1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineModuleInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/TargetFrameLowering.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
44 #include "llvm/DebugInfo/CodeView/CodeView.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/Line.h"
48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
50 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
51 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/MC/MCAsmInfo.h"
63 #include "llvm/MC/MCContext.h"
64 #include "llvm/MC/MCSectionCOFF.h"
65 #include "llvm/MC/MCStreamer.h"
66 #include "llvm/MC/MCSymbol.h"
67 #include "llvm/Support/BinaryByteStream.h"
68 #include "llvm/Support/BinaryStreamReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Endian.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/Path.h"
77 #include "llvm/Support/SMLoc.h"
78 #include "llvm/Support/ScopedPrinter.h"
79 #include "llvm/Target/TargetLoweringObjectFile.h"
80 #include "llvm/Target/TargetMachine.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <cctype>
84 #include <cstddef>
85 #include <cstdint>
86 #include <iterator>
87 #include <limits>
88 #include <string>
89 #include <utility>
90 #include <vector>
91 
92 using namespace llvm;
93 using namespace llvm::codeview;
94 
95 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section",
96                                            cl::ReallyHidden, cl::init(false));
97 
98 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
99   switch (Type) {
100   case Triple::ArchType::x86:
101     return CPUType::Pentium3;
102   case Triple::ArchType::x86_64:
103     return CPUType::X64;
104   case Triple::ArchType::thumb:
105     return CPUType::Thumb;
106   case Triple::ArchType::aarch64:
107     return CPUType::ARM64;
108   default:
109     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
110   }
111 }
112 
113 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
114     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
115   // If module doesn't have named metadata anchors or COFF debug section
116   // is not available, skip any debug info related stuff.
117   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
118       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
119     Asm = nullptr;
120     MMI->setDebugInfoAvailability(false);
121     return;
122   }
123   // Tell MMI that we have debug info.
124   MMI->setDebugInfoAvailability(true);
125 
126   TheCPU =
127       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
128 }
129 
130 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
131   std::string &Filepath = FileToFilepathMap[File];
132   if (!Filepath.empty())
133     return Filepath;
134 
135   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
136 
137   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
138   // it textually because one of the path components could be a symlink.
139   if (Dir.startswith("/") || Filename.startswith("/")) {
140     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
141       return Filename;
142     Filepath = Dir;
143     if (Dir.back() != '/')
144       Filepath += '/';
145     Filepath += Filename;
146     return Filepath;
147   }
148 
149   // Clang emits directory and relative filename info into the IR, but CodeView
150   // operates on full paths.  We could change Clang to emit full paths too, but
151   // that would increase the IR size and probably not needed for other users.
152   // For now, just concatenate and canonicalize the path here.
153   if (Filename.find(':') == 1)
154     Filepath = Filename;
155   else
156     Filepath = (Dir + "\\" + Filename).str();
157 
158   // Canonicalize the path.  We have to do it textually because we may no longer
159   // have access the file in the filesystem.
160   // First, replace all slashes with backslashes.
161   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
162 
163   // Remove all "\.\" with "\".
164   size_t Cursor = 0;
165   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
166     Filepath.erase(Cursor, 2);
167 
168   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
169   // path should be well-formatted, e.g. start with a drive letter, etc.
170   Cursor = 0;
171   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
172     // Something's wrong if the path starts with "\..\", abort.
173     if (Cursor == 0)
174       break;
175 
176     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
177     if (PrevSlash == std::string::npos)
178       // Something's wrong, abort.
179       break;
180 
181     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
182     // The next ".." might be following the one we've just erased.
183     Cursor = PrevSlash;
184   }
185 
186   // Remove all duplicate backslashes.
187   Cursor = 0;
188   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
189     Filepath.erase(Cursor, 1);
190 
191   return Filepath;
192 }
193 
194 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
195   StringRef FullPath = getFullFilepath(F);
196   unsigned NextId = FileIdMap.size() + 1;
197   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
198   if (Insertion.second) {
199     // We have to compute the full filepath and emit a .cv_file directive.
200     ArrayRef<uint8_t> ChecksumAsBytes;
201     FileChecksumKind CSKind = FileChecksumKind::None;
202     if (F->getChecksum()) {
203       std::string Checksum = fromHex(F->getChecksum()->Value);
204       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
205       memcpy(CKMem, Checksum.data(), Checksum.size());
206       ChecksumAsBytes = ArrayRef<uint8_t>(
207           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
208       switch (F->getChecksum()->Kind) {
209       case DIFile::CSK_MD5:  CSKind = FileChecksumKind::MD5; break;
210       case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
211       }
212     }
213     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
214                                           static_cast<unsigned>(CSKind));
215     (void)Success;
216     assert(Success && ".cv_file directive failed");
217   }
218   return Insertion.first->second;
219 }
220 
221 CodeViewDebug::InlineSite &
222 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
223                              const DISubprogram *Inlinee) {
224   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
225   InlineSite *Site = &SiteInsertion.first->second;
226   if (SiteInsertion.second) {
227     unsigned ParentFuncId = CurFn->FuncId;
228     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
229       ParentFuncId =
230           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
231               .SiteFuncId;
232 
233     Site->SiteFuncId = NextFuncId++;
234     OS.EmitCVInlineSiteIdDirective(
235         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
236         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
237     Site->Inlinee = Inlinee;
238     InlinedSubprograms.insert(Inlinee);
239     getFuncIdForSubprogram(Inlinee);
240   }
241   return *Site;
242 }
243 
244 static StringRef getPrettyScopeName(const DIScope *Scope) {
245   StringRef ScopeName = Scope->getName();
246   if (!ScopeName.empty())
247     return ScopeName;
248 
249   switch (Scope->getTag()) {
250   case dwarf::DW_TAG_enumeration_type:
251   case dwarf::DW_TAG_class_type:
252   case dwarf::DW_TAG_structure_type:
253   case dwarf::DW_TAG_union_type:
254     return "<unnamed-tag>";
255   case dwarf::DW_TAG_namespace:
256     return "`anonymous namespace'";
257   }
258 
259   return StringRef();
260 }
261 
262 static const DISubprogram *getQualifiedNameComponents(
263     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
264   const DISubprogram *ClosestSubprogram = nullptr;
265   while (Scope != nullptr) {
266     if (ClosestSubprogram == nullptr)
267       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
268     StringRef ScopeName = getPrettyScopeName(Scope);
269     if (!ScopeName.empty())
270       QualifiedNameComponents.push_back(ScopeName);
271     Scope = Scope->getScope().resolve();
272   }
273   return ClosestSubprogram;
274 }
275 
276 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
277                                     StringRef TypeName) {
278   std::string FullyQualifiedName;
279   for (StringRef QualifiedNameComponent :
280        llvm::reverse(QualifiedNameComponents)) {
281     FullyQualifiedName.append(QualifiedNameComponent);
282     FullyQualifiedName.append("::");
283   }
284   FullyQualifiedName.append(TypeName);
285   return FullyQualifiedName;
286 }
287 
288 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
289   SmallVector<StringRef, 5> QualifiedNameComponents;
290   getQualifiedNameComponents(Scope, QualifiedNameComponents);
291   return getQualifiedName(QualifiedNameComponents, Name);
292 }
293 
294 struct CodeViewDebug::TypeLoweringScope {
295   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
296   ~TypeLoweringScope() {
297     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
298     // inner TypeLoweringScopes don't attempt to emit deferred types.
299     if (CVD.TypeEmissionLevel == 1)
300       CVD.emitDeferredCompleteTypes();
301     --CVD.TypeEmissionLevel;
302   }
303   CodeViewDebug &CVD;
304 };
305 
306 static std::string getFullyQualifiedName(const DIScope *Ty) {
307   const DIScope *Scope = Ty->getScope().resolve();
308   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
309 }
310 
311 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
312   // No scope means global scope and that uses the zero index.
313   if (!Scope || isa<DIFile>(Scope))
314     return TypeIndex();
315 
316   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
317 
318   // Check if we've already translated this scope.
319   auto I = TypeIndices.find({Scope, nullptr});
320   if (I != TypeIndices.end())
321     return I->second;
322 
323   // Build the fully qualified name of the scope.
324   std::string ScopeName = getFullyQualifiedName(Scope);
325   StringIdRecord SID(TypeIndex(), ScopeName);
326   auto TI = TypeTable.writeLeafType(SID);
327   return recordTypeIndexForDINode(Scope, TI);
328 }
329 
330 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
331   assert(SP);
332 
333   // Check if we've already translated this subprogram.
334   auto I = TypeIndices.find({SP, nullptr});
335   if (I != TypeIndices.end())
336     return I->second;
337 
338   // The display name includes function template arguments. Drop them to match
339   // MSVC.
340   StringRef DisplayName = SP->getName().split('<').first;
341 
342   const DIScope *Scope = SP->getScope().resolve();
343   TypeIndex TI;
344   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
345     // If the scope is a DICompositeType, then this must be a method. Member
346     // function types take some special handling, and require access to the
347     // subprogram.
348     TypeIndex ClassType = getTypeIndex(Class);
349     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
350                                DisplayName);
351     TI = TypeTable.writeLeafType(MFuncId);
352   } else {
353     // Otherwise, this must be a free function.
354     TypeIndex ParentScope = getScopeIndex(Scope);
355     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
356     TI = TypeTable.writeLeafType(FuncId);
357   }
358 
359   return recordTypeIndexForDINode(SP, TI);
360 }
361 
362 static bool isTrivial(const DICompositeType *DCTy) {
363   return ((DCTy->getFlags() & DINode::FlagTrivial) == DINode::FlagTrivial);
364 }
365 
366 static FunctionOptions
367 getFunctionOptions(const DISubroutineType *Ty,
368                    const DICompositeType *ClassTy = nullptr,
369                    StringRef SPName = StringRef("")) {
370   FunctionOptions FO = FunctionOptions::None;
371   const DIType *ReturnTy = nullptr;
372   if (auto TypeArray = Ty->getTypeArray()) {
373     if (TypeArray.size())
374       ReturnTy = TypeArray[0].resolve();
375   }
376 
377   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
378     if (!isTrivial(ReturnDCTy))
379       FO |= FunctionOptions::CxxReturnUdt;
380   }
381 
382   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
383   if (ClassTy && !isTrivial(ClassTy) && SPName == ClassTy->getName()) {
384     FO |= FunctionOptions::Constructor;
385 
386   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
387 
388   }
389   return FO;
390 }
391 
392 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
393                                                const DICompositeType *Class) {
394   // Always use the method declaration as the key for the function type. The
395   // method declaration contains the this adjustment.
396   if (SP->getDeclaration())
397     SP = SP->getDeclaration();
398   assert(!SP->getDeclaration() && "should use declaration as key");
399 
400   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
401   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
402   auto I = TypeIndices.find({SP, Class});
403   if (I != TypeIndices.end())
404     return I->second;
405 
406   // Make sure complete type info for the class is emitted *after* the member
407   // function type, as the complete class type is likely to reference this
408   // member function type.
409   TypeLoweringScope S(*this);
410   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
411 
412   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
413   TypeIndex TI = lowerTypeMemberFunction(
414       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
415   return recordTypeIndexForDINode(SP, TI, Class);
416 }
417 
418 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
419                                                   TypeIndex TI,
420                                                   const DIType *ClassTy) {
421   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
422   (void)InsertResult;
423   assert(InsertResult.second && "DINode was already assigned a type index");
424   return TI;
425 }
426 
427 unsigned CodeViewDebug::getPointerSizeInBytes() {
428   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
429 }
430 
431 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
432                                         const LexicalScope *LS) {
433   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
434     // This variable was inlined. Associate it with the InlineSite.
435     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
436     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
437     Site.InlinedLocals.emplace_back(Var);
438   } else {
439     // This variable goes into the corresponding lexical scope.
440     ScopeVariables[LS].emplace_back(Var);
441   }
442 }
443 
444 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
445                                const DILocation *Loc) {
446   auto B = Locs.begin(), E = Locs.end();
447   if (std::find(B, E, Loc) == E)
448     Locs.push_back(Loc);
449 }
450 
451 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
452                                         const MachineFunction *MF) {
453   // Skip this instruction if it has the same location as the previous one.
454   if (!DL || DL == PrevInstLoc)
455     return;
456 
457   const DIScope *Scope = DL.get()->getScope();
458   if (!Scope)
459     return;
460 
461   // Skip this line if it is longer than the maximum we can record.
