1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeDumper.h"
17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
18 #include "llvm/DebugInfo/CodeView/CodeView.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDatabase.h"
22 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
23 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
24 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCSectionCOFF.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/BinaryByteStream.h"
32 #include "llvm/Support/BinaryStreamReader.h"
33 #include "llvm/Support/COFF.h"
34 #include "llvm/Support/ScopedPrinter.h"
35 #include "llvm/Target/TargetFrameLowering.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 
39 using namespace llvm;
40 using namespace llvm::codeview;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
44       TypeTable(Allocator), CurFn(nullptr) {
45   // If module doesn't have named metadata anchors or COFF debug section
46   // is not available, skip any debug info related stuff.
47   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
48       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
49     Asm = nullptr;
50     return;
51   }
52 
53   // Tell MMI that we have debug info.
54   MMI->setDebugInfoAvailability(true);
55 }
56 
57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
58   std::string &Filepath = FileToFilepathMap[File];
59   if (!Filepath.empty())
60     return Filepath;
61 
62   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
63 
64   // Clang emits directory and relative filename info into the IR, but CodeView
65   // operates on full paths.  We could change Clang to emit full paths too, but
66   // that would increase the IR size and probably not needed for other users.
67   // For now, just concatenate and canonicalize the path here.
68   if (Filename.find(':') == 1)
69     Filepath = Filename;
70   else
71     Filepath = (Dir + "\\" + Filename).str();
72 
73   // Canonicalize the path.  We have to do it textually because we may no longer
74   // have access the file in the filesystem.
75   // First, replace all slashes with backslashes.
76   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
77 
78   // Remove all "\.\" with "\".
79   size_t Cursor = 0;
80   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
81     Filepath.erase(Cursor, 2);
82 
83   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
84   // path should be well-formatted, e.g. start with a drive letter, etc.
85   Cursor = 0;
86   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
87     // Something's wrong if the path starts with "\..\", abort.
88     if (Cursor == 0)
89       break;
90 
91     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
92     if (PrevSlash == std::string::npos)
93       // Something's wrong, abort.
94       break;
95 
96     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
97     // The next ".." might be following the one we've just erased.
98     Cursor = PrevSlash;
99   }
100 
101   // Remove all duplicate backslashes.
102   Cursor = 0;
103   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
104     Filepath.erase(Cursor, 1);
105 
106   return Filepath;
107 }
108 
109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
110   unsigned NextId = FileIdMap.size() + 1;
111   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
112   if (Insertion.second) {
113     // We have to compute the full filepath and emit a .cv_file directive.
114     StringRef FullPath = getFullFilepath(F);
115     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
116     (void)Success;
117     assert(Success && ".cv_file directive failed");
118   }
119   return Insertion.first->second;
120 }
121 
122 CodeViewDebug::InlineSite &
123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
124                              const DISubprogram *Inlinee) {
125   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
126   InlineSite *Site = &SiteInsertion.first->second;
127   if (SiteInsertion.second) {
128     unsigned ParentFuncId = CurFn->FuncId;
129     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
130       ParentFuncId =
131           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
132               .SiteFuncId;
133 
134     Site->SiteFuncId = NextFuncId++;
135     OS.EmitCVInlineSiteIdDirective(
136         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
137         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
138     Site->Inlinee = Inlinee;
139     InlinedSubprograms.insert(Inlinee);
140     getFuncIdForSubprogram(Inlinee);
141   }
142   return *Site;
143 }
144 
145 static StringRef getPrettyScopeName(const DIScope *Scope) {
146   StringRef ScopeName = Scope->getName();
147   if (!ScopeName.empty())
148     return ScopeName;
149 
150   switch (Scope->getTag()) {
151   case dwarf::DW_TAG_enumeration_type:
152   case dwarf::DW_TAG_class_type:
153   case dwarf::DW_TAG_structure_type:
154   case dwarf::DW_TAG_union_type:
155     return "<unnamed-tag>";
156   case dwarf::DW_TAG_namespace:
157     return "`anonymous namespace'";
158   }
159 
160   return StringRef();
161 }
162 
163 static const DISubprogram *getQualifiedNameComponents(
164     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
165   const DISubprogram *ClosestSubprogram = nullptr;
166   while (Scope != nullptr) {
167     if (ClosestSubprogram == nullptr)
168       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
169     StringRef ScopeName = getPrettyScopeName(Scope);
170     if (!ScopeName.empty())
171       QualifiedNameComponents.push_back(ScopeName);
172     Scope = Scope->getScope().resolve();
173   }
174   return ClosestSubprogram;
175 }
176 
177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
178                                     StringRef TypeName) {
179   std::string FullyQualifiedName;
180   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
181     FullyQualifiedName.append(QualifiedNameComponent);
182     FullyQualifiedName.append("::");
183   }
184   FullyQualifiedName.append(TypeName);
185   return FullyQualifiedName;
186 }
187 
188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
189   SmallVector<StringRef, 5> QualifiedNameComponents;
190   getQualifiedNameComponents(Scope, QualifiedNameComponents);
191   return getQualifiedName(QualifiedNameComponents, Name);
192 }
193 
194 struct CodeViewDebug::TypeLoweringScope {
195   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
196   ~TypeLoweringScope() {
197     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
198     // inner TypeLoweringScopes don't attempt to emit deferred types.
199     if (CVD.TypeEmissionLevel == 1)
200       CVD.emitDeferredCompleteTypes();
201     --CVD.TypeEmissionLevel;
202   }
203   CodeViewDebug &CVD;
204 };
205 
206 static std::string getFullyQualifiedName(const DIScope *Ty) {
207   const DIScope *Scope = Ty->getScope().resolve();
208   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
209 }
210 
211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
212   // No scope means global scope and that uses the zero index.
213   if (!Scope || isa<DIFile>(Scope))
214     return TypeIndex();
215 
216   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
217 
218   // Check if we've already translated this scope.
219   auto I = TypeIndices.find({Scope, nullptr});
220   if (I != TypeIndices.end())
221     return I->second;
222 
223   // Build the fully qualified name of the scope.
224   std::string ScopeName = getFullyQualifiedName(Scope);
225   StringIdRecord SID(TypeIndex(), ScopeName);
226   auto TI = TypeTable.writeKnownType(SID);
227   return recordTypeIndexForDINode(Scope, TI);
228 }
229 
230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
231   assert(SP);
232 
233   // Check if we've already translated this subprogram.
234   auto I = TypeIndices.find({SP, nullptr});
235   if (I != TypeIndices.end())
236     return I->second;
237 
238   // The display name includes function template arguments. Drop them to match
239   // MSVC.
240   StringRef DisplayName = SP->getName().split('<').first;
241 
242   const DIScope *Scope = SP->getScope().resolve();
243   TypeIndex TI;
244   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
245     // If the scope is a DICompositeType, then this must be a method. Member
246     // function types take some special handling, and require access to the
247     // subprogram.
248     TypeIndex ClassType = getTypeIndex(Class);
249     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
250                                DisplayName);
251     TI = TypeTable.writeKnownType(MFuncId);
252   } else {
253     // Otherwise, this must be a free function.
254     TypeIndex ParentScope = getScopeIndex(Scope);
255     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
256     TI = TypeTable.writeKnownType(FuncId);
257   }
258 
259   return recordTypeIndexForDINode(SP, TI);
260 }
261 
262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
263                                                const DICompositeType *Class) {
264   // Always use the method declaration as the key for the function type. The
265   // method declaration contains the this adjustment.
266   if (SP->getDeclaration())
267     SP = SP->getDeclaration();
268   assert(!SP->getDeclaration() && "should use declaration as key");
269 
270   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
271   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
272   auto I = TypeIndices.find({SP, Class});
273   if (I != TypeIndices.end())
274     return I->second;
275 
276   // Make sure complete type info for the class is emitted *after* the member
277   // function type, as the complete class type is likely to reference this
278   // member function type.
279   TypeLoweringScope S(*this);
280   TypeIndex TI =
281       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
282   return recordTypeIndexForDINode(SP, TI, Class);
283 }
284 
285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
286                                                   TypeIndex TI,
287                                                   const DIType *ClassTy) {
288   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
289   (void)InsertResult;
290   assert(InsertResult.second && "DINode was already assigned a type index");
291   return TI;
292 }
293 
294 unsigned CodeViewDebug::getPointerSizeInBytes() {
295   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
296 }
297 
298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
299                                         const DILocation *InlinedAt) {
300   if (InlinedAt) {
301     // This variable was inlined. Associate it with the InlineSite.
302     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
303     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
304     Site.InlinedLocals.emplace_back(Var);
305   } else {
306     // This variable goes in the main ProcSym.
307     CurFn->Locals.emplace_back(Var);
308   }
309 }
310 
311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
312                                const DILocation *Loc) {
313   auto B = Locs.begin(), E = Locs.end();
314   if (std::find(B, E, Loc) == E)
315     Locs.push_back(Loc);
316 }
317 
318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
319                                         const MachineFunction *MF) {
320   // Skip this instruction if it has the same location as the previous one.
