1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for writing Microsoft CodeView debug info. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeViewDebug.h" 14 #include "DwarfExpression.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/TinyPtrVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/BinaryFormat/COFF.h" 30 #include "llvm/BinaryFormat/Dwarf.h" 31 #include "llvm/CodeGen/AsmPrinter.h" 32 #include "llvm/CodeGen/LexicalScopes.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/TargetFrameLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 43 #include "llvm/DebugInfo/CodeView/CodeView.h" 44 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h" 45 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 46 #include "llvm/DebugInfo/CodeView/EnumTables.h" 47 #include "llvm/DebugInfo/CodeView/Line.h" 48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 50 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 51 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DebugLoc.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/Metadata.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/MC/MCAsmInfo.h" 63 #include "llvm/MC/MCContext.h" 64 #include "llvm/MC/MCSectionCOFF.h" 65 #include "llvm/MC/MCStreamer.h" 66 #include "llvm/MC/MCSymbol.h" 67 #include "llvm/Support/BinaryByteStream.h" 68 #include "llvm/Support/BinaryStreamReader.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Endian.h" 73 #include "llvm/Support/Error.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/FormatVariadic.h" 76 #include "llvm/Support/Path.h" 77 #include "llvm/Support/SMLoc.h" 78 #include "llvm/Support/ScopedPrinter.h" 79 #include "llvm/Target/TargetLoweringObjectFile.h" 80 #include "llvm/Target/TargetMachine.h" 81 #include <algorithm> 82 #include <cassert> 83 #include <cctype> 84 #include <cstddef> 85 #include <cstdint> 86 #include <iterator> 87 #include <limits> 88 #include <string> 89 #include <utility> 90 #include <vector> 91 92 using namespace llvm; 93 using namespace llvm::codeview; 94 95 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 96 switch (Type) { 97 case Triple::ArchType::x86: 98 return CPUType::Pentium3; 99 case Triple::ArchType::x86_64: 100 return CPUType::X64; 101 case Triple::ArchType::thumb: 102 return CPUType::Thumb; 103 case Triple::ArchType::aarch64: 104 return CPUType::ARM64; 105 default: 106 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 107 } 108 } 109 110 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 111 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 112 // If module doesn't have named metadata anchors or COFF debug section 113 // is not available, skip any debug info related stuff. 114 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 115 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 116 Asm = nullptr; 117 MMI->setDebugInfoAvailability(false); 118 return; 119 } 120 // Tell MMI that we have debug info. 121 MMI->setDebugInfoAvailability(true); 122 123 TheCPU = 124 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 125 126 collectGlobalVariableInfo(); 127 128 // Check if we should emit type record hashes. 129 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>( 130 MMI->getModule()->getModuleFlag("CodeViewGHash")); 131 EmitDebugGlobalHashes = GH && !GH->isZero(); 132 } 133 134 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 135 std::string &Filepath = FileToFilepathMap[File]; 136 if (!Filepath.empty()) 137 return Filepath; 138 139 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 140 141 // If this is a Unix-style path, just use it as is. Don't try to canonicalize 142 // it textually because one of the path components could be a symlink. 143 if (Dir.startswith("/") || Filename.startswith("/")) { 144 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix)) 145 return Filename; 146 Filepath = Dir; 147 if (Dir.back() != '/') 148 Filepath += '/'; 149 Filepath += Filename; 150 return Filepath; 151 } 152 153 // Clang emits directory and relative filename info into the IR, but CodeView 154 // operates on full paths. We could change Clang to emit full paths too, but 155 // that would increase the IR size and probably not needed for other users. 156 // For now, just concatenate and canonicalize the path here. 157 if (Filename.find(':') == 1) 158 Filepath = Filename; 159 else 160 Filepath = (Dir + "\\" + Filename).str(); 161 162 // Canonicalize the path. We have to do it textually because we may no longer 163 // have access the file in the filesystem. 164 // First, replace all slashes with backslashes. 165 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 166 167 // Remove all "\.\" with "\". 168 size_t Cursor = 0; 169 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 170 Filepath.erase(Cursor, 2); 171 172 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 173 // path should be well-formatted, e.g. start with a drive letter, etc. 174 Cursor = 0; 175 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 176 // Something's wrong if the path starts with "\..\", abort. 177 if (Cursor == 0) 178 break; 179 180 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 181 if (PrevSlash == std::string::npos) 182 // Something's wrong, abort. 183 break; 184 185 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 186 // The next ".." might be following the one we've just erased. 187 Cursor = PrevSlash; 188 } 189 190 // Remove all duplicate backslashes. 191 Cursor = 0; 192 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 193 Filepath.erase(Cursor, 1); 194 195 return Filepath; 196 } 197 198 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 199 StringRef FullPath = getFullFilepath(F); 200 unsigned NextId = FileIdMap.size() + 1; 201 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId)); 202 if (Insertion.second) { 203 // We have to compute the full filepath and emit a .cv_file directive. 204 ArrayRef<uint8_t> ChecksumAsBytes; 205 FileChecksumKind CSKind = FileChecksumKind::None; 206 if (F->getChecksum()) { 207 std::string Checksum = fromHex(F->getChecksum()->Value); 208 void *CKMem = OS.getContext().allocate(Checksum.size(), 1); 209 memcpy(CKMem, Checksum.data(), Checksum.size()); 210 ChecksumAsBytes = ArrayRef<uint8_t>( 211 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size()); 212 switch (F->getChecksum()->Kind) { 213 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break; 214 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break; 215 } 216 } 217 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes, 218 static_cast<unsigned>(CSKind)); 219 (void)Success; 220 assert(Success && ".cv_file directive failed"); 221 } 222 return Insertion.first->second; 223 } 224 225 CodeViewDebug::InlineSite & 226 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 227 const DISubprogram *Inlinee) { 228 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 229 InlineSite *Site = &SiteInsertion.first->second; 230 if (SiteInsertion.second) { 231 unsigned ParentFuncId = CurFn->FuncId; 232 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 233 ParentFuncId = 234 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 235 .SiteFuncId; 236 237 Site->SiteFuncId = NextFuncId++; 238 OS.EmitCVInlineSiteIdDirective( 239 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 240 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 241 Site->Inlinee = Inlinee; 242 InlinedSubprograms.insert(Inlinee); 243 getFuncIdForSubprogram(Inlinee); 244 } 245 return *Site; 246 } 247 248 static StringRef getPrettyScopeName(const DIScope *Scope) { 249 StringRef ScopeName = Scope->getName(); 250 if (!ScopeName.empty()) 251 return ScopeName; 252 253 switch (Scope->getTag()) { 254 case dwarf::DW_TAG_enumeration_type: 255 case dwarf::DW_TAG_class_type: 256 case dwarf::DW_TAG_structure_type: 257 case dwarf::DW_TAG_union_type: 258 return "<unnamed-tag>"; 259 case dwarf::DW_TAG_namespace: 260 return "`anonymous namespace'"; 261 } 262 263 return StringRef(); 264 } 265 266 static const DISubprogram *getQualifiedNameComponents( 267 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 268 const DISubprogram *ClosestSubprogram = nullptr; 269 while (Scope != nullptr) { 270 if (ClosestSubprogram == nullptr) 271 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 272 StringRef ScopeName = getPrettyScopeName(Scope); 273 if (!ScopeName.empty()) 274 QualifiedNameComponents.push_back(ScopeName); 275 Scope = Scope->getScope().resolve(); 276 } 277 return ClosestSubprogram; 278 } 279 280 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 281 StringRef TypeName) { 282 std::string FullyQualifiedName; 283 for (StringRef QualifiedNameComponent : 284 llvm::reverse(QualifiedNameComponents)) { 285 FullyQualifiedName.append(QualifiedNameComponent); 286 FullyQualifiedName.append("::"); 287 } 288 FullyQualifiedName.append(TypeName); 289 return FullyQualifiedName; 290 } 291 292 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 293 SmallVector<StringRef, 5> QualifiedNameComponents; 294 getQualifiedNameComponents(Scope, QualifiedNameComponents); 295 return getQualifiedName(QualifiedNameComponents, Name); 296 } 297 298 struct CodeViewDebug::TypeLoweringScope { 299 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 300 ~TypeLoweringScope() { 301 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 302 // inner TypeLoweringScopes don't attempt to emit deferred types. 303 if (CVD.TypeEmissionLevel == 1) 304 CVD.emitDeferredCompleteTypes(); 305 --CVD.TypeEmissionLevel; 306 } 307 CodeViewDebug &CVD; 308 }; 309 310 static std::string getFullyQualifiedName(const DIScope *Ty) { 311 const DIScope *Scope = Ty->getScope().resolve(); 312 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 313 } 314 315 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 316 // No scope means global scope and that uses the zero index. 317 if (!Scope || isa<DIFile>(Scope)) 318 return TypeIndex(); 319 320 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 321 322 // Check if we've already translated this scope. 323 auto I = TypeIndices.find({Scope, nullptr}); 324 if (I != TypeIndices.end()) 325 return I->second; 326 327 // Build the fully qualified name of the scope. 328 std::string ScopeName = getFullyQualifiedName(Scope); 329 StringIdRecord SID(TypeIndex(), ScopeName); 330 auto TI = TypeTable.writeLeafType(SID); 331 return recordTypeIndexForDINode(Scope, TI); 332 } 333 334 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 335 assert(SP); 336 337 // Check if we've already translated this subprogram. 338 auto I = TypeIndices.find({SP, nullptr}); 339 if (I != TypeIndices.end()) 340 return I->second; 341 342 // The display name includes function template arguments. Drop them to match 343 // MSVC. 344 StringRef DisplayName = SP->getName().split('<').first; 345 346 const DIScope *Scope = SP->getScope().resolve(); 347 TypeIndex TI; 348 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 349 // If the scope is a DICompositeType, then this must be a method. Member 350 // function types take some special handling, and require access to the 351 // subprogram. 352 TypeIndex ClassType = getTypeIndex(Class); 353 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 354 DisplayName); 355 TI = TypeTable.writeLeafType(MFuncId); 356 } else { 357 // Otherwise, this must be a free function. 358 TypeIndex ParentScope = getScopeIndex(Scope); 359 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 360 TI = TypeTable.writeLeafType(FuncId); 361 } 362 363 return recordTypeIndexForDINode(SP, TI); 364 } 365 366 static bool isTrivial(const DICompositeType *DCTy) { 367 return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial); 368 } 369 370 static FunctionOptions 371 getFunctionOptions(const DISubroutineType *Ty, 372 const DICompositeType *ClassTy = nullptr, 373 StringRef SPName = StringRef("")) { 374 FunctionOptions FO = FunctionOptions::None; 375 const DIType *ReturnTy = nullptr; 376 if (auto TypeArray = Ty->getTypeArray()) { 377 if (TypeArray.size()) 378 ReturnTy = TypeArray[0].resolve(); 379 } 380 381 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) { 382 if (!isTrivial(ReturnDCTy)) 383 FO |= FunctionOptions::CxxReturnUdt; 384 } 385 386 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison. 387 if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) { 388 FO |= FunctionOptions::Constructor; 389 390 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag. 391 392 } 393 return FO; 394 } 395 396 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 397 const DICompositeType *Class) { 398 // Always use the method declaration as the key for the function type. The 399 // method declaration contains the this adjustment. 400 if (SP->getDeclaration()) 401 SP = SP->getDeclaration(); 402 assert(!SP->getDeclaration() && "should use declaration as key"); 403 404 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 405 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 406 auto I = TypeIndices.find({SP, Class}); 407 if (I != TypeIndices.end()) 408 return I->second; 409 410 // Make sure complete type info for the class is emitted *after* the member 411 // function type, as the complete class type is likely to reference this 412 // member function type. 413 TypeLoweringScope S(*this); 414 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 415 416 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName()); 417 TypeIndex TI = lowerTypeMemberFunction( 418 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO); 419 return recordTypeIndexForDINode(SP, TI, Class); 420 } 421 422 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 423 TypeIndex TI, 424 const DIType *ClassTy) { 425 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 426 (void)InsertResult; 427 assert(InsertResult.second && "DINode was already assigned a type index"); 428 return TI; 429 } 430 431 unsigned CodeViewDebug::getPointerSizeInBytes() { 432 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 433 } 434 435 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 436 const LexicalScope *LS) { 437 if (const DILocation *InlinedAt = LS->getInlinedAt()) { 438 // This variable was inlined. Associate it with the InlineSite. 