1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeDumper.h"
17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
18 #include "llvm/DebugInfo/CodeView/CodeView.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDatabase.h"
22 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
23 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
24 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
26 #include "llvm/DebugInfo/MSF/ByteStream.h"
27 #include "llvm/DebugInfo/MSF/StreamReader.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/MC/MCSectionCOFF.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Support/COFF.h"
34 #include "llvm/Support/ScopedPrinter.h"
35 #include "llvm/Target/TargetFrameLowering.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 
39 using namespace llvm;
40 using namespace llvm::codeview;
41 using namespace llvm::msf;
42 
43 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
44     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
45       TypeTable(Allocator), CurFn(nullptr) {
46   // If module doesn't have named metadata anchors or COFF debug section
47   // is not available, skip any debug info related stuff.
48   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
49       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
50     Asm = nullptr;
51     return;
52   }
53 
54   // Tell MMI that we have debug info.
55   MMI->setDebugInfoAvailability(true);
56 }
57 
58 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
59   std::string &Filepath = FileToFilepathMap[File];
60   if (!Filepath.empty())
61     return Filepath;
62 
63   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
64 
65   // Clang emits directory and relative filename info into the IR, but CodeView
66   // operates on full paths.  We could change Clang to emit full paths too, but
67   // that would increase the IR size and probably not needed for other users.
68   // For now, just concatenate and canonicalize the path here.
69   if (Filename.find(':') == 1)
70     Filepath = Filename;
71   else
72     Filepath = (Dir + "\\" + Filename).str();
73 
74   // Canonicalize the path.  We have to do it textually because we may no longer
75   // have access the file in the filesystem.
76   // First, replace all slashes with backslashes.
77   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
78 
79   // Remove all "\.\" with "\".
80   size_t Cursor = 0;
81   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
82     Filepath.erase(Cursor, 2);
83 
84   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
85   // path should be well-formatted, e.g. start with a drive letter, etc.
86   Cursor = 0;
87   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
88     // Something's wrong if the path starts with "\..\", abort.
89     if (Cursor == 0)
90       break;
91 
92     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
93     if (PrevSlash == std::string::npos)
94       // Something's wrong, abort.
95       break;
96 
97     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
98     // The next ".." might be following the one we've just erased.
99     Cursor = PrevSlash;
100   }
101 
102   // Remove all duplicate backslashes.
103   Cursor = 0;
104   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
105     Filepath.erase(Cursor, 1);
106 
107   return Filepath;
108 }
109 
110 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
111   unsigned NextId = FileIdMap.size() + 1;
112   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
113   if (Insertion.second) {
114     // We have to compute the full filepath and emit a .cv_file directive.
115     StringRef FullPath = getFullFilepath(F);
116     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
117     (void)Success;
118     assert(Success && ".cv_file directive failed");
119   }
120   return Insertion.first->second;
121 }
122 
123 CodeViewDebug::InlineSite &
124 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
125                              const DISubprogram *Inlinee) {
126   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
127   InlineSite *Site = &SiteInsertion.first->second;
128   if (SiteInsertion.second) {
129     unsigned ParentFuncId = CurFn->FuncId;
130     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
131       ParentFuncId =
132           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
133               .SiteFuncId;
134 
135     Site->SiteFuncId = NextFuncId++;
136     OS.EmitCVInlineSiteIdDirective(
137         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
138         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
139     Site->Inlinee = Inlinee;
140     InlinedSubprograms.insert(Inlinee);
141     getFuncIdForSubprogram(Inlinee);
142   }
143   return *Site;
144 }
145 
146 static StringRef getPrettyScopeName(const DIScope *Scope) {
147   StringRef ScopeName = Scope->getName();
148   if (!ScopeName.empty())
149     return ScopeName;
150 
151   switch (Scope->getTag()) {
152   case dwarf::DW_TAG_enumeration_type:
153   case dwarf::DW_TAG_class_type:
154   case dwarf::DW_TAG_structure_type:
155   case dwarf::DW_TAG_union_type:
156     return "<unnamed-tag>";
157   case dwarf::DW_TAG_namespace:
158     return "`anonymous namespace'";
159   }
160 
161   return StringRef();
162 }
163 
164 static const DISubprogram *getQualifiedNameComponents(
165     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
166   const DISubprogram *ClosestSubprogram = nullptr;
167   while (Scope != nullptr) {
168     if (ClosestSubprogram == nullptr)
169       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
170     StringRef ScopeName = getPrettyScopeName(Scope);
171     if (!ScopeName.empty())
172       QualifiedNameComponents.push_back(ScopeName);
173     Scope = Scope->getScope().resolve();
174   }
175   return ClosestSubprogram;
176 }
177 
178 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
179                                     StringRef TypeName) {
180   std::string FullyQualifiedName;
181   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
182     FullyQualifiedName.append(QualifiedNameComponent);
183     FullyQualifiedName.append("::");
184   }
185   FullyQualifiedName.append(TypeName);
186   return FullyQualifiedName;
187 }
188 
189 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
190   SmallVector<StringRef, 5> QualifiedNameComponents;
191   getQualifiedNameComponents(Scope, QualifiedNameComponents);
192   return getQualifiedName(QualifiedNameComponents, Name);
193 }
194 
195 struct CodeViewDebug::TypeLoweringScope {
196   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
197   ~TypeLoweringScope() {
198     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
199     // inner TypeLoweringScopes don't attempt to emit deferred types.
200     if (CVD.TypeEmissionLevel == 1)
201       CVD.emitDeferredCompleteTypes();
202     --CVD.TypeEmissionLevel;
203   }
204   CodeViewDebug &CVD;
205 };
206 
207 static std::string getFullyQualifiedName(const DIScope *Ty) {
208   const DIScope *Scope = Ty->getScope().resolve();
209   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
210 }
211 
212 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
213   // No scope means global scope and that uses the zero index.
214   if (!Scope || isa<DIFile>(Scope))
215     return TypeIndex();
216 
217   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
218 
219   // Check if we've already translated this scope.
220   auto I = TypeIndices.find({Scope, nullptr});
221   if (I != TypeIndices.end())
222     return I->second;
223 
224   // Build the fully qualified name of the scope.
225   std::string ScopeName = getFullyQualifiedName(Scope);
226   StringIdRecord SID(TypeIndex(), ScopeName);
227   auto TI = TypeTable.writeKnownType(SID);
228   return recordTypeIndexForDINode(Scope, TI);
229 }
230 
231 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
232   assert(SP);
233 
234   // Check if we've already translated this subprogram.
235   auto I = TypeIndices.find({SP, nullptr});
236   if (I != TypeIndices.end())
237     return I->second;
238 
239   // The display name includes function template arguments. Drop them to match
240   // MSVC.
241   StringRef DisplayName = SP->getDisplayName().split('<').first;
242 
243   const DIScope *Scope = SP->getScope().resolve();
244   TypeIndex TI;
245   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
246     // If the scope is a DICompositeType, then this must be a method. Member
247     // function types take some special handling, and require access to the
248     // subprogram.
249     TypeIndex ClassType = getTypeIndex(Class);
250     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
251                                DisplayName);
252     TI = TypeTable.writeKnownType(MFuncId);
253   } else {
254     // Otherwise, this must be a free function.
255     TypeIndex ParentScope = getScopeIndex(Scope);
256     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
257     TI = TypeTable.writeKnownType(FuncId);
258   }
259 
260   return recordTypeIndexForDINode(SP, TI);
261 }
262 
263 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
264                                                const DICompositeType *Class) {
265   // Always use the method declaration as the key for the function type. The
266   // method declaration contains the this adjustment.
267   if (SP->getDeclaration())
268     SP = SP->getDeclaration();
269   assert(!SP->getDeclaration() && "should use declaration as key");
270 
271   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
272   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
273   auto I = TypeIndices.find({SP, Class});
274   if (I != TypeIndices.end())
275     return I->second;
276 
277   // Make sure complete type info for the class is emitted *after* the member
278   // function type, as the complete class type is likely to reference this
279   // member function type.
280   TypeLoweringScope S(*this);
281   TypeIndex TI =
282       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
283   return recordTypeIndexForDINode(SP, TI, Class);
284 }
285 
286 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
287                                                   TypeIndex TI,
288                                                   const DIType *ClassTy) {
289   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
290   (void)InsertResult;
291   assert(InsertResult.second && "DINode was already assigned a type index");
292   return TI;
293 }
294 
295 unsigned CodeViewDebug::getPointerSizeInBytes() {
296   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
297 }
298 
299 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
300                                         const DILocation *InlinedAt) {
301   if (InlinedAt) {
302     // This variable was inlined. Associate it with the InlineSite.
303     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
304     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
305     Site.InlinedLocals.emplace_back(Var);
306   } else {
307     // This variable goes in the main ProcSym.
308     CurFn->Locals.emplace_back(Var);
309   }
310 }
311 
312 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
313                                const DILocation *Loc) {
314   auto B = Locs.begin(), E = Locs.end();
315   if (std::find(B, E, Loc) == E)
316     Locs.push_back(Loc);
317 }
318 
319 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
320                                         const MachineFunction *MF) {
321   // Skip this instruction if it has the same location as the previous one.