321   if (DL == CurFn->LastLoc)
322     return;
323 
324   const DIScope *Scope = DL.get()->getScope();
325   if (!Scope)
326     return;
327 
328   // Skip this line if it is longer than the maximum we can record.
329   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
330   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
331       LI.isNeverStepInto())
332     return;
333 
334   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
335   if (CI.getStartColumn() != DL.getCol())
336     return;
337 
338   if (!CurFn->HaveLineInfo)
339     CurFn->HaveLineInfo = true;
340   unsigned FileId = 0;
341   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
342     FileId = CurFn->LastFileId;
343   else
344     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
345   CurFn->LastLoc = DL;
346 
347   unsigned FuncId = CurFn->FuncId;
348   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
349     const DILocation *Loc = DL.get();
350 
351     // If this location was actually inlined from somewhere else, give it the ID
352     // of the inline call site.
353     FuncId =
354         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
355 
356     // Ensure we have links in the tree of inline call sites.
357     bool FirstLoc = true;
358     while ((SiteLoc = Loc->getInlinedAt())) {
359       InlineSite &Site =
360           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
361       if (!FirstLoc)
362         addLocIfNotPresent(Site.ChildSites, Loc);
363       FirstLoc = false;
364       Loc = SiteLoc;
365     }
366     addLocIfNotPresent(CurFn->ChildSites, Loc);
367   }
368 
369   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
370                         /*PrologueEnd=*/false, /*IsStmt=*/false,
371                         DL->getFilename(), SMLoc());
372 }
373 
374 void CodeViewDebug::emitCodeViewMagicVersion() {
375   OS.EmitValueToAlignment(4);
376   OS.AddComment("Debug section magic");
377   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
378 }
379 
380 void CodeViewDebug::endModule() {
381   if (!Asm || !MMI->hasDebugInfo())
382     return;
383 
384   assert(Asm != nullptr);
385 
386   // The COFF .debug$S section consists of several subsections, each starting
387   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
388   // of the payload followed by the payload itself.  The subsections are 4-byte
389   // aligned.
390 
391   // Use the generic .debug$S section, and make a subsection for all the inlined
392   // subprograms.
393   switchToDebugSectionForSymbol(nullptr);
394 
395   MCSymbol *CompilerInfo = beginCVSubsection(ModuleDebugFragmentKind::Symbols);
396   emitCompilerInformation();
397   endCVSubsection(CompilerInfo);
398 
399   emitInlineeLinesSubsection();
400 
401   // Emit per-function debug information.
402   for (auto &P : FnDebugInfo)
403     if (!P.first->isDeclarationForLinker())
404       emitDebugInfoForFunction(P.first, P.second);
405 
406   // Emit global variable debug information.
407   setCurrentSubprogram(nullptr);
408   emitDebugInfoForGlobals();
409 
410   // Emit retained types.
411   emitDebugInfoForRetainedTypes();
412 
413   // Switch back to the generic .debug$S section after potentially processing
414   // comdat symbol sections.
415   switchToDebugSectionForSymbol(nullptr);
416 
417   // Emit UDT records for any types used by global variables.
418   if (!GlobalUDTs.empty()) {
419     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleDebugFragmentKind::Symbols);
420     emitDebugInfoForUDTs(GlobalUDTs);
421     endCVSubsection(SymbolsEnd);
422   }
423 
424   // This subsection holds a file index to offset in string table table.
425   OS.AddComment("File index to string table offset subsection");
426   OS.EmitCVFileChecksumsDirective();
427 
428   // This subsection holds the string table.
429   OS.AddComment("String table");
430   OS.EmitCVStringTableDirective();
431 
432   // Emit type information last, so that any types we translate while emitting
433   // function info are included.
434   emitTypeInformation();
435 
436   clear();
437 }
438 
439 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
440   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
441   // after a fixed length portion of the record. The fixed length portion should
442   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
443   // overall record size is less than the maximum allowed.
444   unsigned MaxFixedRecordLength = 0xF00;
445   SmallString<32> NullTerminatedString(
446       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
447   NullTerminatedString.push_back('\0');
448   OS.EmitBytes(NullTerminatedString);
449 }
450 
451 void CodeViewDebug::emitTypeInformation() {
452   // Do nothing if we have no debug info or if no non-trivial types were emitted
453   // to TypeTable during codegen.
454   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
455   if (!CU_Nodes)
456     return;
457   if (TypeTable.empty())
458     return;
459 
460   // Start the .debug$T section with 0x4.
461   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
462   emitCodeViewMagicVersion();
463 
464   SmallString<8> CommentPrefix;
465   if (OS.isVerboseAsm()) {
466     CommentPrefix += '\t';
467     CommentPrefix += Asm->MAI->getCommentString();
468     CommentPrefix += ' ';
469   }
470 
471   TypeDatabase TypeDB;
472   CVTypeDumper CVTD(TypeDB);
473   TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) {
474     if (OS.isVerboseAsm()) {
475       // Emit a block comment describing the type record for readability.
476       SmallString<512> CommentBlock;
477       raw_svector_ostream CommentOS(CommentBlock);
478       ScopedPrinter SP(CommentOS);
479       SP.setPrefix(CommentPrefix);
480       TypeDumpVisitor TDV(TypeDB, &SP, false);
481       Error E = CVTD.dump(Record, TDV);
482       if (E) {
483         logAllUnhandledErrors(std::move(E), errs(), "error: ");
484         llvm_unreachable("produced malformed type record");
485       }
486       // emitRawComment will insert its own tab and comment string before
487       // the first line, so strip off our first one. It also prints its own
488       // newline.
489       OS.emitRawComment(
490           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
491     } else {
492 #ifndef NDEBUG
493       // Assert that the type data is valid even if we aren't dumping
494       // comments. The MSVC linker doesn't do much type record validation,
495       // so the first link of an invalid type record can succeed while
496       // subsequent links will fail with LNK1285.
497       BinaryByteStream Stream(Record, llvm::support::little);
498       CVTypeArray Types;
499       BinaryStreamReader Reader(Stream);
500       Error E = Reader.readArray(Types, Reader.getLength());
501       if (!E) {
502         TypeVisitorCallbacks C;
503         E = CVTypeVisitor(C).visitTypeStream(Types);
504       }
505       if (E) {
506         logAllUnhandledErrors(std::move(E), errs(), "error: ");
507         llvm_unreachable("produced malformed type record");
508       }
509 #endif
510     }
511     StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size());
512     OS.EmitBinaryData(S);
513   });
514 }
515 
516 namespace {
517 
518 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
519   switch (DWLang) {
520   case dwarf::DW_LANG_C:
521   case dwarf::DW_LANG_C89:
522   case dwarf::DW_LANG_C99:
523   case dwarf::DW_LANG_C11:
524   case dwarf::DW_LANG_ObjC:
525     return SourceLanguage::C;
526   case dwarf::DW_LANG_C_plus_plus:
527   case dwarf::DW_LANG_C_plus_plus_03:
528   case dwarf::DW_LANG_C_plus_plus_11:
529   case dwarf::DW_LANG_C_plus_plus_14:
530     return SourceLanguage::Cpp;
531   case dwarf::DW_LANG_Fortran77:
532   case dwarf::DW_LANG_Fortran90:
533   case dwarf::DW_LANG_Fortran03:
534   case dwarf::DW_LANG_Fortran08:
535     return SourceLanguage::Fortran;
536   case dwarf::DW_LANG_Pascal83:
537     return SourceLanguage::Pascal;
538   case dwarf::DW_LANG_Cobol74:
539   case dwarf::DW_LANG_Cobol85:
540     return SourceLanguage::Cobol;
541   case dwarf::DW_LANG_Java:
542     return SourceLanguage::Java;
543   default:
544     // There's no CodeView representation for this language, and CV doesn't
545     // have an "unknown" option for the language field, so we'll use MASM,
546     // as it's very low level.
547     return SourceLanguage::Masm;
548   }
549 }
550 
551 struct Version {
552   int Part[4];
553 };
554 
555 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
556 // the version number.
557 static Version parseVersion(StringRef Name) {
558   Version V = {{0}};
559   int N = 0;
560   for (const char C : Name) {
561     if (isdigit(C)) {
562       V.Part[N] *= 10;
563       V.Part[N] += C - '0';
564     } else if (C == '.') {
565       ++N;
566       if (N >= 4)
567         return V;
568     } else if (N > 0)
569       return V;
570   }
571   return V;
572 }
573 
574 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
575   switch (Type) {
576     case Triple::ArchType::x86:
577       return CPUType::Pentium3;
578     case Triple::ArchType::x86_64:
579       return CPUType::X64;
580     case Triple::ArchType::thumb:
581       return CPUType::Thumb;
582     default:
583       report_fatal_error("target architecture doesn't map to a CodeView "
584                          "CPUType");
585   }
586 }
587 
588 }  // anonymous namespace
589 
590 void CodeViewDebug::emitCompilerInformation() {
591   MCContext &Context = MMI->getContext();
592   MCSymbol *CompilerBegin = Context.createTempSymbol(),
593            *CompilerEnd = Context.createTempSymbol();
594   OS.AddComment("Record length");
595   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
596   OS.EmitLabel(CompilerBegin);
597   OS.AddComment("Record kind: S_COMPILE3");
598   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
599   uint32_t Flags = 0;
600 
601   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
602   const MDNode *Node = *CUs->operands().begin();
603   const auto *CU = cast<DICompileUnit>(Node);
604 
605   // The low byte of the flags indicates the source language.
