1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/Config/llvm-config.h"
39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
40 #include "llvm/DebugInfo/CodeView/CodeView.h"
41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
46 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GlobalValue.h"
54 #include "llvm/IR/GlobalVariable.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/MC/MCAsmInfo.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCSectionCOFF.h"
60 #include "llvm/MC/MCStreamer.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/BinaryByteStream.h"
63 #include "llvm/Support/BinaryStreamReader.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ScopedPrinter.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Target/TargetFrameLowering.h"
72 #include "llvm/Target/TargetLoweringObjectFile.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/Target/TargetRegisterInfo.h"
75 #include "llvm/Target/TargetSubtargetInfo.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <limits>
83 #include <string>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 using namespace llvm::codeview;
89 
90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
91     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
92   // If module doesn't have named metadata anchors or COFF debug section
93   // is not available, skip any debug info related stuff.
94   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
95       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
96     Asm = nullptr;
97     return;
98   }
99 
100   // Tell MMI that we have debug info.
101   MMI->setDebugInfoAvailability(true);
102 }
103 
104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
105   std::string &Filepath = FileToFilepathMap[File];
106   if (!Filepath.empty())
107     return Filepath;
108 
109   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
110 
111   // Clang emits directory and relative filename info into the IR, but CodeView
112   // operates on full paths.  We could change Clang to emit full paths too, but
113   // that would increase the IR size and probably not needed for other users.
114   // For now, just concatenate and canonicalize the path here.
115   if (Filename.find(':') == 1)
116     Filepath = Filename;
117   else
118     Filepath = (Dir + "\\" + Filename).str();
119 
120   // Canonicalize the path.  We have to do it textually because we may no longer
121   // have access the file in the filesystem.
122   // First, replace all slashes with backslashes.
123   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
124 
125   // Remove all "\.\" with "\".
126   size_t Cursor = 0;
127   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
128     Filepath.erase(Cursor, 2);
129 
130   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
131   // path should be well-formatted, e.g. start with a drive letter, etc.
132   Cursor = 0;
133   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
134     // Something's wrong if the path starts with "\..\", abort.
135     if (Cursor == 0)
136       break;
137 
138     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
139     if (PrevSlash == std::string::npos)
140       // Something's wrong, abort.
141       break;
142 
143     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
144     // The next ".." might be following the one we've just erased.
145     Cursor = PrevSlash;
146   }
147 
148   // Remove all duplicate backslashes.
149   Cursor = 0;
150   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
151     Filepath.erase(Cursor, 1);
152 
153   return Filepath;
154 }
155 
156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
157   unsigned NextId = FileIdMap.size() + 1;
158   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
159   if (Insertion.second) {
160     // We have to compute the full filepath and emit a .cv_file directive.
161     StringRef FullPath = getFullFilepath(F);
162     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
163     (void)Success;
164     assert(Success && ".cv_file directive failed");
165   }
166   return Insertion.first->second;
167 }
168 
169 CodeViewDebug::InlineSite &
170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
171                              const DISubprogram *Inlinee) {
172   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
173   InlineSite *Site = &SiteInsertion.first->second;
174   if (SiteInsertion.second) {
175     unsigned ParentFuncId = CurFn->FuncId;
176     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
177       ParentFuncId =
178           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
179               .SiteFuncId;
180 
181     Site->SiteFuncId = NextFuncId++;
182     OS.EmitCVInlineSiteIdDirective(
183         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
184         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
185     Site->Inlinee = Inlinee;
186     InlinedSubprograms.insert(Inlinee);
187     getFuncIdForSubprogram(Inlinee);
188   }
189   return *Site;
190 }
191 
192 static StringRef getPrettyScopeName(const DIScope *Scope) {
193   StringRef ScopeName = Scope->getName();
194   if (!ScopeName.empty())
195     return ScopeName;
196 
197   switch (Scope->getTag()) {
198   case dwarf::DW_TAG_enumeration_type:
199   case dwarf::DW_TAG_class_type:
200   case dwarf::DW_TAG_structure_type:
201   case dwarf::DW_TAG_union_type:
202     return "<unnamed-tag>";
203   case dwarf::DW_TAG_namespace:
204     return "`anonymous namespace'";
205   }
206 
207   return StringRef();
208 }
209 
210 static const DISubprogram *getQualifiedNameComponents(
211     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
212   const DISubprogram *ClosestSubprogram = nullptr;
213   while (Scope != nullptr) {
214     if (ClosestSubprogram == nullptr)
215       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
216     StringRef ScopeName = getPrettyScopeName(Scope);
217     if (!ScopeName.empty())
218       QualifiedNameComponents.push_back(ScopeName);
219     Scope = Scope->getScope().resolve();
220   }
221   return ClosestSubprogram;
222 }
223 
224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
225                                     StringRef TypeName) {
226   std::string FullyQualifiedName;
227   for (StringRef QualifiedNameComponent :
228        llvm::reverse(QualifiedNameComponents)) {
229     FullyQualifiedName.append(QualifiedNameComponent);
230     FullyQualifiedName.append("::");
231   }
232   FullyQualifiedName.append(TypeName);
233   return FullyQualifiedName;
234 }
235 
236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
237   SmallVector<StringRef, 5> QualifiedNameComponents;
238   getQualifiedNameComponents(Scope, QualifiedNameComponents);
239   return getQualifiedName(QualifiedNameComponents, Name);
240 }
241 
242 struct CodeViewDebug::TypeLoweringScope {
243   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
244   ~TypeLoweringScope() {
245     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
246     // inner TypeLoweringScopes don't attempt to emit deferred types.
247     if (CVD.TypeEmissionLevel == 1)
248       CVD.emitDeferredCompleteTypes();
249     --CVD.TypeEmissionLevel;
250   }
251   CodeViewDebug &CVD;
252 };
253 
254 static std::string getFullyQualifiedName(const DIScope *Ty) {
255   const DIScope *Scope = Ty->getScope().resolve();
256   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
257 }
258 
259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
260   // No scope means global scope and that uses the zero index.
261   if (!Scope || isa<DIFile>(Scope))
262     return TypeIndex();
263 
264   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
265 
266   // Check if we've already translated this scope.
267   auto I = TypeIndices.find({Scope, nullptr});
268   if (I != TypeIndices.end())
269     return I->second;
270 
271   // Build the fully qualified name of the scope.
272   std::string ScopeName = getFullyQualifiedName(Scope);
273   StringIdRecord SID(TypeIndex(), ScopeName);
274   auto TI = TypeTable.writeKnownType(SID);
275   return recordTypeIndexForDINode(Scope, TI);
276 }
277 
278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
279   assert(SP);
280 
281   // Check if we've already translated this subprogram.
282   auto I = TypeIndices.find({SP, nullptr});
283   if (I != TypeIndices.end())
284     return I->second;
285 
286   // The display name includes function template arguments. Drop them to match
287   // MSVC.
288   StringRef DisplayName = SP->getName().split('<').first;
289 
290   const DIScope *Scope = SP->getScope().resolve();
291   TypeIndex TI;
292   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
293     // If the scope is a DICompositeType, then this must be a method. Member
294     // function types take some special handling, and require access to the
295     // subprogram.
296     TypeIndex ClassType = getTypeIndex(Class);
297     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
298                                DisplayName);
299     TI = TypeTable.writeKnownType(MFuncId);
300   } else {
301     // Otherwise, this must be a free function.
302     TypeIndex ParentScope = getScopeIndex(Scope);
303     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
304     TI = TypeTable.writeKnownType(FuncId);
305   }
306 
307   return recordTypeIndexForDINode(SP, TI);
308 }
309 
310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
311                                                const DICompositeType *Class) {
312   // Always use the method declaration as the key for the function type. The
313   // method declaration contains the this adjustment.
314   if (SP->getDeclaration())
315     SP = SP->getDeclaration();
316   assert(!SP->getDeclaration() && "should use declaration as key");
317 
318   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
319   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
320   auto I = TypeIndices.find({SP, Class});
321   if (I != TypeIndices.end())
322     return I->second;
323 
324   // Make sure complete type info for the class is emitted *after* the member
325   // function type, as the complete class type is likely to reference this
326   // member function type.
327   TypeLoweringScope S(*this);
328   TypeIndex TI =
329       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
330   return recordTypeIndexForDINode(SP, TI, Class);
331 }
332 
333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
334                                                   TypeIndex TI,
335                                                   const DIType *ClassTy) {
336   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
337   (void)InsertResult;
338   assert(InsertResult.second && "DINode was already assigned a type index");
339   return TI;
340 }
341 
342 unsigned CodeViewDebug::getPointerSizeInBytes() {
343   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
344 }
345 
346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
347                                         const DILocation *InlinedAt) {
348   if (InlinedAt) {
349     // This variable was inlined. Associate it with the InlineSite.
350     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
351     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
352     Site.InlinedLocals.emplace_back(Var);
353   } else {
354     // This variable goes in the main ProcSym.
355     CurFn->Locals.emplace_back(Var);
356   }
357 }
358 
359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
360                                const DILocation *Loc) {
361   auto B = Locs.begin(), E = Locs.end();
362   if (std::find(B, E, Loc) == E)
363     Locs.push_back(Loc);
364 }
365 
366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
367                                         const MachineFunction *MF) {
368   // Skip this instruction if it has the same location as the previous one.
369   if (!DL || DL == PrevInstLoc)
370     return;
371 
372   const DIScope *Scope = DL.get()->getScope();
373   if (!Scope)
374     return;
375 
376   // Skip this line if it is longer than the maximum we can record.