439 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 440 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 441 Site.InlinedLocals.emplace_back(Var); 442 } else { 443 // This variable goes into the corresponding lexical scope. 444 ScopeVariables[LS].emplace_back(Var); 445 } 446 } 447 448 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 449 const DILocation *Loc) { 450 auto B = Locs.begin(), E = Locs.end(); 451 if (std::find(B, E, Loc) == E) 452 Locs.push_back(Loc); 453 } 454 455 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 456 const MachineFunction *MF) { 457 // Skip this instruction if it has the same location as the previous one. 458 if (!DL || DL == PrevInstLoc) 459 return; 460 461 const DIScope *Scope = DL.get()->getScope(); 462 if (!Scope) 463 return; 464 465 // Skip this line if it is longer than the maximum we can record. 466 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 467 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 468 LI.isNeverStepInto()) 469 return; 470 471 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 472 if (CI.getStartColumn() != DL.getCol()) 473 return; 474 475 if (!CurFn->HaveLineInfo) 476 CurFn->HaveLineInfo = true; 477 unsigned FileId = 0; 478 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 479 FileId = CurFn->LastFileId; 480 else 481 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 482 PrevInstLoc = DL; 483 484 unsigned FuncId = CurFn->FuncId; 485 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 486 const DILocation *Loc = DL.get(); 487 488 // If this location was actually inlined from somewhere else, give it the ID 489 // of the inline call site. 490 FuncId = 491 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 492 493 // Ensure we have links in the tree of inline call sites. 494 bool FirstLoc = true; 495 while ((SiteLoc = Loc->getInlinedAt())) { 496 InlineSite &Site = 497 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 498 if (!FirstLoc) 499 addLocIfNotPresent(Site.ChildSites, Loc); 500 FirstLoc = false; 501 Loc = SiteLoc; 502 } 503 addLocIfNotPresent(CurFn->ChildSites, Loc); 504 } 505 506 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 507 /*PrologueEnd=*/false, /*IsStmt=*/false, 508 DL->getFilename(), SMLoc()); 509 } 510 511 void CodeViewDebug::emitCodeViewMagicVersion() { 512 OS.EmitValueToAlignment(4); 513 OS.AddComment("Debug section magic"); 514 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 515 } 516 517 void CodeViewDebug::endModule() { 518 if (!Asm || !MMI->hasDebugInfo()) 519 return; 520 521 assert(Asm != nullptr); 522 523 // The COFF .debug$S section consists of several subsections, each starting 524 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 525 // of the payload followed by the payload itself. The subsections are 4-byte 526 // aligned. 527 528 // Use the generic .debug$S section, and make a subsection for all the inlined 529 // subprograms. 530 switchToDebugSectionForSymbol(nullptr); 531 532 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 533 emitCompilerInformation(); 534 endCVSubsection(CompilerInfo); 535 536 emitInlineeLinesSubsection(); 537 538 // Emit per-function debug information. 539 for (auto &P : FnDebugInfo) 540 if (!P.first->isDeclarationForLinker()) 541 emitDebugInfoForFunction(P.first, *P.second); 542 543 // Emit global variable debug information. 544 setCurrentSubprogram(nullptr); 545 emitDebugInfoForGlobals(); 546 547 // Emit retained types. 548 emitDebugInfoForRetainedTypes(); 549 550 // Switch back to the generic .debug$S section after potentially processing 551 // comdat symbol sections. 552 switchToDebugSectionForSymbol(nullptr); 553 554 // Emit UDT records for any types used by global variables. 555 if (!GlobalUDTs.empty()) { 556 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 557 emitDebugInfoForUDTs(GlobalUDTs); 558 endCVSubsection(SymbolsEnd); 559 } 560 561 // This subsection holds a file index to offset in string table table. 562 OS.AddComment("File index to string table offset subsection"); 563 OS.EmitCVFileChecksumsDirective(); 564 565 // This subsection holds the string table. 566 OS.AddComment("String table"); 567 OS.EmitCVStringTableDirective(); 568 569 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol 570 // subsection in the generic .debug$S section at the end. There is no 571 // particular reason for this ordering other than to match MSVC. 572 emitBuildInfo(); 573 574 // Emit type information and hashes last, so that any types we translate while 575 // emitting function info are included. 576 emitTypeInformation(); 577 578 if (EmitDebugGlobalHashes) 579 emitTypeGlobalHashes(); 580 581 clear(); 582 } 583 584 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S, 585 unsigned MaxFixedRecordLength = 0xF00) { 586 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 587 // after a fixed length portion of the record. The fixed length portion should 588 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 589 // overall record size is less than the maximum allowed. 590 SmallString<32> NullTerminatedString( 591 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 592 NullTerminatedString.push_back('\0'); 593 OS.EmitBytes(NullTerminatedString); 594 } 595 596 void CodeViewDebug::emitTypeInformation() { 597 if (TypeTable.empty()) 598 return; 599 600 // Start the .debug$T or .debug$P section with 0x4. 601 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 602 emitCodeViewMagicVersion(); 603 604 SmallString<8> CommentPrefix; 605 if (OS.isVerboseAsm()) { 606 CommentPrefix += '\t'; 607 CommentPrefix += Asm->MAI->getCommentString(); 608 CommentPrefix += ' '; 609 } 610 611 TypeTableCollection Table(TypeTable.records()); 612 Optional<TypeIndex> B = Table.getFirst(); 613 while (B) { 614 // This will fail if the record data is invalid. 615 CVType Record = Table.getType(*B); 616 617 if (OS.isVerboseAsm()) { 618 // Emit a block comment describing the type record for readability. 619 SmallString<512> CommentBlock; 620 raw_svector_ostream CommentOS(CommentBlock); 621 ScopedPrinter SP(CommentOS); 622 SP.setPrefix(CommentPrefix); 623 TypeDumpVisitor TDV(Table, &SP, false); 624 625 Error E = codeview::visitTypeRecord(Record, *B, TDV); 626 if (E) { 627 logAllUnhandledErrors(std::move(E), errs(), "error: "); 628 llvm_unreachable("produced malformed type record"); 629 } 630 // emitRawComment will insert its own tab and comment string before 631 // the first line, so strip off our first one. It also prints its own 632 // newline. 633 OS.emitRawComment( 634 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 635 } 636 OS.EmitBinaryData(Record.str_data()); 637 B = Table.getNext(*B); 638 } 639 } 640 641 void CodeViewDebug::emitTypeGlobalHashes() { 642 if (TypeTable.empty()) 643 return; 644 645 // Start the .debug$H section with the version and hash algorithm, currently 646 // hardcoded to version 0, SHA1. 647 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection()); 648 649 OS.EmitValueToAlignment(4); 650 OS.AddComment("Magic"); 651 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4); 652 OS.AddComment("Section Version"); 653 OS.EmitIntValue(0, 2); 654 OS.AddComment("Hash Algorithm"); 655 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2); 656 657 TypeIndex TI(TypeIndex::FirstNonSimpleIndex); 658 for (const auto &GHR : TypeTable.hashes()) { 659 if (OS.isVerboseAsm()) { 660 // Emit an EOL-comment describing which TypeIndex this hash corresponds 661 // to, as well as the stringified SHA1 hash. 662 SmallString<32> Comment; 663 raw_svector_ostream CommentOS(Comment); 664 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR); 665 OS.AddComment(Comment); 666 ++TI; 667 } 668 assert(GHR.Hash.size() == 8); 669 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()), 670 GHR.Hash.size()); 671 OS.EmitBinaryData(S); 672 } 673 } 674 675 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 676 switch (DWLang) { 677 case dwarf::DW_LANG_C: 678 case dwarf::DW_LANG_C89: 679 case dwarf::DW_LANG_C99: 680 case dwarf::DW_LANG_C11: 681 case dwarf::DW_LANG_ObjC: 682 return SourceLanguage::C; 683 case dwarf::DW_LANG_C_plus_plus: 684 case dwarf::DW_LANG_C_plus_plus_03: 685 case dwarf::DW_LANG_C_plus_plus_11: 686 case dwarf::DW_LANG_C_plus_plus_14: 687 return SourceLanguage::Cpp; 688 case dwarf::DW_LANG_Fortran77: 689 case dwarf::DW_LANG_Fortran90: 690 case dwarf::DW_LANG_Fortran03: 691 case dwarf::DW_LANG_Fortran08: 692 return SourceLanguage::Fortran; 693 case dwarf::DW_LANG_Pascal83: 694 return SourceLanguage::Pascal; 695 case dwarf::DW_LANG_Cobol74: 696 case dwarf::DW_LANG_Cobol85: 697 return SourceLanguage::Cobol; 698 case dwarf::DW_LANG_Java: 699 return SourceLanguage::Java; 700 case dwarf::DW_LANG_D: 701 return SourceLanguage::D; 702 default: 703 // There's no CodeView representation for this language, and CV doesn't 704 // have an "unknown" option for the language field, so we'll use MASM, 705 // as it's very low level. 706 return SourceLanguage::Masm; 707 } 708 } 709 710 namespace { 711 struct Version { 712 int Part[4]; 713 }; 714 } // end anonymous namespace 715 716 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 717 // the version number. 718 static Version parseVersion(StringRef Name) { 719 Version V = {{0}}; 720 int N = 0; 721 for (const char C : Name) { 722 if (isdigit(C)) { 723 V.Part[N] *= 10; 724 V.Part[N] += C - '0'; 725 } else if (C == '.') { 726 ++N; 727 if (N >= 4) 728 return V; 729 } else if (N > 0) 730 return V; 731 } 732 return V; 733 } 734 735 void CodeViewDebug::emitCompilerInformation() { 736 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3); 737 uint32_t Flags = 0; 738 739 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 740 const MDNode *Node = *CUs->operands().begin(); 741 const auto *CU = cast<DICompileUnit>(Node); 742 743 // The low byte of the flags indicates the source language. 744 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 745 // TODO: Figure out which other flags need to be set. 746 747 OS.AddComment("Flags and language"); 748 OS.EmitIntValue(Flags, 4); 749 750 OS.AddComment("CPUType"); 751 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2); 752 753 StringRef CompilerVersion = CU->getProducer(); 754 Version FrontVer = parseVersion(CompilerVersion); 755 OS.AddComment("Frontend version"); 756 for (int N = 0; N < 4; ++N) 757 OS.EmitIntValue(FrontVer.Part[N], 2); 758 759 // Some Microsoft tools, like Binscope, expect a backend version number of at 760 // least 8.something, so we'll coerce the LLVM version into a form that 761 // guarantees it'll be big enough without really lying about the version. 762 int Major = 1000 * LLVM_VERSION_MAJOR + 763 10 * LLVM_VERSION_MINOR + 764 LLVM_VERSION_PATCH; 765 // Clamp it for builds that use unusually large version numbers. 766 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 767 Version BackVer = {{ Major, 0, 0, 0 }}; 768 OS.AddComment("Backend version"); 769 for (int N = 0; N < 4; ++N) 770 OS.EmitIntValue(BackVer.Part[N], 2); 771 772 OS.AddComment("Null-terminated compiler version string"); 773 emitNullTerminatedSymbolName(OS, CompilerVersion); 774 775 endSymbolRecord(CompilerEnd); 776 } 777 778 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable, 779 StringRef S) { 780 StringIdRecord SIR(TypeIndex(0x0), S); 781 return TypeTable.writeLeafType(SIR); 782 } 783 784 void CodeViewDebug::emitBuildInfo() { 785 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of 786 // build info. The known prefix is: 787 // - Absolute path of current directory 788 // - Compiler path 789 // - Main source file path, relative to CWD or absolute 790 // - Type server PDB file 791 // - Canonical compiler command line 792 // If frontend and backend compilation are separated (think llc or LTO), it's 793 // not clear if the compiler path should refer to the executable for the 794 // frontend or the backend. Leave it blank for now. 795 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {}; 796 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 797 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs. 798 const auto *CU = cast<DICompileUnit>(Node); 799 const DIFile *MainSourceFile = CU->getFile(); 800 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] = 801 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory()); 802 BuildInfoArgs[BuildInfoRecord::SourceFile] = 803 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename()); 804 // FIXME: Path to compiler and command line. PDB is intentionally blank unless 805 // we implement /Zi type servers. 806 BuildInfoRecord BIR(BuildInfoArgs); 807 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR); 808 809 // Make a new .debug$S subsection for the S_BUILDINFO record, which points 810 // from the module symbols into the type stream. 811 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 812 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO); 813 OS.AddComment("LF_BUILDINFO index"); 814 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4); 815 endSymbolRecord(BIEnd); 816 endCVSubsection(BISubsecEnd); 817 } 818 819 void CodeViewDebug::emitInlineeLinesSubsection() { 820 if (InlinedSubprograms.empty()) 821 return; 822 823 OS.AddComment("Inlinee lines subsection"); 824 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 825 826 // We emit the checksum info for files. This is used by debuggers to 827 // determine if a pdb matches the source before loading it. Visual Studio, 828 // for instance, will display a warning that the breakpoints are not valid if 829 // the pdb does not match the source. 