1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeDumper.h"
17 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
18 #include "llvm/DebugInfo/CodeView/CodeView.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDatabase.h"
22 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
23 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
24 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
25 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCSectionCOFF.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/BinaryByteStream.h"
32 #include "llvm/Support/BinaryStreamReader.h"
33 #include "llvm/Support/COFF.h"
34 #include "llvm/Support/ScopedPrinter.h"
35 #include "llvm/Target/TargetFrameLowering.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 
39 using namespace llvm;
40 using namespace llvm::codeview;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
44       TypeTable(Allocator), CurFn(nullptr) {
45   // If module doesn't have named metadata anchors or COFF debug section
46   // is not available, skip any debug info related stuff.
47   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
48       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
49     Asm = nullptr;
50     return;
51   }
52 
53   // Tell MMI that we have debug info.
54   MMI->setDebugInfoAvailability(true);
55 }
56 
57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
58   std::string &Filepath = FileToFilepathMap[File];
59   if (!Filepath.empty())
60     return Filepath;
61 
62   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
63 
64   // Clang emits directory and relative filename info into the IR, but CodeView
65   // operates on full paths.  We could change Clang to emit full paths too, but
66   // that would increase the IR size and probably not needed for other users.
67   // For now, just concatenate and canonicalize the path here.
68   if (Filename.find(':') == 1)
69     Filepath = Filename;
70   else
71     Filepath = (Dir + "\\" + Filename).str();
72 
73   // Canonicalize the path.  We have to do it textually because we may no longer
74   // have access the file in the filesystem.
75   // First, replace all slashes with backslashes.
76   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
77 
78   // Remove all "\.\" with "\".
79   size_t Cursor = 0;
80   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
81     Filepath.erase(Cursor, 2);
82 
83   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
84   // path should be well-formatted, e.g. start with a drive letter, etc.
85   Cursor = 0;
86   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
87     // Something's wrong if the path starts with "\..\", abort.
88     if (Cursor == 0)
89       break;
90 
91     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
92     if (PrevSlash == std::string::npos)
93       // Something's wrong, abort.
94       break;
95 
96     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
97     // The next ".." might be following the one we've just erased.
98     Cursor = PrevSlash;
99   }
100 
101   // Remove all duplicate backslashes.
102   Cursor = 0;
103   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
104     Filepath.erase(Cursor, 1);
105 
106   return Filepath;
107 }
108 
109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
110   unsigned NextId = FileIdMap.size() + 1;
111   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
112   if (Insertion.second) {
113     // We have to compute the full filepath and emit a .cv_file directive.
114     StringRef FullPath = getFullFilepath(F);
115     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
116     (void)Success;
117     assert(Success && ".cv_file directive failed");
118   }
119   return Insertion.first->second;
120 }
121 
122 CodeViewDebug::InlineSite &
123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
124                              const DISubprogram *Inlinee) {
125   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
126   InlineSite *Site = &SiteInsertion.first->second;
127   if (SiteInsertion.second) {
128     unsigned ParentFuncId = CurFn->FuncId;
129     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
130       ParentFuncId =
131           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
132               .SiteFuncId;
133 
134     Site->SiteFuncId = NextFuncId++;
135     OS.EmitCVInlineSiteIdDirective(
136         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
137         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
138     Site->Inlinee = Inlinee;
139     InlinedSubprograms.insert(Inlinee);
140     getFuncIdForSubprogram(Inlinee);
141   }
142   return *Site;
143 }
144 
145 static StringRef getPrettyScopeName(const DIScope *Scope) {
146   StringRef ScopeName = Scope->getName();
147   if (!ScopeName.empty())
148     return ScopeName;
149 
150   switch (Scope->getTag()) {
151   case dwarf::DW_TAG_enumeration_type:
152   case dwarf::DW_TAG_class_type:
153   case dwarf::DW_TAG_structure_type:
154   case dwarf::DW_TAG_union_type:
155     return "<unnamed-tag>";
156   case dwarf::DW_TAG_namespace:
157     return "`anonymous namespace'";
158   }
159 
160   return StringRef();
161 }
162 
163 static const DISubprogram *getQualifiedNameComponents(
164     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
165   const DISubprogram *ClosestSubprogram = nullptr;
166   while (Scope != nullptr) {
167     if (ClosestSubprogram == nullptr)
168       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
169     StringRef ScopeName = getPrettyScopeName(Scope);
170     if (!ScopeName.empty())
171       QualifiedNameComponents.push_back(ScopeName);
172     Scope = Scope->getScope().resolve();
173   }
174   return ClosestSubprogram;
175 }
176 
177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
178                                     StringRef TypeName) {
179   std::string FullyQualifiedName;
180   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
181     FullyQualifiedName.append(QualifiedNameComponent);
182     FullyQualifiedName.append("::");
183   }
184   FullyQualifiedName.append(TypeName);
185   return FullyQualifiedName;
186 }
187 
188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
189   SmallVector<StringRef, 5> QualifiedNameComponents;
190   getQualifiedNameComponents(Scope, QualifiedNameComponents);
191   return getQualifiedName(QualifiedNameComponents, Name);
192 }
193 
194 struct CodeViewDebug::TypeLoweringScope {
195   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
196   ~TypeLoweringScope() {
197     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
198     // inner TypeLoweringScopes don't attempt to emit deferred types.