322   if (DL == CurFn->LastLoc)
323     return;
324 
325   const DIScope *Scope = DL.get()->getScope();
326   if (!Scope)
327     return;
328 
329   // Skip this line if it is longer than the maximum we can record.
330   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
331   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
332       LI.isNeverStepInto())
333     return;
334 
335   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
336   if (CI.getStartColumn() != DL.getCol())
337     return;
338 
339   if (!CurFn->HaveLineInfo)
340     CurFn->HaveLineInfo = true;
341   unsigned FileId = 0;
342   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
343     FileId = CurFn->LastFileId;
344   else
345     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
346   CurFn->LastLoc = DL;
347 
348   unsigned FuncId = CurFn->FuncId;
349   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
350     const DILocation *Loc = DL.get();
351 
352     // If this location was actually inlined from somewhere else, give it the ID
353     // of the inline call site.
354     FuncId =
355         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
356 
357     // Ensure we have links in the tree of inline call sites.
358     bool FirstLoc = true;
359     while ((SiteLoc = Loc->getInlinedAt())) {
360       InlineSite &Site =
361           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
362       if (!FirstLoc)
363         addLocIfNotPresent(Site.ChildSites, Loc);
364       FirstLoc = false;
365       Loc = SiteLoc;
366     }
367     addLocIfNotPresent(CurFn->ChildSites, Loc);
368   }
369 
370   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
371                         /*PrologueEnd=*/false, /*IsStmt=*/false,
372                         DL->getFilename(), SMLoc());
373 }
374 
375 void CodeViewDebug::emitCodeViewMagicVersion() {
376   OS.EmitValueToAlignment(4);
377   OS.AddComment("Debug section magic");
378   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
379 }
380 
381 void CodeViewDebug::endModule() {
382   if (!Asm || !MMI->hasDebugInfo())
383     return;
384 
385   assert(Asm != nullptr);
386 
387   // The COFF .debug$S section consists of several subsections, each starting
388   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
389   // of the payload followed by the payload itself.  The subsections are 4-byte
390   // aligned.
391 
392   // Use the generic .debug$S section, and make a subsection for all the inlined
393   // subprograms.
394   switchToDebugSectionForSymbol(nullptr);
395 
396   MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols);
397   emitCompilerInformation();
398   endCVSubsection(CompilerInfo);
399 
400   emitInlineeLinesSubsection();
401 
402   // Emit per-function debug information.
403   for (auto &P : FnDebugInfo)
404     if (!P.first->isDeclarationForLinker())
405       emitDebugInfoForFunction(P.first, P.second);
406 
407   // Emit global variable debug information.
408   setCurrentSubprogram(nullptr);
409   emitDebugInfoForGlobals();
410 
411   // Emit retained types.
412   emitDebugInfoForRetainedTypes();
413 
414   // Switch back to the generic .debug$S section after potentially processing
415   // comdat symbol sections.
416   switchToDebugSectionForSymbol(nullptr);
417 
418   // Emit UDT records for any types used by global variables.
419   if (!GlobalUDTs.empty()) {
420     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
421     emitDebugInfoForUDTs(GlobalUDTs);
422     endCVSubsection(SymbolsEnd);
423   }
424 
425   // This subsection holds a file index to offset in string table table.
426   OS.AddComment("File index to string table offset subsection");
427   OS.EmitCVFileChecksumsDirective();
428 
429   // This subsection holds the string table.
430   OS.AddComment("String table");
431   OS.EmitCVStringTableDirective();
432 
433   // Emit type information last, so that any types we translate while emitting
434   // function info are included.
435   emitTypeInformation();
436 
437   clear();
438 }
439 
440 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
441   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
442   // after a fixed length portion of the record. The fixed length portion should
443   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
444   // overall record size is less than the maximum allowed.
445   unsigned MaxFixedRecordLength = 0xF00;
446   SmallString<32> NullTerminatedString(
447       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
448   NullTerminatedString.push_back('\0');
449   OS.EmitBytes(NullTerminatedString);
450 }
451 
452 void CodeViewDebug::emitTypeInformation() {
453   // Do nothing if we have no debug info or if no non-trivial types were emitted
454   // to TypeTable during codegen.
455   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
456   if (!CU_Nodes)
457     return;
458   if (TypeTable.empty())
459     return;
460 
461   // Start the .debug$T section with 0x4.
462   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
463   emitCodeViewMagicVersion();
464 
465   SmallString<8> CommentPrefix;
466   if (OS.isVerboseAsm()) {
467     CommentPrefix += '\t';
468     CommentPrefix += Asm->MAI->getCommentString();
469     CommentPrefix += ' ';
470   }
471 
472   TypeDatabase TypeDB;
473   CVTypeDumper CVTD(TypeDB);
474   TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) {
475     if (OS.isVerboseAsm()) {
476       // Emit a block comment describing the type record for readability.
477       SmallString<512> CommentBlock;
478       raw_svector_ostream CommentOS(CommentBlock);
479       ScopedPrinter SP(CommentOS);
480       SP.setPrefix(CommentPrefix);
481       TypeDumpVisitor TDV(TypeDB, &SP, false);
482       Error E = CVTD.dump(Record, TDV);
483       if (E) {
484         logAllUnhandledErrors(std::move(E), errs(), "error: ");
485         llvm_unreachable("produced malformed type record");
486       }
487       // emitRawComment will insert its own tab and comment string before
488       // the first line, so strip off our first one. It also prints its own
489       // newline.
490       OS.emitRawComment(
491           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
492     } else {
493 #ifndef NDEBUG
494       // Assert that the type data is valid even if we aren't dumping
495       // comments. The MSVC linker doesn't do much type record validation,
496       // so the first link of an invalid type record can succeed while
497       // subsequent links will fail with LNK1285.
498       ByteStream Stream(Record);
499       CVTypeArray Types;
500       StreamReader Reader(Stream);
501       Error E = Reader.readArray(Types, Reader.getLength());
502       if (!E) {
503         TypeVisitorCallbacks C;
504         E = CVTypeVisitor(C).visitTypeStream(Types);
505       }
506       if (E) {
507         logAllUnhandledErrors(std::move(E), errs(), "error: ");
508         llvm_unreachable("produced malformed type record");
509       }
510 #endif
511     }
512     StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size());
513     OS.EmitBinaryData(S);
514   });
515 }
516 
517 namespace {
518 
519 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
520   switch (DWLang) {
521   case dwarf::DW_LANG_C:
522   case dwarf::DW_LANG_C89:
523   case dwarf::DW_LANG_C99:
524   case dwarf::DW_LANG_C11:
525   case dwarf::DW_LANG_ObjC:
526     return SourceLanguage::C;
527   case dwarf::DW_LANG_C_plus_plus:
528   case dwarf::DW_LANG_C_plus_plus_03:
529   case dwarf::DW_LANG_C_plus_plus_11:
530   case dwarf::DW_LANG_C_plus_plus_14:
531     return SourceLanguage::Cpp;
532   case dwarf::DW_LANG_Fortran77:
533   case dwarf::DW_LANG_Fortran90:
534   case dwarf::DW_LANG_Fortran03:
535   case dwarf::DW_LANG_Fortran08:
536     return SourceLanguage::Fortran;
537   case dwarf::DW_LANG_Pascal83:
538     return SourceLanguage::Pascal;
539   case dwarf::DW_LANG_Cobol74:
540   case dwarf::DW_LANG_Cobol85:
541     return SourceLanguage::Cobol;
542   case dwarf::DW_LANG_Java:
543     return SourceLanguage::Java;
544   default:
545     // There's no CodeView representation for this language, and CV doesn't
546     // have an "unknown" option for the language field, so we'll use MASM,
547     // as it's very low level.
548     return SourceLanguage::Masm;
549   }
550 }
551 
552 struct Version {
553   int Part[4];
554 };
555 
556 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
557 // the version number.
558 static Version parseVersion(StringRef Name) {
559   Version V = {{0}};
560   int N = 0;
561   for (const char C : Name) {
562     if (isdigit(C)) {
563       V.Part[N] *= 10;
564       V.Part[N] += C - '0';
565     } else if (C == '.') {
566       ++N;
567       if (N >= 4)
568         return V;
569     } else if (N > 0)
570       return V;
571   }
572   return V;
573 }
574 
575 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
576   switch (Type) {
577     case Triple::ArchType::x86:
578       return CPUType::Pentium3;
579     case Triple::ArchType::x86_64:
580       return CPUType::X64;
581     case Triple::ArchType::thumb:
582       return CPUType::Thumb;
583     default:
584       report_fatal_error("target architecture doesn't map to a CodeView "
585                          "CPUType");
586   }
587 }
588 
589 }  // anonymous namespace
590 
591 void CodeViewDebug::emitCompilerInformation() {
592   MCContext &Context = MMI->getContext();
593   MCSymbol *CompilerBegin = Context.createTempSymbol(),
594            *CompilerEnd = Context.createTempSymbol();
595   OS.AddComment("Record length");
596   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
597   OS.EmitLabel(CompilerBegin);
598   OS.AddComment("Record kind: S_COMPILE3");
599   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
600   uint32_t Flags = 0;
601 
602   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
603   const MDNode *Node = *CUs->operands().begin();
604   const auto *CU = cast<DICompileUnit>(Node);
605 
606   // The low byte of the flags indicates the source language.
