, unsigned Size) { 107 OS->emitIntValueInHex(Value, Size); 108 } 109 110 void emitBinaryData(StringRef Data) { OS->emitBinaryData(Data); } 111 112 void AddComment(const Twine &T) { OS->AddComment(T); } 113 114 void AddRawComment(const Twine &T) { OS->emitRawComment(T); } 115 116 bool isVerboseAsm() { return OS->isVerboseAsm(); } 117 118 std::string getTypeName(TypeIndex TI) { 119 std::string TypeName; 120 if (!TI.isNoneType()) { 121 if (TI.isSimple()) 122 TypeName = std::string(TypeIndex::simpleTypeName(TI)); 123 else 124 TypeName = std::string(TypeTable.getTypeName(TI)); 125 } 126 return TypeName; 127 } 128 129 private: 130 MCStreamer *OS = nullptr; 131 TypeCollection &TypeTable; 132 }; 133 } // namespace 134 135 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 136 switch (Type) { 137 case Triple::ArchType::x86: 138 return CPUType::Pentium3; 139 case Triple::ArchType::x86_64: 140 return CPUType::X64; 141 case Triple::ArchType::thumb: 142 return CPUType::Thumb; 143 case Triple::ArchType::aarch64: 144 return CPUType::ARM64; 145 default: 146 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 147 } 148 } 149 150 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 151 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 152 // If module doesn't have named metadata anchors or COFF debug section 153 // is not available, skip any debug info related stuff. 154 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 155 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 156 Asm = nullptr; 157 MMI->setDebugInfoAvailability(false); 158 return; 159 } 160 // Tell MMI that we have debug info. 161 MMI->setDebugInfoAvailability(true); 162 163 TheCPU = 164 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 165 166 collectGlobalVariableInfo(); 167 168 // Check if we should emit type record hashes. 169 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 170 MMI->getModule()->getModuleFlag("CodeViewGHash")); 171 EmitDebugGlobalHashes = GH && !GH->isZero(); 172 } 173 174 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 175 std::string &Filepath = FileToFilepathMap[File]; 176 if (!Filepath.empty()) 177 return Filepath; 178 179 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 180 181 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 182 // it textually because one of the path components could be a symlink. 183 if (Dir.startswith("/") || Filename.startswith("/")) { 184 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 185 return Filename; 186 Filepath = std::string(Dir); 187 if (Dir.back() != '/') 188 Filepath += '/'; 189 Filepath += Filename; 190 return Filepath; 191 } 192 193 // Clang emits directory and relative filename info into the IR, but CodeView 194 // operates on full paths. We could change Clang to emit full paths too, but 195 // that would increase the IR size and probably not needed for other users. 196 // For now, just concatenate and canonicalize the path here. 197 if (Filename.find(':') == 1) 198 Filepath = std::string(Filename); 199 else 200 Filepath = (Dir + "\\" + Filename).str(); 201 202 // Canonicalize the path. We have to do it textually because we may no longer 203 // have access the file in the filesystem. 204 // First, replace all slashes with backslashes. 205 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 206 207 // Remove all "\.\" with "\". 208 size_t Cursor = 0; 209 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 210 Filepath.erase(Cursor, 2); 211 212 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 213 // path should be well-formatted, e.g. start with a drive letter, etc. 214 Cursor = 0; 215 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 216 // Something's wrong if the path starts with "\..\", abort. 217 if (Cursor == 0) 218 break; 219 220 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 221 if (PrevSlash == std::string::npos) 222 // Something's wrong, abort. 223 break; 224 225 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 226 // The next ".." might be following the one we've just erased. 227 Cursor = PrevSlash; 228 } 229 230 // Remove all duplicate backslashes. 231 Cursor = 0; 232 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 233 Filepath.erase(Cursor, 1); 234 235 return Filepath; 236 } 237 238 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 239 StringRef FullPath = getFullFilepath(F); 240 unsigned NextId = FileIdMap.size() + 1; 241 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 242 if (Insertion.second) { 243 // We have to compute the full filepath and emit a .cv_file directive. 244 ArrayRef<uint8_t> ChecksumAsBytes; 245 FileChecksumKind CSKind = FileChecksumKind::None; 246 if (F->getChecksum()) { 247 std::string Checksum = fromHex(F->getChecksum()->Value); 248 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 249 memcpy(CKMem, Checksum.data(), Checksum.size()); 250 ChecksumAsBytes = ArrayRef<uint8_t>( 251 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 252 switch (F->getChecksum()->Kind) { 253 case DIFile::CSK_MD5: 254 CSKind = FileChecksumKind::MD5; 255 break; 256 case DIFile::CSK_SHA1: 257 CSKind = FileChecksumKind::SHA1; 258 break; 259 case DIFile::CSK_SHA256: 260 CSKind = FileChecksumKind::SHA256; 261 break; 262 } 263 } 264 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 265 static_cast<unsigned>(CSKind)); 266 (void)Success; 267 assert(Success && ".cv_file directive failed"); 268 } 269 return Insertion.first->second; 270 } 271 272 CodeViewDebug::InlineSite & 273 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 274 const DISubprogram *Inlinee) { 275 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 276 InlineSite *Site = &SiteInsertion.first->second; 277 if (SiteInsertion.second) { 278 unsigned ParentFuncId = CurFn->FuncId; 279 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 280 ParentFuncId = 281 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 282 .SiteFuncId; 283 284 Site->SiteFuncId = NextFuncId++; 285 OS.EmitCVInlineSiteIdDirective( 286 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 287 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 288 Site->Inlinee = Inlinee; 289 InlinedSubprograms.insert(Inlinee); 290 getFuncIdForSubprogram(Inlinee); 291 } 292 return *Site; 293 } 294 295 static StringRef getPrettyScopeName(const DIScope *Scope) { 296 StringRef ScopeName = Scope->getName(); 297 if (!ScopeName.empty()) 298 return ScopeName; 299 300 switch (Scope->getTag()) { 301 case dwarf::DW_TAG_enumeration_type: 302 case dwarf::DW_TAG_class_type: 303 case dwarf::DW_TAG_structure_type: 304 case dwarf::DW_TAG_union_type: 305 return "<unnamed-tag>"; 306 case dwarf::DW_TAG_namespace: 307 return "`anonymous namespace'"; 308 } 309 310 return StringRef(); 311 } 312 313 static const DISubprogram *getQualifiedNameComponents( 314 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 315 const DISubprogram *ClosestSubprogram = nullptr; 316 while (Scope != nullptr) { 317 if (ClosestSubprogram == nullptr) 318 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 319 StringRef ScopeName = getPrettyScopeName(Scope); 320 if (!ScopeName.empty()) 321 QualifiedNameComponents.push_back(ScopeName); 322 Scope = Scope->getScope(); 323 } 324 return ClosestSubprogram; 325 } 326 327 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 328 StringRef TypeName) { 329 std::string FullyQualifiedName; 330 for (StringRef QualifiedNameComponent : 331 llvm::reverse(QualifiedNameComponents)) { 332 FullyQualifiedName.append(std::string(QualifiedNameComponent)); 333 FullyQualifiedName.append("::"); 334 } 335 FullyQualifiedName.append(std::string(TypeName)); 336 return FullyQualifiedName; 337 } 338 339 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 340 SmallVector<StringRef, 5> QualifiedNameComponents; 341 getQualifiedNameComponents(Scope, QualifiedNameComponents); 342 return getQualifiedName(QualifiedNameComponents, Name); 343 } 344 345 struct CodeViewDebug::TypeLoweringScope { 346 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 347 ~TypeLoweringScope() { 348 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 349 // inner TypeLoweringScopes don't attempt to emit deferred types. 350 if (CVD.TypeEmissionLevel == 1) 351 CVD.emitDeferredCompleteTypes(); 352 --CVD.TypeEmissionLevel; 353 } 354 CodeViewDebug &CVD; 355 }; 356 357 static std::string getFullyQualifiedName(const DIScope *Ty) { 358 const DIScope *Scope = Ty->getScope(); 359 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 360 } 361 362 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 363 // No scope means global scope and that uses the zero index. 364 if (!Scope || isa<DIFile>(Scope)) 365 return TypeIndex(); 366 367 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 368 369 // Check if we've already translated this scope. 370 auto I = TypeIndices.find({Scope, nullptr}); 371 if (I != TypeIndices.end()) 372 return I->second; 373 374 // Build the fully qualified name of the scope. 375 std::string ScopeName = getFullyQualifiedName(Scope); 376 StringIdRecord SID(TypeIndex(), ScopeName); 377 auto TI = TypeTable.writeLeafType(SID); 378 return recordTypeIndexForDINode(Scope, TI); 379 } 380 381 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 382 assert(SP); 383 384 // Check if we've already translated this subprogram. 385 auto I = TypeIndices.find({SP, nullptr}); 386 if (I != TypeIndices.end()) 387 return I->second; 388 389 // The display name includes function template arguments. Drop them to match 390 // MSVC. 391 StringRef DisplayName = SP->getName().split('<').first; 392 393 const DIScope *Scope = SP->getScope(); 394 TypeIndex TI; 395 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 396 // If the scope is a DICompositeType, then this must be a method. Member 397 // function types take some special handling, and require access to the 398 // subprogram. 399 TypeIndex ClassType = getTypeIndex(Class); 400 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 401 DisplayName); 402 TI = TypeTable.writeLeafType(MFuncId); 403 } else { 404 // Otherwise, this must be a free function. 405 TypeIndex ParentScope = getScopeIndex(Scope); 406 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 407 TI = TypeTable.writeLeafType(FuncId); 408 } 409 410 return recordTypeIndexForDINode(SP, TI); 411 } 412 413 static bool isNonTrivial(const DICompositeType *DCTy) { 414 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial); 415 } 416 417 static FunctionOptions 418 getFunctionOptions(const DISubroutineType *Ty, 419 const DICompositeType *ClassTy = nullptr, 420 StringRef SPName = StringRef("")) { 421 FunctionOptions FO = FunctionOptions::None; 422 const DIType *ReturnTy = nullptr; 423 if (auto TypeArray = Ty->getTypeArray()) { 424 if (TypeArray.size()) 425 ReturnTy = TypeArray[0]; 426 } 427 428 // Add CxxReturnUdt option to functions that return nontrivial record types 429 // or methods that return record types. 430 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) 431 if (isNonTrivial(ReturnDCTy) || ClassTy) 432 FO |= FunctionOptions::CxxReturnUdt; 433 434 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 435 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) { 436 FO |= FunctionOptions::Constructor; 437 438 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 439 440 } 441 return FO; 442 } 443 444 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 445 const DICompositeType *Class) { 446 // Always use the method declaration as the key for the function type. The 447 // method declaration contains the this adjustment. 448 if (SP->getDeclaration()) 449 SP = SP->getDeclaration(); 450 assert(!SP->getDeclaration() && "should use declaration as key"); 451 452 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 453 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 454 auto I = TypeIndices.find({SP, Class}); 455 if (I != TypeIndices.end()) 456 return I->second; 457 458 // Make sure complete type info for the class is emitted *after* the member 459 // function type, as the complete class type is likely to reference this 460 // member function type. 461 TypeLoweringScope S(*this); 462 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 463 464 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 465 TypeIndex TI = lowerTypeMemberFunction( 466 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 467 return recordTypeIndexForDINode(SP, TI, Class); 468 } 469 470 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 471 TypeIndex TI, 472 const DIType *ClassTy) { 473 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 474 (void)InsertResult; 475 assert(InsertResult.second && "DINode was already assigned a type index"); 476 return TI; 477 } 478 479 unsigned CodeViewDebug::getPointerSizeInBytes() { 480 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 481 } 482 483 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 484 const LexicalScope *LS) { 485 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 486 // This variable was inlined. Associate it with the InlineSite. 487 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 488 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 489 Site.InlinedLocals.emplace_back(Var); 490 } else { 491 // This variable goes into the corresponding lexical scope. 492 ScopeVariables[LS].emplace_back(Var); 493 } 494 } 495 496 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 497 const DILocation *Loc) { 498 auto B = Locs.begin(), E = Locs.end(); 499 if (std::find(B, E, Loc) == E) 500 Locs.push_back(Loc); 501 } 502 503 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 504 const MachineFunction *MF) { 505 // Skip this instruction if it has the same location as the previous one. 506 if (!DL || DL == PrevInstLoc) 507 return; 508 509 const DIScope *Scope = DL.get()->getScope(); 510 if (!Scope) 511 return; 512 513 // Skip this line if it is longer than the maximum we can record. 