830 OS.AddComment("Inlinee lines signature"); 831 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 832 833 for (const DISubprogram *SP : InlinedSubprograms) { 834 assert(TypeIndices.count({SP, nullptr})); 835 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 836 837 OS.AddBlankLine(); 838 unsigned FileId = maybeRecordFile(SP->getFile()); 839 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 840 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 841 OS.AddBlankLine(); 842 OS.AddComment("Type index of inlined function"); 843 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 844 OS.AddComment("Offset into filechecksum table"); 845 OS.EmitCVFileChecksumOffsetDirective(FileId); 846 OS.AddComment("Starting line number"); 847 OS.EmitIntValue(SP->getLine(), 4); 848 } 849 850 endCVSubsection(InlineEnd); 851 } 852 853 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 854 const DILocation *InlinedAt, 855 const InlineSite &Site) { 856 assert(TypeIndices.count({Site.Inlinee, nullptr})); 857 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 858 859 // SymbolRecord 860 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE); 861 862 OS.AddComment("PtrParent"); 863 OS.EmitIntValue(0, 4); 864 OS.AddComment("PtrEnd"); 865 OS.EmitIntValue(0, 4); 866 OS.AddComment("Inlinee type index"); 867 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 868 869 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 870 unsigned StartLineNum = Site.Inlinee->getLine(); 871 872 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 873 FI.Begin, FI.End); 874 875 endSymbolRecord(InlineEnd); 876 877 emitLocalVariableList(FI, Site.InlinedLocals); 878 879 // Recurse on child inlined call sites before closing the scope. 880 for (const DILocation *ChildSite : Site.ChildSites) { 881 auto I = FI.InlineSites.find(ChildSite); 882 assert(I != FI.InlineSites.end() && 883 "child site not in function inline site map"); 884 emitInlinedCallSite(FI, ChildSite, I->second); 885 } 886 887 // Close the scope. 888 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END); 889 } 890 891 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 892 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 893 // comdat key. A section may be comdat because of -ffunction-sections or 894 // because it is comdat in the IR. 895 MCSectionCOFF *GVSec = 896 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 897 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 898 899 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 900 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 901 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 902 903 OS.SwitchSection(DebugSec); 904 905 // Emit the magic version number if this is the first time we've switched to 906 // this section. 907 if (ComdatDebugSections.insert(DebugSec).second) 908 emitCodeViewMagicVersion(); 909 } 910 911 // Emit an S_THUNK32/S_END symbol pair for a thunk routine. 912 // The only supported thunk ordinal is currently the standard type. 913 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV, 914 FunctionInfo &FI, 915 const MCSymbol *Fn) { 916 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 917 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind. 918 919 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 920 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 921 922 // Emit S_THUNK32 923 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32); 924 OS.AddComment("PtrParent"); 925 OS.EmitIntValue(0, 4); 926 OS.AddComment("PtrEnd"); 927 OS.EmitIntValue(0, 4); 928 OS.AddComment("PtrNext"); 929 OS.EmitIntValue(0, 4); 930 OS.AddComment("Thunk section relative address"); 931 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 932 OS.AddComment("Thunk section index"); 933 OS.EmitCOFFSectionIndex(Fn); 934 OS.AddComment("Code size"); 935 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2); 936 OS.AddComment("Ordinal"); 937 OS.EmitIntValue(unsigned(ordinal), 1); 938 OS.AddComment("Function name"); 939 emitNullTerminatedSymbolName(OS, FuncName); 940 // Additional fields specific to the thunk ordinal would go here. 941 endSymbolRecord(ThunkRecordEnd); 942 943 // Local variables/inlined routines are purposely omitted here. The point of 944 // marking this as a thunk is so Visual Studio will NOT stop in this routine. 945 946 // Emit S_PROC_ID_END 947 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 948 949 endCVSubsection(SymbolsEnd); 950 } 951 952 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 953 FunctionInfo &FI) { 954 // For each function there is a separate subsection which holds the PC to 955 // file:line table. 956 const MCSymbol *Fn = Asm->getSymbol(GV); 957 assert(Fn); 958 959 // Switch to the to a comdat section, if appropriate. 960 switchToDebugSectionForSymbol(Fn); 961 962 std::string FuncName; 963 auto *SP = GV->getSubprogram(); 964 assert(SP); 965 setCurrentSubprogram(SP); 966 967 if (SP->isThunk()) { 968 emitDebugInfoForThunk(GV, FI, Fn); 969 return; 970 } 971 972 // If we have a display name, build the fully qualified name by walking the 973 // chain of scopes. 974 if (!SP->getName().empty()) 975 FuncName = 976 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 977 978 // If our DISubprogram name is empty, use the mangled name. 979 if (FuncName.empty()) 980 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 981 982 // Emit FPO data, but only on 32-bit x86. No other platforms use it. 983 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86) 984 OS.EmitCVFPOData(Fn); 985 986 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 987 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 988 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 989 { 990 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID 991 : SymbolKind::S_GPROC32_ID; 992 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind); 993 994 // These fields are filled in by tools like CVPACK which run after the fact. 995 OS.AddComment("PtrParent"); 996 OS.EmitIntValue(0, 4); 997 OS.AddComment("PtrEnd"); 998 OS.EmitIntValue(0, 4); 999 OS.AddComment("PtrNext"); 1000 OS.EmitIntValue(0, 4); 1001 // This is the important bit that tells the debugger where the function 1002 // code is located and what's its size: 1003 OS.AddComment("Code size"); 1004 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 1005 OS.AddComment("Offset after prologue"); 1006 OS.EmitIntValue(0, 4); 1007 OS.AddComment("Offset before epilogue"); 1008 OS.EmitIntValue(0, 4); 1009 OS.AddComment("Function type index"); 1010 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 1011 OS.AddComment("Function section relative address"); 1012 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 1013 OS.AddComment("Function section index"); 1014 OS.EmitCOFFSectionIndex(Fn); 1015 OS.AddComment("Flags"); 1016 OS.EmitIntValue(0, 1); 1017 // Emit the function display name as a null-terminated string. 1018 OS.AddComment("Function name"); 1019 // Truncate the name so we won't overflow the record length field. 1020 emitNullTerminatedSymbolName(OS, FuncName); 1021 endSymbolRecord(ProcRecordEnd); 1022 1023 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC); 1024 // Subtract out the CSR size since MSVC excludes that and we include it. 1025 OS.AddComment("FrameSize"); 1026 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4); 1027 OS.AddComment("Padding"); 1028 OS.EmitIntValue(0, 4); 1029 OS.AddComment("Offset of padding"); 1030 OS.EmitIntValue(0, 4); 1031 OS.AddComment("Bytes of callee saved registers"); 1032 OS.EmitIntValue(FI.CSRSize, 4); 1033 OS.AddComment("Exception handler offset"); 1034 OS.EmitIntValue(0, 4); 1035 OS.AddComment("Exception handler section"); 1036 OS.EmitIntValue(0, 2); 1037 OS.AddComment("Flags (defines frame register)"); 1038 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4); 1039 endSymbolRecord(FrameProcEnd); 1040 1041 emitLocalVariableList(FI, FI.Locals); 1042 emitGlobalVariableList(FI.Globals); 1043 emitLexicalBlockList(FI.ChildBlocks, FI); 1044 1045 // Emit inlined call site information. Only emit functions inlined directly 1046 // into the parent function. We'll emit the other sites recursively as part 1047 // of their parent inline site. 1048 for (const DILocation *InlinedAt : FI.ChildSites) { 1049 auto I = FI.InlineSites.find(InlinedAt); 1050 assert(I != FI.InlineSites.end() && 1051 "child site not in function inline site map"); 1052 emitInlinedCallSite(FI, InlinedAt, I->second); 1053 } 1054 1055 for (auto Annot : FI.Annotations) { 1056 MCSymbol *Label = Annot.first; 1057 MDTuple *Strs = cast<MDTuple>(Annot.second); 1058 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION); 1059 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 1060 // FIXME: Make sure we don't overflow the max record size. 1061 OS.EmitCOFFSectionIndex(Label); 1062 OS.EmitIntValue(Strs->getNumOperands(), 2); 1063 for (Metadata *MD : Strs->operands()) { 1064 // MDStrings are null terminated, so we can do EmitBytes and get the 1065 // nice .asciz directive. 1066 StringRef Str = cast<MDString>(MD)->getString(); 1067 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 1068 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 1069 } 1070 endSymbolRecord(AnnotEnd); 1071 } 1072 1073 if (SP != nullptr) 1074 emitDebugInfoForUDTs(LocalUDTs); 1075 1076 // We're done with this function. 1077 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END); 1078 } 1079 endCVSubsection(SymbolsEnd); 1080 1081 // We have an assembler directive that takes care of the whole line table. 1082 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 1083 } 1084 1085 CodeViewDebug::LocalVarDefRange 1086 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 1087 LocalVarDefRange DR; 1088 DR.InMemory = -1; 1089 DR.DataOffset = Offset; 1090 assert(DR.DataOffset == Offset && "truncation"); 1091 DR.IsSubfield = 0; 1092 DR.StructOffset = 0; 1093 DR.CVRegister = CVRegister; 1094 return DR; 1095 } 1096 1097 void CodeViewDebug::collectVariableInfoFromMFTable( 1098 DenseSet<InlinedEntity> &Processed) { 1099 const MachineFunction &MF = *Asm->MF; 1100 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 1101 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 1102 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1103 1104 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 1105 if (!VI.Var) 1106 continue; 1107 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 1108 "Expected inlined-at fields to agree"); 1109 1110 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt())); 1111 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 1112 1113 // If variable scope is not found then skip this variable. 1114 if (!Scope) 1115 continue; 1116 1117 // If the variable has an attached offset expression, extract it. 1118 // FIXME: Try to handle DW_OP_deref as well. 1119 int64_t ExprOffset = 0; 1120 if (VI.Expr) 1121 if (!VI.Expr->extractIfOffset(ExprOffset)) 1122 continue; 1123 1124 // Get the frame register used and the offset. 1125 unsigned FrameReg = 0; 1126 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 1127 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 1128 1129 // Calculate the label ranges. 1130 LocalVarDefRange DefRange = 1131 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 1132 for (const InsnRange &Range : Scope->getRanges()) { 1133 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1134 const MCSymbol *End = getLabelAfterInsn(Range.second); 1135 End = End ? End : Asm->getFunctionEnd(); 1136 DefRange.Ranges.emplace_back(Begin, End); 1137 } 1138 1139 LocalVariable Var; 1140 Var.DIVar = VI.Var; 1141 Var.DefRanges.emplace_back(std::move(DefRange)); 1142 recordLocalVariable(std::move(Var), Scope); 1143 } 1144 } 1145 1146 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 1147 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 1148 } 1149 1150 static bool needsReferenceType(const DbgVariableLocation &Loc) { 1151 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 1152 } 1153 1154 void CodeViewDebug::calculateRanges( 1155 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 1156 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 1157 1158 // Calculate the definition ranges. 1159 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 1160 const InsnRange &Range = *I; 1161 const MachineInstr *DVInst = Range.first; 1162 assert(DVInst->isDebugValue() && "Invalid History entry"); 1163 // FIXME: Find a way to represent constant variables, since they are 1164 // relatively common. 1165 Optional<DbgVariableLocation> Location = 1166 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1167 if (!Location) 1168 continue; 1169 1170 // CodeView can only express variables in register and variables in memory 1171 // at a constant offset from a register. However, for variables passed 1172 // indirectly by pointer, it is common for that pointer to be spilled to a 1173 // stack location. For the special case of one offseted load followed by a 1174 // zero offset load (a pointer spilled to the stack), we change the type of 1175 // the local variable from a value type to a reference type. This tricks the 1176 // debugger into doing the load for us. 1177 if (Var.UseReferenceType) { 1178 // We're using a reference type. Drop the last zero offset load. 1179 if (canUseReferenceType(*Location)) 1180 Location->LoadChain.pop_back(); 1181 else 1182 continue; 1183 } else if (needsReferenceType(*Location)) { 1184 // This location can't be expressed without switching to a reference type. 1185 // Start over using that. 1186 Var.UseReferenceType = true; 1187 Var.DefRanges.clear(); 1188 calculateRanges(Var, Ranges); 1189 return; 1190 } 1191 1192 // We can only handle a register or an offseted load of a register. 