607   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
608   // TODO:  Figure out which other flags need to be set.
609 
610   OS.AddComment("Flags and language");
611   OS.EmitIntValue(Flags, 4);
612 
613   OS.AddComment("CPUType");
614   CPUType CPU =
615       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
616   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
617 
618   StringRef CompilerVersion = CU->getProducer();
619   Version FrontVer = parseVersion(CompilerVersion);
620   OS.AddComment("Frontend version");
621   for (int N = 0; N < 4; ++N)
622     OS.EmitIntValue(FrontVer.Part[N], 2);
623 
624   // Some Microsoft tools, like Binscope, expect a backend version number of at
625   // least 8.something, so we'll coerce the LLVM version into a form that
626   // guarantees it'll be big enough without really lying about the version.
627   int Major = 1000 * LLVM_VERSION_MAJOR +
628               10 * LLVM_VERSION_MINOR +
629               LLVM_VERSION_PATCH;
630   // Clamp it for builds that use unusually large version numbers.
631   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
632   Version BackVer = {{ Major, 0, 0, 0 }};
633   OS.AddComment("Backend version");
634   for (int N = 0; N < 4; ++N)
635     OS.EmitIntValue(BackVer.Part[N], 2);
636 
637   OS.AddComment("Null-terminated compiler version string");
638   emitNullTerminatedSymbolName(OS, CompilerVersion);
639 
640   OS.EmitLabel(CompilerEnd);
641 }
642 
643 void CodeViewDebug::emitInlineeLinesSubsection() {
644   if (InlinedSubprograms.empty())
645     return;
646 
647   OS.AddComment("Inlinee lines subsection");
648   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
649 
650   // We don't provide any extra file info.
651   // FIXME: Find out if debuggers use this info.
652   OS.AddComment("Inlinee lines signature");
653   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
654 
655   for (const DISubprogram *SP : InlinedSubprograms) {
656     assert(TypeIndices.count({SP, nullptr}));
657     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
658 
659     OS.AddBlankLine();
660     unsigned FileId = maybeRecordFile(SP->getFile());
661     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
662                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
663     OS.AddBlankLine();
664     // The filechecksum table uses 8 byte entries for now, and file ids start at
665     // 1.
666     unsigned FileOffset = (FileId - 1) * 8;
667     OS.AddComment("Type index of inlined function");
668     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
669     OS.AddComment("Offset into filechecksum table");
670     OS.EmitIntValue(FileOffset, 4);
671     OS.AddComment("Starting line number");
672     OS.EmitIntValue(SP->getLine(), 4);
673   }
674 
675   endCVSubsection(InlineEnd);
676 }
677 
678 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
679                                         const DILocation *InlinedAt,
680                                         const InlineSite &Site) {
681   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
682            *InlineEnd = MMI->getContext().createTempSymbol();
683 
684   assert(TypeIndices.count({Site.Inlinee, nullptr}));
685   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
686 
687   // SymbolRecord
688   OS.AddComment("Record length");
689   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
690   OS.EmitLabel(InlineBegin);
691   OS.AddComment("Record kind: S_INLINESITE");
692   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
693 
694   OS.AddComment("PtrParent");
695   OS.EmitIntValue(0, 4);
696   OS.AddComment("PtrEnd");
697   OS.EmitIntValue(0, 4);
698   OS.AddComment("Inlinee type index");
699   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
700 
701   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
702   unsigned StartLineNum = Site.Inlinee->getLine();
703 
704   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
705                                     FI.Begin, FI.End);
706 
707   OS.EmitLabel(InlineEnd);
708 
709   emitLocalVariableList(Site.InlinedLocals);
710 
711   // Recurse on child inlined call sites before closing the scope.
712   for (const DILocation *ChildSite : Site.ChildSites) {
713     auto I = FI.InlineSites.find(ChildSite);
714     assert(I != FI.InlineSites.end() &&
715            "child site not in function inline site map");
716     emitInlinedCallSite(FI, ChildSite, I->second);
717   }
718 
719   // Close the scope.
720   OS.AddComment("Record length");
721   OS.EmitIntValue(2, 2);                                  // RecordLength
722   OS.AddComment("Record kind: S_INLINESITE_END");
723   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
724 }
725 
726 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
727   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
728   // comdat key. A section may be comdat because of -ffunction-sections or
729   // because it is comdat in the IR.
730   MCSectionCOFF *GVSec =
731       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
732   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
733 
734   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
735       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
736   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
737 
738   OS.SwitchSection(DebugSec);
739 
740   // Emit the magic version number if this is the first time we've switched to
741   // this section.
742   if (ComdatDebugSections.insert(DebugSec).second)
743     emitCodeViewMagicVersion();
744 }
745 
746 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
747                                              FunctionInfo &FI) {
748   // For each function there is a separate subsection
749   // which holds the PC to file:line table.
750   const MCSymbol *Fn = Asm->getSymbol(GV);
751   assert(Fn);
752 
753   // Switch to the to a comdat section, if appropriate.
754   switchToDebugSectionForSymbol(Fn);
755 
756   std::string FuncName;
757   auto *SP = GV->getSubprogram();
758   assert(SP);
759   setCurrentSubprogram(SP);
760 
761   // If we have a display name, build the fully qualified name by walking the
762   // chain of scopes.
763   if (!SP->getDisplayName().empty())
764     FuncName =
765         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
766 
767   // If our DISubprogram name is empty, use the mangled name.
768   if (FuncName.empty())
769     FuncName = GlobalValue::getRealLinkageName(GV->getName());
770 
771   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
772   OS.AddComment("Symbol subsection for " + Twine(FuncName));
773   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
774   {
775     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
776              *ProcRecordEnd = MMI->getContext().createTempSymbol();
777     OS.AddComment("Record length");
778     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
779     OS.EmitLabel(ProcRecordBegin);
780 
781     if (GV->hasLocalLinkage()) {
782       OS.AddComment("Record kind: S_LPROC32_ID");
783       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
784     } else {
785       OS.AddComment("Record kind: S_GPROC32_ID");
786       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
787     }
788 
789     // These fields are filled in by tools like CVPACK which run after the fact.
790     OS.AddComment("PtrParent");
791     OS.EmitIntValue(0, 4);
792     OS.AddComment("PtrEnd");
793     OS.EmitIntValue(0, 4);
794     OS.AddComment("PtrNext");
795     OS.EmitIntValue(0, 4);
796     // This is the important bit that tells the debugger where the function
797     // code is located and what's its size:
798     OS.AddComment("Code size");
799     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
800     OS.AddComment("Offset after prologue");
801     OS.EmitIntValue(0, 4);
802     OS.AddComment("Offset before epilogue");
803     OS.EmitIntValue(0, 4);
804     OS.AddComment("Function type index");
805     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
806     OS.AddComment("Function section relative address");
807     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
808     OS.AddComment("Function section index");
809     OS.EmitCOFFSectionIndex(Fn);
810     OS.AddComment("Flags");
811     OS.EmitIntValue(0, 1);
812     // Emit the function display name as a null-terminated string.
813     OS.AddComment("Function name");
814     // Truncate the name so we won't overflow the record length field.
815     emitNullTerminatedSymbolName(OS, FuncName);
816     OS.EmitLabel(ProcRecordEnd);
817 
818     emitLocalVariableList(FI.Locals);
819 
820     // Emit inlined call site information. Only emit functions inlined directly
821     // into the parent function. We'll emit the other sites recursively as part
822     // of their parent inline site.
823     for (const DILocation *InlinedAt : FI.ChildSites) {
824       auto I = FI.InlineSites.find(InlinedAt);
825       assert(I != FI.InlineSites.end() &&
826              "child site not in function inline site map");
827       emitInlinedCallSite(FI, InlinedAt, I->second);
828     }
829 
830     if (SP != nullptr)
831       emitDebugInfoForUDTs(LocalUDTs);
832 
833     // We're done with this function.
834     OS.AddComment("Record length");
835     OS.EmitIntValue(0x0002, 2);
836     OS.AddComment("Record kind: S_PROC_ID_END");
837     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
838   }
839   endCVSubsection(SymbolsEnd);
840 
841   // We have an assembler directive that takes care of the whole line table.
842   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
843 }
844 
845 CodeViewDebug::LocalVarDefRange
846 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
847   LocalVarDefRange DR;
848   DR.InMemory = -1;
849   DR.DataOffset = Offset;
850   assert(DR.DataOffset == Offset && "truncation");
851   DR.IsSubfield = 0;
852   DR.StructOffset = 0;
853   DR.CVRegister = CVRegister;
854   return DR;
855 }
856 
857 CodeViewDebug::LocalVarDefRange
858 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
859                                      int Offset, bool IsSubfield,
860                                      uint16_t StructOffset) {
861   LocalVarDefRange DR;
862   DR.InMemory = InMemory;
863   DR.DataOffset = Offset;
864   DR.IsSubfield = IsSubfield;
865   DR.StructOffset = StructOffset;
866   DR.CVRegister = CVRegister;
867   return DR;
868 }
869 
870 void CodeViewDebug::collectVariableInfoFromMFTable(
871     DenseSet<InlinedVariable> &Processed) {
872   const MachineFunction &MF = *Asm->MF;
873   const TargetSubtargetInfo &TSI = MF.getSubtarget();
874   const TargetFrameLowering *TFI = TSI.getFrameLowering();
875   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
876 
877   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
878     if (!VI.Var)
879       continue;
880     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
881            "Expected inlined-at fields to agree");
882 
883     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
884     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
885 
886     // If variable scope is not found then skip this variable.