514 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 515 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 516 LI.isNeverStepInto()) 517 return; 518 519 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 520 if (CI.getStartColumn() != DL.getCol()) 521 return; 522 523 if (!CurFn->HaveLineInfo) 524 CurFn->HaveLineInfo = true; 525 unsigned FileId = 0; 526 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 527 FileId = CurFn->LastFileId; 528 else 529 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 530 PrevInstLoc = DL; 531 532 unsigned FuncId = CurFn->FuncId; 533 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 534 const DILocation *Loc = DL.get(); 535 536 // If this location was actually inlined from somewhere else, give it the ID 537 // of the inline call site. 538 FuncId = 539 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 540 541 // Ensure we have links in the tree of inline call sites. 542 bool FirstLoc = true; 543 while ((SiteLoc = Loc->getInlinedAt())) { 544 InlineSite &Site = 545 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 546 if (!FirstLoc) 547 addLocIfNotPresent(Site.ChildSites, Loc); 548 FirstLoc = false; 549 Loc = SiteLoc; 550 } 551 addLocIfNotPresent(CurFn->ChildSites, Loc); 552 } 553 554 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 555 /*PrologueEnd=*/false, /*IsStmt=*/false, 556 DL->getFilename(), SMLoc()); 557 } 558 559 void CodeViewDebug::emitCodeViewMagicVersion() { 560 OS.emitValueToAlignment(4); 561 OS.AddComment("Debug section magic"); 562 OS.emitInt32(COFF::DEBUG_SECTION_MAGIC); 563 } 564 565 void CodeViewDebug::endModule() { 566 if (!Asm || !MMI->hasDebugInfo()) 567 return; 568 569 assert(Asm != nullptr); 570 571 // The COFF .debug$S section consists of several subsections, each starting 572 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 573 // of the payload followed by the payload itself. The subsections are 4-byte 574 // aligned. 575 576 // Use the generic .debug$S section, and make a subsection for all the inlined 577 // subprograms. 578 switchToDebugSectionForSymbol(nullptr); 579 580 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 581 emitCompilerInformation(); 582 endCVSubsection(CompilerInfo); 583 584 emitInlineeLinesSubsection(); 585 586 // Emit per-function debug information. 587 for (auto &P : FnDebugInfo) 588 if (!P.first->isDeclarationForLinker()) 589 emitDebugInfoForFunction(P.first, *P.second); 590 591 // Emit global variable debug information. 592 setCurrentSubprogram(nullptr); 593 emitDebugInfoForGlobals(); 594 595 // Emit retained types. 596 emitDebugInfoForRetainedTypes(); 597 598 // Switch back to the generic .debug$S section after potentially processing 599 // comdat symbol sections. 600 switchToDebugSectionForSymbol(nullptr); 601 602 // Emit UDT records for any types used by global variables. 603 if (!GlobalUDTs.empty()) { 604 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 605 emitDebugInfoForUDTs(GlobalUDTs); 606 endCVSubsection(SymbolsEnd); 607 } 608 609 // This subsection holds a file index to offset in string table table. 610 OS.AddComment("File index to string table offset subsection"); 611 OS.EmitCVFileChecksumsDirective(); 612 613 // This subsection holds the string table. 614 OS.AddComment("String table"); 615 OS.EmitCVStringTableDirective(); 616 617 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 618 // subsection in the generic .debug$S section at the end. There is no 619 // particular reason for this ordering other than to match MSVC. 620 emitBuildInfo(); 621 622 // Emit type information and hashes last, so that any types we translate while 623 // emitting function info are included. 624 emitTypeInformation(); 625 626 if (EmitDebugGlobalHashes) 627 emitTypeGlobalHashes(); 628 629 clear(); 630 } 631 632 static void 633 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 634 unsigned MaxFixedRecordLength = 0xF00) { 635 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 636 // after a fixed length portion of the record. The fixed length portion should 637 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 638 // overall record size is less than the maximum allowed. 639 SmallString<32> NullTerminatedString( 640 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 641 NullTerminatedString.push_back('\0'); 642 OS.emitBytes(NullTerminatedString); 643 } 644 645 void CodeViewDebug::emitTypeInformation() { 646 if (TypeTable.empty()) 647 return; 648 649 // Start the .debug$T or .debug$P section with 0x4. 650 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 651 emitCodeViewMagicVersion(); 652 653 TypeTableCollection Table(TypeTable.records()); 654 TypeVisitorCallbackPipeline Pipeline; 655 656 // To emit type record using Codeview MCStreamer adapter 657 CVMCAdapter CVMCOS(OS, Table); 658 TypeRecordMapping typeMapping(CVMCOS); 659 Pipeline.addCallbackToPipeline(typeMapping); 660 661 Optional<TypeIndex> B = Table.getFirst(); 662 while (B) { 663 // This will fail if the record data is invalid. 664 CVType Record = Table.getType(*B); 665 666 Error E = codeview::visitTypeRecord(Record, *B, Pipeline); 667 668 if (E) { 669 logAllUnhandledErrors(std::move(E), errs(), "error: "); 670 llvm_unreachable("produced malformed type record"); 671 } 672 673 B = Table.getNext(*B); 674 } 675 } 676 677 void CodeViewDebug::emitTypeGlobalHashes() { 678 if (TypeTable.empty()) 679 return; 680 681 // Start the .debug$H section with the version and hash algorithm, currently 682 // hardcoded to version 0, SHA1. 683 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 684 685 OS.emitValueToAlignment(4); 686 OS.AddComment("Magic"); 687 OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC); 688 OS.AddComment("Section Version"); 689 OS.emitInt16(0); 690 OS.AddComment("Hash Algorithm"); 691 OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8)); 692 693 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 694 for (const auto &GHR : TypeTable.hashes()) { 695 if (OS.isVerboseAsm()) { 696 // Emit an EOL-comment describing which TypeIndex this hash corresponds 697 // to, as well as the stringified SHA1 hash. 698 SmallString<32> Comment; 699 raw_svector_ostream CommentOS(Comment); 700 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 701 OS.AddComment(Comment); 702 ++TI; 703 } 704 assert(GHR.Hash.size() == 8); 705 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 706 GHR.Hash.size()); 707 OS.emitBinaryData(S); 708 } 709 } 710 711 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 712 switch (DWLang) { 713 case dwarf::DW_LANG_C: 714 case dwarf::DW_LANG_C89: 715 case dwarf::DW_LANG_C99: 716 case dwarf::DW_LANG_C11: 717 case dwarf::DW_LANG_ObjC: 718 return SourceLanguage::C; 719 case dwarf::DW_LANG_C_plus_plus: 720 case dwarf::DW_LANG_C_plus_plus_03: 721 case dwarf::DW_LANG_C_plus_plus_11: 722 case dwarf::DW_LANG_C_plus_plus_14: 723 return SourceLanguage::Cpp; 724 case dwarf::DW_LANG_Fortran77: 725 case dwarf::DW_LANG_Fortran90: 726 case dwarf::DW_LANG_Fortran03: 727 case dwarf::DW_LANG_Fortran08: 728 return SourceLanguage::Fortran; 729 case dwarf::DW_LANG_Pascal83: 730 return SourceLanguage::Pascal; 731 case dwarf::DW_LANG_Cobol74: 732 case dwarf::DW_LANG_Cobol85: 733 return SourceLanguage::Cobol; 734 case dwarf::DW_LANG_Java: 735 return SourceLanguage::Java; 736 case dwarf::DW_LANG_D: 737 return SourceLanguage::D; 738 case dwarf::DW_LANG_Swift: 739 return SourceLanguage::Swift; 740 default: 741 // There's no CodeView representation for this language, and CV doesn't 742 // have an "unknown" option for the language field, so we'll use MASM, 743 // as it's very low level. 744 return SourceLanguage::Masm; 745 } 746 } 747 748 namespace { 749 struct Version { 750 int Part[4]; 751 }; 752 } // end anonymous namespace 753 754 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 755 // the version number. 756 static Version parseVersion(StringRef Name) { 757 Version V = {{0}}; 758 int N = 0; 759 for (const char C : Name) { 760 if (isdigit(C)) { 761 V.Part[N] *= 10; 762 V.Part[N] += C - '0'; 763 } else if (C == '.') { 764 ++N; 765 if (N >= 4) 766 return V; 767 } else if (N > 0) 768 return V; 769 } 770 return V; 771 } 772 773 void CodeViewDebug::emitCompilerInformation() { 774 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 775 uint32_t Flags = 0; 776 777 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 778 const MDNode *Node = *CUs->operands().begin(); 779 const auto *CU = cast<DICompileUnit>(Node); 780 781 // The low byte of the flags indicates the source language. 782 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 783 // TODO: Figure out which other flags need to be set. 784 785 OS.AddComment("Flags and language"); 786 OS.emitInt32(Flags); 787 788 OS.AddComment("CPUType"); 789 OS.emitInt16(static_cast<uint64_t>(TheCPU)); 790 791 StringRef CompilerVersion = CU->getProducer(); 792 Version FrontVer = parseVersion(CompilerVersion); 793 OS.AddComment("Frontend version"); 794 for (int N = 0; N < 4; ++N) 795 OS.emitInt16(FrontVer.Part[N]); 796 797 // Some Microsoft tools, like Binscope, expect a backend version number of at 798 // least 8.something, so we'll coerce the LLVM version into a form that 799 // guarantees it'll be big enough without really lying about the version. 800 int Major = 1000 * LLVM_VERSION_MAJOR + 801 10 * LLVM_VERSION_MINOR + 802 LLVM_VERSION_PATCH; 803 // Clamp it for builds that use unusually large version numbers. 804 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 805 Version BackVer = {{ Major, 0, 0, 0 }}; 806 OS.AddComment("Backend version"); 807 for (int N = 0; N < 4; ++N) 808 OS.emitInt16(BackVer.Part[N]); 809 810 OS.AddComment("Null-terminated compiler version string"); 811 emitNullTerminatedSymbolName(OS, CompilerVersion); 812 813 endSymbolRecord(CompilerEnd); 814 } 815 816 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 817 StringRef S) { 818 StringIdRecord SIR(TypeIndex(0x0), S); 819 return TypeTable.writeLeafType(SIR); 820 } 821 822 void CodeViewDebug::emitBuildInfo() { 823 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 824 // build info. The known prefix is: 825 // - Absolute path of current directory 826 // - Compiler path 827 // - Main source file path, relative to CWD or absolute 828 // - Type server PDB file 829 // - Canonical compiler command line 830 // If frontend and backend compilation are separated (think llc or LTO), it's 831 // not clear if the compiler path should refer to the executable for the 832 // frontend or the backend. Leave it blank for now. 833 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 834 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 835 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 836 const auto *CU = cast<DICompileUnit>(Node); 837 const DIFile *MainSourceFile = CU->getFile(); 838 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 839 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 840 BuildInfoArgs[BuildInfoRecord::SourceFile] = 841 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 842 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 843 // we implement /Zi type servers. 844 BuildInfoRecord BIR(BuildInfoArgs); 845 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 846 847 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 848 // from the module symbols into the type stream. 849 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 850 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 851 OS.AddComment("LF_BUILDINFO index"); 852 OS.emitInt32(BuildInfoIndex.getIndex()); 853 endSymbolRecord(BIEnd); 854 endCVSubsection(BISubsecEnd); 855 } 856 857 void CodeViewDebug::emitInlineeLinesSubsection() { 858 if (InlinedSubprograms.empty()) 859 return; 860 861 OS.AddComment("Inlinee lines subsection"); 862 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 863 864 // We emit the checksum info for files. This is used by debuggers to 865 // determine if a pdb matches the source before loading it. Visual Studio, 866 // for instance, will display a warning that the breakpoints are not valid if 867 // the pdb does not match the source. 868 OS.AddComment("Inlinee lines signature"); 869 OS.emitInt32(unsigned(InlineeLinesSignature::Normal)); 870 871 for (const DISubprogram *SP : InlinedSubprograms) { 872 assert(TypeIndices.count({SP, nullptr})); 873 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 874 875 OS.AddBlankLine(); 876 unsigned FileId = maybeRecordFile(SP->getFile()); 877 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 878 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 879 OS.AddBlankLine(); 880 OS.AddComment("Type index of inlined function"); 881 OS.emitInt32(InlineeIdx.getIndex()); 882 OS.AddComment("Offset into filechecksum table"); 883 OS.EmitCVFileChecksumOffsetDirective(FileId); 884 OS.AddComment("Starting line number"); 885 OS.emitInt32(SP->getLine()); 886 } 887 888 endCVSubsection(InlineEnd); 889 } 890 891 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 892 const DILocation *InlinedAt, 893 const InlineSite &Site) { 894 assert(TypeIndices.count({Site.Inlinee, nullptr})); 895 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 896 897 // SymbolRecord 898 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 899 900 OS.AddComment("PtrParent"); 901 OS.emitInt32(0); 902 OS.AddComment("PtrEnd"); 903 OS.emitInt32(0); 904 OS.AddComment("Inlinee type index"); 905 OS.emitInt32(InlineeIdx.getIndex()); 906 907 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 908 unsigned StartLineNum = Site.Inlinee->getLine(); 909 910 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 911 FI.Begin, FI.End); 912 913 endSymbolRecord(InlineEnd); 914 915 emitLocalVariableList(FI, Site.InlinedLocals); 916 917 // Recurse on child inlined call sites before closing the scope. 