1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "llvm/ADT/TinyPtrVector.h" 16 #include "llvm/DebugInfo/CodeView/CVTypeDumper.h" 17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 18 #include "llvm/DebugInfo/CodeView/CodeView.h" 19 #include "llvm/DebugInfo/CodeView/Line.h" 20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 21 #include "llvm/DebugInfo/CodeView/TypeDatabase.h" 22 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 23 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 24 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h" 26 #include "llvm/DebugInfo/MSF/ByteStream.h" 27 #include "llvm/DebugInfo/MSF/StreamReader.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/MC/MCAsmInfo.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCSectionCOFF.h" 32 #include "llvm/MC/MCSymbol.h" 33 #include "llvm/Support/COFF.h" 34 #include "llvm/Support/ScopedPrinter.h" 35 #include "llvm/Target/TargetFrameLowering.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 39 using namespace llvm; 40 using namespace llvm::codeview; 41 using namespace llvm::msf; 42 43 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 44 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(), 45 TypeTable(Allocator), CurFn(nullptr) { 46 // If module doesn't have named metadata anchors or COFF debug section 47 // is not available, skip any debug info related stuff. 48 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 49 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 50 Asm = nullptr; 51 return; 52 } 53 54 // Tell MMI that we have debug info. 55 MMI->setDebugInfoAvailability(true); 56 } 57 58 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 59 std::string &Filepath = FileToFilepathMap[File]; 60 if (!Filepath.empty()) 61 return Filepath; 62 63 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 64 65 // Clang emits directory and relative filename info into the IR, but CodeView 66 // operates on full paths. We could change Clang to emit full paths too, but 67 // that would increase the IR size and probably not needed for other users. 68 // For now, just concatenate and canonicalize the path here. 69 if (Filename.find(':') == 1) 70 Filepath = Filename; 71 else 72 Filepath = (Dir + "\\" + Filename).str(); 73 74 // Canonicalize the path. We have to do it textually because we may no longer 75 // have access the file in the filesystem. 76 // First, replace all slashes with backslashes. 77 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 78 79 // Remove all "\.\" with "\". 80 size_t Cursor = 0; 81 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 82 Filepath.erase(Cursor, 2); 83 84 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 85 // path should be well-formatted, e.g. start with a drive letter, etc. 86 Cursor = 0; 87 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 88 // Something's wrong if the path starts with "\..\", abort. 89 if (Cursor == 0) 90 break; 91 92 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 93 if (PrevSlash == std::string::npos) 94 // Something's wrong, abort. 95 break; 96 97 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 98 // The next ".." might be following the one we've just erased. 99 Cursor = PrevSlash; 100 } 101 102 // Remove all duplicate backslashes. 103 Cursor = 0; 104 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 105 Filepath.erase(Cursor, 1); 106 107 return Filepath; 108 } 109 110 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 111 unsigned NextId = FileIdMap.size() + 1; 112 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 113 if (Insertion.second) { 114 // We have to compute the full filepath and emit a .cv_file directive. 115 StringRef FullPath = getFullFilepath(F); 116 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 117 (void)Success; 118 assert(Success && ".cv_file directive failed"); 119 } 120 return Insertion.first->second; 121 } 122 123 CodeViewDebug::InlineSite & 124 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 125 const DISubprogram *Inlinee) { 126 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 127 InlineSite *Site = &SiteInsertion.first->second; 128 if (SiteInsertion.second) { 129 unsigned ParentFuncId = CurFn->FuncId; 130 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 131 ParentFuncId = 132 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 133 .SiteFuncId; 134 135 Site->SiteFuncId = NextFuncId++; 136 OS.EmitCVInlineSiteIdDirective( 137 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 138 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 139 Site->Inlinee = Inlinee; 140 InlinedSubprograms.insert(Inlinee); 141 getFuncIdForSubprogram(Inlinee); 142 } 143 return *Site; 144 } 145 146 static StringRef getPrettyScopeName(const DIScope *Scope) { 147 StringRef ScopeName = Scope->getName(); 148 if (!ScopeName.empty()) 149 return ScopeName; 150 151 switch (Scope->getTag()) { 152 case dwarf::DW_TAG_enumeration_type: 153 case dwarf::DW_TAG_class_type: 154 case dwarf::DW_TAG_structure_type: 155 case dwarf::DW_TAG_union_type: 156 return "<unnamed-tag>"; 157 case dwarf::DW_TAG_namespace: 158 return "`anonymous namespace'"; 159 } 160 161 return StringRef(); 162 } 163 164 static const DISubprogram *getQualifiedNameComponents( 165 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 166 const DISubprogram *ClosestSubprogram = nullptr; 167 while (Scope != nullptr) { 168 if (ClosestSubprogram == nullptr) 169 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 170 StringRef ScopeName = getPrettyScopeName(Scope); 171 if (!ScopeName.empty()) 172 QualifiedNameComponents.push_back(ScopeName); 173 Scope = Scope->getScope().resolve(); 174 } 175 return ClosestSubprogram; 176 } 177 178 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 179 StringRef TypeName) { 180 std::string FullyQualifiedName; 181 for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) { 182 FullyQualifiedName.append(QualifiedNameComponent); 183 FullyQualifiedName.append("::"); 184 } 185 FullyQualifiedName.append(TypeName); 186 return FullyQualifiedName; 187 } 188 189 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 190 SmallVector<StringRef, 5> QualifiedNameComponents; 191 getQualifiedNameComponents(Scope, QualifiedNameComponents); 192 return getQualifiedName(QualifiedNameComponents, Name); 193 } 194 195 struct CodeViewDebug::TypeLoweringScope { 196 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 197 ~TypeLoweringScope() { 198 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 199 // inner TypeLoweringScopes don't attempt to emit deferred types. 200 if (CVD.TypeEmissionLevel == 1) 201 CVD.emitDeferredCompleteTypes(); 202 --CVD.TypeEmissionLevel; 203 } 204 CodeViewDebug &CVD; 205 }; 206 207 static std::string getFullyQualifiedName(const DIScope *Ty) { 208 const DIScope *Scope = Ty->getScope().resolve(); 209 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 210 } 211 212 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 213 // No scope means global scope and that uses the zero index. 214 if (!Scope || isa<DIFile>(Scope)) 215 return TypeIndex(); 216 217 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 218 219 // Check if we've already translated this scope. 220 auto I = TypeIndices.find({Scope, nullptr}); 221 if (I != TypeIndices.end()) 222 return I->second; 223 224 // Build the fully qualified name of the scope. 225 std::string ScopeName = getFullyQualifiedName(Scope); 226 StringIdRecord SID(TypeIndex(), ScopeName); 227 auto TI = TypeTable.writeKnownType(SID); 228 return recordTypeIndexForDINode(Scope, TI); 229 } 230 231 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 232 assert(SP); 233 234 // Check if we've already translated this subprogram. 235 auto I = TypeIndices.find({SP, nullptr}); 236 if (I != TypeIndices.end()) 237 return I->second; 238 239 // The display name includes function template arguments. Drop them to match 240 // MSVC. 241 StringRef DisplayName = SP->getDisplayName().split('<').first; 242 243 const DIScope *Scope = SP->getScope().resolve(); 244 TypeIndex TI; 245 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 246 // If the scope is a DICompositeType, then this must be a method. Member 247 // function types take some special handling, and require access to the 248 // subprogram. 249 TypeIndex ClassType = getTypeIndex(Class); 250 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 251 DisplayName); 252 TI = TypeTable.writeKnownType(MFuncId); 253 } else { 254 // Otherwise, this must be a free function. 255 TypeIndex ParentScope = getScopeIndex(Scope); 256 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 257 TI = TypeTable.writeKnownType(FuncId); 258 } 259 260 return recordTypeIndexForDINode(SP, TI); 261 } 262 263 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 264 const DICompositeType *Class) { 265 // Always use the method declaration as the key for the function type. The 266 // method declaration contains the this adjustment. 267 if (SP->getDeclaration()) 268 SP = SP->getDeclaration(); 269 assert(!SP->getDeclaration() && "should use declaration as key"); 270 271 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 272 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 273 auto I = TypeIndices.find({SP, Class}); 274 if (I != TypeIndices.end()) 275 return I->second; 276 277 // Make sure complete type info for the class is emitted *after* the member 278 // function type, as the complete class type is likely to reference this 279 // member function type. 280 TypeLoweringScope S(*this); 281 TypeIndex TI = 282 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 283 return recordTypeIndexForDINode(SP, TI, Class); 284 } 285 286 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 287 TypeIndex TI, 288 const DIType *ClassTy) { 289 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 290 (void)InsertResult; 291 assert(InsertResult.second && "DINode was already assigned a type index"); 292 return TI; 293 } 294 295 unsigned CodeViewDebug::getPointerSizeInBytes() { 296 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 297 } 298 299 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 300 const DILocation *InlinedAt) { 301 if (InlinedAt) { 302 // This variable was inlined. Associate it with the InlineSite. 