199     if (CVD.TypeEmissionLevel == 1)
200       CVD.emitDeferredCompleteTypes();
201     --CVD.TypeEmissionLevel;
202   }
203   CodeViewDebug &CVD;
204 };
205 
206 static std::string getFullyQualifiedName(const DIScope *Ty) {
207   const DIScope *Scope = Ty->getScope().resolve();
208   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
209 }
210 
211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
212   // No scope means global scope and that uses the zero index.
213   if (!Scope || isa<DIFile>(Scope))
214     return TypeIndex();
215 
216   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
217 
218   // Check if we've already translated this scope.
219   auto I = TypeIndices.find({Scope, nullptr});
220   if (I != TypeIndices.end())
221     return I->second;
222 
223   // Build the fully qualified name of the scope.
224   std::string ScopeName = getFullyQualifiedName(Scope);
225   StringIdRecord SID(TypeIndex(), ScopeName);
226   auto TI = TypeTable.writeKnownType(SID);
227   return recordTypeIndexForDINode(Scope, TI);
228 }
229 
230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
231   assert(SP);
232 
233   // Check if we've already translated this subprogram.
234   auto I = TypeIndices.find({SP, nullptr});
235   if (I != TypeIndices.end())
236     return I->second;
237 
238   // The display name includes function template arguments. Drop them to match
239   // MSVC.
240   StringRef DisplayName = SP->getDisplayName().split('<').first;
241 
242   const DIScope *Scope = SP->getScope().resolve();
243   TypeIndex TI;
244   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
245     // If the scope is a DICompositeType, then this must be a method. Member
246     // function types take some special handling, and require access to the
247     // subprogram.
248     TypeIndex ClassType = getTypeIndex(Class);
249     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
250                                DisplayName);
251     TI = TypeTable.writeKnownType(MFuncId);
252   } else {
253     // Otherwise, this must be a free function.
254     TypeIndex ParentScope = getScopeIndex(Scope);
255     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
256     TI = TypeTable.writeKnownType(FuncId);
257   }
258 
259   return recordTypeIndexForDINode(SP, TI);
260 }
261 
262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
263                                                const DICompositeType *Class) {
264   // Always use the method declaration as the key for the function type. The
265   // method declaration contains the this adjustment.
266   if (SP->getDeclaration())
267     SP = SP->getDeclaration();
268   assert(!SP->getDeclaration() && "should use declaration as key");
269 
270   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
271   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
272   auto I = TypeIndices.find({SP, Class});
273   if (I != TypeIndices.end())
274     return I->second;
275 
276   // Make sure complete type info for the class is emitted *after* the member
277   // function type, as the complete class type is likely to reference this
278   // member function type.
279   TypeLoweringScope S(*this);
280   TypeIndex TI =
281       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
282   return recordTypeIndexForDINode(SP, TI, Class);
283 }
284 
285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
286                                                   TypeIndex TI,
287                                                   const DIType *ClassTy) {
288   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
289   (void)InsertResult;
290   assert(InsertResult.second && "DINode was already assigned a type index");
291   return TI;
292 }
293 
294 unsigned CodeViewDebug::getPointerSizeInBytes() {
295   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
296 }
297 
298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
299                                         const DILocation *InlinedAt) {
300   if (InlinedAt) {
301     // This variable was inlined. Associate it with the InlineSite.
302     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
303     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
304     Site.InlinedLocals.emplace_back(Var);
305   } else {
306     // This variable goes in the main ProcSym.