918 for (const DILocation *ChildSite : Site.ChildSites) { 919 auto I = FI.InlineSites.find(ChildSite); 920 assert(I != FI.InlineSites.end() && 921 "child site not in function inline site map"); 922 emitInlinedCallSite(FI, ChildSite, I->second); 923 } 924 925 // Close the scope. 926 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 927 } 928 929 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 930 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 931 // comdat key. A section may be comdat because of -ffunction-sections or 932 // because it is comdat in the IR. 933 MCSectionCOFF *GVSec = 934 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 935 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 936 937 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 938 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 939 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 940 941 OS.SwitchSection(DebugSec); 942 943 // Emit the magic version number if this is the first time we've switched to 944 // this section. 945 if (ComdatDebugSections.insert(DebugSec).second) 946 emitCodeViewMagicVersion(); 947 } 948 949 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 950 // The only supported thunk ordinal is currently the standard type. 951 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 952 FunctionInfo &FI, 953 const MCSymbol *Fn) { 954 std::string FuncName = 955 std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 956 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 957 958 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 959 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 960 961 // Emit S_THUNK32 962 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 963 OS.AddComment("PtrParent"); 964 OS.emitInt32(0); 965 OS.AddComment("PtrEnd"); 966 OS.emitInt32(0); 967 OS.AddComment("PtrNext"); 968 OS.emitInt32(0); 969 OS.AddComment("Thunk section relative address"); 970 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 971 OS.AddComment("Thunk section index"); 972 OS.EmitCOFFSectionIndex(Fn); 973 OS.AddComment("Code size"); 974 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 975 OS.AddComment("Ordinal"); 976 OS.emitInt8(unsigned(ordinal)); 977 OS.AddComment("Function name"); 978 emitNullTerminatedSymbolName(OS, FuncName); 979 // Additional fields specific to the thunk ordinal would go here. 980 endSymbolRecord(ThunkRecordEnd); 981 982 // Local variables/inlined routines are purposely omitted here. The point of 983 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 984 985 // Emit S_PROC_ID_END 986 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 987 988 endCVSubsection(SymbolsEnd); 989 } 990 991 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 992 FunctionInfo &FI) { 993 // For each function there is a separate subsection which holds the PC to 994 // file:line table. 995 const MCSymbol *Fn = Asm->getSymbol(GV); 996 assert(Fn); 997 998 // Switch to the to a comdat section, if appropriate. 999 switchToDebugSectionForSymbol(Fn); 1000 1001 std::string FuncName; 1002 auto *SP = GV->getSubprogram(); 1003 assert(SP); 1004 setCurrentSubprogram(SP); 1005 1006 if (SP->isThunk()) { 1007 emitDebugInfoForThunk(GV, FI, Fn); 1008 return; 1009 } 1010 1011 // If we have a display name, build the fully qualified name by walking the 1012 // chain of scopes. 1013 if (!SP->getName().empty()) 1014 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName()); 1015 1016 // If our DISubprogram name is empty, use the mangled name. 1017 if (FuncName.empty()) 1018 FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName())); 1019 1020 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 1021 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 1022 OS.EmitCVFPOData(Fn); 1023 1024 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 1025 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 1026 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 1027 { 1028 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 1029 : SymbolKind::S_GPROC32_ID; 1030 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 1031 1032 // These fields are filled in by tools like CVPACK which run after the fact. 1033 OS.AddComment("PtrParent"); 1034 OS.emitInt32(0); 1035 OS.AddComment("PtrEnd"); 1036 OS.emitInt32(0); 1037 OS.AddComment("PtrNext"); 1038 OS.emitInt32(0); 1039 // This is the important bit that tells the debugger where the function 1040 // code is located and what's its size: 1041 OS.AddComment("Code size"); 1042 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1043 OS.AddComment("Offset after prologue"); 1044 OS.emitInt32(0); 1045 OS.AddComment("Offset before epilogue"); 1046 OS.emitInt32(0); 1047 OS.AddComment("Function type index"); 1048 OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex()); 1049 OS.AddComment("Function section relative address"); 1050 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1051 OS.AddComment("Function section index"); 1052 OS.EmitCOFFSectionIndex(Fn); 1053 OS.AddComment("Flags"); 1054 OS.emitInt8(0); 1055 // Emit the function display name as a null-terminated string. 1056 OS.AddComment("Function name"); 1057 // Truncate the name so we won't overflow the record length field. 1058 emitNullTerminatedSymbolName(OS, FuncName); 1059 endSymbolRecord(ProcRecordEnd); 1060 1061 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1062 // Subtract out the CSR size since MSVC excludes that and we include it. 1063 OS.AddComment("FrameSize"); 1064 OS.emitInt32(FI.FrameSize - FI.CSRSize); 1065 OS.AddComment("Padding"); 1066 OS.emitInt32(0); 1067 OS.AddComment("Offset of padding"); 1068 OS.emitInt32(0); 1069 OS.AddComment("Bytes of callee saved registers"); 1070 OS.emitInt32(FI.CSRSize); 1071 OS.AddComment("Exception handler offset"); 1072 OS.emitInt32(0); 1073 OS.AddComment("Exception handler section"); 1074 OS.emitInt16(0); 1075 OS.AddComment("Flags (defines frame register)"); 1076 OS.emitInt32(uint32_t(FI.FrameProcOpts)); 1077 endSymbolRecord(FrameProcEnd); 1078 1079 emitLocalVariableList(FI, FI.Locals); 1080 emitGlobalVariableList(FI.Globals); 1081 emitLexicalBlockList(FI.ChildBlocks, FI); 1082 1083 // Emit inlined call site information. Only emit functions inlined directly 1084 // into the parent function. We'll emit the other sites recursively as part 1085 // of their parent inline site. 1086 for (const DILocation *InlinedAt : FI.ChildSites) { 1087 auto I = FI.InlineSites.find(InlinedAt); 1088 assert(I != FI.InlineSites.end() && 1089 "child site not in function inline site map"); 1090 emitInlinedCallSite(FI, InlinedAt, I->second); 1091 } 1092 1093 for (auto Annot : FI.Annotations) { 1094 MCSymbol *Label = Annot.first; 1095 MDTuple *Strs = cast<MDTuple>(Annot.second); 1096 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1097 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1098 // FIXME: Make sure we don't overflow the max record size. 1099 OS.EmitCOFFSectionIndex(Label); 1100 OS.emitInt16(Strs->getNumOperands()); 1101 for (Metadata *MD : Strs->operands()) { 1102 // MDStrings are null terminated, so we can do EmitBytes and get the 1103 // nice .asciz directive. 1104 StringRef Str = cast<MDString>(MD)->getString(); 1105 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1106 OS.emitBytes(StringRef(Str.data(), Str.size() + 1)); 1107 } 1108 endSymbolRecord(AnnotEnd); 1109 } 1110 1111 for (auto HeapAllocSite : FI.HeapAllocSites) { 1112 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite); 1113 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite); 1114 const DIType *DITy = std::get<2>(HeapAllocSite); 1115 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE); 1116 OS.AddComment("Call site offset"); 1117 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0); 1118 OS.AddComment("Call site section index"); 1119 OS.EmitCOFFSectionIndex(BeginLabel); 1120 OS.AddComment("Call instruction length"); 1121 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 1122 OS.AddComment("Type index"); 1123 OS.emitInt32(getCompleteTypeIndex(DITy).getIndex()); 1124 endSymbolRecord(HeapAllocEnd); 1125 } 1126 1127 if (SP != nullptr) 1128 emitDebugInfoForUDTs(LocalUDTs); 1129 1130 // We're done with this function. 1131 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1132 } 1133 endCVSubsection(SymbolsEnd); 1134 1135 // We have an assembler directive that takes care of the whole line table. 1136 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1137 } 1138 1139 CodeViewDebug::LocalVarDefRange 1140 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1141 LocalVarDefRange DR; 1142 DR.InMemory = -1; 1143 DR.DataOffset = Offset; 1144 assert(DR.DataOffset == Offset && "truncation"); 1145 DR.IsSubfield = 0; 1146 DR.StructOffset = 0; 1147 DR.CVRegister = CVRegister; 1148 return DR; 1149 } 1150 1151 void CodeViewDebug::collectVariableInfoFromMFTable( 1152 DenseSet<InlinedEntity> &Processed) { 1153 const MachineFunction &MF = *Asm->MF; 1154 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1155 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1156 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1157 1158 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1159 if (!VI.Var) 1160 continue; 1161 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1162 "Expected inlined-at fields to agree"); 1163 1164 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1165 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1166 1167 // If variable scope is not found then skip this variable. 1168 if (!Scope) 1169 continue; 1170 1171 // If the variable has an attached offset expression, extract it. 1172 // FIXME: Try to handle DW_OP_deref as well. 1173 int64_t ExprOffset = 0; 1174 bool Deref = false; 1175 if (VI.Expr) { 1176 // If there is one DW_OP_deref element, use offset of 0 and keep going. 1177 if (VI.Expr->getNumElements() == 1 && 1178 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref) 1179 Deref = true; 1180 else if (!VI.Expr->extractIfOffset(ExprOffset)) 1181 continue; 1182 } 1183 1184 // Get the frame register used and the offset. 1185 Register FrameReg; 1186 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1187 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1188 1189 // Calculate the label ranges. 1190 LocalVarDefRange DefRange = 1191 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1192 1193 for (const InsnRange &Range : Scope->getRanges()) { 1194 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1195 const MCSymbol *End = getLabelAfterInsn(Range.second); 1196 End = End ? End : Asm->getFunctionEnd(); 1197 DefRange.Ranges.emplace_back(Begin, End); 1198 } 1199 1200 LocalVariable Var; 1201 Var.DIVar = VI.Var; 1202 Var.DefRanges.emplace_back(std::move(DefRange)); 1203 if (Deref) 1204 Var.UseReferenceType = true; 1205 1206 recordLocalVariable(std::move(Var), Scope); 1207 } 1208 } 1209 1210 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1211 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1212 } 1213 1214 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1215 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1216 } 1217 1218 void CodeViewDebug::calculateRanges( 1219 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) { 1220 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1221 1222 // Calculate the definition ranges. 1223 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) { 1224 const auto &Entry = *I; 1225 if (!Entry.isDbgValue()) 1226 continue; 1227 const MachineInstr *DVInst = Entry.getInstr(); 1228 assert(DVInst->isDebugValue() && "Invalid History entry"); 1229 // FIXME: Find a way to represent constant variables, since they are 1230 // relatively common. 1231 Optional<DbgVariableLocation> Location = 1232 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1233 if (!Location) 1234 continue; 1235 1236 // CodeView can only express variables in register and variables in memory 1237 // at a constant offset from a register. However, for variables passed 1238 // indirectly by pointer, it is common for that pointer to be spilled to a 1239 // stack location. For the special case of one offseted load followed by a 1240 // zero offset load (a pointer spilled to the stack), we change the type of 1241 // the local variable from a value type to a reference type. This tricks the 1242 // debugger into doing the load for us. 1243 if (Var.UseReferenceType) { 1244 // We're using a reference type. Drop the last zero offset load. 1245 if (canUseReferenceType(*Location)) 1246 Location->LoadChain.pop_back(); 1247 else 1248 continue; 1249 } else if (needsReferenceType(*Location)) { 1250 // This location can't be expressed without switching to a reference type. 1251 // Start over using that. 1252 Var.UseReferenceType = true; 1253 Var.DefRanges.clear(); 1254 calculateRanges(Var, Entries); 1255 return; 1256 } 1257 1258 // We can only handle a register or an offseted load of a register. 1259 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1260 continue; 1261 { 1262 LocalVarDefRange DR; 1263 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1264 DR.InMemory = !Location->LoadChain.empty(); 1265 DR.DataOffset = 1266 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1267 if (Location->FragmentInfo) { 1268 DR.IsSubfield = true; 1269 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1270 } else { 1271 DR.IsSubfield = false; 1272 DR.StructOffset = 0; 1273 } 1274 1275 if (Var.DefRanges.empty() || 1276 Var.DefRanges.back().isDifferentLocation(DR)) { 1277 Var.DefRanges.emplace_back(std::move(DR)); 1278 } 1279 } 1280 1281 // Compute the label range. 1282 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr()); 1283 const MCSymbol *End; 1284 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) { 1285 auto &EndingEntry = Entries[Entry.getEndIndex()]; 1286 End = EndingEntry.isDbgValue() 1287 ? getLabelBeforeInsn(EndingEntry.getInstr()) 1288 : getLabelAfterInsn(EndingEntry.getInstr()); 1289 } else 1290 End = Asm->getFunctionEnd(); 1291 1292 // If the last range end is our begin, just extend the last range. 