303 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 304 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 305 Site.InlinedLocals.emplace_back(Var); 306 } else { 307 // This variable goes in the main ProcSym. 308 CurFn->Locals.emplace_back(Var); 309 } 310 } 311 312 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 313 const DILocation *Loc) { 314 auto B = Locs.begin(), E = Locs.end(); 315 if (std::find(B, E, Loc) == E) 316 Locs.push_back(Loc); 317 } 318 319 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 320 const MachineFunction *MF) { 321 // Skip this instruction if it has the same location as the previous one. 322 if (DL == CurFn->LastLoc) 323 return; 324 325 const DIScope *Scope = DL.get()->getScope(); 326 if (!Scope) 327 return; 328 329 // Skip this line if it is longer than the maximum we can record. 330 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 331 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 332 LI.isNeverStepInto()) 333 return; 334 335 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 336 if (CI.getStartColumn() != DL.getCol()) 337 return; 338 339 if (!CurFn->HaveLineInfo) 340 CurFn->HaveLineInfo = true; 341 unsigned FileId = 0; 342 if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile()) 343 FileId = CurFn->LastFileId; 344 else 345 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 346 CurFn->LastLoc = DL; 347 348 unsigned FuncId = CurFn->FuncId; 349 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 350 const DILocation *Loc = DL.get(); 351 352 // If this location was actually inlined from somewhere else, give it the ID 353 // of the inline call site. 354 FuncId = 355 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 356 357 // Ensure we have links in the tree of inline call sites. 358 bool FirstLoc = true; 359 while ((SiteLoc = Loc->getInlinedAt())) { 360 InlineSite &Site = 361 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 362 if (!FirstLoc) 363 addLocIfNotPresent(Site.ChildSites, Loc); 364 FirstLoc = false; 365 Loc = SiteLoc; 366 } 367 addLocIfNotPresent(CurFn->ChildSites, Loc); 368 } 369 370 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 371 /*PrologueEnd=*/false, /*IsStmt=*/false, 372 DL->getFilename(), SMLoc()); 373 } 374 375 void CodeViewDebug::emitCodeViewMagicVersion() { 376 OS.EmitValueToAlignment(4); 377 OS.AddComment("Debug section magic"); 378 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 379 } 380 381 void CodeViewDebug::endModule() { 382 if (!Asm || !MMI->hasDebugInfo()) 383 return; 384 385 assert(Asm != nullptr); 386 387 // The COFF .debug$S section consists of several subsections, each starting 388 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 389 // of the payload followed by the payload itself. The subsections are 4-byte 390 // aligned. 391 392 // Use the generic .debug$S section, and make a subsection for all the inlined 393 // subprograms. 394 switchToDebugSectionForSymbol(nullptr); 395 396 MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols); 397 emitCompilerInformation(); 398 endCVSubsection(CompilerInfo); 399 400 emitInlineeLinesSubsection(); 401 402 // Emit per-function debug information. 403 for (auto &P : FnDebugInfo) 404 if (!P.first->isDeclarationForLinker()) 405 emitDebugInfoForFunction(P.first, P.second); 406 407 // Emit global variable debug information. 408 setCurrentSubprogram(nullptr); 409 emitDebugInfoForGlobals(); 410 411 // Emit retained types. 412 emitDebugInfoForRetainedTypes(); 413 414 // Switch back to the generic .debug$S section after potentially processing 415 // comdat symbol sections. 416 switchToDebugSectionForSymbol(nullptr); 417 418 // Emit UDT records for any types used by global variables. 419 if (!GlobalUDTs.empty()) { 420 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 421 emitDebugInfoForUDTs(GlobalUDTs); 422 endCVSubsection(SymbolsEnd); 423 } 424 425 // This subsection holds a file index to offset in string table table. 426 OS.AddComment("File index to string table offset subsection"); 427 OS.EmitCVFileChecksumsDirective(); 428 429 // This subsection holds the string table. 430 OS.AddComment("String table"); 431 OS.EmitCVStringTableDirective(); 432 433 // Emit type information last, so that any types we translate while emitting 434 // function info are included. 435 emitTypeInformation(); 436 437 clear(); 438 } 439 440 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 441 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 442 // after a fixed length portion of the record. The fixed length portion should 443 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 444 // overall record size is less than the maximum allowed. 445 unsigned MaxFixedRecordLength = 0xF00; 446 SmallString<32> NullTerminatedString( 447 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 448 NullTerminatedString.push_back('\0'); 449 OS.EmitBytes(NullTerminatedString); 450 } 451 452 void CodeViewDebug::emitTypeInformation() { 453 // Do nothing if we have no debug info or if no non-trivial types were emitted 454 // to TypeTable during codegen. 455 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 456 if (!CU_Nodes) 457 return; 458 if (TypeTable.empty()) 459 return; 460 461 // Start the .debug$T section with 0x4. 462 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 463 emitCodeViewMagicVersion(); 464 465 SmallString<8> CommentPrefix; 466 if (OS.isVerboseAsm()) { 467 CommentPrefix += '\t'; 468 CommentPrefix += Asm->MAI->getCommentString(); 469 CommentPrefix += ' '; 470 } 471 472 TypeDatabase TypeDB; 473 CVTypeDumper CVTD(TypeDB); 474 TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) { 475 if (OS.isVerboseAsm()) { 476 // Emit a block comment describing the type record for readability. 477 SmallString<512> CommentBlock; 478 raw_svector_ostream CommentOS(CommentBlock); 479 ScopedPrinter SP(CommentOS); 480 SP.setPrefix(CommentPrefix); 481 TypeDumpVisitor TDV(TypeDB, &SP, false); 482 Error E = CVTD.dump(Record, TDV); 483 if (E) { 484 logAllUnhandledErrors(std::move(E), errs(), "error: "); 485 llvm_unreachable("produced malformed type record"); 486 } 487 // emitRawComment will insert its own tab and comment string before 488 // the first line, so strip off our first one. It also prints its own 489 // newline. 490 OS.emitRawComment( 491 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 492 } else { 493 #ifndef NDEBUG 494 // Assert that the type data is valid even if we aren't dumping 495 // comments. The MSVC linker doesn't do much type record validation, 496 // so the first link of an invalid type record can succeed while 497 // subsequent links will fail with LNK1285. 498 ByteStream Stream(Record); 499 CVTypeArray Types; 500 StreamReader Reader(Stream); 501 Error E = Reader.readArray(Types, Reader.getLength()); 502 if (!E) { 503 TypeVisitorCallbacks C; 504 E = CVTypeVisitor(C).visitTypeStream(Types); 505 } 506 if (E) { 507 logAllUnhandledErrors(std::move(E), errs(), "error: "); 508 llvm_unreachable("produced malformed type record"); 509 } 510 #endif 511 } 512 StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size()); 513 OS.EmitBinaryData(S); 514 }); 515 } 516 517 namespace { 518 519 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 520 switch (DWLang) { 521 case dwarf::DW_LANG_C: 522 case dwarf::DW_LANG_C89: 523 case dwarf::DW_LANG_C99: 524 case dwarf::DW_LANG_C11: 525 case dwarf::DW_LANG_ObjC: 526 return SourceLanguage::C; 527 case dwarf::DW_LANG_C_plus_plus: 528 case dwarf::DW_LANG_C_plus_plus_03: 529 case dwarf::DW_LANG_C_plus_plus_11: 530 case dwarf::DW_LANG_C_plus_plus_14: 531 return SourceLanguage::Cpp; 532 case dwarf::DW_LANG_Fortran77: 533 case dwarf::DW_LANG_Fortran90: 534 case dwarf::DW_LANG_Fortran03: 535 case dwarf::DW_LANG_Fortran08: 536 return SourceLanguage::Fortran; 537 case dwarf::DW_LANG_Pascal83: 538 return SourceLanguage::Pascal; 539 case dwarf::DW_LANG_Cobol74: 540 case dwarf::DW_LANG_Cobol85: 541 return SourceLanguage::Cobol; 542 case dwarf::DW_LANG_Java: 543 return SourceLanguage::Java; 544 default: 545 // There's no CodeView representation for this language, and CV doesn't 546 // have an "unknown" option for the language field, so we'll use MASM, 547 // as it's very low level. 548 return SourceLanguage::Masm; 549 } 550 } 551 552 struct Version { 553 int Part[4]; 554 }; 555 556 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 557 // the version number. 558 static Version parseVersion(StringRef Name) { 559 Version V = {{0}}; 560 int N = 0; 561 for (const char C : Name) { 562 if (isdigit(C)) { 563 V.Part[N] *= 10; 564 V.Part[N] += C - '0'; 565 } else if (C == '.') { 566 ++N; 567 if (N >= 4) 568 return V; 569 } else if (N > 0) 570 return V; 571 } 572 return V; 573 } 574 575 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 576 switch (Type) { 577 case Triple::ArchType::x86: 578 return CPUType::Pentium3; 579 case Triple::ArchType::x86_64: 580 return CPUType::X64; 581 case Triple::ArchType::thumb: 582 return CPUType::Thumb; 583 default: 584 report_fatal_error("target architecture doesn't map to a CodeView " 585 "CPUType"); 586 } 587 } 588 589 } // anonymous namespace 590 591 void CodeViewDebug::emitCompilerInformation() { 592 MCContext &Context = MMI->getContext(); 593 MCSymbol *CompilerBegin = Context.createTempSymbol(), 594 *CompilerEnd = Context.createTempSymbol(); 595 OS.AddComment("Record length"); 596 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 597 OS.EmitLabel(CompilerBegin); 598 OS.AddComment("Record kind: S_COMPILE3"); 599 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 600 uint32_t Flags = 0; 601 602 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 603 const MDNode *Node = *CUs->operands().begin(); 604 const auto *CU = cast<DICompileUnit>(Node); 605 606 // The low byte of the flags indicates the source language. 