377   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
378   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
379       LI.isNeverStepInto())
380     return;
381 
382   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
383   if (CI.getStartColumn() != DL.getCol())
384     return;
385 
386   if (!CurFn->HaveLineInfo)
387     CurFn->HaveLineInfo = true;
388   unsigned FileId = 0;
389   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
390     FileId = CurFn->LastFileId;
391   else
392     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
393   PrevInstLoc = DL;
394 
395   unsigned FuncId = CurFn->FuncId;
396   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
397     const DILocation *Loc = DL.get();
398 
399     // If this location was actually inlined from somewhere else, give it the ID
400     // of the inline call site.
401     FuncId =
402         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
403 
404     // Ensure we have links in the tree of inline call sites.
405     bool FirstLoc = true;
406     while ((SiteLoc = Loc->getInlinedAt())) {
407       InlineSite &Site =
408           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
409       if (!FirstLoc)
410         addLocIfNotPresent(Site.ChildSites, Loc);
411       FirstLoc = false;
412       Loc = SiteLoc;
413     }
414     addLocIfNotPresent(CurFn->ChildSites, Loc);
415   }
416 
417   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
418                         /*PrologueEnd=*/false, /*IsStmt=*/false,
419                         DL->getFilename(), SMLoc());
420 }
421 
422 void CodeViewDebug::emitCodeViewMagicVersion() {
423   OS.EmitValueToAlignment(4);
424   OS.AddComment("Debug section magic");
425   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
426 }
427 
428 void CodeViewDebug::endModule() {
429   if (!Asm || !MMI->hasDebugInfo())
430     return;
431 
432   assert(Asm != nullptr);
433 
434   // The COFF .debug$S section consists of several subsections, each starting
435   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
436   // of the payload followed by the payload itself.  The subsections are 4-byte
437   // aligned.
438 
439   // Use the generic .debug$S section, and make a subsection for all the inlined
440   // subprograms.
441   switchToDebugSectionForSymbol(nullptr);
442 
443   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
444   emitCompilerInformation();
445   endCVSubsection(CompilerInfo);
446 
447   emitInlineeLinesSubsection();
448 
449   // Emit per-function debug information.
450   for (auto &P : FnDebugInfo)
451     if (!P.first->isDeclarationForLinker())
452       emitDebugInfoForFunction(P.first, P.second);
453 
454   // Emit global variable debug information.
455   setCurrentSubprogram(nullptr);
456   emitDebugInfoForGlobals();
457 
458   // Emit retained types.
459   emitDebugInfoForRetainedTypes();
460 
461   // Switch back to the generic .debug$S section after potentially processing
462   // comdat symbol sections.
463   switchToDebugSectionForSymbol(nullptr);
464 
465   // Emit UDT records for any types used by global variables.
466   if (!GlobalUDTs.empty()) {
467     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
468     emitDebugInfoForUDTs(GlobalUDTs);
469     endCVSubsection(SymbolsEnd);
470   }
471 
472   // This subsection holds a file index to offset in string table table.
473   OS.AddComment("File index to string table offset subsection");
474   OS.EmitCVFileChecksumsDirective();
475 
476   // This subsection holds the string table.
477   OS.AddComment("String table");
478   OS.EmitCVStringTableDirective();
479 
480   // Emit type information last, so that any types we translate while emitting
481   // function info are included.
482   emitTypeInformation();
483 
484   clear();
485 }
486 
487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
488   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
489   // after a fixed length portion of the record. The fixed length portion should
490   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
491   // overall record size is less than the maximum allowed.
492   unsigned MaxFixedRecordLength = 0xF00;
493   SmallString<32> NullTerminatedString(
494       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
495   NullTerminatedString.push_back('\0');
496   OS.EmitBytes(NullTerminatedString);
497 }
498 
499 void CodeViewDebug::emitTypeInformation() {
500   // Do nothing if we have no debug info or if no non-trivial types were emitted
501   // to TypeTable during codegen.
502   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
503   if (!CU_Nodes)
504     return;
505   if (TypeTable.empty())
506     return;
507 
508   // Start the .debug$T section with 0x4.
509   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
510   emitCodeViewMagicVersion();
511 
512   SmallString<8> CommentPrefix;
513   if (OS.isVerboseAsm()) {
514     CommentPrefix += '\t';
515     CommentPrefix += Asm->MAI->getCommentString();
516     CommentPrefix += ' ';
517   }
518 
519   TypeTableCollection Table(TypeTable.records());
520   Optional<TypeIndex> B = Table.getFirst();
521   while (B) {
522     // This will fail if the record data is invalid.
523     CVType Record = Table.getType(*B);
524 
525     if (OS.isVerboseAsm()) {
526       // Emit a block comment describing the type record for readability.
527       SmallString<512> CommentBlock;
528       raw_svector_ostream CommentOS(CommentBlock);
529       ScopedPrinter SP(CommentOS);
530       SP.setPrefix(CommentPrefix);
531       TypeDumpVisitor TDV(Table, &SP, false);
532 
533       Error E = codeview::visitTypeRecord(Record, *B, TDV);
534       if (E) {
535         logAllUnhandledErrors(std::move(E), errs(), "error: ");
536         llvm_unreachable("produced malformed type record");
537       }
538       // emitRawComment will insert its own tab and comment string before
539       // the first line, so strip off our first one. It also prints its own
540       // newline.
541       OS.emitRawComment(
542           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
543     }
544     OS.EmitBinaryData(Record.str_data());
545     B = Table.getNext(*B);
546   }
547 }
548 
549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
550   switch (DWLang) {
551   case dwarf::DW_LANG_C:
552   case dwarf::DW_LANG_C89:
553   case dwarf::DW_LANG_C99:
554   case dwarf::DW_LANG_C11:
555   case dwarf::DW_LANG_ObjC:
556     return SourceLanguage::C;
557   case dwarf::DW_LANG_C_plus_plus:
558   case dwarf::DW_LANG_C_plus_plus_03:
559   case dwarf::DW_LANG_C_plus_plus_11:
560   case dwarf::DW_LANG_C_plus_plus_14:
561     return SourceLanguage::Cpp;
562   case dwarf::DW_LANG_Fortran77:
563   case dwarf::DW_LANG_Fortran90:
564   case dwarf::DW_LANG_Fortran03:
565   case dwarf::DW_LANG_Fortran08:
566     return SourceLanguage::Fortran;
567   case dwarf::DW_LANG_Pascal83:
568     return SourceLanguage::Pascal;
569   case dwarf::DW_LANG_Cobol74:
570   case dwarf::DW_LANG_Cobol85:
571     return SourceLanguage::Cobol;
572   case dwarf::DW_LANG_Java:
573     return SourceLanguage::Java;
574   case dwarf::DW_LANG_D:
575     return SourceLanguage::D;
576   default:
577     // There's no CodeView representation for this language, and CV doesn't
578     // have an "unknown" option for the language field, so we'll use MASM,
579     // as it's very low level.
580     return SourceLanguage::Masm;
581   }
582 }
583 
584 namespace {
585 struct Version {
586   int Part[4];
587 };
588 } // end anonymous namespace
589 
590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
591 // the version number.
592 static Version parseVersion(StringRef Name) {
593   Version V = {{0}};
594   int N = 0;
595   for (const char C : Name) {
596     if (isdigit(C)) {
597       V.Part[N] *= 10;
598       V.Part[N] += C - '0';
599     } else if (C == '.') {
600       ++N;
601       if (N >= 4)
602         return V;
603     } else if (N > 0)
604       return V;
605   }
606   return V;
607 }
608 
609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
610   switch (Type) {
611   case Triple::ArchType::x86:
612     return CPUType::Pentium3;
613   case Triple::ArchType::x86_64:
614     return CPUType::X64;
615   case Triple::ArchType::thumb:
616     return CPUType::Thumb;
617   case Triple::ArchType::aarch64:
618     return CPUType::ARM64;
619   default:
620     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
621   }
622 }
623 
624 void CodeViewDebug::emitCompilerInformation() {
625   MCContext &Context = MMI->getContext();
626   MCSymbol *CompilerBegin = Context.createTempSymbol(),
627            *CompilerEnd = Context.createTempSymbol();
628   OS.AddComment("Record length");
629   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
630   OS.EmitLabel(CompilerBegin);
631   OS.AddComment("Record kind: S_COMPILE3");
632   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
633   uint32_t Flags = 0;
634 
635   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
636   const MDNode *Node = *CUs->operands().begin();
637   const auto *CU = cast<DICompileUnit>(Node);
638 
639   // The low byte of the flags indicates the source language.
640   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
641   // TODO:  Figure out which other flags need to be set.
642 
643   OS.AddComment("Flags and language");
644   OS.EmitIntValue(Flags, 4);
645 
646   OS.AddComment("CPUType");
647   CPUType CPU =
648       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
649   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
650 
651   StringRef CompilerVersion = CU->getProducer();
652   Version FrontVer = parseVersion(CompilerVersion);
653   OS.AddComment("Frontend version");
654   for (int N = 0; N < 4; ++N)
655     OS.EmitIntValue(FrontVer.Part[N], 2);
656 
657   // Some Microsoft tools, like Binscope, expect a backend version number of at
658   // least 8.something, so we'll coerce the LLVM version into a form that
659   // guarantees it'll be big enough without really lying about the version.
660   int Major = 1000 * LLVM_VERSION_MAJOR +
661               10 * LLVM_VERSION_MINOR +
662               LLVM_VERSION_PATCH;
663   // Clamp it for builds that use unusually large version numbers.