606   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
607   // TODO:  Figure out which other flags need to be set.
608 
609   OS.AddComment("Flags and language");
610   OS.EmitIntValue(Flags, 4);
611 
612   OS.AddComment("CPUType");
613   CPUType CPU =
614       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
615   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
616 
617   StringRef CompilerVersion = CU->getProducer();
618   Version FrontVer = parseVersion(CompilerVersion);
619   OS.AddComment("Frontend version");
620   for (int N = 0; N < 4; ++N)
621     OS.EmitIntValue(FrontVer.Part[N], 2);
622 
623   // Some Microsoft tools, like Binscope, expect a backend version number of at
624   // least 8.something, so we'll coerce the LLVM version into a form that
625   // guarantees it'll be big enough without really lying about the version.
626   int Major = 1000 * LLVM_VERSION_MAJOR +
627               10 * LLVM_VERSION_MINOR +
628               LLVM_VERSION_PATCH;
629   // Clamp it for builds that use unusually large version numbers.
630   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
631   Version BackVer = {{ Major, 0, 0, 0 }};
632   OS.AddComment("Backend version");
633   for (int N = 0; N < 4; ++N)
634     OS.EmitIntValue(BackVer.Part[N], 2);
635 
636   OS.AddComment("Null-terminated compiler version string");
637   emitNullTerminatedSymbolName(OS, CompilerVersion);
638 
639   OS.EmitLabel(CompilerEnd);
640 }
641 
642 void CodeViewDebug::emitInlineeLinesSubsection() {
643   if (InlinedSubprograms.empty())
644     return;
645 
646   OS.AddComment("Inlinee lines subsection");
647   MCSymbol *InlineEnd =
648       beginCVSubsection(ModuleDebugFragmentKind::InlineeLines);
649 
650   // We don't provide any extra file info.
651   // FIXME: Find out if debuggers use this info.
652   OS.AddComment("Inlinee lines signature");
653   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
654 
655   for (const DISubprogram *SP : InlinedSubprograms) {
656     assert(TypeIndices.count({SP, nullptr}));
657     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
658 
659     OS.AddBlankLine();
660     unsigned FileId = maybeRecordFile(SP->getFile());
661     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
662                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
663     OS.AddBlankLine();
664     // The filechecksum table uses 8 byte entries for now, and file ids start at
665     // 1.
666     unsigned FileOffset = (FileId - 1) * 8;
667     OS.AddComment("Type index of inlined function");
668     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
669     OS.AddComment("Offset into filechecksum table");
670     OS.EmitIntValue(FileOffset, 4);
671     OS.AddComment("Starting line number");
672     OS.EmitIntValue(SP->getLine(), 4);
673   }
674 
675   endCVSubsection(InlineEnd);
676 }
677 
678 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
679                                         const DILocation *InlinedAt,
680                                         const InlineSite &Site) {
681   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
682            *InlineEnd = MMI->getContext().createTempSymbol();
683 
684   assert(TypeIndices.count({Site.Inlinee, nullptr}));
685   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
686 
687   // SymbolRecord
688   OS.AddComment("Record length");
689   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
690   OS.EmitLabel(InlineBegin);
691   OS.AddComment("Record kind: S_INLINESITE");
692   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
693 
694   OS.AddComment("PtrParent");
695   OS.EmitIntValue(0, 4);
696   OS.AddComment("PtrEnd");
697   OS.EmitIntValue(0, 4);
698   OS.AddComment("Inlinee type index");
699   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
700 
701   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
702   unsigned StartLineNum = Site.Inlinee->getLine();
703 
704   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
705                                     FI.Begin, FI.End);
706 
707   OS.EmitLabel(InlineEnd);
708 
709   emitLocalVariableList(Site.InlinedLocals);
710 
711   // Recurse on child inlined call sites before closing the scope.
712   for (const DILocation *ChildSite : Site.ChildSites) {
713     auto I = FI.InlineSites.find(ChildSite);
714     assert(I != FI.InlineSites.end() &&
715            "child site not in function inline site map");
716     emitInlinedCallSite(FI, ChildSite, I->second);
717   }
718 
719   // Close the scope.
720   OS.AddComment("Record length");
721   OS.EmitIntValue(2, 2);                                  // RecordLength
722   OS.AddComment("Record kind: S_INLINESITE_END");
723   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
724 }
725 
726 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
727   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
728   // comdat key. A section may be comdat because of -ffunction-sections or
729   // because it is comdat in the IR.
730   MCSectionCOFF *GVSec =
731       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
732   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
733 
734   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
735       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
736   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
737 
738   OS.SwitchSection(DebugSec);
739 
740   // Emit the magic version number if this is the first time we've switched to
741   // this section.
742   if (ComdatDebugSections.insert(DebugSec).second)
743     emitCodeViewMagicVersion();
744 }
745 
746 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
747                                              FunctionInfo &FI) {
748   // For each function there is a separate subsection
749   // which holds the PC to file:line table.
750   const MCSymbol *Fn = Asm->getSymbol(GV);
751   assert(Fn);
752 
753   // Switch to the to a comdat section, if appropriate.
754   switchToDebugSectionForSymbol(Fn);
755 
756   std::string FuncName;
757   auto *SP = GV->getSubprogram();
758   assert(SP);
759   setCurrentSubprogram(SP);
760 
761   // If we have a display name, build the fully qualified name by walking the
762   // chain of scopes.
763   if (!SP->getName().empty())
764     FuncName =
765         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
766 
767   // If our DISubprogram name is empty, use the mangled name.
768   if (FuncName.empty())
769     FuncName = GlobalValue::getRealLinkageName(GV->getName());
770 
771   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
772   OS.AddComment("Symbol subsection for " + Twine(FuncName));
773   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleDebugFragmentKind::Symbols);
774   {
775     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
776              *ProcRecordEnd = MMI->getContext().createTempSymbol();
777     OS.AddComment("Record length");
778     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
779     OS.EmitLabel(ProcRecordBegin);
780 
781     if (GV->hasLocalLinkage()) {
782       OS.AddComment("Record kind: S_LPROC32_ID");
783       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
784     } else {
785       OS.AddComment("Record kind: S_GPROC32_ID");
786       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
787     }
788 
789     // These fields are filled in by tools like CVPACK which run after the fact.
790     OS.AddComment("PtrParent");
791     OS.EmitIntValue(0, 4);
792     OS.AddComment("PtrEnd");
793     OS.EmitIntValue(0, 4);
794     OS.AddComment("PtrNext");
795     OS.EmitIntValue(0, 4);
796     // This is the important bit that tells the debugger where the function
797     // code is located and what's its size:
798     OS.AddComment("Code size");
799     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
800     OS.AddComment("Offset after prologue");
801     OS.EmitIntValue(0, 4);
802     OS.AddComment("Offset before epilogue");
803     OS.EmitIntValue(0, 4);
804     OS.AddComment("Function type index");
805     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
806     OS.AddComment("Function section relative address");
807     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
808     OS.AddComment("Function section index");
809     OS.EmitCOFFSectionIndex(Fn);
810     OS.AddComment("Flags");
811     OS.EmitIntValue(0, 1);
812     // Emit the function display name as a null-terminated string.
813     OS.AddComment("Function name");
814     // Truncate the name so we won't overflow the record length field.
815     emitNullTerminatedSymbolName(OS, FuncName);
816     OS.EmitLabel(ProcRecordEnd);
817 
818     emitLocalVariableList(FI.Locals);
819 
820     // Emit inlined call site information. Only emit functions inlined directly
821     // into the parent function. We'll emit the other sites recursively as part
822     // of their parent inline site.
823     for (const DILocation *InlinedAt : FI.ChildSites) {
824       auto I = FI.InlineSites.find(InlinedAt);
825       assert(I != FI.InlineSites.end() &&
826              "child site not in function inline site map");
827       emitInlinedCallSite(FI, InlinedAt, I->second);
828     }
829 
830     if (SP != nullptr)
831       emitDebugInfoForUDTs(LocalUDTs);
832 
833     // We're done with this function.
834     OS.AddComment("Record length");
835     OS.EmitIntValue(0x0002, 2);
836     OS.AddComment("Record kind: S_PROC_ID_END");
837     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
838   }
839   endCVSubsection(SymbolsEnd);
840 
841   // We have an assembler directive that takes care of the whole line table.