607 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 608 // TODO: Figure out which other flags need to be set. 609 610 OS.AddComment("Flags and language"); 611 OS.EmitIntValue(Flags, 4); 612 613 OS.AddComment("CPUType"); 614 CPUType CPU = 615 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 616 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 617 618 StringRef CompilerVersion = CU->getProducer(); 619 Version FrontVer = parseVersion(CompilerVersion); 620 OS.AddComment("Frontend version"); 621 for (int N = 0; N < 4; ++N) 622 OS.EmitIntValue(FrontVer.Part[N], 2); 623 624 // Some Microsoft tools, like Binscope, expect a backend version number of at 625 // least 8.something, so we'll coerce the LLVM version into a form that 626 // guarantees it'll be big enough without really lying about the version. 627 int Major = 1000 * LLVM_VERSION_MAJOR + 628 10 * LLVM_VERSION_MINOR + 629 LLVM_VERSION_PATCH; 630 // Clamp it for builds that use unusually large version numbers. 631 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 632 Version BackVer = {{ Major, 0, 0, 0 }}; 633 OS.AddComment("Backend version"); 634 for (int N = 0; N < 4; ++N) 635 OS.EmitIntValue(BackVer.Part[N], 2); 636 637 OS.AddComment("Null-terminated compiler version string"); 638 emitNullTerminatedSymbolName(OS, CompilerVersion); 639 640 OS.EmitLabel(CompilerEnd); 641 } 642 643 void CodeViewDebug::emitInlineeLinesSubsection() { 644 if (InlinedSubprograms.empty()) 645 return; 646 647 OS.AddComment("Inlinee lines subsection"); 648 MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines); 649 650 // We don't provide any extra file info. 651 // FIXME: Find out if debuggers use this info. 652 OS.AddComment("Inlinee lines signature"); 653 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 654 655 for (const DISubprogram *SP : InlinedSubprograms) { 656 assert(TypeIndices.count({SP, nullptr})); 657 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 658 659 OS.AddBlankLine(); 660 unsigned FileId = maybeRecordFile(SP->getFile()); 661 OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " + 662 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 663 OS.AddBlankLine(); 664 // The filechecksum table uses 8 byte entries for now, and file ids start at 665 // 1. 666 unsigned FileOffset = (FileId - 1) * 8; 667 OS.AddComment("Type index of inlined function"); 668 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 669 OS.AddComment("Offset into filechecksum table"); 670 OS.EmitIntValue(FileOffset, 4); 671 OS.AddComment("Starting line number"); 672 OS.EmitIntValue(SP->getLine(), 4); 673 } 674 675 endCVSubsection(InlineEnd); 676 } 677 678 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 679 const DILocation *InlinedAt, 680 const InlineSite &Site) { 681 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 682 *InlineEnd = MMI->getContext().createTempSymbol(); 683 684 assert(TypeIndices.count({Site.Inlinee, nullptr})); 685 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 686 687 // SymbolRecord 688 OS.AddComment("Record length"); 689 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 690 OS.EmitLabel(InlineBegin); 691 OS.AddComment("Record kind: S_INLINESITE"); 692 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 693 694 OS.AddComment("PtrParent"); 695 OS.EmitIntValue(0, 4); 696 OS.AddComment("PtrEnd"); 697 OS.EmitIntValue(0, 4); 698 OS.AddComment("Inlinee type index"); 699 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 700 701 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 702 unsigned StartLineNum = Site.Inlinee->getLine(); 703 704 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 705 FI.Begin, FI.End); 706 707 OS.EmitLabel(InlineEnd); 708 709 emitLocalVariableList(Site.InlinedLocals); 710 711 // Recurse on child inlined call sites before closing the scope. 712 for (const DILocation *ChildSite : Site.ChildSites) { 713 auto I = FI.InlineSites.find(ChildSite); 714 assert(I != FI.InlineSites.end() && 715 "child site not in function inline site map"); 716 emitInlinedCallSite(FI, ChildSite, I->second); 717 } 718 719 // Close the scope. 720 OS.AddComment("Record length"); 721 OS.EmitIntValue(2, 2); // RecordLength 722 OS.AddComment("Record kind: S_INLINESITE_END"); 723 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 724 } 725 726 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 727 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 728 // comdat key. A section may be comdat because of -ffunction-sections or 729 // because it is comdat in the IR. 730 MCSectionCOFF *GVSec = 731 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 732 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 733 734 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 735 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 736 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 737 738 OS.SwitchSection(DebugSec); 739 740 // Emit the magic version number if this is the first time we've switched to 741 // this section. 742 if (ComdatDebugSections.insert(DebugSec).second) 743 emitCodeViewMagicVersion(); 744 } 745 746 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 747 FunctionInfo &FI) { 748 // For each function there is a separate subsection 749 // which holds the PC to file:line table. 750 const MCSymbol *Fn = Asm->getSymbol(GV); 751 assert(Fn); 752 753 // Switch to the to a comdat section, if appropriate. 754 switchToDebugSectionForSymbol(Fn); 755 756 std::string FuncName; 757 auto *SP = GV->getSubprogram(); 758 assert(SP); 759 setCurrentSubprogram(SP); 760 761 // If we have a display name, build the fully qualified name by walking the 762 // chain of scopes. 763 if (!SP->getDisplayName().empty()) 764 FuncName = 765 getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName()); 766 767 // If our DISubprogram name is empty, use the mangled name. 768 if (FuncName.empty()) 769 FuncName = GlobalValue::getRealLinkageName(GV->getName()); 770 771 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 772 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 773 MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols); 774 { 775 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 776 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 777 OS.AddComment("Record length"); 778 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 779 OS.EmitLabel(ProcRecordBegin); 780 781 if (GV->hasLocalLinkage()) { 782 OS.AddComment("Record kind: S_LPROC32_ID"); 783 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 784 } else { 785 OS.AddComment("Record kind: S_GPROC32_ID"); 786 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 787 } 788 789 // These fields are filled in by tools like CVPACK which run after the fact. 790 OS.AddComment("PtrParent"); 791 OS.EmitIntValue(0, 4); 792 OS.AddComment("PtrEnd"); 793 OS.EmitIntValue(0, 4); 794 OS.AddComment("PtrNext"); 795 OS.EmitIntValue(0, 4); 796 // This is the important bit that tells the debugger where the function 797 // code is located and what's its size: 798 OS.AddComment("Code size"); 799 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 800 OS.AddComment("Offset after prologue"); 801 OS.EmitIntValue(0, 4); 802 OS.AddComment("Offset before epilogue"); 803 OS.EmitIntValue(0, 4); 804 OS.AddComment("Function type index"); 805 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 806 OS.AddComment("Function section relative address"); 807 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 808 OS.AddComment("Function section index"); 809 OS.EmitCOFFSectionIndex(Fn); 810 OS.AddComment("Flags"); 811 OS.EmitIntValue(0, 1); 812 // Emit the function display name as a null-terminated string. 813 OS.AddComment("Function name"); 814 // Truncate the name so we won't overflow the record length field. 815 emitNullTerminatedSymbolName(OS, FuncName); 816 OS.EmitLabel(ProcRecordEnd); 817 818 emitLocalVariableList(FI.Locals); 819 820 // Emit inlined call site information. Only emit functions inlined directly 821 // into the parent function. We'll emit the other sites recursively as part 822 // of their parent inline site. 823 for (const DILocation *InlinedAt : FI.ChildSites) { 824 auto I = FI.InlineSites.find(InlinedAt); 825 assert(I != FI.InlineSites.end() && 826 "child site not in function inline site map"); 827 emitInlinedCallSite(FI, InlinedAt, I->second); 828 } 829 830 if (SP != nullptr) 831 emitDebugInfoForUDTs(LocalUDTs); 832 833 // We're done with this function. 834 OS.AddComment("Record length"); 835 OS.EmitIntValue(0x0002, 2); 836 OS.AddComment("Record kind: S_PROC_ID_END"); 837 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 838 } 839 endCVSubsection(SymbolsEnd); 840 841 // We have an assembler directive that takes care of the whole line table. 842 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 843 } 844 845 CodeViewDebug::LocalVarDefRange 846 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 847 LocalVarDefRange DR; 848 DR.InMemory = -1; 849 DR.DataOffset = Offset; 850 assert(DR.DataOffset == Offset && "truncation"); 851 DR.IsSubfield = 0; 852 DR.StructOffset = 0; 853 DR.CVRegister = CVRegister; 854 return DR; 855 } 856 857 CodeViewDebug::LocalVarDefRange 858 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 859 int Offset, bool IsSubfield, 860 uint16_t StructOffset) { 861 LocalVarDefRange DR; 862 DR.InMemory = InMemory; 863 DR.DataOffset = Offset; 864 DR.IsSubfield = IsSubfield; 865 DR.StructOffset = StructOffset; 866 DR.CVRegister = CVRegister; 867 return DR; 868 } 869 870 void CodeViewDebug::collectVariableInfoFromMFTable( 871 DenseSet<InlinedVariable> &Processed) { 872 const MachineFunction &MF = *Asm->MF; 873 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 874 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 875 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 876 877 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 878 if (!VI.Var) 879 continue; 880 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 881 "Expected inlined-at fields to agree"); 882 883 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 884 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 885 886 // If variable scope is not found then skip this variable. 887 if (!Scope) 888 continue; 889 890 // Get the frame register used and the offset. 