462   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
463   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
464       LI.isNeverStepInto())
465     return;
466 
467   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
468   if (CI.getStartColumn() != DL.getCol())
469     return;
470 
471   if (!CurFn->HaveLineInfo)
472     CurFn->HaveLineInfo = true;
473   unsigned FileId = 0;
474   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
475     FileId = CurFn->LastFileId;
476   else
477     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
478   PrevInstLoc = DL;
479 
480   unsigned FuncId = CurFn->FuncId;
481   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
482     const DILocation *Loc = DL.get();
483 
484     // If this location was actually inlined from somewhere else, give it the ID
485     // of the inline call site.
486     FuncId =
487         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
488 
489     // Ensure we have links in the tree of inline call sites.
490     bool FirstLoc = true;
491     while ((SiteLoc = Loc->getInlinedAt())) {
492       InlineSite &Site =
493           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
494       if (!FirstLoc)
495         addLocIfNotPresent(Site.ChildSites, Loc);
496       FirstLoc = false;
497       Loc = SiteLoc;
498     }
499     addLocIfNotPresent(CurFn->ChildSites, Loc);
500   }
501 
502   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
503                         /*PrologueEnd=*/false, /*IsStmt=*/false,
504                         DL->getFilename(), SMLoc());
505 }
506 
507 void CodeViewDebug::emitCodeViewMagicVersion() {
508   OS.EmitValueToAlignment(4);
509   OS.AddComment("Debug section magic");
510   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
511 }
512 
513 void CodeViewDebug::endModule() {
514   if (!Asm || !MMI->hasDebugInfo())
515     return;
516 
517   assert(Asm != nullptr);
518 
519   // The COFF .debug$S section consists of several subsections, each starting
520   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
521   // of the payload followed by the payload itself.  The subsections are 4-byte
522   // aligned.
523 
524   // Use the generic .debug$S section, and make a subsection for all the inlined
525   // subprograms.
526   switchToDebugSectionForSymbol(nullptr);
527 
528   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
529   emitCompilerInformation();
530   endCVSubsection(CompilerInfo);
531 
532   emitInlineeLinesSubsection();
533 
534   // Emit per-function debug information.
535   for (auto &P : FnDebugInfo)
536     if (!P.first->isDeclarationForLinker())
537       emitDebugInfoForFunction(P.first, *P.second);
538 
539   // Emit global variable debug information.
540   setCurrentSubprogram(nullptr);
541   emitDebugInfoForGlobals();
542 
543   // Emit retained types.
544   emitDebugInfoForRetainedTypes();
545 
546   // Switch back to the generic .debug$S section after potentially processing
547   // comdat symbol sections.
548   switchToDebugSectionForSymbol(nullptr);
549 
550   // Emit UDT records for any types used by global variables.
551   if (!GlobalUDTs.empty()) {
552     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
553     emitDebugInfoForUDTs(GlobalUDTs);
554     endCVSubsection(SymbolsEnd);
555   }
556 
557   // This subsection holds a file index to offset in string table table.
558   OS.AddComment("File index to string table offset subsection");
559   OS.EmitCVFileChecksumsDirective();
560 
561   // This subsection holds the string table.
562   OS.AddComment("String table");
563   OS.EmitCVStringTableDirective();
564 
565   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
566   // subsection in the generic .debug$S section at the end. There is no
567   // particular reason for this ordering other than to match MSVC.
568   emitBuildInfo();
569 
570   // Emit type information and hashes last, so that any types we translate while
571   // emitting function info are included.
572   emitTypeInformation();
573 
574   if (EmitDebugGlobalHashes)
575     emitTypeGlobalHashes();
576 
577   clear();
578 }
579 
580 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
581     unsigned MaxFixedRecordLength = 0xF00) {
582   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
583   // after a fixed length portion of the record. The fixed length portion should
584   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
585   // overall record size is less than the maximum allowed.
586   SmallString<32> NullTerminatedString(
587       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
588   NullTerminatedString.push_back('\0');
589   OS.EmitBytes(NullTerminatedString);
590 }
591 
592 void CodeViewDebug::emitTypeInformation() {
593   if (TypeTable.empty())
594     return;
595 
596   // Start the .debug$T or .debug$P section with 0x4.
597   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
598   emitCodeViewMagicVersion();
599 
600   SmallString<8> CommentPrefix;
601   if (OS.isVerboseAsm()) {
602     CommentPrefix += '\t';
603     CommentPrefix += Asm->MAI->getCommentString();
604     CommentPrefix += ' ';
605   }
606 
607   TypeTableCollection Table(TypeTable.records());
608   Optional<TypeIndex> B = Table.getFirst();
609   while (B) {
610     // This will fail if the record data is invalid.
611     CVType Record = Table.getType(*B);
612 
613     if (OS.isVerboseAsm()) {
614       // Emit a block comment describing the type record for readability.
615       SmallString<512> CommentBlock;
616       raw_svector_ostream CommentOS(CommentBlock);
617       ScopedPrinter SP(CommentOS);
618       SP.setPrefix(CommentPrefix);
619       TypeDumpVisitor TDV(Table, &SP, false);
620 
621       Error E = codeview::visitTypeRecord(Record, *B, TDV);
622       if (E) {
623         logAllUnhandledErrors(std::move(E), errs(), "error: ");
624         llvm_unreachable("produced malformed type record");
625       }
626       // emitRawComment will insert its own tab and comment string before
627       // the first line, so strip off our first one. It also prints its own
628       // newline.
629       OS.emitRawComment(
630           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
631     }
632     OS.EmitBinaryData(Record.str_data());
633     B = Table.getNext(*B);
634   }
635 }
636 
637 void CodeViewDebug::emitTypeGlobalHashes() {
638   if (TypeTable.empty())
639     return;
640 
641   // Start the .debug$H section with the version and hash algorithm, currently
642   // hardcoded to version 0, SHA1.
643   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
644 
645   OS.EmitValueToAlignment(4);
646   OS.AddComment("Magic");
647   OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
648   OS.AddComment("Section Version");
649   OS.EmitIntValue(0, 2);
650   OS.AddComment("Hash Algorithm");
651   OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
652 
653   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
654   for (const auto &GHR : TypeTable.hashes()) {
655     if (OS.isVerboseAsm()) {
656       // Emit an EOL-comment describing which TypeIndex this hash corresponds
657       // to, as well as the stringified SHA1 hash.
658       SmallString<32> Comment;
659       raw_svector_ostream CommentOS(Comment);
660       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
661       OS.AddComment(Comment);
662       ++TI;
663     }
664     assert(GHR.Hash.size() == 8);
665     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
666                 GHR.Hash.size());
667     OS.EmitBinaryData(S);
668   }
669 }
670 
671 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
672   switch (DWLang) {
673   case dwarf::DW_LANG_C:
674   case dwarf::DW_LANG_C89:
675   case dwarf::DW_LANG_C99:
676   case dwarf::DW_LANG_C11:
677   case dwarf::DW_LANG_ObjC:
678     return SourceLanguage::C;
679   case dwarf::DW_LANG_C_plus_plus:
680   case dwarf::DW_LANG_C_plus_plus_03:
681   case dwarf::DW_LANG_C_plus_plus_11:
682   case dwarf::DW_LANG_C_plus_plus_14:
683     return SourceLanguage::Cpp;
684   case dwarf::DW_LANG_Fortran77:
685   case dwarf::DW_LANG_Fortran90:
686   case dwarf::DW_LANG_Fortran03:
687   case dwarf::DW_LANG_Fortran08:
688     return SourceLanguage::Fortran;
689   case dwarf::DW_LANG_Pascal83:
690     return SourceLanguage::Pascal;
691   case dwarf::DW_LANG_Cobol74:
692   case dwarf::DW_LANG_Cobol85:
693     return SourceLanguage::Cobol;
694   case dwarf::DW_LANG_Java:
695     return SourceLanguage::Java;
696   case dwarf::DW_LANG_D:
697     return SourceLanguage::D;
698   default:
699     // There's no CodeView representation for this language, and CV doesn't
700     // have an "unknown" option for the language field, so we'll use MASM,
701     // as it's very low level.
702     return SourceLanguage::Masm;
703   }
704 }
705 
706 namespace {
707 struct Version {
708   int Part[4];
709 };
710 } // end anonymous namespace
711 
712 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
713 // the version number.
714 static Version parseVersion(StringRef Name) {
715   Version V = {{0}};
716   int N = 0;
717   for (const char C : Name) {
718     if (isdigit(C)) {
719       V.Part[N] *= 10;
720       V.Part[N] += C - '0';
721     } else if (C == '.') {
722       ++N;
723       if (N >= 4)
724         return V;
725     } else if (N > 0)
726       return V;
727   }
728   return V;
729 }
730 
731 void CodeViewDebug::emitCompilerInformation() {
732   MCContext &Context = MMI->getContext();
733   MCSymbol *CompilerBegin = Context.createTempSymbol(),
734            *CompilerEnd = Context.createTempSymbol();
735   OS.AddComment("Record length");
736   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
737   OS.EmitLabel(CompilerBegin);
738   OS.AddComment("Record kind: S_COMPILE3");
739   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
740   uint32_t Flags = 0;
741 
742   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
743   const MDNode *Node = *CUs->operands().begin();
744   const auto *CU = cast<DICompileUnit>(Node);
745 
746   // The low byte of the flags indicates the source language.
747   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
748   // TODO:  Figure out which other flags need to be set.
749 
750   OS.AddComment("Flags and language");
751   OS.EmitIntValue(Flags, 4);
752 
753   OS.AddComment("CPUType");
754   OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);
755 
756   StringRef CompilerVersion = CU->getProducer();
757   Version FrontVer = parseVersion(CompilerVersion);
758   OS.AddComment("Frontend version");
759   for (int N = 0; N < 4; ++N)
760     OS.EmitIntValue(FrontVer.Part[N], 2);
761 
762   // Some Microsoft tools, like Binscope, expect a backend version number of at
763   // least 8.something, so we'll coerce the LLVM version into a form that
764   // guarantees it'll be big enough without really lying about the version.
765   int Major = 1000 * LLVM_VERSION_MAJOR +
766               10 * LLVM_VERSION_MINOR +
767               LLVM_VERSION_PATCH;
768   // Clamp it for builds that use unusually large version numbers.
769   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
770   Version BackVer = {{ Major, 0, 0, 0 }};
771   OS.AddComment("Backend version");
772   for (int N = 0; N < 4; ++N)
773     OS.EmitIntValue(BackVer.Part[N], 2);
774 
775   OS.AddComment("Null-terminated compiler version string");
776   emitNullTerminatedSymbolName(OS, CompilerVersion);
777 
778   OS.EmitLabel(CompilerEnd);
779 }
780 
781 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
782                                     StringRef S) {
783   StringIdRecord SIR(TypeIndex(0x0), S);
784   return TypeTable.writeLeafType(SIR);
785 }
786 
787 void CodeViewDebug::emitBuildInfo() {
788   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
789   // build info. The known prefix is:
790   // - Absolute path of current directory
791   // - Compiler path
792   // - Main source file path, relative to CWD or absolute
793   // - Type server PDB file
794   // - Canonical compiler command line
795   // If frontend and backend compilation are separated (think llc or LTO), it's
796   // not clear if the compiler path should refer to the executable for the
797   // frontend or the backend. Leave it blank for now.
798   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
799   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
800   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
801   const auto *CU = cast<DICompileUnit>(Node);
802   const DIFile *MainSourceFile = CU->getFile();
803   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
804       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
805   BuildInfoArgs[BuildInfoRecord::SourceFile] =
806       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
807   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
808   // we implement /Zi type servers.
809   BuildInfoRecord BIR(BuildInfoArgs);
810   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
811 
812   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
813   // from the module symbols into the type stream.
814   MCSymbol *BuildInfoEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
815   OS.AddComment("Record length");
816   OS.EmitIntValue(6, 2);
817   OS.AddComment("Record kind: S_BUILDINFO");
818   OS.EmitIntValue(unsigned(SymbolKind::S_BUILDINFO), 2);
819   OS.AddComment("LF_BUILDINFO index");
820   OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
821   endCVSubsection(BuildInfoEnd);
822 }
823 
824 void CodeViewDebug::emitInlineeLinesSubsection() {
825   if (InlinedSubprograms.empty())
826     return;
827 
828   OS.AddComment("Inlinee lines subsection");
829   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
830 
831   // We emit the checksum info for files.  This is used by debuggers to
832   // determine if a pdb matches the source before loading it.  Visual Studio,
833   // for instance, will display a warning that the breakpoints are not valid if
834   // the pdb does not match the source.