1193 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1194 continue; 1195 { 1196 LocalVarDefRange DR; 1197 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1198 DR.InMemory = !Location->LoadChain.empty(); 1199 DR.DataOffset = 1200 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1201 if (Location->FragmentInfo) { 1202 DR.IsSubfield = true; 1203 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1204 } else { 1205 DR.IsSubfield = false; 1206 DR.StructOffset = 0; 1207 } 1208 1209 if (Var.DefRanges.empty() || 1210 Var.DefRanges.back().isDifferentLocation(DR)) { 1211 Var.DefRanges.emplace_back(std::move(DR)); 1212 } 1213 } 1214 1215 // Compute the label range. 1216 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1217 const MCSymbol *End = getLabelAfterInsn(Range.second); 1218 if (!End) { 1219 // This range is valid until the next overlapping bitpiece. In the 1220 // common case, ranges will not be bitpieces, so they will overlap. 1221 auto J = std::next(I); 1222 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1223 while (J != E && 1224 !DIExpr->fragmentsOverlap(J->first->getDebugExpression())) 1225 ++J; 1226 if (J != E) 1227 End = getLabelBeforeInsn(J->first); 1228 else 1229 End = Asm->getFunctionEnd(); 1230 } 1231 1232 // If the last range end is our begin, just extend the last range. 1233 // Otherwise make a new range. 1234 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1235 Var.DefRanges.back().Ranges; 1236 if (!R.empty() && R.back().second == Begin) 1237 R.back().second = End; 1238 else 1239 R.emplace_back(Begin, End); 1240 1241 // FIXME: Do more range combining. 1242 } 1243 } 1244 1245 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1246 DenseSet<InlinedEntity> Processed; 1247 // Grab the variable info that was squirreled away in the MMI side-table. 1248 collectVariableInfoFromMFTable(Processed); 1249 1250 for (const auto &I : DbgValues) { 1251 InlinedEntity IV = I.first; 1252 if (Processed.count(IV)) 1253 continue; 1254 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first); 1255 const DILocation *InlinedAt = IV.second; 1256 1257 // Instruction ranges, specifying where IV is accessible. 1258 const auto &Ranges = I.second; 1259 1260 LexicalScope *Scope = nullptr; 1261 if (InlinedAt) 1262 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1263 else 1264 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1265 // If variable scope is not found then skip this variable. 1266 if (!Scope) 1267 continue; 1268 1269 LocalVariable Var; 1270 Var.DIVar = DIVar; 1271 1272 calculateRanges(Var, Ranges); 1273 recordLocalVariable(std::move(Var), Scope); 1274 } 1275 } 1276 1277 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1278 const TargetSubtargetInfo &TSI = MF->getSubtarget(); 1279 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 1280 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1281 const Function &GV = MF->getFunction(); 1282 auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()}); 1283 assert(Insertion.second && "function already has info"); 1284 CurFn = Insertion.first->second.get(); 1285 CurFn->FuncId = NextFuncId++; 1286 CurFn->Begin = Asm->getFunctionBegin(); 1287 1288 // The S_FRAMEPROC record reports the stack size, and how many bytes of 1289 // callee-saved registers were used. For targets that don't use a PUSH 1290 // instruction (AArch64), this will be zero. 1291 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters(); 1292 CurFn->FrameSize = MFI.getStackSize(); 1293 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment(); 1294 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF); 1295 1296 // For this function S_FRAMEPROC record, figure out which codeview register 1297 // will be the frame pointer. 1298 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None. 1299 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None. 1300 if (CurFn->FrameSize > 0) { 1301 if (!TSI.getFrameLowering()->hasFP(*MF)) { 1302 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1303 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr; 1304 } else { 1305 // If there is an FP, parameters are always relative to it. 1306 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr; 1307 if (CurFn->HasStackRealignment) { 1308 // If the stack needs realignment, locals are relative to SP or VFRAME. 1309 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr; 1310 } else { 1311 // Otherwise, locals are relative to EBP, and we probably have VLAs or 1312 // other stack adjustments. 1313 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr; 1314 } 1315 } 1316 } 1317 1318 // Compute other frame procedure options. 1319 FrameProcedureOptions FPO = FrameProcedureOptions::None; 1320 if (MFI.hasVarSizedObjects()) 1321 FPO |= FrameProcedureOptions::HasAlloca; 1322 if (MF->exposesReturnsTwice()) 1323 FPO |= FrameProcedureOptions::HasSetJmp; 1324 // FIXME: Set HasLongJmp if we ever track that info. 1325 if (MF->hasInlineAsm()) 1326 FPO |= FrameProcedureOptions::HasInlineAssembly; 1327 if (GV.hasPersonalityFn()) { 1328 if (isAsynchronousEHPersonality( 1329 classifyEHPersonality(GV.getPersonalityFn()))) 1330 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling; 1331 else 1332 FPO |= FrameProcedureOptions::HasExceptionHandling; 1333 } 1334 if (GV.hasFnAttribute(Attribute::InlineHint)) 1335 FPO |= FrameProcedureOptions::MarkedInline; 1336 if (GV.hasFnAttribute(Attribute::Naked)) 1337 FPO |= FrameProcedureOptions::Naked; 1338 if (MFI.hasStackProtectorIndex()) 1339 FPO |= FrameProcedureOptions::SecurityChecks; 1340 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U); 1341 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U); 1342 if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() && 1343 !GV.hasFnAttribute(Attribute::OptimizeNone)) 1344 FPO |= FrameProcedureOptions::OptimizedForSpeed; 1345 // FIXME: Set GuardCfg when it is implemented. 1346 CurFn->FrameProcOpts = FPO; 1347 1348 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1349 1350 // Find the end of the function prolog. First known non-DBG_VALUE and 1351 // non-frame setup location marks the beginning of the function body. 1352 // FIXME: is there a simpler a way to do this? Can we just search 1353 // for the first instruction of the function, not the last of the prolog? 1354 DebugLoc PrologEndLoc; 1355 bool EmptyPrologue = true; 1356 for (const auto &MBB : *MF) { 1357 for (const auto &MI : MBB) { 1358 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1359 MI.getDebugLoc()) { 1360 PrologEndLoc = MI.getDebugLoc(); 1361 break; 1362 } else if (!MI.isMetaInstruction()) { 1363 EmptyPrologue = false; 1364 } 1365 } 1366 } 1367 1368 // Record beginning of function if we have a non-empty prologue. 1369 if (PrologEndLoc && !EmptyPrologue) { 1370 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1371 maybeRecordLocation(FnStartDL, MF); 1372 } 1373 } 1374 1375 static bool shouldEmitUdt(const DIType *T) { 1376 if (!T) 1377 return false; 1378 1379 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1380 if (T->getTag() == dwarf::DW_TAG_typedef) { 1381 if (DIScope *Scope = T->getScope().resolve()) { 1382 switch (Scope->getTag()) { 1383 case dwarf::DW_TAG_structure_type: 1384 case dwarf::DW_TAG_class_type: 1385 case dwarf::DW_TAG_union_type: 1386 return false; 1387 } 1388 } 1389 } 1390 1391 while (true) { 1392 if (!T || T->isForwardDecl()) 1393 return false; 1394 1395 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1396 if (!DT) 1397 return true; 1398 T = DT->getBaseType().resolve(); 1399 } 1400 return true; 1401 } 1402 1403 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1404 // Don't record empty UDTs. 1405 if (Ty->getName().empty()) 1406 return; 1407 if (!shouldEmitUdt(Ty)) 1408 return; 1409 1410 SmallVector<StringRef, 5> QualifiedNameComponents; 1411 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1412 Ty->getScope().resolve(), QualifiedNameComponents); 1413 1414 std::string FullyQualifiedName = 1415 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1416 1417 if (ClosestSubprogram == nullptr) { 1418 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1419 } else if (ClosestSubprogram == CurrentSubprogram) { 1420 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1421 } 1422 1423 // TODO: What if the ClosestSubprogram is neither null or the current 1424 // subprogram? Currently, the UDT just gets dropped on the floor. 1425 // 1426 // The current behavior is not desirable. To get maximal fidelity, we would 1427 // need to perform all type translation before beginning emission of .debug$S 1428 // and then make LocalUDTs a member of FunctionInfo 1429 } 1430 1431 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1432 // Generic dispatch for lowering an unknown type. 1433 switch (Ty->getTag()) { 1434 case dwarf::DW_TAG_array_type: 1435 return lowerTypeArray(cast<DICompositeType>(Ty)); 1436 case dwarf::DW_TAG_typedef: 1437 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1438 case dwarf::DW_TAG_base_type: 1439 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1440 case dwarf::DW_TAG_pointer_type: 1441 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1442 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1443 LLVM_FALLTHROUGH; 1444 case dwarf::DW_TAG_reference_type: 1445 case dwarf::DW_TAG_rvalue_reference_type: 1446 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1447 case dwarf::DW_TAG_ptr_to_member_type: 1448 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1449 case dwarf::DW_TAG_restrict_type: 1450 case dwarf::DW_TAG_const_type: 1451 case dwarf::DW_TAG_volatile_type: 1452 // TODO: add support for DW_TAG_atomic_type here 1453 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1454 case dwarf::DW_TAG_subroutine_type: 1455 if (ClassTy) { 1456 // The member function type of a member function pointer has no 1457 // ThisAdjustment. 1458 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1459 /*ThisAdjustment=*/0, 1460 /*IsStaticMethod=*/false); 1461 } 1462 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1463 case dwarf::DW_TAG_enumeration_type: 1464 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1465 case dwarf::DW_TAG_class_type: 1466 case dwarf::DW_TAG_structure_type: 1467 return lowerTypeClass(cast<DICompositeType>(Ty)); 1468 case dwarf::DW_TAG_union_type: 1469 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1470 case dwarf::DW_TAG_unspecified_type: 1471 if (Ty->getName() == "decltype(nullptr)") 1472 return TypeIndex::NullptrT(); 1473 return TypeIndex::None(); 1474 default: 1475 // Use the null type index. 1476 return TypeIndex(); 1477 } 1478 } 1479 1480 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1481 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1482 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1483 StringRef TypeName = Ty->getName(); 1484 1485 addToUDTs(Ty); 1486 1487 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1488 TypeName == "HRESULT") 1489 return TypeIndex(SimpleTypeKind::HResult); 1490 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1491 TypeName == "wchar_t") 1492 return TypeIndex(SimpleTypeKind::WideCharacter); 1493 1494 return UnderlyingTypeIndex; 1495 } 1496 1497 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1498 DITypeRef ElementTypeRef = Ty->getBaseType(); 1499 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1500 // IndexType is size_t, which depends on the bitness of the target. 1501 TypeIndex IndexType = getPointerSizeInBytes() == 8 1502 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1503 : TypeIndex(SimpleTypeKind::UInt32Long); 1504 1505 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1506 1507 // Add subranges to array type. 1508 DINodeArray Elements = Ty->getElements(); 1509 for (int i = Elements.size() - 1; i >= 0; --i) { 1510 const DINode *Element = Elements[i]; 1511 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1512 1513 const DISubrange *Subrange = cast<DISubrange>(Element); 1514 assert(Subrange->getLowerBound() == 0 && 1515 "codeview doesn't support subranges with lower bounds"); 1516 int64_t Count = -1; 1517 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>()) 1518 Count = CI->getSExtValue(); 1519 1520 // Forward declarations of arrays without a size and VLAs use a count of -1. 1521 // Emit a count of zero in these cases to match what MSVC does for arrays 1522 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1523 // should do for them even if we could distinguish them. 1524 if (Count == -1) 1525 Count = 0; 1526 1527 // Update the element size and element type index for subsequent subranges. 