887     if (!Scope)
888       continue;
889 
890     // Get the frame register used and the offset.
891     unsigned FrameReg = 0;
892     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
893     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
894 
895     // Calculate the label ranges.
896     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
897     for (const InsnRange &Range : Scope->getRanges()) {
898       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
899       const MCSymbol *End = getLabelAfterInsn(Range.second);
900       End = End ? End : Asm->getFunctionEnd();
901       DefRange.Ranges.emplace_back(Begin, End);
902     }
903 
904     LocalVariable Var;
905     Var.DIVar = VI.Var;
906     Var.DefRanges.emplace_back(std::move(DefRange));
907     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
908   }
909 }
910 
911 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
912   DenseSet<InlinedVariable> Processed;
913   // Grab the variable info that was squirreled away in the MMI side-table.
914   collectVariableInfoFromMFTable(Processed);
915 
916   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
917 
918   for (const auto &I : DbgValues) {
919     InlinedVariable IV = I.first;
920     if (Processed.count(IV))
921       continue;
922     const DILocalVariable *DIVar = IV.first;
923     const DILocation *InlinedAt = IV.second;
924 
925     // Instruction ranges, specifying where IV is accessible.
926     const auto &Ranges = I.second;
927 
928     LexicalScope *Scope = nullptr;
929     if (InlinedAt)
930       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
931     else
932       Scope = LScopes.findLexicalScope(DIVar->getScope());
933     // If variable scope is not found then skip this variable.
934     if (!Scope)
935       continue;
936 
937     LocalVariable Var;
938     Var.DIVar = DIVar;
939 
940     // Calculate the definition ranges.
941     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
942       const InsnRange &Range = *I;
943       const MachineInstr *DVInst = Range.first;
944       assert(DVInst->isDebugValue() && "Invalid History entry");
945       const DIExpression *DIExpr = DVInst->getDebugExpression();
946       bool IsSubfield = false;
947       unsigned StructOffset = 0;
948 
949       // Handle fragments.
950       auto Fragment = DIExpr->getFragmentInfo();
951       if (DIExpr && Fragment) {
952         IsSubfield = true;
953         StructOffset = Fragment->OffsetInBits / 8;
954       } else if (DIExpr && DIExpr->getNumElements() > 0) {
955         continue; // Ignore unrecognized exprs.
956       }
957 
958       // Bail if operand 0 is not a valid register. This means the variable is a
959       // simple constant, or is described by a complex expression.
960       // FIXME: Find a way to represent constant variables, since they are
961       // relatively common.
962       unsigned Reg =
963           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
964       if (Reg == 0)
965         continue;
966 
967       // Handle the two cases we can handle: indirect in memory and in register.
968       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
969       bool InMemory = DVInst->getOperand(1).isImm();
970       int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
971       {
972         LocalVarDefRange DR;
973         DR.CVRegister = CVReg;
974         DR.InMemory = InMemory;
975         DR.DataOffset = Offset;
976         DR.IsSubfield = IsSubfield;
977         DR.StructOffset = StructOffset;
978 
979         if (Var.DefRanges.empty() ||
980             Var.DefRanges.back().isDifferentLocation(DR)) {
981           Var.DefRanges.emplace_back(std::move(DR));
982         }
983       }
984 
985       // Compute the label range.
986       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
987       const MCSymbol *End = getLabelAfterInsn(Range.second);
988       if (!End) {
989         // This range is valid until the next overlapping bitpiece. In the
990         // common case, ranges will not be bitpieces, so they will overlap.
991         auto J = std::next(I);
992         while (J != E &&
993                !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
994           ++J;
995         if (J != E)
996           End = getLabelBeforeInsn(J->first);
997         else
998           End = Asm->getFunctionEnd();
999       }
1000 
1001       // If the last range end is our begin, just extend the last range.
1002       // Otherwise make a new range.
1003       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
1004           Var.DefRanges.back().Ranges;
1005       if (!Ranges.empty() && Ranges.back().second == Begin)
1006         Ranges.back().second = End;
1007       else
1008         Ranges.emplace_back(Begin, End);
1009 
1010       // FIXME: Do more range combining.
1011     }
1012 
1013     recordLocalVariable(std::move(Var), InlinedAt);
1014   }
1015 }
1016 
1017 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1018   const Function *GV = MF->getFunction();
1019   assert(FnDebugInfo.count(GV) == false);
1020   CurFn = &FnDebugInfo[GV];
1021   CurFn->FuncId = NextFuncId++;
1022   CurFn->Begin = Asm->getFunctionBegin();
1023 
1024   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1025 
1026   // Find the end of the function prolog.  First known non-DBG_VALUE and
1027   // non-frame setup location marks the beginning of the function body.
1028   // FIXME: is there a simpler a way to do this? Can we just search
1029   // for the first instruction of the function, not the last of the prolog?
1030   DebugLoc PrologEndLoc;
1031   bool EmptyPrologue = true;
1032   for (const auto &MBB : *MF) {
1033     for (const auto &MI : MBB) {
1034       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1035           MI.getDebugLoc()) {
1036         PrologEndLoc = MI.getDebugLoc();
1037         break;
1038       } else if (!MI.isDebugValue()) {
1039         EmptyPrologue = false;
1040       }
1041     }
1042   }
1043 
1044   // Record beginning of function if we have a non-empty prologue.
1045   if (PrologEndLoc && !EmptyPrologue) {
1046     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1047     maybeRecordLocation(FnStartDL, MF);
1048   }
1049 }
1050 
1051 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1052   // Don't record empty UDTs.
1053   if (Ty->getName().empty())
1054     return;
1055 
1056   SmallVector<StringRef, 5> QualifiedNameComponents;
1057   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1058       Ty->getScope().resolve(), QualifiedNameComponents);
1059 
1060   std::string FullyQualifiedName =
1061       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1062 
1063   if (ClosestSubprogram == nullptr)
1064     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1065   else if (ClosestSubprogram == CurrentSubprogram)
1066     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1067 
1068   // TODO: What if the ClosestSubprogram is neither null or the current
1069   // subprogram?  Currently, the UDT just gets dropped on the floor.
1070   //
1071   // The current behavior is not desirable.  To get maximal fidelity, we would
1072   // need to perform all type translation before beginning emission of .debug$S
1073   // and then make LocalUDTs a member of FunctionInfo
1074 }
1075 
1076 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1077   // Generic dispatch for lowering an unknown type.
1078   switch (Ty->getTag()) {
1079   case dwarf::DW_TAG_array_type:
1080     return lowerTypeArray(cast<DICompositeType>(Ty));
1081   case dwarf::DW_TAG_typedef:
1082     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1083   case dwarf::DW_TAG_base_type:
1084     return lowerTypeBasic(cast<DIBasicType>(Ty));
1085   case dwarf::DW_TAG_pointer_type:
1086     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1087       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1088     LLVM_FALLTHROUGH;
1089   case dwarf::DW_TAG_reference_type:
1090   case dwarf::DW_TAG_rvalue_reference_type:
1091     return lowerTypePointer(cast<DIDerivedType>(Ty));
1092   case dwarf::DW_TAG_ptr_to_member_type:
1093     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1094   case dwarf::DW_TAG_const_type:
1095   case dwarf::DW_TAG_volatile_type:
1096   // TODO: add support for DW_TAG_atomic_type here
1097     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1098   case dwarf::DW_TAG_subroutine_type:
1099     if (ClassTy) {
1100       // The member function type of a member function pointer has no
1101       // ThisAdjustment.
1102       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1103                                      /*ThisAdjustment=*/0);
1104     }
1105     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1106   case dwarf::DW_TAG_enumeration_type:
1107     return lowerTypeEnum(cast<DICompositeType>(Ty));
1108   case dwarf::DW_TAG_class_type:
1109   case dwarf::DW_TAG_structure_type:
1110     return lowerTypeClass(cast<DICompositeType>(Ty));
1111   case dwarf::DW_TAG_union_type:
1112     return lowerTypeUnion(cast<DICompositeType>(Ty));
1113   default:
1114     // Use the null type index.
1115     return TypeIndex();
1116   }
1117 }
1118 
1119 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1120   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1121   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1122   StringRef TypeName = Ty->getName();
1123 
1124   addToUDTs(Ty, UnderlyingTypeIndex);
1125 
1126   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1127       TypeName == "HRESULT")
1128     return TypeIndex(SimpleTypeKind::HResult);
1129   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1130       TypeName == "wchar_t")
1131     return TypeIndex(SimpleTypeKind::WideCharacter);
1132 
1133   return UnderlyingTypeIndex;
1134 }
1135 
1136 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1137   DITypeRef ElementTypeRef = Ty->getBaseType();
1138   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1139   // IndexType is size_t, which depends on the bitness of the target.