307     CurFn->Locals.emplace_back(Var);
308   }
309 }
310 
311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
312                                const DILocation *Loc) {
313   auto B = Locs.begin(), E = Locs.end();
314   if (std::find(B, E, Loc) == E)
315     Locs.push_back(Loc);
316 }
317 
318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
319                                         const MachineFunction *MF) {
320   // Skip this instruction if it has the same location as the previous one.
321   if (DL == CurFn->LastLoc)
322     return;
323 
324   const DIScope *Scope = DL.get()->getScope();
325   if (!Scope)
326     return;
327 
328   // Skip this line if it is longer than the maximum we can record.
329   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
330   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
331       LI.isNeverStepInto())
332     return;
333 
334   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
335   if (CI.getStartColumn() != DL.getCol())
336     return;
337 
338   if (!CurFn->HaveLineInfo)
339     CurFn->HaveLineInfo = true;
340   unsigned FileId = 0;
341   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
342     FileId = CurFn->LastFileId;
343   else
344     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
345   CurFn->LastLoc = DL;
346 
347   unsigned FuncId = CurFn->FuncId;
348   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
349     const DILocation *Loc = DL.get();
350 
351     // If this location was actually inlined from somewhere else, give it the ID
352     // of the inline call site.
353     FuncId =
354         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
355 
356     // Ensure we have links in the tree of inline call sites.
357     bool FirstLoc = true;
358     while ((SiteLoc = Loc->getInlinedAt())) {
359       InlineSite &Site =
360           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
361       if (!FirstLoc)
362         addLocIfNotPresent(Site.ChildSites, Loc);
363       FirstLoc = false;
364       Loc = SiteLoc;
365     }
366     addLocIfNotPresent(CurFn->ChildSites, Loc);
367   }
368 
369   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
370                         /*PrologueEnd=*/false, /*IsStmt=*/false,
371                         DL->getFilename(), SMLoc());
372 }
373 
374 void CodeViewDebug::emitCodeViewMagicVersion() {
375   OS.EmitValueToAlignment(4);
376   OS.AddComment("Debug section magic");
377   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
378 }
379 
380 void CodeViewDebug::endModule() {
381   if (!Asm || !MMI->hasDebugInfo())
382     return;
383 
384   assert(Asm != nullptr);
385 
386   // The COFF .debug$S section consists of several subsections, each starting
387   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
388   // of the payload followed by the payload itself.  The subsections are 4-byte
389   // aligned.
390 
391   // Use the generic .debug$S section, and make a subsection for all the inlined
392   // subprograms.
393   switchToDebugSectionForSymbol(nullptr);
394 
395   MCSymbol *CompilerInfo = beginCVSubsection(ModuleSubstreamKind::Symbols);
396   emitCompilerInformation();
397   endCVSubsection(CompilerInfo);
398 
399   emitInlineeLinesSubsection();
400 
401   // Emit per-function debug information.
402   for (auto &P : FnDebugInfo)
403     if (!P.first->isDeclarationForLinker())
404       emitDebugInfoForFunction(P.first, P.second);
405 
406   // Emit global variable debug information.
407   setCurrentSubprogram(nullptr);
408   emitDebugInfoForGlobals();
409 
410   // Emit retained types.
411   emitDebugInfoForRetainedTypes();
412 
413   // Switch back to the generic .debug$S section after potentially processing
414   // comdat symbol sections.
415   switchToDebugSectionForSymbol(nullptr);
416 
417   // Emit UDT records for any types used by global variables.
418   if (!GlobalUDTs.empty()) {
419     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
420     emitDebugInfoForUDTs(GlobalUDTs);
421     endCVSubsection(SymbolsEnd);
422   }
423 
424   // This subsection holds a file index to offset in string table table.
425   OS.AddComment("File index to string table offset subsection");
426   OS.EmitCVFileChecksumsDirective();
427 
428   // This subsection holds the string table.
429   OS.AddComment("String table");
430   OS.EmitCVStringTableDirective();
431 
432   // Emit type information last, so that any types we translate while emitting
433   // function info are included.
434   emitTypeInformation();
435 
436   clear();
437 }
438 
439 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
440   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
441   // after a fixed length portion of the record. The fixed length portion should
442   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
443   // overall record size is less than the maximum allowed.