835   OS.AddComment("Inlinee lines signature");
836   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
837 
838   for (const DISubprogram *SP : InlinedSubprograms) {
839     assert(TypeIndices.count({SP, nullptr}));
840     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
841 
842     OS.AddBlankLine();
843     unsigned FileId = maybeRecordFile(SP->getFile());
844     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
845                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
846     OS.AddBlankLine();
847     OS.AddComment("Type index of inlined function");
848     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
849     OS.AddComment("Offset into filechecksum table");
850     OS.EmitCVFileChecksumOffsetDirective(FileId);
851     OS.AddComment("Starting line number");
852     OS.EmitIntValue(SP->getLine(), 4);
853   }
854 
855   endCVSubsection(InlineEnd);
856 }
857 
858 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
859                                         const DILocation *InlinedAt,
860                                         const InlineSite &Site) {
861   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
862            *InlineEnd = MMI->getContext().createTempSymbol();
863 
864   assert(TypeIndices.count({Site.Inlinee, nullptr}));
865   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
866 
867   // SymbolRecord
868   OS.AddComment("Record length");
869   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
870   OS.EmitLabel(InlineBegin);
871   OS.AddComment("Record kind: S_INLINESITE");
872   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
873 
874   OS.AddComment("PtrParent");
875   OS.EmitIntValue(0, 4);
876   OS.AddComment("PtrEnd");
877   OS.EmitIntValue(0, 4);
878   OS.AddComment("Inlinee type index");
879   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
880 
881   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
882   unsigned StartLineNum = Site.Inlinee->getLine();
883 
884   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
885                                     FI.Begin, FI.End);
886 
887   OS.EmitLabel(InlineEnd);
888 
889   emitLocalVariableList(FI, Site.InlinedLocals);
890 
891   // Recurse on child inlined call sites before closing the scope.
892   for (const DILocation *ChildSite : Site.ChildSites) {
893     auto I = FI.InlineSites.find(ChildSite);
894     assert(I != FI.InlineSites.end() &&
895            "child site not in function inline site map");
896     emitInlinedCallSite(FI, ChildSite, I->second);
897   }
898 
899   // Close the scope.
900   OS.AddComment("Record length");
901   OS.EmitIntValue(2, 2);                                  // RecordLength
902   OS.AddComment("Record kind: S_INLINESITE_END");
903   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
904 }
905 
906 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
907   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
908   // comdat key. A section may be comdat because of -ffunction-sections or
909   // because it is comdat in the IR.
910   MCSectionCOFF *GVSec =
911       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
912   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
913 
914   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
915       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
916   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
917 
918   OS.SwitchSection(DebugSec);
919 
920   // Emit the magic version number if this is the first time we've switched to
921   // this section.
922   if (ComdatDebugSections.insert(DebugSec).second)
923     emitCodeViewMagicVersion();
924 }
925 
926 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
927 // The only supported thunk ordinal is currently the standard type.
928 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
929                                           FunctionInfo &FI,
930                                           const MCSymbol *Fn) {
931   std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
932   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
933 
934   OS.AddComment("Symbol subsection for " + Twine(FuncName));
935   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
936 
937   // Emit S_THUNK32
938   MCSymbol *ThunkRecordBegin = MMI->getContext().createTempSymbol(),
939            *ThunkRecordEnd   = MMI->getContext().createTempSymbol();
940   OS.AddComment("Record length");
941   OS.emitAbsoluteSymbolDiff(ThunkRecordEnd, ThunkRecordBegin, 2);
942   OS.EmitLabel(ThunkRecordBegin);
943   OS.AddComment("Record kind: S_THUNK32");
944   OS.EmitIntValue(unsigned(SymbolKind::S_THUNK32), 2);
945   OS.AddComment("PtrParent");
946   OS.EmitIntValue(0, 4);
947   OS.AddComment("PtrEnd");
948   OS.EmitIntValue(0, 4);
949   OS.AddComment("PtrNext");
950   OS.EmitIntValue(0, 4);
951   OS.AddComment("Thunk section relative address");
952   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
953   OS.AddComment("Thunk section index");
954   OS.EmitCOFFSectionIndex(Fn);
955   OS.AddComment("Code size");
956   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
957   OS.AddComment("Ordinal");
958   OS.EmitIntValue(unsigned(ordinal), 1);
959   OS.AddComment("Function name");
960   emitNullTerminatedSymbolName(OS, FuncName);
961   // Additional fields specific to the thunk ordinal would go here.
962   OS.EmitLabel(ThunkRecordEnd);
963 
964   // Local variables/inlined routines are purposely omitted here.  The point of
965   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
966 
967   // Emit S_PROC_ID_END
968   const unsigned RecordLengthForSymbolEnd = 2;
969   OS.AddComment("Record length");
970   OS.EmitIntValue(RecordLengthForSymbolEnd, 2);
971   OS.AddComment("Record kind: S_PROC_ID_END");
972   OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
973 
974   endCVSubsection(SymbolsEnd);
975 }
976 
977 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
978                                              FunctionInfo &FI) {
979   // For each function there is a separate subsection which holds the PC to
980   // file:line table.
981   const MCSymbol *Fn = Asm->getSymbol(GV);
982   assert(Fn);
983 
984   // Switch to the to a comdat section, if appropriate.
985   switchToDebugSectionForSymbol(Fn);
986 
987   std::string FuncName;
988   auto *SP = GV->getSubprogram();
989   assert(SP);
990   setCurrentSubprogram(SP);
991 
992   if (SP->isThunk()) {
993     emitDebugInfoForThunk(GV, FI, Fn);
994     return;
995   }
996 
997   // If we have a display name, build the fully qualified name by walking the
998   // chain of scopes.
999   if (!SP->getName().empty())
1000     FuncName =
1001         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
1002 
1003   // If our DISubprogram name is empty, use the mangled name.
1004   if (FuncName.empty())
1005     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
1006 
1007   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1008   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1009     OS.EmitCVFPOData(Fn);
1010 
1011   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1012   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1013   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1014   {
1015     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
1016              *ProcRecordEnd = MMI->getContext().createTempSymbol();
1017     OS.AddComment("Record length");
1018     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
1019     OS.EmitLabel(ProcRecordBegin);
1020 
1021     if (GV->hasLocalLinkage()) {
1022       OS.AddComment("Record kind: S_LPROC32_ID");
1023       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
1024     } else {
1025       OS.AddComment("Record kind: S_GPROC32_ID");
1026       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
1027     }
1028 
1029     // These fields are filled in by tools like CVPACK which run after the fact.
1030     OS.AddComment("PtrParent");
1031     OS.EmitIntValue(0, 4);
1032     OS.AddComment("PtrEnd");
1033     OS.EmitIntValue(0, 4);
1034     OS.AddComment("PtrNext");
1035     OS.EmitIntValue(0, 4);
1036     // This is the important bit that tells the debugger where the function
1037     // code is located and what's its size:
1038     OS.AddComment("Code size");
1039     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1040     OS.AddComment("Offset after prologue");
1041     OS.EmitIntValue(0, 4);
1042     OS.AddComment("Offset before epilogue");
1043     OS.EmitIntValue(0, 4);
1044     OS.AddComment("Function type index");
1045     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
1046     OS.AddComment("Function section relative address");
1047     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1048     OS.AddComment("Function section index");
1049     OS.EmitCOFFSectionIndex(Fn);
1050     OS.AddComment("Flags");
1051     OS.EmitIntValue(0, 1);
1052     // Emit the function display name as a null-terminated string.
1053     OS.AddComment("Function name");
1054     // Truncate the name so we won't overflow the record length field.
1055     emitNullTerminatedSymbolName(OS, FuncName);
1056     OS.EmitLabel(ProcRecordEnd);
1057 
1058     MCSymbol *FrameProcBegin = MMI->getContext().createTempSymbol(),
1059              *FrameProcEnd = MMI->getContext().createTempSymbol();
1060     OS.AddComment("Record length");
1061     OS.emitAbsoluteSymbolDiff(FrameProcEnd, FrameProcBegin, 2);
1062     OS.EmitLabel(FrameProcBegin);
1063     OS.AddComment("Record kind: S_FRAMEPROC");
1064     OS.EmitIntValue(unsigned(SymbolKind::S_FRAMEPROC), 2);
1065     // Subtract out the CSR size since MSVC excludes that and we include it.
1066     OS.AddComment("FrameSize");
1067     OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
1068     OS.AddComment("Padding");
1069     OS.EmitIntValue(0, 4);
1070     OS.AddComment("Offset of padding");
1071     OS.EmitIntValue(0, 4);
1072     OS.AddComment("Bytes of callee saved registers");
1073     OS.EmitIntValue(FI.CSRSize, 4);
1074     OS.AddComment("Exception handler offset");
1075     OS.EmitIntValue(0, 4);
1076     OS.AddComment("Exception handler section");
1077     OS.EmitIntValue(0, 2);
1078     OS.AddComment("Flags (defines frame register)");
1079     OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
1080     OS.EmitLabel(FrameProcEnd);
1081 
1082     emitLocalVariableList(FI, FI.Locals);
1083     emitLexicalBlockList(FI.ChildBlocks, FI);
1084 
1085     // Emit inlined call site information. Only emit functions inlined directly
1086     // into the parent function. We'll emit the other sites recursively as part
1087     // of their parent inline site.
1088     for (const DILocation *InlinedAt : FI.ChildSites) {
1089       auto I = FI.InlineSites.find(InlinedAt);
1090       assert(I != FI.InlineSites.end() &&
1091              "child site not in function inline site map");
1092       emitInlinedCallSite(FI, InlinedAt, I->second);
1093     }
1094 
1095     for (auto Annot : FI.Annotations) {
1096       MCSymbol *Label = Annot.first;
1097       MDTuple *Strs = cast<MDTuple>(Annot.second);
1098       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
1099                *AnnotEnd = MMI->getContext().createTempSymbol();
1100       OS.AddComment("Record length");
1101       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
1102       OS.EmitLabel(AnnotBegin);
1103       OS.AddComment("Record kind: S_ANNOTATION");
1104       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
1105       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1106       // FIXME: Make sure we don't overflow the max record size.
1107       OS.EmitCOFFSectionIndex(Label);
1108       OS.EmitIntValue(Strs->getNumOperands(), 2);
1109       for (Metadata *MD : Strs->operands()) {
1110         // MDStrings are null terminated, so we can do EmitBytes and get the
1111         // nice .asciz directive.
1112         StringRef Str = cast<MDString>(MD)->getString();
1113         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1114         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1115       }
1116       OS.EmitLabel(AnnotEnd);
1117     }
1118 
1119     if (SP != nullptr)
1120       emitDebugInfoForUDTs(LocalUDTs);
1121 
1122     // We're done with this function.
1123     OS.AddComment("Record length");
1124     OS.EmitIntValue(0x0002, 2);
1125     OS.AddComment("Record kind: S_PROC_ID_END");
1126     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
1127   }
1128   endCVSubsection(SymbolsEnd);
1129 
1130   // We have an assembler directive that takes care of the whole line table.
1131   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1132 }
1133 
1134 CodeViewDebug::LocalVarDefRange
1135 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1136   LocalVarDefRange DR;
1137   DR.InMemory = -1;
1138   DR.DataOffset = Offset;
1139   assert(DR.DataOffset == Offset && "truncation");
1140   DR.IsSubfield = 0;
1141   DR.StructOffset = 0;
1142   DR.CVRegister = CVRegister;
1143   return DR;
1144 }
1145 
1146 void CodeViewDebug::collectVariableInfoFromMFTable(
1147     DenseSet<InlinedEntity> &Processed) {
1148   const MachineFunction &MF = *Asm->MF;
1149   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1150   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1151   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1152 
1153   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1154     if (!VI.Var)
1155       continue;
1156     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1157            "Expected inlined-at fields to agree");
1158 
1159     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1160     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1161 
1162     // If variable scope is not found then skip this variable.
1163     if (!Scope)
1164       continue;
1165 
1166     // If the variable has an attached offset expression, extract it.
1167     // FIXME: Try to handle DW_OP_deref as well.
