1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
44       TypeTable(Allocator), CurFn(nullptr) {
45   // If module doesn't have named metadata anchors or COFF debug section
46   // is not available, skip any debug info related stuff.
47   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
48       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
49     Asm = nullptr;
50     return;
51   }
52 
53   // Tell MMI that we have debug info.
54   MMI->setDebugInfoAvailability(true);
55 }
56 
57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
58   std::string &Filepath = FileToFilepathMap[File];
59   if (!Filepath.empty())
60     return Filepath;
61 
62   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
63 
64   // Clang emits directory and relative filename info into the IR, but CodeView
65   // operates on full paths.  We could change Clang to emit full paths too, but
66   // that would increase the IR size and probably not needed for other users.
67   // For now, just concatenate and canonicalize the path here.
68   if (Filename.find(':') == 1)
69     Filepath = Filename;
70   else
71     Filepath = (Dir + "\\" + Filename).str();
72 
73   // Canonicalize the path.  We have to do it textually because we may no longer
74   // have access the file in the filesystem.
75   // First, replace all slashes with backslashes.
76   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
77 
78   // Remove all "\.\" with "\".
79   size_t Cursor = 0;
80   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
81     Filepath.erase(Cursor, 2);
82 
83   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
84   // path should be well-formatted, e.g. start with a drive letter, etc.
85   Cursor = 0;
86   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
87     // Something's wrong if the path starts with "\..\", abort.
88     if (Cursor == 0)
89       break;
90 
91     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
92     if (PrevSlash == std::string::npos)
93       // Something's wrong, abort.
94       break;
95 
96     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
97     // The next ".." might be following the one we've just erased.
98     Cursor = PrevSlash;
99   }
100 
101   // Remove all duplicate backslashes.
102   Cursor = 0;
103   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
104     Filepath.erase(Cursor, 1);
105 
106   return Filepath;
107 }
108 
109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
110   unsigned NextId = FileIdMap.size() + 1;
111   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
112   if (Insertion.second) {
113     // We have to compute the full filepath and emit a .cv_file directive.
114     StringRef FullPath = getFullFilepath(F);
115     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
116     (void)Success;
117     assert(Success && ".cv_file directive failed");
118   }
119   return Insertion.first->second;
120 }
121 
122 CodeViewDebug::InlineSite &
123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
124                              const DISubprogram *Inlinee) {
125   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
126   InlineSite *Site = &SiteInsertion.first->second;
127   if (SiteInsertion.second) {
128     unsigned ParentFuncId = CurFn->FuncId;
129     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
130       ParentFuncId =
131           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
132               .SiteFuncId;
133 
134     Site->SiteFuncId = NextFuncId++;
135     OS.EmitCVInlineSiteIdDirective(
136         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
137         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
138     Site->Inlinee = Inlinee;
139     InlinedSubprograms.insert(Inlinee);
140     getFuncIdForSubprogram(Inlinee);
141   }
142   return *Site;
143 }
144 
145 static StringRef getPrettyScopeName(const DIScope *Scope) {
146   StringRef ScopeName = Scope->getName();
147   if (!ScopeName.empty())
148     return ScopeName;
149 
150   switch (Scope->getTag()) {
151   case dwarf::DW_TAG_enumeration_type:
152   case dwarf::DW_TAG_class_type:
153   case dwarf::DW_TAG_structure_type:
154   case dwarf::DW_TAG_union_type:
155     return "<unnamed-tag>";
156   case dwarf::DW_TAG_namespace:
157     return "`anonymous namespace'";
158   }
159 
160   return StringRef();
161 }
162 
163 static const DISubprogram *getQualifiedNameComponents(
164     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
165   const DISubprogram *ClosestSubprogram = nullptr;
166   while (Scope != nullptr) {
167     if (ClosestSubprogram == nullptr)
168       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
169     StringRef ScopeName = getPrettyScopeName(Scope);
170     if (!ScopeName.empty())
171       QualifiedNameComponents.push_back(ScopeName);
172     Scope = Scope->getScope().resolve();
173   }
174   return ClosestSubprogram;
175 }
176 
177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
178                                     StringRef TypeName) {
179   std::string FullyQualifiedName;
180   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
181     FullyQualifiedName.append(QualifiedNameComponent);
182     FullyQualifiedName.append("::");
183   }
184   FullyQualifiedName.append(TypeName);
185   return FullyQualifiedName;
186 }
187 
188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
189   SmallVector<StringRef, 5> QualifiedNameComponents;
190   getQualifiedNameComponents(Scope, QualifiedNameComponents);
191   return getQualifiedName(QualifiedNameComponents, Name);
192 }
193 
194 struct CodeViewDebug::TypeLoweringScope {
195   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
196   ~TypeLoweringScope() {
197     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
198     // inner TypeLoweringScopes don't attempt to emit deferred types.
199     if (CVD.TypeEmissionLevel == 1)
200       CVD.emitDeferredCompleteTypes();
201     --CVD.TypeEmissionLevel;
202   }
203   CodeViewDebug &CVD;
204 };
205 
206 static std::string getFullyQualifiedName(const DIScope *Ty) {
207   const DIScope *Scope = Ty->getScope().resolve();
208   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
209 }
210 
211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
212   // No scope means global scope and that uses the zero index.
213   if (!Scope || isa<DIFile>(Scope))
214     return TypeIndex();
215 
216   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
217 
218   // Check if we've already translated this scope.
219   auto I = TypeIndices.find({Scope, nullptr});
220   if (I != TypeIndices.end())
221     return I->second;
222 
223   // Build the fully qualified name of the scope.
224   std::string ScopeName = getFullyQualifiedName(Scope);
225   TypeIndex TI =
226       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
227   return recordTypeIndexForDINode(Scope, TI);
228 }
229 
230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
231   assert(SP);
232 
233   // Check if we've already translated this subprogram.
234   auto I = TypeIndices.find({SP, nullptr});
235   if (I != TypeIndices.end())
236     return I->second;
237 
238   // The display name includes function template arguments. Drop them to match
239   // MSVC.
240   StringRef DisplayName = SP->getDisplayName().split('<').first;
241 
242   const DIScope *Scope = SP->getScope().resolve();
243   TypeIndex TI;
244   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
245     // If the scope is a DICompositeType, then this must be a method. Member
246     // function types take some special handling, and require access to the
247     // subprogram.
248     TypeIndex ClassType = getTypeIndex(Class);
249     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
250                                DisplayName);
251     TI = TypeTable.writeKnownType(MFuncId);
252   } else {
253     // Otherwise, this must be a free function.
254     TypeIndex ParentScope = getScopeIndex(Scope);
255     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
256     TI = TypeTable.writeKnownType(FuncId);
257   }
258 
259   return recordTypeIndexForDINode(SP, TI);
260 }
261 
262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
263                                                const DICompositeType *Class) {
264   // Always use the method declaration as the key for the function type. The
265   // method declaration contains the this adjustment.
266   if (SP->getDeclaration())
267     SP = SP->getDeclaration();
268   assert(!SP->getDeclaration() && "should use declaration as key");
269 
270   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
271   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
272   auto I = TypeIndices.find({SP, Class});
273   if (I != TypeIndices.end())
274     return I->second;
275 
276   // Make sure complete type info for the class is emitted *after* the member
277   // function type, as the complete class type is likely to reference this
278   // member function type.
279   TypeLoweringScope S(*this);
280   TypeIndex TI =
281       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
282   return recordTypeIndexForDINode(SP, TI, Class);
283 }
284 
285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
286                                                   TypeIndex TI,
287                                                   const DIType *ClassTy) {
288   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
289   (void)InsertResult;
290   assert(InsertResult.second && "DINode was already assigned a type index");
291   return TI;
292 }
293 
294 unsigned CodeViewDebug::getPointerSizeInBytes() {
295   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
296 }
297 
298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
299                                         const DILocation *InlinedAt) {
300   if (InlinedAt) {
301     // This variable was inlined. Associate it with the InlineSite.
302     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
303     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
304     Site.InlinedLocals.emplace_back(Var);
305   } else {
306     // This variable goes in the main ProcSym.
307     CurFn->Locals.emplace_back(Var);
308   }
309 }
310 
311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
312                                const DILocation *Loc) {
313   auto B = Locs.begin(), E = Locs.end();
314   if (std::find(B, E, Loc) == E)
315     Locs.push_back(Loc);
316 }
317 
318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
319                                         const MachineFunction *MF) {
320   // Skip this instruction if it has the same location as the previous one.
321   if (DL == CurFn->LastLoc)
322     return;
323 
324   const DIScope *Scope = DL.get()->getScope();
325   if (!Scope)
326     return;
327 
328   // Skip this line if it is longer than the maximum we can record.