444   unsigned MaxFixedRecordLength = 0xF00;
445   SmallString<32> NullTerminatedString(
446       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
447   NullTerminatedString.push_back('\0');
448   OS.EmitBytes(NullTerminatedString);
449 }
450 
451 void CodeViewDebug::emitTypeInformation() {
452   // Do nothing if we have no debug info or if no non-trivial types were emitted
453   // to TypeTable during codegen.
454   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
455   if (!CU_Nodes)
456     return;
457   if (TypeTable.empty())
458     return;
459 
460   // Start the .debug$T section with 0x4.
461   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
462   emitCodeViewMagicVersion();
463 
464   SmallString<8> CommentPrefix;
465   if (OS.isVerboseAsm()) {
466     CommentPrefix += '\t';
467     CommentPrefix += Asm->MAI->getCommentString();
468     CommentPrefix += ' ';
469   }
470 
471   TypeDatabase TypeDB;
472   CVTypeDumper CVTD(TypeDB);
473   TypeTable.ForEachRecord([&](TypeIndex Index, ArrayRef<uint8_t> Record) {
474     if (OS.isVerboseAsm()) {
475       // Emit a block comment describing the type record for readability.
476       SmallString<512> CommentBlock;
477       raw_svector_ostream CommentOS(CommentBlock);
478       ScopedPrinter SP(CommentOS);
479       SP.setPrefix(CommentPrefix);
480       TypeDumpVisitor TDV(TypeDB, &SP, false);
481       Error E = CVTD.dump(Record, TDV);
482       if (E) {
483         logAllUnhandledErrors(std::move(E), errs(), "error: ");
484         llvm_unreachable("produced malformed type record");
485       }
486       // emitRawComment will insert its own tab and comment string before
487       // the first line, so strip off our first one. It also prints its own
488       // newline.
489       OS.emitRawComment(
490           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
491     } else {
492 #ifndef NDEBUG
493       // Assert that the type data is valid even if we aren't dumping
494       // comments. The MSVC linker doesn't do much type record validation,
495       // so the first link of an invalid type record can succeed while
496       // subsequent links will fail with LNK1285.
497       BinaryByteStream Stream(Record, llvm::support::little);
498       CVTypeArray Types;
499       BinaryStreamReader Reader(Stream);
500       Error E = Reader.readArray(Types, Reader.getLength());
501       if (!E) {
502         TypeVisitorCallbacks C;
503         E = CVTypeVisitor(C).visitTypeStream(Types);
504       }
505       if (E) {
506         logAllUnhandledErrors(std::move(E), errs(), "error: ");
507         llvm_unreachable("produced malformed type record");
508       }
509 #endif
510     }
511     StringRef S(reinterpret_cast<const char *>(Record.data()), Record.size());
512     OS.EmitBinaryData(S);
513   });
514 }
515 
516 namespace {
517 
518 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
519   switch (DWLang) {
520   case dwarf::DW_LANG_C:
521   case dwarf::DW_LANG_C89:
522   case dwarf::DW_LANG_C99:
523   case dwarf::DW_LANG_C11:
524   case dwarf::DW_LANG_ObjC:
525     return SourceLanguage::C;
526   case dwarf::DW_LANG_C_plus_plus:
527   case dwarf::DW_LANG_C_plus_plus_03:
528   case dwarf::DW_LANG_C_plus_plus_11:
529   case dwarf::DW_LANG_C_plus_plus_14:
530     return SourceLanguage::Cpp;
531   case dwarf::DW_LANG_Fortran77:
532   case dwarf::DW_LANG_Fortran90:
533   case dwarf::DW_LANG_Fortran03:
534   case dwarf::DW_LANG_Fortran08:
535     return SourceLanguage::Fortran;
536   case dwarf::DW_LANG_Pascal83:
537     return SourceLanguage::Pascal;
538   case dwarf::DW_LANG_Cobol74:
539   case dwarf::DW_LANG_Cobol85:
540     return SourceLanguage::Cobol;
541   case dwarf::DW_LANG_Java:
542     return SourceLanguage::Java;
543   default:
544     // There's no CodeView representation for this language, and CV doesn't
545     // have an "unknown" option for the language field, so we'll use MASM,
546     // as it's very low level.
547     return SourceLanguage::Masm;
548   }
549 }
550 
551 struct Version {
552   int Part[4];
553 };
554 
555 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
556 // the version number.