842   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
843 }
844 
845 CodeViewDebug::LocalVarDefRange
846 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
847   LocalVarDefRange DR;
848   DR.InMemory = -1;
849   DR.DataOffset = Offset;
850   assert(DR.DataOffset == Offset && "truncation");
851   DR.IsSubfield = 0;
852   DR.StructOffset = 0;
853   DR.CVRegister = CVRegister;
854   return DR;
855 }
856 
857 CodeViewDebug::LocalVarDefRange
858 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
859                                      int Offset, bool IsSubfield,
860                                      uint16_t StructOffset) {
861   LocalVarDefRange DR;
862   DR.InMemory = InMemory;
863   DR.DataOffset = Offset;
864   DR.IsSubfield = IsSubfield;
865   DR.StructOffset = StructOffset;
866   DR.CVRegister = CVRegister;
867   return DR;
868 }
869 
870 void CodeViewDebug::collectVariableInfoFromMFTable(
871     DenseSet<InlinedVariable> &Processed) {
872   const MachineFunction &MF = *Asm->MF;
873   const TargetSubtargetInfo &TSI = MF.getSubtarget();
874   const TargetFrameLowering *TFI = TSI.getFrameLowering();
875   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
876 
877   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
878     if (!VI.Var)
879       continue;
880     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
881            "Expected inlined-at fields to agree");
882 
883     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
884     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
885 
886     // If variable scope is not found then skip this variable.
887     if (!Scope)
888       continue;
889 
890     // Get the frame register used and the offset.
891     unsigned FrameReg = 0;
892     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
893     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
894 
895     // Calculate the label ranges.
896     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
897     for (const InsnRange &Range : Scope->getRanges()) {
898       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
899       const MCSymbol *End = getLabelAfterInsn(Range.second);
900       End = End ? End : Asm->getFunctionEnd();
901       DefRange.Ranges.emplace_back(Begin, End);
902     }
903 
904     LocalVariable Var;
905     Var.DIVar = VI.Var;
906     Var.DefRanges.emplace_back(std::move(DefRange));
907     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
908   }
909 }
910 
911 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
912   DenseSet<InlinedVariable> Processed;
913   // Grab the variable info that was squirreled away in the MMI side-table.
914   collectVariableInfoFromMFTable(Processed);
915 
916   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
917 
918   for (const auto &I : DbgValues) {
919     InlinedVariable IV = I.first;
920     if (Processed.count(IV))
921       continue;
922     const DILocalVariable *DIVar = IV.first;
923     const DILocation *InlinedAt = IV.second;
924 
925     // Instruction ranges, specifying where IV is accessible.
926     const auto &Ranges = I.second;
927 
928     LexicalScope *Scope = nullptr;
929     if (InlinedAt)
930       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
931     else
932       Scope = LScopes.findLexicalScope(DIVar->getScope());
933     // If variable scope is not found then skip this variable.
934     if (!Scope)
935       continue;
936 
937     LocalVariable Var;
938     Var.DIVar = DIVar;
939 
940     // Calculate the definition ranges.
941     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
942       const InsnRange &Range = *I;
943       const MachineInstr *DVInst = Range.first;
944       assert(DVInst->isDebugValue() && "Invalid History entry");
945       const DIExpression *DIExpr = DVInst->getDebugExpression();
946       bool IsSubfield = false;
947       unsigned StructOffset = 0;
948 
949       // Handle fragments.
950       auto Fragment = DIExpr->getFragmentInfo();
951       if (Fragment) {
952         IsSubfield = true;
953         StructOffset = Fragment->OffsetInBits / 8;
954       } else if (DIExpr->getNumElements() > 0) {
955         continue; // Ignore unrecognized exprs.
956       }
957 
958       // Bail if operand 0 is not a valid register. This means the variable is a
959       // simple constant, or is described by a complex expression.
960       // FIXME: Find a way to represent constant variables, since they are
961       // relatively common.
962       unsigned Reg =
963           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
964       if (Reg == 0)
965         continue;
966 
967       // Handle the two cases we can handle: indirect in memory and in register.
968       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
969       bool InMemory = DVInst->getOperand(1).isImm();
970       int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
971       {
972         LocalVarDefRange DR;
973         DR.CVRegister = CVReg;
974         DR.InMemory = InMemory;
975         DR.DataOffset = Offset;
976         DR.IsSubfield = IsSubfield;
977         DR.StructOffset = StructOffset;
978 
979         if (Var.DefRanges.empty() ||
980             Var.DefRanges.back().isDifferentLocation(DR)) {
981           Var.DefRanges.emplace_back(std::move(DR));
982         }
983       }
984 
985       // Compute the label range.
986       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
987       const MCSymbol *End = getLabelAfterInsn(Range.second);
988       if (!End) {
989         // This range is valid until the next overlapping bitpiece. In the
990         // common case, ranges will not be bitpieces, so they will overlap.
991         auto J = std::next(I);
992         while (J != E &&
993                !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
994           ++J;
995         if (J != E)
996           End = getLabelBeforeInsn(J->first);
997         else
998           End = Asm->getFunctionEnd();
999       }
1000 
1001       // If the last range end is our begin, just extend the last range.
1002       // Otherwise make a new range.
1003       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
1004           Var.DefRanges.back().Ranges;
1005       if (!Ranges.empty() && Ranges.back().second == Begin)
1006         Ranges.back().second = End;
1007       else
1008         Ranges.emplace_back(Begin, End);
1009 
1010       // FIXME: Do more range combining.
1011     }
1012 
1013     recordLocalVariable(std::move(Var), InlinedAt);
1014   }
1015 }
1016 
1017 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1018   const Function *GV = MF->getFunction();
1019   assert(FnDebugInfo.count(GV) == false);
1020   CurFn = &FnDebugInfo[GV];
1021   CurFn->FuncId = NextFuncId++;
1022   CurFn->Begin = Asm->getFunctionBegin();
1023 
1024   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1025 
1026   // Find the end of the function prolog.  First known non-DBG_VALUE and
1027   // non-frame setup location marks the beginning of the function body.
1028   // FIXME: is there a simpler a way to do this? Can we just search
1029   // for the first instruction of the function, not the last of the prolog?
1030   DebugLoc PrologEndLoc;
1031   bool EmptyPrologue = true;
1032   for (const auto &MBB : *MF) {
1033     for (const auto &MI : MBB) {
1034       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1035           MI.getDebugLoc()) {
1036         PrologEndLoc = MI.getDebugLoc();
1037         break;
1038       } else if (!MI.isDebugValue()) {
1039         EmptyPrologue = false;
1040       }
1041     }
1042   }
1043 
1044   // Record beginning of function if we have a non-empty prologue.
1045   if (PrologEndLoc && !EmptyPrologue) {
1046     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1047     maybeRecordLocation(FnStartDL, MF);
1048   }
1049 }
1050 
1051 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1052   // Don't record empty UDTs.
1053   if (Ty->getName().empty())
1054     return;
1055 
1056   SmallVector<StringRef, 5> QualifiedNameComponents;
1057   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1058       Ty->getScope().resolve(), QualifiedNameComponents);
1059 
1060   std::string FullyQualifiedName =
1061       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1062 
1063   if (ClosestSubprogram == nullptr)
1064     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1065   else if (ClosestSubprogram == CurrentSubprogram)
1066     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1067 
1068   // TODO: What if the ClosestSubprogram is neither null or the current
1069   // subprogram?  Currently, the UDT just gets dropped on the floor.
1070   //
1071   // The current behavior is not desirable.  To get maximal fidelity, we would
1072   // need to perform all type translation before beginning emission of .debug$S
1073   // and then make LocalUDTs a member of FunctionInfo
1074 }
1075 
1076 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1077   // Generic dispatch for lowering an unknown type.
1078   switch (Ty->getTag()) {
1079   case dwarf::DW_TAG_array_type:
1080     return lowerTypeArray(cast<DICompositeType>(Ty));
1081   case dwarf::DW_TAG_typedef:
1082     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1083   case dwarf::DW_TAG_base_type:
1084     return lowerTypeBasic(cast<DIBasicType>(Ty));
1085   case dwarf::DW_TAG_pointer_type:
1086     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1087       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1088     LLVM_FALLTHROUGH;
1089   case dwarf::DW_TAG_reference_type:
1090   case dwarf::DW_TAG_rvalue_reference_type:
1091     return lowerTypePointer(cast<DIDerivedType>(Ty));
1092   case dwarf::DW_TAG_ptr_to_member_type:
1093     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1094   case dwarf::DW_TAG_const_type:
1095   case dwarf::DW_TAG_volatile_type:
1096   // TODO: add support for DW_TAG_atomic_type here
1097     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1098   case dwarf::DW_TAG_subroutine_type:
1099     if (ClassTy) {
1100       // The member function type of a member function pointer has no
1101       // ThisAdjustment.
1102       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1103                                      /*ThisAdjustment=*/0);
1104     }
1105     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1106   case dwarf::DW_TAG_enumeration_type:
1107     return lowerTypeEnum(cast<DICompositeType>(Ty));
1108   case dwarf::DW_TAG_class_type:
1109   case dwarf::DW_TAG_structure_type:
1110     return lowerTypeClass(cast<DICompositeType>(Ty));
1111   case dwarf::DW_TAG_union_type:
1112     return lowerTypeUnion(cast<DICompositeType>(Ty));
1113   default:
1114     // Use the null type index.