1293 // Otherwise make a new range. 1294 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1295 Var.DefRanges.back().Ranges; 1296 if (!R.empty() && R.back().second == Begin) 1297 R.back().second = End; 1298 else 1299 R.emplace_back(Begin, End); 1300 1301 // FIXME: Do more range combining. 1302 } 1303 } 1304 1305 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1306 DenseSet<InlinedEntity> Processed; 1307 // Grab the variable info that was squirreled away in the MMI side-table. 1308 collectVariableInfoFromMFTable(Processed); 1309 1310 for (const auto &I : DbgValues) { 1311 InlinedEntity IV = I.first; 1312 if (Processed.count(IV)) 1313 continue; 1314 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1315 const DILocation *InlinedAt = IV.second; 1316 1317 // Instruction ranges, specifying where IV is accessible. 1318 const auto &Entries = I.second; 1319 1320 LexicalScope *Scope = nullptr; 1321 if (InlinedAt) 1322 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1323 else 1324 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1325 // If variable scope is not found then skip this variable. 1326 if (!Scope) 1327 continue; 1328 1329 LocalVariable Var; 1330 Var.DIVar = DIVar; 1331 1332 calculateRanges(Var, Entries); 1333 recordLocalVariable(std::move(Var), Scope); 1334 } 1335 } 1336 1337 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1338 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1339 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1340 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1341 const Function &GV = MF->getFunction(); 1342 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()}); 1343 assert(Insertion.second && "function already has info"); 1344 CurFn = Insertion.first->second.get(); 1345 CurFn->FuncId = NextFuncId++; 1346 CurFn->Begin = Asm->getFunctionBegin(); 1347 1348 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1349 // callee-saved registers were used. For targets that don't use a PUSH 1350 // instruction (AArch64), this will be zero. 1351 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1352 CurFn->FrameSize = MFI.getStackSize(); 1353 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1354 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1355 1356 // For this function S_FRAMEPROC record, figure out which codeview register 1357 // will be the frame pointer. 1358 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1359 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1360 if (CurFn->FrameSize > 0) { 1361 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1362 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1363 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1364 } else { 1365 // If there is an FP, parameters are always relative to it. 1366 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1367 if (CurFn->HasStackRealignment) { 1368 // If the stack needs realignment, locals are relative to SP or VFRAME. 1369 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1370 } else { 1371 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1372 // other stack adjustments. 1373 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1374 } 1375 } 1376 } 1377 1378 // Compute other frame procedure options. 1379 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1380 if (MFI.hasVarSizedObjects()) 1381 FPO |= FrameProcedureOptions::HasAlloca; 1382 if (MF->exposesReturnsTwice()) 1383 FPO |= FrameProcedureOptions::HasSetJmp; 1384 // FIXME: Set HasLongJmp if we ever track that info. 1385 if (MF->hasInlineAsm()) 1386 FPO |= FrameProcedureOptions::HasInlineAssembly; 1387 if (GV.hasPersonalityFn()) { 1388 if (isAsynchronousEHPersonality( 1389 classifyEHPersonality(GV.getPersonalityFn()))) 1390 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1391 else 1392 FPO |= FrameProcedureOptions::HasExceptionHandling; 1393 } 1394 if (GV.hasFnAttribute(Attribute::InlineHint)) 1395 FPO |= FrameProcedureOptions::MarkedInline; 1396 if (GV.hasFnAttribute(Attribute::Naked)) 1397 FPO |= FrameProcedureOptions::Naked; 1398 if (MFI.hasStackProtectorIndex()) 1399 FPO |= FrameProcedureOptions::SecurityChecks; 1400 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1401 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1402 if (Asm->TM.getOptLevel() != CodeGenOpt::None && 1403 !GV.hasOptSize() && !GV.hasOptNone()) 1404 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1405 // FIXME: Set GuardCfg when it is implemented. 1406 CurFn->FrameProcOpts = FPO; 1407 1408 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1409 1410 // Find the end of the function prolog. First known non-DBG_VALUE and 1411 // non-frame setup location marks the beginning of the function body. 1412 // FIXME: is there a simpler a way to do this? Can we just search 1413 // for the first instruction of the function, not the last of the prolog? 1414 DebugLoc PrologEndLoc; 1415 bool EmptyPrologue = true; 1416 for (const auto &MBB : *MF) { 1417 for (const auto &MI : MBB) { 1418 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1419 MI.getDebugLoc()) { 1420 PrologEndLoc = MI.getDebugLoc(); 1421 break; 1422 } else if (!MI.isMetaInstruction()) { 1423 EmptyPrologue = false; 1424 } 1425 } 1426 } 1427 1428 // Record beginning of function if we have a non-empty prologue. 1429 if (PrologEndLoc && !EmptyPrologue) { 1430 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1431 maybeRecordLocation(FnStartDL, MF); 1432 } 1433 1434 // Find heap alloc sites and emit labels around them. 1435 for (const auto &MBB : *MF) { 1436 for (const auto &MI : MBB) { 1437 if (MI.getHeapAllocMarker()) { 1438 requestLabelBeforeInsn(&MI); 1439 requestLabelAfterInsn(&MI); 1440 } 1441 } 1442 } 1443 } 1444 1445 static bool shouldEmitUdt(const DIType *T) { 1446 if (!T) 1447 return false; 1448 1449 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1450 if (T->getTag() == dwarf::DW_TAG_typedef) { 1451 if (DIScope *Scope = T->getScope()) { 1452 switch (Scope->getTag()) { 1453 case dwarf::DW_TAG_structure_type: 1454 case dwarf::DW_TAG_class_type: 1455 case dwarf::DW_TAG_union_type: 1456 return false; 1457 } 1458 } 1459 } 1460 1461 while (true) { 1462 if (!T || T->isForwardDecl()) 1463 return false; 1464 1465 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1466 if (!DT) 1467 return true; 1468 T = DT->getBaseType(); 1469 } 1470 return true; 1471 } 1472 1473 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1474 // Don't record empty UDTs. 1475 if (Ty->getName().empty()) 1476 return; 1477 if (!shouldEmitUdt(Ty)) 1478 return; 1479 1480 SmallVector<StringRef, 5> QualifiedNameComponents; 1481 const DISubprogram *ClosestSubprogram = 1482 getQualifiedNameComponents(Ty->getScope(), QualifiedNameComponents); 1483 1484 std::string FullyQualifiedName = 1485 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1486 1487 if (ClosestSubprogram == nullptr) { 1488 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1489 } else if (ClosestSubprogram == CurrentSubprogram) { 1490 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1491 } 1492 1493 // TODO: What if the ClosestSubprogram is neither null or the current 1494 // subprogram? Currently, the UDT just gets dropped on the floor. 1495 // 1496 // The current behavior is not desirable. To get maximal fidelity, we would 1497 // need to perform all type translation before beginning emission of .debug$S 1498 // and then make LocalUDTs a member of FunctionInfo 1499 } 1500 1501 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1502 // Generic dispatch for lowering an unknown type. 1503 switch (Ty->getTag()) { 1504 case dwarf::DW_TAG_array_type: 1505 return lowerTypeArray(cast<DICompositeType>(Ty)); 1506 case dwarf::DW_TAG_typedef: 1507 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1508 case dwarf::DW_TAG_base_type: 1509 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1510 case dwarf::DW_TAG_pointer_type: 1511 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1512 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1513 LLVM_FALLTHROUGH; 1514 case dwarf::DW_TAG_reference_type: 1515 case dwarf::DW_TAG_rvalue_reference_type: 1516 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1517 case dwarf::DW_TAG_ptr_to_member_type: 1518 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1519 case dwarf::DW_TAG_restrict_type: 1520 case dwarf::DW_TAG_const_type: 1521 case dwarf::DW_TAG_volatile_type: 1522 // TODO: add support for DW_TAG_atomic_type here 1523 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1524 case dwarf::DW_TAG_subroutine_type: 1525 if (ClassTy) { 1526 // The member function type of a member function pointer has no 1527 // ThisAdjustment. 1528 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1529 /*ThisAdjustment=*/0, 1530 /*IsStaticMethod=*/false); 1531 } 1532 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1533 case dwarf::DW_TAG_enumeration_type: 1534 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1535 case dwarf::DW_TAG_class_type: 1536 case dwarf::DW_TAG_structure_type: 1537 return lowerTypeClass(cast<DICompositeType>(Ty)); 1538 case dwarf::DW_TAG_union_type: 1539 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1540 case dwarf::DW_TAG_unspecified_type: 1541 if (Ty->getName() == "decltype(nullptr)") 1542 return TypeIndex::NullptrT(); 1543 return TypeIndex::None(); 1544 default: 1545 // Use the null type index. 1546 return TypeIndex(); 1547 } 1548 } 1549 1550 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1551 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType()); 1552 StringRef TypeName = Ty->getName(); 1553 1554 addToUDTs(Ty); 1555 1556 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1557 TypeName == "HRESULT") 1558 return TypeIndex(SimpleTypeKind::HResult); 1559 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1560 TypeName == "wchar_t") 1561 return TypeIndex(SimpleTypeKind::WideCharacter); 1562 1563 return UnderlyingTypeIndex; 1564 } 1565 1566 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1567 const DIType *ElementType = Ty->getBaseType(); 1568 TypeIndex ElementTypeIndex = getTypeIndex(ElementType); 1569 // IndexType is size_t, which depends on the bitness of the target. 1570 TypeIndex IndexType = getPointerSizeInBytes() == 8 1571 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1572 : TypeIndex(SimpleTypeKind::UInt32Long); 1573 1574 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8; 1575 1576 // Add subranges to array type. 1577 DINodeArray Elements = Ty->getElements(); 1578 for (int i = Elements.size() - 1; i >= 0; --i) { 1579 const DINode *Element = Elements[i]; 1580 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1581 1582 const DISubrange *Subrange = cast<DISubrange>(Element); 1583 assert(Subrange->getLowerBound() == 0 && 1584 "codeview doesn't support subranges with lower bounds"); 1585 int64_t Count = -1; 1586 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1587 Count = CI->getSExtValue(); 1588 1589 // Forward declarations of arrays without a size and VLAs use a count of -1. 1590 // Emit a count of zero in these cases to match what MSVC does for arrays 1591 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1592 // should do for them even if we could distinguish them. 1593 if (Count == -1) 1594 Count = 0; 1595 1596 // Update the element size and element type index for subsequent subranges. 1597 ElementSize *= Count; 1598 1599 // If this is the outermost array, use the size from the array. It will be 1600 // more accurate if we had a VLA or an incomplete element type size. 1601 uint64_t ArraySize = 1602 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1603 1604 StringRef Name = (i == 0) ? Ty->getName() : ""; 1605 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1606 ElementTypeIndex = TypeTable.writeLeafType(AR); 1607 } 1608 1609 return ElementTypeIndex; 1610 } 1611 1612 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1613 TypeIndex Index; 1614 dwarf::TypeKind Kind; 1615 uint32_t ByteSize; 1616 1617 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1618 ByteSize = Ty->getSizeInBits() / 8; 1619 1620 SimpleTypeKind STK = SimpleTypeKind::None; 1621 switch (Kind) { 1622 case dwarf::DW_ATE_address: 1623 // FIXME: Translate 1624 break; 1625 case dwarf::DW_ATE_boolean: 1626 switch (ByteSize) { 1627 case 1: STK = SimpleTypeKind::Boolean8; break; 1628 case 2: STK = SimpleTypeKind::Boolean16; break; 1629 case 4: STK = SimpleTypeKind::Boolean32; break; 1630 case 8: STK = SimpleTypeKind::Boolean64; break; 1631 case 16: STK = SimpleTypeKind::Boolean128; break; 1632 } 1633 break; 1634 case dwarf::DW_ATE_complex_float: 1635 switch (ByteSize) { 1636 case 2: STK = SimpleTypeKind::Complex16; break; 1637 case 4: STK = SimpleTypeKind::Complex32; break; 1638 case 8: STK = SimpleTypeKind::Complex64; break; 1639 case 10: STK = SimpleTypeKind::Complex80; break; 1640 case 16: STK = SimpleTypeKind::Complex128; break; 1641 } 1642 break; 1643 case dwarf::DW_ATE_float: 1644 switch (ByteSize) { 1645 case 2: STK = SimpleTypeKind::Float16; break; 1646 case 4: STK = SimpleTypeKind::Float32; break; 1647 case 6: STK = SimpleTypeKind::Float48; break; 1648 case 8: STK = SimpleTypeKind::Float64; break; 1649 case 10: STK = SimpleTypeKind::Float80; break; 1650 case 16: STK = SimpleTypeKind::Float128; break; 1651 } 1652 break; 1653 case dwarf::DW_ATE_signed: 1654 switch (ByteSize) { 1655 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1656 case 2: STK = SimpleTypeKind::Int16Short; break; 1657 case 4: STK = SimpleTypeKind::Int32; break; 1658 case 8: STK = SimpleTypeKind::Int64Quad; break; 1659 case 16: STK = SimpleTypeKind::Int128Oct; break; 1660 } 1661 break; 1662 case dwarf::DW_ATE_unsigned: 1663 switch (ByteSize) { 1664 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1665 case 2: STK = SimpleTypeKind::UInt16Short; break; 1666 case 4: STK = SimpleTypeKind::UInt32; break; 1667 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1668 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1669 } 1670 break; 1671 case dwarf::DW_ATE_UTF: 1672 switch (ByteSize) { 1673 case 2: STK = SimpleTypeKind::Character16; break; 1674 case 4: STK = SimpleTypeKind::Character32; break; 1675 } 1676 break; 1677 case dwarf::DW_ATE_signed_char: 1678 if (ByteSize == 1) 1679 STK = SimpleTypeKind::SignedCharacter; 1680 break; 1681 case dwarf::DW_ATE_unsigned_char: 1682 if (ByteSize == 1) 1683 STK = SimpleTypeKind::UnsignedCharacter; 1684 break; 1685 default: 1686 break; 1687 } 1688 1689 // Apply some fixups based on the source-level type name. 1690 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1691 STK = SimpleTypeKind::Int32Long; 1692 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1693 STK = SimpleTypeKind::UInt32Long; 1694 if (STK == SimpleTypeKind::UInt16Short && 1695 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1696 STK = SimpleTypeKind::WideCharacter; 1697 if ((STK == SimpleTypeKind::SignedCharacter || 1698 STK == SimpleTypeKind::UnsignedCharacter) && 1699 Ty->getName() == "char") 1700 STK = SimpleTypeKind::NarrowCharacter; 1701 1702 return TypeIndex(STK); 1703 } 1704 1705 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1706 PointerOptions PO) { 1707 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1708 1709 // Pointers to simple types without any options can use SimpleTypeMode, rather 1710 // than having a dedicated pointer type record. 