557 static Version parseVersion(StringRef Name) {
558   Version V = {{0}};
559   int N = 0;
560   for (const char C : Name) {
561     if (isdigit(C)) {
562       V.Part[N] *= 10;
563       V.Part[N] += C - '0';
564     } else if (C == '.') {
565       ++N;
566       if (N >= 4)
567         return V;
568     } else if (N > 0)
569       return V;
570   }
571   return V;
572 }
573 
574 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
575   switch (Type) {
576     case Triple::ArchType::x86:
577       return CPUType::Pentium3;
578     case Triple::ArchType::x86_64:
579       return CPUType::X64;
580     case Triple::ArchType::thumb:
581       return CPUType::Thumb;
582     default:
583       report_fatal_error("target architecture doesn't map to a CodeView "
584                          "CPUType");
585   }
586 }
587 
588 }  // anonymous namespace
589 
590 void CodeViewDebug::emitCompilerInformation() {
591   MCContext &Context = MMI->getContext();
592   MCSymbol *CompilerBegin = Context.createTempSymbol(),
593            *CompilerEnd = Context.createTempSymbol();
594   OS.AddComment("Record length");
595   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
596   OS.EmitLabel(CompilerBegin);
597   OS.AddComment("Record kind: S_COMPILE3");
598   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
599   uint32_t Flags = 0;
600 
601   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
602   const MDNode *Node = *CUs->operands().begin();
603   const auto *CU = cast<DICompileUnit>(Node);
604 
605   // The low byte of the flags indicates the source language.
606   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
607   // TODO:  Figure out which other flags need to be set.
608 
609   OS.AddComment("Flags and language");
610   OS.EmitIntValue(Flags, 4);
611 
612   OS.AddComment("CPUType");
613   CPUType CPU =
614       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
615   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
616 
617   StringRef CompilerVersion = CU->getProducer();
618   Version FrontVer = parseVersion(CompilerVersion);
619   OS.AddComment("Frontend version");
620   for (int N = 0; N < 4; ++N)
621     OS.EmitIntValue(FrontVer.Part[N], 2);
622 
623   // Some Microsoft tools, like Binscope, expect a backend version number of at
624   // least 8.something, so we'll coerce the LLVM version into a form that
625   // guarantees it'll be big enough without really lying about the version.
626   int Major = 1000 * LLVM_VERSION_MAJOR +
627               10 * LLVM_VERSION_MINOR +
628               LLVM_VERSION_PATCH;
629   // Clamp it for builds that use unusually large version numbers.
630   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
631   Version BackVer = {{ Major, 0, 0, 0 }};
632   OS.AddComment("Backend version");
633   for (int N = 0; N < 4; ++N)
634     OS.EmitIntValue(BackVer.Part[N], 2);
635 
636   OS.AddComment("Null-terminated compiler version string");
637   emitNullTerminatedSymbolName(OS, CompilerVersion);
638 
639   OS.EmitLabel(CompilerEnd);
640 }
641 
642 void CodeViewDebug::emitInlineeLinesSubsection() {
643   if (InlinedSubprograms.empty())
644     return;
645 
646   OS.AddComment("Inlinee lines subsection");
647   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
648 
649   // We don't provide any extra file info.
650   // FIXME: Find out if debuggers use this info.
651   OS.AddComment("Inlinee lines signature");
652   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
653 
654   for (const DISubprogram *SP : InlinedSubprograms) {
655     assert(TypeIndices.count({SP, nullptr}));
656     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
657 
658     OS.AddBlankLine();
659     unsigned FileId = maybeRecordFile(SP->getFile());
660     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
661                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
662     OS.AddBlankLine();
663     // The filechecksum table uses 8 byte entries for now, and file ids start at
664     // 1.
665     unsigned FileOffset = (FileId - 1) * 8;
666     OS.AddComment("Type index of inlined function");
667     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
668     OS.AddComment("Offset into filechecksum table");
669     OS.EmitIntValue(FileOffset, 4);
670     OS.AddComment("Starting line number");
671     OS.EmitIntValue(SP->getLine(), 4);
672   }
673 
674   endCVSubsection(InlineEnd);
675 }
676 
677 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
678                                         const DILocation *InlinedAt,
679                                         const InlineSite &Site) {
680   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
681            *InlineEnd = MMI->getContext().createTempSymbol();
682 
683   assert(TypeIndices.count({Site.Inlinee, nullptr}));
684   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
685 
686   // SymbolRecord
687   OS.AddComment("Record length");
688   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
689   OS.EmitLabel(InlineBegin);
690   OS.AddComment("Record kind: S_INLINESITE");
691   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
692 
693   OS.AddComment("PtrParent");
694   OS.EmitIntValue(0, 4);
695   OS.AddComment("PtrEnd");
696   OS.EmitIntValue(0, 4);
697   OS.AddComment("Inlinee type index");
698   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
699 
700   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
701   unsigned StartLineNum = Site.Inlinee->getLine();
702 
703   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
704                                     FI.Begin, FI.End);
705 
706   OS.EmitLabel(InlineEnd);
707 
708   emitLocalVariableList(Site.InlinedLocals);
709 
710   // Recurse on child inlined call sites before closing the scope.