1168     int64_t ExprOffset = 0;
1169     if (VI.Expr)
1170       if (!VI.Expr->extractIfOffset(ExprOffset))
1171         continue;
1172 
1173     // Get the frame register used and the offset.
1174     unsigned FrameReg = 0;
1175     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1176     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1177 
1178     // Calculate the label ranges.
1179     LocalVarDefRange DefRange =
1180         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1181     for (const InsnRange &Range : Scope->getRanges()) {
1182       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1183       const MCSymbol *End = getLabelAfterInsn(Range.second);
1184       End = End ? End : Asm->getFunctionEnd();
1185       DefRange.Ranges.emplace_back(Begin, End);
1186     }
1187 
1188     LocalVariable Var;
1189     Var.DIVar = VI.Var;
1190     Var.DefRanges.emplace_back(std::move(DefRange));
1191     recordLocalVariable(std::move(Var), Scope);
1192   }
1193 }
1194 
1195 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1196   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1197 }
1198 
1199 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1200   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1201 }
1202 
1203 void CodeViewDebug::calculateRanges(
1204     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1205   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1206 
1207   // Calculate the definition ranges.
1208   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1209     const InsnRange &Range = *I;
1210     const MachineInstr *DVInst = Range.first;
1211     assert(DVInst->isDebugValue() && "Invalid History entry");
1212     // FIXME: Find a way to represent constant variables, since they are
1213     // relatively common.
1214     Optional<DbgVariableLocation> Location =
1215         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1216     if (!Location)
1217       continue;
1218 
1219     // CodeView can only express variables in register and variables in memory
1220     // at a constant offset from a register. However, for variables passed
1221     // indirectly by pointer, it is common for that pointer to be spilled to a
1222     // stack location. For the special case of one offseted load followed by a
1223     // zero offset load (a pointer spilled to the stack), we change the type of
1224     // the local variable from a value type to a reference type. This tricks the
1225     // debugger into doing the load for us.
1226     if (Var.UseReferenceType) {
1227       // We're using a reference type. Drop the last zero offset load.
1228       if (canUseReferenceType(*Location))
1229         Location->LoadChain.pop_back();
1230       else
1231         continue;
1232     } else if (needsReferenceType(*Location)) {
1233       // This location can't be expressed without switching to a reference type.
1234       // Start over using that.
1235       Var.UseReferenceType = true;
1236       Var.DefRanges.clear();
1237       calculateRanges(Var, Ranges);
1238       return;
1239     }
1240 
1241     // We can only handle a register or an offseted load of a register.
1242     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1243       continue;
1244     {
1245       LocalVarDefRange DR;
1246       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1247       DR.InMemory = !Location->LoadChain.empty();
1248       DR.DataOffset =
1249           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1250       if (Location->FragmentInfo) {
1251         DR.IsSubfield = true;
1252         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1253       } else {
1254         DR.IsSubfield = false;
1255         DR.StructOffset = 0;
1256       }
1257 
1258       if (Var.DefRanges.empty() ||
1259           Var.DefRanges.back().isDifferentLocation(DR)) {
1260         Var.DefRanges.emplace_back(std::move(DR));
1261       }
1262     }
1263 
1264     // Compute the label range.
1265     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1266     const MCSymbol *End = getLabelAfterInsn(Range.second);
1267     if (!End) {
1268       // This range is valid until the next overlapping bitpiece. In the
1269       // common case, ranges will not be bitpieces, so they will overlap.
1270       auto J = std::next(I);
1271       const DIExpression *DIExpr = DVInst->getDebugExpression();
1272       while (J != E &&
1273              !DIExpr->fragmentsOverlap(J->first->getDebugExpression()))
1274         ++J;
1275       if (J != E)
1276         End = getLabelBeforeInsn(J->first);
1277       else
1278         End = Asm->getFunctionEnd();
1279     }
1280 
1281     // If the last range end is our begin, just extend the last range.
1282     // Otherwise make a new range.
1283     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1284         Var.DefRanges.back().Ranges;
1285     if (!R.empty() && R.back().second == Begin)
1286       R.back().second = End;
1287     else
1288       R.emplace_back(Begin, End);
1289 
1290     // FIXME: Do more range combining.
1291   }
1292 }
1293 
1294 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1295   DenseSet<InlinedEntity> Processed;
1296   // Grab the variable info that was squirreled away in the MMI side-table.
1297   collectVariableInfoFromMFTable(Processed);
1298 
1299   for (const auto &I : DbgValues) {
1300     InlinedEntity IV = I.first;
1301     if (Processed.count(IV))
1302       continue;
1303     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1304     const DILocation *InlinedAt = IV.second;
1305 
1306     // Instruction ranges, specifying where IV is accessible.
1307     const auto &Ranges = I.second;
1308 
1309     LexicalScope *Scope = nullptr;
1310     if (InlinedAt)
1311       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1312     else
1313       Scope = LScopes.findLexicalScope(DIVar->getScope());
1314     // If variable scope is not found then skip this variable.
1315     if (!Scope)
1316       continue;
1317 
1318     LocalVariable Var;
1319     Var.DIVar = DIVar;
1320 
1321     calculateRanges(Var, Ranges);
1322     recordLocalVariable(std::move(Var), Scope);
1323   }
1324 }
1325 
1326 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1327   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1328   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1329   const MachineFrameInfo &MFI = MF->getFrameInfo();
1330   const Function &GV = MF->getFunction();
1331   auto Insertion = FnDebugInfo.insert({&GV, llvm::make_unique<FunctionInfo>()});
1332   assert(Insertion.second && "function already has info");
1333   CurFn = Insertion.first->second.get();
1334   CurFn->FuncId = NextFuncId++;
1335   CurFn->Begin = Asm->getFunctionBegin();
1336 
1337   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1338   // callee-saved registers were used. For targets that don't use a PUSH
1339   // instruction (AArch64), this will be zero.
1340   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1341   CurFn->FrameSize = MFI.getStackSize();
1342   CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1343 
1344   // For this function S_FRAMEPROC record, figure out which codeview register
1345   // will be the frame pointer.
1346   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1347   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1348   if (CurFn->FrameSize > 0) {
1349     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1350       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1351       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1352     } else {
1353       // If there is an FP, parameters are always relative to it.
1354       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1355       if (CurFn->HasStackRealignment) {
1356         // If the stack needs realignment, locals are relative to SP or VFRAME.
1357         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1358       } else {
1359         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1360         // other stack adjustments.
1361         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1362       }
1363     }
1364   }
1365 
1366   // Compute other frame procedure options.
1367   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1368   if (MFI.hasVarSizedObjects())
1369     FPO |= FrameProcedureOptions::HasAlloca;
1370   if (MF->exposesReturnsTwice())
1371     FPO |= FrameProcedureOptions::HasSetJmp;
1372   // FIXME: Set HasLongJmp if we ever track that info.
1373   if (MF->hasInlineAsm())
1374     FPO |= FrameProcedureOptions::HasInlineAssembly;
1375   if (GV.hasPersonalityFn()) {
1376     if (isAsynchronousEHPersonality(
1377             classifyEHPersonality(GV.getPersonalityFn())))
1378       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1379     else
1380       FPO |= FrameProcedureOptions::HasExceptionHandling;
1381   }
1382   if (GV.hasFnAttribute(Attribute::InlineHint))
1383     FPO |= FrameProcedureOptions::MarkedInline;
1384   if (GV.hasFnAttribute(Attribute::Naked))
1385     FPO |= FrameProcedureOptions::Naked;
1386   if (MFI.hasStackProtectorIndex())
1387     FPO |= FrameProcedureOptions::SecurityChecks;
1388   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1389   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1390   if (Asm->TM.getOptLevel() != CodeGenOpt::None && !GV.optForSize() &&
1391       !GV.hasFnAttribute(Attribute::OptimizeNone))
1392     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1393   // FIXME: Set GuardCfg when it is implemented.
1394   CurFn->FrameProcOpts = FPO;
1395 
1396   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1397 
1398   // Find the end of the function prolog.  First known non-DBG_VALUE and
1399   // non-frame setup location marks the beginning of the function body.
1400   // FIXME: is there a simpler a way to do this? Can we just search
1401   // for the first instruction of the function, not the last of the prolog?
1402   DebugLoc PrologEndLoc;
1403   bool EmptyPrologue = true;
1404   for (const auto &MBB : *MF) {
1405     for (const auto &MI : MBB) {
1406       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1407           MI.getDebugLoc()) {
1408         PrologEndLoc = MI.getDebugLoc();
1409         break;
1410       } else if (!MI.isMetaInstruction()) {
1411         EmptyPrologue = false;
1412       }
1413     }
1414   }
1415 
1416   // Record beginning of function if we have a non-empty prologue.
1417   if (PrologEndLoc && !EmptyPrologue) {
1418     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1419     maybeRecordLocation(FnStartDL, MF);
1420   }
1421 }
1422 
1423 static bool shouldEmitUdt(const DIType *T) {
1424   if (!T)
1425     return false;
1426 
1427   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1428   if (T->getTag() == dwarf::DW_TAG_typedef) {
1429     if (DIScope *Scope = T->getScope().resolve()) {
1430       switch (Scope->getTag()) {
1431       case dwarf::DW_TAG_structure_type:
1432       case dwarf::DW_TAG_class_type:
1433       case dwarf::DW_TAG_union_type:
1434         return false;
1435       }
1436     }
1437   }
1438 
1439   while (true) {
1440     if (!T || T->isForwardDecl())
1441       return false;
1442 
1443     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1444     if (!DT)
1445       return true;
1446     T = DT->getBaseType().resolve();
1447   }
1448   return true;
1449 }
1450 
1451 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1452   // Don't record empty UDTs.
1453   if (Ty->getName().empty())
1454     return;
1455   if (!shouldEmitUdt(Ty))
1456     return;
1457 
1458   SmallVector<StringRef, 5> QualifiedNameComponents;
1459   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1460       Ty->getScope().resolve(), QualifiedNameComponents);
1461 
1462   std::string FullyQualifiedName =
1463       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1464 
1465   if (ClosestSubprogram == nullptr) {
1466     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1467   } else if (ClosestSubprogram == CurrentSubprogram) {
1468     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1469   }
1470 
1471   // TODO: What if the ClosestSubprogram is neither null or the current
1472   // subprogram?  Currently, the UDT just gets dropped on the floor.
1473   //
1474   // The current behavior is not desirable.  To get maximal fidelity, we would
1475   // need to perform all type translation before beginning emission of .debug$S
1476   // and then make LocalUDTs a member of FunctionInfo
1477 }
1478 
1479 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1480   // Generic dispatch for lowering an unknown type.
1481   switch (Ty->getTag()) {
1482   case dwarf::DW_TAG_array_type:
1483     return lowerTypeArray(cast<DICompositeType>(Ty));
1484   case dwarf::DW_TAG_typedef:
1485     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1486   case dwarf::DW_TAG_base_type:
1487     return lowerTypeBasic(cast<DIBasicType>(Ty));
1488   case dwarf::DW_TAG_pointer_type:
1489     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1490       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1491     LLVM_FALLTHROUGH;
1492   case dwarf::DW_TAG_reference_type:
1493   case dwarf::DW_TAG_rvalue_reference_type:
1494     return lowerTypePointer(cast<DIDerivedType>(Ty));
1495   case dwarf::DW_TAG_ptr_to_member_type:
1496     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1497   case dwarf::DW_TAG_restrict_type:
1498   case dwarf::DW_TAG_const_type:
1499   case dwarf::DW_TAG_volatile_type:
1500   // TODO: add support for DW_TAG_atomic_type here
1501     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1502   case dwarf::DW_TAG_subroutine_type:
1503     if (ClassTy) {
1504       // The member function type of a member function pointer has no
1505       // ThisAdjustment.
1506       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1507                                      /*ThisAdjustment=*/0,
1508                                      /*IsStaticMethod=*/false);
1509     }
1510     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1511   case dwarf::DW_TAG_enumeration_type:
1512     return lowerTypeEnum(cast<DICompositeType>(Ty));
1513   case dwarf::DW_TAG_class_type:
1514   case dwarf::DW_TAG_structure_type:
1515     return lowerTypeClass(cast<DICompositeType>(Ty));
1516   case dwarf::DW_TAG_union_type:
1517     return lowerTypeUnion(cast<DICompositeType>(Ty));
1518   case dwarf::DW_TAG_unspecified_type:
1519     if (Ty->getName() == "decltype(nullptr)")
1520       return TypeIndex::NullptrT();
1521     return TypeIndex::None();
1522   default:
1523     // Use the null type index.