329   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
330   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
331       LI.isNeverStepInto())
332     return;
333 
334   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
335   if (CI.getStartColumn() != DL.getCol())
336     return;
337 
338   if (!CurFn->HaveLineInfo)
339     CurFn->HaveLineInfo = true;
340   unsigned FileId = 0;
341   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
342     FileId = CurFn->LastFileId;
343   else
344     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
345   CurFn->LastLoc = DL;
346 
347   unsigned FuncId = CurFn->FuncId;
348   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
349     const DILocation *Loc = DL.get();
350 
351     // If this location was actually inlined from somewhere else, give it the ID
352     // of the inline call site.
353     FuncId =
354         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
355 
356     // Ensure we have links in the tree of inline call sites.
357     bool FirstLoc = true;
358     while ((SiteLoc = Loc->getInlinedAt())) {
359       InlineSite &Site =
360           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
361       if (!FirstLoc)
362         addLocIfNotPresent(Site.ChildSites, Loc);
363       FirstLoc = false;
364       Loc = SiteLoc;
365     }
366     addLocIfNotPresent(CurFn->ChildSites, Loc);
367   }
368 
369   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
370                         /*PrologueEnd=*/false, /*IsStmt=*/false,
371                         DL->getFilename(), SMLoc());
372 }
373 
374 void CodeViewDebug::emitCodeViewMagicVersion() {
375   OS.EmitValueToAlignment(4);
376   OS.AddComment("Debug section magic");
377   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
378 }
379 
380 void CodeViewDebug::endModule() {
381   if (!Asm || !MMI->hasDebugInfo())
382     return;
383 
384   assert(Asm != nullptr);
385 
386   // The COFF .debug$S section consists of several subsections, each starting
387   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
388   // of the payload followed by the payload itself.  The subsections are 4-byte
389   // aligned.
390 
391   // Use the generic .debug$S section, and make a subsection for all the inlined
392   // subprograms.
393   switchToDebugSectionForSymbol(nullptr);
394   emitInlineeLinesSubsection();
395 
396   // Emit per-function debug information.
397   for (auto &P : FnDebugInfo)
398     if (!P.first->isDeclarationForLinker())
399       emitDebugInfoForFunction(P.first, P.second);
400 
401   // Emit global variable debug information.
402   setCurrentSubprogram(nullptr);
403   emitDebugInfoForGlobals();
404 
405   // Emit retained types.
406   emitDebugInfoForRetainedTypes();
407 
408   // Switch back to the generic .debug$S section after potentially processing
409   // comdat symbol sections.
410   switchToDebugSectionForSymbol(nullptr);
411 
412   // Emit UDT records for any types used by global variables.
413   if (!GlobalUDTs.empty()) {
414     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
415     emitDebugInfoForUDTs(GlobalUDTs);
416     endCVSubsection(SymbolsEnd);
417   }
418 
419   // This subsection holds a file index to offset in string table table.
420   OS.AddComment("File index to string table offset subsection");
421   OS.EmitCVFileChecksumsDirective();
422 
423   // This subsection holds the string table.
424   OS.AddComment("String table");
425   OS.EmitCVStringTableDirective();
426 
427   // Emit type information last, so that any types we translate while emitting
428   // function info are included.
429   emitTypeInformation();
430 
431   clear();
432 }
433 
434 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
435   // Microsoft's linker seems to have trouble with symbol names longer than
436   // 0xffd8 bytes.
437   S = S.substr(0, 0xffd8);
438   SmallString<32> NullTerminatedString(S);
439   NullTerminatedString.push_back('\0');
440   OS.EmitBytes(NullTerminatedString);
441 }
442 
443 void CodeViewDebug::emitTypeInformation() {
444   // Do nothing if we have no debug info or if no non-trivial types were emitted
445   // to TypeTable during codegen.
446   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
447   if (!CU_Nodes)
448     return;
449   if (TypeTable.empty())
450     return;
451 
452   // Start the .debug$T section with 0x4.
453   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
454   emitCodeViewMagicVersion();
455 
456   SmallString<8> CommentPrefix;
457   if (OS.isVerboseAsm()) {
458     CommentPrefix += '\t';
459     CommentPrefix += Asm->MAI->getCommentString();
460     CommentPrefix += ' ';
461   }
462 
463   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
464   TypeTable.ForEachRecord(
465       [&](TypeIndex Index, StringRef Record) {
466         if (OS.isVerboseAsm()) {
467           // Emit a block comment describing the type record for readability.
468           SmallString<512> CommentBlock;
469           raw_svector_ostream CommentOS(CommentBlock);
470           ScopedPrinter SP(CommentOS);
471           SP.setPrefix(CommentPrefix);
472           CVTD.setPrinter(&SP);
473           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
474           if (E) {
475             logAllUnhandledErrors(std::move(E), errs(), "error: ");
476             llvm_unreachable("produced malformed type record");
477           }
478           // emitRawComment will insert its own tab and comment string before
479           // the first line, so strip off our first one. It also prints its own
480           // newline.
481           OS.emitRawComment(
482               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
483         } else {
484 #ifndef NDEBUG
485           // Assert that the type data is valid even if we aren't dumping
486           // comments. The MSVC linker doesn't do much type record validation,
487           // so the first link of an invalid type record can succeed while
488           // subsequent links will fail with LNK1285.
489           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
490           CVTypeArray Types;
491           StreamReader Reader(Stream);
492           Error E = Reader.readArray(Types, Reader.getLength());
493           if (!E) {
494             TypeVisitorCallbacks C;
495             E = CVTypeVisitor(C).visitTypeStream(Types);
496           }
497           if (E) {
498             logAllUnhandledErrors(std::move(E), errs(), "error: ");
499             llvm_unreachable("produced malformed type record");
500           }
501 #endif
502         }
503         OS.EmitBinaryData(Record);
504       });
505 }
506 
507 namespace {
508 
509 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
510   switch (DWLang) {
511   case dwarf::DW_LANG_C:
512   case dwarf::DW_LANG_C89:
513   case dwarf::DW_LANG_C99:
514   case dwarf::DW_LANG_C11:
515   case dwarf::DW_LANG_ObjC:
516     return SourceLanguage::C;
517   case dwarf::DW_LANG_C_plus_plus:
518   case dwarf::DW_LANG_C_plus_plus_03:
519   case dwarf::DW_LANG_C_plus_plus_11:
520   case dwarf::DW_LANG_C_plus_plus_14:
521     return SourceLanguage::Cpp;
522   case dwarf::DW_LANG_Fortran77:
523   case dwarf::DW_LANG_Fortran90:
524   case dwarf::DW_LANG_Fortran03:
525   case dwarf::DW_LANG_Fortran08:
526     return SourceLanguage::Fortran;
527   case dwarf::DW_LANG_Pascal83:
528     return SourceLanguage::Pascal;
529   case dwarf::DW_LANG_Cobol74:
530   case dwarf::DW_LANG_Cobol85:
531     return SourceLanguage::Cobol;
532   case dwarf::DW_LANG_Java:
533     return SourceLanguage::Java;
534   default:
535     // There's no CodeView representation for this language, and CV doesn't
536     // have an "unknown" option for the language field, so we'll use MASM,
537     // as it's very low level.
538     return SourceLanguage::Masm;
539   }
540 }
541 
542 struct Version {
543   int Part[4];
544 };
545 
546 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
547 // the version number.
548 static Version parseVersion(StringRef Name) {
549   Version V = {{0}};
550   int N = 0;
551   for (const char C : Name) {
552     if (isdigit(C)) {
553       V.Part[N] *= 10;
554       V.Part[N] += C - '0';
555     } else if (C == '.') {
556       ++N;
557       if (N >= 4)
558         return V;
559     } else if (N > 0)
560       return V;
561   }
562   return V;
563 }
564 
565 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
566   switch (Type) {
567     case Triple::ArchType::x86:
568       return CPUType::Pentium3;
569     case Triple::ArchType::x86_64:
570       return CPUType::X64;
571     case Triple::ArchType::thumb:
572       return CPUType::Thumb;
573     default:
574       report_fatal_error("target architecture doesn't map to a CodeView "
575                          "CPUType");
576   }
577 }
578 
579 }  // anonymous namespace
580 
581 void CodeViewDebug::emitCompilerInformation() {
582   MCContext &Context = MMI->getContext();
583   MCSymbol *CompilerBegin = Context.createTempSymbol(),
584            *CompilerEnd = Context.createTempSymbol();
585   OS.AddComment("Record length");
586   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
587   OS.EmitLabel(CompilerBegin);
588   OS.AddComment("Record kind: S_COMPILE3");
589   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
590   uint32_t Flags = 0;
591 
592   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
593   const MDNode *Node = *CUs->operands().begin();
594   const auto *CU = cast<DICompileUnit>(Node);
595 
596   // The low byte of the flags indicates the source language.
597   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
598   // TODO:  Figure out which other flags need to be set.