1115     return TypeIndex();
1116   }
1117 }
1118 
1119 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1120   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1121   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1122   StringRef TypeName = Ty->getName();
1123 
1124   addToUDTs(Ty, UnderlyingTypeIndex);
1125 
1126   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1127       TypeName == "HRESULT")
1128     return TypeIndex(SimpleTypeKind::HResult);
1129   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1130       TypeName == "wchar_t")
1131     return TypeIndex(SimpleTypeKind::WideCharacter);
1132 
1133   return UnderlyingTypeIndex;
1134 }
1135 
1136 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1137   DITypeRef ElementTypeRef = Ty->getBaseType();
1138   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1139   // IndexType is size_t, which depends on the bitness of the target.
1140   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1141                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1142                             : TypeIndex(SimpleTypeKind::UInt32Long);
1143 
1144   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1145 
1146   // Add subranges to array type.
1147   DINodeArray Elements = Ty->getElements();
1148   for (int i = Elements.size() - 1; i >= 0; --i) {
1149     const DINode *Element = Elements[i];
1150     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1151 
1152     const DISubrange *Subrange = cast<DISubrange>(Element);
1153     assert(Subrange->getLowerBound() == 0 &&
1154            "codeview doesn't support subranges with lower bounds");
1155     int64_t Count = Subrange->getCount();
1156 
1157     // Variable Length Array (VLA) has Count equal to '-1'.
1158     // Replace with Count '1', assume it is the minimum VLA length.
1159     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1160     if (Count == -1)
1161       Count = 1;
1162 
1163     // Update the element size and element type index for subsequent subranges.
1164     ElementSize *= Count;
1165 
1166     // If this is the outermost array, use the size from the array. It will be
1167     // more accurate if we had a VLA or an incomplete element type size.
1168     uint64_t ArraySize =
1169         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1170 
1171     StringRef Name = (i == 0) ? Ty->getName() : "";
1172     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1173     ElementTypeIndex = TypeTable.writeKnownType(AR);
1174   }
1175 
1176   return ElementTypeIndex;
1177 }
1178 
1179 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1180   TypeIndex Index;
1181   dwarf::TypeKind Kind;
1182   uint32_t ByteSize;
1183 
1184   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1185   ByteSize = Ty->getSizeInBits() / 8;
1186 
1187   SimpleTypeKind STK = SimpleTypeKind::None;
1188   switch (Kind) {
1189   case dwarf::DW_ATE_address:
1190     // FIXME: Translate
1191     break;
1192   case dwarf::DW_ATE_boolean:
1193     switch (ByteSize) {
1194     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1195     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1196     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1197     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1198     case 16: STK = SimpleTypeKind::Boolean128; break;
1199     }
1200     break;
1201   case dwarf::DW_ATE_complex_float:
1202     switch (ByteSize) {
1203     case 2:  STK = SimpleTypeKind::Complex16;  break;
1204     case 4:  STK = SimpleTypeKind::Complex32;  break;
1205     case 8:  STK = SimpleTypeKind::Complex64;  break;
1206     case 10: STK = SimpleTypeKind::Complex80;  break;
1207     case 16: STK = SimpleTypeKind::Complex128; break;
1208     }
1209     break;
1210   case dwarf::DW_ATE_float:
1211     switch (ByteSize) {
1212     case 2:  STK = SimpleTypeKind::Float16;  break;
1213     case 4:  STK = SimpleTypeKind::Float32;  break;
1214     case 6:  STK = SimpleTypeKind::Float48;  break;
1215     case 8:  STK = SimpleTypeKind::Float64;  break;
1216     case 10: STK = SimpleTypeKind::Float80;  break;
1217     case 16: STK = SimpleTypeKind::Float128; break;
1218     }
1219     break;
1220   case dwarf::DW_ATE_signed:
1221     switch (ByteSize) {
1222     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1223     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1224     case 4:  STK = SimpleTypeKind::Int32;           break;
1225     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1226     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1227     }
1228     break;
1229   case dwarf::DW_ATE_unsigned:
1230     switch (ByteSize) {
1231     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1232     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1233     case 4:  STK = SimpleTypeKind::UInt32;            break;
1234     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1235     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1236     }
1237     break;
1238   case dwarf::DW_ATE_UTF:
1239     switch (ByteSize) {
1240     case 2: STK = SimpleTypeKind::Character16; break;
1241     case 4: STK = SimpleTypeKind::Character32; break;
1242     }
1243     break;
1244   case dwarf::DW_ATE_signed_char:
1245     if (ByteSize == 1)
1246       STK = SimpleTypeKind::SignedCharacter;
1247     break;
1248   case dwarf::DW_ATE_unsigned_char:
1249     if (ByteSize == 1)
1250       STK = SimpleTypeKind::UnsignedCharacter;
1251     break;
1252   default:
1253     break;
1254   }
1255 
1256   // Apply some fixups based on the source-level type name.
1257   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1258     STK = SimpleTypeKind::Int32Long;
1259   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1260     STK = SimpleTypeKind::UInt32Long;
1261   if (STK == SimpleTypeKind::UInt16Short &&
1262       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1263     STK = SimpleTypeKind::WideCharacter;
1264   if ((STK == SimpleTypeKind::SignedCharacter ||
1265        STK == SimpleTypeKind::UnsignedCharacter) &&
1266       Ty->getName() == "char")
1267     STK = SimpleTypeKind::NarrowCharacter;
1268 
1269   return TypeIndex(STK);
1270 }
1271 
1272 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1273   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1274 
1275   // Pointers to simple types can use SimpleTypeMode, rather than having a
1276   // dedicated pointer type record.
1277   if (PointeeTI.isSimple() &&
1278       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1279       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1280     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1281                               ? SimpleTypeMode::NearPointer64
1282                               : SimpleTypeMode::NearPointer32;
1283     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1284   }
1285 
1286   PointerKind PK =
1287       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1288   PointerMode PM = PointerMode::Pointer;
1289   switch (Ty->getTag()) {
1290   default: llvm_unreachable("not a pointer tag type");
1291   case dwarf::DW_TAG_pointer_type:
1292     PM = PointerMode::Pointer;
1293     break;
1294   case dwarf::DW_TAG_reference_type:
1295     PM = PointerMode::LValueReference;
1296     break;
1297   case dwarf::DW_TAG_rvalue_reference_type:
1298     PM = PointerMode::RValueReference;
1299     break;
1300   }
1301   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1302   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1303   // do.
1304   PointerOptions PO = PointerOptions::None;
1305   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1306   return TypeTable.writeKnownType(PR);
1307 }
1308 
1309 static PointerToMemberRepresentation
1310 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1311   // SizeInBytes being zero generally implies that the member pointer type was
1312   // incomplete, which can happen if it is part of a function prototype. In this
1313   // case, use the unknown model instead of the general model.
1314   if (IsPMF) {
1315     switch (Flags & DINode::FlagPtrToMemberRep) {
1316     case 0:
1317       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1318                               : PointerToMemberRepresentation::GeneralFunction;
1319     case DINode::FlagSingleInheritance:
1320       return PointerToMemberRepresentation::SingleInheritanceFunction;
1321     case DINode::FlagMultipleInheritance:
1322       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1323     case DINode::FlagVirtualInheritance:
1324       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1325     }
1326   } else {
1327     switch (Flags & DINode::FlagPtrToMemberRep) {
1328     case 0:
1329       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1330                               : PointerToMemberRepresentation::GeneralData;
1331     case DINode::FlagSingleInheritance:
1332       return PointerToMemberRepresentation::SingleInheritanceData;
1333     case DINode::FlagMultipleInheritance:
1334       return PointerToMemberRepresentation::MultipleInheritanceData;
1335     case DINode::FlagVirtualInheritance:
1336       return PointerToMemberRepresentation::VirtualInheritanceData;
1337     }
1338   }
1339   llvm_unreachable("invalid ptr to member representation");
1340 }
1341 
1342 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1343   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1344   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1345   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1346   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1347                                                  : PointerKind::Near32;
1348   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1349   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1350                          : PointerMode::PointerToDataMember;
1351   PointerOptions PO = PointerOptions::None; // FIXME
1352   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1353   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1354   MemberPointerInfo MPI(
1355       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1356   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1357   return TypeTable.writeKnownType(PR);
1358 }
1359 
1360 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1361 /// have a translation, use the NearC convention.
1362 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1363   switch (DwarfCC) {
1364   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1365   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1366   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1367   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1368   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1369   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1370   }
1371   return CallingConvention::NearC;
1372 }
1373 
1374 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1375   ModifierOptions Mods = ModifierOptions::None;
1376   bool IsModifier = true;
1377   const DIType *BaseTy = Ty;
1378   while (IsModifier && BaseTy) {
1379     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1380     switch (BaseTy->getTag()) {
1381     case dwarf::DW_TAG_const_type:
1382       Mods |= ModifierOptions::Const;
1383       break;
1384     case dwarf::DW_TAG_volatile_type:
1385       Mods |= ModifierOptions::Volatile;
1386       break;
1387     default:
1388       IsModifier = false;
1389       break;
1390     }
1391     if (IsModifier)
1392       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1393   }
1394   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1395   ModifierRecord MR(ModifiedTI, Mods);
1396   return TypeTable.writeKnownType(MR);
1397 }
1398 
1399 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1400   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1401   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1402     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1403 
1404   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1405   ArrayRef<TypeIndex> ArgTypeIndices = None;
1406   if (!ReturnAndArgTypeIndices.empty()) {
1407     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1408     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1409     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1410   }
1411 
1412   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1413   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1414 
1415   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1416 
1417   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1418                             ArgTypeIndices.size(), ArgListIndex);
1419   return TypeTable.writeKnownType(Procedure);
1420 }
1421 
1422 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1423                                                  const DIType *ClassTy,
1424                                                  int ThisAdjustment) {
1425   // Lower the containing class type.