1524     return TypeIndex();
1525   }
1526 }
1527 
1528 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1529   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1530   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1531   StringRef TypeName = Ty->getName();
1532 
1533   addToUDTs(Ty);
1534 
1535   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1536       TypeName == "HRESULT")
1537     return TypeIndex(SimpleTypeKind::HResult);
1538   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1539       TypeName == "wchar_t")
1540     return TypeIndex(SimpleTypeKind::WideCharacter);
1541 
1542   return UnderlyingTypeIndex;
1543 }
1544 
1545 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1546   DITypeRef ElementTypeRef = Ty->getBaseType();
1547   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1548   // IndexType is size_t, which depends on the bitness of the target.
1549   TypeIndex IndexType = getPointerSizeInBytes() == 8
1550                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1551                             : TypeIndex(SimpleTypeKind::UInt32Long);
1552 
1553   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1554 
1555   // Add subranges to array type.
1556   DINodeArray Elements = Ty->getElements();
1557   for (int i = Elements.size() - 1; i >= 0; --i) {
1558     const DINode *Element = Elements[i];
1559     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1560 
1561     const DISubrange *Subrange = cast<DISubrange>(Element);
1562     assert(Subrange->getLowerBound() == 0 &&
1563            "codeview doesn't support subranges with lower bounds");
1564     int64_t Count = -1;
1565     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1566       Count = CI->getSExtValue();
1567 
1568     // Forward declarations of arrays without a size and VLAs use a count of -1.
1569     // Emit a count of zero in these cases to match what MSVC does for arrays
1570     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1571     // should do for them even if we could distinguish them.
1572     if (Count == -1)
1573       Count = 0;
1574 
1575     // Update the element size and element type index for subsequent subranges.
1576     ElementSize *= Count;
1577 
1578     // If this is the outermost array, use the size from the array. It will be
1579     // more accurate if we had a VLA or an incomplete element type size.
1580     uint64_t ArraySize =
1581         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1582 
1583     StringRef Name = (i == 0) ? Ty->getName() : "";
1584     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1585     ElementTypeIndex = TypeTable.writeLeafType(AR);
1586   }
1587 
1588   return ElementTypeIndex;
1589 }
1590 
1591 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1592   TypeIndex Index;
1593   dwarf::TypeKind Kind;
1594   uint32_t ByteSize;
1595 
1596   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1597   ByteSize = Ty->getSizeInBits() / 8;
1598 
1599   SimpleTypeKind STK = SimpleTypeKind::None;
1600   switch (Kind) {
1601   case dwarf::DW_ATE_address:
1602     // FIXME: Translate
1603     break;
1604   case dwarf::DW_ATE_boolean:
1605     switch (ByteSize) {
1606     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1607     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1608     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1609     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1610     case 16: STK = SimpleTypeKind::Boolean128; break;
1611     }
1612     break;
1613   case dwarf::DW_ATE_complex_float:
1614     switch (ByteSize) {
1615     case 2:  STK = SimpleTypeKind::Complex16;  break;
1616     case 4:  STK = SimpleTypeKind::Complex32;  break;
1617     case 8:  STK = SimpleTypeKind::Complex64;  break;
1618     case 10: STK = SimpleTypeKind::Complex80;  break;
1619     case 16: STK = SimpleTypeKind::Complex128; break;
1620     }
1621     break;
1622   case dwarf::DW_ATE_float:
1623     switch (ByteSize) {
1624     case 2:  STK = SimpleTypeKind::Float16;  break;
1625     case 4:  STK = SimpleTypeKind::Float32;  break;
1626     case 6:  STK = SimpleTypeKind::Float48;  break;
1627     case 8:  STK = SimpleTypeKind::Float64;  break;
1628     case 10: STK = SimpleTypeKind::Float80;  break;
1629     case 16: STK = SimpleTypeKind::Float128; break;
1630     }
1631     break;
1632   case dwarf::DW_ATE_signed:
1633     switch (ByteSize) {
1634     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1635     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1636     case 4:  STK = SimpleTypeKind::Int32;           break;
1637     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1638     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1639     }
1640     break;
1641   case dwarf::DW_ATE_unsigned:
1642     switch (ByteSize) {
1643     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1644     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1645     case 4:  STK = SimpleTypeKind::UInt32;            break;
1646     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1647     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1648     }
1649     break;
1650   case dwarf::DW_ATE_UTF:
1651     switch (ByteSize) {
1652     case 2: STK = SimpleTypeKind::Character16; break;
1653     case 4: STK = SimpleTypeKind::Character32; break;
1654     }
1655     break;
1656   case dwarf::DW_ATE_signed_char:
1657     if (ByteSize == 1)
1658       STK = SimpleTypeKind::SignedCharacter;
1659     break;
1660   case dwarf::DW_ATE_unsigned_char:
1661     if (ByteSize == 1)
1662       STK = SimpleTypeKind::UnsignedCharacter;
1663     break;
1664   default:
1665     break;
1666   }
1667 
1668   // Apply some fixups based on the source-level type name.
1669   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1670     STK = SimpleTypeKind::Int32Long;
1671   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1672     STK = SimpleTypeKind::UInt32Long;
1673   if (STK == SimpleTypeKind::UInt16Short &&
1674       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1675     STK = SimpleTypeKind::WideCharacter;
1676   if ((STK == SimpleTypeKind::SignedCharacter ||
1677        STK == SimpleTypeKind::UnsignedCharacter) &&
1678       Ty->getName() == "char")
1679     STK = SimpleTypeKind::NarrowCharacter;
1680 
1681   return TypeIndex(STK);
1682 }
1683 
1684 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1685                                           PointerOptions PO) {
1686   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1687 
1688   // Pointers to simple types without any options can use SimpleTypeMode, rather
1689   // than having a dedicated pointer type record.
1690   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1691       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1692       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1693     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1694                               ? SimpleTypeMode::NearPointer64
1695                               : SimpleTypeMode::NearPointer32;
1696     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1697   }
1698 
1699   PointerKind PK =
1700       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1701   PointerMode PM = PointerMode::Pointer;
1702   switch (Ty->getTag()) {
1703   default: llvm_unreachable("not a pointer tag type");
1704   case dwarf::DW_TAG_pointer_type:
1705     PM = PointerMode::Pointer;
1706     break;
1707   case dwarf::DW_TAG_reference_type:
1708     PM = PointerMode::LValueReference;
1709     break;
1710   case dwarf::DW_TAG_rvalue_reference_type:
1711     PM = PointerMode::RValueReference;
1712     break;
1713   }
1714 
1715   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1716   return TypeTable.writeLeafType(PR);
1717 }
1718 
1719 static PointerToMemberRepresentation
1720 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1721   // SizeInBytes being zero generally implies that the member pointer type was
1722   // incomplete, which can happen if it is part of a function prototype. In this
1723   // case, use the unknown model instead of the general model.
1724   if (IsPMF) {
1725     switch (Flags & DINode::FlagPtrToMemberRep) {
1726     case 0:
1727       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1728                               : PointerToMemberRepresentation::GeneralFunction;
1729     case DINode::FlagSingleInheritance:
1730       return PointerToMemberRepresentation::SingleInheritanceFunction;
1731     case DINode::FlagMultipleInheritance:
1732       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1733     case DINode::FlagVirtualInheritance:
1734       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1735     }
1736   } else {
1737     switch (Flags & DINode::FlagPtrToMemberRep) {
1738     case 0:
1739       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1740                               : PointerToMemberRepresentation::GeneralData;
1741     case DINode::FlagSingleInheritance:
1742       return PointerToMemberRepresentation::SingleInheritanceData;
1743     case DINode::FlagMultipleInheritance:
1744       return PointerToMemberRepresentation::MultipleInheritanceData;
1745     case DINode::FlagVirtualInheritance:
1746       return PointerToMemberRepresentation::VirtualInheritanceData;
1747     }
1748   }
1749   llvm_unreachable("invalid ptr to member representation");
1750 }
1751 
1752 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1753                                                 PointerOptions PO) {
1754   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1755   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1756   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1757   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1758                                                 : PointerKind::Near32;
1759   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1760   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1761                          : PointerMode::PointerToDataMember;
1762 
1763   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1764   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1765   MemberPointerInfo MPI(
1766       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1767   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1768   return TypeTable.writeLeafType(PR);
1769 }
1770 
1771 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1772 /// have a translation, use the NearC convention.
1773 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1774   switch (DwarfCC) {
1775   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1776   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1777   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1778   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1779   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1780   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1781   }
1782   return CallingConvention::NearC;
1783 }
1784 
1785 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1786   ModifierOptions Mods = ModifierOptions::None;
1787   PointerOptions PO = PointerOptions::None;
1788   bool IsModifier = true;
1789   const DIType *BaseTy = Ty;
1790   while (IsModifier && BaseTy) {
1791     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1792     switch (BaseTy->getTag()) {
1793     case dwarf::DW_TAG_const_type:
1794       Mods |= ModifierOptions::Const;
1795       PO |= PointerOptions::Const;
1796       break;
1797     case dwarf::DW_TAG_volatile_type:
1798       Mods |= ModifierOptions::Volatile;
1799       PO |= PointerOptions::Volatile;
1800       break;
1801     case dwarf::DW_TAG_restrict_type:
1802       // Only pointer types be marked with __restrict. There is no known flag
1803       // for __restrict in LF_MODIFIER records.
1804       PO |= PointerOptions::Restrict;
1805       break;
1806     default:
1807       IsModifier = false;
1808       break;
1809     }
1810     if (IsModifier)
1811       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1812   }
1813 
1814   // Check if the inner type will use an LF_POINTER record. If so, the
1815   // qualifiers will go in the LF_POINTER record. This comes up for types like
1816   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1817   // char *'.
1818   if (BaseTy) {
1819     switch (BaseTy->getTag()) {
1820     case dwarf::DW_TAG_pointer_type:
1821     case dwarf::DW_TAG_reference_type:
1822     case dwarf::DW_TAG_rvalue_reference_type:
1823       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1824     case dwarf::DW_TAG_ptr_to_member_type:
1825       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1826     default:
1827       break;
1828     }
1829   }
1830 
1831   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1832 
1833   // Return the base type index if there aren't any modifiers. For example, the
1834   // metadata could contain restrict wrappers around non-pointer types.
1835   if (Mods == ModifierOptions::None)
1836     return ModifiedTI;
1837 
1838   ModifierRecord MR(ModifiedTI, Mods);
1839   return TypeTable.writeLeafType(MR);
1840 }
1841 
1842 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1843   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1844   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1845     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1846 
1847   // MSVC uses type none for variadic argument.
1848   if (ReturnAndArgTypeIndices.size() > 1 &&
1849       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1850     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1851   }
1852   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1853   ArrayRef<TypeIndex> ArgTypeIndices = None;
1854   if (!ReturnAndArgTypeIndices.empty()) {
1855     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1856     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1857     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1858   }
1859 
1860   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1861   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1862 
1863   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1864 
1865   FunctionOptions FO = getFunctionOptions(Ty);
1866   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1867                             ArgListIndex);
1868   return TypeTable.writeLeafType(Procedure);
1869 }
1870 
1871 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1872                                                  const DIType *ClassTy,
1873                                                  int ThisAdjustment,
1874                                                  bool IsStaticMethod,
1875                                                  FunctionOptions FO) {
1876   // Lower the containing class type.
1877   TypeIndex ClassType = getTypeIndex(ClassTy);
1878 
1879   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1880   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1881     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1882 
1883   // MSVC uses type none for variadic argument.
1884   if (ReturnAndArgTypeIndices.size() > 1 &&
1885       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1886     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1887   }
1888   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1889   ArrayRef<TypeIndex> ArgTypeIndices = None;
1890   if (!ReturnAndArgTypeIndices.empty()) {
1891     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1892     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1893     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1894   }
1895   TypeIndex ThisTypeIndex;
1896   if (!IsStaticMethod && !ArgTypeIndices.empty()) {
1897     ThisTypeIndex = ArgTypeIndices.front();
1898     ArgTypeIndices = ArgTypeIndices.drop_front();
1899   }
1900 
1901   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1902   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1903 
1904   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1905 
1906   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1907                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1908   return TypeTable.writeLeafType(MFR);
1909 }
1910 
1911 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1912   unsigned VSlotCount =
1913       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1914   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1915 
1916   VFTableShapeRecord VFTSR(Slots);
1917   return TypeTable.writeLeafType(VFTSR);
1918 }
1919 
1920 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1921   switch (Flags & DINode::FlagAccessibility) {
1922   case DINode::FlagPrivate:   return MemberAccess::Private;
1923   case DINode::FlagPublic:    return MemberAccess::Public;
1924   case DINode::FlagProtected: return MemberAccess::Protected;
1925   case 0:
1926     // If there was no explicit access control, provide the default for the tag.