599 
600   OS.AddComment("Flags and language");
601   OS.EmitIntValue(Flags, 4);
602 
603   OS.AddComment("CPUType");
604   CPUType CPU =
605       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
606   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
607 
608   StringRef CompilerVersion = CU->getProducer();
609   Version FrontVer = parseVersion(CompilerVersion);
610   OS.AddComment("Frontend version");
611   for (int N = 0; N < 4; ++N)
612     OS.EmitIntValue(FrontVer.Part[N], 2);
613 
614   // Some Microsoft tools, like Binscope, expect a backend version number of at
615   // least 8.something, so we'll coerce the LLVM version into a form that
616   // guarantees it'll be big enough without really lying about the version.
617   int Major = 1000 * LLVM_VERSION_MAJOR +
618               10 * LLVM_VERSION_MINOR +
619               LLVM_VERSION_PATCH;
620   // Clamp it for builds that use unusually large version numbers.
621   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
622   Version BackVer = {{ Major, 0, 0, 0 }};
623   OS.AddComment("Backend version");
624   for (int N = 0; N < 4; ++N)
625     OS.EmitIntValue(BackVer.Part[N], 2);
626 
627   OS.AddComment("Null-terminated compiler version string");
628   emitNullTerminatedSymbolName(OS, CompilerVersion);
629 
630   OS.EmitLabel(CompilerEnd);
631 }
632 
633 void CodeViewDebug::emitInlineeLinesSubsection() {
634   if (InlinedSubprograms.empty())
635     return;
636 
637   OS.AddComment("Inlinee lines subsection");
638   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
639 
640   // We don't provide any extra file info.
641   // FIXME: Find out if debuggers use this info.
642   OS.AddComment("Inlinee lines signature");
643   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
644 
645   for (const DISubprogram *SP : InlinedSubprograms) {
646     assert(TypeIndices.count({SP, nullptr}));
647     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
648 
649     OS.AddBlankLine();
650     unsigned FileId = maybeRecordFile(SP->getFile());
651     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
652                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
653     OS.AddBlankLine();
654     // The filechecksum table uses 8 byte entries for now, and file ids start at
655     // 1.
656     unsigned FileOffset = (FileId - 1) * 8;
657     OS.AddComment("Type index of inlined function");
658     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
659     OS.AddComment("Offset into filechecksum table");
660     OS.EmitIntValue(FileOffset, 4);
661     OS.AddComment("Starting line number");
662     OS.EmitIntValue(SP->getLine(), 4);
663   }
664 
665   endCVSubsection(InlineEnd);
666 }
667 
668 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
669                                         const DILocation *InlinedAt,
670                                         const InlineSite &Site) {
671   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
672            *InlineEnd = MMI->getContext().createTempSymbol();
673 
674   assert(TypeIndices.count({Site.Inlinee, nullptr}));
675   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
676 
677   // SymbolRecord
678   OS.AddComment("Record length");
679   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
680   OS.EmitLabel(InlineBegin);
681   OS.AddComment("Record kind: S_INLINESITE");
682   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
683 
684   OS.AddComment("PtrParent");
685   OS.EmitIntValue(0, 4);
686   OS.AddComment("PtrEnd");
687   OS.EmitIntValue(0, 4);
688   OS.AddComment("Inlinee type index");
689   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
690 
691   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
692   unsigned StartLineNum = Site.Inlinee->getLine();
693 
694   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
695                                     FI.Begin, FI.End);
696 
697   OS.EmitLabel(InlineEnd);
698 
699   emitLocalVariableList(Site.InlinedLocals);
700 
701   // Recurse on child inlined call sites before closing the scope.
702   for (const DILocation *ChildSite : Site.ChildSites) {
703     auto I = FI.InlineSites.find(ChildSite);
704     assert(I != FI.InlineSites.end() &&
705            "child site not in function inline site map");
706     emitInlinedCallSite(FI, ChildSite, I->second);
707   }
708 
709   // Close the scope.
710   OS.AddComment("Record length");
711   OS.EmitIntValue(2, 2);                                  // RecordLength
712   OS.AddComment("Record kind: S_INLINESITE_END");
713   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
714 }
715 
716 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
717   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
718   // comdat key. A section may be comdat because of -ffunction-sections or
719   // because it is comdat in the IR.
720   MCSectionCOFF *GVSec =
721       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
722   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
723 
724   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
725       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
726   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
727 
728   OS.SwitchSection(DebugSec);
729 
730   // Emit the magic version number if this is the first time we've switched to
731   // this section.
732   if (ComdatDebugSections.insert(DebugSec).second)
733     emitCodeViewMagicVersion();
734 }
735 
736 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
737                                              FunctionInfo &FI) {
738   // For each function there is a separate subsection
739   // which holds the PC to file:line table.
740   const MCSymbol *Fn = Asm->getSymbol(GV);
741   assert(Fn);
742 
743   // Switch to the to a comdat section, if appropriate.
744   switchToDebugSectionForSymbol(Fn);
745 
746   std::string FuncName;
747   auto *SP = GV->getSubprogram();
748   assert(SP);
749   setCurrentSubprogram(SP);
750 
751   // If we have a display name, build the fully qualified name by walking the
752   // chain of scopes.
753   if (!SP->getDisplayName().empty())
754     FuncName =
755         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
756 
757   // If our DISubprogram name is empty, use the mangled name.
758   if (FuncName.empty())
759     FuncName = GlobalValue::getRealLinkageName(GV->getName());
760 
761   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
762   OS.AddComment("Symbol subsection for " + Twine(FuncName));
763   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
764   {
765     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
766              *ProcRecordEnd = MMI->getContext().createTempSymbol();
767     OS.AddComment("Record length");
768     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
769     OS.EmitLabel(ProcRecordBegin);
770 
771     if (GV->hasLocalLinkage()) {
772       OS.AddComment("Record kind: S_LPROC32_ID");
773       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
774     } else {
775       OS.AddComment("Record kind: S_GPROC32_ID");
776       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
777     }
778 
779     // These fields are filled in by tools like CVPACK which run after the fact.
780     OS.AddComment("PtrParent");
781     OS.EmitIntValue(0, 4);
782     OS.AddComment("PtrEnd");
783     OS.EmitIntValue(0, 4);
784     OS.AddComment("PtrNext");
785     OS.EmitIntValue(0, 4);
786     // This is the important bit that tells the debugger where the function
787     // code is located and what's its size:
788     OS.AddComment("Code size");
789     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
790     OS.AddComment("Offset after prologue");
791     OS.EmitIntValue(0, 4);
792     OS.AddComment("Offset before epilogue");
793     OS.EmitIntValue(0, 4);
794     OS.AddComment("Function type index");
795     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
796     OS.AddComment("Function section relative address");
797     OS.EmitCOFFSecRel32(Fn);
798     OS.AddComment("Function section index");
799     OS.EmitCOFFSectionIndex(Fn);
800     OS.AddComment("Flags");
801     OS.EmitIntValue(0, 1);
802     // Emit the function display name as a null-terminated string.
803     OS.AddComment("Function name");
804     // Truncate the name so we won't overflow the record length field.
805     emitNullTerminatedSymbolName(OS, FuncName);
806     OS.EmitLabel(ProcRecordEnd);
807 
808     emitLocalVariableList(FI.Locals);
809 
810     // Emit inlined call site information. Only emit functions inlined directly
811     // into the parent function. We'll emit the other sites recursively as part
812     // of their parent inline site.
813     for (const DILocation *InlinedAt : FI.ChildSites) {
814       auto I = FI.InlineSites.find(InlinedAt);
815       assert(I != FI.InlineSites.end() &&
816              "child site not in function inline site map");
817       emitInlinedCallSite(FI, InlinedAt, I->second);
818     }
819 
820     if (SP != nullptr)
821       emitDebugInfoForUDTs(LocalUDTs);
822 
823     // We're done with this function.
824     OS.AddComment("Record length");
825     OS.EmitIntValue(0x0002, 2);
826     OS.AddComment("Record kind: S_PROC_ID_END");
827     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
828   }
829   endCVSubsection(SymbolsEnd);
830 
831   // We have an assembler directive that takes care of the whole line table.
832   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
833 }
834 
835 CodeViewDebug::LocalVarDefRange
836 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
837   LocalVarDefRange DR;
838   DR.InMemory = -1;
839   DR.DataOffset = Offset;
840   assert(DR.DataOffset == Offset && "truncation");
841   DR.StructOffset = 0;
842   DR.CVRegister = CVRegister;
843   return DR;
844 }
845 
846 CodeViewDebug::LocalVarDefRange
847 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
848   LocalVarDefRange DR;
849   DR.InMemory = 0;
850   DR.DataOffset = 0;
851   DR.StructOffset = 0;
852   DR.CVRegister = CVRegister;
853   return DR;
854 }
855 
856 void CodeViewDebug::collectVariableInfoFromMMITable(
857     DenseSet<InlinedVariable> &Processed) {
858   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
859   const TargetFrameLowering *TFI = TSI.getFrameLowering();
860   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
861 
862   for (const MachineModuleInfo::VariableDbgInfo &VI :
863        MMI->getVariableDbgInfo()) {
864     if (!VI.Var)
865       continue;
866     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
867            "Expected inlined-at fields to agree");
868 
869     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
870     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
871 
872     // If variable scope is not found then skip this variable.