891 unsigned FrameReg = 0; 892 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 893 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 894 895 // Calculate the label ranges. 896 LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset); 897 for (const InsnRange &Range : Scope->getRanges()) { 898 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 899 const MCSymbol *End = getLabelAfterInsn(Range.second); 900 End = End ? End : Asm->getFunctionEnd(); 901 DefRange.Ranges.emplace_back(Begin, End); 902 } 903 904 LocalVariable Var; 905 Var.DIVar = VI.Var; 906 Var.DefRanges.emplace_back(std::move(DefRange)); 907 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 908 } 909 } 910 911 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 912 DenseSet<InlinedVariable> Processed; 913 // Grab the variable info that was squirreled away in the MMI side-table. 914 collectVariableInfoFromMFTable(Processed); 915 916 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 917 918 for (const auto &I : DbgValues) { 919 InlinedVariable IV = I.first; 920 if (Processed.count(IV)) 921 continue; 922 const DILocalVariable *DIVar = IV.first; 923 const DILocation *InlinedAt = IV.second; 924 925 // Instruction ranges, specifying where IV is accessible. 926 const auto &Ranges = I.second; 927 928 LexicalScope *Scope = nullptr; 929 if (InlinedAt) 930 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 931 else 932 Scope = LScopes.findLexicalScope(DIVar->getScope()); 933 // If variable scope is not found then skip this variable. 934 if (!Scope) 935 continue; 936 937 LocalVariable Var; 938 Var.DIVar = DIVar; 939 940 // Calculate the definition ranges. 941 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 942 const InsnRange &Range = *I; 943 const MachineInstr *DVInst = Range.first; 944 assert(DVInst->isDebugValue() && "Invalid History entry"); 945 const DIExpression *DIExpr = DVInst->getDebugExpression(); 946 bool IsSubfield = false; 947 unsigned StructOffset = 0; 948 949 // Handle fragments. 950 auto Fragment = DIExpr->getFragmentInfo(); 951 if (DIExpr && Fragment) { 952 IsSubfield = true; 953 StructOffset = Fragment->OffsetInBits / 8; 954 } else if (DIExpr && DIExpr->getNumElements() > 0) { 955 continue; // Ignore unrecognized exprs. 956 } 957 958 // Bail if operand 0 is not a valid register. This means the variable is a 959 // simple constant, or is described by a complex expression. 960 // FIXME: Find a way to represent constant variables, since they are 961 // relatively common. 962 unsigned Reg = 963 DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0; 964 if (Reg == 0) 965 continue; 966 967 // Handle the two cases we can handle: indirect in memory and in register. 968 unsigned CVReg = TRI->getCodeViewRegNum(Reg); 969 bool InMemory = DVInst->getOperand(1).isImm(); 970 int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0; 971 { 972 LocalVarDefRange DR; 973 DR.CVRegister = CVReg; 974 DR.InMemory = InMemory; 975 DR.DataOffset = Offset; 976 DR.IsSubfield = IsSubfield; 977 DR.StructOffset = StructOffset; 978 979 if (Var.DefRanges.empty() || 980 Var.DefRanges.back().isDifferentLocation(DR)) { 981 Var.DefRanges.emplace_back(std::move(DR)); 982 } 983 } 984 985 // Compute the label range. 986 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 987 const MCSymbol *End = getLabelAfterInsn(Range.second); 988 if (!End) { 989 // This range is valid until the next overlapping bitpiece. In the 990 // common case, ranges will not be bitpieces, so they will overlap. 991 auto J = std::next(I); 992 while (J != E && 993 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 994 ++J; 995 if (J != E) 996 End = getLabelBeforeInsn(J->first); 997 else 998 End = Asm->getFunctionEnd(); 999 } 1000 1001 // If the last range end is our begin, just extend the last range. 1002 // Otherwise make a new range. 1003 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges = 1004 Var.DefRanges.back().Ranges; 1005 if (!Ranges.empty() && Ranges.back().second == Begin) 1006 Ranges.back().second = End; 1007 else 1008 Ranges.emplace_back(Begin, End); 1009 1010 // FIXME: Do more range combining. 1011 } 1012 1013 recordLocalVariable(std::move(Var), InlinedAt); 1014 } 1015 } 1016 1017 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1018 const Function *GV = MF->getFunction(); 1019 assert(FnDebugInfo.count(GV) == false); 1020 CurFn = &FnDebugInfo[GV]; 1021 CurFn->FuncId = NextFuncId++; 1022 CurFn->Begin = Asm->getFunctionBegin(); 1023 1024 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1025 1026 // Find the end of the function prolog. First known non-DBG_VALUE and 1027 // non-frame setup location marks the beginning of the function body. 1028 // FIXME: is there a simpler a way to do this? Can we just search 1029 // for the first instruction of the function, not the last of the prolog? 1030 DebugLoc PrologEndLoc; 1031 bool EmptyPrologue = true; 1032 for (const auto &MBB : *MF) { 1033 for (const auto &MI : MBB) { 1034 if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) && 1035 MI.getDebugLoc()) { 1036 PrologEndLoc = MI.getDebugLoc(); 1037 break; 1038 } else if (!MI.isDebugValue()) { 1039 EmptyPrologue = false; 1040 } 1041 } 1042 } 1043 1044 // Record beginning of function if we have a non-empty prologue. 1045 if (PrologEndLoc && !EmptyPrologue) { 1046 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1047 maybeRecordLocation(FnStartDL, MF); 1048 } 1049 } 1050 1051 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) { 1052 // Don't record empty UDTs. 1053 if (Ty->getName().empty()) 1054 return; 1055 1056 SmallVector<StringRef, 5> QualifiedNameComponents; 1057 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1058 Ty->getScope().resolve(), QualifiedNameComponents); 1059 1060 std::string FullyQualifiedName = 1061 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1062 1063 if (ClosestSubprogram == nullptr) 1064 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1065 else if (ClosestSubprogram == CurrentSubprogram) 1066 LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI); 1067 1068 // TODO: What if the ClosestSubprogram is neither null or the current 1069 // subprogram? Currently, the UDT just gets dropped on the floor. 1070 // 1071 // The current behavior is not desirable. To get maximal fidelity, we would 1072 // need to perform all type translation before beginning emission of .debug$S 1073 // and then make LocalUDTs a member of FunctionInfo 1074 } 1075 1076 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1077 // Generic dispatch for lowering an unknown type. 1078 switch (Ty->getTag()) { 1079 case dwarf::DW_TAG_array_type: 1080 return lowerTypeArray(cast<DICompositeType>(Ty)); 1081 case dwarf::DW_TAG_typedef: 1082 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1083 case dwarf::DW_TAG_base_type: 1084 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1085 case dwarf::DW_TAG_pointer_type: 1086 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1087 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1088 LLVM_FALLTHROUGH; 1089 case dwarf::DW_TAG_reference_type: 1090 case dwarf::DW_TAG_rvalue_reference_type: 1091 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1092 case dwarf::DW_TAG_ptr_to_member_type: 1093 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1094 case dwarf::DW_TAG_const_type: 1095 case dwarf::DW_TAG_volatile_type: 1096 // TODO: add support for DW_TAG_atomic_type here 1097 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1098 case dwarf::DW_TAG_subroutine_type: 1099 if (ClassTy) { 1100 // The member function type of a member function pointer has no 1101 // ThisAdjustment. 1102 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1103 /*ThisAdjustment=*/0); 1104 } 1105 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1106 case dwarf::DW_TAG_enumeration_type: 1107 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1108 case dwarf::DW_TAG_class_type: 1109 case dwarf::DW_TAG_structure_type: 1110 return lowerTypeClass(cast<DICompositeType>(Ty)); 1111 case dwarf::DW_TAG_union_type: 1112 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1113 default: 1114 // Use the null type index. 1115 return TypeIndex(); 1116 } 1117 } 1118 1119 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1120 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1121 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1122 StringRef TypeName = Ty->getName(); 1123 1124 addToUDTs(Ty, UnderlyingTypeIndex); 1125 1126 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1127 TypeName == "HRESULT") 1128 return TypeIndex(SimpleTypeKind::HResult); 1129 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1130 TypeName == "wchar_t") 1131 return TypeIndex(SimpleTypeKind::WideCharacter); 1132 1133 return UnderlyingTypeIndex; 1134 } 1135 1136 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1137 DITypeRef ElementTypeRef = Ty->getBaseType(); 1138 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1139 // IndexType is size_t, which depends on the bitness of the target. 1140 TypeIndex IndexType = Asm->MAI->getPointerSize() == 8 1141 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1142 : TypeIndex(SimpleTypeKind::UInt32Long); 1143 1144 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1145 1146 1147 // We want to assert that the element type multiplied by the array lengths 1148 // match the size of the overall array. However, if we don't have complete 1149 // type information for the base type, we can't make this assertion. This 1150 // happens if limited debug info is enabled in this case: 1151 // struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); }; 1152 // VTableOptzn array[3]; 1153 // The DICompositeType of VTableOptzn will have size zero, and the array will 1154 // have size 3 * sizeof(void*), and we should avoid asserting. 