711   for (const DILocation *ChildSite : Site.ChildSites) {
712     auto I = FI.InlineSites.find(ChildSite);
713     assert(I != FI.InlineSites.end() &&
714            "child site not in function inline site map");
715     emitInlinedCallSite(FI, ChildSite, I->second);
716   }
717 
718   // Close the scope.
719   OS.AddComment("Record length");
720   OS.EmitIntValue(2, 2);                                  // RecordLength
721   OS.AddComment("Record kind: S_INLINESITE_END");
722   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
723 }
724 
725 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
726   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
727   // comdat key. A section may be comdat because of -ffunction-sections or
728   // because it is comdat in the IR.
729   MCSectionCOFF *GVSec =
730       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
731   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
732 
733   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
734       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
735   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
736 
737   OS.SwitchSection(DebugSec);
738 
739   // Emit the magic version number if this is the first time we've switched to
740   // this section.
741   if (ComdatDebugSections.insert(DebugSec).second)
742     emitCodeViewMagicVersion();
743 }
744 
745 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
746                                              FunctionInfo &FI) {
747   // For each function there is a separate subsection
748   // which holds the PC to file:line table.
749   const MCSymbol *Fn = Asm->getSymbol(GV);
750   assert(Fn);
751 
752   // Switch to the to a comdat section, if appropriate.
753   switchToDebugSectionForSymbol(Fn);
754 
755   std::string FuncName;
756   auto *SP = GV->getSubprogram();
757   assert(SP);
758   setCurrentSubprogram(SP);
759 
760   // If we have a display name, build the fully qualified name by walking the
761   // chain of scopes.
762   if (!SP->getDisplayName().empty())
763     FuncName =
764         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
765 
766   // If our DISubprogram name is empty, use the mangled name.
767   if (FuncName.empty())
768     FuncName = GlobalValue::getRealLinkageName(GV->getName());
769 
770   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
771   OS.AddComment("Symbol subsection for " + Twine(FuncName));
772   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
773   {
774     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
775              *ProcRecordEnd = MMI->getContext().createTempSymbol();
776     OS.AddComment("Record length");
777     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
778     OS.EmitLabel(ProcRecordBegin);
779 
780     if (GV->hasLocalLinkage()) {
781       OS.AddComment("Record kind: S_LPROC32_ID");
782       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
783     } else {
784       OS.AddComment("Record kind: S_GPROC32_ID");
785       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
786     }
787 
788     // These fields are filled in by tools like CVPACK which run after the fact.
789     OS.AddComment("PtrParent");
790     OS.EmitIntValue(0, 4);
791     OS.AddComment("PtrEnd");
792     OS.EmitIntValue(0, 4);
793     OS.AddComment("PtrNext");
794     OS.EmitIntValue(0, 4);
795     // This is the important bit that tells the debugger where the function
796     // code is located and what's its size:
797     OS.AddComment("Code size");
798     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
799     OS.AddComment("Offset after prologue");
800     OS.EmitIntValue(0, 4);
801     OS.AddComment("Offset before epilogue");
802     OS.EmitIntValue(0, 4);
803     OS.AddComment("Function type index");
804     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
805     OS.AddComment("Function section relative address");
806     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
807     OS.AddComment("Function section index");
808     OS.EmitCOFFSectionIndex(Fn);
809     OS.AddComment("Flags");
810     OS.EmitIntValue(0, 1);
811     // Emit the function display name as a null-terminated string.
812     OS.AddComment("Function name");
813     // Truncate the name so we won't overflow the record length field.
814     emitNullTerminatedSymbolName(OS, FuncName);
815     OS.EmitLabel(ProcRecordEnd);
816 
817     emitLocalVariableList(FI.Locals);
818 
819     // Emit inlined call site information. Only emit functions inlined directly
820     // into the parent function. We'll emit the other sites recursively as part
821     // of their parent inline site.