664   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
665   Version BackVer = {{ Major, 0, 0, 0 }};
666   OS.AddComment("Backend version");
667   for (int N = 0; N < 4; ++N)
668     OS.EmitIntValue(BackVer.Part[N], 2);
669 
670   OS.AddComment("Null-terminated compiler version string");
671   emitNullTerminatedSymbolName(OS, CompilerVersion);
672 
673   OS.EmitLabel(CompilerEnd);
674 }
675 
676 void CodeViewDebug::emitInlineeLinesSubsection() {
677   if (InlinedSubprograms.empty())
678     return;
679 
680   OS.AddComment("Inlinee lines subsection");
681   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
682 
683   // We don't provide any extra file info.
684   // FIXME: Find out if debuggers use this info.
685   OS.AddComment("Inlinee lines signature");
686   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
687 
688   for (const DISubprogram *SP : InlinedSubprograms) {
689     assert(TypeIndices.count({SP, nullptr}));
690     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
691 
692     OS.AddBlankLine();
693     unsigned FileId = maybeRecordFile(SP->getFile());
694     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
695                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
696     OS.AddBlankLine();
697     // The filechecksum table uses 8 byte entries for now, and file ids start at
698     // 1.
699     unsigned FileOffset = (FileId - 1) * 8;
700     OS.AddComment("Type index of inlined function");
701     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
702     OS.AddComment("Offset into filechecksum table");
703     OS.EmitIntValue(FileOffset, 4);
704     OS.AddComment("Starting line number");
705     OS.EmitIntValue(SP->getLine(), 4);
706   }
707 
708   endCVSubsection(InlineEnd);
709 }
710 
711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
712                                         const DILocation *InlinedAt,
713                                         const InlineSite &Site) {
714   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
715            *InlineEnd = MMI->getContext().createTempSymbol();
716 
717   assert(TypeIndices.count({Site.Inlinee, nullptr}));
718   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
719 
720   // SymbolRecord
721   OS.AddComment("Record length");
722   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
723   OS.EmitLabel(InlineBegin);
724   OS.AddComment("Record kind: S_INLINESITE");
725   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
726 
727   OS.AddComment("PtrParent");
728   OS.EmitIntValue(0, 4);
729   OS.AddComment("PtrEnd");
730   OS.EmitIntValue(0, 4);
731   OS.AddComment("Inlinee type index");
732   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
733 
734   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
735   unsigned StartLineNum = Site.Inlinee->getLine();
736 
737   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
738                                     FI.Begin, FI.End);
739 
740   OS.EmitLabel(InlineEnd);
741 
742   emitLocalVariableList(Site.InlinedLocals);
743 
744   // Recurse on child inlined call sites before closing the scope.
745   for (const DILocation *ChildSite : Site.ChildSites) {
746     auto I = FI.InlineSites.find(ChildSite);
747     assert(I != FI.InlineSites.end() &&
748            "child site not in function inline site map");
749     emitInlinedCallSite(FI, ChildSite, I->second);
750   }
751 
752   // Close the scope.
753   OS.AddComment("Record length");
754   OS.EmitIntValue(2, 2);                                  // RecordLength
755   OS.AddComment("Record kind: S_INLINESITE_END");
756   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
757 }
758 
759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
760   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
761   // comdat key. A section may be comdat because of -ffunction-sections or
762   // because it is comdat in the IR.
763   MCSectionCOFF *GVSec =
764       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
765   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
766 
767   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
768       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
769   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
770 
771   OS.SwitchSection(DebugSec);
772 
773   // Emit the magic version number if this is the first time we've switched to
774   // this section.
775   if (ComdatDebugSections.insert(DebugSec).second)
776     emitCodeViewMagicVersion();
777 }
778 
779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
780                                              FunctionInfo &FI) {
781   // For each function there is a separate subsection
782   // which holds the PC to file:line table.
783   const MCSymbol *Fn = Asm->getSymbol(GV);
784   assert(Fn);
785 
786   // Switch to the to a comdat section, if appropriate.
787   switchToDebugSectionForSymbol(Fn);
788 
789   std::string FuncName;
790   auto *SP = GV->getSubprogram();
791   assert(SP);
792   setCurrentSubprogram(SP);
793 
794   // If we have a display name, build the fully qualified name by walking the
795   // chain of scopes.
796   if (!SP->getName().empty())
797     FuncName =
798         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
799 
800   // If our DISubprogram name is empty, use the mangled name.
801   if (FuncName.empty())
802     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
803 
804   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
805   OS.AddComment("Symbol subsection for " + Twine(FuncName));
806   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
807   {
808     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
809              *ProcRecordEnd = MMI->getContext().createTempSymbol();
810     OS.AddComment("Record length");
811     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
812     OS.EmitLabel(ProcRecordBegin);
813 
814     if (GV->hasLocalLinkage()) {
815       OS.AddComment("Record kind: S_LPROC32_ID");
816       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
817     } else {
818       OS.AddComment("Record kind: S_GPROC32_ID");
819       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
820     }
821 
822     // These fields are filled in by tools like CVPACK which run after the fact.
823     OS.AddComment("PtrParent");
824     OS.EmitIntValue(0, 4);
825     OS.AddComment("PtrEnd");
826     OS.EmitIntValue(0, 4);
827     OS.AddComment("PtrNext");
828     OS.EmitIntValue(0, 4);
829     // This is the important bit that tells the debugger where the function
830     // code is located and what's its size:
831     OS.AddComment("Code size");
832     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
833     OS.AddComment("Offset after prologue");
834     OS.EmitIntValue(0, 4);
835     OS.AddComment("Offset before epilogue");
836     OS.EmitIntValue(0, 4);
837     OS.AddComment("Function type index");
838     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
839     OS.AddComment("Function section relative address");
840     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
841     OS.AddComment("Function section index");
842     OS.EmitCOFFSectionIndex(Fn);
843     OS.AddComment("Flags");
844     OS.EmitIntValue(0, 1);
845     // Emit the function display name as a null-terminated string.
846     OS.AddComment("Function name");
847     // Truncate the name so we won't overflow the record length field.
848     emitNullTerminatedSymbolName(OS, FuncName);
849     OS.EmitLabel(ProcRecordEnd);
850 
851     emitLocalVariableList(FI.Locals);
852 
853     // Emit inlined call site information. Only emit functions inlined directly
854     // into the parent function. We'll emit the other sites recursively as part
855     // of their parent inline site.
856     for (const DILocation *InlinedAt : FI.ChildSites) {
857       auto I = FI.InlineSites.find(InlinedAt);
858       assert(I != FI.InlineSites.end() &&
859              "child site not in function inline site map");
860       emitInlinedCallSite(FI, InlinedAt, I->second);
861     }
862 
863     for (auto Annot : FI.Annotations) {
864       MCSymbol *Label = Annot.first;
865       MDTuple *Strs = cast<MDTuple>(Annot.second);
866       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
867                *AnnotEnd = MMI->getContext().createTempSymbol();
868       OS.AddComment("Record length");
869       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
870       OS.EmitLabel(AnnotBegin);
871       OS.AddComment("Record kind: S_ANNOTATION");
872       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
873       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
874       // FIXME: Make sure we don't overflow the max record size.
875       OS.EmitCOFFSectionIndex(Label);
876       OS.EmitIntValue(Strs->getNumOperands(), 2);
877       for (Metadata *MD : Strs->operands()) {
878         // MDStrings are null terminated, so we can do EmitBytes and get the
879         // nice .asciz directive.
880         StringRef Str = cast<MDString>(MD)->getString();
881         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
882         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
883       }
884       OS.EmitLabel(AnnotEnd);
885     }
886 
887     if (SP != nullptr)
888       emitDebugInfoForUDTs(LocalUDTs);
889 
890     // We're done with this function.
891     OS.AddComment("Record length");
892     OS.EmitIntValue(0x0002, 2);
893     OS.AddComment("Record kind: S_PROC_ID_END");
894     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
895   }
896   endCVSubsection(SymbolsEnd);
897 
898   // We have an assembler directive that takes care of the whole line table.
899   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
900 }
901 
902 CodeViewDebug::LocalVarDefRange
903 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
904   LocalVarDefRange DR;
905   DR.InMemory = -1;
906   DR.DataOffset = Offset;
907   assert(DR.DataOffset == Offset && "truncation");
908   DR.IsSubfield = 0;
909   DR.StructOffset = 0;
910   DR.CVRegister = CVRegister;
911   return DR;
912 }
913 
914 CodeViewDebug::LocalVarDefRange
915 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
916                                      int Offset, bool IsSubfield,
917                                      uint16_t StructOffset) {
918   LocalVarDefRange DR;
919   DR.InMemory = InMemory;
920   DR.DataOffset = Offset;
921   DR.IsSubfield = IsSubfield;
922   DR.StructOffset = StructOffset;
923   DR.CVRegister = CVRegister;
924   return DR;
925 }
926 
927 void CodeViewDebug::collectVariableInfoFromMFTable(
928     DenseSet<InlinedVariable> &Processed) {
929   const MachineFunction &MF = *Asm->MF;
930   const TargetSubtargetInfo &TSI = MF.getSubtarget();
931   const TargetFrameLowering *TFI = TSI.getFrameLowering();
932   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
933 
934   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
935     if (!VI.Var)
936       continue;
937     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
938            "Expected inlined-at fields to agree");
939 
940     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
941     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
942 
943     // If variable scope is not found then skip this variable.
944     if (!Scope)
945       continue;
946 
947     // If the variable has an attached offset expression, extract it.
948     // FIXME: Try to handle DW_OP_deref as well.