1711 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1712 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1713 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1714 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1715 ? SimpleTypeMode::NearPointer64 1716 : SimpleTypeMode::NearPointer32; 1717 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1718 } 1719 1720 PointerKind PK = 1721 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1722 PointerMode PM = PointerMode::Pointer; 1723 switch (Ty->getTag()) { 1724 default: llvm_unreachable("not a pointer tag type"); 1725 case dwarf::DW_TAG_pointer_type: 1726 PM = PointerMode::Pointer; 1727 break; 1728 case dwarf::DW_TAG_reference_type: 1729 PM = PointerMode::LValueReference; 1730 break; 1731 case dwarf::DW_TAG_rvalue_reference_type: 1732 PM = PointerMode::RValueReference; 1733 break; 1734 } 1735 1736 if (Ty->isObjectPointer()) 1737 PO |= PointerOptions::Const; 1738 1739 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1740 return TypeTable.writeLeafType(PR); 1741 } 1742 1743 static PointerToMemberRepresentation 1744 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1745 // SizeInBytes being zero generally implies that the member pointer type was 1746 // incomplete, which can happen if it is part of a function prototype. In this 1747 // case, use the unknown model instead of the general model. 1748 if (IsPMF) { 1749 switch (Flags & DINode::FlagPtrToMemberRep) { 1750 case 0: 1751 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1752 : PointerToMemberRepresentation::GeneralFunction; 1753 case DINode::FlagSingleInheritance: 1754 return PointerToMemberRepresentation::SingleInheritanceFunction; 1755 case DINode::FlagMultipleInheritance: 1756 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1757 case DINode::FlagVirtualInheritance: 1758 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1759 } 1760 } else { 1761 switch (Flags & DINode::FlagPtrToMemberRep) { 1762 case 0: 1763 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1764 : PointerToMemberRepresentation::GeneralData; 1765 case DINode::FlagSingleInheritance: 1766 return PointerToMemberRepresentation::SingleInheritanceData; 1767 case DINode::FlagMultipleInheritance: 1768 return PointerToMemberRepresentation::MultipleInheritanceData; 1769 case DINode::FlagVirtualInheritance: 1770 return PointerToMemberRepresentation::VirtualInheritanceData; 1771 } 1772 } 1773 llvm_unreachable("invalid ptr to member representation"); 1774 } 1775 1776 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1777 PointerOptions PO) { 1778 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1779 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1780 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1781 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1782 : PointerKind::Near32; 1783 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1784 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1785 : PointerMode::PointerToDataMember; 1786 1787 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1788 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1789 MemberPointerInfo MPI( 1790 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1791 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1792 return TypeTable.writeLeafType(PR); 1793 } 1794 1795 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1796 /// have a translation, use the NearC convention. 1797 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1798 switch (DwarfCC) { 1799 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1800 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1801 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1802 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1803 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1804 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1805 } 1806 return CallingConvention::NearC; 1807 } 1808 1809 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1810 ModifierOptions Mods = ModifierOptions::None; 1811 PointerOptions PO = PointerOptions::None; 1812 bool IsModifier = true; 1813 const DIType *BaseTy = Ty; 1814 while (IsModifier && BaseTy) { 1815 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1816 switch (BaseTy->getTag()) { 1817 case dwarf::DW_TAG_const_type: 1818 Mods |= ModifierOptions::Const; 1819 PO |= PointerOptions::Const; 1820 break; 1821 case dwarf::DW_TAG_volatile_type: 1822 Mods |= ModifierOptions::Volatile; 1823 PO |= PointerOptions::Volatile; 1824 break; 1825 case dwarf::DW_TAG_restrict_type: 1826 // Only pointer types be marked with __restrict. There is no known flag 1827 // for __restrict in LF_MODIFIER records. 1828 PO |= PointerOptions::Restrict; 1829 break; 1830 default: 1831 IsModifier = false; 1832 break; 1833 } 1834 if (IsModifier) 1835 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType(); 1836 } 1837 1838 // Check if the inner type will use an LF_POINTER record. If so, the 1839 // qualifiers will go in the LF_POINTER record. This comes up for types like 1840 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1841 // char *'. 1842 if (BaseTy) { 1843 switch (BaseTy->getTag()) { 1844 case dwarf::DW_TAG_pointer_type: 1845 case dwarf::DW_TAG_reference_type: 1846 case dwarf::DW_TAG_rvalue_reference_type: 1847 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1848 case dwarf::DW_TAG_ptr_to_member_type: 1849 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1850 default: 1851 break; 1852 } 1853 } 1854 1855 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1856 1857 // Return the base type index if there aren't any modifiers. For example, the 1858 // metadata could contain restrict wrappers around non-pointer types. 1859 if (Mods == ModifierOptions::None) 1860 return ModifiedTI; 1861 1862 ModifierRecord MR(ModifiedTI, Mods); 1863 return TypeTable.writeLeafType(MR); 1864 } 1865 1866 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1867 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1868 for (const DIType *ArgType : Ty->getTypeArray()) 1869 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType)); 1870 1871 // MSVC uses type none for variadic argument. 1872 if (ReturnAndArgTypeIndices.size() > 1 && 1873 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1874 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1875 } 1876 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1877 ArrayRef<TypeIndex> ArgTypeIndices = None; 1878 if (!ReturnAndArgTypeIndices.empty()) { 1879 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1880 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1881 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1882 } 1883 1884 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1885 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1886 1887 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1888 1889 FunctionOptions FO = getFunctionOptions(Ty); 1890 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1891 ArgListIndex); 1892 return TypeTable.writeLeafType(Procedure); 1893 } 1894 1895 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1896 const DIType *ClassTy, 1897 int ThisAdjustment, 1898 bool IsStaticMethod, 1899 FunctionOptions FO) { 1900 // Lower the containing class type. 1901 TypeIndex ClassType = getTypeIndex(ClassTy); 1902 1903 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1904 1905 unsigned Index = 0; 1906 SmallVector<TypeIndex, 8> ArgTypeIndices; 1907 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1908 if (ReturnAndArgs.size() > Index) { 1909 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1910 } 1911 1912 // If the first argument is a pointer type and this isn't a static method, 1913 // treat it as the special 'this' parameter, which is encoded separately from 1914 // the arguments. 1915 TypeIndex ThisTypeIndex; 1916 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1917 if (const DIDerivedType *PtrTy = 1918 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) { 1919 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1920 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1921 Index++; 1922 } 1923 } 1924 } 1925 1926 while (Index < ReturnAndArgs.size()) 1927 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1928 1929 // MSVC uses type none for variadic argument. 1930 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1931 ArgTypeIndices.back() = TypeIndex::None(); 1932 1933 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1934 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1935 1936 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1937 1938 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1939 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1940 return TypeTable.writeLeafType(MFR); 1941 } 1942 1943 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1944 unsigned VSlotCount = 1945 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1946 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1947 1948 VFTableShapeRecord VFTSR(Slots); 1949 return TypeTable.writeLeafType(VFTSR); 1950 } 1951 1952 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1953 switch (Flags & DINode::FlagAccessibility) { 1954 case DINode::FlagPrivate: return MemberAccess::Private; 1955 case DINode::FlagPublic: return MemberAccess::Public; 1956 case DINode::FlagProtected: return MemberAccess::Protected; 1957 case 0: 1958 // If there was no explicit access control, provide the default for the tag. 1959 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1960 : MemberAccess::Public; 1961 } 1962 llvm_unreachable("access flags are exclusive"); 1963 } 1964 1965 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1966 if (SP->isArtificial()) 1967 return MethodOptions::CompilerGenerated; 1968 1969 // FIXME: Handle other MethodOptions. 1970 1971 return MethodOptions::None; 1972 } 1973 1974 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1975 bool Introduced) { 1976 if (SP->getFlags() & DINode::FlagStaticMember) 1977 return MethodKind::Static; 1978 1979 switch (SP->getVirtuality()) { 1980 case dwarf::DW_VIRTUALITY_none: 1981 break; 1982 case dwarf::DW_VIRTUALITY_virtual: 1983 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1984 case dwarf::DW_VIRTUALITY_pure_virtual: 1985 return Introduced ? MethodKind::PureIntroducingVirtual 1986 : MethodKind::PureVirtual; 1987 default: 1988 llvm_unreachable("unhandled virtuality case"); 1989 } 1990 1991 return MethodKind::Vanilla; 1992 } 1993 1994 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1995 switch (Ty->getTag()) { 1996 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1997 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1998 } 1999 llvm_unreachable("unexpected tag"); 2000 } 2001 2002 /// Return ClassOptions that should be present on both the forward declaration 2003 /// and the defintion of a tag type. 2004 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 2005 ClassOptions CO = ClassOptions::None; 2006 2007 // MSVC always sets this flag, even for local types. Clang doesn't always 2008 // appear to give every type a linkage name, which may be problematic for us. 2009 // FIXME: Investigate the consequences of not following them here. 2010 if (!Ty->getIdentifier().empty()) 2011 CO |= ClassOptions::HasUniqueName; 2012 2013 // Put the Nested flag on a type if it appears immediately inside a tag type. 2014 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 2015 // here. That flag is only set on definitions, and not forward declarations. 2016 const DIScope *ImmediateScope = Ty->getScope(); 2017 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 2018 CO |= ClassOptions::Nested; 2019 2020 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 2021 // type only when it has an immediate function scope. Clang never puts enums 2022 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 2023 // always in function, class, or file scopes. 