822     for (const DILocation *InlinedAt : FI.ChildSites) {
823       auto I = FI.InlineSites.find(InlinedAt);
824       assert(I != FI.InlineSites.end() &&
825              "child site not in function inline site map");
826       emitInlinedCallSite(FI, InlinedAt, I->second);
827     }
828 
829     if (SP != nullptr)
830       emitDebugInfoForUDTs(LocalUDTs);
831 
832     // We're done with this function.
833     OS.AddComment("Record length");
834     OS.EmitIntValue(0x0002, 2);
835     OS.AddComment("Record kind: S_PROC_ID_END");
836     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
837   }
838   endCVSubsection(SymbolsEnd);
839 
840   // We have an assembler directive that takes care of the whole line table.
841   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
842 }
843 
844 CodeViewDebug::LocalVarDefRange
845 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
846   LocalVarDefRange DR;
847   DR.InMemory = -1;
848   DR.DataOffset = Offset;
849   assert(DR.DataOffset == Offset && "truncation");
850   DR.IsSubfield = 0;
851   DR.StructOffset = 0;
852   DR.CVRegister = CVRegister;
853   return DR;
854 }
855 
856 CodeViewDebug::LocalVarDefRange
857 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
858                                      int Offset, bool IsSubfield,
859                                      uint16_t StructOffset) {
860   LocalVarDefRange DR;
861   DR.InMemory = InMemory;
862   DR.DataOffset = Offset;
863   DR.IsSubfield = IsSubfield;
864   DR.StructOffset = StructOffset;
865   DR.CVRegister = CVRegister;
866   return DR;
867 }
868 
869 void CodeViewDebug::collectVariableInfoFromMFTable(
870     DenseSet<InlinedVariable> &Processed) {
871   const MachineFunction &MF = *Asm->MF;
872   const TargetSubtargetInfo &TSI = MF.getSubtarget();
873   const TargetFrameLowering *TFI = TSI.getFrameLowering();
874   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
875 
876   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
877     if (!VI.Var)
878       continue;
879     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
880            "Expected inlined-at fields to agree");
881 
882     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
883     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
884 
885     // If variable scope is not found then skip this variable.
886     if (!Scope)
887       continue;
888 
889     // Get the frame register used and the offset.
890     unsigned FrameReg = 0;
891     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
892     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
893 
894     // Calculate the label ranges.
895     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
896     for (const InsnRange &Range : Scope->getRanges()) {
897       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
898       const MCSymbol *End = getLabelAfterInsn(Range.second);
899       End = End ? End : Asm->getFunctionEnd();
900       DefRange.Ranges.emplace_back(Begin, End);
901     }
902 
903     LocalVariable Var;
904     Var.DIVar = VI.Var;
905     Var.DefRanges.emplace_back(std::move(DefRange));
906     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
907   }
908 }
909 
910 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
911   DenseSet<InlinedVariable> Processed;
912   // Grab the variable info that was squirreled away in the MMI side-table.
913   collectVariableInfoFromMFTable(Processed);
914 
915   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
916 
917   for (const auto &I : DbgValues) {
918     InlinedVariable IV = I.first;
919     if (Processed.count(IV))
920       continue;
921     const DILocalVariable *DIVar = IV.first;
922     const DILocation *InlinedAt = IV.second;
923 
924     // Instruction ranges, specifying where IV is accessible.
925     const auto &Ranges = I.second;
926 
927     LexicalScope *Scope = nullptr;
928     if (InlinedAt)
929       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
930     else
931       Scope = LScopes.findLexicalScope(DIVar->getScope());
932     // If variable scope is not found then skip this variable.
933     if (!Scope)
934       continue;
935 
936     LocalVariable Var;
937     Var.DIVar = DIVar;
938 
939     // Calculate the definition ranges.
940     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
941       const InsnRange &Range = *I;
942       const MachineInstr *DVInst = Range.first;
943       assert(DVInst->isDebugValue() && "Invalid History entry");
944       const DIExpression *DIExpr = DVInst->getDebugExpression();
945       bool IsSubfield = false;
946       unsigned StructOffset = 0;
947 
948       // Handle fragments.