1155 // 1156 // There is a related bug in the front-end where an array of a structure, 1157 // which was declared as incomplete structure first, ends up not getting a 1158 // size assigned to it. (PR28303) 1159 // Example: 1160 // struct A(*p)[3]; 1161 // struct A { int f; } a[3]; 1162 bool PartiallyIncomplete = false; 1163 if (Ty->getSizeInBits() == 0 || ElementSize == 0) { 1164 PartiallyIncomplete = true; 1165 } 1166 1167 // Add subranges to array type. 1168 DINodeArray Elements = Ty->getElements(); 1169 for (int i = Elements.size() - 1; i >= 0; --i) { 1170 const DINode *Element = Elements[i]; 1171 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1172 1173 const DISubrange *Subrange = cast<DISubrange>(Element); 1174 assert(Subrange->getLowerBound() == 0 && 1175 "codeview doesn't support subranges with lower bounds"); 1176 int64_t Count = Subrange->getCount(); 1177 1178 // Variable Length Array (VLA) has Count equal to '-1'. 1179 // Replace with Count '1', assume it is the minimum VLA length. 1180 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1181 if (Count == -1) { 1182 Count = 1; 1183 PartiallyIncomplete = true; 1184 } 1185 1186 // Update the element size and element type index for subsequent subranges. 1187 ElementSize *= Count; 1188 1189 // If this is the outermost array, use the size from the array. It will be 1190 // more accurate if PartiallyIncomplete is true. 1191 uint64_t ArraySize = 1192 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1193 1194 StringRef Name = (i == 0) ? Ty->getName() : ""; 1195 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1196 ElementTypeIndex = TypeTable.writeKnownType(AR); 1197 } 1198 1199 (void)PartiallyIncomplete; 1200 assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8)); 1201 1202 return ElementTypeIndex; 1203 } 1204 1205 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1206 TypeIndex Index; 1207 dwarf::TypeKind Kind; 1208 uint32_t ByteSize; 1209 1210 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1211 ByteSize = Ty->getSizeInBits() / 8; 1212 1213 SimpleTypeKind STK = SimpleTypeKind::None; 1214 switch (Kind) { 1215 case dwarf::DW_ATE_address: 1216 // FIXME: Translate 1217 break; 1218 case dwarf::DW_ATE_boolean: 1219 switch (ByteSize) { 1220 case 1: STK = SimpleTypeKind::Boolean8; break; 1221 case 2: STK = SimpleTypeKind::Boolean16; break; 1222 case 4: STK = SimpleTypeKind::Boolean32; break; 1223 case 8: STK = SimpleTypeKind::Boolean64; break; 1224 case 16: STK = SimpleTypeKind::Boolean128; break; 1225 } 1226 break; 1227 case dwarf::DW_ATE_complex_float: 1228 switch (ByteSize) { 1229 case 2: STK = SimpleTypeKind::Complex16; break; 1230 case 4: STK = SimpleTypeKind::Complex32; break; 1231 case 8: STK = SimpleTypeKind::Complex64; break; 1232 case 10: STK = SimpleTypeKind::Complex80; break; 1233 case 16: STK = SimpleTypeKind::Complex128; break; 1234 } 1235 break; 1236 case dwarf::DW_ATE_float: 1237 switch (ByteSize) { 1238 case 2: STK = SimpleTypeKind::Float16; break; 1239 case 4: STK = SimpleTypeKind::Float32; break; 1240 case 6: STK = SimpleTypeKind::Float48; break; 1241 case 8: STK = SimpleTypeKind::Float64; break; 1242 case 10: STK = SimpleTypeKind::Float80; break; 1243 case 16: STK = SimpleTypeKind::Float128; break; 1244 } 1245 break; 1246 case dwarf::DW_ATE_signed: 1247 switch (ByteSize) { 1248 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1249 case 2: STK = SimpleTypeKind::Int16Short; break; 1250 case 4: STK = SimpleTypeKind::Int32; break; 1251 case 8: STK = SimpleTypeKind::Int64Quad; break; 1252 case 16: STK = SimpleTypeKind::Int128Oct; break; 1253 } 1254 break; 1255 case dwarf::DW_ATE_unsigned: 1256 switch (ByteSize) { 1257 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1258 case 2: STK = SimpleTypeKind::UInt16Short; break; 1259 case 4: STK = SimpleTypeKind::UInt32; break; 1260 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1261 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1262 } 1263 break; 1264 case dwarf::DW_ATE_UTF: 1265 switch (ByteSize) { 1266 case 2: STK = SimpleTypeKind::Character16; break; 1267 case 4: STK = SimpleTypeKind::Character32; break; 1268 } 1269 break; 1270 case dwarf::DW_ATE_signed_char: 1271 if (ByteSize == 1) 1272 STK = SimpleTypeKind::SignedCharacter; 1273 break; 1274 case dwarf::DW_ATE_unsigned_char: 1275 if (ByteSize == 1) 1276 STK = SimpleTypeKind::UnsignedCharacter; 1277 break; 1278 default: 1279 break; 1280 } 1281 1282 // Apply some fixups based on the source-level type name. 1283 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1284 STK = SimpleTypeKind::Int32Long; 1285 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1286 STK = SimpleTypeKind::UInt32Long; 1287 if (STK == SimpleTypeKind::UInt16Short && 1288 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1289 STK = SimpleTypeKind::WideCharacter; 1290 if ((STK == SimpleTypeKind::SignedCharacter || 1291 STK == SimpleTypeKind::UnsignedCharacter) && 1292 Ty->getName() == "char") 1293 STK = SimpleTypeKind::NarrowCharacter; 1294 1295 return TypeIndex(STK); 1296 } 1297 1298 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1299 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1300 1301 // Pointers to simple types can use SimpleTypeMode, rather than having a 1302 // dedicated pointer type record. 1303 if (PointeeTI.isSimple() && 1304 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1305 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1306 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1307 ? SimpleTypeMode::NearPointer64 1308 : SimpleTypeMode::NearPointer32; 1309 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1310 } 1311 1312 PointerKind PK = 1313 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1314 PointerMode PM = PointerMode::Pointer; 1315 switch (Ty->getTag()) { 1316 default: llvm_unreachable("not a pointer tag type"); 1317 case dwarf::DW_TAG_pointer_type: 1318 PM = PointerMode::Pointer; 1319 break; 1320 case dwarf::DW_TAG_reference_type: 1321 PM = PointerMode::LValueReference; 1322 break; 1323 case dwarf::DW_TAG_rvalue_reference_type: 1324 PM = PointerMode::RValueReference; 1325 break; 1326 } 1327 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1328 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1329 // do. 1330 PointerOptions PO = PointerOptions::None; 1331 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1332 return TypeTable.writeKnownType(PR); 1333 } 1334 1335 static PointerToMemberRepresentation 1336 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1337 // SizeInBytes being zero generally implies that the member pointer type was 1338 // incomplete, which can happen if it is part of a function prototype. In this 1339 // case, use the unknown model instead of the general model. 1340 if (IsPMF) { 1341 switch (Flags & DINode::FlagPtrToMemberRep) { 1342 case 0: 1343 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1344 : PointerToMemberRepresentation::GeneralFunction; 1345 case DINode::FlagSingleInheritance: 1346 return PointerToMemberRepresentation::SingleInheritanceFunction; 1347 case DINode::FlagMultipleInheritance: 1348 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1349 case DINode::FlagVirtualInheritance: 1350 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1351 } 1352 } else { 1353 switch (Flags & DINode::FlagPtrToMemberRep) { 1354 case 0: 1355 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1356 : PointerToMemberRepresentation::GeneralData; 1357 case DINode::FlagSingleInheritance: 1358 return PointerToMemberRepresentation::SingleInheritanceData; 1359 case DINode::FlagMultipleInheritance: 1360 return PointerToMemberRepresentation::MultipleInheritanceData; 1361 case DINode::FlagVirtualInheritance: 1362 return PointerToMemberRepresentation::VirtualInheritanceData; 1363 } 1364 } 1365 llvm_unreachable("invalid ptr to member representation"); 1366 } 1367 1368 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1369 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1370 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1371 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1372 PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64 1373 : PointerKind::Near32; 1374 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1375 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1376 : PointerMode::PointerToDataMember; 1377 PointerOptions PO = PointerOptions::None; // FIXME 1378 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1379 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1380 MemberPointerInfo MPI( 1381 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1382 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1383 return TypeTable.writeKnownType(PR); 1384 } 1385 1386 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1387 /// have a translation, use the NearC convention. 1388 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1389 switch (DwarfCC) { 1390 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1391 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1392 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1393 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1394 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1395 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1396 } 1397 return CallingConvention::NearC; 1398 } 1399 1400 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1401 ModifierOptions Mods = ModifierOptions::None; 1402 bool IsModifier = true; 1403 const DIType *BaseTy = Ty; 1404 while (IsModifier && BaseTy) { 1405 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1406 switch (BaseTy->getTag()) { 1407 case dwarf::DW_TAG_const_type: 1408 Mods |= ModifierOptions::Const; 1409 break; 1410 case dwarf::DW_TAG_volatile_type: 1411 Mods |= ModifierOptions::Volatile; 1412 break; 1413 default: 1414 IsModifier = false; 1415 break; 1416 } 1417 if (IsModifier) 1418 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1419 } 1420 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1421 ModifierRecord MR(ModifiedTI, Mods); 1422 return TypeTable.writeKnownType(MR); 1423 } 1424 1425 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1426 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1427 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1428 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1429 1430 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1431 