1528 ElementSize *= Count; 1529 1530 // If this is the outermost array, use the size from the array. It will be 1531 // more accurate if we had a VLA or an incomplete element type size. 1532 uint64_t ArraySize = 1533 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1534 1535 StringRef Name = (i == 0) ? Ty->getName() : ""; 1536 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1537 ElementTypeIndex = TypeTable.writeLeafType(AR); 1538 } 1539 1540 return ElementTypeIndex; 1541 } 1542 1543 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1544 TypeIndex Index; 1545 dwarf::TypeKind Kind; 1546 uint32_t ByteSize; 1547 1548 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1549 ByteSize = Ty->getSizeInBits() / 8; 1550 1551 SimpleTypeKind STK = SimpleTypeKind::None; 1552 switch (Kind) { 1553 case dwarf::DW_ATE_address: 1554 // FIXME: Translate 1555 break; 1556 case dwarf::DW_ATE_boolean: 1557 switch (ByteSize) { 1558 case 1: STK = SimpleTypeKind::Boolean8; break; 1559 case 2: STK = SimpleTypeKind::Boolean16; break; 1560 case 4: STK = SimpleTypeKind::Boolean32; break; 1561 case 8: STK = SimpleTypeKind::Boolean64; break; 1562 case 16: STK = SimpleTypeKind::Boolean128; break; 1563 } 1564 break; 1565 case dwarf::DW_ATE_complex_float: 1566 switch (ByteSize) { 1567 case 2: STK = SimpleTypeKind::Complex16; break; 1568 case 4: STK = SimpleTypeKind::Complex32; break; 1569 case 8: STK = SimpleTypeKind::Complex64; break; 1570 case 10: STK = SimpleTypeKind::Complex80; break; 1571 case 16: STK = SimpleTypeKind::Complex128; break; 1572 } 1573 break; 1574 case dwarf::DW_ATE_float: 1575 switch (ByteSize) { 1576 case 2: STK = SimpleTypeKind::Float16; break; 1577 case 4: STK = SimpleTypeKind::Float32; break; 1578 case 6: STK = SimpleTypeKind::Float48; break; 1579 case 8: STK = SimpleTypeKind::Float64; break; 1580 case 10: STK = SimpleTypeKind::Float80; break; 1581 case 16: STK = SimpleTypeKind::Float128; break; 1582 } 1583 break; 1584 case dwarf::DW_ATE_signed: 1585 switch (ByteSize) { 1586 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1587 case 2: STK = SimpleTypeKind::Int16Short; break; 1588 case 4: STK = SimpleTypeKind::Int32; break; 1589 case 8: STK = SimpleTypeKind::Int64Quad; break; 1590 case 16: STK = SimpleTypeKind::Int128Oct; break; 1591 } 1592 break; 1593 case dwarf::DW_ATE_unsigned: 1594 switch (ByteSize) { 1595 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1596 case 2: STK = SimpleTypeKind::UInt16Short; break; 1597 case 4: STK = SimpleTypeKind::UInt32; break; 1598 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1599 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1600 } 1601 break; 1602 case dwarf::DW_ATE_UTF: 1603 switch (ByteSize) { 1604 case 2: STK = SimpleTypeKind::Character16; break; 1605 case 4: STK = SimpleTypeKind::Character32; break; 1606 } 1607 break; 1608 case dwarf::DW_ATE_signed_char: 1609 if (ByteSize == 1) 1610 STK = SimpleTypeKind::SignedCharacter; 1611 break; 1612 case dwarf::DW_ATE_unsigned_char: 1613 if (ByteSize == 1) 1614 STK = SimpleTypeKind::UnsignedCharacter; 1615 break; 1616 default: 1617 break; 1618 } 1619 1620 // Apply some fixups based on the source-level type name. 1621 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1622 STK = SimpleTypeKind::Int32Long; 1623 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1624 STK = SimpleTypeKind::UInt32Long; 1625 if (STK == SimpleTypeKind::UInt16Short && 1626 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1627 STK = SimpleTypeKind::WideCharacter; 1628 if ((STK == SimpleTypeKind::SignedCharacter || 1629 STK == SimpleTypeKind::UnsignedCharacter) && 1630 Ty->getName() == "char") 1631 STK = SimpleTypeKind::NarrowCharacter; 1632 1633 return TypeIndex(STK); 1634 } 1635 1636 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty, 1637 PointerOptions PO) { 1638 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1639 1640 // Pointers to simple types without any options can use SimpleTypeMode, rather 1641 // than having a dedicated pointer type record. 1642 if (PointeeTI.isSimple() && PO == PointerOptions::None && 1643 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1644 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1645 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1646 ? SimpleTypeMode::NearPointer64 1647 : SimpleTypeMode::NearPointer32; 1648 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1649 } 1650 1651 PointerKind PK = 1652 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1653 PointerMode PM = PointerMode::Pointer; 1654 switch (Ty->getTag()) { 1655 default: llvm_unreachable("not a pointer tag type"); 1656 case dwarf::DW_TAG_pointer_type: 1657 PM = PointerMode::Pointer; 1658 break; 1659 case dwarf::DW_TAG_reference_type: 1660 PM = PointerMode::LValueReference; 1661 break; 1662 case dwarf::DW_TAG_rvalue_reference_type: 1663 PM = PointerMode::RValueReference; 1664 break; 1665 } 1666 1667 if (Ty->isObjectPointer()) 1668 PO |= PointerOptions::Const; 1669 1670 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1671 return TypeTable.writeLeafType(PR); 1672 } 1673 1674 static PointerToMemberRepresentation 1675 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1676 // SizeInBytes being zero generally implies that the member pointer type was 1677 // incomplete, which can happen if it is part of a function prototype. In this 1678 // case, use the unknown model instead of the general model. 1679 if (IsPMF) { 1680 switch (Flags & DINode::FlagPtrToMemberRep) { 1681 case 0: 1682 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1683 : PointerToMemberRepresentation::GeneralFunction; 1684 case DINode::FlagSingleInheritance: 1685 return PointerToMemberRepresentation::SingleInheritanceFunction; 1686 case DINode::FlagMultipleInheritance: 1687 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1688 case DINode::FlagVirtualInheritance: 1689 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1690 } 1691 } else { 1692 switch (Flags & DINode::FlagPtrToMemberRep) { 1693 case 0: 1694 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1695 : PointerToMemberRepresentation::GeneralData; 1696 case DINode::FlagSingleInheritance: 1697 return PointerToMemberRepresentation::SingleInheritanceData; 1698 case DINode::FlagMultipleInheritance: 1699 return PointerToMemberRepresentation::MultipleInheritanceData; 1700 case DINode::FlagVirtualInheritance: 1701 return PointerToMemberRepresentation::VirtualInheritanceData; 1702 } 1703 } 1704 llvm_unreachable("invalid ptr to member representation"); 1705 } 1706 1707 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty, 1708 PointerOptions PO) { 1709 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1710 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1711 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1712 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1713 : PointerKind::Near32; 1714 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1715 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1716 : PointerMode::PointerToDataMember; 1717 1718 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1719 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1720 MemberPointerInfo MPI( 1721 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1722 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1723 return TypeTable.writeLeafType(PR); 1724 } 1725 1726 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1727 /// have a translation, use the NearC convention. 1728 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1729 switch (DwarfCC) { 1730 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1731 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1732 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1733 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1734 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1735 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1736 } 1737 return CallingConvention::NearC; 1738 } 1739 1740 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1741 ModifierOptions Mods = ModifierOptions::None; 1742 PointerOptions PO = PointerOptions::None; 1743 bool IsModifier = true; 1744 const DIType *BaseTy = Ty; 1745 while (IsModifier && BaseTy) { 1746 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1747 switch (BaseTy->getTag()) { 1748 case dwarf::DW_TAG_const_type: 1749 Mods |= ModifierOptions::Const; 1750 PO |= PointerOptions::Const; 1751 break; 1752 case dwarf::DW_TAG_volatile_type: 1753 Mods |= ModifierOptions::Volatile; 1754 PO |= PointerOptions::Volatile; 1755 break; 1756 case dwarf::DW_TAG_restrict_type: 1757 // Only pointer types be marked with __restrict. There is no known flag 1758 // for __restrict in LF_MODIFIER records. 1759 PO |= PointerOptions::Restrict; 1760 break; 1761 default: 1762 IsModifier = false; 1763 break; 1764 } 1765 if (IsModifier) 1766 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1767 } 1768 1769 // Check if the inner type will use an LF_POINTER record. If so, the 1770 // qualifiers will go in the LF_POINTER record. This comes up for types like 1771 // 'int *const' and 'int *__restrict', not the more common cases like 'const 1772 // char *'. 1773 if (BaseTy) { 1774 switch (BaseTy->getTag()) { 1775 case dwarf::DW_TAG_pointer_type: 1776 case dwarf::DW_TAG_reference_type: 1777 case dwarf::DW_TAG_rvalue_reference_type: 1778 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO); 1779 case dwarf::DW_TAG_ptr_to_member_type: 1780 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO); 1781 default: 1782 break; 1783 } 1784 } 1785 1786 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1787 1788 // Return the base type index if there aren't any modifiers. For example, the 1789 // metadata could contain restrict wrappers around non-pointer types. 1790 if (Mods == ModifierOptions::None) 1791 return ModifiedTI; 1792 1793 ModifierRecord MR(ModifiedTI, Mods); 1794 return TypeTable.writeLeafType(MR); 1795 } 1796 1797 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1798 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1799 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1800 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1801 1802 // MSVC uses type none for variadic argument. 1803 if (ReturnAndArgTypeIndices.size() > 1 && 1804 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) { 1805 ReturnAndArgTypeIndices.back() = TypeIndex::None(); 1806 } 1807 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1808 ArrayRef<TypeIndex> ArgTypeIndices = None; 1809 if (!ReturnAndArgTypeIndices.empty()) { 1810 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1811 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1812 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1813 } 1814 1815 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1816 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1817 1818 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1819 1820 FunctionOptions FO = getFunctionOptions(Ty); 1821 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(), 1822 ArgListIndex); 1823 return TypeTable.writeLeafType(Procedure); 1824 } 1825 1826 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1827 const DIType *ClassTy, 1828 int ThisAdjustment, 1829 bool IsStaticMethod, 1830 FunctionOptions FO) { 1831 // Lower the containing class type. 1832 TypeIndex ClassType = getTypeIndex(ClassTy); 1833 1834 DITypeRefArray ReturnAndArgs = Ty->getTypeArray(); 1835 1836 unsigned Index = 0; 1837 SmallVector<TypeIndex, 8> ArgTypeIndices; 1838 TypeIndex ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]); 1839 1840 // If the first argument is a pointer type and this isn't a static method, 1841 // treat it as the special 'this' parameter, which is encoded separately from 1842 // the arguments. 1843 TypeIndex ThisTypeIndex; 1844 if (!IsStaticMethod && ReturnAndArgs.size() > Index) { 1845 if (const DIDerivedType *PtrTy = 1846 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index].resolve())) { 1847 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) { 1848 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty); 1849 Index++; 1850 } 1851 } 1852 } 1853 1854 while (Index < ReturnAndArgs.size()) 1855 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++])); 1856 1857 // MSVC uses type none for variadic argument. 1858 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void()) 1859 ArgTypeIndices.back() = TypeIndex::None(); 1860 1861 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1862 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec); 1863 1864 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1865 1866 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO, 1867 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment); 1868 return TypeTable.writeLeafType(MFR); 1869 } 1870 1871 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1872 unsigned VSlotCount = 1873 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1874 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1875 1876 VFTableShapeRecord VFTSR(Slots); 1877 return TypeTable.writeLeafType(VFTSR); 1878 } 1879 1880 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1881 switch (Flags & DINode::FlagAccessibility) { 1882 case DINode::FlagPrivate: return MemberAccess::Private; 1883 case DINode::FlagPublic: return MemberAccess::Public; 1884 case DINode::FlagProtected: return MemberAccess::Protected; 1885 case 0: 1886 // If there was no explicit access control, provide the default for the tag. 1887 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1888 : MemberAccess::Public; 1889 } 1890 llvm_unreachable("access flags are exclusive"); 1891 } 1892 1893 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1894 if (SP->isArtificial()) 1895 return MethodOptions::CompilerGenerated; 1896 1897 // FIXME: Handle other MethodOptions. 