949     int64_t ExprOffset = 0;
950     if (VI.Expr)
951       if (!VI.Expr->extractIfOffset(ExprOffset))
952         continue;
953 
954     // Get the frame register used and the offset.
955     unsigned FrameReg = 0;
956     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
957     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
958 
959     // Calculate the label ranges.
960     LocalVarDefRange DefRange =
961         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
962     for (const InsnRange &Range : Scope->getRanges()) {
963       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
964       const MCSymbol *End = getLabelAfterInsn(Range.second);
965       End = End ? End : Asm->getFunctionEnd();
966       DefRange.Ranges.emplace_back(Begin, End);
967     }
968 
969     LocalVariable Var;
970     Var.DIVar = VI.Var;
971     Var.DefRanges.emplace_back(std::move(DefRange));
972     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
973   }
974 }
975 
976 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
977   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
978 }
979 
980 static bool needsReferenceType(const DbgVariableLocation &Loc) {
981   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
982 }
983 
984 void CodeViewDebug::calculateRanges(
985     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
986   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
987 
988   // Calculate the definition ranges.
989   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
990     const InsnRange &Range = *I;
991     const MachineInstr *DVInst = Range.first;
992     assert(DVInst->isDebugValue() && "Invalid History entry");
993     // FIXME: Find a way to represent constant variables, since they are
994     // relatively common.
995     Optional<DbgVariableLocation> Location =
996         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
997     if (!Location)
998       continue;
999 
1000     // CodeView can only express variables in register and variables in memory
1001     // at a constant offset from a register. However, for variables passed
1002     // indirectly by pointer, it is common for that pointer to be spilled to a
1003     // stack location. For the special case of one offseted load followed by a
1004     // zero offset load (a pointer spilled to the stack), we change the type of
1005     // the local variable from a value type to a reference type. This tricks the
1006     // debugger into doing the load for us.
1007     if (Var.UseReferenceType) {
1008       // We're using a reference type. Drop the last zero offset load.
1009       if (canUseReferenceType(*Location))
1010         Location->LoadChain.pop_back();
1011       else
1012         continue;
1013     } else if (needsReferenceType(*Location)) {
1014       // This location can't be expressed without switching to a reference type.
1015       // Start over using that.
1016       Var.UseReferenceType = true;
1017       Var.DefRanges.clear();
1018       calculateRanges(Var, Ranges);
1019       return;
1020     }
1021 
1022     // We can only handle a register or an offseted load of a register.
1023     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1024       continue;
1025     {
1026       LocalVarDefRange DR;
1027       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1028       DR.InMemory = !Location->LoadChain.empty();
1029       DR.DataOffset =
1030           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1031       if (Location->FragmentInfo) {
1032         DR.IsSubfield = true;
1033         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1034       } else {
1035         DR.IsSubfield = false;
1036         DR.StructOffset = 0;
1037       }
1038 
1039       if (Var.DefRanges.empty() ||
1040           Var.DefRanges.back().isDifferentLocation(DR)) {
1041         Var.DefRanges.emplace_back(std::move(DR));
1042       }
1043     }
1044 
1045     // Compute the label range.
1046     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1047     const MCSymbol *End = getLabelAfterInsn(Range.second);
1048     if (!End) {
1049       // This range is valid until the next overlapping bitpiece. In the
1050       // common case, ranges will not be bitpieces, so they will overlap.
1051       auto J = std::next(I);
1052       const DIExpression *DIExpr = DVInst->getDebugExpression();
1053       while (J != E &&
1054              !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1055         ++J;
1056       if (J != E)
1057         End = getLabelBeforeInsn(J->first);
1058       else
1059         End = Asm->getFunctionEnd();
1060     }
1061 
1062     // If the last range end is our begin, just extend the last range.
1063     // Otherwise make a new range.
1064     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1065         Var.DefRanges.back().Ranges;
1066     if (!R.empty() && R.back().second == Begin)
1067       R.back().second = End;
1068     else
1069       R.emplace_back(Begin, End);
1070 
1071     // FIXME: Do more range combining.
1072   }
1073 }
1074 
1075 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1076   DenseSet<InlinedVariable> Processed;
1077   // Grab the variable info that was squirreled away in the MMI side-table.
1078   collectVariableInfoFromMFTable(Processed);
1079 
1080   for (const auto &I : DbgValues) {
1081     InlinedVariable IV = I.first;
1082     if (Processed.count(IV))
1083       continue;
1084     const DILocalVariable *DIVar = IV.first;
1085     const DILocation *InlinedAt = IV.second;
1086 
1087     // Instruction ranges, specifying where IV is accessible.
1088     const auto &Ranges = I.second;
1089 
1090     LexicalScope *Scope = nullptr;
1091     if (InlinedAt)
1092       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1093     else
1094       Scope = LScopes.findLexicalScope(DIVar->getScope());
1095     // If variable scope is not found then skip this variable.
1096     if (!Scope)
1097       continue;
1098 
1099     LocalVariable Var;
1100     Var.DIVar = DIVar;
1101 
1102     calculateRanges(Var, Ranges);
1103     recordLocalVariable(std::move(Var), InlinedAt);
1104   }
1105 }
1106 
1107 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1108   const Function *GV = MF->getFunction();
1109   assert(FnDebugInfo.count(GV) == false);
1110   CurFn = &FnDebugInfo[GV];
1111   CurFn->FuncId = NextFuncId++;
1112   CurFn->Begin = Asm->getFunctionBegin();
1113 
1114   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1115 
1116   // Find the end of the function prolog.  First known non-DBG_VALUE and
1117   // non-frame setup location marks the beginning of the function body.
1118   // FIXME: is there a simpler a way to do this? Can we just search
1119   // for the first instruction of the function, not the last of the prolog?
1120   DebugLoc PrologEndLoc;
1121   bool EmptyPrologue = true;
1122   for (const auto &MBB : *MF) {
1123     for (const auto &MI : MBB) {
1124       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1125           MI.getDebugLoc()) {
1126         PrologEndLoc = MI.getDebugLoc();
1127         break;
1128       } else if (!MI.isMetaInstruction()) {
1129         EmptyPrologue = false;
1130       }
1131     }
1132   }
1133 
1134   // Record beginning of function if we have a non-empty prologue.
1135   if (PrologEndLoc && !EmptyPrologue) {
1136     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1137     maybeRecordLocation(FnStartDL, MF);
1138   }
1139 }
1140 
1141 static bool shouldEmitUdt(const DIType *T) {
1142   if (!T)
1143     return false;
1144 
1145   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1146   if (T->getTag() == dwarf::DW_TAG_typedef) {
1147     if (DIScope *Scope = T->getScope().resolve()) {
1148       switch (Scope->getTag()) {
1149       case dwarf::DW_TAG_structure_type:
1150       case dwarf::DW_TAG_class_type:
1151       case dwarf::DW_TAG_union_type:
1152         return false;
1153       }
1154     }
1155   }
1156 
1157   while (true) {
1158     if (!T || T->isForwardDecl())
1159       return false;
1160 
1161     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1162     if (!DT)
1163       return true;
1164     T = DT->getBaseType().resolve();
1165   }
1166   return true;
1167 }
1168 
1169 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1170   // Don't record empty UDTs.
1171   if (Ty->getName().empty())
1172     return;
1173   if (!shouldEmitUdt(Ty))
1174     return;
1175 
1176   SmallVector<StringRef, 5> QualifiedNameComponents;
1177   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1178       Ty->getScope().resolve(), QualifiedNameComponents);
1179 
1180   std::string FullyQualifiedName =
1181       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1182 
1183   if (ClosestSubprogram == nullptr) {
1184     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1185   } else if (ClosestSubprogram == CurrentSubprogram) {
1186     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1187   }
1188 
1189   // TODO: What if the ClosestSubprogram is neither null or the current
1190   // subprogram?  Currently, the UDT just gets dropped on the floor.
1191   //
1192   // The current behavior is not desirable.  To get maximal fidelity, we would
1193   // need to perform all type translation before beginning emission of .debug$S
1194   // and then make LocalUDTs a member of FunctionInfo
1195 }
1196 
1197 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1198   // Generic dispatch for lowering an unknown type.
1199   switch (Ty->getTag()) {
1200   case dwarf::DW_TAG_array_type:
1201     return lowerTypeArray(cast<DICompositeType>(Ty));
1202   case dwarf::DW_TAG_typedef:
1203     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1204   case dwarf::DW_TAG_base_type:
1205     return lowerTypeBasic(cast<DIBasicType>(Ty));
1206   case dwarf::DW_TAG_pointer_type:
1207     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1208       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1209     LLVM_FALLTHROUGH;
1210   case dwarf::DW_TAG_reference_type:
1211   case dwarf::DW_TAG_rvalue_reference_type:
1212     return lowerTypePointer(cast<DIDerivedType>(Ty));
1213   case dwarf::DW_TAG_ptr_to_member_type:
1214     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1215   case dwarf::DW_TAG_const_type:
1216   case dwarf::DW_TAG_volatile_type:
1217   // TODO: add support for DW_TAG_atomic_type here
1218     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1219   case dwarf::DW_TAG_subroutine_type:
1220     if (ClassTy) {
1221       // The member function type of a member function pointer has no
1222       // ThisAdjustment.
1223       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1224                                      /*ThisAdjustment=*/0);
1225     }
1226     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1227   case dwarf::DW_TAG_enumeration_type:
1228     return lowerTypeEnum(cast<DICompositeType>(Ty));
1229   case dwarf::DW_TAG_class_type:
1230   case dwarf::DW_TAG_structure_type:
1231     return lowerTypeClass(cast<DICompositeType>(Ty));
1232   case dwarf::DW_TAG_union_type:
1233     return lowerTypeUnion(cast<DICompositeType>(Ty));
1234   default:
1235     // Use the null type index.