873     if (!Scope)
874       continue;
875 
876     // Get the frame register used and the offset.
877     unsigned FrameReg = 0;
878     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
879     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
880 
881     // Calculate the label ranges.
882     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
883     for (const InsnRange &Range : Scope->getRanges()) {
884       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
885       const MCSymbol *End = getLabelAfterInsn(Range.second);
886       End = End ? End : Asm->getFunctionEnd();
887       DefRange.Ranges.emplace_back(Begin, End);
888     }
889 
890     LocalVariable Var;
891     Var.DIVar = VI.Var;
892     Var.DefRanges.emplace_back(std::move(DefRange));
893     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
894   }
895 }
896 
897 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
898   DenseSet<InlinedVariable> Processed;
899   // Grab the variable info that was squirreled away in the MMI side-table.
900   collectVariableInfoFromMMITable(Processed);
901 
902   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
903 
904   for (const auto &I : DbgValues) {
905     InlinedVariable IV = I.first;
906     if (Processed.count(IV))
907       continue;
908     const DILocalVariable *DIVar = IV.first;
909     const DILocation *InlinedAt = IV.second;
910 
911     // Instruction ranges, specifying where IV is accessible.
912     const auto &Ranges = I.second;
913 
914     LexicalScope *Scope = nullptr;
915     if (InlinedAt)
916       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
917     else
918       Scope = LScopes.findLexicalScope(DIVar->getScope());
919     // If variable scope is not found then skip this variable.
920     if (!Scope)
921       continue;
922 
923     LocalVariable Var;
924     Var.DIVar = DIVar;
925 
926     // Calculate the definition ranges.
927     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
928       const InsnRange &Range = *I;
929       const MachineInstr *DVInst = Range.first;
930       assert(DVInst->isDebugValue() && "Invalid History entry");
931       const DIExpression *DIExpr = DVInst->getDebugExpression();
932 
933       // Bail if there is a complex DWARF expression for now.
934       if (DIExpr && DIExpr->getNumElements() > 0)
935         continue;
936 
937       // Bail if operand 0 is not a valid register. This means the variable is a
938       // simple constant, or is described by a complex expression.
939       // FIXME: Find a way to represent constant variables, since they are
940       // relatively common.
941       unsigned Reg =
942           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
943       if (Reg == 0)
944         continue;
945 
946       // Handle the two cases we can handle: indirect in memory and in register.
947       bool IsIndirect = DVInst->getOperand(1).isImm();
948       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
949       {
950         LocalVarDefRange DefRange;
951         if (IsIndirect) {
952           int64_t Offset = DVInst->getOperand(1).getImm();
953           DefRange = createDefRangeMem(CVReg, Offset);
954         } else {
955           DefRange = createDefRangeReg(CVReg);
956         }
957         if (Var.DefRanges.empty() ||
958             Var.DefRanges.back().isDifferentLocation(DefRange)) {
959           Var.DefRanges.emplace_back(std::move(DefRange));
960         }
961       }
962 
963       // Compute the label range.
964       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
965       const MCSymbol *End = getLabelAfterInsn(Range.second);
966       if (!End) {
967         if (std::next(I) != E)
968           End = getLabelBeforeInsn(std::next(I)->first);
969         else
970           End = Asm->getFunctionEnd();
971       }
972 
973       // If the last range end is our begin, just extend the last range.
974       // Otherwise make a new range.
975       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
976           Var.DefRanges.back().Ranges;
977       if (!Ranges.empty() && Ranges.back().second == Begin)
978         Ranges.back().second = End;
979       else
980         Ranges.emplace_back(Begin, End);
981 
982       // FIXME: Do more range combining.
983     }
984 
985     recordLocalVariable(std::move(Var), InlinedAt);
986   }
987 }
988 
989 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
990   assert(!CurFn && "Can't process two functions at once!");
991 
992   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
993     return;
994 
995   DebugHandlerBase::beginFunction(MF);
996 
997   const Function *GV = MF->getFunction();
998   assert(FnDebugInfo.count(GV) == false);
999   CurFn = &FnDebugInfo[GV];
1000   CurFn->FuncId = NextFuncId++;
1001   CurFn->Begin = Asm->getFunctionBegin();
1002 
1003   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1004 
1005   // Find the end of the function prolog.  First known non-DBG_VALUE and
1006   // non-frame setup location marks the beginning of the function body.
1007   // FIXME: is there a simpler a way to do this? Can we just search
1008   // for the first instruction of the function, not the last of the prolog?
1009   DebugLoc PrologEndLoc;
1010   bool EmptyPrologue = true;
1011   for (const auto &MBB : *MF) {
1012     for (const auto &MI : MBB) {
1013       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1014           MI.getDebugLoc()) {
1015         PrologEndLoc = MI.getDebugLoc();
1016         break;
1017       } else if (!MI.isDebugValue()) {
1018         EmptyPrologue = false;
1019       }
1020     }
1021   }
1022 
1023   // Record beginning of function if we have a non-empty prologue.
1024   if (PrologEndLoc && !EmptyPrologue) {
1025     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1026     maybeRecordLocation(FnStartDL, MF);
1027   }
1028 }
1029 
1030 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1031   // Don't record empty UDTs.
1032   if (Ty->getName().empty())
1033     return;
1034 
1035   SmallVector<StringRef, 5> QualifiedNameComponents;
1036   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1037       Ty->getScope().resolve(), QualifiedNameComponents);
1038 
1039   std::string FullyQualifiedName =
1040       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1041 
1042   if (ClosestSubprogram == nullptr)
1043     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1044   else if (ClosestSubprogram == CurrentSubprogram)
1045     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1046 
1047   // TODO: What if the ClosestSubprogram is neither null or the current
1048   // subprogram?  Currently, the UDT just gets dropped on the floor.
1049   //
1050   // The current behavior is not desirable.  To get maximal fidelity, we would
1051   // need to perform all type translation before beginning emission of .debug$S
1052   // and then make LocalUDTs a member of FunctionInfo
1053 }
1054 
1055 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1056   // Generic dispatch for lowering an unknown type.
1057   switch (Ty->getTag()) {
1058   case dwarf::DW_TAG_array_type:
1059     return lowerTypeArray(cast<DICompositeType>(Ty));
1060   case dwarf::DW_TAG_typedef:
1061     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1062   case dwarf::DW_TAG_base_type:
1063     return lowerTypeBasic(cast<DIBasicType>(Ty));
1064   case dwarf::DW_TAG_pointer_type:
1065     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1066       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1067     LLVM_FALLTHROUGH;
1068   case dwarf::DW_TAG_reference_type:
1069   case dwarf::DW_TAG_rvalue_reference_type:
1070     return lowerTypePointer(cast<DIDerivedType>(Ty));
1071   case dwarf::DW_TAG_ptr_to_member_type:
1072     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1073   case dwarf::DW_TAG_const_type:
1074   case dwarf::DW_TAG_volatile_type:
1075     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1076   case dwarf::DW_TAG_subroutine_type:
1077     if (ClassTy) {
1078       // The member function type of a member function pointer has no
1079       // ThisAdjustment.
1080       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1081                                      /*ThisAdjustment=*/0);
1082     }
1083     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1084   case dwarf::DW_TAG_enumeration_type:
1085     return lowerTypeEnum(cast<DICompositeType>(Ty));
1086   case dwarf::DW_TAG_class_type:
1087   case dwarf::DW_TAG_structure_type:
1088     return lowerTypeClass(cast<DICompositeType>(Ty));
1089   case dwarf::DW_TAG_union_type:
1090     return lowerTypeUnion(cast<DICompositeType>(Ty));
1091   default:
1092     // Use the null type index.
1093     return TypeIndex();
1094   }
1095 }
1096 
1097 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1098   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1099   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1100   StringRef TypeName = Ty->getName();
1101 
1102   addToUDTs(Ty, UnderlyingTypeIndex);
1103 
1104   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1105       TypeName == "HRESULT")
1106     return TypeIndex(SimpleTypeKind::HResult);
1107   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1108       TypeName == "wchar_t")
1109     return TypeIndex(SimpleTypeKind::WideCharacter);
1110 
1111   return UnderlyingTypeIndex;
1112 }
1113 
1114 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1115   DITypeRef ElementTypeRef = Ty->getBaseType();
1116   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1117   // IndexType is size_t, which depends on the bitness of the target.
1118   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
1119                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1120                             : TypeIndex(SimpleTypeKind::UInt32Long);
1121 
1122   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1123 
1124 
1125   // We want to assert that the element type multiplied by the array lengths
1126   // match the size of the overall array. However, if we don't have complete
1127   // type information for the base type, we can't make this assertion. This
1128   // happens if limited debug info is enabled in this case:
1129   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1130   //   VTableOptzn array[3];
1131   // The DICompositeType of VTableOptzn will have size zero, and the array will
1132   // have size 3 * sizeof(void*), and we should avoid asserting.