1927     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1928                                                  : MemberAccess::Public;
1929   }
1930   llvm_unreachable("access flags are exclusive");
1931 }
1932 
1933 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1934   if (SP->isArtificial())
1935     return MethodOptions::CompilerGenerated;
1936 
1937   // FIXME: Handle other MethodOptions.
1938 
1939   return MethodOptions::None;
1940 }
1941 
1942 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1943                                            bool Introduced) {
1944   if (SP->getFlags() & DINode::FlagStaticMember)
1945     return MethodKind::Static;
1946 
1947   switch (SP->getVirtuality()) {
1948   case dwarf::DW_VIRTUALITY_none:
1949     break;
1950   case dwarf::DW_VIRTUALITY_virtual:
1951     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1952   case dwarf::DW_VIRTUALITY_pure_virtual:
1953     return Introduced ? MethodKind::PureIntroducingVirtual
1954                       : MethodKind::PureVirtual;
1955   default:
1956     llvm_unreachable("unhandled virtuality case");
1957   }
1958 
1959   return MethodKind::Vanilla;
1960 }
1961 
1962 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1963   switch (Ty->getTag()) {
1964   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1965   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1966   }
1967   llvm_unreachable("unexpected tag");
1968 }
1969 
1970 /// Return ClassOptions that should be present on both the forward declaration
1971 /// and the defintion of a tag type.
1972 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1973   ClassOptions CO = ClassOptions::None;
1974 
1975   // MSVC always sets this flag, even for local types. Clang doesn't always
1976   // appear to give every type a linkage name, which may be problematic for us.
1977   // FIXME: Investigate the consequences of not following them here.
1978   if (!Ty->getIdentifier().empty())
1979     CO |= ClassOptions::HasUniqueName;
1980 
1981   // Put the Nested flag on a type if it appears immediately inside a tag type.
1982   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1983   // here. That flag is only set on definitions, and not forward declarations.
1984   const DIScope *ImmediateScope = Ty->getScope().resolve();
1985   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1986     CO |= ClassOptions::Nested;
1987 
1988   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
1989   // type only when it has an immediate function scope. Clang never puts enums
1990   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
1991   // always in function, class, or file scopes.
1992   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
1993     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
1994       CO |= ClassOptions::Scoped;
1995   } else {
1996     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1997          Scope = Scope->getScope().resolve()) {
1998       if (isa<DISubprogram>(Scope)) {
1999         CO |= ClassOptions::Scoped;
2000         break;
2001       }
2002     }
2003   }
2004 
2005   return CO;
2006 }
2007 
2008 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2009   switch (Ty->getTag()) {
2010   case dwarf::DW_TAG_class_type:
2011   case dwarf::DW_TAG_structure_type:
2012   case dwarf::DW_TAG_union_type:
2013   case dwarf::DW_TAG_enumeration_type:
2014     break;
2015   default:
2016     return;
2017   }
2018 
2019   if (const auto *File = Ty->getFile()) {
2020     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2021     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2022 
2023     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2024     TypeTable.writeLeafType(USLR);
2025   }
2026 }
2027 
2028 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2029   ClassOptions CO = getCommonClassOptions(Ty);
2030   TypeIndex FTI;
2031   unsigned EnumeratorCount = 0;
2032 
2033   if (Ty->isForwardDecl()) {
2034     CO |= ClassOptions::ForwardReference;
2035   } else {
2036     ContinuationRecordBuilder ContinuationBuilder;
2037     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2038     for (const DINode *Element : Ty->getElements()) {
2039       // We assume that the frontend provides all members in source declaration
2040       // order, which is what MSVC does.
2041       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2042         EnumeratorRecord ER(MemberAccess::Public,
2043                             APSInt::getUnsigned(Enumerator->getValue()),
2044                             Enumerator->getName());
2045         ContinuationBuilder.writeMemberType(ER);
2046         EnumeratorCount++;
2047       }
2048     }
2049     FTI = TypeTable.insertRecord(ContinuationBuilder);
2050   }
2051 
2052   std::string FullName = getFullyQualifiedName(Ty);
2053 
2054   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2055                 getTypeIndex(Ty->getBaseType()));
2056   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2057 
2058   addUDTSrcLine(Ty, EnumTI);
2059 
2060   return EnumTI;
2061 }
2062 
2063 //===----------------------------------------------------------------------===//
2064 // ClassInfo
2065 //===----------------------------------------------------------------------===//
2066 
2067 struct llvm::ClassInfo {
2068   struct MemberInfo {
2069     const DIDerivedType *MemberTypeNode;
2070     uint64_t BaseOffset;
2071   };
2072   // [MemberInfo]
2073   using MemberList = std::vector<MemberInfo>;
2074 
2075   using MethodsList = TinyPtrVector<const DISubprogram *>;
2076   // MethodName -> MethodsList
2077   using MethodsMap = MapVector<MDString *, MethodsList>;
2078 
2079   /// Base classes.
2080   std::vector<const DIDerivedType *> Inheritance;
2081 
2082   /// Direct members.
2083   MemberList Members;
2084   // Direct overloaded methods gathered by name.
2085   MethodsMap Methods;
2086 
2087   TypeIndex VShapeTI;
2088 
2089   std::vector<const DIType *> NestedTypes;
2090 };
2091 
2092 void CodeViewDebug::clear() {
2093   assert(CurFn == nullptr);
2094   FileIdMap.clear();
2095   FnDebugInfo.clear();
2096   FileToFilepathMap.clear();
2097   LocalUDTs.clear();
2098   GlobalUDTs.clear();
2099   TypeIndices.clear();
2100   CompleteTypeIndices.clear();
2101 }
2102 
2103 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2104                                       const DIDerivedType *DDTy) {
2105   if (!DDTy->getName().empty()) {
2106     Info.Members.push_back({DDTy, 0});
2107     return;
2108   }
2109 
2110   // An unnamed member may represent a nested struct or union. Attempt to
2111   // interpret the unnamed member as a DICompositeType possibly wrapped in
2112   // qualifier types. Add all the indirect fields to the current record if that
2113   // succeeds, and drop the member if that fails.
2114   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2115   uint64_t Offset = DDTy->getOffsetInBits();
2116   const DIType *Ty = DDTy->getBaseType().resolve();
2117   bool FullyResolved = false;
2118   while (!FullyResolved) {
2119     switch (Ty->getTag()) {
2120     case dwarf::DW_TAG_const_type:
2121     case dwarf::DW_TAG_volatile_type:
2122       // FIXME: we should apply the qualifier types to the indirect fields
2123       // rather than dropping them.
2124       Ty = cast<DIDerivedType>(Ty)->getBaseType().resolve();
2125       break;
2126     default:
2127       FullyResolved = true;
2128       break;
2129     }
2130   }
2131 
2132   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2133   if (!DCTy)
2134     return;
2135 
2136   ClassInfo NestedInfo = collectClassInfo(DCTy);
2137   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2138     Info.Members.push_back(
2139         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2140 }
2141 
2142 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2143   ClassInfo Info;
2144   // Add elements to structure type.
2145   DINodeArray Elements = Ty->getElements();
2146   for (auto *Element : Elements) {
2147     // We assume that the frontend provides all members in source declaration
2148     // order, which is what MSVC does.
2149     if (!Element)
2150       continue;
2151     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2152       Info.Methods[SP->getRawName()].push_back(SP);
2153     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2154       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2155         collectMemberInfo(Info, DDTy);
2156       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2157         Info.Inheritance.push_back(DDTy);
2158       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2159                  DDTy->getName() == "__vtbl_ptr_type") {
2160         Info.VShapeTI = getTypeIndex(DDTy);
2161       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2162         Info.NestedTypes.push_back(DDTy);
2163       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2164         // Ignore friend members. It appears that MSVC emitted info about
2165         // friends in the past, but modern versions do not.
2166       }
2167     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2168       Info.NestedTypes.push_back(Composite);
2169     }
2170     // Skip other unrecognized kinds of elements.
2171   }
2172   return Info;
2173 }
2174 
2175 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2176   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2177   // if a complete type should be emitted instead of a forward reference.
2178   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2179       !Ty->isForwardDecl();
2180 }
2181 
2182 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2183   // Emit the complete type for unnamed structs.  C++ classes with methods
2184   // which have a circular reference back to the class type are expected to
2185   // be named by the front-end and should not be "unnamed".  C unnamed
2186   // structs should not have circular references.
2187   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2188     // If this unnamed complete type is already in the process of being defined
2189     // then the description of the type is malformed and cannot be emitted
2190     // into CodeView correctly so report a fatal error.
2191     auto I = CompleteTypeIndices.find(Ty);
2192     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2193       report_fatal_error("cannot debug circular reference to unnamed type");
2194     return getCompleteTypeIndex(Ty);
2195   }
2196 
2197   // First, construct the forward decl.  Don't look into Ty to compute the
2198   // forward decl options, since it might not be available in all TUs.
2199   TypeRecordKind Kind = getRecordKind(Ty);
2200   ClassOptions CO =
2201       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2202   std::string FullName = getFullyQualifiedName(Ty);
2203   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2204                  FullName, Ty->getIdentifier());
2205   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2206   if (!Ty->isForwardDecl())
2207     DeferredCompleteTypes.push_back(Ty);
2208   return FwdDeclTI;
2209 }
2210 
2211 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2212   // Construct the field list and complete type record.
2213   TypeRecordKind Kind = getRecordKind(Ty);
2214   ClassOptions CO = getCommonClassOptions(Ty);
2215   TypeIndex FieldTI;
2216   TypeIndex VShapeTI;
2217   unsigned FieldCount;
2218   bool ContainsNestedClass;
2219   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2220       lowerRecordFieldList(Ty);
2221 
2222   if (ContainsNestedClass)
2223     CO |= ClassOptions::ContainsNestedClass;
2224 
2225   std::string FullName = getFullyQualifiedName(Ty);
2226 
2227   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2228 
2229   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2230                  SizeInBytes, FullName, Ty->getIdentifier());
2231   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2232 
2233   addUDTSrcLine(Ty, ClassTI);
2234 
2235   addToUDTs(Ty);
2236 
2237   return ClassTI;
2238 }
2239 
2240 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2241   // Emit the complete type for unnamed unions.
2242   if (shouldAlwaysEmitCompleteClassType(Ty))
2243     return getCompleteTypeIndex(Ty);
2244 
2245   ClassOptions CO =
2246       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2247   std::string FullName = getFullyQualifiedName(Ty);
2248   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2249   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2250   if (!Ty->isForwardDecl())
2251     DeferredCompleteTypes.push_back(Ty);
2252   return FwdDeclTI;
2253 }
2254 
2255 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2256   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2257   TypeIndex FieldTI;
2258   unsigned FieldCount;
2259   bool ContainsNestedClass;
2260   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2261       lowerRecordFieldList(Ty);
2262 
2263   if (ContainsNestedClass)
2264     CO |= ClassOptions::ContainsNestedClass;
2265 
2266   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2267   std::string FullName = getFullyQualifiedName(Ty);
2268 
2269   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2270                  Ty->getIdentifier());
2271   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2272 
2273   addUDTSrcLine(Ty, UnionTI);
2274 
2275   addToUDTs(Ty);
2276 
2277   return UnionTI;
2278 }
2279 
2280 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2281 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2282   // Manually count members. MSVC appears to count everything that generates a
2283   // field list record. Each individual overload in a method overload group
2284   // contributes to this count, even though the overload group is a single field
2285   // list record.
2286   unsigned MemberCount = 0;
2287   ClassInfo Info = collectClassInfo(Ty);
2288   ContinuationRecordBuilder ContinuationBuilder;
2289   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2290 
2291   // Create base classes.
2292   for (const DIDerivedType *I : Info.Inheritance) {
2293     if (I->getFlags() & DINode::FlagVirtual) {
2294       // Virtual base.
2295       unsigned VBPtrOffset = I->getVBPtrOffset();
2296       // FIXME: Despite the accessor name, the offset is really in bytes.