1236     return TypeIndex();
1237   }
1238 }
1239 
1240 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1241   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1242   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1243   StringRef TypeName = Ty->getName();
1244 
1245   addToUDTs(Ty);
1246 
1247   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1248       TypeName == "HRESULT")
1249     return TypeIndex(SimpleTypeKind::HResult);
1250   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1251       TypeName == "wchar_t")
1252     return TypeIndex(SimpleTypeKind::WideCharacter);
1253 
1254   return UnderlyingTypeIndex;
1255 }
1256 
1257 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1258   DITypeRef ElementTypeRef = Ty->getBaseType();
1259   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1260   // IndexType is size_t, which depends on the bitness of the target.
1261   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1262                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1263                             : TypeIndex(SimpleTypeKind::UInt32Long);
1264 
1265   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1266 
1267   // Add subranges to array type.
1268   DINodeArray Elements = Ty->getElements();
1269   for (int i = Elements.size() - 1; i >= 0; --i) {
1270     const DINode *Element = Elements[i];
1271     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1272 
1273     const DISubrange *Subrange = cast<DISubrange>(Element);
1274     assert(Subrange->getLowerBound() == 0 &&
1275            "codeview doesn't support subranges with lower bounds");
1276     int64_t Count = Subrange->getCount();
1277 
1278     // Variable Length Array (VLA) has Count equal to '-1'.
1279     // Replace with Count '1', assume it is the minimum VLA length.
1280     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1281     if (Count == -1)
1282       Count = 1;
1283 
1284     // Update the element size and element type index for subsequent subranges.
1285     ElementSize *= Count;
1286 
1287     // If this is the outermost array, use the size from the array. It will be
1288     // more accurate if we had a VLA or an incomplete element type size.
1289     uint64_t ArraySize =
1290         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1291 
1292     StringRef Name = (i == 0) ? Ty->getName() : "";
1293     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1294     ElementTypeIndex = TypeTable.writeKnownType(AR);
1295   }
1296 
1297   return ElementTypeIndex;
1298 }
1299 
1300 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1301   TypeIndex Index;
1302   dwarf::TypeKind Kind;
1303   uint32_t ByteSize;
1304 
1305   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1306   ByteSize = Ty->getSizeInBits() / 8;
1307 
1308   SimpleTypeKind STK = SimpleTypeKind::None;
1309   switch (Kind) {
1310   case dwarf::DW_ATE_address:
1311     // FIXME: Translate
1312     break;
1313   case dwarf::DW_ATE_boolean:
1314     switch (ByteSize) {
1315     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1316     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1317     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1318     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1319     case 16: STK = SimpleTypeKind::Boolean128; break;
1320     }
1321     break;
1322   case dwarf::DW_ATE_complex_float:
1323     switch (ByteSize) {
1324     case 2:  STK = SimpleTypeKind::Complex16;  break;
1325     case 4:  STK = SimpleTypeKind::Complex32;  break;
1326     case 8:  STK = SimpleTypeKind::Complex64;  break;
1327     case 10: STK = SimpleTypeKind::Complex80;  break;
1328     case 16: STK = SimpleTypeKind::Complex128; break;
1329     }
1330     break;
1331   case dwarf::DW_ATE_float:
1332     switch (ByteSize) {
1333     case 2:  STK = SimpleTypeKind::Float16;  break;
1334     case 4:  STK = SimpleTypeKind::Float32;  break;
1335     case 6:  STK = SimpleTypeKind::Float48;  break;
1336     case 8:  STK = SimpleTypeKind::Float64;  break;
1337     case 10: STK = SimpleTypeKind::Float80;  break;
1338     case 16: STK = SimpleTypeKind::Float128; break;
1339     }
1340     break;
1341   case dwarf::DW_ATE_signed:
1342     switch (ByteSize) {
1343     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1344     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1345     case 4:  STK = SimpleTypeKind::Int32;           break;
1346     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1347     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1348     }
1349     break;
1350   case dwarf::DW_ATE_unsigned:
1351     switch (ByteSize) {
1352     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1353     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1354     case 4:  STK = SimpleTypeKind::UInt32;            break;
1355     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1356     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1357     }
1358     break;
1359   case dwarf::DW_ATE_UTF:
1360     switch (ByteSize) {
1361     case 2: STK = SimpleTypeKind::Character16; break;
1362     case 4: STK = SimpleTypeKind::Character32; break;
1363     }
1364     break;
1365   case dwarf::DW_ATE_signed_char:
1366     if (ByteSize == 1)
1367       STK = SimpleTypeKind::SignedCharacter;
1368     break;
1369   case dwarf::DW_ATE_unsigned_char:
1370     if (ByteSize == 1)
1371       STK = SimpleTypeKind::UnsignedCharacter;
1372     break;
1373   default:
1374     break;
1375   }
1376 
1377   // Apply some fixups based on the source-level type name.
1378   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1379     STK = SimpleTypeKind::Int32Long;
1380   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1381     STK = SimpleTypeKind::UInt32Long;
1382   if (STK == SimpleTypeKind::UInt16Short &&
1383       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1384     STK = SimpleTypeKind::WideCharacter;
1385   if ((STK == SimpleTypeKind::SignedCharacter ||
1386        STK == SimpleTypeKind::UnsignedCharacter) &&
1387       Ty->getName() == "char")
1388     STK = SimpleTypeKind::NarrowCharacter;
1389 
1390   return TypeIndex(STK);
1391 }
1392 
1393 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1394   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1395 
1396   // Pointers to simple types can use SimpleTypeMode, rather than having a
1397   // dedicated pointer type record.
1398   if (PointeeTI.isSimple() &&
1399       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1400       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1401     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1402                               ? SimpleTypeMode::NearPointer64
1403                               : SimpleTypeMode::NearPointer32;
1404     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1405   }
1406 
1407   PointerKind PK =
1408       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1409   PointerMode PM = PointerMode::Pointer;
1410   switch (Ty->getTag()) {
1411   default: llvm_unreachable("not a pointer tag type");
1412   case dwarf::DW_TAG_pointer_type:
1413     PM = PointerMode::Pointer;
1414     break;
1415   case dwarf::DW_TAG_reference_type:
1416     PM = PointerMode::LValueReference;
1417     break;
1418   case dwarf::DW_TAG_rvalue_reference_type:
1419     PM = PointerMode::RValueReference;
1420     break;
1421   }
1422   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1423   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1424   // do.
1425   PointerOptions PO = PointerOptions::None;
1426   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1427   return TypeTable.writeKnownType(PR);
1428 }
1429 
1430 static PointerToMemberRepresentation
1431 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1432   // SizeInBytes being zero generally implies that the member pointer type was
1433   // incomplete, which can happen if it is part of a function prototype. In this
1434   // case, use the unknown model instead of the general model.
1435   if (IsPMF) {
1436     switch (Flags & DINode::FlagPtrToMemberRep) {
1437     case 0:
1438       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1439                               : PointerToMemberRepresentation::GeneralFunction;
1440     case DINode::FlagSingleInheritance:
1441       return PointerToMemberRepresentation::SingleInheritanceFunction;
1442     case DINode::FlagMultipleInheritance:
1443       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1444     case DINode::FlagVirtualInheritance:
1445       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1446     }
1447   } else {
1448     switch (Flags & DINode::FlagPtrToMemberRep) {
1449     case 0:
1450       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1451                               : PointerToMemberRepresentation::GeneralData;
1452     case DINode::FlagSingleInheritance:
1453       return PointerToMemberRepresentation::SingleInheritanceData;
1454     case DINode::FlagMultipleInheritance:
1455       return PointerToMemberRepresentation::MultipleInheritanceData;
1456     case DINode::FlagVirtualInheritance:
1457       return PointerToMemberRepresentation::VirtualInheritanceData;
1458     }
1459   }
1460   llvm_unreachable("invalid ptr to member representation");
1461 }
1462 
1463 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1464   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1465   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1466   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1467   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1468                                                  : PointerKind::Near32;
1469   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1470   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1471                          : PointerMode::PointerToDataMember;
1472   PointerOptions PO = PointerOptions::None; // FIXME
1473   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1474   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1475   MemberPointerInfo MPI(
1476       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1477   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1478   return TypeTable.writeKnownType(PR);
1479 }
1480 
1481 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1482 /// have a translation, use the NearC convention.
1483 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1484   switch (DwarfCC) {
1485   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1486   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1487   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1488   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1489   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1490   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1491   }
1492   return CallingConvention::NearC;
1493 }
1494 
1495 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1496   ModifierOptions Mods = ModifierOptions::None;
1497   bool IsModifier = true;
1498   const DIType *BaseTy = Ty;
1499   while (IsModifier && BaseTy) {
1500     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1501     switch (BaseTy->getTag()) {
1502     case dwarf::DW_TAG_const_type:
1503       Mods |= ModifierOptions::Const;
1504       break;
1505     case dwarf::DW_TAG_volatile_type:
1506       Mods |= ModifierOptions::Volatile;
1507       break;
1508     default:
1509       IsModifier = false;
1510       break;
1511     }
1512     if (IsModifier)
1513       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1514   }
1515   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1516   ModifierRecord MR(ModifiedTI, Mods);
1517   return TypeTable.writeKnownType(MR);
1518 }
1519 
1520 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1521   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1522   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1523     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1524 
1525   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1526   ArrayRef<TypeIndex> ArgTypeIndices = None;
1527   if (!ReturnAndArgTypeIndices.empty()) {
1528     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1529     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1530     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1531   }
1532 
1533   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1534   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1535 
1536   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1537 
1538   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1539                             ArgTypeIndices.size(), ArgListIndex);
1540   return TypeTable.writeKnownType(Procedure);
1541 }
1542 
1543 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1544                                                  const DIType *ClassTy,
1545                                                  int ThisAdjustment) {
1546   // Lower the containing class type.