1140   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
1141                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1142                             : TypeIndex(SimpleTypeKind::UInt32Long);
1143 
1144   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1145 
1146 
1147   // We want to assert that the element type multiplied by the array lengths
1148   // match the size of the overall array. However, if we don't have complete
1149   // type information for the base type, we can't make this assertion. This
1150   // happens if limited debug info is enabled in this case:
1151   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1152   //   VTableOptzn array[3];
1153   // The DICompositeType of VTableOptzn will have size zero, and the array will
1154   // have size 3 * sizeof(void*), and we should avoid asserting.
1155   //
1156   // There is a related bug in the front-end where an array of a structure,
1157   // which was declared as incomplete structure first, ends up not getting a
1158   // size assigned to it. (PR28303)
1159   // Example:
1160   //   struct A(*p)[3];
1161   //   struct A { int f; } a[3];
1162   bool PartiallyIncomplete = false;
1163   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1164     PartiallyIncomplete = true;
1165   }
1166 
1167   // Add subranges to array type.
1168   DINodeArray Elements = Ty->getElements();
1169   for (int i = Elements.size() - 1; i >= 0; --i) {
1170     const DINode *Element = Elements[i];
1171     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1172 
1173     const DISubrange *Subrange = cast<DISubrange>(Element);
1174     assert(Subrange->getLowerBound() == 0 &&
1175            "codeview doesn't support subranges with lower bounds");
1176     int64_t Count = Subrange->getCount();
1177 
1178     // Variable Length Array (VLA) has Count equal to '-1'.
1179     // Replace with Count '1', assume it is the minimum VLA length.
1180     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1181     if (Count == -1) {
1182       Count = 1;
1183       PartiallyIncomplete = true;
1184     }
1185 
1186     // Update the element size and element type index for subsequent subranges.
1187     ElementSize *= Count;
1188 
1189     // If this is the outermost array, use the size from the array. It will be
1190     // more accurate if PartiallyIncomplete is true.
1191     uint64_t ArraySize =
1192         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1193 
1194     StringRef Name = (i == 0) ? Ty->getName() : "";
1195     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1196     ElementTypeIndex = TypeTable.writeKnownType(AR);
1197   }
1198 
1199   (void)PartiallyIncomplete;
1200   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1201 
1202   return ElementTypeIndex;
1203 }
1204 
1205 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1206   TypeIndex Index;
1207   dwarf::TypeKind Kind;
1208   uint32_t ByteSize;
1209 
1210   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1211   ByteSize = Ty->getSizeInBits() / 8;
1212 
1213   SimpleTypeKind STK = SimpleTypeKind::None;
1214   switch (Kind) {
1215   case dwarf::DW_ATE_address:
1216     // FIXME: Translate
1217     break;
1218   case dwarf::DW_ATE_boolean:
1219     switch (ByteSize) {
1220     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1221     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1222     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1223     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1224     case 16: STK = SimpleTypeKind::Boolean128; break;
1225     }
1226     break;
1227   case dwarf::DW_ATE_complex_float:
1228     switch (ByteSize) {
1229     case 2:  STK = SimpleTypeKind::Complex16;  break;
1230     case 4:  STK = SimpleTypeKind::Complex32;  break;
1231     case 8:  STK = SimpleTypeKind::Complex64;  break;
1232     case 10: STK = SimpleTypeKind::Complex80;  break;
1233     case 16: STK = SimpleTypeKind::Complex128; break;
1234     }
1235     break;
1236   case dwarf::DW_ATE_float:
1237     switch (ByteSize) {
1238     case 2:  STK = SimpleTypeKind::Float16;  break;
1239     case 4:  STK = SimpleTypeKind::Float32;  break;
1240     case 6:  STK = SimpleTypeKind::Float48;  break;
1241     case 8:  STK = SimpleTypeKind::Float64;  break;
1242     case 10: STK = SimpleTypeKind::Float80;  break;
1243     case 16: STK = SimpleTypeKind::Float128; break;
1244     }
1245     break;
1246   case dwarf::DW_ATE_signed:
1247     switch (ByteSize) {
1248     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1249     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1250     case 4:  STK = SimpleTypeKind::Int32;           break;
1251     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1252     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1253     }
1254     break;
1255   case dwarf::DW_ATE_unsigned:
1256     switch (ByteSize) {
1257     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1258     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1259     case 4:  STK = SimpleTypeKind::UInt32;            break;
1260     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1261     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1262     }
1263     break;
1264   case dwarf::DW_ATE_UTF:
1265     switch (ByteSize) {
1266     case 2: STK = SimpleTypeKind::Character16; break;
1267     case 4: STK = SimpleTypeKind::Character32; break;
1268     }
1269     break;
1270   case dwarf::DW_ATE_signed_char:
1271     if (ByteSize == 1)
1272       STK = SimpleTypeKind::SignedCharacter;
1273     break;
1274   case dwarf::DW_ATE_unsigned_char:
1275     if (ByteSize == 1)
1276       STK = SimpleTypeKind::UnsignedCharacter;
1277     break;
1278   default:
1279     break;
1280   }
1281 
1282   // Apply some fixups based on the source-level type name.
1283   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1284     STK = SimpleTypeKind::Int32Long;
1285   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1286     STK = SimpleTypeKind::UInt32Long;
1287   if (STK == SimpleTypeKind::UInt16Short &&
1288       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1289     STK = SimpleTypeKind::WideCharacter;
1290   if ((STK == SimpleTypeKind::SignedCharacter ||
1291        STK == SimpleTypeKind::UnsignedCharacter) &&
1292       Ty->getName() == "char")
1293     STK = SimpleTypeKind::NarrowCharacter;
1294 
1295   return TypeIndex(STK);
1296 }
1297 
1298 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1299   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1300 
1301   // Pointers to simple types can use SimpleTypeMode, rather than having a
1302   // dedicated pointer type record.
1303   if (PointeeTI.isSimple() &&
1304       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1305       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1306     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1307                               ? SimpleTypeMode::NearPointer64
1308                               : SimpleTypeMode::NearPointer32;
1309     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1310   }
1311 
1312   PointerKind PK =
1313       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1314   PointerMode PM = PointerMode::Pointer;
1315   switch (Ty->getTag()) {
1316   default: llvm_unreachable("not a pointer tag type");
1317   case dwarf::DW_TAG_pointer_type:
1318     PM = PointerMode::Pointer;
1319     break;
1320   case dwarf::DW_TAG_reference_type:
1321     PM = PointerMode::LValueReference;
1322     break;
1323   case dwarf::DW_TAG_rvalue_reference_type:
1324     PM = PointerMode::RValueReference;
1325     break;
1326   }
1327   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1328   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1329   // do.
1330   PointerOptions PO = PointerOptions::None;
1331   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1332   return TypeTable.writeKnownType(PR);
1333 }
1334 
1335 static PointerToMemberRepresentation
1336 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1337   // SizeInBytes being zero generally implies that the member pointer type was
1338   // incomplete, which can happen if it is part of a function prototype. In this
1339   // case, use the unknown model instead of the general model.
1340   if (IsPMF) {
1341     switch (Flags & DINode::FlagPtrToMemberRep) {
1342     case 0:
1343       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1344                               : PointerToMemberRepresentation::GeneralFunction;
1345     case DINode::FlagSingleInheritance:
1346       return PointerToMemberRepresentation::SingleInheritanceFunction;
1347     case DINode::FlagMultipleInheritance:
1348       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1349     case DINode::FlagVirtualInheritance:
1350       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1351     }
1352   } else {
1353     switch (Flags & DINode::FlagPtrToMemberRep) {
1354     case 0:
1355       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1356                               : PointerToMemberRepresentation::GeneralData;
1357     case DINode::FlagSingleInheritance:
1358       return PointerToMemberRepresentation::SingleInheritanceData;
1359     case DINode::FlagMultipleInheritance:
1360       return PointerToMemberRepresentation::MultipleInheritanceData;
1361     case DINode::FlagVirtualInheritance:
1362       return PointerToMemberRepresentation::VirtualInheritanceData;
1363     }
1364   }
1365   llvm_unreachable("invalid ptr to member representation");
1366 }
1367 
1368 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1369   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1370   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1371   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1372   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1373                                                    : PointerKind::Near32;
1374   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1375   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1376                          : PointerMode::PointerToDataMember;
1377   PointerOptions PO = PointerOptions::None; // FIXME
1378   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1379   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1380   MemberPointerInfo MPI(
1381       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1382   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1383   return TypeTable.writeKnownType(PR);
1384 }
1385 
1386 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1387 /// have a translation, use the NearC convention.