2024 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 2025 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 2026 CO |= ClassOptions::Scoped; 2027 } else { 2028 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 2029 Scope = Scope->getScope()) { 2030 if (isa<DISubprogram>(Scope)) { 2031 CO |= ClassOptions::Scoped; 2032 break; 2033 } 2034 } 2035 } 2036 2037 return CO; 2038 } 2039 2040 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 2041 switch (Ty->getTag()) { 2042 case dwarf::DW_TAG_class_type: 2043 case dwarf::DW_TAG_structure_type: 2044 case dwarf::DW_TAG_union_type: 2045 case dwarf::DW_TAG_enumeration_type: 2046 break; 2047 default: 2048 return; 2049 } 2050 2051 if (const auto *File = Ty->getFile()) { 2052 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 2053 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 2054 2055 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 2056 TypeTable.writeLeafType(USLR); 2057 } 2058 } 2059 2060 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 2061 ClassOptions CO = getCommonClassOptions(Ty); 2062 TypeIndex FTI; 2063 unsigned EnumeratorCount = 0; 2064 2065 if (Ty->isForwardDecl()) { 2066 CO |= ClassOptions::ForwardReference; 2067 } else { 2068 ContinuationRecordBuilder ContinuationBuilder; 2069 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2070 for (const DINode *Element : Ty->getElements()) { 2071 // We assume that the frontend provides all members in source declaration 2072 // order, which is what MSVC does. 2073 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2074 EnumeratorRecord ER(MemberAccess::Public, 2075 APSInt::getUnsigned(Enumerator->getValue()), 2076 Enumerator->getName()); 2077 ContinuationBuilder.writeMemberType(ER); 2078 EnumeratorCount++; 2079 } 2080 } 2081 FTI = TypeTable.insertRecord(ContinuationBuilder); 2082 } 2083 2084 std::string FullName = getFullyQualifiedName(Ty); 2085 2086 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2087 getTypeIndex(Ty->getBaseType())); 2088 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2089 2090 addUDTSrcLine(Ty, EnumTI); 2091 2092 return EnumTI; 2093 } 2094 2095 //===----------------------------------------------------------------------===// 2096 // ClassInfo 2097 //===----------------------------------------------------------------------===// 2098 2099 struct llvm::ClassInfo { 2100 struct MemberInfo { 2101 const DIDerivedType *MemberTypeNode; 2102 uint64_t BaseOffset; 2103 }; 2104 // [MemberInfo] 2105 using MemberList = std::vector<MemberInfo>; 2106 2107 using MethodsList = TinyPtrVector<const DISubprogram *>; 2108 // MethodName -> MethodsList 2109 using MethodsMap = MapVector<MDString *, MethodsList>; 2110 2111 /// Base classes. 2112 std::vector<const DIDerivedType *> Inheritance; 2113 2114 /// Direct members. 2115 MemberList Members; 2116 // Direct overloaded methods gathered by name. 2117 MethodsMap Methods; 2118 2119 TypeIndex VShapeTI; 2120 2121 std::vector<const DIType *> NestedTypes; 2122 }; 2123 2124 void CodeViewDebug::clear() { 2125 assert(CurFn == nullptr); 2126 FileIdMap.clear(); 2127 FnDebugInfo.clear(); 2128 FileToFilepathMap.clear(); 2129 LocalUDTs.clear(); 2130 GlobalUDTs.clear(); 2131 TypeIndices.clear(); 2132 CompleteTypeIndices.clear(); 2133 ScopeGlobals.clear(); 2134 } 2135 2136 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2137 const DIDerivedType *DDTy) { 2138 if (!DDTy->getName().empty()) { 2139 Info.Members.push_back({DDTy, 0}); 2140 return; 2141 } 2142 2143 // An unnamed member may represent a nested struct or union. Attempt to 2144 // interpret the unnamed member as a DICompositeType possibly wrapped in 2145 // qualifier types. Add all the indirect fields to the current record if that 2146 // succeeds, and drop the member if that fails. 2147 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2148 uint64_t Offset = DDTy->getOffsetInBits(); 2149 const DIType *Ty = DDTy->getBaseType(); 2150 bool FullyResolved = false; 2151 while (!FullyResolved) { 2152 switch (Ty->getTag()) { 2153 case dwarf::DW_TAG_const_type: 2154 case dwarf::DW_TAG_volatile_type: 2155 // FIXME: we should apply the qualifier types to the indirect fields 2156 // rather than dropping them. 2157 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2158 break; 2159 default: 2160 FullyResolved = true; 2161 break; 2162 } 2163 } 2164 2165 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2166 if (!DCTy) 2167 return; 2168 2169 ClassInfo NestedInfo = collectClassInfo(DCTy); 2170 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2171 Info.Members.push_back( 2172 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2173 } 2174 2175 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2176 ClassInfo Info; 2177 // Add elements to structure type. 2178 DINodeArray Elements = Ty->getElements(); 2179 for (auto *Element : Elements) { 2180 // We assume that the frontend provides all members in source declaration 2181 // order, which is what MSVC does. 2182 if (!Element) 2183 continue; 2184 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2185 Info.Methods[SP->getRawName()].push_back(SP); 2186 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2187 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2188 collectMemberInfo(Info, DDTy); 2189 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2190 Info.Inheritance.push_back(DDTy); 2191 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2192 DDTy->getName() == "__vtbl_ptr_type") { 2193 Info.VShapeTI = getTypeIndex(DDTy); 2194 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2195 Info.NestedTypes.push_back(DDTy); 2196 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2197 // Ignore friend members. It appears that MSVC emitted info about 2198 // friends in the past, but modern versions do not. 2199 } 2200 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2201 Info.NestedTypes.push_back(Composite); 2202 } 2203 // Skip other unrecognized kinds of elements. 2204 } 2205 return Info; 2206 } 2207 2208 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2209 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2210 // if a complete type should be emitted instead of a forward reference. 2211 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2212 !Ty->isForwardDecl(); 2213 } 2214 2215 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2216 // Emit the complete type for unnamed structs. C++ classes with methods 2217 // which have a circular reference back to the class type are expected to 2218 // be named by the front-end and should not be "unnamed". C unnamed 2219 // structs should not have circular references. 2220 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2221 // If this unnamed complete type is already in the process of being defined 2222 // then the description of the type is malformed and cannot be emitted 2223 // into CodeView correctly so report a fatal error. 2224 auto I = CompleteTypeIndices.find(Ty); 2225 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2226 report_fatal_error("cannot debug circular reference to unnamed type"); 2227 return getCompleteTypeIndex(Ty); 2228 } 2229 2230 // First, construct the forward decl. Don't look into Ty to compute the 2231 // forward decl options, since it might not be available in all TUs. 2232 TypeRecordKind Kind = getRecordKind(Ty); 2233 ClassOptions CO = 2234 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2235 std::string FullName = getFullyQualifiedName(Ty); 2236 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2237 FullName, Ty->getIdentifier()); 2238 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2239 if (!Ty->isForwardDecl()) 2240 DeferredCompleteTypes.push_back(Ty); 2241 return FwdDeclTI; 2242 } 2243 2244 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2245 // Construct the field list and complete type record. 2246 TypeRecordKind Kind = getRecordKind(Ty); 2247 ClassOptions CO = getCommonClassOptions(Ty); 2248 TypeIndex FieldTI; 2249 TypeIndex VShapeTI; 2250 unsigned FieldCount; 2251 bool ContainsNestedClass; 2252 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2253 lowerRecordFieldList(Ty); 2254 2255 if (ContainsNestedClass) 2256 CO |= ClassOptions::ContainsNestedClass; 2257 2258 // MSVC appears to set this flag by searching any destructor or method with 2259 // FunctionOptions::Constructor among the emitted members. Clang AST has all 2260 // the members, however special member functions are not yet emitted into 2261 // debug information. For now checking a class's non-triviality seems enough. 2262 // FIXME: not true for a nested unnamed struct. 2263 if (isNonTrivial(Ty)) 2264 CO |= ClassOptions::HasConstructorOrDestructor; 2265 2266 std::string FullName = getFullyQualifiedName(Ty); 2267 2268 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2269 2270 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2271 SizeInBytes, FullName, Ty->getIdentifier()); 2272 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2273 2274 addUDTSrcLine(Ty, ClassTI); 2275 2276 addToUDTs(Ty); 2277 2278 return ClassTI; 2279 } 2280 2281 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2282 // Emit the complete type for unnamed unions. 2283 if (shouldAlwaysEmitCompleteClassType(Ty)) 2284 return getCompleteTypeIndex(Ty); 2285 2286 ClassOptions CO = 2287 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2288 std::string FullName = getFullyQualifiedName(Ty); 2289 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2290 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2291 if (!Ty->isForwardDecl()) 2292 DeferredCompleteTypes.push_back(Ty); 2293 return FwdDeclTI; 2294 } 2295 2296 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2297 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2298 TypeIndex FieldTI; 2299 unsigned FieldCount; 2300 bool ContainsNestedClass; 2301 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2302 lowerRecordFieldList(Ty); 2303 2304 if (ContainsNestedClass) 2305 CO |= ClassOptions::ContainsNestedClass; 2306 2307 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2308 std::string FullName = getFullyQualifiedName(Ty); 2309 2310 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2311 Ty->getIdentifier()); 2312 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2313 2314 addUDTSrcLine(Ty, UnionTI); 2315 2316 addToUDTs(Ty); 2317 2318 return UnionTI; 2319 } 2320 2321 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2322 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2323 // Manually count members. MSVC appears to count everything that generates a 2324 // field list record. Each individual overload in a method overload group 2325 // contributes to this count, even though the overload group is a single field 2326 // list record. 2327 unsigned MemberCount = 0; 2328 ClassInfo Info = collectClassInfo(Ty); 2329 ContinuationRecordBuilder ContinuationBuilder; 2330 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2331 2332 // Create base classes. 2333 for (const DIDerivedType *I : Info.Inheritance) { 2334 if (I->getFlags() & DINode::FlagVirtual) { 2335 // Virtual base. 2336 unsigned VBPtrOffset = I->getVBPtrOffset(); 2337 // FIXME: Despite the accessor name, the offset is really in bytes. 2338 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2339 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2340 ? TypeRecordKind::IndirectVirtualBaseClass 2341 : TypeRecordKind::VirtualBaseClass; 2342 VirtualBaseClassRecord VBCR( 2343 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2344 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2345 VBTableIndex); 2346 2347 ContinuationBuilder.writeMemberType(VBCR); 2348 MemberCount++; 2349 } else { 2350 assert(I->getOffsetInBits() % 8 == 0 && 2351 "bases must be on byte boundaries"); 2352 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2353 getTypeIndex(I->getBaseType()), 2354 I->getOffsetInBits() / 8); 2355 ContinuationBuilder.writeMemberType(BCR); 2356 MemberCount++; 2357 } 2358 } 2359 2360 // Create members. 2361 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2362 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2363 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2364 StringRef MemberName = Member->getName(); 2365 MemberAccess Access = 2366 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2367 2368 if (Member->isStaticMember()) { 2369 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2370 ContinuationBuilder.writeMemberType(SDMR); 2371 MemberCount++; 2372 continue; 2373 } 2374 2375 // Virtual function pointer member. 2376 if ((Member->getFlags() & DINode::FlagArtificial) && 2377 Member->getName().startswith("_vptr$")) { 2378 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2379 ContinuationBuilder.writeMemberType(VFPR); 2380 MemberCount++; 2381 continue; 2382 } 2383 2384 // Data member. 2385 uint64_t MemberOffsetInBits = 2386 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2387 if (Member->isBitField()) { 2388 uint64_t StartBitOffset = MemberOffsetInBits; 2389 if (const auto *CI = 2390 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2391 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2392 } 2393 StartBitOffset -= MemberOffsetInBits; 2394 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2395 StartBitOffset); 2396 MemberBaseType = TypeTable.writeLeafType(BFR); 2397 } 2398 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2399 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2400 MemberName); 2401 ContinuationBuilder.writeMemberType(DMR); 2402 MemberCount++; 2403 } 2404 2405 // Create methods 2406 for (auto &MethodItr : Info.Methods) { 2407 StringRef Name = MethodItr.first->getString(); 2408 2409 std::vector<OneMethodRecord> Methods; 2410 for (const DISubprogram *SP : MethodItr.second) { 2411 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2412 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2413 2414 unsigned VFTableOffset = -1; 2415 if (Introduced) 2416 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2417 2418 Methods.push_back(OneMethodRecord( 2419 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2420 translateMethodKindFlags(SP, Introduced), 2421 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2422 MemberCount++; 2423 } 2424 assert(!Methods.empty() && "Empty methods map entry"); 2425 if (Methods.size() == 1) 2426 ContinuationBuilder.writeMemberType(Methods[0]); 2427 else { 2428 // FIXME: Make this use its own ContinuationBuilder so that 2429 // MethodOverloadList can be split correctly. 