ArrayRef<TypeIndex> ArgTypeIndices = None; 1432 if (!ReturnAndArgTypeIndices.empty()) { 1433 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1434 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1435 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1436 } 1437 1438 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1439 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1440 1441 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1442 1443 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1444 ArgTypeIndices.size(), ArgListIndex); 1445 return TypeTable.writeKnownType(Procedure); 1446 } 1447 1448 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1449 const DIType *ClassTy, 1450 int ThisAdjustment) { 1451 // Lower the containing class type. 1452 TypeIndex ClassType = getTypeIndex(ClassTy); 1453 1454 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1455 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1456 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1457 1458 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1459 ArrayRef<TypeIndex> ArgTypeIndices = None; 1460 if (!ReturnAndArgTypeIndices.empty()) { 1461 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1462 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1463 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1464 } 1465 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1466 if (!ArgTypeIndices.empty()) { 1467 ThisTypeIndex = ArgTypeIndices.front(); 1468 ArgTypeIndices = ArgTypeIndices.drop_front(); 1469 } 1470 1471 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1472 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1473 1474 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1475 1476 // TODO: Need to use the correct values for: 1477 // FunctionOptions 1478 // ThisPointerAdjustment. 1479 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1480 FunctionOptions::None, ArgTypeIndices.size(), 1481 ArgListIndex, ThisAdjustment); 1482 TypeIndex TI = TypeTable.writeKnownType(MFR); 1483 1484 return TI; 1485 } 1486 1487 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1488 unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize()); 1489 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1490 1491 VFTableShapeRecord VFTSR(Slots); 1492 return TypeTable.writeKnownType(VFTSR); 1493 } 1494 1495 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1496 switch (Flags & DINode::FlagAccessibility) { 1497 case DINode::FlagPrivate: return MemberAccess::Private; 1498 case DINode::FlagPublic: return MemberAccess::Public; 1499 case DINode::FlagProtected: return MemberAccess::Protected; 1500 case 0: 1501 // If there was no explicit access control, provide the default for the tag. 1502 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1503 : MemberAccess::Public; 1504 } 1505 llvm_unreachable("access flags are exclusive"); 1506 } 1507 1508 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1509 if (SP->isArtificial()) 1510 return MethodOptions::CompilerGenerated; 1511 1512 // FIXME: Handle other MethodOptions. 1513 1514 return MethodOptions::None; 1515 } 1516 1517 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1518 bool Introduced) { 1519 switch (SP->getVirtuality()) { 1520 case dwarf::DW_VIRTUALITY_none: 1521 break; 1522 case dwarf::DW_VIRTUALITY_virtual: 1523 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1524 case dwarf::DW_VIRTUALITY_pure_virtual: 1525 return Introduced ? MethodKind::PureIntroducingVirtual 1526 : MethodKind::PureVirtual; 1527 default: 1528 llvm_unreachable("unhandled virtuality case"); 1529 } 1530 1531 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1532 1533 return MethodKind::Vanilla; 1534 } 1535 1536 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1537 switch (Ty->getTag()) { 1538 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1539 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1540 } 1541 llvm_unreachable("unexpected tag"); 1542 } 1543 1544 /// Return ClassOptions that should be present on both the forward declaration 1545 /// and the defintion of a tag type. 1546 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1547 ClassOptions CO = ClassOptions::None; 1548 1549 // MSVC always sets this flag, even for local types. Clang doesn't always 1550 // appear to give every type a linkage name, which may be problematic for us. 1551 // FIXME: Investigate the consequences of not following them here. 1552 if (!Ty->getIdentifier().empty()) 1553 CO |= ClassOptions::HasUniqueName; 1554 1555 // Put the Nested flag on a type if it appears immediately inside a tag type. 1556 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1557 // here. That flag is only set on definitions, and not forward declarations. 1558 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1559 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1560 CO |= ClassOptions::Nested; 1561 1562 // Put the Scoped flag on function-local types. 1563 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1564 Scope = Scope->getScope().resolve()) { 1565 if (isa<DISubprogram>(Scope)) { 1566 CO |= ClassOptions::Scoped; 1567 break; 1568 } 1569 } 1570 1571 return CO; 1572 } 1573 1574 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1575 ClassOptions CO = getCommonClassOptions(Ty); 1576 TypeIndex FTI; 1577 unsigned EnumeratorCount = 0; 1578 1579 if (Ty->isForwardDecl()) { 1580 CO |= ClassOptions::ForwardReference; 1581 } else { 1582 FieldListRecordBuilder FLRB(TypeTable); 1583 1584 FLRB.begin(); 1585 for (const DINode *Element : Ty->getElements()) { 1586 // We assume that the frontend provides all members in source declaration 1587 // order, which is what MSVC does. 1588 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1589 EnumeratorRecord ER(MemberAccess::Public, 1590 APSInt::getUnsigned(Enumerator->getValue()), 1591 Enumerator->getName()); 1592 FLRB.writeMemberType(ER); 1593 EnumeratorCount++; 1594 } 1595 } 1596 FTI = FLRB.end(); 1597 } 1598 1599 std::string FullName = getFullyQualifiedName(Ty); 1600 1601 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1602 getTypeIndex(Ty->getBaseType())); 1603 return TypeTable.writeKnownType(ER); 1604 } 1605 1606 //===----------------------------------------------------------------------===// 1607 // ClassInfo 1608 //===----------------------------------------------------------------------===// 1609 1610 struct llvm::ClassInfo { 1611 struct MemberInfo { 1612 const DIDerivedType *MemberTypeNode; 1613 uint64_t BaseOffset; 1614 }; 1615 // [MemberInfo] 1616 typedef std::vector<MemberInfo> MemberList; 1617 1618 typedef TinyPtrVector<const DISubprogram *> MethodsList; 1619 // MethodName -> MethodsList 1620 typedef MapVector<MDString *, MethodsList> MethodsMap; 1621 1622 /// Base classes. 1623 std::vector<const DIDerivedType *> Inheritance; 1624 1625 /// Direct members. 1626 MemberList Members; 1627 // Direct overloaded methods gathered by name. 1628 MethodsMap Methods; 1629 1630 TypeIndex VShapeTI; 1631 1632 std::vector<const DICompositeType *> NestedClasses; 1633 }; 1634 1635 void CodeViewDebug::clear() { 1636 assert(CurFn == nullptr); 1637 FileIdMap.clear(); 1638 FnDebugInfo.clear(); 1639 FileToFilepathMap.clear(); 1640 LocalUDTs.clear(); 1641 GlobalUDTs.clear(); 1642 TypeIndices.clear(); 1643 CompleteTypeIndices.clear(); 1644 } 1645 1646 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1647 const DIDerivedType *DDTy) { 1648 if (!DDTy->getName().empty()) { 1649 Info.Members.push_back({DDTy, 0}); 1650 return; 1651 } 1652 // An unnamed member must represent a nested struct or union. Add all the 1653 // indirect fields to the current record. 1654 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1655 uint64_t Offset = DDTy->getOffsetInBits(); 1656 const DIType *Ty = DDTy->getBaseType().resolve(); 1657 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1658 ClassInfo NestedInfo = collectClassInfo(DCTy); 1659 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1660 Info.Members.push_back( 1661 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1662 } 1663 1664 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1665 ClassInfo Info; 1666 // Add elements to structure type. 1667 DINodeArray Elements = Ty->getElements(); 1668 for (auto *Element : Elements) { 1669 // We assume that the frontend provides all members in source declaration 1670 // order, which is what MSVC does. 1671 if (!Element) 1672 continue; 1673 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1674 Info.Methods[SP->getRawName()].push_back(SP); 1675 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1676 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1677 collectMemberInfo(Info, DDTy); 1678 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1679 Info.Inheritance.push_back(DDTy); 1680 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1681 DDTy->getName() == "__vtbl_ptr_type") { 1682 Info.VShapeTI = getTypeIndex(DDTy); 1683 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1684 // Ignore friend members. It appears that MSVC emitted info about 1685 // friends in the past, but modern versions do not. 1686 } 1687 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1688 Info.NestedClasses.push_back(Composite); 1689 } 1690 // Skip other unrecognized kinds of elements. 1691 } 1692 return Info; 1693 } 1694 1695 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1696 // First, construct the forward decl. Don't look into Ty to compute the 1697 // forward decl options, since it might not be available in all TUs. 1698 TypeRecordKind Kind = getRecordKind(Ty); 1699 ClassOptions CO = 1700 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1701 std::string FullName = getFullyQualifiedName(Ty); 1702 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1703 FullName, Ty->getIdentifier()); 1704 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1705 if (!Ty->isForwardDecl()) 1706 DeferredCompleteTypes.push_back(Ty); 1707 return FwdDeclTI; 1708 } 1709 1710 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1711 // Construct the field list and complete type record. 