2297       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2298       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2299                             ? TypeRecordKind::IndirectVirtualBaseClass
2300                             : TypeRecordKind::VirtualBaseClass;
2301       VirtualBaseClassRecord VBCR(
2302           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2303           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2304           VBTableIndex);
2305 
2306       ContinuationBuilder.writeMemberType(VBCR);
2307       MemberCount++;
2308     } else {
2309       assert(I->getOffsetInBits() % 8 == 0 &&
2310              "bases must be on byte boundaries");
2311       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2312                           getTypeIndex(I->getBaseType()),
2313                           I->getOffsetInBits() / 8);
2314       ContinuationBuilder.writeMemberType(BCR);
2315       MemberCount++;
2316     }
2317   }
2318 
2319   // Create members.
2320   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2321     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2322     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2323     StringRef MemberName = Member->getName();
2324     MemberAccess Access =
2325         translateAccessFlags(Ty->getTag(), Member->getFlags());
2326 
2327     if (Member->isStaticMember()) {
2328       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2329       ContinuationBuilder.writeMemberType(SDMR);
2330       MemberCount++;
2331       continue;
2332     }
2333 
2334     // Virtual function pointer member.
2335     if ((Member->getFlags() & DINode::FlagArtificial) &&
2336         Member->getName().startswith("_vptr$")) {
2337       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2338       ContinuationBuilder.writeMemberType(VFPR);
2339       MemberCount++;
2340       continue;
2341     }
2342 
2343     // Data member.
2344     uint64_t MemberOffsetInBits =
2345         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2346     if (Member->isBitField()) {
2347       uint64_t StartBitOffset = MemberOffsetInBits;
2348       if (const auto *CI =
2349               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2350         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2351       }
2352       StartBitOffset -= MemberOffsetInBits;
2353       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2354                          StartBitOffset);
2355       MemberBaseType = TypeTable.writeLeafType(BFR);
2356     }
2357     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2358     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2359                          MemberName);
2360     ContinuationBuilder.writeMemberType(DMR);
2361     MemberCount++;
2362   }
2363 
2364   // Create methods
2365   for (auto &MethodItr : Info.Methods) {
2366     StringRef Name = MethodItr.first->getString();
2367 
2368     std::vector<OneMethodRecord> Methods;
2369     for (const DISubprogram *SP : MethodItr.second) {
2370       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2371       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2372 
2373       unsigned VFTableOffset = -1;
2374       if (Introduced)
2375         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2376 
2377       Methods.push_back(OneMethodRecord(
2378           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2379           translateMethodKindFlags(SP, Introduced),
2380           translateMethodOptionFlags(SP), VFTableOffset, Name));
2381       MemberCount++;
2382     }
2383     assert(!Methods.empty() && "Empty methods map entry");
2384     if (Methods.size() == 1)
2385       ContinuationBuilder.writeMemberType(Methods[0]);
2386     else {
2387       // FIXME: Make this use its own ContinuationBuilder so that
2388       // MethodOverloadList can be split correctly.
2389       MethodOverloadListRecord MOLR(Methods);
2390       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2391 
2392       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2393       ContinuationBuilder.writeMemberType(OMR);
2394     }
2395   }
2396 
2397   // Create nested classes.
2398   for (const DIType *Nested : Info.NestedTypes) {
2399     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2400     ContinuationBuilder.writeMemberType(R);
2401     MemberCount++;
2402   }
2403 
2404   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2405   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2406                          !Info.NestedTypes.empty());
2407 }
2408 
2409 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2410   if (!VBPType.getIndex()) {
2411     // Make a 'const int *' type.
2412     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2413     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2414 
2415     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2416                                                   : PointerKind::Near32;
2417     PointerMode PM = PointerMode::Pointer;
2418     PointerOptions PO = PointerOptions::None;
2419     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2420     VBPType = TypeTable.writeLeafType(PR);
2421   }
2422 
2423   return VBPType;
2424 }
2425 
2426 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2427   const DIType *Ty = TypeRef.resolve();
2428   const DIType *ClassTy = ClassTyRef.resolve();
2429 
2430   // The null DIType is the void type. Don't try to hash it.
2431   if (!Ty)
2432     return TypeIndex::Void();
2433 
2434   // Check if we've already translated this type. Don't try to do a
2435   // get-or-create style insertion that caches the hash lookup across the
2436   // lowerType call. It will update the TypeIndices map.
2437   auto I = TypeIndices.find({Ty, ClassTy});
2438   if (I != TypeIndices.end())
2439     return I->second;
2440 
2441   TypeLoweringScope S(*this);
2442   TypeIndex TI = lowerType(Ty, ClassTy);
2443   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2444 }
2445 
2446 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2447   DIType *Ty = TypeRef.resolve();
2448   PointerRecord PR(getTypeIndex(Ty),
2449                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2450                                                 : PointerKind::Near32,
2451                    PointerMode::LValueReference, PointerOptions::None,
2452                    Ty->getSizeInBits() / 8);
2453   return TypeTable.writeLeafType(PR);
2454 }
2455 
2456 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2457   const DIType *Ty = TypeRef.resolve();
2458 
2459   // The null DIType is the void type. Don't try to hash it.
2460   if (!Ty)
2461     return TypeIndex::Void();
2462 
2463   // If this is a non-record type, the complete type index is the same as the
2464   // normal type index. Just call getTypeIndex.
2465   switch (Ty->getTag()) {
2466   case dwarf::DW_TAG_class_type:
2467   case dwarf::DW_TAG_structure_type:
2468   case dwarf::DW_TAG_union_type:
2469     break;
2470   default:
2471     return getTypeIndex(Ty);
2472   }
2473 
2474   // Check if we've already translated the complete record type.
2475   const auto *CTy = cast<DICompositeType>(Ty);
2476   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2477   if (!InsertResult.second)
2478     return InsertResult.first->second;
2479 
2480   TypeLoweringScope S(*this);
2481 
2482   // Make sure the forward declaration is emitted first. It's unclear if this
2483   // is necessary, but MSVC does it, and we should follow suit until we can show
2484   // otherwise.
2485   // We only emit a forward declaration for named types.
2486   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2487     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2488 
2489     // Just use the forward decl if we don't have complete type info. This
2490     // might happen if the frontend is using modules and expects the complete
2491     // definition to be emitted elsewhere.
2492     if (CTy->isForwardDecl())
2493       return FwdDeclTI;
2494   }
2495 
2496   TypeIndex TI;
2497   switch (CTy->getTag()) {
2498   case dwarf::DW_TAG_class_type:
2499   case dwarf::DW_TAG_structure_type:
2500     TI = lowerCompleteTypeClass(CTy);
2501     break;
2502   case dwarf::DW_TAG_union_type:
2503     TI = lowerCompleteTypeUnion(CTy);
2504     break;
2505   default:
2506     llvm_unreachable("not a record");
2507   }
2508 
2509   // Update the type index associated with this CompositeType.  This cannot
2510   // use the 'InsertResult' iterator above because it is potentially
2511   // invalidated by map insertions which can occur while lowering the class
2512   // type above.
2513   CompleteTypeIndices[CTy] = TI;
2514   return TI;
2515 }
2516 
2517 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2518 /// and do this until fixpoint, as each complete record type typically
2519 /// references
2520 /// many other record types.
2521 void CodeViewDebug::emitDeferredCompleteTypes() {
2522   SmallVector<const DICompositeType *, 4> TypesToEmit;
2523   while (!DeferredCompleteTypes.empty()) {
2524     std::swap(DeferredCompleteTypes, TypesToEmit);
2525     for (const DICompositeType *RecordTy : TypesToEmit)
2526       getCompleteTypeIndex(RecordTy);
2527     TypesToEmit.clear();
2528   }
2529 }
2530 
2531 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2532                                           ArrayRef<LocalVariable> Locals) {
2533   // Get the sorted list of parameters and emit them first.
2534   SmallVector<const LocalVariable *, 6> Params;
2535   for (const LocalVariable &L : Locals)
2536     if (L.DIVar->isParameter())
2537       Params.push_back(&L);
2538   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2539     return L->DIVar->getArg() < R->DIVar->getArg();
2540   });
2541   for (const LocalVariable *L : Params)
2542     emitLocalVariable(FI, *L);
2543 
2544   // Next emit all non-parameters in the order that we found them.
2545   for (const LocalVariable &L : Locals)
2546     if (!L.DIVar->isParameter())
2547       emitLocalVariable(FI, L);
2548 }
2549 
2550 /// Only call this on endian-specific types like ulittle16_t and little32_t, or
2551 /// structs composed of them.
2552 template <typename T>
2553 static void copyBytesForDefRange(SmallString<20> &BytePrefix,
2554                                  SymbolKind SymKind, const T &DefRangeHeader) {
2555   BytePrefix.resize(2 + sizeof(T));
2556   ulittle16_t SymKindLE = ulittle16_t(SymKind);
2557   memcpy(&BytePrefix[0], &SymKindLE, 2);
2558   memcpy(&BytePrefix[2], &DefRangeHeader, sizeof(T));
2559 }
2560 
2561 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2562                                       const LocalVariable &Var) {
2563   // LocalSym record, see SymbolRecord.h for more info.
2564   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2565            *LocalEnd = MMI->getContext().createTempSymbol();
2566   OS.AddComment("Record length");
2567   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2568   OS.EmitLabel(LocalBegin);
2569 
2570   OS.AddComment("Record kind: S_LOCAL");
2571   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2572 
2573   LocalSymFlags Flags = LocalSymFlags::None;
2574   if (Var.DIVar->isParameter())
2575     Flags |= LocalSymFlags::IsParameter;
2576   if (Var.DefRanges.empty())
2577     Flags |= LocalSymFlags::IsOptimizedOut;
2578 
2579   OS.AddComment("TypeIndex");
2580   TypeIndex TI = Var.UseReferenceType
2581                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2582                      : getCompleteTypeIndex(Var.DIVar->getType());
2583   OS.EmitIntValue(TI.getIndex(), 4);
2584   OS.AddComment("Flags");
2585   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2586   // Truncate the name so we won't overflow the record length field.
2587   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2588   OS.EmitLabel(LocalEnd);
2589 
2590   // Calculate the on disk prefix of the appropriate def range record. The
2591   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2592   // should be big enough to hold all forms without memory allocation.
2593   SmallString<20> BytePrefix;
2594   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2595     BytePrefix.clear();
2596     if (DefRange.InMemory) {
2597       int Offset = DefRange.DataOffset;
2598       unsigned Reg = DefRange.CVRegister;
2599 
2600       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2601       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2602       // instead. In simple cases, $T0 will be the CFA.
2603       if (RegisterId(Reg) == RegisterId::ESP) {
2604         Reg = unsigned(RegisterId::VFRAME);
2605         Offset -= FI.FrameSize;
2606 
2607         // If the frame requires realignment, VFRAME will be ESP after it is
2608         // aligned. We have to remove the ESP adjustments made to push CSRs and
2609         // EBP. EBP is not included in CSRSize.
2610         if (FI.HasStackRealignment)
2611           Offset += FI.CSRSize + 4;
2612       }
2613 
2614       // If we can use the chosen frame pointer for the frame and this isn't a
2615       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2616       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2617       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2618       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2619           (bool(Flags & LocalSymFlags::IsParameter)
2620                ? (EncFP == FI.EncodedParamFramePtrReg)
2621                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2622         little32_t FPOffset = little32_t(Offset);
2623         copyBytesForDefRange(BytePrefix, S_DEFRANGE_FRAMEPOINTER_REL, FPOffset);
2624       } else {
2625         uint16_t RegRelFlags = 0;
2626         if (DefRange.IsSubfield) {
2627           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2628                         (DefRange.StructOffset
2629                          << DefRangeRegisterRelSym::OffsetInParentShift);
2630         }
2631         DefRangeRegisterRelSym::Header DRHdr;
2632         DRHdr.Register = Reg;
2633         DRHdr.Flags = RegRelFlags;
2634         DRHdr.BasePointerOffset = Offset;
2635         copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER_REL, DRHdr);
2636       }
2637     } else {
2638       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2639       if (DefRange.IsSubfield) {
2640         DefRangeSubfieldRegisterSym::Header DRHdr;
2641         DRHdr.Register = DefRange.CVRegister;
2642         DRHdr.MayHaveNoName = 0;
2643         DRHdr.OffsetInParent = DefRange.StructOffset;
2644         copyBytesForDefRange(BytePrefix, S_DEFRANGE_SUBFIELD_REGISTER, DRHdr);
2645       } else {
2646         DefRangeRegisterSym::Header DRHdr;
2647         DRHdr.Register = DefRange.CVRegister;
2648         DRHdr.MayHaveNoName = 0;
2649         copyBytesForDefRange(BytePrefix, S_DEFRANGE_REGISTER, DRHdr);
2650       }
2651     }
2652     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2653   }
2654 }
2655 
2656 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2657                                          const FunctionInfo& FI) {
2658   for (LexicalBlock *Block : Blocks)
2659     emitLexicalBlock(*Block, FI);
2660 }
2661 
2662 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2663 /// lexical block scope.