2430 MethodOverloadListRecord MOLR(Methods); 2431 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2432 2433 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2434 ContinuationBuilder.writeMemberType(OMR); 2435 } 2436 } 2437 2438 // Create nested classes. 2439 for (const DIType *Nested : Info.NestedTypes) { 2440 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName()); 2441 ContinuationBuilder.writeMemberType(R); 2442 MemberCount++; 2443 } 2444 2445 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2446 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2447 !Info.NestedTypes.empty()); 2448 } 2449 2450 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2451 if (!VBPType.getIndex()) { 2452 // Make a 'const int *' type. 2453 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2454 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2455 2456 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2457 : PointerKind::Near32; 2458 PointerMode PM = PointerMode::Pointer; 2459 PointerOptions PO = PointerOptions::None; 2460 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2461 VBPType = TypeTable.writeLeafType(PR); 2462 } 2463 2464 return VBPType; 2465 } 2466 2467 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) { 2468 // The null DIType is the void type. Don't try to hash it. 2469 if (!Ty) 2470 return TypeIndex::Void(); 2471 2472 // Check if we've already translated this type. Don't try to do a 2473 // get-or-create style insertion that caches the hash lookup across the 2474 // lowerType call. It will update the TypeIndices map. 2475 auto I = TypeIndices.find({Ty, ClassTy}); 2476 if (I != TypeIndices.end()) 2477 return I->second; 2478 2479 TypeLoweringScope S(*this); 2480 TypeIndex TI = lowerType(Ty, ClassTy); 2481 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2482 } 2483 2484 codeview::TypeIndex 2485 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2486 const DISubroutineType *SubroutineTy) { 2487 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2488 "this type must be a pointer type"); 2489 2490 PointerOptions Options = PointerOptions::None; 2491 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2492 Options = PointerOptions::LValueRefThisPointer; 2493 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2494 Options = PointerOptions::RValueRefThisPointer; 2495 2496 // Check if we've already translated this type. If there is no ref qualifier 2497 // on the function then we look up this pointer type with no associated class 2498 // so that the TypeIndex for the this pointer can be shared with the type 2499 // index for other pointers to this class type. If there is a ref qualifier 2500 // then we lookup the pointer using the subroutine as the parent type. 2501 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2502 if (I != TypeIndices.end()) 2503 return I->second; 2504 2505 TypeLoweringScope S(*this); 2506 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2507 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2508 } 2509 2510 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) { 2511 PointerRecord PR(getTypeIndex(Ty), 2512 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2513 : PointerKind::Near32, 2514 PointerMode::LValueReference, PointerOptions::None, 2515 Ty->getSizeInBits() / 8); 2516 return TypeTable.writeLeafType(PR); 2517 } 2518 2519 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) { 2520 // The null DIType is the void type. Don't try to hash it. 2521 if (!Ty) 2522 return TypeIndex::Void(); 2523 2524 // Look through typedefs when getting the complete type index. Call 2525 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2526 // emitted only once. 2527 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2528 (void)getTypeIndex(Ty); 2529 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2530 Ty = cast<DIDerivedType>(Ty)->getBaseType(); 2531 2532 // If this is a non-record type, the complete type index is the same as the 2533 // normal type index. Just call getTypeIndex. 2534 switch (Ty->getTag()) { 2535 case dwarf::DW_TAG_class_type: 2536 case dwarf::DW_TAG_structure_type: 2537 case dwarf::DW_TAG_union_type: 2538 break; 2539 default: 2540 return getTypeIndex(Ty); 2541 } 2542 2543 const auto *CTy = cast<DICompositeType>(Ty); 2544 2545 TypeLoweringScope S(*this); 2546 2547 // Make sure the forward declaration is emitted first. It's unclear if this 2548 // is necessary, but MSVC does it, and we should follow suit until we can show 2549 // otherwise. 2550 // We only emit a forward declaration for named types. 2551 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2552 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2553 2554 // Just use the forward decl if we don't have complete type info. This 2555 // might happen if the frontend is using modules and expects the complete 2556 // definition to be emitted elsewhere. 2557 if (CTy->isForwardDecl()) 2558 return FwdDeclTI; 2559 } 2560 2561 // Check if we've already translated the complete record type. 2562 // Insert the type with a null TypeIndex to signify that the type is currently 2563 // being lowered. 2564 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2565 if (!InsertResult.second) 2566 return InsertResult.first->second; 2567 2568 TypeIndex TI; 2569 switch (CTy->getTag()) { 2570 case dwarf::DW_TAG_class_type: 2571 case dwarf::DW_TAG_structure_type: 2572 TI = lowerCompleteTypeClass(CTy); 2573 break; 2574 case dwarf::DW_TAG_union_type: 2575 TI = lowerCompleteTypeUnion(CTy); 2576 break; 2577 default: 2578 llvm_unreachable("not a record"); 2579 } 2580 2581 // Update the type index associated with this CompositeType. This cannot 2582 // use the 'InsertResult' iterator above because it is potentially 2583 // invalidated by map insertions which can occur while lowering the class 2584 // type above. 2585 CompleteTypeIndices[CTy] = TI; 2586 return TI; 2587 } 2588 2589 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2590 /// and do this until fixpoint, as each complete record type typically 2591 /// references 2592 /// many other record types. 2593 void CodeViewDebug::emitDeferredCompleteTypes() { 2594 SmallVector<const DICompositeType *, 4> TypesToEmit; 2595 while (!DeferredCompleteTypes.empty()) { 2596 std::swap(DeferredCompleteTypes, TypesToEmit); 2597 for (const DICompositeType *RecordTy : TypesToEmit) 2598 getCompleteTypeIndex(RecordTy); 2599 TypesToEmit.clear(); 2600 } 2601 } 2602 2603 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2604 ArrayRef<LocalVariable> Locals) { 2605 // Get the sorted list of parameters and emit them first. 2606 SmallVector<const LocalVariable *, 6> Params; 2607 for (const LocalVariable &L : Locals) 2608 if (L.DIVar->isParameter()) 2609 Params.push_back(&L); 2610 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2611 return L->DIVar->getArg() < R->DIVar->getArg(); 2612 }); 2613 for (const LocalVariable *L : Params) 2614 emitLocalVariable(FI, *L); 2615 2616 // Next emit all non-parameters in the order that we found them. 2617 for (const LocalVariable &L : Locals) 2618 if (!L.DIVar->isParameter()) 2619 emitLocalVariable(FI, L); 2620 } 2621 2622 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2623 const LocalVariable &Var) { 2624 // LocalSym record, see SymbolRecord.h for more info. 2625 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2626 2627 LocalSymFlags Flags = LocalSymFlags::None; 2628 if (Var.DIVar->isParameter()) 2629 Flags |= LocalSymFlags::IsParameter; 2630 if (Var.DefRanges.empty()) 2631 Flags |= LocalSymFlags::IsOptimizedOut; 2632 2633 OS.AddComment("TypeIndex"); 2634 TypeIndex TI = Var.UseReferenceType 2635 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2636 : getCompleteTypeIndex(Var.DIVar->getType()); 2637 OS.emitInt32(TI.getIndex()); 2638 OS.AddComment("Flags"); 2639 OS.emitInt16(static_cast<uint16_t>(Flags)); 2640 // Truncate the name so we won't overflow the record length field. 2641 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2642 endSymbolRecord(LocalEnd); 2643 2644 // Calculate the on disk prefix of the appropriate def range record. The 2645 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2646 // should be big enough to hold all forms without memory allocation. 2647 SmallString<20> BytePrefix; 2648 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2649 BytePrefix.clear(); 2650 if (DefRange.InMemory) { 2651 int Offset = DefRange.DataOffset; 2652 unsigned Reg = DefRange.CVRegister; 2653 2654 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2655 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2656 // instead. In frames without stack realignment, $T0 will be the CFA. 2657 if (RegisterId(Reg) == RegisterId::ESP) { 2658 Reg = unsigned(RegisterId::VFRAME); 2659 Offset += FI.OffsetAdjustment; 2660 } 2661 2662 // If we can use the chosen frame pointer for the frame and this isn't a 2663 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2664 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2665 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2666 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2667 (bool(Flags & LocalSymFlags::IsParameter) 2668 ? (EncFP == FI.EncodedParamFramePtrReg) 2669 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2670 DefRangeFramePointerRelHeader DRHdr; 2671 DRHdr.Offset = Offset; 2672 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2673 } else { 2674 uint16_t RegRelFlags = 0; 2675 if (DefRange.IsSubfield) { 2676 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2677 (DefRange.StructOffset 2678 << DefRangeRegisterRelSym::OffsetInParentShift); 2679 } 2680 DefRangeRegisterRelHeader DRHdr; 2681 DRHdr.Register = Reg; 2682 DRHdr.Flags = RegRelFlags; 2683 DRHdr.BasePointerOffset = Offset; 2684 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2685 } 2686 } else { 2687 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2688 if (DefRange.IsSubfield) { 2689 DefRangeSubfieldRegisterHeader DRHdr; 2690 DRHdr.Register = DefRange.CVRegister; 2691 DRHdr.MayHaveNoName = 0; 2692 DRHdr.OffsetInParent = DefRange.StructOffset; 2693 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2694 } else { 2695 DefRangeRegisterHeader DRHdr; 2696 DRHdr.Register = DefRange.CVRegister; 2697 DRHdr.MayHaveNoName = 0; 2698 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr); 2699 } 2700 } 2701 } 2702 } 2703 2704 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2705 const FunctionInfo& FI) { 2706 for (LexicalBlock *Block : Blocks) 2707 emitLexicalBlock(*Block, FI); 2708 } 2709 2710 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2711 /// lexical block scope. 2712 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2713 const FunctionInfo& FI) { 2714 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2715 OS.AddComment("PtrParent"); 2716 OS.emitInt32(0); // PtrParent 2717 OS.AddComment("PtrEnd"); 2718 OS.emitInt32(0); // PtrEnd 2719 OS.AddComment("Code size"); 2720 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2721 OS.AddComment("Function section relative address"); 2722 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2723 OS.AddComment("Function section index"); 2724 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2725 OS.AddComment("Lexical block name"); 2726 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2727 endSymbolRecord(RecordEnd); 2728 2729 // Emit variables local to this lexical block. 2730 emitLocalVariableList(FI, Block.Locals); 2731 emitGlobalVariableList(Block.Globals); 2732 2733 // Emit lexical blocks contained within this block. 2734 emitLexicalBlockList(Block.Children, FI); 2735 2736 // Close the lexical block scope. 2737 emitEndSymbolRecord(SymbolKind::S_END); 2738 } 2739 2740 /// Convenience routine for collecting lexical block information for a list 2741 /// of lexical scopes. 2742 void CodeViewDebug::collectLexicalBlockInfo( 2743 SmallVectorImpl<LexicalScope *> &Scopes, 2744 SmallVectorImpl<LexicalBlock *> &Blocks, 2745 SmallVectorImpl<LocalVariable> &Locals, 2746 SmallVectorImpl<CVGlobalVariable> &Globals) { 2747 for (LexicalScope *Scope : Scopes) 2748 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2749 } 2750 2751 /// Populate the lexical blocks and local variable lists of the parent with 2752 /// information about the specified lexical scope. 2753 void CodeViewDebug::collectLexicalBlockInfo( 2754 LexicalScope &Scope, 2755 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2756 SmallVectorImpl<LocalVariable> &ParentLocals, 2757 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2758 if (Scope.isAbstractScope()) 2759 return; 2760 2761 // Gather information about the lexical scope including local variables, 2762 // global variables, and address ranges. 2763 bool IgnoreScope = false; 2764 auto LI = ScopeVariables.find(&Scope); 2765 SmallVectorImpl<LocalVariable> *Locals = 2766 LI != ScopeVariables.end() ? &LI->second : nullptr; 2767 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2768 SmallVectorImpl<CVGlobalVariable> *Globals = 2769 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2770 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2771 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2772 2773 // Ignore lexical scopes which do not contain variables. 2774 if (!Locals && !Globals) 2775 IgnoreScope = true; 2776 2777 // Ignore lexical scopes which are not lexical blocks. 