1133   //
1134   // There is a related bug in the front-end where an array of a structure,
1135   // which was declared as incomplete structure first, ends up not getting a
1136   // size assigned to it. (PR28303)
1137   // Example:
1138   //   struct A(*p)[3];
1139   //   struct A { int f; } a[3];
1140   bool PartiallyIncomplete = false;
1141   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1142     PartiallyIncomplete = true;
1143   }
1144 
1145   // Add subranges to array type.
1146   DINodeArray Elements = Ty->getElements();
1147   for (int i = Elements.size() - 1; i >= 0; --i) {
1148     const DINode *Element = Elements[i];
1149     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1150 
1151     const DISubrange *Subrange = cast<DISubrange>(Element);
1152     assert(Subrange->getLowerBound() == 0 &&
1153            "codeview doesn't support subranges with lower bounds");
1154     int64_t Count = Subrange->getCount();
1155 
1156     // Variable Length Array (VLA) has Count equal to '-1'.
1157     // Replace with Count '1', assume it is the minimum VLA length.
1158     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1159     if (Count == -1) {
1160       Count = 1;
1161       PartiallyIncomplete = true;
1162     }
1163 
1164     // Update the element size and element type index for subsequent subranges.
1165     ElementSize *= Count;
1166 
1167     // If this is the outermost array, use the size from the array. It will be
1168     // more accurate if PartiallyIncomplete is true.
1169     uint64_t ArraySize =
1170         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1171 
1172     StringRef Name = (i == 0) ? Ty->getName() : "";
1173     ElementTypeIndex = TypeTable.writeKnownType(
1174         ArrayRecord(ElementTypeIndex, IndexType, ArraySize, Name));
1175   }
1176 
1177   (void)PartiallyIncomplete;
1178   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1179 
1180   return ElementTypeIndex;
1181 }
1182 
1183 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1184   TypeIndex Index;
1185   dwarf::TypeKind Kind;
1186   uint32_t ByteSize;
1187 
1188   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1189   ByteSize = Ty->getSizeInBits() / 8;
1190 
1191   SimpleTypeKind STK = SimpleTypeKind::None;
1192   switch (Kind) {
1193   case dwarf::DW_ATE_address:
1194     // FIXME: Translate
1195     break;
1196   case dwarf::DW_ATE_boolean:
1197     switch (ByteSize) {
1198     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1199     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1200     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1201     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1202     case 16: STK = SimpleTypeKind::Boolean128; break;
1203     }
1204     break;
1205   case dwarf::DW_ATE_complex_float:
1206     switch (ByteSize) {
1207     case 2:  STK = SimpleTypeKind::Complex16;  break;
1208     case 4:  STK = SimpleTypeKind::Complex32;  break;
1209     case 8:  STK = SimpleTypeKind::Complex64;  break;
1210     case 10: STK = SimpleTypeKind::Complex80;  break;
1211     case 16: STK = SimpleTypeKind::Complex128; break;
1212     }
1213     break;
1214   case dwarf::DW_ATE_float:
1215     switch (ByteSize) {
1216     case 2:  STK = SimpleTypeKind::Float16;  break;
1217     case 4:  STK = SimpleTypeKind::Float32;  break;
1218     case 6:  STK = SimpleTypeKind::Float48;  break;
1219     case 8:  STK = SimpleTypeKind::Float64;  break;
1220     case 10: STK = SimpleTypeKind::Float80;  break;
1221     case 16: STK = SimpleTypeKind::Float128; break;
1222     }
1223     break;
1224   case dwarf::DW_ATE_signed:
1225     switch (ByteSize) {
1226     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1227     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1228     case 4:  STK = SimpleTypeKind::Int32;           break;
1229     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1230     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1231     }
1232     break;
1233   case dwarf::DW_ATE_unsigned:
1234     switch (ByteSize) {
1235     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1236     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1237     case 4:  STK = SimpleTypeKind::UInt32;            break;
1238     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1239     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1240     }
1241     break;
1242   case dwarf::DW_ATE_UTF:
1243     switch (ByteSize) {
1244     case 2: STK = SimpleTypeKind::Character16; break;
1245     case 4: STK = SimpleTypeKind::Character32; break;
1246     }
1247     break;
1248   case dwarf::DW_ATE_signed_char:
1249     if (ByteSize == 1)
1250       STK = SimpleTypeKind::SignedCharacter;
1251     break;
1252   case dwarf::DW_ATE_unsigned_char:
1253     if (ByteSize == 1)
1254       STK = SimpleTypeKind::UnsignedCharacter;
1255     break;
1256   default:
1257     break;
1258   }
1259 
1260   // Apply some fixups based on the source-level type name.
1261   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1262     STK = SimpleTypeKind::Int32Long;
1263   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1264     STK = SimpleTypeKind::UInt32Long;
1265   if (STK == SimpleTypeKind::UInt16Short &&
1266       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1267     STK = SimpleTypeKind::WideCharacter;
1268   if ((STK == SimpleTypeKind::SignedCharacter ||
1269        STK == SimpleTypeKind::UnsignedCharacter) &&
1270       Ty->getName() == "char")
1271     STK = SimpleTypeKind::NarrowCharacter;
1272 
1273   return TypeIndex(STK);
1274 }
1275 
1276 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1277   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1278 
1279   // Pointers to simple types can use SimpleTypeMode, rather than having a
1280   // dedicated pointer type record.
1281   if (PointeeTI.isSimple() &&
1282       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1283       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1284     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1285                               ? SimpleTypeMode::NearPointer64
1286                               : SimpleTypeMode::NearPointer32;
1287     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1288   }
1289 
1290   PointerKind PK =
1291       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1292   PointerMode PM = PointerMode::Pointer;
1293   switch (Ty->getTag()) {
1294   default: llvm_unreachable("not a pointer tag type");
1295   case dwarf::DW_TAG_pointer_type:
1296     PM = PointerMode::Pointer;
1297     break;
1298   case dwarf::DW_TAG_reference_type:
1299     PM = PointerMode::LValueReference;
1300     break;
1301   case dwarf::DW_TAG_rvalue_reference_type:
1302     PM = PointerMode::RValueReference;
1303     break;
1304   }
1305   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1306   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1307   // do.
1308   PointerOptions PO = PointerOptions::None;
1309   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1310   return TypeTable.writeKnownType(PR);
1311 }
1312 
1313 static PointerToMemberRepresentation
1314 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1315   // SizeInBytes being zero generally implies that the member pointer type was
1316   // incomplete, which can happen if it is part of a function prototype. In this
1317   // case, use the unknown model instead of the general model.
1318   if (IsPMF) {
1319     switch (Flags & DINode::FlagPtrToMemberRep) {
1320     case 0:
1321       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1322                               : PointerToMemberRepresentation::GeneralFunction;
1323     case DINode::FlagSingleInheritance:
1324       return PointerToMemberRepresentation::SingleInheritanceFunction;
1325     case DINode::FlagMultipleInheritance:
1326       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1327     case DINode::FlagVirtualInheritance:
1328       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1329     }
1330   } else {
1331     switch (Flags & DINode::FlagPtrToMemberRep) {
1332     case 0:
1333       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1334                               : PointerToMemberRepresentation::GeneralData;
1335     case DINode::FlagSingleInheritance:
1336       return PointerToMemberRepresentation::SingleInheritanceData;
1337     case DINode::FlagMultipleInheritance:
1338       return PointerToMemberRepresentation::MultipleInheritanceData;
1339     case DINode::FlagVirtualInheritance:
1340       return PointerToMemberRepresentation::VirtualInheritanceData;
1341     }
1342   }
1343   llvm_unreachable("invalid ptr to member representation");
1344 }
1345 
1346 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1347   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1348   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1349   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1350   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1351                                                    : PointerKind::Near32;
1352   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1353   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1354                          : PointerMode::PointerToDataMember;
1355   PointerOptions PO = PointerOptions::None; // FIXME
1356   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1357   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1358   MemberPointerInfo MPI(
1359       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1360   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1361   return TypeTable.writeKnownType(PR);
1362 }
1363 
1364 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1365 /// have a translation, use the NearC convention.
1366 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1367   switch (DwarfCC) {
1368   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1369   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1370   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1371   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1372   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1373   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1374   }
1375   return CallingConvention::NearC;
1376 }
1377 
1378 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1379   ModifierOptions Mods = ModifierOptions::None;
1380   bool IsModifier = true;
1381   const DIType *BaseTy = Ty;
1382   while (IsModifier && BaseTy) {
1383     // FIXME: Need to add DWARF tag for __unaligned.