1898 1899 return MethodOptions::None; 1900 } 1901 1902 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1903 bool Introduced) { 1904 if (SP->getFlags() & DINode::FlagStaticMember) 1905 return MethodKind::Static; 1906 1907 switch (SP->getVirtuality()) { 1908 case dwarf::DW_VIRTUALITY_none: 1909 break; 1910 case dwarf::DW_VIRTUALITY_virtual: 1911 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1912 case dwarf::DW_VIRTUALITY_pure_virtual: 1913 return Introduced ? MethodKind::PureIntroducingVirtual 1914 : MethodKind::PureVirtual; 1915 default: 1916 llvm_unreachable("unhandled virtuality case"); 1917 } 1918 1919 return MethodKind::Vanilla; 1920 } 1921 1922 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1923 switch (Ty->getTag()) { 1924 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1925 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1926 } 1927 llvm_unreachable("unexpected tag"); 1928 } 1929 1930 /// Return ClassOptions that should be present on both the forward declaration 1931 /// and the defintion of a tag type. 1932 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1933 ClassOptions CO = ClassOptions::None; 1934 1935 // MSVC always sets this flag, even for local types. Clang doesn't always 1936 // appear to give every type a linkage name, which may be problematic for us. 1937 // FIXME: Investigate the consequences of not following them here. 1938 if (!Ty->getIdentifier().empty()) 1939 CO |= ClassOptions::HasUniqueName; 1940 1941 // Put the Nested flag on a type if it appears immediately inside a tag type. 1942 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1943 // here. That flag is only set on definitions, and not forward declarations. 1944 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1945 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1946 CO |= ClassOptions::Nested; 1947 1948 // Put the Scoped flag on function-local types. MSVC puts this flag for enum 1949 // type only when it has an immediate function scope. Clang never puts enums 1950 // inside DILexicalBlock scopes. Enum types, as generated by clang, are 1951 // always in function, class, or file scopes. 1952 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) { 1953 if (ImmediateScope && isa<DISubprogram>(ImmediateScope)) 1954 CO |= ClassOptions::Scoped; 1955 } else { 1956 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1957 Scope = Scope->getScope().resolve()) { 1958 if (isa<DISubprogram>(Scope)) { 1959 CO |= ClassOptions::Scoped; 1960 break; 1961 } 1962 } 1963 } 1964 1965 return CO; 1966 } 1967 1968 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) { 1969 switch (Ty->getTag()) { 1970 case dwarf::DW_TAG_class_type: 1971 case dwarf::DW_TAG_structure_type: 1972 case dwarf::DW_TAG_union_type: 1973 case dwarf::DW_TAG_enumeration_type: 1974 break; 1975 default: 1976 return; 1977 } 1978 1979 if (const auto *File = Ty->getFile()) { 1980 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1981 TypeIndex SIDI = TypeTable.writeLeafType(SIDR); 1982 1983 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine()); 1984 TypeTable.writeLeafType(USLR); 1985 } 1986 } 1987 1988 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1989 ClassOptions CO = getCommonClassOptions(Ty); 1990 TypeIndex FTI; 1991 unsigned EnumeratorCount = 0; 1992 1993 if (Ty->isForwardDecl()) { 1994 CO |= ClassOptions::ForwardReference; 1995 } else { 1996 ContinuationRecordBuilder ContinuationBuilder; 1997 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 1998 for (const DINode *Element : Ty->getElements()) { 1999 // We assume that the frontend provides all members in source declaration 2000 // order, which is what MSVC does. 2001 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 2002 EnumeratorRecord ER(MemberAccess::Public, 2003 APSInt::getUnsigned(Enumerator->getValue()), 2004 Enumerator->getName()); 2005 ContinuationBuilder.writeMemberType(ER); 2006 EnumeratorCount++; 2007 } 2008 } 2009 FTI = TypeTable.insertRecord(ContinuationBuilder); 2010 } 2011 2012 std::string FullName = getFullyQualifiedName(Ty); 2013 2014 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 2015 getTypeIndex(Ty->getBaseType())); 2016 TypeIndex EnumTI = TypeTable.writeLeafType(ER); 2017 2018 addUDTSrcLine(Ty, EnumTI); 2019 2020 return EnumTI; 2021 } 2022 2023 //===----------------------------------------------------------------------===// 2024 // ClassInfo 2025 //===----------------------------------------------------------------------===// 2026 2027 struct llvm::ClassInfo { 2028 struct MemberInfo { 2029 const DIDerivedType *MemberTypeNode; 2030 uint64_t BaseOffset; 2031 }; 2032 // [MemberInfo] 2033 using MemberList = std::vector<MemberInfo>; 2034 2035 using MethodsList = TinyPtrVector<const DISubprogram *>; 2036 // MethodName -> MethodsList 2037 using MethodsMap = MapVector<MDString *, MethodsList>; 2038 2039 /// Base classes. 2040 std::vector<const DIDerivedType *> Inheritance; 2041 2042 /// Direct members. 2043 MemberList Members; 2044 // Direct overloaded methods gathered by name. 2045 MethodsMap Methods; 2046 2047 TypeIndex VShapeTI; 2048 2049 std::vector<const DIType *> NestedTypes; 2050 }; 2051 2052 void CodeViewDebug::clear() { 2053 assert(CurFn == nullptr); 2054 FileIdMap.clear(); 2055 FnDebugInfo.clear(); 2056 FileToFilepathMap.clear(); 2057 LocalUDTs.clear(); 2058 GlobalUDTs.clear(); 2059 TypeIndices.clear(); 2060 CompleteTypeIndices.clear(); 2061 ScopeGlobals.clear(); 2062 } 2063 2064 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 2065 const DIDerivedType *DDTy) { 2066 if (!DDTy->getName().empty()) { 2067 Info.Members.push_back({DDTy, 0}); 2068 return; 2069 } 2070 2071 // An unnamed member may represent a nested struct or union. Attempt to 2072 // interpret the unnamed member as a DICompositeType possibly wrapped in 2073 // qualifier types. Add all the indirect fields to the current record if that 2074 // succeeds, and drop the member if that fails. 2075 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 2076 uint64_t Offset = DDTy->getOffsetInBits(); 2077 const DIType *Ty = DDTy->getBaseType().resolve(); 2078 bool FullyResolved = false; 2079 while (!FullyResolved) { 2080 switch (Ty->getTag()) { 2081 case dwarf::DW_TAG_const_type: 2082 case dwarf::DW_TAG_volatile_type: 2083 // FIXME: we should apply the qualifier types to the indirect fields 2084 // rather than dropping them. 2085 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2086 break; 2087 default: 2088 FullyResolved = true; 2089 break; 2090 } 2091 } 2092 2093 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty); 2094 if (!DCTy) 2095 return; 2096 2097 ClassInfo NestedInfo = collectClassInfo(DCTy); 2098 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 2099 Info.Members.push_back( 2100 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 2101 } 2102 2103 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 2104 ClassInfo Info; 2105 // Add elements to structure type. 2106 DINodeArray Elements = Ty->getElements(); 2107 for (auto *Element : Elements) { 2108 // We assume that the frontend provides all members in source declaration 2109 // order, which is what MSVC does. 2110 if (!Element) 2111 continue; 2112 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 2113 Info.Methods[SP->getRawName()].push_back(SP); 2114 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 2115 if (DDTy->getTag() == dwarf::DW_TAG_member) { 2116 collectMemberInfo(Info, DDTy); 2117 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 2118 Info.Inheritance.push_back(DDTy); 2119 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 2120 DDTy->getName() == "__vtbl_ptr_type") { 2121 Info.VShapeTI = getTypeIndex(DDTy); 2122 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 2123 Info.NestedTypes.push_back(DDTy); 2124 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 2125 // Ignore friend members. It appears that MSVC emitted info about 2126 // friends in the past, but modern versions do not. 2127 } 2128 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 2129 Info.NestedTypes.push_back(Composite); 2130 } 2131 // Skip other unrecognized kinds of elements. 2132 } 2133 return Info; 2134 } 2135 2136 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) { 2137 // This routine is used by lowerTypeClass and lowerTypeUnion to determine 2138 // if a complete type should be emitted instead of a forward reference. 2139 return Ty->getName().empty() && Ty->getIdentifier().empty() && 2140 !Ty->isForwardDecl(); 2141 } 2142 2143 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 2144 // Emit the complete type for unnamed structs. C++ classes with methods 2145 // which have a circular reference back to the class type are expected to 2146 // be named by the front-end and should not be "unnamed". C unnamed 2147 // structs should not have circular references. 2148 if (shouldAlwaysEmitCompleteClassType(Ty)) { 2149 // If this unnamed complete type is already in the process of being defined 2150 // then the description of the type is malformed and cannot be emitted 2151 // into CodeView correctly so report a fatal error. 2152 auto I = CompleteTypeIndices.find(Ty); 2153 if (I != CompleteTypeIndices.end() && I->second == TypeIndex()) 2154 report_fatal_error("cannot debug circular reference to unnamed type"); 2155 return getCompleteTypeIndex(Ty); 2156 } 2157 2158 // First, construct the forward decl. Don't look into Ty to compute the 2159 // forward decl options, since it might not be available in all TUs. 2160 TypeRecordKind Kind = getRecordKind(Ty); 2161 ClassOptions CO = 2162 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2163 std::string FullName = getFullyQualifiedName(Ty); 2164 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 2165 FullName, Ty->getIdentifier()); 2166 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR); 2167 if (!Ty->isForwardDecl()) 2168 DeferredCompleteTypes.push_back(Ty); 2169 return FwdDeclTI; 2170 } 2171 2172 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 2173 // Construct the field list and complete type record. 2174 TypeRecordKind Kind = getRecordKind(Ty); 2175 ClassOptions CO = getCommonClassOptions(Ty); 2176 TypeIndex FieldTI; 2177 TypeIndex VShapeTI; 2178 unsigned FieldCount; 2179 bool ContainsNestedClass; 2180 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 2181 lowerRecordFieldList(Ty); 2182 2183 if (ContainsNestedClass) 2184 CO |= ClassOptions::ContainsNestedClass; 2185 2186 std::string FullName = getFullyQualifiedName(Ty); 2187 2188 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2189 2190 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 2191 SizeInBytes, FullName, Ty->getIdentifier()); 2192 TypeIndex ClassTI = TypeTable.writeLeafType(CR); 2193 2194 addUDTSrcLine(Ty, ClassTI); 2195 2196 addToUDTs(Ty); 2197 2198 return ClassTI; 2199 } 2200 2201 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 2202 // Emit the complete type for unnamed unions. 2203 if (shouldAlwaysEmitCompleteClassType(Ty)) 2204 return getCompleteTypeIndex(Ty); 2205 2206 ClassOptions CO = 2207 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 2208 std::string FullName = getFullyQualifiedName(Ty); 2209 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 2210 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR); 2211 if (!Ty->isForwardDecl()) 2212 DeferredCompleteTypes.push_back(Ty); 2213 return FwdDeclTI; 2214 } 2215 2216 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 2217 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 2218 TypeIndex FieldTI; 2219 unsigned FieldCount; 2220 bool ContainsNestedClass; 2221 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 2222 lowerRecordFieldList(Ty); 2223 2224 if (ContainsNestedClass) 2225 CO |= ClassOptions::ContainsNestedClass; 2226 2227 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 2228 std::string FullName = getFullyQualifiedName(Ty); 2229 2230 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 2231 Ty->getIdentifier()); 2232 TypeIndex UnionTI = TypeTable.writeLeafType(UR); 2233 2234 addUDTSrcLine(Ty, UnionTI); 2235 2236 addToUDTs(Ty); 2237 2238 return UnionTI; 2239 } 2240 2241 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 2242 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 2243 // Manually count members. MSVC appears to count everything that generates a 2244 // field list record. Each individual overload in a method overload group 2245 // contributes to this count, even though the overload group is a single field 2246 // list record. 2247 unsigned MemberCount = 0; 2248 ClassInfo Info = collectClassInfo(Ty); 2249 ContinuationRecordBuilder ContinuationBuilder; 2250 ContinuationBuilder.begin(ContinuationRecordKind::FieldList); 2251 2252 // Create base classes. 2253 for (const DIDerivedType *I : Info.Inheritance) { 2254 if (I->getFlags() & DINode::FlagVirtual) { 2255 // Virtual base. 2256 unsigned VBPtrOffset = I->getVBPtrOffset(); 2257 // FIXME: Despite the accessor name, the offset is really in bytes. 2258 unsigned VBTableIndex = I->getOffsetInBits() / 4; 2259 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 2260 ? TypeRecordKind::IndirectVirtualBaseClass 2261 : TypeRecordKind::VirtualBaseClass; 2262 VirtualBaseClassRecord VBCR( 2263 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 2264 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 2265 VBTableIndex); 2266 2267 ContinuationBuilder.writeMemberType(VBCR); 2268 MemberCount++; 2269 } else { 2270 assert(I->getOffsetInBits() % 8 == 0 && 2271 "bases must be on byte boundaries"); 2272 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 2273 getTypeIndex(I->getBaseType()), 2274 I->getOffsetInBits() / 8); 2275 ContinuationBuilder.writeMemberType(BCR); 2276 MemberCount++; 2277 } 2278 } 2279 2280 // Create members. 2281 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 2282 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 2283 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 2284 StringRef MemberName = Member->getName(); 2285 MemberAccess Access = 2286 translateAccessFlags(Ty->getTag(), Member->getFlags()); 2287 2288 if (Member->isStaticMember()) { 2289 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 2290 ContinuationBuilder.writeMemberType(SDMR); 2291 MemberCount++; 2292 continue; 2293 } 2294 2295 // Virtual function pointer member. 