2778 if (!DILB) 2779 IgnoreScope = true; 2780 2781 // Ignore scopes which have too many address ranges to represent in the 2782 // current CodeView format or do not have a valid address range. 2783 // 2784 // For lexical scopes with multiple address ranges you may be tempted to 2785 // construct a single range covering every instruction where the block is 2786 // live and everything in between. Unfortunately, Visual Studio only 2787 // displays variables from the first matching lexical block scope. If the 2788 // first lexical block contains exception handling code or cold code which 2789 // is moved to the bottom of the routine creating a single range covering 2790 // nearly the entire routine, then it will hide all other lexical blocks 2791 // and the variables they contain. 2792 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2793 IgnoreScope = true; 2794 2795 if (IgnoreScope) { 2796 // This scope can be safely ignored and eliminating it will reduce the 2797 // size of the debug information. Be sure to collect any variable and scope 2798 // information from the this scope or any of its children and collapse them 2799 // into the parent scope. 2800 if (Locals) 2801 ParentLocals.append(Locals->begin(), Locals->end()); 2802 if (Globals) 2803 ParentGlobals.append(Globals->begin(), Globals->end()); 2804 collectLexicalBlockInfo(Scope.getChildren(), 2805 ParentBlocks, 2806 ParentLocals, 2807 ParentGlobals); 2808 return; 2809 } 2810 2811 // Create a new CodeView lexical block for this lexical scope. If we've 2812 // seen this DILexicalBlock before then the scope tree is malformed and 2813 // we can handle this gracefully by not processing it a second time. 2814 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2815 if (!BlockInsertion.second) 2816 return; 2817 2818 // Create a lexical block containing the variables and collect the the 2819 // lexical block information for the children. 2820 const InsnRange &Range = Ranges.front(); 2821 assert(Range.first && Range.second); 2822 LexicalBlock &Block = BlockInsertion.first->second; 2823 Block.Begin = getLabelBeforeInsn(Range.first); 2824 Block.End = getLabelAfterInsn(Range.second); 2825 assert(Block.Begin && "missing label for scope begin"); 2826 assert(Block.End && "missing label for scope end"); 2827 Block.Name = DILB->getName(); 2828 if (Locals) 2829 Block.Locals = std::move(*Locals); 2830 if (Globals) 2831 Block.Globals = std::move(*Globals); 2832 ParentBlocks.push_back(&Block); 2833 collectLexicalBlockInfo(Scope.getChildren(), 2834 Block.Children, 2835 Block.Locals, 2836 Block.Globals); 2837 } 2838 2839 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2840 const Function &GV = MF->getFunction(); 2841 assert(FnDebugInfo.count(&GV)); 2842 assert(CurFn == FnDebugInfo[&GV].get()); 2843 2844 collectVariableInfo(GV.getSubprogram()); 2845 2846 // Build the lexical block structure to emit for this routine. 2847 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2848 collectLexicalBlockInfo(*CFS, 2849 CurFn->ChildBlocks, 2850 CurFn->Locals, 2851 CurFn->Globals); 2852 2853 // Clear the scope and variable information from the map which will not be 2854 // valid after we have finished processing this routine. This also prepares 2855 // the map for the subsequent routine. 2856 ScopeVariables.clear(); 2857 2858 // Don't emit anything if we don't have any line tables. 2859 // Thunks are compiler-generated and probably won't have source correlation. 2860 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2861 FnDebugInfo.erase(&GV); 2862 CurFn = nullptr; 2863 return; 2864 } 2865 2866 // Find heap alloc sites and add to list. 2867 for (const auto &MBB : *MF) { 2868 for (const auto &MI : MBB) { 2869 if (MDNode *MD = MI.getHeapAllocMarker()) { 2870 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI), 2871 getLabelAfterInsn(&MI), 2872 dyn_cast<DIType>(MD))); 2873 } 2874 } 2875 } 2876 2877 CurFn->Annotations = MF->getCodeViewAnnotations(); 2878 2879 CurFn->End = Asm->getFunctionEnd(); 2880 2881 CurFn = nullptr; 2882 } 2883 2884 // Usable locations are valid with non-zero line numbers. A line number of zero 2885 // corresponds to optimized code that doesn't have a distinct source location. 2886 // In this case, we try to use the previous or next source location depending on 2887 // the context. 2888 static bool isUsableDebugLoc(DebugLoc DL) { 2889 return DL && DL.getLine() != 0; 2890 } 2891 2892 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2893 DebugHandlerBase::beginInstruction(MI); 2894 2895 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2896 if (!Asm || !CurFn || MI->isDebugInstr() || 2897 MI->getFlag(MachineInstr::FrameSetup)) 2898 return; 2899 2900 // If the first instruction of a new MBB has no location, find the first 2901 // instruction with a location and use that. 2902 DebugLoc DL = MI->getDebugLoc(); 2903 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) { 2904 for (const auto &NextMI : *MI->getParent()) { 2905 if (NextMI.isDebugInstr()) 2906 continue; 2907 DL = NextMI.getDebugLoc(); 2908 if (isUsableDebugLoc(DL)) 2909 break; 2910 } 2911 // FIXME: Handle the case where the BB has no valid locations. This would 2912 // probably require doing a real dataflow analysis. 2913 } 2914 PrevInstBB = MI->getParent(); 2915 2916 // If we still don't have a debug location, don't record a location. 2917 if (!isUsableDebugLoc(DL)) 2918 return; 2919 2920 maybeRecordLocation(DL, Asm->MF); 2921 } 2922 2923 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2924 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2925 *EndLabel = MMI->getContext().createTempSymbol(); 2926 OS.emitInt32(unsigned(Kind)); 2927 OS.AddComment("Subsection size"); 2928 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2929 OS.emitLabel(BeginLabel); 2930 return EndLabel; 2931 } 2932 2933 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2934 OS.emitLabel(EndLabel); 2935 // Every subsection must be aligned to a 4-byte boundary. 2936 OS.emitValueToAlignment(4); 2937 } 2938 2939 static StringRef getSymbolName(SymbolKind SymKind) { 2940 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2941 if (EE.Value == SymKind) 2942 return EE.Name; 2943 return ""; 2944 } 2945 2946 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2947 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2948 *EndLabel = MMI->getContext().createTempSymbol(); 2949 OS.AddComment("Record length"); 2950 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2951 OS.emitLabel(BeginLabel); 2952 if (OS.isVerboseAsm()) 2953 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2954 OS.emitInt16(unsigned(SymKind)); 2955 return EndLabel; 2956 } 2957 2958 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2959 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2960 // an extra copy of every symbol record in LLD. This increases object file 2961 // size by less than 1% in the clang build, and is compatible with the Visual 2962 // C++ linker. 2963 OS.emitValueToAlignment(4); 2964 OS.emitLabel(SymEnd); 2965 } 2966 2967 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2968 OS.AddComment("Record length"); 2969 OS.emitInt16(2); 2970 if (OS.isVerboseAsm()) 2971 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2972 OS.emitInt16(uint16_t(EndKind)); // Record Kind 2973 } 2974 2975 void CodeViewDebug::emitDebugInfoForUDTs( 2976 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2977 for (const auto &UDT : UDTs) { 2978 const DIType *T = UDT.second; 2979 assert(shouldEmitUdt(T)); 2980 2981 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2982 OS.AddComment("Type"); 2983 OS.emitInt32(getCompleteTypeIndex(T).getIndex()); 2984 emitNullTerminatedSymbolName(OS, UDT.first); 2985 endSymbolRecord(UDTRecordEnd); 2986 } 2987 } 2988 2989 void CodeViewDebug::collectGlobalVariableInfo() { 2990 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2991 GlobalMap; 2992 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2993 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2994 GV.getDebugInfo(GVEs); 2995 for (const auto *GVE : GVEs) 2996 GlobalMap[GVE] = &GV; 2997 } 2998 2999 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3000 for (const MDNode *Node : CUs->operands()) { 3001 const auto *CU = cast<DICompileUnit>(Node); 3002 for (const auto *GVE : CU->getGlobalVariables()) { 3003 const DIGlobalVariable *DIGV = GVE->getVariable(); 3004 const DIExpression *DIE = GVE->getExpression(); 3005 3006 // Emit constant global variables in a global symbol section. 3007 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) { 3008 CVGlobalVariable CVGV = {DIGV, DIE}; 3009 GlobalVariables.emplace_back(std::move(CVGV)); 3010 } 3011 3012 const auto *GV = GlobalMap.lookup(GVE); 3013 if (!GV || GV->isDeclarationForLinker()) 3014 continue; 3015 3016 DIScope *Scope = DIGV->getScope(); 3017 SmallVector<CVGlobalVariable, 1> *VariableList; 3018 if (Scope && isa<DILocalScope>(Scope)) { 3019 // Locate a global variable list for this scope, creating one if 3020 // necessary. 3021 auto Insertion = ScopeGlobals.insert( 3022 {Scope, std::unique_ptr<GlobalVariableList>()}); 3023 if (Insertion.second) 3024 Insertion.first->second = std::make_unique<GlobalVariableList>(); 3025 VariableList = Insertion.first->second.get(); 3026 } else if (GV->hasComdat()) 3027 // Emit this global variable into a COMDAT section. 3028 VariableList = &ComdatVariables; 3029 else 3030 // Emit this global variable in a single global symbol section. 3031 VariableList = &GlobalVariables; 3032 CVGlobalVariable CVGV = {DIGV, GV}; 3033 VariableList->emplace_back(std::move(CVGV)); 3034 } 3035 } 3036 } 3037 3038 void CodeViewDebug::emitDebugInfoForGlobals() { 3039 // First, emit all globals that are not in a comdat in a single symbol 3040 // substream. MSVC doesn't like it if the substream is empty, so only open 3041 // it if we have at least one global to emit. 3042 switchToDebugSectionForSymbol(nullptr); 3043 if (!GlobalVariables.empty()) { 3044 OS.AddComment("Symbol subsection for globals"); 3045 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3046 emitGlobalVariableList(GlobalVariables); 3047 endCVSubsection(EndLabel); 3048 } 3049 3050 // Second, emit each global that is in a comdat into its own .debug$S 3051 // section along with its own symbol substream. 3052 for (const CVGlobalVariable &CVGV : ComdatVariables) { 3053 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>(); 3054 MCSymbol *GVSym = Asm->getSymbol(GV); 3055 OS.AddComment("Symbol subsection for " + 3056 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 3057 switchToDebugSectionForSymbol(GVSym); 3058 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 3059 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3060 emitDebugInfoForGlobal(CVGV); 3061 endCVSubsection(EndLabel); 3062 } 3063 } 3064 3065 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 3066 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 3067 for (const MDNode *Node : CUs->operands()) { 3068 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 3069 if (DIType *RT = dyn_cast<DIType>(Ty)) { 3070 getTypeIndex(RT); 3071 // FIXME: Add to global/local DTU list. 3072 } 3073 } 3074 } 3075 } 3076 3077 // Emit each global variable in the specified array. 3078 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 3079 for (const CVGlobalVariable &CVGV : Globals) { 3080 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 3081 emitDebugInfoForGlobal(CVGV); 3082 } 3083 } 3084 3085 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) { 3086 const DIGlobalVariable *DIGV = CVGV.DIGV; 3087 if (const GlobalVariable *GV = 3088 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) { 3089 // DataSym record, see SymbolRecord.h for more info. Thread local data 3090 // happens to have the same format as global data. 3091 MCSymbol *GVSym = Asm->getSymbol(GV); 3092 SymbolKind DataSym = GV->isThreadLocal() 3093 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 3094 : SymbolKind::S_GTHREAD32) 3095 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 3096 : SymbolKind::S_GDATA32); 3097 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3098 OS.AddComment("Type"); 3099 OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex()); 3100 OS.AddComment("DataOffset"); 3101 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3102 OS.AddComment("Segment"); 3103 OS.EmitCOFFSectionIndex(GVSym); 3104 OS.AddComment("Name"); 3105 const unsigned LengthOfDataRecord = 12; 3106 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); 3107 endSymbolRecord(DataEnd); 3108 } else { 3109 // FIXME: Currently this only emits the global variables in the IR metadata. 3110 // This should also emit enums and static data members. 3111 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>(); 3112 assert(DIE->isConstant() && 3113 "Global constant variables must contain a constant expression."); 3114 uint64_t Val = DIE->getElement(1); 3115 3116 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT); 3117 OS.AddComment("Type"); 3118 OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex()); 3119 OS.AddComment("Value"); 3120 3121 // Encoded integers shouldn't need more than 10 bytes. 3122 uint8_t data[10]; 3123 BinaryStreamWriter Writer(data, llvm::support::endianness::little); 3124 CodeViewRecordIO IO(Writer); 3125 cantFail(IO.mapEncodedInteger(Val)); 3126 StringRef SRef((char *)data, Writer.getOffset()); 3127 OS.emitBinaryData(SRef); 3128 3129 OS.AddComment("Name"); 3130 const DIScope *Scope = DIGV->getScope(); 3131 // For static data members, get the scope from the declaration. 3132 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>( 3133 DIGV->getRawStaticDataMemberDeclaration())) 3134 Scope = MemberDecl->getScope(); 3135 emitNullTerminatedSymbolName(OS, 3136 getFullyQualifiedName(Scope, DIGV->getName())); 3137 endSymbolRecord(SConstantEnd); 3138 } 3139 } 3140