1384     switch (BaseTy->getTag()) {
1385     case dwarf::DW_TAG_const_type:
1386       Mods |= ModifierOptions::Const;
1387       break;
1388     case dwarf::DW_TAG_volatile_type:
1389       Mods |= ModifierOptions::Volatile;
1390       break;
1391     default:
1392       IsModifier = false;
1393       break;
1394     }
1395     if (IsModifier)
1396       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1397   }
1398   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1399   return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods));
1400 }
1401 
1402 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1403   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1404   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1405     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1406 
1407   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1408   ArrayRef<TypeIndex> ArgTypeIndices = None;
1409   if (!ReturnAndArgTypeIndices.empty()) {
1410     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1411     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1412     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1413   }
1414 
1415   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1416   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1417 
1418   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1419 
1420   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1421                             ArgTypeIndices.size(), ArgListIndex);
1422   return TypeTable.writeKnownType(Procedure);
1423 }
1424 
1425 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1426                                                  const DIType *ClassTy,
1427                                                  int ThisAdjustment) {
1428   // Lower the containing class type.
1429   TypeIndex ClassType = getTypeIndex(ClassTy);
1430 
1431   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1432   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1433     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1434 
1435   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1436   ArrayRef<TypeIndex> ArgTypeIndices = None;
1437   if (!ReturnAndArgTypeIndices.empty()) {
1438     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1439     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1440     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1441   }
1442   TypeIndex ThisTypeIndex = TypeIndex::Void();
1443   if (!ArgTypeIndices.empty()) {
1444     ThisTypeIndex = ArgTypeIndices.front();
1445     ArgTypeIndices = ArgTypeIndices.drop_front();
1446   }
1447 
1448   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1449   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1450 
1451   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1452 
1453   // TODO: Need to use the correct values for:
1454   //       FunctionOptions
1455   //       ThisPointerAdjustment.
1456   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1457       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1458       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1459 
1460   return TI;
1461 }
1462 
1463 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1464   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1465   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1466   return TypeTable.writeKnownType(VFTableShapeRecord(Slots));
1467 }
1468 
1469 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1470   switch (Flags & DINode::FlagAccessibility) {
1471   case DINode::FlagPrivate:   return MemberAccess::Private;
1472   case DINode::FlagPublic:    return MemberAccess::Public;
1473   case DINode::FlagProtected: return MemberAccess::Protected;
1474   case 0:
1475     // If there was no explicit access control, provide the default for the tag.
1476     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1477                                                  : MemberAccess::Public;
1478   }
1479   llvm_unreachable("access flags are exclusive");
1480 }
1481 
1482 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1483   if (SP->isArtificial())
1484     return MethodOptions::CompilerGenerated;
1485 
1486   // FIXME: Handle other MethodOptions.
1487 
1488   return MethodOptions::None;
1489 }
1490 
1491 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1492                                            bool Introduced) {
1493   switch (SP->getVirtuality()) {
1494   case dwarf::DW_VIRTUALITY_none:
1495     break;
1496   case dwarf::DW_VIRTUALITY_virtual:
1497     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1498   case dwarf::DW_VIRTUALITY_pure_virtual:
1499     return Introduced ? MethodKind::PureIntroducingVirtual
1500                       : MethodKind::PureVirtual;
1501   default:
1502     llvm_unreachable("unhandled virtuality case");
1503   }
1504 
1505   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1506 
1507   return MethodKind::Vanilla;
1508 }
1509 
1510 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1511   switch (Ty->getTag()) {
1512   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1513   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1514   }
1515   llvm_unreachable("unexpected tag");
1516 }
1517 
1518 /// Return ClassOptions that should be present on both the forward declaration
1519 /// and the defintion of a tag type.
1520 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1521   ClassOptions CO = ClassOptions::None;
1522 
1523   // MSVC always sets this flag, even for local types. Clang doesn't always
1524   // appear to give every type a linkage name, which may be problematic for us.
1525   // FIXME: Investigate the consequences of not following them here.
1526   if (!Ty->getIdentifier().empty())
1527     CO |= ClassOptions::HasUniqueName;
1528 
1529   // Put the Nested flag on a type if it appears immediately inside a tag type.
1530   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1531   // here. That flag is only set on definitions, and not forward declarations.
1532   const DIScope *ImmediateScope = Ty->getScope().resolve();
1533   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1534     CO |= ClassOptions::Nested;
1535 
1536   // Put the Scoped flag on function-local types.
1537   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1538        Scope = Scope->getScope().resolve()) {
1539     if (isa<DISubprogram>(Scope)) {
1540       CO |= ClassOptions::Scoped;
1541       break;
1542     }
1543   }
1544 
1545   return CO;
1546 }
1547 
1548 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1549   ClassOptions CO = getCommonClassOptions(Ty);
1550   TypeIndex FTI;
1551   unsigned EnumeratorCount = 0;
1552 
1553   if (Ty->isForwardDecl()) {
1554     CO |= ClassOptions::ForwardReference;
1555   } else {
1556     FieldListRecordBuilder Fields;
1557     for (const DINode *Element : Ty->getElements()) {
1558       // We assume that the frontend provides all members in source declaration
1559       // order, which is what MSVC does.
1560       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1561         Fields.writeMemberType(EnumeratorRecord(
1562             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1563             Enumerator->getName()));
1564         EnumeratorCount++;
1565       }
1566     }
1567     FTI = TypeTable.writeFieldList(Fields);
1568   }
1569 
1570   std::string FullName = getFullyQualifiedName(Ty);
1571 
1572   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1573                                              Ty->getIdentifier(),
1574                                              getTypeIndex(Ty->getBaseType())));
1575 }
1576 
1577 //===----------------------------------------------------------------------===//
1578 // ClassInfo
1579 //===----------------------------------------------------------------------===//
1580 
1581 struct llvm::ClassInfo {
1582   struct MemberInfo {
1583     const DIDerivedType *MemberTypeNode;
1584     uint64_t BaseOffset;
1585   };
1586   // [MemberInfo]
1587   typedef std::vector<MemberInfo> MemberList;
1588 
1589   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1590   // MethodName -> MethodsList
1591   typedef MapVector<MDString *, MethodsList> MethodsMap;
1592 
1593   /// Base classes.
1594   std::vector<const DIDerivedType *> Inheritance;
1595 
1596   /// Direct members.
1597   MemberList Members;
1598   // Direct overloaded methods gathered by name.
1599   MethodsMap Methods;
1600 
1601   TypeIndex VShapeTI;
1602 
1603   std::vector<const DICompositeType *> NestedClasses;
1604 };
1605 
1606 void CodeViewDebug::clear() {
1607   assert(CurFn == nullptr);
1608   FileIdMap.clear();
1609   FnDebugInfo.clear();
1610   FileToFilepathMap.clear();
1611   LocalUDTs.clear();
1612   GlobalUDTs.clear();
1613   TypeIndices.clear();
1614   CompleteTypeIndices.clear();
1615 }
1616 
1617 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1618                                       const DIDerivedType *DDTy) {
1619   if (!DDTy->getName().empty()) {
1620     Info.Members.push_back({DDTy, 0});
1621     return;
1622   }
1623   // An unnamed member must represent a nested struct or union. Add all the
1624   // indirect fields to the current record.
1625   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1626   uint64_t Offset = DDTy->getOffsetInBits();
1627   const DIType *Ty = DDTy->getBaseType().resolve();
1628   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1629   ClassInfo NestedInfo = collectClassInfo(DCTy);
1630   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1631     Info.Members.push_back(
1632         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1633 }
1634 
1635 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1636   ClassInfo Info;
1637   // Add elements to structure type.
1638   DINodeArray Elements = Ty->getElements();
1639   for (auto *Element : Elements) {
1640     // We assume that the frontend provides all members in source declaration
1641     // order, which is what MSVC does.
1642     if (!Element)
1643       continue;
1644     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1645       Info.Methods[SP->getRawName()].push_back(SP);
1646     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1647       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1648         collectMemberInfo(Info, DDTy);
1649       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1650         Info.Inheritance.push_back(DDTy);
1651       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1652                  DDTy->getName() == "__vtbl_ptr_type") {
1653         Info.VShapeTI = getTypeIndex(DDTy);
1654       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1655         // Ignore friend members. It appears that MSVC emitted info about
1656         // friends in the past, but modern versions do not.
1657       }
1658     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1659       Info.NestedClasses.push_back(Composite);
1660     }
1661     // Skip other unrecognized kinds of elements.
1662   }
1663   return Info;
1664 }
1665 
1666 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1667   // First, construct the forward decl.  Don't look into Ty to compute the
1668   // forward decl options, since it might not be available in all TUs.
1669   TypeRecordKind Kind = getRecordKind(Ty);
1670   ClassOptions CO =
1671       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1672   std::string FullName = getFullyQualifiedName(Ty);
1673   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1674       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1675       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1676   if (!Ty->isForwardDecl())
1677     DeferredCompleteTypes.push_back(Ty);
1678   return FwdDeclTI;
1679 }
1680 
1681 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1682   // Construct the field list and complete type record.