1547   TypeIndex ClassType = getTypeIndex(ClassTy);
1548 
1549   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1550   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1551     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1552 
1553   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1554   ArrayRef<TypeIndex> ArgTypeIndices = None;
1555   if (!ReturnAndArgTypeIndices.empty()) {
1556     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1557     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1558     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1559   }
1560   TypeIndex ThisTypeIndex = TypeIndex::Void();
1561   if (!ArgTypeIndices.empty()) {
1562     ThisTypeIndex = ArgTypeIndices.front();
1563     ArgTypeIndices = ArgTypeIndices.drop_front();
1564   }
1565 
1566   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1567   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1568 
1569   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1570 
1571   // TODO: Need to use the correct values for:
1572   //       FunctionOptions
1573   //       ThisPointerAdjustment.
1574   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1575                            FunctionOptions::None, ArgTypeIndices.size(),
1576                            ArgListIndex, ThisAdjustment);
1577   TypeIndex TI = TypeTable.writeKnownType(MFR);
1578 
1579   return TI;
1580 }
1581 
1582 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1583   unsigned VSlotCount =
1584       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1585   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1586 
1587   VFTableShapeRecord VFTSR(Slots);
1588   return TypeTable.writeKnownType(VFTSR);
1589 }
1590 
1591 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1592   switch (Flags & DINode::FlagAccessibility) {
1593   case DINode::FlagPrivate:   return MemberAccess::Private;
1594   case DINode::FlagPublic:    return MemberAccess::Public;
1595   case DINode::FlagProtected: return MemberAccess::Protected;
1596   case 0:
1597     // If there was no explicit access control, provide the default for the tag.
1598     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1599                                                  : MemberAccess::Public;
1600   }
1601   llvm_unreachable("access flags are exclusive");
1602 }
1603 
1604 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1605   if (SP->isArtificial())
1606     return MethodOptions::CompilerGenerated;
1607 
1608   // FIXME: Handle other MethodOptions.
1609 
1610   return MethodOptions::None;
1611 }
1612 
1613 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1614                                            bool Introduced) {
1615   switch (SP->getVirtuality()) {
1616   case dwarf::DW_VIRTUALITY_none:
1617     break;
1618   case dwarf::DW_VIRTUALITY_virtual:
1619     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1620   case dwarf::DW_VIRTUALITY_pure_virtual:
1621     return Introduced ? MethodKind::PureIntroducingVirtual
1622                       : MethodKind::PureVirtual;
1623   default:
1624     llvm_unreachable("unhandled virtuality case");
1625   }
1626 
1627   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1628 
1629   return MethodKind::Vanilla;
1630 }
1631 
1632 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1633   switch (Ty->getTag()) {
1634   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1635   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1636   }
1637   llvm_unreachable("unexpected tag");
1638 }
1639 
1640 /// Return ClassOptions that should be present on both the forward declaration
1641 /// and the defintion of a tag type.
1642 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1643   ClassOptions CO = ClassOptions::None;
1644 
1645   // MSVC always sets this flag, even for local types. Clang doesn't always
1646   // appear to give every type a linkage name, which may be problematic for us.
1647   // FIXME: Investigate the consequences of not following them here.
1648   if (!Ty->getIdentifier().empty())
1649     CO |= ClassOptions::HasUniqueName;
1650 
1651   // Put the Nested flag on a type if it appears immediately inside a tag type.
1652   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1653   // here. That flag is only set on definitions, and not forward declarations.
1654   const DIScope *ImmediateScope = Ty->getScope().resolve();
1655   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1656     CO |= ClassOptions::Nested;
1657 
1658   // Put the Scoped flag on function-local types.
1659   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1660        Scope = Scope->getScope().resolve()) {
1661     if (isa<DISubprogram>(Scope)) {
1662       CO |= ClassOptions::Scoped;
1663       break;
1664     }
1665   }
1666 
1667   return CO;
1668 }
1669 
1670 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1671   ClassOptions CO = getCommonClassOptions(Ty);
1672   TypeIndex FTI;
1673   unsigned EnumeratorCount = 0;
1674 
1675   if (Ty->isForwardDecl()) {
1676     CO |= ClassOptions::ForwardReference;
1677   } else {
1678     FieldListRecordBuilder FLRB(TypeTable);
1679 
1680     FLRB.begin();
1681     for (const DINode *Element : Ty->getElements()) {
1682       // We assume that the frontend provides all members in source declaration
1683       // order, which is what MSVC does.
1684       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1685         EnumeratorRecord ER(MemberAccess::Public,
1686                             APSInt::getUnsigned(Enumerator->getValue()),
1687                             Enumerator->getName());
1688         FLRB.writeMemberType(ER);
1689         EnumeratorCount++;
1690       }
1691     }
1692     FTI = FLRB.end(true);
1693   }
1694 
1695   std::string FullName = getFullyQualifiedName(Ty);
1696 
1697   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1698                 getTypeIndex(Ty->getBaseType()));
1699   return TypeTable.writeKnownType(ER);
1700 }
1701 
1702 //===----------------------------------------------------------------------===//
1703 // ClassInfo
1704 //===----------------------------------------------------------------------===//
1705 
1706 struct llvm::ClassInfo {
1707   struct MemberInfo {
1708     const DIDerivedType *MemberTypeNode;
1709     uint64_t BaseOffset;
1710   };
1711   // [MemberInfo]
1712   using MemberList = std::vector<MemberInfo>;
1713 
1714   using MethodsList = TinyPtrVector<const DISubprogram *>;
1715   // MethodName -> MethodsList
1716   using MethodsMap = MapVector<MDString *, MethodsList>;
1717 
1718   /// Base classes.
1719   std::vector<const DIDerivedType *> Inheritance;
1720 
1721   /// Direct members.
1722   MemberList Members;
1723   // Direct overloaded methods gathered by name.
1724   MethodsMap Methods;
1725 
1726   TypeIndex VShapeTI;
1727 
1728   std::vector<const DIType *> NestedTypes;
1729 };
1730 
1731 void CodeViewDebug::clear() {
1732   assert(CurFn == nullptr);
1733   FileIdMap.clear();
1734   FnDebugInfo.clear();
1735   FileToFilepathMap.clear();
1736   LocalUDTs.clear();
1737   GlobalUDTs.clear();
1738   TypeIndices.clear();
1739   CompleteTypeIndices.clear();
1740 }
1741 
1742 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1743                                       const DIDerivedType *DDTy) {
1744   if (!DDTy->getName().empty()) {
1745     Info.Members.push_back({DDTy, 0});
1746     return;
1747   }
1748   // An unnamed member must represent a nested struct or union. Add all the
1749   // indirect fields to the current record.
1750   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1751   uint64_t Offset = DDTy->getOffsetInBits();
1752   const DIType *Ty = DDTy->getBaseType().resolve();
1753   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1754   ClassInfo NestedInfo = collectClassInfo(DCTy);
1755   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1756     Info.Members.push_back(
1757         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1758 }
1759 
1760 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1761   ClassInfo Info;
1762   // Add elements to structure type.
1763   DINodeArray Elements = Ty->getElements();
1764   for (auto *Element : Elements) {
1765     // We assume that the frontend provides all members in source declaration
1766     // order, which is what MSVC does.
1767     if (!Element)
1768       continue;
1769     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1770       Info.Methods[SP->getRawName()].push_back(SP);
1771     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1772       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1773         collectMemberInfo(Info, DDTy);
1774       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1775         Info.Inheritance.push_back(DDTy);
1776       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1777                  DDTy->getName() == "__vtbl_ptr_type") {
1778         Info.VShapeTI = getTypeIndex(DDTy);
1779       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1780         Info.NestedTypes.push_back(DDTy);
1781       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1782         // Ignore friend members. It appears that MSVC emitted info about
1783         // friends in the past, but modern versions do not.
1784       }
1785     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1786       Info.NestedTypes.push_back(Composite);
1787     }
1788     // Skip other unrecognized kinds of elements.
1789   }
1790   return Info;
1791 }
1792 
1793 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1794   // First, construct the forward decl.  Don't look into Ty to compute the
1795   // forward decl options, since it might not be available in all TUs.
1796   TypeRecordKind Kind = getRecordKind(Ty);
1797   ClassOptions CO =
1798       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1799   std::string FullName = getFullyQualifiedName(Ty);
1800   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1801                  FullName, Ty->getIdentifier());
1802   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1803   if (!Ty->isForwardDecl())
1804     DeferredCompleteTypes.push_back(Ty);
1805   return FwdDeclTI;
1806 }
1807 
1808 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1809   // Construct the field list and complete type record.