1426   TypeIndex ClassType = getTypeIndex(ClassTy);
1427 
1428   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1429   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1430     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1431 
1432   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1433   ArrayRef<TypeIndex> ArgTypeIndices = None;
1434   if (!ReturnAndArgTypeIndices.empty()) {
1435     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1436     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1437     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1438   }
1439   TypeIndex ThisTypeIndex = TypeIndex::Void();
1440   if (!ArgTypeIndices.empty()) {
1441     ThisTypeIndex = ArgTypeIndices.front();
1442     ArgTypeIndices = ArgTypeIndices.drop_front();
1443   }
1444 
1445   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1446   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1447 
1448   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1449 
1450   // TODO: Need to use the correct values for:
1451   //       FunctionOptions
1452   //       ThisPointerAdjustment.
1453   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1454                            FunctionOptions::None, ArgTypeIndices.size(),
1455                            ArgListIndex, ThisAdjustment);
1456   TypeIndex TI = TypeTable.writeKnownType(MFR);
1457 
1458   return TI;
1459 }
1460 
1461 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1462   unsigned VSlotCount =
1463       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1464   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1465 
1466   VFTableShapeRecord VFTSR(Slots);
1467   return TypeTable.writeKnownType(VFTSR);
1468 }
1469 
1470 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1471   switch (Flags & DINode::FlagAccessibility) {
1472   case DINode::FlagPrivate:   return MemberAccess::Private;
1473   case DINode::FlagPublic:    return MemberAccess::Public;
1474   case DINode::FlagProtected: return MemberAccess::Protected;
1475   case 0:
1476     // If there was no explicit access control, provide the default for the tag.
1477     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1478                                                  : MemberAccess::Public;
1479   }
1480   llvm_unreachable("access flags are exclusive");
1481 }
1482 
1483 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1484   if (SP->isArtificial())
1485     return MethodOptions::CompilerGenerated;
1486 
1487   // FIXME: Handle other MethodOptions.
1488 
1489   return MethodOptions::None;
1490 }
1491 
1492 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1493                                            bool Introduced) {
1494   switch (SP->getVirtuality()) {
1495   case dwarf::DW_VIRTUALITY_none:
1496     break;
1497   case dwarf::DW_VIRTUALITY_virtual:
1498     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1499   case dwarf::DW_VIRTUALITY_pure_virtual:
1500     return Introduced ? MethodKind::PureIntroducingVirtual
1501                       : MethodKind::PureVirtual;
1502   default:
1503     llvm_unreachable("unhandled virtuality case");
1504   }
1505 
1506   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1507 
1508   return MethodKind::Vanilla;
1509 }
1510 
1511 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1512   switch (Ty->getTag()) {
1513   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1514   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1515   }
1516   llvm_unreachable("unexpected tag");
1517 }
1518 
1519 /// Return ClassOptions that should be present on both the forward declaration
1520 /// and the defintion of a tag type.
1521 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1522   ClassOptions CO = ClassOptions::None;
1523 
1524   // MSVC always sets this flag, even for local types. Clang doesn't always
1525   // appear to give every type a linkage name, which may be problematic for us.
1526   // FIXME: Investigate the consequences of not following them here.
1527   if (!Ty->getIdentifier().empty())
1528     CO |= ClassOptions::HasUniqueName;
1529 
1530   // Put the Nested flag on a type if it appears immediately inside a tag type.
1531   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1532   // here. That flag is only set on definitions, and not forward declarations.
1533   const DIScope *ImmediateScope = Ty->getScope().resolve();
1534   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1535     CO |= ClassOptions::Nested;
1536 
1537   // Put the Scoped flag on function-local types.
1538   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1539        Scope = Scope->getScope().resolve()) {
1540     if (isa<DISubprogram>(Scope)) {
1541       CO |= ClassOptions::Scoped;
1542       break;
1543     }
1544   }
1545 
1546   return CO;
1547 }
1548 
1549 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1550   ClassOptions CO = getCommonClassOptions(Ty);
1551   TypeIndex FTI;
1552   unsigned EnumeratorCount = 0;
1553 
1554   if (Ty->isForwardDecl()) {
1555     CO |= ClassOptions::ForwardReference;
1556   } else {
1557     FieldListRecordBuilder FLRB(TypeTable);
1558 
1559     FLRB.begin();
1560     for (const DINode *Element : Ty->getElements()) {
1561       // We assume that the frontend provides all members in source declaration
1562       // order, which is what MSVC does.
1563       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1564         EnumeratorRecord ER(MemberAccess::Public,
1565                             APSInt::getUnsigned(Enumerator->getValue()),
1566                             Enumerator->getName());
1567         FLRB.writeMemberType(ER);
1568         EnumeratorCount++;
1569       }
1570     }
1571     FTI = FLRB.end();
1572   }
1573 
1574   std::string FullName = getFullyQualifiedName(Ty);
1575 
1576   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1577                 getTypeIndex(Ty->getBaseType()));
1578   return TypeTable.writeKnownType(ER);
1579 }
1580 
1581 //===----------------------------------------------------------------------===//
1582 // ClassInfo
1583 //===----------------------------------------------------------------------===//
1584 
1585 struct llvm::ClassInfo {
1586   struct MemberInfo {
1587     const DIDerivedType *MemberTypeNode;
1588     uint64_t BaseOffset;
1589   };
1590   // [MemberInfo]
1591   typedef std::vector<MemberInfo> MemberList;
1592 
1593   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1594   // MethodName -> MethodsList
1595   typedef MapVector<MDString *, MethodsList> MethodsMap;
1596 
1597   /// Base classes.
1598   std::vector<const DIDerivedType *> Inheritance;
1599 
1600   /// Direct members.
1601   MemberList Members;
1602   // Direct overloaded methods gathered by name.
1603   MethodsMap Methods;
1604 
1605   TypeIndex VShapeTI;
1606 
1607   std::vector<const DICompositeType *> NestedClasses;
1608 };
1609 
1610 void CodeViewDebug::clear() {
1611   assert(CurFn == nullptr);
1612   FileIdMap.clear();
1613   FnDebugInfo.clear();
1614   FileToFilepathMap.clear();
1615   LocalUDTs.clear();
1616   GlobalUDTs.clear();
1617   TypeIndices.clear();
1618   CompleteTypeIndices.clear();
1619 }
1620 
1621 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1622                                       const DIDerivedType *DDTy) {
1623   if (!DDTy->getName().empty()) {
1624     Info.Members.push_back({DDTy, 0});
1625     return;
1626   }
1627   // An unnamed member must represent a nested struct or union. Add all the
1628   // indirect fields to the current record.
1629   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1630   uint64_t Offset = DDTy->getOffsetInBits();
1631   const DIType *Ty = DDTy->getBaseType().resolve();
1632   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1633   ClassInfo NestedInfo = collectClassInfo(DCTy);
1634   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1635     Info.Members.push_back(
1636         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1637 }
1638 
1639 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1640   ClassInfo Info;
1641   // Add elements to structure type.
1642   DINodeArray Elements = Ty->getElements();
1643   for (auto *Element : Elements) {
1644     // We assume that the frontend provides all members in source declaration
1645     // order, which is what MSVC does.
1646     if (!Element)
1647       continue;
1648     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1649       Info.Methods[SP->getRawName()].push_back(SP);
1650     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1651       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1652         collectMemberInfo(Info, DDTy);
1653       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1654         Info.Inheritance.push_back(DDTy);
1655       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1656                  DDTy->getName() == "__vtbl_ptr_type") {
1657         Info.VShapeTI = getTypeIndex(DDTy);
1658       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1659         // Ignore friend members. It appears that MSVC emitted info about
1660         // friends in the past, but modern versions do not.
1661       }
1662     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1663       Info.NestedClasses.push_back(Composite);
1664     }
1665     // Skip other unrecognized kinds of elements.
1666   }
1667   return Info;
1668 }
1669 
1670 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1671   // First, construct the forward decl.  Don't look into Ty to compute the
1672   // forward decl options, since it might not be available in all TUs.
1673   TypeRecordKind Kind = getRecordKind(Ty);
1674   ClassOptions CO =
1675       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1676   std::string FullName = getFullyQualifiedName(Ty);
1677   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1678                  FullName, Ty->getIdentifier());
1679   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1680   if (!Ty->isForwardDecl())
1681     DeferredCompleteTypes.push_back(Ty);
1682   return FwdDeclTI;
1683 }
1684 
1685 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1686   // Construct the field list and complete type record.