1683   TypeRecordKind Kind = getRecordKind(Ty);
1684   ClassOptions CO = getCommonClassOptions(Ty);
1685   TypeIndex FieldTI;
1686   TypeIndex VShapeTI;
1687   unsigned FieldCount;
1688   bool ContainsNestedClass;
1689   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1690       lowerRecordFieldList(Ty);
1691 
1692   if (ContainsNestedClass)
1693     CO |= ClassOptions::ContainsNestedClass;
1694 
1695   std::string FullName = getFullyQualifiedName(Ty);
1696 
1697   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1698 
1699   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1700       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1701       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1702 
1703   TypeTable.writeKnownType(UdtSourceLineRecord(
1704       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1705                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1706       Ty->getLine()));
1707 
1708   addToUDTs(Ty, ClassTI);
1709 
1710   return ClassTI;
1711 }
1712 
1713 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1714   ClassOptions CO =
1715       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1716   std::string FullName = getFullyQualifiedName(Ty);
1717   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1718       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1719   if (!Ty->isForwardDecl())
1720     DeferredCompleteTypes.push_back(Ty);
1721   return FwdDeclTI;
1722 }
1723 
1724 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1725   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1726   TypeIndex FieldTI;
1727   unsigned FieldCount;
1728   bool ContainsNestedClass;
1729   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1730       lowerRecordFieldList(Ty);
1731 
1732   if (ContainsNestedClass)
1733     CO |= ClassOptions::ContainsNestedClass;
1734 
1735   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1736   std::string FullName = getFullyQualifiedName(Ty);
1737 
1738   TypeIndex UnionTI = TypeTable.writeKnownType(
1739       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1740                   Ty->getIdentifier()));
1741 
1742   TypeTable.writeKnownType(UdtSourceLineRecord(
1743       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1744                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1745       Ty->getLine()));
1746 
1747   addToUDTs(Ty, UnionTI);
1748 
1749   return UnionTI;
1750 }
1751 
1752 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1753 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1754   // Manually count members. MSVC appears to count everything that generates a
1755   // field list record. Each individual overload in a method overload group
1756   // contributes to this count, even though the overload group is a single field
1757   // list record.
1758   unsigned MemberCount = 0;
1759   ClassInfo Info = collectClassInfo(Ty);
1760   FieldListRecordBuilder Fields;
1761 
1762   // Create base classes.
1763   for (const DIDerivedType *I : Info.Inheritance) {
1764     if (I->getFlags() & DINode::FlagVirtual) {
1765       // Virtual base.
1766       // FIXME: Emit VBPtrOffset when the frontend provides it.
1767       unsigned VBPtrOffset = 0;
1768       // FIXME: Despite the accessor name, the offset is really in bytes.
1769       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1770       Fields.writeMemberType(VirtualBaseClassRecord(
1771           translateAccessFlags(Ty->getTag(), I->getFlags()),
1772           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1773           VBTableIndex));
1774     } else {
1775       assert(I->getOffsetInBits() % 8 == 0 &&
1776              "bases must be on byte boundaries");
1777       Fields.writeMemberType(BaseClassRecord(
1778           translateAccessFlags(Ty->getTag(), I->getFlags()),
1779           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1780     }
1781   }
1782 
1783   // Create members.
1784   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1785     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1786     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1787     StringRef MemberName = Member->getName();
1788     MemberAccess Access =
1789         translateAccessFlags(Ty->getTag(), Member->getFlags());
1790 
1791     if (Member->isStaticMember()) {
1792       Fields.writeMemberType(
1793           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1794       MemberCount++;
1795       continue;
1796     }
1797 
1798     // Virtual function pointer member.
1799     if ((Member->getFlags() & DINode::FlagArtificial) &&
1800         Member->getName().startswith("_vptr$")) {
1801       Fields.writeMemberType(VFPtrRecord(getTypeIndex(Member->getBaseType())));
1802       MemberCount++;
1803       continue;
1804     }
1805 
1806     // Data member.
1807     uint64_t MemberOffsetInBits =
1808         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1809     if (Member->isBitField()) {
1810       uint64_t StartBitOffset = MemberOffsetInBits;
1811       if (const auto *CI =
1812               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1813         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1814       }
1815       StartBitOffset -= MemberOffsetInBits;
1816       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1817           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1818     }
1819     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1820     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1821                                             MemberOffsetInBytes, MemberName));
1822     MemberCount++;
1823   }
1824 
1825   // Create methods
1826   for (auto &MethodItr : Info.Methods) {
1827     StringRef Name = MethodItr.first->getString();
1828 
1829     std::vector<OneMethodRecord> Methods;
1830     for (const DISubprogram *SP : MethodItr.second) {
1831       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1832       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1833 
1834       unsigned VFTableOffset = -1;
1835       if (Introduced)
1836         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1837 
1838       Methods.push_back(
1839           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1840                           translateMethodOptionFlags(SP),
1841                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1842                           VFTableOffset, Name));
1843       MemberCount++;
1844     }
1845     assert(Methods.size() > 0 && "Empty methods map entry");
1846     if (Methods.size() == 1)
1847       Fields.writeMemberType(Methods[0]);
1848     else {
1849       TypeIndex MethodList =
1850           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1851       Fields.writeMemberType(
1852           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1853     }
1854   }
1855 
1856   // Create nested classes.
1857   for (const DICompositeType *Nested : Info.NestedClasses) {
1858     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1859     Fields.writeMemberType(R);
1860     MemberCount++;
1861   }
1862 
1863   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1864   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1865                          !Info.NestedClasses.empty());
1866 }
1867 
1868 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1869   if (!VBPType.getIndex()) {
1870     // Make a 'const int *' type.
1871     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1872     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1873 
1874     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1875                                                   : PointerKind::Near32;
1876     PointerMode PM = PointerMode::Pointer;
1877     PointerOptions PO = PointerOptions::None;
1878     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1879 
1880     VBPType = TypeTable.writeKnownType(PR);
1881   }
1882 
1883   return VBPType;
1884 }
1885 
1886 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1887   const DIType *Ty = TypeRef.resolve();
1888   const DIType *ClassTy = ClassTyRef.resolve();
1889 
1890   // The null DIType is the void type. Don't try to hash it.
1891   if (!Ty)
1892     return TypeIndex::Void();
1893 
1894   // Check if we've already translated this type. Don't try to do a
1895   // get-or-create style insertion that caches the hash lookup across the
1896   // lowerType call. It will update the TypeIndices map.
1897   auto I = TypeIndices.find({Ty, ClassTy});
1898   if (I != TypeIndices.end())
1899     return I->second;
1900 
1901   TypeLoweringScope S(*this);
1902   TypeIndex TI = lowerType(Ty, ClassTy);
1903   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1904 }
1905 
1906 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1907   const DIType *Ty = TypeRef.resolve();
1908 
1909   // The null DIType is the void type. Don't try to hash it.
1910   if (!Ty)
1911     return TypeIndex::Void();
1912 
1913   // If this is a non-record type, the complete type index is the same as the
1914   // normal type index. Just call getTypeIndex.
1915   switch (Ty->getTag()) {
1916   case dwarf::DW_TAG_class_type:
1917   case dwarf::DW_TAG_structure_type:
1918   case dwarf::DW_TAG_union_type:
1919     break;
1920   default:
1921     return getTypeIndex(Ty);
1922   }
1923 
1924   // Check if we've already translated the complete record type.  Lowering a
1925   // complete type should never trigger lowering another complete type, so we
1926   // can reuse the hash table lookup result.
1927   const auto *CTy = cast<DICompositeType>(Ty);
1928   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1929   if (!InsertResult.second)
1930     return InsertResult.first->second;
1931 
1932   TypeLoweringScope S(*this);
1933 
1934   // Make sure the forward declaration is emitted first. It's unclear if this
1935   // is necessary, but MSVC does it, and we should follow suit until we can show
1936   // otherwise.
1937   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1938 
1939   // Just use the forward decl if we don't have complete type info. This might
1940   // happen if the frontend is using modules and expects the complete definition
1941   // to be emitted elsewhere.
1942   if (CTy->isForwardDecl())
1943     return FwdDeclTI;
1944 
1945   TypeIndex TI;
1946   switch (CTy->getTag()) {
1947   case dwarf::DW_TAG_class_type:
1948   case dwarf::DW_TAG_structure_type:
1949     TI = lowerCompleteTypeClass(CTy);
1950     break;
1951   case dwarf::DW_TAG_union_type:
1952     TI = lowerCompleteTypeUnion(CTy);
1953     break;
1954   default:
1955     llvm_unreachable("not a record");
1956   }
1957 
1958   InsertResult.first->second = TI;
1959   return TI;
1960 }
1961 
1962 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1963 /// and do this until fixpoint, as each complete record type typically
1964 /// references
1965 /// many other record types.