1388 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1389   switch (DwarfCC) {
1390   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1391   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1392   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1393   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1394   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1395   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1396   }
1397   return CallingConvention::NearC;
1398 }
1399 
1400 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1401   ModifierOptions Mods = ModifierOptions::None;
1402   bool IsModifier = true;
1403   const DIType *BaseTy = Ty;
1404   while (IsModifier && BaseTy) {
1405     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1406     switch (BaseTy->getTag()) {
1407     case dwarf::DW_TAG_const_type:
1408       Mods |= ModifierOptions::Const;
1409       break;
1410     case dwarf::DW_TAG_volatile_type:
1411       Mods |= ModifierOptions::Volatile;
1412       break;
1413     default:
1414       IsModifier = false;
1415       break;
1416     }
1417     if (IsModifier)
1418       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1419   }
1420   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1421   ModifierRecord MR(ModifiedTI, Mods);
1422   return TypeTable.writeKnownType(MR);
1423 }
1424 
1425 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1426   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1427   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1428     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1429 
1430   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1431   ArrayRef<TypeIndex> ArgTypeIndices = None;
1432   if (!ReturnAndArgTypeIndices.empty()) {
1433     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1434     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1435     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1436   }
1437 
1438   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1439   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1440 
1441   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1442 
1443   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1444                             ArgTypeIndices.size(), ArgListIndex);
1445   return TypeTable.writeKnownType(Procedure);
1446 }
1447 
1448 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1449                                                  const DIType *ClassTy,
1450                                                  int ThisAdjustment) {
1451   // Lower the containing class type.
1452   TypeIndex ClassType = getTypeIndex(ClassTy);
1453 
1454   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1455   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1456     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1457 
1458   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1459   ArrayRef<TypeIndex> ArgTypeIndices = None;
1460   if (!ReturnAndArgTypeIndices.empty()) {
1461     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1462     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1463     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1464   }
1465   TypeIndex ThisTypeIndex = TypeIndex::Void();
1466   if (!ArgTypeIndices.empty()) {
1467     ThisTypeIndex = ArgTypeIndices.front();
1468     ArgTypeIndices = ArgTypeIndices.drop_front();
1469   }
1470 
1471   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1472   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1473 
1474   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1475 
1476   // TODO: Need to use the correct values for:
1477   //       FunctionOptions
1478   //       ThisPointerAdjustment.
1479   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1480                            FunctionOptions::None, ArgTypeIndices.size(),
1481                            ArgListIndex, ThisAdjustment);
1482   TypeIndex TI = TypeTable.writeKnownType(MFR);
1483 
1484   return TI;
1485 }
1486 
1487 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1488   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1489   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1490 
1491   VFTableShapeRecord VFTSR(Slots);
1492   return TypeTable.writeKnownType(VFTSR);
1493 }
1494 
1495 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1496   switch (Flags & DINode::FlagAccessibility) {
1497   case DINode::FlagPrivate:   return MemberAccess::Private;
1498   case DINode::FlagPublic:    return MemberAccess::Public;
1499   case DINode::FlagProtected: return MemberAccess::Protected;
1500   case 0:
1501     // If there was no explicit access control, provide the default for the tag.
1502     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1503                                                  : MemberAccess::Public;
1504   }
1505   llvm_unreachable("access flags are exclusive");
1506 }
1507 
1508 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1509   if (SP->isArtificial())
1510     return MethodOptions::CompilerGenerated;
1511 
1512   // FIXME: Handle other MethodOptions.
1513 
1514   return MethodOptions::None;
1515 }
1516 
1517 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1518                                            bool Introduced) {
1519   switch (SP->getVirtuality()) {
1520   case dwarf::DW_VIRTUALITY_none:
1521     break;
1522   case dwarf::DW_VIRTUALITY_virtual:
1523     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1524   case dwarf::DW_VIRTUALITY_pure_virtual:
1525     return Introduced ? MethodKind::PureIntroducingVirtual
1526                       : MethodKind::PureVirtual;
1527   default:
1528     llvm_unreachable("unhandled virtuality case");
1529   }
1530 
1531   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1532 
1533   return MethodKind::Vanilla;
1534 }
1535 
1536 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1537   switch (Ty->getTag()) {
1538   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1539   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1540   }
1541   llvm_unreachable("unexpected tag");
1542 }
1543 
1544 /// Return ClassOptions that should be present on both the forward declaration
1545 /// and the defintion of a tag type.
1546 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1547   ClassOptions CO = ClassOptions::None;
1548 
1549   // MSVC always sets this flag, even for local types. Clang doesn't always
1550   // appear to give every type a linkage name, which may be problematic for us.
1551   // FIXME: Investigate the consequences of not following them here.
1552   if (!Ty->getIdentifier().empty())
1553     CO |= ClassOptions::HasUniqueName;
1554 
1555   // Put the Nested flag on a type if it appears immediately inside a tag type.
1556   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1557   // here. That flag is only set on definitions, and not forward declarations.
1558   const DIScope *ImmediateScope = Ty->getScope().resolve();
1559   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1560     CO |= ClassOptions::Nested;
1561 
1562   // Put the Scoped flag on function-local types.
1563   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1564        Scope = Scope->getScope().resolve()) {
1565     if (isa<DISubprogram>(Scope)) {
1566       CO |= ClassOptions::Scoped;
1567       break;
1568     }
1569   }
1570 
1571   return CO;
1572 }
1573 
1574 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1575   ClassOptions CO = getCommonClassOptions(Ty);
1576   TypeIndex FTI;
1577   unsigned EnumeratorCount = 0;
1578 
1579   if (Ty->isForwardDecl()) {
1580     CO |= ClassOptions::ForwardReference;
1581   } else {
1582     FieldListRecordBuilder FLRB(TypeTable);
1583 
1584     FLRB.begin();
1585     for (const DINode *Element : Ty->getElements()) {
1586       // We assume that the frontend provides all members in source declaration
1587       // order, which is what MSVC does.
1588       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1589         EnumeratorRecord ER(MemberAccess::Public,
1590                             APSInt::getUnsigned(Enumerator->getValue()),
1591                             Enumerator->getName());
1592         FLRB.writeMemberType(ER);
1593         EnumeratorCount++;
1594       }
1595     }
1596     FTI = FLRB.end();
1597   }
1598 
1599   std::string FullName = getFullyQualifiedName(Ty);
1600 
1601   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1602                 getTypeIndex(Ty->getBaseType()));
1603   return TypeTable.writeKnownType(ER);
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 // ClassInfo
1608 //===----------------------------------------------------------------------===//
1609 
1610 struct llvm::ClassInfo {
1611   struct MemberInfo {
1612     const DIDerivedType *MemberTypeNode;
1613     uint64_t BaseOffset;
1614   };
1615   // [MemberInfo]
1616   typedef std::vector<MemberInfo> MemberList;
1617 
1618   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1619   // MethodName -> MethodsList
1620   typedef MapVector<MDString *, MethodsList> MethodsMap;
1621 
1622   /// Base classes.
1623   std::vector<const DIDerivedType *> Inheritance;
1624 
1625   /// Direct members.
1626   MemberList Members;
1627   // Direct overloaded methods gathered by name.
1628   MethodsMap Methods;
1629 
1630   TypeIndex VShapeTI;
1631 
1632   std::vector<const DICompositeType *> NestedClasses;
1633 };
1634 
1635 void CodeViewDebug::clear() {
1636   assert(CurFn == nullptr);
1637   FileIdMap.clear();
1638   FnDebugInfo.clear();
1639   FileToFilepathMap.clear();
1640   LocalUDTs.clear();
1641   GlobalUDTs.clear();
1642   TypeIndices.clear();
1643   CompleteTypeIndices.clear();
1644 }
1645 
1646 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1647                                       const DIDerivedType *DDTy) {
1648   if (!DDTy->getName().empty()) {
1649     Info.Members.push_back({DDTy, 0});
1650     return;
1651   }
1652   // An unnamed member must represent a nested struct or union. Add all the
1653   // indirect fields to the current record.
1654   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1655   uint64_t Offset = DDTy->getOffsetInBits();
1656   const DIType *Ty = DDTy->getBaseType().resolve();
1657   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1658   ClassInfo NestedInfo = collectClassInfo(DCTy);
1659   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1660     Info.Members.push_back(
1661         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1662 }
1663 
1664 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1665   ClassInfo Info;
1666   // Add elements to structure type.
1667   DINodeArray Elements = Ty->getElements();
1668   for (auto *Element : Elements) {
1669     // We assume that the frontend provides all members in source declaration
1670     // order, which is what MSVC does.
1671     if (!Element)
1672       continue;
1673     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1674       Info.Methods[SP->getRawName()].push_back(SP);
1675     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1676       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1677         collectMemberInfo(Info, DDTy);
1678       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1679         Info.Inheritance.push_back(DDTy);
1680       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1681                  DDTy->getName() == "__vtbl_ptr_type") {
1682         Info.VShapeTI = getTypeIndex(DDTy);
1683       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1684         // Ignore friend members. It appears that MSVC emitted info about
1685         // friends in the past, but modern versions do not.
1686       }
1687     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1688       Info.NestedClasses.push_back(Composite);
1689     }
1690     // Skip other unrecognized kinds of elements.
1691   }
1692   return Info;
1693 }
1694 
1695 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1696   // First, construct the forward decl.  Don't look into Ty to compute the
1697   // forward decl options, since it might not be available in all TUs.
1698   TypeRecordKind Kind = getRecordKind(Ty);
1699   ClassOptions CO =
1700       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1701   std::string FullName = getFullyQualifiedName(Ty);
1702   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1703                  FullName, Ty->getIdentifier());
1704   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1705   if (!Ty->isForwardDecl())
1706     DeferredCompleteTypes.push_back(Ty);
1707   return FwdDeclTI;
1708 }
1709 
1710 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1711   // Construct the field list and complete type record.