2296 if ((Member->getFlags() & DINode::FlagArtificial) && 2297 Member->getName().startswith("_vptr$")) { 2298 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 2299 ContinuationBuilder.writeMemberType(VFPR); 2300 MemberCount++; 2301 continue; 2302 } 2303 2304 // Data member. 2305 uint64_t MemberOffsetInBits = 2306 Member->getOffsetInBits() + MemberInfo.BaseOffset; 2307 if (Member->isBitField()) { 2308 uint64_t StartBitOffset = MemberOffsetInBits; 2309 if (const auto *CI = 2310 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 2311 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 2312 } 2313 StartBitOffset -= MemberOffsetInBits; 2314 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 2315 StartBitOffset); 2316 MemberBaseType = TypeTable.writeLeafType(BFR); 2317 } 2318 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 2319 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 2320 MemberName); 2321 ContinuationBuilder.writeMemberType(DMR); 2322 MemberCount++; 2323 } 2324 2325 // Create methods 2326 for (auto &MethodItr : Info.Methods) { 2327 StringRef Name = MethodItr.first->getString(); 2328 2329 std::vector<OneMethodRecord> Methods; 2330 for (const DISubprogram *SP : MethodItr.second) { 2331 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 2332 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 2333 2334 unsigned VFTableOffset = -1; 2335 if (Introduced) 2336 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 2337 2338 Methods.push_back(OneMethodRecord( 2339 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 2340 translateMethodKindFlags(SP, Introduced), 2341 translateMethodOptionFlags(SP), VFTableOffset, Name)); 2342 MemberCount++; 2343 } 2344 assert(!Methods.empty() && "Empty methods map entry"); 2345 if (Methods.size() == 1) 2346 ContinuationBuilder.writeMemberType(Methods[0]); 2347 else { 2348 // FIXME: Make this use its own ContinuationBuilder so that 2349 // MethodOverloadList can be split correctly. 2350 MethodOverloadListRecord MOLR(Methods); 2351 TypeIndex MethodList = TypeTable.writeLeafType(MOLR); 2352 2353 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 2354 ContinuationBuilder.writeMemberType(OMR); 2355 } 2356 } 2357 2358 // Create nested classes. 2359 for (const DIType *Nested : Info.NestedTypes) { 2360 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2361 ContinuationBuilder.writeMemberType(R); 2362 MemberCount++; 2363 } 2364 2365 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder); 2366 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2367 !Info.NestedTypes.empty()); 2368 } 2369 2370 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2371 if (!VBPType.getIndex()) { 2372 // Make a 'const int *' type. 2373 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2374 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR); 2375 2376 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2377 : PointerKind::Near32; 2378 PointerMode PM = PointerMode::Pointer; 2379 PointerOptions PO = PointerOptions::None; 2380 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2381 VBPType = TypeTable.writeLeafType(PR); 2382 } 2383 2384 return VBPType; 2385 } 2386 2387 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2388 const DIType *Ty = TypeRef.resolve(); 2389 const DIType *ClassTy = ClassTyRef.resolve(); 2390 2391 // The null DIType is the void type. Don't try to hash it. 2392 if (!Ty) 2393 return TypeIndex::Void(); 2394 2395 // Check if we've already translated this type. Don't try to do a 2396 // get-or-create style insertion that caches the hash lookup across the 2397 // lowerType call. It will update the TypeIndices map. 2398 auto I = TypeIndices.find({Ty, ClassTy}); 2399 if (I != TypeIndices.end()) 2400 return I->second; 2401 2402 TypeLoweringScope S(*this); 2403 TypeIndex TI = lowerType(Ty, ClassTy); 2404 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2405 } 2406 2407 codeview::TypeIndex 2408 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy, 2409 const DISubroutineType *SubroutineTy) { 2410 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type && 2411 "this type must be a pointer type"); 2412 2413 PointerOptions Options = PointerOptions::None; 2414 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference) 2415 Options = PointerOptions::LValueRefThisPointer; 2416 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference) 2417 Options = PointerOptions::RValueRefThisPointer; 2418 2419 // Check if we've already translated this type. If there is no ref qualifier 2420 // on the function then we look up this pointer type with no associated class 2421 // so that the TypeIndex for the this pointer can be shared with the type 2422 // index for other pointers to this class type. If there is a ref qualifier 2423 // then we lookup the pointer using the subroutine as the parent type. 2424 auto I = TypeIndices.find({PtrTy, SubroutineTy}); 2425 if (I != TypeIndices.end()) 2426 return I->second; 2427 2428 TypeLoweringScope S(*this); 2429 TypeIndex TI = lowerTypePointer(PtrTy, Options); 2430 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy); 2431 } 2432 2433 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2434 DIType *Ty = TypeRef.resolve(); 2435 PointerRecord PR(getTypeIndex(Ty), 2436 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2437 : PointerKind::Near32, 2438 PointerMode::LValueReference, PointerOptions::None, 2439 Ty->getSizeInBits() / 8); 2440 return TypeTable.writeLeafType(PR); 2441 } 2442 2443 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2444 const DIType *Ty = TypeRef.resolve(); 2445 2446 // The null DIType is the void type. Don't try to hash it. 2447 if (!Ty) 2448 return TypeIndex::Void(); 2449 2450 // Look through typedefs when getting the complete type index. Call 2451 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are 2452 // emitted only once. 2453 if (Ty->getTag() == dwarf::DW_TAG_typedef) 2454 (void)getTypeIndex(Ty); 2455 while (Ty->getTag() == dwarf::DW_TAG_typedef) 2456 Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve(); 2457 2458 // If this is a non-record type, the complete type index is the same as the 2459 // normal type index. Just call getTypeIndex. 2460 switch (Ty->getTag()) { 2461 case dwarf::DW_TAG_class_type: 2462 case dwarf::DW_TAG_structure_type: 2463 case dwarf::DW_TAG_union_type: 2464 break; 2465 default: 2466 return getTypeIndex(Ty); 2467 } 2468 2469 // Check if we've already translated the complete record type. 2470 const auto *CTy = cast<DICompositeType>(Ty); 2471 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2472 if (!InsertResult.second) 2473 return InsertResult.first->second; 2474 2475 TypeLoweringScope S(*this); 2476 2477 // Make sure the forward declaration is emitted first. It's unclear if this 2478 // is necessary, but MSVC does it, and we should follow suit until we can show 2479 // otherwise. 2480 // We only emit a forward declaration for named types. 2481 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) { 2482 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2483 2484 // Just use the forward decl if we don't have complete type info. This 2485 // might happen if the frontend is using modules and expects the complete 2486 // definition to be emitted elsewhere. 2487 if (CTy->isForwardDecl()) 2488 return FwdDeclTI; 2489 } 2490 2491 TypeIndex TI; 2492 switch (CTy->getTag()) { 2493 case dwarf::DW_TAG_class_type: 2494 case dwarf::DW_TAG_structure_type: 2495 TI = lowerCompleteTypeClass(CTy); 2496 break; 2497 case dwarf::DW_TAG_union_type: 2498 TI = lowerCompleteTypeUnion(CTy); 2499 break; 2500 default: 2501 llvm_unreachable("not a record"); 2502 } 2503 2504 // Update the type index associated with this CompositeType. This cannot 2505 // use the 'InsertResult' iterator above because it is potentially 2506 // invalidated by map insertions which can occur while lowering the class 2507 // type above. 2508 CompleteTypeIndices[CTy] = TI; 2509 return TI; 2510 } 2511 2512 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2513 /// and do this until fixpoint, as each complete record type typically 2514 /// references 2515 /// many other record types. 2516 void CodeViewDebug::emitDeferredCompleteTypes() { 2517 SmallVector<const DICompositeType *, 4> TypesToEmit; 2518 while (!DeferredCompleteTypes.empty()) { 2519 std::swap(DeferredCompleteTypes, TypesToEmit); 2520 for (const DICompositeType *RecordTy : TypesToEmit) 2521 getCompleteTypeIndex(RecordTy); 2522 TypesToEmit.clear(); 2523 } 2524 } 2525 2526 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI, 2527 ArrayRef<LocalVariable> Locals) { 2528 // Get the sorted list of parameters and emit them first. 2529 SmallVector<const LocalVariable *, 6> Params; 2530 for (const LocalVariable &L : Locals) 2531 if (L.DIVar->isParameter()) 2532 Params.push_back(&L); 2533 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) { 2534 return L->DIVar->getArg() < R->DIVar->getArg(); 2535 }); 2536 for (const LocalVariable *L : Params) 2537 emitLocalVariable(FI, *L); 2538 2539 // Next emit all non-parameters in the order that we found them. 2540 for (const LocalVariable &L : Locals) 2541 if (!L.DIVar->isParameter()) 2542 emitLocalVariable(FI, L); 2543 } 2544 2545 /// Only call this on endian-specific types like ulittle16_t and little32_t, or 2546 /// structs composed of them. 2547 template <typename T> 2548 static void copyBytesForDefRange(SmallString<20> &BytePrefix, 2549 SymbolKind SymKind, const T &DefRangeHeader) { 2550 BytePrefix.resize(2 + sizeof(T)); 2551 ulittle16_t SymKindLE = ulittle16_t(SymKind); 2552 memcpy(&BytePrefix[0], &SymKindLE, 2); 2553 memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T)); 2554 } 2555 2556 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI, 2557 const LocalVariable &Var) { 2558 // LocalSym record, see SymbolRecord.h for more info. 2559 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL); 2560 2561 LocalSymFlags Flags = LocalSymFlags::None; 2562 if (Var.DIVar->isParameter()) 2563 Flags |= LocalSymFlags::IsParameter; 2564 if (Var.DefRanges.empty()) 2565 Flags |= LocalSymFlags::IsOptimizedOut; 2566 2567 OS.AddComment("TypeIndex"); 2568 TypeIndex TI = Var.UseReferenceType 2569 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2570 : getCompleteTypeIndex(Var.DIVar->getType()); 2571 OS.EmitIntValue(TI.getIndex(), 4); 2572 OS.AddComment("Flags"); 2573 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2574 // Truncate the name so we won't overflow the record length field. 2575 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2576 endSymbolRecord(LocalEnd); 2577 2578 // Calculate the on disk prefix of the appropriate def range record. The 2579 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2580 // should be big enough to hold all forms without memory allocation. 2581 SmallString<20> BytePrefix; 2582 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2583 BytePrefix.clear(); 2584 if (DefRange.InMemory) { 2585 int Offset = DefRange.DataOffset; 2586 unsigned Reg = DefRange.CVRegister; 2587 2588 // 32-bit x86 call sequences often use PUSH instructions, which disrupt 2589 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0, 2590 // instead. In frames without stack realignment, $T0 will be the CFA. 2591 if (RegisterId(Reg) == RegisterId::ESP) { 2592 Reg = unsigned(RegisterId::VFRAME); 2593 Offset += FI.OffsetAdjustment; 2594 } 2595 2596 // If we can use the chosen frame pointer for the frame and this isn't a 2597 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record. 2598 // Otherwise, use S_DEFRANGE_REGISTER_REL. 2599 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU); 2600 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None && 2601 (bool(Flags & LocalSymFlags::IsParameter) 2602 ? (EncFP == FI.EncodedParamFramePtrReg) 2603 : (EncFP == FI.EncodedLocalFramePtrReg))) { 2604 little32_t FPOffset = little32_t(Offset); 2605 copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset); 2606 } else { 2607 uint16_t RegRelFlags = 0; 2608 if (DefRange.IsSubfield) { 2609 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2610 (DefRange.StructOffset 2611 << DefRangeRegisterRelSym::OffsetInParentShift); 2612 } 2613 DefRangeRegisterRelSym::Header DRHdr; 2614 DRHdr.Register = Reg; 2615 DRHdr.Flags = RegRelFlags; 2616 DRHdr.BasePointerOffset = Offset; 2617 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr); 2618 } 2619 } else { 2620 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2621 if (DefRange.IsSubfield) { 2622 DefRangeSubfieldRegisterSym::Header DRHdr; 2623 DRHdr.Register = DefRange.CVRegister; 2624 DRHdr.MayHaveNoName = 0; 2625 DRHdr.OffsetInParent = DefRange.StructOffset; 2626 copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr); 2627 } else { 2628 DefRangeRegisterSym::Header DRHdr; 2629 DRHdr.Register = DefRange.CVRegister; 2630 DRHdr.MayHaveNoName = 0; 2631 copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr); 2632 } 2633 } 2634 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2635 } 2636 } 2637 2638 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks, 2639 const FunctionInfo& FI) { 2640 for (LexicalBlock *Block : Blocks) 2641 emitLexicalBlock(*Block, FI); 2642 } 2643 2644 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a 2645 /// lexical block scope. 2646 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block, 2647 const FunctionInfo& FI) { 2648 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32); 2649 OS.AddComment("PtrParent"); 2650 OS.EmitIntValue(0, 4); // PtrParent 2651 OS.AddComment("PtrEnd"); 2652 OS.EmitIntValue(0, 4); // PtrEnd 2653 OS.AddComment("Code size"); 2654 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size 2655 OS.AddComment("Function section relative address"); 2656 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset 2657 OS.AddComment("Function section index"); 2658 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol 2659 OS.AddComment("Lexical block name"); 2660 emitNullTerminatedSymbolName(OS, Block.Name); // Name 2661 endSymbolRecord(RecordEnd); 2662 2663 // Emit variables local to this lexical block. 