1966 void CodeViewDebug::emitDeferredCompleteTypes() {
1967   SmallVector<const DICompositeType *, 4> TypesToEmit;
1968   while (!DeferredCompleteTypes.empty()) {
1969     std::swap(DeferredCompleteTypes, TypesToEmit);
1970     for (const DICompositeType *RecordTy : TypesToEmit)
1971       getCompleteTypeIndex(RecordTy);
1972     TypesToEmit.clear();
1973   }
1974 }
1975 
1976 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1977   // Get the sorted list of parameters and emit them first.
1978   SmallVector<const LocalVariable *, 6> Params;
1979   for (const LocalVariable &L : Locals)
1980     if (L.DIVar->isParameter())
1981       Params.push_back(&L);
1982   std::sort(Params.begin(), Params.end(),
1983             [](const LocalVariable *L, const LocalVariable *R) {
1984               return L->DIVar->getArg() < R->DIVar->getArg();
1985             });
1986   for (const LocalVariable *L : Params)
1987     emitLocalVariable(*L);
1988 
1989   // Next emit all non-parameters in the order that we found them.
1990   for (const LocalVariable &L : Locals)
1991     if (!L.DIVar->isParameter())
1992       emitLocalVariable(L);
1993 }
1994 
1995 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1996   // LocalSym record, see SymbolRecord.h for more info.
1997   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1998            *LocalEnd = MMI->getContext().createTempSymbol();
1999   OS.AddComment("Record length");
2000   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2001   OS.EmitLabel(LocalBegin);
2002 
2003   OS.AddComment("Record kind: S_LOCAL");
2004   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2005 
2006   LocalSymFlags Flags = LocalSymFlags::None;
2007   if (Var.DIVar->isParameter())
2008     Flags |= LocalSymFlags::IsParameter;
2009   if (Var.DefRanges.empty())
2010     Flags |= LocalSymFlags::IsOptimizedOut;
2011 
2012   OS.AddComment("TypeIndex");
2013   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2014   OS.EmitIntValue(TI.getIndex(), 4);
2015   OS.AddComment("Flags");
2016   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2017   // Truncate the name so we won't overflow the record length field.
2018   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2019   OS.EmitLabel(LocalEnd);
2020 
2021   // Calculate the on disk prefix of the appropriate def range record. The
2022   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2023   // should be big enough to hold all forms without memory allocation.
2024   SmallString<20> BytePrefix;
2025   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2026     BytePrefix.clear();
2027     // FIXME: Handle bitpieces.
2028     if (DefRange.StructOffset != 0)
2029       continue;
2030 
2031     if (DefRange.InMemory) {
2032       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
2033                                  0, 0, ArrayRef<LocalVariableAddrGap>());
2034       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2035       BytePrefix +=
2036           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2037       BytePrefix +=
2038           StringRef(reinterpret_cast<const char *>(&Sym.Header),
2039                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2040     } else {
2041       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2042       // Unclear what matters here.
2043       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
2044                               ArrayRef<LocalVariableAddrGap>());
2045       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2046       BytePrefix +=
2047           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2048       BytePrefix +=
2049           StringRef(reinterpret_cast<const char *>(&Sym.Header),
2050                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2051     }
2052     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2053   }
2054 }
2055 
2056 void CodeViewDebug::endFunction(const MachineFunction *MF) {
2057   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
2058     return;
2059 
2060   const Function *GV = MF->getFunction();
2061   assert(FnDebugInfo.count(GV));
2062   assert(CurFn == &FnDebugInfo[GV]);
2063 
2064   collectVariableInfo(GV->getSubprogram());
2065 
2066   DebugHandlerBase::endFunction(MF);
2067 
2068   // Don't emit anything if we don't have any line tables.
2069   if (!CurFn->HaveLineInfo) {
2070     FnDebugInfo.erase(GV);
2071     CurFn = nullptr;
2072     return;
2073   }
2074 
2075   CurFn->End = Asm->getFunctionEnd();
2076 
2077   CurFn = nullptr;
2078 }
2079 
2080 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2081   DebugHandlerBase::beginInstruction(MI);
2082 
2083   // Ignore DBG_VALUE locations and function prologue.
2084   if (!Asm || !CurFn || MI->isDebugValue() ||
2085       MI->getFlag(MachineInstr::FrameSetup))
2086     return;
2087   DebugLoc DL = MI->getDebugLoc();
2088   if (DL == PrevInstLoc || !DL)
2089     return;
2090   maybeRecordLocation(DL, Asm->MF);
2091 }
2092 
2093 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
2094   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2095            *EndLabel = MMI->getContext().createTempSymbol();
2096   OS.EmitIntValue(unsigned(Kind), 4);
2097   OS.AddComment("Subsection size");
2098   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2099   OS.EmitLabel(BeginLabel);
2100   if (Kind == ModuleSubstreamKind::Symbols)
2101     emitCompilerInformation();
2102   return EndLabel;
2103 }
2104 
2105 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2106   OS.EmitLabel(EndLabel);
2107   // Every subsection must be aligned to a 4-byte boundary.
2108   OS.EmitValueToAlignment(4);
2109 }
2110 
2111 void CodeViewDebug::emitDebugInfoForUDTs(
2112     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2113   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2114     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2115              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2116     OS.AddComment("Record length");
2117     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2118     OS.EmitLabel(UDTRecordBegin);
2119 
2120     OS.AddComment("Record kind: S_UDT");
2121     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2122 
2123     OS.AddComment("Type");
2124     OS.EmitIntValue(UDT.second.getIndex(), 4);
2125 
2126     emitNullTerminatedSymbolName(OS, UDT.first);
2127     OS.EmitLabel(UDTRecordEnd);
2128   }
2129 }
2130 
2131 void CodeViewDebug::emitDebugInfoForGlobals() {
2132   DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap;
2133   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2134     SmallVector<MDNode *, 1> MDs;
2135     GV.getMetadata(LLVMContext::MD_dbg, MDs);
2136     for (MDNode *MD : MDs)
2137       GlobalMap[cast<DIGlobalVariable>(MD)] = &GV;
2138   }
2139 
2140   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2141   for (const MDNode *Node : CUs->operands()) {
2142     const auto *CU = cast<DICompileUnit>(Node);
2143 
2144     // First, emit all globals that are not in a comdat in a single symbol
2145     // substream. MSVC doesn't like it if the substream is empty, so only open
2146     // it if we have at least one global to emit.
2147     switchToDebugSectionForSymbol(nullptr);
2148     MCSymbol *EndLabel = nullptr;
2149     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2150       if (const auto *GV = GlobalMap.lookup(G))
2151         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2152           if (!EndLabel) {
2153             OS.AddComment("Symbol subsection for globals");
2154             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2155           }
2156           emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV));
2157         }
2158     }
2159     if (EndLabel)
2160       endCVSubsection(EndLabel);
2161 
2162     // Second, emit each global that is in a comdat into its own .debug$S
2163     // section along with its own symbol substream.
2164     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2165       if (const auto *GV = GlobalMap.lookup(G)) {
2166         if (GV->hasComdat()) {
2167           MCSymbol *GVSym = Asm->getSymbol(GV);
2168           OS.AddComment("Symbol subsection for " +
2169                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2170           switchToDebugSectionForSymbol(GVSym);
2171           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2172           emitDebugInfoForGlobal(G, GV, GVSym);
2173           endCVSubsection(EndLabel);
2174         }
2175       }
2176     }
2177   }
2178 }
2179 
2180 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2181   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2182   for (const MDNode *Node : CUs->operands()) {
2183     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2184       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2185         getTypeIndex(RT);
2186         // FIXME: Add to global/local DTU list.
2187       }
2188     }
2189   }
2190 }
2191 
2192 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2193                                            const GlobalVariable *GV,
2194                                            MCSymbol *GVSym) {
2195   // DataSym record, see SymbolRecord.h for more info.
2196   // FIXME: Thread local data, etc
2197   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2198            *DataEnd = MMI->getContext().createTempSymbol();
2199   OS.AddComment("Record length");
2200   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2201   OS.EmitLabel(DataBegin);
2202   if (DIGV->isLocalToUnit()) {
2203     if (GV->isThreadLocal()) {
2204       OS.AddComment("Record kind: S_LTHREAD32");
2205       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2206     } else {
2207       OS.AddComment("Record kind: S_LDATA32");
2208       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2209     }
2210   } else {
2211     if (GV->isThreadLocal()) {
2212       OS.AddComment("Record kind: S_GTHREAD32");
2213       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2214     } else {
2215       OS.AddComment("Record kind: S_GDATA32");
2216       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2217     }
2218   }
2219   OS.AddComment("Type");
2220   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2221   OS.AddComment("DataOffset");
2222   OS.EmitCOFFSecRel32(GVSym);
2223   OS.AddComment("Segment");
2224   OS.EmitCOFFSectionIndex(GVSym);
2225   OS.AddComment("Name");
2226   emitNullTerminatedSymbolName(OS, DIGV->getName());
2227   OS.EmitLabel(DataEnd);
2228 }
2229