2664 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2665                                      const FunctionInfo& FI) {
2666   MCSymbol *RecordBegin = MMI->getContext().createTempSymbol(),
2667            *RecordEnd   = MMI->getContext().createTempSymbol();
2668 
2669   // Lexical block symbol record.
2670   OS.AddComment("Record length");
2671   OS.emitAbsoluteSymbolDiff(RecordEnd, RecordBegin, 2);   // Record Length
2672   OS.EmitLabel(RecordBegin);
2673   OS.AddComment("Record kind: S_BLOCK32");
2674   OS.EmitIntValue(SymbolKind::S_BLOCK32, 2);              // Record Kind
2675   OS.AddComment("PtrParent");
2676   OS.EmitIntValue(0, 4);                                  // PtrParent
2677   OS.AddComment("PtrEnd");
2678   OS.EmitIntValue(0, 4);                                  // PtrEnd
2679   OS.AddComment("Code size");
2680   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2681   OS.AddComment("Function section relative address");
2682   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2683   OS.AddComment("Function section index");
2684   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2685   OS.AddComment("Lexical block name");
2686   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2687   OS.EmitLabel(RecordEnd);
2688 
2689   // Emit variables local to this lexical block.
2690   emitLocalVariableList(FI, Block.Locals);
2691 
2692   // Emit lexical blocks contained within this block.
2693   emitLexicalBlockList(Block.Children, FI);
2694 
2695   // Close the lexical block scope.
2696   OS.AddComment("Record length");
2697   OS.EmitIntValue(2, 2);                                  // Record Length
2698   OS.AddComment("Record kind: S_END");
2699   OS.EmitIntValue(SymbolKind::S_END, 2);                  // Record Kind
2700 }
2701 
2702 /// Convenience routine for collecting lexical block information for a list
2703 /// of lexical scopes.
2704 void CodeViewDebug::collectLexicalBlockInfo(
2705         SmallVectorImpl<LexicalScope *> &Scopes,
2706         SmallVectorImpl<LexicalBlock *> &Blocks,
2707         SmallVectorImpl<LocalVariable> &Locals) {
2708   for (LexicalScope *Scope : Scopes)
2709     collectLexicalBlockInfo(*Scope, Blocks, Locals);
2710 }
2711 
2712 /// Populate the lexical blocks and local variable lists of the parent with
2713 /// information about the specified lexical scope.
2714 void CodeViewDebug::collectLexicalBlockInfo(
2715     LexicalScope &Scope,
2716     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2717     SmallVectorImpl<LocalVariable> &ParentLocals) {
2718   if (Scope.isAbstractScope())
2719     return;
2720 
2721   auto LocalsIter = ScopeVariables.find(&Scope);
2722   if (LocalsIter == ScopeVariables.end()) {
2723     // This scope does not contain variables and can be eliminated.
2724     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2725     return;
2726   }
2727   SmallVectorImpl<LocalVariable> &Locals = LocalsIter->second;
2728 
2729   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2730   if (!DILB) {
2731     // This scope is not a lexical block and can be eliminated, but keep any
2732     // local variables it contains.
2733     ParentLocals.append(Locals.begin(), Locals.end());
2734     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2735     return;
2736   }
2737 
2738   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2739   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second)) {
2740     // This lexical block scope has too many address ranges to represent in the
2741     // current CodeView format or does not have a valid address range.
2742     // Eliminate this lexical scope and promote any locals it contains to the
2743     // parent scope.
2744     //
2745     // For lexical scopes with multiple address ranges you may be tempted to
2746     // construct a single range covering every instruction where the block is
2747     // live and everything in between.  Unfortunately, Visual Studio only
2748     // displays variables from the first matching lexical block scope.  If the
2749     // first lexical block contains exception handling code or cold code which
2750     // is moved to the bottom of the routine creating a single range covering
2751     // nearly the entire routine, then it will hide all other lexical blocks
2752     // and the variables they contain.
2753     //
2754     ParentLocals.append(Locals.begin(), Locals.end());
2755     collectLexicalBlockInfo(Scope.getChildren(), ParentBlocks, ParentLocals);
2756     return;
2757   }
2758 
2759   // Create a new CodeView lexical block for this lexical scope.  If we've
2760   // seen this DILexicalBlock before then the scope tree is malformed and
2761   // we can handle this gracefully by not processing it a second time.
2762   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2763   if (!BlockInsertion.second)
2764     return;
2765 
2766   // Create a lexical block containing the local variables and collect the
2767   // the lexical block information for the children.
2768   const InsnRange &Range = Ranges.front();
2769   assert(Range.first && Range.second);
2770   LexicalBlock &Block = BlockInsertion.first->second;
2771   Block.Begin = getLabelBeforeInsn(Range.first);
2772   Block.End = getLabelAfterInsn(Range.second);
2773   assert(Block.Begin && "missing label for scope begin");
2774   assert(Block.End && "missing label for scope end");
2775   Block.Name = DILB->getName();
2776   Block.Locals = std::move(Locals);
2777   ParentBlocks.push_back(&Block);
2778   collectLexicalBlockInfo(Scope.getChildren(), Block.Children, Block.Locals);
2779 }
2780 
2781 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2782   const Function &GV = MF->getFunction();
2783   assert(FnDebugInfo.count(&GV));
2784   assert(CurFn == FnDebugInfo[&GV].get());
2785 
2786   collectVariableInfo(GV.getSubprogram());
2787 
2788   // Build the lexical block structure to emit for this routine.
2789   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2790     collectLexicalBlockInfo(*CFS, CurFn->ChildBlocks, CurFn->Locals);
2791 
2792   // Clear the scope and variable information from the map which will not be
2793   // valid after we have finished processing this routine.  This also prepares
2794   // the map for the subsequent routine.
2795   ScopeVariables.clear();
2796 
2797   // Don't emit anything if we don't have any line tables.
2798   // Thunks are compiler-generated and probably won't have source correlation.
2799   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2800     FnDebugInfo.erase(&GV);
2801     CurFn = nullptr;
2802     return;
2803   }
2804 
2805   CurFn->Annotations = MF->getCodeViewAnnotations();
2806 
2807   CurFn->End = Asm->getFunctionEnd();
2808 
2809   CurFn = nullptr;
2810 }
2811 
2812 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2813   DebugHandlerBase::beginInstruction(MI);
2814 
2815   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2816   if (!Asm || !CurFn || MI->isDebugInstr() ||
2817       MI->getFlag(MachineInstr::FrameSetup))
2818     return;
2819 
2820   // If the first instruction of a new MBB has no location, find the first
2821   // instruction with a location and use that.
2822   DebugLoc DL = MI->getDebugLoc();
2823   if (!DL && MI->getParent() != PrevInstBB) {
2824     for (const auto &NextMI : *MI->getParent()) {
2825       if (NextMI.isDebugInstr())
2826         continue;
2827       DL = NextMI.getDebugLoc();
2828       if (DL)
2829         break;
2830     }
2831   }
2832   PrevInstBB = MI->getParent();
2833 
2834   // If we still don't have a debug location, don't record a location.
2835   if (!DL)
2836     return;
2837 
2838   maybeRecordLocation(DL, Asm->MF);
2839 }
2840 
2841 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2842   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2843            *EndLabel = MMI->getContext().createTempSymbol();
2844   OS.EmitIntValue(unsigned(Kind), 4);
2845   OS.AddComment("Subsection size");
2846   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2847   OS.EmitLabel(BeginLabel);
2848   return EndLabel;
2849 }
2850 
2851 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2852   OS.EmitLabel(EndLabel);
2853   // Every subsection must be aligned to a 4-byte boundary.
2854   OS.EmitValueToAlignment(4);
2855 }
2856 
2857 void CodeViewDebug::emitDebugInfoForUDTs(
2858     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2859   for (const auto &UDT : UDTs) {
2860     const DIType *T = UDT.second;
2861     assert(shouldEmitUdt(T));
2862 
2863     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2864              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2865     OS.AddComment("Record length");
2866     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2867     OS.EmitLabel(UDTRecordBegin);
2868 
2869     OS.AddComment("Record kind: S_UDT");
2870     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2871 
2872     OS.AddComment("Type");
2873     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2874 
2875     emitNullTerminatedSymbolName(OS, UDT.first);
2876     OS.EmitLabel(UDTRecordEnd);
2877   }
2878 }
2879 
2880 void CodeViewDebug::emitDebugInfoForGlobals() {
2881   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2882       GlobalMap;
2883   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2884     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2885     GV.getDebugInfo(GVEs);
2886     for (const auto *GVE : GVEs)
2887       GlobalMap[GVE] = &GV;
2888   }
2889 
2890   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2891   for (const MDNode *Node : CUs->operands()) {
2892     const auto *CU = cast<DICompileUnit>(Node);
2893 
2894     // First, emit all globals that are not in a comdat in a single symbol
2895     // substream. MSVC doesn't like it if the substream is empty, so only open
2896     // it if we have at least one global to emit.
2897     switchToDebugSectionForSymbol(nullptr);
2898     MCSymbol *EndLabel = nullptr;
2899     for (const auto *GVE : CU->getGlobalVariables()) {
2900       if (const auto *GV = GlobalMap.lookup(GVE))
2901         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2902           if (!EndLabel) {
2903             OS.AddComment("Symbol subsection for globals");
2904             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2905           }
2906           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2907           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2908         }
2909     }
2910     if (EndLabel)
2911       endCVSubsection(EndLabel);
2912 
2913     // Second, emit each global that is in a comdat into its own .debug$S
2914     // section along with its own symbol substream.
2915     for (const auto *GVE : CU->getGlobalVariables()) {
2916       if (const auto *GV = GlobalMap.lookup(GVE)) {
2917         if (GV->hasComdat()) {
2918           MCSymbol *GVSym = Asm->getSymbol(GV);
2919           OS.AddComment("Symbol subsection for " +
2920                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2921           switchToDebugSectionForSymbol(GVSym);
2922           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2923           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2924           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2925           endCVSubsection(EndLabel);
2926         }
2927       }
2928     }
2929   }
2930 }
2931 
2932 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2933   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2934   for (const MDNode *Node : CUs->operands()) {
2935     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2936       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2937         getTypeIndex(RT);
2938         // FIXME: Add to global/local DTU list.
2939       }
2940     }
2941   }
2942 }
2943 
2944 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2945                                            const GlobalVariable *GV,
2946                                            MCSymbol *GVSym) {
2947   // DataSym record, see SymbolRecord.h for more info.
2948   // FIXME: Thread local data, etc
2949   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2950            *DataEnd = MMI->getContext().createTempSymbol();
2951   const unsigned FixedLengthOfThisRecord = 12;
2952   OS.AddComment("Record length");
2953   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2954   OS.EmitLabel(DataBegin);
2955   if (DIGV->isLocalToUnit()) {
2956     if (GV->isThreadLocal()) {
2957       OS.AddComment("Record kind: S_LTHREAD32");
2958       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2959     } else {
2960       OS.AddComment("Record kind: S_LDATA32");
2961       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2962     }
2963   } else {
2964     if (GV->isThreadLocal()) {
2965       OS.AddComment("Record kind: S_GTHREAD32");
2966       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2967     } else {
2968       OS.AddComment("Record kind: S_GDATA32");
2969       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2970     }
2971   }
2972   OS.AddComment("Type");
2973   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2974   OS.AddComment("DataOffset");
2975   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2976   OS.AddComment("Segment");
2977   OS.EmitCOFFSectionIndex(GVSym);
2978   OS.AddComment("Name");
2979   emitNullTerminatedSymbolName(OS, DIGV->getName(), FixedLengthOfThisRecord);
2980   OS.EmitLabel(DataEnd);
2981 }
2982