1712 TypeRecordKind Kind = getRecordKind(Ty); 1713 ClassOptions CO = getCommonClassOptions(Ty); 1714 TypeIndex FieldTI; 1715 TypeIndex VShapeTI; 1716 unsigned FieldCount; 1717 bool ContainsNestedClass; 1718 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1719 lowerRecordFieldList(Ty); 1720 1721 if (ContainsNestedClass) 1722 CO |= ClassOptions::ContainsNestedClass; 1723 1724 std::string FullName = getFullyQualifiedName(Ty); 1725 1726 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1727 1728 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1729 SizeInBytes, FullName, Ty->getIdentifier()); 1730 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1731 1732 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1733 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1734 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1735 TypeTable.writeKnownType(USLR); 1736 1737 addToUDTs(Ty, ClassTI); 1738 1739 return ClassTI; 1740 } 1741 1742 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1743 ClassOptions CO = 1744 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1745 std::string FullName = getFullyQualifiedName(Ty); 1746 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1747 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1748 if (!Ty->isForwardDecl()) 1749 DeferredCompleteTypes.push_back(Ty); 1750 return FwdDeclTI; 1751 } 1752 1753 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1754 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1755 TypeIndex FieldTI; 1756 unsigned FieldCount; 1757 bool ContainsNestedClass; 1758 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1759 lowerRecordFieldList(Ty); 1760 1761 if (ContainsNestedClass) 1762 CO |= ClassOptions::ContainsNestedClass; 1763 1764 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1765 std::string FullName = getFullyQualifiedName(Ty); 1766 1767 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1768 Ty->getIdentifier()); 1769 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1770 1771 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1772 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1773 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1774 TypeTable.writeKnownType(USLR); 1775 1776 addToUDTs(Ty, UnionTI); 1777 1778 return UnionTI; 1779 } 1780 1781 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1782 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1783 // Manually count members. MSVC appears to count everything that generates a 1784 // field list record. Each individual overload in a method overload group 1785 // contributes to this count, even though the overload group is a single field 1786 // list record. 1787 unsigned MemberCount = 0; 1788 ClassInfo Info = collectClassInfo(Ty); 1789 FieldListRecordBuilder FLBR(TypeTable); 1790 FLBR.begin(); 1791 1792 // Create base classes. 1793 for (const DIDerivedType *I : Info.Inheritance) { 1794 if (I->getFlags() & DINode::FlagVirtual) { 1795 // Virtual base. 1796 // FIXME: Emit VBPtrOffset when the frontend provides it. 1797 unsigned VBPtrOffset = 0; 1798 // FIXME: Despite the accessor name, the offset is really in bytes. 1799 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1800 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1801 ? TypeRecordKind::IndirectVirtualBaseClass 1802 : TypeRecordKind::VirtualBaseClass; 1803 VirtualBaseClassRecord VBCR( 1804 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1805 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1806 VBTableIndex); 1807 1808 FLBR.writeMemberType(VBCR); 1809 } else { 1810 assert(I->getOffsetInBits() % 8 == 0 && 1811 "bases must be on byte boundaries"); 1812 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1813 getTypeIndex(I->getBaseType()), 1814 I->getOffsetInBits() / 8); 1815 FLBR.writeMemberType(BCR); 1816 } 1817 } 1818 1819 // Create members. 1820 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1821 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1822 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1823 StringRef MemberName = Member->getName(); 1824 MemberAccess Access = 1825 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1826 1827 if (Member->isStaticMember()) { 1828 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1829 FLBR.writeMemberType(SDMR); 1830 MemberCount++; 1831 continue; 1832 } 1833 1834 // Virtual function pointer member. 1835 if ((Member->getFlags() & DINode::FlagArtificial) && 1836 Member->getName().startswith("_vptr$")) { 1837 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1838 FLBR.writeMemberType(VFPR); 1839 MemberCount++; 1840 continue; 1841 } 1842 1843 // Data member. 1844 uint64_t MemberOffsetInBits = 1845 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1846 if (Member->isBitField()) { 1847 uint64_t StartBitOffset = MemberOffsetInBits; 1848 if (const auto *CI = 1849 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1850 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1851 } 1852 StartBitOffset -= MemberOffsetInBits; 1853 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1854 StartBitOffset); 1855 MemberBaseType = TypeTable.writeKnownType(BFR); 1856 } 1857 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1858 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1859 MemberName); 1860 FLBR.writeMemberType(DMR); 1861 MemberCount++; 1862 } 1863 1864 // Create methods 1865 for (auto &MethodItr : Info.Methods) { 1866 StringRef Name = MethodItr.first->getString(); 1867 1868 std::vector<OneMethodRecord> Methods; 1869 for (const DISubprogram *SP : MethodItr.second) { 1870 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1871 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1872 1873 unsigned VFTableOffset = -1; 1874 if (Introduced) 1875 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1876 1877 Methods.push_back(OneMethodRecord( 1878 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1879 translateMethodKindFlags(SP, Introduced), 1880 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1881 MemberCount++; 1882 } 1883 assert(Methods.size() > 0 && "Empty methods map entry"); 1884 if (Methods.size() == 1) 1885 FLBR.writeMemberType(Methods[0]); 1886 else { 1887 MethodOverloadListRecord MOLR(Methods); 1888 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1889 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1890 FLBR.writeMemberType(OMR); 1891 } 1892 } 1893 1894 // Create nested classes. 1895 for (const DICompositeType *Nested : Info.NestedClasses) { 1896 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1897 FLBR.writeMemberType(R); 1898 MemberCount++; 1899 } 1900 1901 TypeIndex FieldTI = FLBR.end(); 1902 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1903 !Info.NestedClasses.empty()); 1904 } 1905 1906 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1907 if (!VBPType.getIndex()) { 1908 // Make a 'const int *' type. 1909 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1910 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1911 1912 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1913 : PointerKind::Near32; 1914 PointerMode PM = PointerMode::Pointer; 1915 PointerOptions PO = PointerOptions::None; 1916 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1917 1918 VBPType = TypeTable.writeKnownType(PR); 1919 } 1920 1921 return VBPType; 1922 } 1923 1924 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1925 const DIType *Ty = TypeRef.resolve(); 1926 const DIType *ClassTy = ClassTyRef.resolve(); 1927 1928 // The null DIType is the void type. Don't try to hash it. 1929 if (!Ty) 1930 return TypeIndex::Void(); 1931 1932 // Check if we've already translated this type. Don't try to do a 1933 // get-or-create style insertion that caches the hash lookup across the 1934 // lowerType call. It will update the TypeIndices map. 1935 auto I = TypeIndices.find({Ty, ClassTy}); 1936 if (I != TypeIndices.end()) 1937 return I->second; 1938 1939 TypeLoweringScope S(*this); 1940 TypeIndex TI = lowerType(Ty, ClassTy); 1941 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1942 } 1943 1944 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 1945 const DIType *Ty = TypeRef.resolve(); 1946 1947 // The null DIType is the void type. Don't try to hash it. 1948 if (!Ty) 1949 return TypeIndex::Void(); 1950 1951 // If this is a non-record type, the complete type index is the same as the 1952 // normal type index. Just call getTypeIndex. 1953 switch (Ty->getTag()) { 1954 case dwarf::DW_TAG_class_type: 1955 case dwarf::DW_TAG_structure_type: 1956 case dwarf::DW_TAG_union_type: 1957 break; 1958 default: 1959 return getTypeIndex(Ty); 1960 } 1961 1962 // Check if we've already translated the complete record type. Lowering a 1963 // complete type should never trigger lowering another complete type, so we 1964 // can reuse the hash table lookup result. 1965 const auto *CTy = cast<DICompositeType>(Ty); 1966 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 1967 if (!InsertResult.second) 1968 return InsertResult.first->second; 1969 1970 TypeLoweringScope S(*this); 1971 1972 // Make sure the forward declaration is emitted first. It's unclear if this 1973 // is necessary, but MSVC does it, and we should follow suit until we can show 1974 // otherwise. 1975 TypeIndex FwdDeclTI = getTypeIndex(CTy); 1976 1977 // Just use the forward decl if we don't have complete type info. This might 1978 // happen if the frontend is using modules and expects the complete definition 1979 // to be emitted elsewhere. 1980 if (CTy->isForwardDecl()) 1981 return FwdDeclTI; 1982 1983 TypeIndex TI; 1984 switch (CTy->getTag()) { 1985 case dwarf::DW_TAG_class_type: 1986 case dwarf::DW_TAG_structure_type: 1987 TI = lowerCompleteTypeClass(CTy); 1988 break; 1989 case dwarf::DW_TAG_union_type: 1990 TI = lowerCompleteTypeUnion(CTy); 1991 break; 1992 default: 1993 llvm_unreachable("not a record"); 1994 } 1995 1996 InsertResult.first->second = TI; 1997 return TI; 1998 } 1999 2000 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2001 /// and do this until fixpoint, as each complete record type typically 2002 /// references 2003 /// many other record types. 