1810   TypeRecordKind Kind = getRecordKind(Ty);
1811   ClassOptions CO = getCommonClassOptions(Ty);
1812   TypeIndex FieldTI;
1813   TypeIndex VShapeTI;
1814   unsigned FieldCount;
1815   bool ContainsNestedClass;
1816   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1817       lowerRecordFieldList(Ty);
1818 
1819   if (ContainsNestedClass)
1820     CO |= ClassOptions::ContainsNestedClass;
1821 
1822   std::string FullName = getFullyQualifiedName(Ty);
1823 
1824   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1825 
1826   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1827                  SizeInBytes, FullName, Ty->getIdentifier());
1828   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1829 
1830   if (const auto *File = Ty->getFile()) {
1831     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1832     TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1833     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1834     TypeTable.writeKnownType(USLR);
1835   }
1836 
1837   addToUDTs(Ty);
1838 
1839   return ClassTI;
1840 }
1841 
1842 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1843   ClassOptions CO =
1844       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1845   std::string FullName = getFullyQualifiedName(Ty);
1846   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1847   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1848   if (!Ty->isForwardDecl())
1849     DeferredCompleteTypes.push_back(Ty);
1850   return FwdDeclTI;
1851 }
1852 
1853 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1854   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1855   TypeIndex FieldTI;
1856   unsigned FieldCount;
1857   bool ContainsNestedClass;
1858   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1859       lowerRecordFieldList(Ty);
1860 
1861   if (ContainsNestedClass)
1862     CO |= ClassOptions::ContainsNestedClass;
1863 
1864   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1865   std::string FullName = getFullyQualifiedName(Ty);
1866 
1867   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1868                  Ty->getIdentifier());
1869   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1870 
1871   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1872   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1873   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1874   TypeTable.writeKnownType(USLR);
1875 
1876   addToUDTs(Ty);
1877 
1878   return UnionTI;
1879 }
1880 
1881 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1882 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1883   // Manually count members. MSVC appears to count everything that generates a
1884   // field list record. Each individual overload in a method overload group
1885   // contributes to this count, even though the overload group is a single field
1886   // list record.
1887   unsigned MemberCount = 0;
1888   ClassInfo Info = collectClassInfo(Ty);
1889   FieldListRecordBuilder FLBR(TypeTable);
1890   FLBR.begin();
1891 
1892   // Create base classes.
1893   for (const DIDerivedType *I : Info.Inheritance) {
1894     if (I->getFlags() & DINode::FlagVirtual) {
1895       // Virtual base.
1896       // FIXME: Emit VBPtrOffset when the frontend provides it.
1897       unsigned VBPtrOffset = 0;
1898       // FIXME: Despite the accessor name, the offset is really in bytes.
1899       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1900       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1901                             ? TypeRecordKind::IndirectVirtualBaseClass
1902                             : TypeRecordKind::VirtualBaseClass;
1903       VirtualBaseClassRecord VBCR(
1904           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1905           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1906           VBTableIndex);
1907 
1908       FLBR.writeMemberType(VBCR);
1909     } else {
1910       assert(I->getOffsetInBits() % 8 == 0 &&
1911              "bases must be on byte boundaries");
1912       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1913                           getTypeIndex(I->getBaseType()),
1914                           I->getOffsetInBits() / 8);
1915       FLBR.writeMemberType(BCR);
1916     }
1917   }
1918 
1919   // Create members.
1920   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1921     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1922     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1923     StringRef MemberName = Member->getName();
1924     MemberAccess Access =
1925         translateAccessFlags(Ty->getTag(), Member->getFlags());
1926 
1927     if (Member->isStaticMember()) {
1928       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1929       FLBR.writeMemberType(SDMR);
1930       MemberCount++;
1931       continue;
1932     }
1933 
1934     // Virtual function pointer member.
1935     if ((Member->getFlags() & DINode::FlagArtificial) &&
1936         Member->getName().startswith("_vptr$")) {
1937       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1938       FLBR.writeMemberType(VFPR);
1939       MemberCount++;
1940       continue;
1941     }
1942 
1943     // Data member.
1944     uint64_t MemberOffsetInBits =
1945         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1946     if (Member->isBitField()) {
1947       uint64_t StartBitOffset = MemberOffsetInBits;
1948       if (const auto *CI =
1949               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1950         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1951       }
1952       StartBitOffset -= MemberOffsetInBits;
1953       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1954                          StartBitOffset);
1955       MemberBaseType = TypeTable.writeKnownType(BFR);
1956     }
1957     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1958     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1959                          MemberName);
1960     FLBR.writeMemberType(DMR);
1961     MemberCount++;
1962   }
1963 
1964   // Create methods
1965   for (auto &MethodItr : Info.Methods) {
1966     StringRef Name = MethodItr.first->getString();
1967 
1968     std::vector<OneMethodRecord> Methods;
1969     for (const DISubprogram *SP : MethodItr.second) {
1970       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1971       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1972 
1973       unsigned VFTableOffset = -1;
1974       if (Introduced)
1975         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1976 
1977       Methods.push_back(OneMethodRecord(
1978           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1979           translateMethodKindFlags(SP, Introduced),
1980           translateMethodOptionFlags(SP), VFTableOffset, Name));
1981       MemberCount++;
1982     }
1983     assert(!Methods.empty() && "Empty methods map entry");
1984     if (Methods.size() == 1)
1985       FLBR.writeMemberType(Methods[0]);
1986     else {
1987       MethodOverloadListRecord MOLR(Methods);
1988       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1989       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1990       FLBR.writeMemberType(OMR);
1991     }
1992   }
1993 
1994   // Create nested classes.
1995   for (const DIType *Nested : Info.NestedTypes) {
1996     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1997     FLBR.writeMemberType(R);
1998     MemberCount++;
1999   }
2000 
2001   TypeIndex FieldTI = FLBR.end(true);
2002   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2003                          !Info.NestedTypes.empty());
2004 }
2005 
2006 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2007   if (!VBPType.getIndex()) {
2008     // Make a 'const int *' type.
2009     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2010     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
2011 
2012     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2013                                                   : PointerKind::Near32;
2014     PointerMode PM = PointerMode::Pointer;
2015     PointerOptions PO = PointerOptions::None;
2016     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2017 
2018     VBPType = TypeTable.writeKnownType(PR);
2019   }
2020 
2021   return VBPType;
2022 }
2023 
2024 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2025   const DIType *Ty = TypeRef.resolve();
2026   const DIType *ClassTy = ClassTyRef.resolve();
2027 
2028   // The null DIType is the void type. Don't try to hash it.
2029   if (!Ty)
2030     return TypeIndex::Void();
2031 
2032   // Check if we've already translated this type. Don't try to do a
2033   // get-or-create style insertion that caches the hash lookup across the
2034   // lowerType call. It will update the TypeIndices map.
2035   auto I = TypeIndices.find({Ty, ClassTy});
2036   if (I != TypeIndices.end())
2037     return I->second;
2038 
2039   TypeLoweringScope S(*this);
2040   TypeIndex TI = lowerType(Ty, ClassTy);
2041   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2042 }
2043 
2044 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2045   DIType *Ty = TypeRef.resolve();
2046   PointerRecord PR(getTypeIndex(Ty),
2047                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2048                                                 : PointerKind::Near32,
2049                    PointerMode::LValueReference, PointerOptions::None,
2050                    Ty->getSizeInBits() / 8);
2051   return TypeTable.writeKnownType(PR);
2052 }
2053 
2054 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2055   const DIType *Ty = TypeRef.resolve();
2056 
2057   // The null DIType is the void type. Don't try to hash it.
2058   if (!Ty)
2059     return TypeIndex::Void();
2060 
2061   // If this is a non-record type, the complete type index is the same as the
2062   // normal type index. Just call getTypeIndex.
2063   switch (Ty->getTag()) {
2064   case dwarf::DW_TAG_class_type:
2065   case dwarf::DW_TAG_structure_type:
2066   case dwarf::DW_TAG_union_type:
2067     break;
2068   default:
2069     return getTypeIndex(Ty);
2070   }
2071 
2072   // Check if we've already translated the complete record type.  Lowering a
2073   // complete type should never trigger lowering another complete type, so we
2074   // can reuse the hash table lookup result.
2075   const auto *CTy = cast<DICompositeType>(Ty);
2076   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2077   if (!InsertResult.second)
2078     return InsertResult.first->second;
2079 
2080   TypeLoweringScope S(*this);
2081 
2082   // Make sure the forward declaration is emitted first. It's unclear if this
2083   // is necessary, but MSVC does it, and we should follow suit until we can show
2084   // otherwise.
2085   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2086 
2087   // Just use the forward decl if we don't have complete type info. This might
2088   // happen if the frontend is using modules and expects the complete definition
2089   // to be emitted elsewhere.
2090   if (CTy->isForwardDecl())
2091     return FwdDeclTI;
2092 
2093   TypeIndex TI;
2094   switch (CTy->getTag()) {
2095   case dwarf::DW_TAG_class_type:
2096   case dwarf::DW_TAG_structure_type:
2097     TI = lowerCompleteTypeClass(CTy);
2098     break;
2099   case dwarf::DW_TAG_union_type:
2100     TI = lowerCompleteTypeUnion(CTy);
2101     break;
2102   default:
2103     llvm_unreachable("not a record");
2104   }
2105 
2106   InsertResult.first->second = TI;
2107   return TI;
2108 }
2109 
2110 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2111 /// and do this until fixpoint, as each complete record type typically
2112 /// references
2113 /// many other record types.
2114 void CodeViewDebug::emitDeferredCompleteTypes() {
2115   SmallVector<const DICompositeType *, 4> TypesToEmit;
2116   while (!DeferredCompleteTypes.empty()) {
2117     std::swap(DeferredCompleteTypes, TypesToEmit);
2118     for (const DICompositeType *RecordTy : TypesToEmit)
2119       getCompleteTypeIndex(RecordTy);
2120     TypesToEmit.clear();
2121   }
2122 }
2123 
2124 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2125   // Get the sorted list of parameters and emit them first.