1687   TypeRecordKind Kind = getRecordKind(Ty);
1688   ClassOptions CO = getCommonClassOptions(Ty);
1689   TypeIndex FieldTI;
1690   TypeIndex VShapeTI;
1691   unsigned FieldCount;
1692   bool ContainsNestedClass;
1693   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1694       lowerRecordFieldList(Ty);
1695 
1696   if (ContainsNestedClass)
1697     CO |= ClassOptions::ContainsNestedClass;
1698 
1699   std::string FullName = getFullyQualifiedName(Ty);
1700 
1701   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1702 
1703   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1704                  SizeInBytes, FullName, Ty->getIdentifier());
1705   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1706 
1707   StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1708   TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1709   UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1710   TypeTable.writeKnownType(USLR);
1711 
1712   addToUDTs(Ty, ClassTI);
1713 
1714   return ClassTI;
1715 }
1716 
1717 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1718   ClassOptions CO =
1719       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1720   std::string FullName = getFullyQualifiedName(Ty);
1721   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1722   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1723   if (!Ty->isForwardDecl())
1724     DeferredCompleteTypes.push_back(Ty);
1725   return FwdDeclTI;
1726 }
1727 
1728 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1729   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1730   TypeIndex FieldTI;
1731   unsigned FieldCount;
1732   bool ContainsNestedClass;
1733   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1734       lowerRecordFieldList(Ty);
1735 
1736   if (ContainsNestedClass)
1737     CO |= ClassOptions::ContainsNestedClass;
1738 
1739   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1740   std::string FullName = getFullyQualifiedName(Ty);
1741 
1742   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1743                  Ty->getIdentifier());
1744   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1745 
1746   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1747   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1748   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1749   TypeTable.writeKnownType(USLR);
1750 
1751   addToUDTs(Ty, UnionTI);
1752 
1753   return UnionTI;
1754 }
1755 
1756 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1757 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1758   // Manually count members. MSVC appears to count everything that generates a
1759   // field list record. Each individual overload in a method overload group
1760   // contributes to this count, even though the overload group is a single field
1761   // list record.
1762   unsigned MemberCount = 0;
1763   ClassInfo Info = collectClassInfo(Ty);
1764   FieldListRecordBuilder FLBR(TypeTable);
1765   FLBR.begin();
1766 
1767   // Create base classes.
1768   for (const DIDerivedType *I : Info.Inheritance) {
1769     if (I->getFlags() & DINode::FlagVirtual) {
1770       // Virtual base.
1771       // FIXME: Emit VBPtrOffset when the frontend provides it.
1772       unsigned VBPtrOffset = 0;
1773       // FIXME: Despite the accessor name, the offset is really in bytes.
1774       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1775       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1776                             ? TypeRecordKind::IndirectVirtualBaseClass
1777                             : TypeRecordKind::VirtualBaseClass;
1778       VirtualBaseClassRecord VBCR(
1779           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1780           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1781           VBTableIndex);
1782 
1783       FLBR.writeMemberType(VBCR);
1784     } else {
1785       assert(I->getOffsetInBits() % 8 == 0 &&
1786              "bases must be on byte boundaries");
1787       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1788                           getTypeIndex(I->getBaseType()),
1789                           I->getOffsetInBits() / 8);
1790       FLBR.writeMemberType(BCR);
1791     }
1792   }
1793 
1794   // Create members.
1795   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1796     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1797     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1798     StringRef MemberName = Member->getName();
1799     MemberAccess Access =
1800         translateAccessFlags(Ty->getTag(), Member->getFlags());
1801 
1802     if (Member->isStaticMember()) {
1803       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1804       FLBR.writeMemberType(SDMR);
1805       MemberCount++;
1806       continue;
1807     }
1808 
1809     // Virtual function pointer member.
1810     if ((Member->getFlags() & DINode::FlagArtificial) &&
1811         Member->getName().startswith("_vptr$")) {
1812       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1813       FLBR.writeMemberType(VFPR);
1814       MemberCount++;
1815       continue;
1816     }
1817 
1818     // Data member.
1819     uint64_t MemberOffsetInBits =
1820         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1821     if (Member->isBitField()) {
1822       uint64_t StartBitOffset = MemberOffsetInBits;
1823       if (const auto *CI =
1824               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1825         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1826       }
1827       StartBitOffset -= MemberOffsetInBits;
1828       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1829                          StartBitOffset);
1830       MemberBaseType = TypeTable.writeKnownType(BFR);
1831     }
1832     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1833     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1834                          MemberName);
1835     FLBR.writeMemberType(DMR);
1836     MemberCount++;
1837   }
1838 
1839   // Create methods
1840   for (auto &MethodItr : Info.Methods) {
1841     StringRef Name = MethodItr.first->getString();
1842 
1843     std::vector<OneMethodRecord> Methods;
1844     for (const DISubprogram *SP : MethodItr.second) {
1845       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1846       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1847 
1848       unsigned VFTableOffset = -1;
1849       if (Introduced)
1850         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1851 
1852       Methods.push_back(OneMethodRecord(
1853           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1854           translateMethodKindFlags(SP, Introduced),
1855           translateMethodOptionFlags(SP), VFTableOffset, Name));
1856       MemberCount++;
1857     }
1858     assert(Methods.size() > 0 && "Empty methods map entry");
1859     if (Methods.size() == 1)
1860       FLBR.writeMemberType(Methods[0]);
1861     else {
1862       MethodOverloadListRecord MOLR(Methods);
1863       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1864       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1865       FLBR.writeMemberType(OMR);
1866     }
1867   }
1868 
1869   // Create nested classes.
1870   for (const DICompositeType *Nested : Info.NestedClasses) {
1871     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1872     FLBR.writeMemberType(R);
1873     MemberCount++;
1874   }
1875 
1876   TypeIndex FieldTI = FLBR.end();
1877   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1878                          !Info.NestedClasses.empty());
1879 }
1880 
1881 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1882   if (!VBPType.getIndex()) {
1883     // Make a 'const int *' type.
1884     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1885     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1886 
1887     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1888                                                   : PointerKind::Near32;
1889     PointerMode PM = PointerMode::Pointer;
1890     PointerOptions PO = PointerOptions::None;
1891     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1892 
1893     VBPType = TypeTable.writeKnownType(PR);
1894   }
1895 
1896   return VBPType;
1897 }
1898 
1899 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1900   const DIType *Ty = TypeRef.resolve();
1901   const DIType *ClassTy = ClassTyRef.resolve();
1902 
1903   // The null DIType is the void type. Don't try to hash it.
1904   if (!Ty)
1905     return TypeIndex::Void();
1906 
1907   // Check if we've already translated this type. Don't try to do a
1908   // get-or-create style insertion that caches the hash lookup across the
1909   // lowerType call. It will update the TypeIndices map.
1910   auto I = TypeIndices.find({Ty, ClassTy});
1911   if (I != TypeIndices.end())
1912     return I->second;
1913 
1914   TypeLoweringScope S(*this);
1915   TypeIndex TI = lowerType(Ty, ClassTy);
1916   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1917 }
1918 
1919 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1920   const DIType *Ty = TypeRef.resolve();
1921 
1922   // The null DIType is the void type. Don't try to hash it.
1923   if (!Ty)
1924     return TypeIndex::Void();
1925 
1926   // If this is a non-record type, the complete type index is the same as the
1927   // normal type index. Just call getTypeIndex.
1928   switch (Ty->getTag()) {
1929   case dwarf::DW_TAG_class_type:
1930   case dwarf::DW_TAG_structure_type:
1931   case dwarf::DW_TAG_union_type:
1932     break;
1933   default:
1934     return getTypeIndex(Ty);
1935   }
1936 
1937   // Check if we've already translated the complete record type.  Lowering a
1938   // complete type should never trigger lowering another complete type, so we
1939   // can reuse the hash table lookup result.
1940   const auto *CTy = cast<DICompositeType>(Ty);
1941   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1942   if (!InsertResult.second)
1943     return InsertResult.first->second;
1944 
1945   TypeLoweringScope S(*this);
1946 
1947   // Make sure the forward declaration is emitted first. It's unclear if this
1948   // is necessary, but MSVC does it, and we should follow suit until we can show
1949   // otherwise.
1950   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1951 
1952   // Just use the forward decl if we don't have complete type info. This might
1953   // happen if the frontend is using modules and expects the complete definition
1954   // to be emitted elsewhere.
1955   if (CTy->isForwardDecl())
1956     return FwdDeclTI;
1957 
1958   TypeIndex TI;
1959   switch (CTy->getTag()) {
1960   case dwarf::DW_TAG_class_type:
1961   case dwarf::DW_TAG_structure_type:
1962     TI = lowerCompleteTypeClass(CTy);
1963     break;
1964   case dwarf::DW_TAG_union_type:
1965     TI = lowerCompleteTypeUnion(CTy);
1966     break;
1967   default:
1968     llvm_unreachable("not a record");
1969   }
1970 
1971   InsertResult.first->second = TI;
1972   return TI;
1973 }
1974 
1975 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1976 /// and do this until fixpoint, as each complete record type typically
1977 /// references
1978 /// many other record types.
1979 void CodeViewDebug::emitDeferredCompleteTypes() {
1980   SmallVector<const DICompositeType *, 4> TypesToEmit;
1981   while (!DeferredCompleteTypes.empty()) {
1982     std::swap(DeferredCompleteTypes, TypesToEmit);
1983     for (const DICompositeType *RecordTy : TypesToEmit)
1984       getCompleteTypeIndex(RecordTy);
1985     TypesToEmit.clear();
1986   }
1987 }
1988 
1989 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1990   // Get the sorted list of parameters and emit them first.