1712   TypeRecordKind Kind = getRecordKind(Ty);
1713   ClassOptions CO = getCommonClassOptions(Ty);
1714   TypeIndex FieldTI;
1715   TypeIndex VShapeTI;
1716   unsigned FieldCount;
1717   bool ContainsNestedClass;
1718   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1719       lowerRecordFieldList(Ty);
1720 
1721   if (ContainsNestedClass)
1722     CO |= ClassOptions::ContainsNestedClass;
1723 
1724   std::string FullName = getFullyQualifiedName(Ty);
1725 
1726   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1727 
1728   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1729                  SizeInBytes, FullName, Ty->getIdentifier());
1730   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1731 
1732   StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1733   TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1734   UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1735   TypeTable.writeKnownType(USLR);
1736 
1737   addToUDTs(Ty, ClassTI);
1738 
1739   return ClassTI;
1740 }
1741 
1742 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1743   ClassOptions CO =
1744       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1745   std::string FullName = getFullyQualifiedName(Ty);
1746   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1747   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1748   if (!Ty->isForwardDecl())
1749     DeferredCompleteTypes.push_back(Ty);
1750   return FwdDeclTI;
1751 }
1752 
1753 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1754   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1755   TypeIndex FieldTI;
1756   unsigned FieldCount;
1757   bool ContainsNestedClass;
1758   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1759       lowerRecordFieldList(Ty);
1760 
1761   if (ContainsNestedClass)
1762     CO |= ClassOptions::ContainsNestedClass;
1763 
1764   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1765   std::string FullName = getFullyQualifiedName(Ty);
1766 
1767   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1768                  Ty->getIdentifier());
1769   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1770 
1771   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1772   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1773   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1774   TypeTable.writeKnownType(USLR);
1775 
1776   addToUDTs(Ty, UnionTI);
1777 
1778   return UnionTI;
1779 }
1780 
1781 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1782 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1783   // Manually count members. MSVC appears to count everything that generates a
1784   // field list record. Each individual overload in a method overload group
1785   // contributes to this count, even though the overload group is a single field
1786   // list record.
1787   unsigned MemberCount = 0;
1788   ClassInfo Info = collectClassInfo(Ty);
1789   FieldListRecordBuilder FLBR(TypeTable);
1790   FLBR.begin();
1791 
1792   // Create base classes.
1793   for (const DIDerivedType *I : Info.Inheritance) {
1794     if (I->getFlags() & DINode::FlagVirtual) {
1795       // Virtual base.
1796       // FIXME: Emit VBPtrOffset when the frontend provides it.
1797       unsigned VBPtrOffset = 0;
1798       // FIXME: Despite the accessor name, the offset is really in bytes.
1799       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1800       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1801                             ? TypeRecordKind::IndirectVirtualBaseClass
1802                             : TypeRecordKind::VirtualBaseClass;
1803       VirtualBaseClassRecord VBCR(
1804           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1805           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1806           VBTableIndex);
1807 
1808       FLBR.writeMemberType(VBCR);
1809     } else {
1810       assert(I->getOffsetInBits() % 8 == 0 &&
1811              "bases must be on byte boundaries");
1812       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1813                           getTypeIndex(I->getBaseType()),
1814                           I->getOffsetInBits() / 8);
1815       FLBR.writeMemberType(BCR);
1816     }
1817   }
1818 
1819   // Create members.
1820   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1821     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1822     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1823     StringRef MemberName = Member->getName();
1824     MemberAccess Access =
1825         translateAccessFlags(Ty->getTag(), Member->getFlags());
1826 
1827     if (Member->isStaticMember()) {
1828       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1829       FLBR.writeMemberType(SDMR);
1830       MemberCount++;
1831       continue;
1832     }
1833 
1834     // Virtual function pointer member.
1835     if ((Member->getFlags() & DINode::FlagArtificial) &&
1836         Member->getName().startswith("_vptr$")) {
1837       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1838       FLBR.writeMemberType(VFPR);
1839       MemberCount++;
1840       continue;
1841     }
1842 
1843     // Data member.
1844     uint64_t MemberOffsetInBits =
1845         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1846     if (Member->isBitField()) {
1847       uint64_t StartBitOffset = MemberOffsetInBits;
1848       if (const auto *CI =
1849               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1850         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1851       }
1852       StartBitOffset -= MemberOffsetInBits;
1853       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1854                          StartBitOffset);
1855       MemberBaseType = TypeTable.writeKnownType(BFR);
1856     }
1857     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1858     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1859                          MemberName);
1860     FLBR.writeMemberType(DMR);
1861     MemberCount++;
1862   }
1863 
1864   // Create methods
1865   for (auto &MethodItr : Info.Methods) {
1866     StringRef Name = MethodItr.first->getString();
1867 
1868     std::vector<OneMethodRecord> Methods;
1869     for (const DISubprogram *SP : MethodItr.second) {
1870       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1871       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1872 
1873       unsigned VFTableOffset = -1;
1874       if (Introduced)
1875         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1876 
1877       Methods.push_back(OneMethodRecord(
1878           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1879           translateMethodKindFlags(SP, Introduced),
1880           translateMethodOptionFlags(SP), VFTableOffset, Name));
1881       MemberCount++;
1882     }
1883     assert(Methods.size() > 0 && "Empty methods map entry");
1884     if (Methods.size() == 1)
1885       FLBR.writeMemberType(Methods[0]);
1886     else {
1887       MethodOverloadListRecord MOLR(Methods);
1888       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1889       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1890       FLBR.writeMemberType(OMR);
1891     }
1892   }
1893 
1894   // Create nested classes.
1895   for (const DICompositeType *Nested : Info.NestedClasses) {
1896     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1897     FLBR.writeMemberType(R);
1898     MemberCount++;
1899   }
1900 
1901   TypeIndex FieldTI = FLBR.end();
1902   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1903                          !Info.NestedClasses.empty());
1904 }
1905 
1906 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1907   if (!VBPType.getIndex()) {
1908     // Make a 'const int *' type.
1909     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1910     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1911 
1912     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1913                                                   : PointerKind::Near32;
1914     PointerMode PM = PointerMode::Pointer;
1915     PointerOptions PO = PointerOptions::None;
1916     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1917 
1918     VBPType = TypeTable.writeKnownType(PR);
1919   }
1920 
1921   return VBPType;
1922 }
1923 
1924 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1925   const DIType *Ty = TypeRef.resolve();
1926   const DIType *ClassTy = ClassTyRef.resolve();
1927 
1928   // The null DIType is the void type. Don't try to hash it.
1929   if (!Ty)
1930     return TypeIndex::Void();
1931 
1932   // Check if we've already translated this type. Don't try to do a
1933   // get-or-create style insertion that caches the hash lookup across the
1934   // lowerType call. It will update the TypeIndices map.
1935   auto I = TypeIndices.find({Ty, ClassTy});
1936   if (I != TypeIndices.end())
1937     return I->second;
1938 
1939   TypeLoweringScope S(*this);
1940   TypeIndex TI = lowerType(Ty, ClassTy);
1941   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1942 }
1943 
1944 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1945   const DIType *Ty = TypeRef.resolve();
1946 
1947   // The null DIType is the void type. Don't try to hash it.
1948   if (!Ty)
1949     return TypeIndex::Void();
1950 
1951   // If this is a non-record type, the complete type index is the same as the
1952   // normal type index. Just call getTypeIndex.
1953   switch (Ty->getTag()) {
1954   case dwarf::DW_TAG_class_type:
1955   case dwarf::DW_TAG_structure_type:
1956   case dwarf::DW_TAG_union_type:
1957     break;
1958   default:
1959     return getTypeIndex(Ty);
1960   }
1961 
1962   // Check if we've already translated the complete record type.  Lowering a
1963   // complete type should never trigger lowering another complete type, so we
1964   // can reuse the hash table lookup result.
1965   const auto *CTy = cast<DICompositeType>(Ty);
1966   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1967   if (!InsertResult.second)
1968     return InsertResult.first->second;
1969 
1970   TypeLoweringScope S(*this);
1971 
1972   // Make sure the forward declaration is emitted first. It's unclear if this
1973   // is necessary, but MSVC does it, and we should follow suit until we can show
1974   // otherwise.
1975   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1976 
1977   // Just use the forward decl if we don't have complete type info. This might
1978   // happen if the frontend is using modules and expects the complete definition
1979   // to be emitted elsewhere.
1980   if (CTy->isForwardDecl())
1981     return FwdDeclTI;
1982 
1983   TypeIndex TI;
1984   switch (CTy->getTag()) {
1985   case dwarf::DW_TAG_class_type:
1986   case dwarf::DW_TAG_structure_type:
1987     TI = lowerCompleteTypeClass(CTy);
1988     break;
1989   case dwarf::DW_TAG_union_type:
1990     TI = lowerCompleteTypeUnion(CTy);
1991     break;
1992   default:
1993     llvm_unreachable("not a record");
1994   }
1995 
1996   InsertResult.first->second = TI;
1997   return TI;
1998 }
1999 
2000 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2001 /// and do this until fixpoint, as each complete record type typically
2002 /// references
2003 /// many other record types.