2004 void CodeViewDebug::emitDeferredCompleteTypes() { 2005 SmallVector<const DICompositeType *, 4> TypesToEmit; 2006 while (!DeferredCompleteTypes.empty()) { 2007 std::swap(DeferredCompleteTypes, TypesToEmit); 2008 for (const DICompositeType *RecordTy : TypesToEmit) 2009 getCompleteTypeIndex(RecordTy); 2010 TypesToEmit.clear(); 2011 } 2012 } 2013 2014 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2015 // Get the sorted list of parameters and emit them first. 2016 SmallVector<const LocalVariable *, 6> Params; 2017 for (const LocalVariable &L : Locals) 2018 if (L.DIVar->isParameter()) 2019 Params.push_back(&L); 2020 std::sort(Params.begin(), Params.end(), 2021 [](const LocalVariable *L, const LocalVariable *R) { 2022 return L->DIVar->getArg() < R->DIVar->getArg(); 2023 }); 2024 for (const LocalVariable *L : Params) 2025 emitLocalVariable(*L); 2026 2027 // Next emit all non-parameters in the order that we found them. 2028 for (const LocalVariable &L : Locals) 2029 if (!L.DIVar->isParameter()) 2030 emitLocalVariable(L); 2031 } 2032 2033 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2034 // LocalSym record, see SymbolRecord.h for more info. 2035 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2036 *LocalEnd = MMI->getContext().createTempSymbol(); 2037 OS.AddComment("Record length"); 2038 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2039 OS.EmitLabel(LocalBegin); 2040 2041 OS.AddComment("Record kind: S_LOCAL"); 2042 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2043 2044 LocalSymFlags Flags = LocalSymFlags::None; 2045 if (Var.DIVar->isParameter()) 2046 Flags |= LocalSymFlags::IsParameter; 2047 if (Var.DefRanges.empty()) 2048 Flags |= LocalSymFlags::IsOptimizedOut; 2049 2050 OS.AddComment("TypeIndex"); 2051 TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType()); 2052 OS.EmitIntValue(TI.getIndex(), 4); 2053 OS.AddComment("Flags"); 2054 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2055 // Truncate the name so we won't overflow the record length field. 2056 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2057 OS.EmitLabel(LocalEnd); 2058 2059 // Calculate the on disk prefix of the appropriate def range record. The 2060 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2061 // should be big enough to hold all forms without memory allocation. 2062 SmallString<20> BytePrefix; 2063 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2064 BytePrefix.clear(); 2065 if (DefRange.InMemory) { 2066 uint16_t RegRelFlags = 0; 2067 if (DefRange.IsSubfield) { 2068 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2069 (DefRange.StructOffset 2070 << DefRangeRegisterRelSym::OffsetInParentShift); 2071 } 2072 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2073 Sym.Hdr.Register = DefRange.CVRegister; 2074 Sym.Hdr.Flags = RegRelFlags; 2075 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2076 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2077 BytePrefix += 2078 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2079 BytePrefix += 2080 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2081 } else { 2082 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2083 if (DefRange.IsSubfield) { 2084 // Unclear what matters here. 2085 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2086 Sym.Hdr.Register = DefRange.CVRegister; 2087 Sym.Hdr.MayHaveNoName = 0; 2088 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2089 2090 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2091 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2092 sizeof(SymKind)); 2093 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2094 sizeof(Sym.Hdr)); 2095 } else { 2096 // Unclear what matters here. 2097 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2098 Sym.Hdr.Register = DefRange.CVRegister; 2099 Sym.Hdr.MayHaveNoName = 0; 2100 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2101 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2102 sizeof(SymKind)); 2103 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2104 sizeof(Sym.Hdr)); 2105 } 2106 } 2107 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2108 } 2109 } 2110 2111 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2112 const Function *GV = MF->getFunction(); 2113 assert(FnDebugInfo.count(GV)); 2114 assert(CurFn == &FnDebugInfo[GV]); 2115 2116 collectVariableInfo(GV->getSubprogram()); 2117 2118 // Don't emit anything if we don't have any line tables. 2119 if (!CurFn->HaveLineInfo) { 2120 FnDebugInfo.erase(GV); 2121 CurFn = nullptr; 2122 return; 2123 } 2124 2125 CurFn->End = Asm->getFunctionEnd(); 2126 2127 CurFn = nullptr; 2128 } 2129 2130 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2131 DebugHandlerBase::beginInstruction(MI); 2132 2133 // Ignore DBG_VALUE locations and function prologue. 2134 if (!Asm || !CurFn || MI->isDebugValue() || 2135 MI->getFlag(MachineInstr::FrameSetup)) 2136 return; 2137 DebugLoc DL = MI->getDebugLoc(); 2138 if (DL == PrevInstLoc || !DL) 2139 return; 2140 maybeRecordLocation(DL, Asm->MF); 2141 } 2142 2143 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) { 2144 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2145 *EndLabel = MMI->getContext().createTempSymbol(); 2146 OS.EmitIntValue(unsigned(Kind), 4); 2147 OS.AddComment("Subsection size"); 2148 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2149 OS.EmitLabel(BeginLabel); 2150 return EndLabel; 2151 } 2152 2153 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2154 OS.EmitLabel(EndLabel); 2155 // Every subsection must be aligned to a 4-byte boundary. 2156 OS.EmitValueToAlignment(4); 2157 } 2158 2159 void CodeViewDebug::emitDebugInfoForUDTs( 2160 ArrayRef<std::pair<std::string, TypeIndex>> UDTs) { 2161 for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) { 2162 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2163 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2164 OS.AddComment("Record length"); 2165 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2166 OS.EmitLabel(UDTRecordBegin); 2167 2168 OS.AddComment("Record kind: S_UDT"); 2169 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2170 2171 OS.AddComment("Type"); 2172 OS.EmitIntValue(UDT.second.getIndex(), 4); 2173 2174 emitNullTerminatedSymbolName(OS, UDT.first); 2175 OS.EmitLabel(UDTRecordEnd); 2176 } 2177 } 2178 2179 void CodeViewDebug::emitDebugInfoForGlobals() { 2180 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2181 GlobalMap; 2182 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2183 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2184 GV.getDebugInfo(GVEs); 2185 for (const auto *GVE : GVEs) 2186 GlobalMap[GVE] = &GV; 2187 } 2188 2189 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2190 for (const MDNode *Node : CUs->operands()) { 2191 const auto *CU = cast<DICompileUnit>(Node); 2192 2193 // First, emit all globals that are not in a comdat in a single symbol 2194 // substream. MSVC doesn't like it if the substream is empty, so only open 2195 // it if we have at least one global to emit. 2196 switchToDebugSectionForSymbol(nullptr); 2197 MCSymbol *EndLabel = nullptr; 2198 for (const auto *GVE : CU->getGlobalVariables()) { 2199 if (const auto *GV = GlobalMap.lookup(GVE)) 2200 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2201 if (!EndLabel) { 2202 OS.AddComment("Symbol subsection for globals"); 2203 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2204 } 2205 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2206 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2207 } 2208 } 2209 if (EndLabel) 2210 endCVSubsection(EndLabel); 2211 2212 // Second, emit each global that is in a comdat into its own .debug$S 2213 // section along with its own symbol substream. 2214 for (const auto *GVE : CU->getGlobalVariables()) { 2215 if (const auto *GV = GlobalMap.lookup(GVE)) { 2216 if (GV->hasComdat()) { 2217 MCSymbol *GVSym = Asm->getSymbol(GV); 2218 OS.AddComment("Symbol subsection for " + 2219 Twine(GlobalValue::getRealLinkageName(GV->getName()))); 2220 switchToDebugSectionForSymbol(GVSym); 2221 EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols); 2222 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2223 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2224 endCVSubsection(EndLabel); 2225 } 2226 } 2227 } 2228 } 2229 } 2230 2231 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2232 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2233 for (const MDNode *Node : CUs->operands()) { 2234 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2235 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2236 getTypeIndex(RT); 2237 // FIXME: Add to global/local DTU list. 2238 } 2239 } 2240 } 2241 } 2242 2243 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2244 const GlobalVariable *GV, 2245 MCSymbol *GVSym) { 2246 // DataSym record, see SymbolRecord.h for more info. 2247 // FIXME: Thread local data, etc 2248 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2249 *DataEnd = MMI->getContext().createTempSymbol(); 2250 OS.AddComment("Record length"); 2251 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2252 OS.EmitLabel(DataBegin); 2253 if (DIGV->isLocalToUnit()) { 2254 if (GV->isThreadLocal()) { 2255 OS.AddComment("Record kind: S_LTHREAD32"); 2256 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2257 } else { 2258 OS.AddComment("Record kind: S_LDATA32"); 2259 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2260 } 2261 } else { 2262 if (GV->isThreadLocal()) { 2263 OS.AddComment("Record kind: S_GTHREAD32"); 2264 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2265 } else { 2266 OS.AddComment("Record kind: S_GDATA32"); 2267 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2268 } 2269 } 2270 OS.AddComment("Type"); 2271 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2272 OS.AddComment("DataOffset"); 2273 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2274 OS.AddComment("Segment"); 2275 OS.EmitCOFFSectionIndex(GVSym); 2276 OS.AddComment("Name"); 2277 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2278 OS.EmitLabel(DataEnd); 2279 } 2280