1991   SmallVector<const LocalVariable *, 6> Params;
1992   for (const LocalVariable &L : Locals)
1993     if (L.DIVar->isParameter())
1994       Params.push_back(&L);
1995   std::sort(Params.begin(), Params.end(),
1996             [](const LocalVariable *L, const LocalVariable *R) {
1997               return L->DIVar->getArg() < R->DIVar->getArg();
1998             });
1999   for (const LocalVariable *L : Params)
2000     emitLocalVariable(*L);
2001 
2002   // Next emit all non-parameters in the order that we found them.
2003   for (const LocalVariable &L : Locals)
2004     if (!L.DIVar->isParameter())
2005       emitLocalVariable(L);
2006 }
2007 
2008 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2009   // LocalSym record, see SymbolRecord.h for more info.
2010   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2011            *LocalEnd = MMI->getContext().createTempSymbol();
2012   OS.AddComment("Record length");
2013   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2014   OS.EmitLabel(LocalBegin);
2015 
2016   OS.AddComment("Record kind: S_LOCAL");
2017   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2018 
2019   LocalSymFlags Flags = LocalSymFlags::None;
2020   if (Var.DIVar->isParameter())
2021     Flags |= LocalSymFlags::IsParameter;
2022   if (Var.DefRanges.empty())
2023     Flags |= LocalSymFlags::IsOptimizedOut;
2024 
2025   OS.AddComment("TypeIndex");
2026   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2027   OS.EmitIntValue(TI.getIndex(), 4);
2028   OS.AddComment("Flags");
2029   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2030   // Truncate the name so we won't overflow the record length field.
2031   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2032   OS.EmitLabel(LocalEnd);
2033 
2034   // Calculate the on disk prefix of the appropriate def range record. The
2035   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2036   // should be big enough to hold all forms without memory allocation.
2037   SmallString<20> BytePrefix;
2038   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2039     BytePrefix.clear();
2040     if (DefRange.InMemory) {
2041       uint16_t RegRelFlags = 0;
2042       if (DefRange.IsSubfield) {
2043         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2044                       (DefRange.StructOffset
2045                        << DefRangeRegisterRelSym::OffsetInParentShift);
2046       }
2047       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2048       Sym.Hdr.Register = DefRange.CVRegister;
2049       Sym.Hdr.Flags = RegRelFlags;
2050       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2051       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2052       BytePrefix +=
2053           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2054       BytePrefix +=
2055           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2056     } else {
2057       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2058       if (DefRange.IsSubfield) {
2059         // Unclear what matters here.
2060         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2061         Sym.Hdr.Register = DefRange.CVRegister;
2062         Sym.Hdr.MayHaveNoName = 0;
2063         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2064 
2065         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2066         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2067                                 sizeof(SymKind));
2068         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2069                                 sizeof(Sym.Hdr));
2070       } else {
2071         // Unclear what matters here.
2072         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2073         Sym.Hdr.Register = DefRange.CVRegister;
2074         Sym.Hdr.MayHaveNoName = 0;
2075         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2076         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2077                                 sizeof(SymKind));
2078         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2079                                 sizeof(Sym.Hdr));
2080       }
2081     }
2082     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2083   }
2084 }
2085 
2086 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2087   const Function *GV = MF->getFunction();
2088   assert(FnDebugInfo.count(GV));
2089   assert(CurFn == &FnDebugInfo[GV]);
2090 
2091   collectVariableInfo(GV->getSubprogram());
2092 
2093   // Don't emit anything if we don't have any line tables.
2094   if (!CurFn->HaveLineInfo) {
2095     FnDebugInfo.erase(GV);
2096     CurFn = nullptr;
2097     return;
2098   }
2099 
2100   CurFn->End = Asm->getFunctionEnd();
2101 
2102   CurFn = nullptr;
2103 }
2104 
2105 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2106   DebugHandlerBase::beginInstruction(MI);
2107 
2108   // Ignore DBG_VALUE locations and function prologue.
2109   if (!Asm || !CurFn || MI->isDebugValue() ||
2110       MI->getFlag(MachineInstr::FrameSetup))
2111     return;
2112   DebugLoc DL = MI->getDebugLoc();
2113   if (DL == PrevInstLoc || !DL)
2114     return;
2115   maybeRecordLocation(DL, Asm->MF);
2116 }
2117 
2118 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleDebugFragmentKind Kind) {
2119   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2120            *EndLabel = MMI->getContext().createTempSymbol();
2121   OS.EmitIntValue(unsigned(Kind), 4);
2122   OS.AddComment("Subsection size");
2123   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2124   OS.EmitLabel(BeginLabel);
2125   return EndLabel;
2126 }
2127 
2128 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2129   OS.EmitLabel(EndLabel);
2130   // Every subsection must be aligned to a 4-byte boundary.
2131   OS.EmitValueToAlignment(4);
2132 }
2133 
2134 void CodeViewDebug::emitDebugInfoForUDTs(
2135     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2136   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2137     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2138              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2139     OS.AddComment("Record length");
2140     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2141     OS.EmitLabel(UDTRecordBegin);
2142 
2143     OS.AddComment("Record kind: S_UDT");
2144     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2145 
2146     OS.AddComment("Type");
2147     OS.EmitIntValue(UDT.second.getIndex(), 4);
2148 
2149     emitNullTerminatedSymbolName(OS, UDT.first);
2150     OS.EmitLabel(UDTRecordEnd);
2151   }
2152 }
2153 
2154 void CodeViewDebug::emitDebugInfoForGlobals() {
2155   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2156       GlobalMap;
2157   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2158     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2159     GV.getDebugInfo(GVEs);
2160     for (const auto *GVE : GVEs)
2161       GlobalMap[GVE] = &GV;
2162   }
2163 
2164   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2165   for (const MDNode *Node : CUs->operands()) {
2166     const auto *CU = cast<DICompileUnit>(Node);
2167 
2168     // First, emit all globals that are not in a comdat in a single symbol
2169     // substream. MSVC doesn't like it if the substream is empty, so only open
2170     // it if we have at least one global to emit.
2171     switchToDebugSectionForSymbol(nullptr);
2172     MCSymbol *EndLabel = nullptr;
2173     for (const auto *GVE : CU->getGlobalVariables()) {
2174       if (const auto *GV = GlobalMap.lookup(GVE))
2175         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2176           if (!EndLabel) {
2177             OS.AddComment("Symbol subsection for globals");
2178             EndLabel = beginCVSubsection(ModuleDebugFragmentKind::Symbols);
2179           }
2180           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2181           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2182         }
2183     }
2184     if (EndLabel)
2185       endCVSubsection(EndLabel);
2186 
2187     // Second, emit each global that is in a comdat into its own .debug$S
2188     // section along with its own symbol substream.
2189     for (const auto *GVE : CU->getGlobalVariables()) {
2190       if (const auto *GV = GlobalMap.lookup(GVE)) {
2191         if (GV->hasComdat()) {
2192           MCSymbol *GVSym = Asm->getSymbol(GV);
2193           OS.AddComment("Symbol subsection for " +
2194                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2195           switchToDebugSectionForSymbol(GVSym);
2196           EndLabel = beginCVSubsection(ModuleDebugFragmentKind::Symbols);
2197           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2198           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2199           endCVSubsection(EndLabel);
2200         }
2201       }
2202     }
2203   }
2204 }
2205 
2206 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2207   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2208   for (const MDNode *Node : CUs->operands()) {
2209     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2210       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2211         getTypeIndex(RT);
2212         // FIXME: Add to global/local DTU list.
2213       }
2214     }
2215   }
2216 }
2217 
2218 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2219                                            const GlobalVariable *GV,
2220                                            MCSymbol *GVSym) {
2221   // DataSym record, see SymbolRecord.h for more info.
2222   // FIXME: Thread local data, etc
2223   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2224            *DataEnd = MMI->getContext().createTempSymbol();
2225   OS.AddComment("Record length");
2226   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2227   OS.EmitLabel(DataBegin);
2228   if (DIGV->isLocalToUnit()) {
2229     if (GV->isThreadLocal()) {
2230       OS.AddComment("Record kind: S_LTHREAD32");
2231       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2232     } else {
2233       OS.AddComment("Record kind: S_LDATA32");
2234       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2235     }
2236   } else {
2237     if (GV->isThreadLocal()) {
2238       OS.AddComment("Record kind: S_GTHREAD32");
2239       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2240     } else {
2241       OS.AddComment("Record kind: S_GDATA32");
2242       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2243     }
2244   }
2245   OS.AddComment("Type");
2246   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2247   OS.AddComment("DataOffset");
2248   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2249   OS.AddComment("Segment");
2250   OS.EmitCOFFSectionIndex(GVSym);
2251   OS.AddComment("Name");
2252   emitNullTerminatedSymbolName(OS, DIGV->getName());
2253   OS.EmitLabel(DataEnd);
2254 }
2255