2004 void CodeViewDebug::emitDeferredCompleteTypes() {
2005   SmallVector<const DICompositeType *, 4> TypesToEmit;
2006   while (!DeferredCompleteTypes.empty()) {
2007     std::swap(DeferredCompleteTypes, TypesToEmit);
2008     for (const DICompositeType *RecordTy : TypesToEmit)
2009       getCompleteTypeIndex(RecordTy);
2010     TypesToEmit.clear();
2011   }
2012 }
2013 
2014 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2015   // Get the sorted list of parameters and emit them first.
2016   SmallVector<const LocalVariable *, 6> Params;
2017   for (const LocalVariable &L : Locals)
2018     if (L.DIVar->isParameter())
2019       Params.push_back(&L);
2020   std::sort(Params.begin(), Params.end(),
2021             [](const LocalVariable *L, const LocalVariable *R) {
2022               return L->DIVar->getArg() < R->DIVar->getArg();
2023             });
2024   for (const LocalVariable *L : Params)
2025     emitLocalVariable(*L);
2026 
2027   // Next emit all non-parameters in the order that we found them.
2028   for (const LocalVariable &L : Locals)
2029     if (!L.DIVar->isParameter())
2030       emitLocalVariable(L);
2031 }
2032 
2033 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2034   // LocalSym record, see SymbolRecord.h for more info.
2035   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2036            *LocalEnd = MMI->getContext().createTempSymbol();
2037   OS.AddComment("Record length");
2038   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2039   OS.EmitLabel(LocalBegin);
2040 
2041   OS.AddComment("Record kind: S_LOCAL");
2042   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2043 
2044   LocalSymFlags Flags = LocalSymFlags::None;
2045   if (Var.DIVar->isParameter())
2046     Flags |= LocalSymFlags::IsParameter;
2047   if (Var.DefRanges.empty())
2048     Flags |= LocalSymFlags::IsOptimizedOut;
2049 
2050   OS.AddComment("TypeIndex");
2051   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2052   OS.EmitIntValue(TI.getIndex(), 4);
2053   OS.AddComment("Flags");
2054   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2055   // Truncate the name so we won't overflow the record length field.
2056   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2057   OS.EmitLabel(LocalEnd);
2058 
2059   // Calculate the on disk prefix of the appropriate def range record. The
2060   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2061   // should be big enough to hold all forms without memory allocation.
2062   SmallString<20> BytePrefix;
2063   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2064     BytePrefix.clear();
2065     if (DefRange.InMemory) {
2066       uint16_t RegRelFlags = 0;
2067       if (DefRange.IsSubfield) {
2068         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2069                       (DefRange.StructOffset
2070                        << DefRangeRegisterRelSym::OffsetInParentShift);
2071       }
2072       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2073       Sym.Hdr.Register = DefRange.CVRegister;
2074       Sym.Hdr.Flags = RegRelFlags;
2075       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2076       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2077       BytePrefix +=
2078           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2079       BytePrefix +=
2080           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2081     } else {
2082       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2083       if (DefRange.IsSubfield) {
2084         // Unclear what matters here.
2085         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2086         Sym.Hdr.Register = DefRange.CVRegister;
2087         Sym.Hdr.MayHaveNoName = 0;
2088         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2089 
2090         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2091         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2092                                 sizeof(SymKind));
2093         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2094                                 sizeof(Sym.Hdr));
2095       } else {
2096         // Unclear what matters here.
2097         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2098         Sym.Hdr.Register = DefRange.CVRegister;
2099         Sym.Hdr.MayHaveNoName = 0;
2100         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2101         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2102                                 sizeof(SymKind));
2103         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2104                                 sizeof(Sym.Hdr));
2105       }
2106     }
2107     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2108   }
2109 }
2110 
2111 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2112   const Function *GV = MF->getFunction();
2113   assert(FnDebugInfo.count(GV));
2114   assert(CurFn == &FnDebugInfo[GV]);
2115 
2116   collectVariableInfo(GV->getSubprogram());
2117 
2118   // Don't emit anything if we don't have any line tables.
2119   if (!CurFn->HaveLineInfo) {
2120     FnDebugInfo.erase(GV);
2121     CurFn = nullptr;
2122     return;
2123   }
2124 
2125   CurFn->End = Asm->getFunctionEnd();
2126 
2127   CurFn = nullptr;
2128 }
2129 
2130 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2131   DebugHandlerBase::beginInstruction(MI);
2132 
2133   // Ignore DBG_VALUE locations and function prologue.
2134   if (!Asm || !CurFn || MI->isDebugValue() ||
2135       MI->getFlag(MachineInstr::FrameSetup))
2136     return;
2137   DebugLoc DL = MI->getDebugLoc();
2138   if (DL == PrevInstLoc || !DL)
2139     return;
2140   maybeRecordLocation(DL, Asm->MF);
2141 }
2142 
2143 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
2144   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2145            *EndLabel = MMI->getContext().createTempSymbol();
2146   OS.EmitIntValue(unsigned(Kind), 4);
2147   OS.AddComment("Subsection size");
2148   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2149   OS.EmitLabel(BeginLabel);
2150   return EndLabel;
2151 }
2152 
2153 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2154   OS.EmitLabel(EndLabel);
2155   // Every subsection must be aligned to a 4-byte boundary.
2156   OS.EmitValueToAlignment(4);
2157 }
2158 
2159 void CodeViewDebug::emitDebugInfoForUDTs(
2160     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2161   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2162     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2163              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2164     OS.AddComment("Record length");
2165     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2166     OS.EmitLabel(UDTRecordBegin);
2167 
2168     OS.AddComment("Record kind: S_UDT");
2169     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2170 
2171     OS.AddComment("Type");
2172     OS.EmitIntValue(UDT.second.getIndex(), 4);
2173 
2174     emitNullTerminatedSymbolName(OS, UDT.first);
2175     OS.EmitLabel(UDTRecordEnd);
2176   }
2177 }
2178 
2179 void CodeViewDebug::emitDebugInfoForGlobals() {
2180   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2181       GlobalMap;
2182   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2183     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2184     GV.getDebugInfo(GVEs);
2185     for (const auto *GVE : GVEs)
2186       GlobalMap[GVE] = &GV;
2187   }
2188 
2189   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2190   for (const MDNode *Node : CUs->operands()) {
2191     const auto *CU = cast<DICompileUnit>(Node);
2192 
2193     // First, emit all globals that are not in a comdat in a single symbol
2194     // substream. MSVC doesn't like it if the substream is empty, so only open
2195     // it if we have at least one global to emit.
2196     switchToDebugSectionForSymbol(nullptr);
2197     MCSymbol *EndLabel = nullptr;
2198     for (const auto *GVE : CU->getGlobalVariables()) {
2199       if (const auto *GV = GlobalMap.lookup(GVE))
2200         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2201           if (!EndLabel) {
2202             OS.AddComment("Symbol subsection for globals");
2203             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2204           }
2205           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2206           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2207         }
2208     }
2209     if (EndLabel)
2210       endCVSubsection(EndLabel);
2211 
2212     // Second, emit each global that is in a comdat into its own .debug$S
2213     // section along with its own symbol substream.
2214     for (const auto *GVE : CU->getGlobalVariables()) {
2215       if (const auto *GV = GlobalMap.lookup(GVE)) {
2216         if (GV->hasComdat()) {
2217           MCSymbol *GVSym = Asm->getSymbol(GV);
2218           OS.AddComment("Symbol subsection for " +
2219                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2220           switchToDebugSectionForSymbol(GVSym);
2221           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2222           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2223           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2224           endCVSubsection(EndLabel);
2225         }
2226       }
2227     }
2228   }
2229 }
2230 
2231 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2232   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2233   for (const MDNode *Node : CUs->operands()) {
2234     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2235       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2236         getTypeIndex(RT);
2237         // FIXME: Add to global/local DTU list.
2238       }
2239     }
2240   }
2241 }
2242 
2243 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2244                                            const GlobalVariable *GV,
2245                                            MCSymbol *GVSym) {
2246   // DataSym record, see SymbolRecord.h for more info.
2247   // FIXME: Thread local data, etc
2248   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2249            *DataEnd = MMI->getContext().createTempSymbol();
2250   OS.AddComment("Record length");
2251   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2252   OS.EmitLabel(DataBegin);
2253   if (DIGV->isLocalToUnit()) {
2254     if (GV->isThreadLocal()) {
2255       OS.AddComment("Record kind: S_LTHREAD32");
2256       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2257     } else {
2258       OS.AddComment("Record kind: S_LDATA32");
2259       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2260     }
2261   } else {
2262     if (GV->isThreadLocal()) {
2263       OS.AddComment("Record kind: S_GTHREAD32");
2264       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2265     } else {
2266       OS.AddComment("Record kind: S_GDATA32");
2267       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2268     }
2269   }
2270   OS.AddComment("Type");
2271   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2272   OS.AddComment("DataOffset");
2273   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2274   OS.AddComment("Segment");
2275   OS.EmitCOFFSectionIndex(GVSym);
2276   OS.AddComment("Name");
2277   emitNullTerminatedSymbolName(OS, DIGV->getName());
2278   OS.EmitLabel(DataEnd);
2279 }
2280