2126   SmallVector<const LocalVariable *, 6> Params;
2127   for (const LocalVariable &L : Locals)
2128     if (L.DIVar->isParameter())
2129       Params.push_back(&L);
2130   std::sort(Params.begin(), Params.end(),
2131             [](const LocalVariable *L, const LocalVariable *R) {
2132               return L->DIVar->getArg() < R->DIVar->getArg();
2133             });
2134   for (const LocalVariable *L : Params)
2135     emitLocalVariable(*L);
2136 
2137   // Next emit all non-parameters in the order that we found them.
2138   for (const LocalVariable &L : Locals)
2139     if (!L.DIVar->isParameter())
2140       emitLocalVariable(L);
2141 }
2142 
2143 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2144   // LocalSym record, see SymbolRecord.h for more info.
2145   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2146            *LocalEnd = MMI->getContext().createTempSymbol();
2147   OS.AddComment("Record length");
2148   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2149   OS.EmitLabel(LocalBegin);
2150 
2151   OS.AddComment("Record kind: S_LOCAL");
2152   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2153 
2154   LocalSymFlags Flags = LocalSymFlags::None;
2155   if (Var.DIVar->isParameter())
2156     Flags |= LocalSymFlags::IsParameter;
2157   if (Var.DefRanges.empty())
2158     Flags |= LocalSymFlags::IsOptimizedOut;
2159 
2160   OS.AddComment("TypeIndex");
2161   TypeIndex TI = Var.UseReferenceType
2162                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2163                      : getCompleteTypeIndex(Var.DIVar->getType());
2164   OS.EmitIntValue(TI.getIndex(), 4);
2165   OS.AddComment("Flags");
2166   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2167   // Truncate the name so we won't overflow the record length field.
2168   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2169   OS.EmitLabel(LocalEnd);
2170 
2171   // Calculate the on disk prefix of the appropriate def range record. The
2172   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2173   // should be big enough to hold all forms without memory allocation.
2174   SmallString<20> BytePrefix;
2175   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2176     BytePrefix.clear();
2177     if (DefRange.InMemory) {
2178       uint16_t RegRelFlags = 0;
2179       if (DefRange.IsSubfield) {
2180         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2181                       (DefRange.StructOffset
2182                        << DefRangeRegisterRelSym::OffsetInParentShift);
2183       }
2184       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2185       Sym.Hdr.Register = DefRange.CVRegister;
2186       Sym.Hdr.Flags = RegRelFlags;
2187       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2188       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2189       BytePrefix +=
2190           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2191       BytePrefix +=
2192           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2193     } else {
2194       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2195       if (DefRange.IsSubfield) {
2196         // Unclear what matters here.
2197         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2198         Sym.Hdr.Register = DefRange.CVRegister;
2199         Sym.Hdr.MayHaveNoName = 0;
2200         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2201 
2202         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2203         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2204                                 sizeof(SymKind));
2205         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2206                                 sizeof(Sym.Hdr));
2207       } else {
2208         // Unclear what matters here.
2209         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2210         Sym.Hdr.Register = DefRange.CVRegister;
2211         Sym.Hdr.MayHaveNoName = 0;
2212         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2213         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2214                                 sizeof(SymKind));
2215         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2216                                 sizeof(Sym.Hdr));
2217       }
2218     }
2219     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2220   }
2221 }
2222 
2223 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2224   const Function *GV = MF->getFunction();
2225   assert(FnDebugInfo.count(GV));
2226   assert(CurFn == &FnDebugInfo[GV]);
2227 
2228   collectVariableInfo(GV->getSubprogram());
2229 
2230   // Don't emit anything if we don't have any line tables.
2231   if (!CurFn->HaveLineInfo) {
2232     FnDebugInfo.erase(GV);
2233     CurFn = nullptr;
2234     return;
2235   }
2236 
2237   CurFn->Annotations = MF->getCodeViewAnnotations();
2238 
2239   CurFn->End = Asm->getFunctionEnd();
2240 
2241   CurFn = nullptr;
2242 }
2243 
2244 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2245   DebugHandlerBase::beginInstruction(MI);
2246 
2247   // Ignore DBG_VALUE locations and function prologue.
2248   if (!Asm || !CurFn || MI->isDebugValue() ||
2249       MI->getFlag(MachineInstr::FrameSetup))
2250     return;
2251 
2252   // If the first instruction of a new MBB has no location, find the first
2253   // instruction with a location and use that.
2254   DebugLoc DL = MI->getDebugLoc();
2255   if (!DL && MI->getParent() != PrevInstBB) {
2256     for (const auto &NextMI : *MI->getParent()) {
2257       if (NextMI.isDebugValue())
2258         continue;
2259       DL = NextMI.getDebugLoc();
2260       if (DL)
2261         break;
2262     }
2263   }
2264   PrevInstBB = MI->getParent();
2265 
2266   // If we still don't have a debug location, don't record a location.
2267   if (!DL)
2268     return;
2269 
2270   maybeRecordLocation(DL, Asm->MF);
2271 }
2272 
2273 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2274   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2275            *EndLabel = MMI->getContext().createTempSymbol();
2276   OS.EmitIntValue(unsigned(Kind), 4);
2277   OS.AddComment("Subsection size");
2278   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2279   OS.EmitLabel(BeginLabel);
2280   return EndLabel;
2281 }
2282 
2283 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2284   OS.EmitLabel(EndLabel);
2285   // Every subsection must be aligned to a 4-byte boundary.
2286   OS.EmitValueToAlignment(4);
2287 }
2288 
2289 void CodeViewDebug::emitDebugInfoForUDTs(
2290     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2291   for (const auto &UDT : UDTs) {
2292     const DIType *T = UDT.second;
2293     assert(shouldEmitUdt(T));
2294 
2295     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2296              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2297     OS.AddComment("Record length");
2298     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2299     OS.EmitLabel(UDTRecordBegin);
2300 
2301     OS.AddComment("Record kind: S_UDT");
2302     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2303 
2304     OS.AddComment("Type");
2305     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2306 
2307     emitNullTerminatedSymbolName(OS, UDT.first);
2308     OS.EmitLabel(UDTRecordEnd);
2309   }
2310 }
2311 
2312 void CodeViewDebug::emitDebugInfoForGlobals() {
2313   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2314       GlobalMap;
2315   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2316     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2317     GV.getDebugInfo(GVEs);
2318     for (const auto *GVE : GVEs)
2319       GlobalMap[GVE] = &GV;
2320   }
2321 
2322   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2323   for (const MDNode *Node : CUs->operands()) {
2324     const auto *CU = cast<DICompileUnit>(Node);
2325 
2326     // First, emit all globals that are not in a comdat in a single symbol
2327     // substream. MSVC doesn't like it if the substream is empty, so only open
2328     // it if we have at least one global to emit.
2329     switchToDebugSectionForSymbol(nullptr);
2330     MCSymbol *EndLabel = nullptr;
2331     for (const auto *GVE : CU->getGlobalVariables()) {
2332       if (const auto *GV = GlobalMap.lookup(GVE))
2333         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2334           if (!EndLabel) {
2335             OS.AddComment("Symbol subsection for globals");
2336             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2337           }
2338           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2339           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2340         }
2341     }
2342     if (EndLabel)
2343       endCVSubsection(EndLabel);
2344 
2345     // Second, emit each global that is in a comdat into its own .debug$S
2346     // section along with its own symbol substream.
2347     for (const auto *GVE : CU->getGlobalVariables()) {
2348       if (const auto *GV = GlobalMap.lookup(GVE)) {
2349         if (GV->hasComdat()) {
2350           MCSymbol *GVSym = Asm->getSymbol(GV);
2351           OS.AddComment("Symbol subsection for " +
2352                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2353           switchToDebugSectionForSymbol(GVSym);
2354           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2355           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2356           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2357           endCVSubsection(EndLabel);
2358         }
2359       }
2360     }
2361   }
2362 }
2363 
2364 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2365   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2366   for (const MDNode *Node : CUs->operands()) {
2367     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2368       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2369         getTypeIndex(RT);
2370         // FIXME: Add to global/local DTU list.
2371       }
2372     }
2373   }
2374 }
2375 
2376 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2377                                            const GlobalVariable *GV,
2378                                            MCSymbol *GVSym) {
2379   // DataSym record, see SymbolRecord.h for more info.
2380   // FIXME: Thread local data, etc
2381   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2382            *DataEnd = MMI->getContext().createTempSymbol();
2383   OS.AddComment("Record length");
2384   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2385   OS.EmitLabel(DataBegin);
2386   if (DIGV->isLocalToUnit()) {
2387     if (GV->isThreadLocal()) {
2388       OS.AddComment("Record kind: S_LTHREAD32");
2389       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2390     } else {
2391       OS.AddComment("Record kind: S_LDATA32");
2392       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2393     }
2394   } else {
2395     if (GV->isThreadLocal()) {
2396       OS.AddComment("Record kind: S_GTHREAD32");
2397       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2398     } else {
2399       OS.AddComment("Record kind: S_GDATA32");
2400       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2401     }
2402   }
2403   OS.AddComment("Type");
2404   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2405   OS.AddComment("DataOffset");
2406   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2407   OS.AddComment("Segment");
2408   OS.EmitCOFFSectionIndex(GVSym);
2409   OS.AddComment("Name");
2410   emitNullTerminatedSymbolName(OS, DIGV->getName());
2411   OS.EmitLabel(DataEnd);
2412 }
2413