2664 emitLocalVariableList(FI, Block.Locals); 2665 emitGlobalVariableList(Block.Globals); 2666 2667 // Emit lexical blocks contained within this block. 2668 emitLexicalBlockList(Block.Children, FI); 2669 2670 // Close the lexical block scope. 2671 emitEndSymbolRecord(SymbolKind::S_END); 2672 } 2673 2674 /// Convenience routine for collecting lexical block information for a list 2675 /// of lexical scopes. 2676 void CodeViewDebug::collectLexicalBlockInfo( 2677 SmallVectorImpl<LexicalScope *> &Scopes, 2678 SmallVectorImpl<LexicalBlock *> &Blocks, 2679 SmallVectorImpl<LocalVariable> &Locals, 2680 SmallVectorImpl<CVGlobalVariable> &Globals) { 2681 for (LexicalScope *Scope : Scopes) 2682 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals); 2683 } 2684 2685 /// Populate the lexical blocks and local variable lists of the parent with 2686 /// information about the specified lexical scope. 2687 void CodeViewDebug::collectLexicalBlockInfo( 2688 LexicalScope &Scope, 2689 SmallVectorImpl<LexicalBlock *> &ParentBlocks, 2690 SmallVectorImpl<LocalVariable> &ParentLocals, 2691 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) { 2692 if (Scope.isAbstractScope()) 2693 return; 2694 2695 // Gather information about the lexical scope including local variables, 2696 // global variables, and address ranges. 2697 bool IgnoreScope = false; 2698 auto LI = ScopeVariables.find(&Scope); 2699 SmallVectorImpl<LocalVariable> *Locals = 2700 LI != ScopeVariables.end() ? &LI->second : nullptr; 2701 auto GI = ScopeGlobals.find(Scope.getScopeNode()); 2702 SmallVectorImpl<CVGlobalVariable> *Globals = 2703 GI != ScopeGlobals.end() ? GI->second.get() : nullptr; 2704 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode()); 2705 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges(); 2706 2707 // Ignore lexical scopes which do not contain variables. 2708 if (!Locals && !Globals) 2709 IgnoreScope = true; 2710 2711 // Ignore lexical scopes which are not lexical blocks. 2712 if (!DILB) 2713 IgnoreScope = true; 2714 2715 // Ignore scopes which have too many address ranges to represent in the 2716 // current CodeView format or do not have a valid address range. 2717 // 2718 // For lexical scopes with multiple address ranges you may be tempted to 2719 // construct a single range covering every instruction where the block is 2720 // live and everything in between. Unfortunately, Visual Studio only 2721 // displays variables from the first matching lexical block scope. If the 2722 // first lexical block contains exception handling code or cold code which 2723 // is moved to the bottom of the routine creating a single range covering 2724 // nearly the entire routine, then it will hide all other lexical blocks 2725 // and the variables they contain. 2726 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) 2727 IgnoreScope = true; 2728 2729 if (IgnoreScope) { 2730 // This scope can be safely ignored and eliminating it will reduce the 2731 // size of the debug information. Be sure to collect any variable and scope 2732 // information from the this scope or any of its children and collapse them 2733 // into the parent scope. 2734 if (Locals) 2735 ParentLocals.append(Locals->begin(), Locals->end()); 2736 if (Globals) 2737 ParentGlobals.append(Globals->begin(), Globals->end()); 2738 collectLexicalBlockInfo(Scope.getChildren(), 2739 ParentBlocks, 2740 ParentLocals, 2741 ParentGlobals); 2742 return; 2743 } 2744 2745 // Create a new CodeView lexical block for this lexical scope. If we've 2746 // seen this DILexicalBlock before then the scope tree is malformed and 2747 // we can handle this gracefully by not processing it a second time. 2748 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()}); 2749 if (!BlockInsertion.second) 2750 return; 2751 2752 // Create a lexical block containing the variables and collect the the 2753 // lexical block information for the children. 2754 const InsnRange &Range = Ranges.front(); 2755 assert(Range.first && Range.second); 2756 LexicalBlock &Block = BlockInsertion.first->second; 2757 Block.Begin = getLabelBeforeInsn(Range.first); 2758 Block.End = getLabelAfterInsn(Range.second); 2759 assert(Block.Begin && "missing label for scope begin"); 2760 assert(Block.End && "missing label for scope end"); 2761 Block.Name = DILB->getName(); 2762 if (Locals) 2763 Block.Locals = std::move(*Locals); 2764 if (Globals) 2765 Block.Globals = std::move(*Globals); 2766 ParentBlocks.push_back(&Block); 2767 collectLexicalBlockInfo(Scope.getChildren(), 2768 Block.Children, 2769 Block.Locals, 2770 Block.Globals); 2771 } 2772 2773 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2774 const Function &GV = MF->getFunction(); 2775 assert(FnDebugInfo.count(&GV)); 2776 assert(CurFn == FnDebugInfo[&GV].get()); 2777 2778 collectVariableInfo(GV.getSubprogram()); 2779 2780 // Build the lexical block structure to emit for this routine. 2781 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope()) 2782 collectLexicalBlockInfo(*CFS, 2783 CurFn->ChildBlocks, 2784 CurFn->Locals, 2785 CurFn->Globals); 2786 2787 // Clear the scope and variable information from the map which will not be 2788 // valid after we have finished processing this routine. This also prepares 2789 // the map for the subsequent routine. 2790 ScopeVariables.clear(); 2791 2792 // Don't emit anything if we don't have any line tables. 2793 // Thunks are compiler-generated and probably won't have source correlation. 2794 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) { 2795 FnDebugInfo.erase(&GV); 2796 CurFn = nullptr; 2797 return; 2798 } 2799 2800 CurFn->Annotations = MF->getCodeViewAnnotations(); 2801 2802 CurFn->End = Asm->getFunctionEnd(); 2803 2804 CurFn = nullptr; 2805 } 2806 2807 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2808 DebugHandlerBase::beginInstruction(MI); 2809 2810 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue. 2811 if (!Asm || !CurFn || MI->isDebugInstr() || 2812 MI->getFlag(MachineInstr::FrameSetup)) 2813 return; 2814 2815 // If the first instruction of a new MBB has no location, find the first 2816 // instruction with a location and use that. 2817 DebugLoc DL = MI->getDebugLoc(); 2818 if (!DL && MI->getParent() != PrevInstBB) { 2819 for (const auto &NextMI : *MI->getParent()) { 2820 if (NextMI.isDebugInstr()) 2821 continue; 2822 DL = NextMI.getDebugLoc(); 2823 if (DL) 2824 break; 2825 } 2826 } 2827 PrevInstBB = MI->getParent(); 2828 2829 // If we still don't have a debug location, don't record a location. 2830 if (!DL) 2831 return; 2832 2833 maybeRecordLocation(DL, Asm->MF); 2834 } 2835 2836 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2837 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2838 *EndLabel = MMI->getContext().createTempSymbol(); 2839 OS.EmitIntValue(unsigned(Kind), 4); 2840 OS.AddComment("Subsection size"); 2841 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2842 OS.EmitLabel(BeginLabel); 2843 return EndLabel; 2844 } 2845 2846 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2847 OS.EmitLabel(EndLabel); 2848 // Every subsection must be aligned to a 4-byte boundary. 2849 OS.EmitValueToAlignment(4); 2850 } 2851 2852 static StringRef getSymbolName(SymbolKind SymKind) { 2853 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames()) 2854 if (EE.Value == SymKind) 2855 return EE.Name; 2856 return ""; 2857 } 2858 2859 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) { 2860 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2861 *EndLabel = MMI->getContext().createTempSymbol(); 2862 OS.AddComment("Record length"); 2863 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2); 2864 OS.EmitLabel(BeginLabel); 2865 if (OS.isVerboseAsm()) 2866 OS.AddComment("Record kind: " + getSymbolName(SymKind)); 2867 OS.EmitIntValue(unsigned(SymKind), 2); 2868 return EndLabel; 2869 } 2870 2871 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) { 2872 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid 2873 // an extra copy of every symbol record in LLD. This increases object file 2874 // size by less than 1% in the clang build, and is compatible with the Visual 2875 // C++ linker. 2876 OS.EmitValueToAlignment(4); 2877 OS.EmitLabel(SymEnd); 2878 } 2879 2880 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) { 2881 OS.AddComment("Record length"); 2882 OS.EmitIntValue(2, 2); 2883 if (OS.isVerboseAsm()) 2884 OS.AddComment("Record kind: " + getSymbolName(EndKind)); 2885 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind 2886 } 2887 2888 void CodeViewDebug::emitDebugInfoForUDTs( 2889 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2890 for (const auto &UDT : UDTs) { 2891 const DIType *T = UDT.second; 2892 assert(shouldEmitUdt(T)); 2893 2894 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT); 2895 OS.AddComment("Type"); 2896 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2897 emitNullTerminatedSymbolName(OS, UDT.first); 2898 endSymbolRecord(UDTRecordEnd); 2899 } 2900 } 2901 2902 void CodeViewDebug::collectGlobalVariableInfo() { 2903 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2904 GlobalMap; 2905 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2906 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2907 GV.getDebugInfo(GVEs); 2908 for (const auto *GVE : GVEs) 2909 GlobalMap[GVE] = &GV; 2910 } 2911 2912 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2913 for (const MDNode *Node : CUs->operands()) { 2914 const auto *CU = cast<DICompileUnit>(Node); 2915 for (const auto *GVE : CU->getGlobalVariables()) { 2916 const auto *GV = GlobalMap.lookup(GVE); 2917 if (!GV || GV->isDeclarationForLinker()) 2918 continue; 2919 const DIGlobalVariable *DIGV = GVE->getVariable(); 2920 DIScope *Scope = DIGV->getScope(); 2921 SmallVector<CVGlobalVariable, 1> *VariableList; 2922 if (Scope && isa<DILocalScope>(Scope)) { 2923 // Locate a global variable list for this scope, creating one if 2924 // necessary. 2925 auto Insertion = ScopeGlobals.insert( 2926 {Scope, std::unique_ptr<GlobalVariableList>()}); 2927 if (Insertion.second) 2928 Insertion.first->second = llvm::make_unique<GlobalVariableList>(); 2929 VariableList = Insertion.first->second.get(); 2930 } else if (GV->hasComdat()) 2931 // Emit this global variable into a COMDAT section. 2932 VariableList = &ComdatVariables; 2933 else 2934 // Emit this globla variable in a single global symbol section. 2935 VariableList = &GlobalVariables; 2936 CVGlobalVariable CVGV = {DIGV, GV}; 2937 VariableList->emplace_back(std::move(CVGV)); 2938 } 2939 } 2940 } 2941 2942 void CodeViewDebug::emitDebugInfoForGlobals() { 2943 // First, emit all globals that are not in a comdat in a single symbol 2944 // substream. MSVC doesn't like it if the substream is empty, so only open 2945 // it if we have at least one global to emit. 2946 switchToDebugSectionForSymbol(nullptr); 2947 if (!GlobalVariables.empty()) { 2948 OS.AddComment("Symbol subsection for globals"); 2949 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2950 emitGlobalVariableList(GlobalVariables); 2951 endCVSubsection(EndLabel); 2952 } 2953 2954 // Second, emit each global that is in a comdat into its own .debug$S 2955 // section along with its own symbol substream. 2956 for (const CVGlobalVariable &CVGV : ComdatVariables) { 2957 MCSymbol *GVSym = Asm->getSymbol(CVGV.GV); 2958 OS.AddComment("Symbol subsection for " + 2959 Twine(GlobalValue::dropLLVMManglingEscape(CVGV.GV->getName()))); 2960 switchToDebugSectionForSymbol(GVSym); 2961 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2962 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2963 emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym); 2964 endCVSubsection(EndLabel); 2965 } 2966 } 2967 2968 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2969 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2970 for (const MDNode *Node : CUs->operands()) { 2971 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2972 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2973 getTypeIndex(RT); 2974 // FIXME: Add to global/local DTU list. 2975 } 2976 } 2977 } 2978 } 2979 2980 // Emit each global variable in the specified array. 2981 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) { 2982 for (const CVGlobalVariable &CVGV : Globals) { 2983 MCSymbol *GVSym = Asm->getSymbol(CVGV.GV); 2984 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2985 emitDebugInfoForGlobal(CVGV.DIGV, CVGV.GV, GVSym); 2986 } 2987 } 2988 2989 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2990 const GlobalVariable *GV, 2991 MCSymbol *GVSym) { 2992 // DataSym record, see SymbolRecord.h for more info. Thread local data 2993 // happens to have the same format as global data. 2994 SymbolKind DataSym = GV->isThreadLocal() 2995 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32 2996 : SymbolKind::S_GTHREAD32) 2997 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32 2998 : SymbolKind::S_GDATA32); 2999 MCSymbol *DataEnd = beginSymbolRecord(DataSym); 3000 OS.AddComment("Type"); 3001 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 3002 OS.AddComment("DataOffset"); 3003 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 3004 OS.AddComment("Segment"); 3005 OS.EmitCOFFSectionIndex(GVSym); 3006 OS.AddComment("Name"); 3007 const unsigned LengthOfDataRecord = 12; 3008 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord); 3009 endSymbolRecord(DataEnd); 3010 } 3011