949       auto Fragment = DIExpr->getFragmentInfo();
950       if (DIExpr && Fragment) {
951         IsSubfield = true;
952         StructOffset = Fragment->OffsetInBits / 8;
953       } else if (DIExpr && DIExpr->getNumElements() > 0) {
954         continue; // Ignore unrecognized exprs.
955       }
956 
957       // Bail if operand 0 is not a valid register. This means the variable is a
958       // simple constant, or is described by a complex expression.
959       // FIXME: Find a way to represent constant variables, since they are
960       // relatively common.
961       unsigned Reg =
962           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
963       if (Reg == 0)
964         continue;
965 
966       // Handle the two cases we can handle: indirect in memory and in register.
967       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
968       bool InMemory = DVInst->getOperand(1).isImm();
969       int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
970       {
971         LocalVarDefRange DR;
972         DR.CVRegister = CVReg;
973         DR.InMemory = InMemory;
974         DR.DataOffset = Offset;
975         DR.IsSubfield = IsSubfield;
976         DR.StructOffset = StructOffset;
977 
978         if (Var.DefRanges.empty() ||
979             Var.DefRanges.back().isDifferentLocation(DR)) {
980           Var.DefRanges.emplace_back(std::move(DR));
981         }
982       }
983 
984       // Compute the label range.
985       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
986       const MCSymbol *End = getLabelAfterInsn(Range.second);
987       if (!End) {
988         // This range is valid until the next overlapping bitpiece. In the
989         // common case, ranges will not be bitpieces, so they will overlap.
990         auto J = std::next(I);
991         while (J != E &&
992                !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
993           ++J;
994         if (J != E)
995           End = getLabelBeforeInsn(J->first);
996         else
997           End = Asm->getFunctionEnd();
998       }
999 
1000       // If the last range end is our begin, just extend the last range.
1001       // Otherwise make a new range.
1002       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
1003           Var.DefRanges.back().Ranges;
1004       if (!Ranges.empty() && Ranges.back().second == Begin)
1005         Ranges.back().second = End;
1006       else
1007         Ranges.emplace_back(Begin, End);
1008 
1009       // FIXME: Do more range combining.
1010     }
1011 
1012     recordLocalVariable(std::move(Var), InlinedAt);
1013   }
1014 }
1015 
1016 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1017   const Function *GV = MF->getFunction();
1018   assert(FnDebugInfo.count(GV) == false);
1019   CurFn = &FnDebugInfo[GV];
1020   CurFn->FuncId = NextFuncId++;
1021   CurFn->Begin = Asm->getFunctionBegin();
1022 
1023   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1024 
1025   // Find the end of the function prolog.  First known non-DBG_VALUE and
1026   // non-frame setup location marks the beginning of the function body.
1027   // FIXME: is there a simpler a way to do this? Can we just search
1028   // for the first instruction of the function, not the last of the prolog?
1029   DebugLoc PrologEndLoc;
1030   bool EmptyPrologue = true;
1031   for (const auto &MBB : *MF) {
1032     for (const auto &MI : MBB) {
1033       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1034           MI.getDebugLoc()) {
1035         PrologEndLoc = MI.getDebugLoc();
1036         break;
1037       } else if (!MI.isDebugValue()) {
1038         EmptyPrologue = false;
1039       }
1040     }
1041   }
1042 
1043   // Record beginning of function if we have a non-empty prologue.
1044   if (PrologEndLoc && !EmptyPrologue) {
1045     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1046     maybeRecordLocation(FnStartDL, MF);
1047   }
1048 }
1049 
1050 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1051   // Don't record empty UDTs.
1052   if (Ty->getName().empty())
1053     return;
1054 
1055   SmallVector<StringRef, 5> QualifiedNameComponents;
1056   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1057       Ty->getScope().resolve(), QualifiedNameComponents);
1058 
1059   std::string FullyQualifiedName =
1060       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1061 
1062   if (ClosestSubprogram == nullptr)
1063     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1064   else if (ClosestSubprogram == CurrentSubprogram)
1065     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1066 
1067   // TODO: What if the ClosestSubprogram is neither null or the current
1068   // subprogram?  Currently, the UDT just gets dropped on the floor.
1069   //
1070   // The current behavior is not desirable.  To get maximal fidelity, we would
1071   // need to perform all type translation before beginning emission of .debug$S
1072   // and then make LocalUDTs a member of FunctionInfo
1073 }
1074 
1075 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1076   // Generic dispatch for lowering an unknown type.
1077   switch (Ty->getTag()) {
1078   case dwarf::DW_TAG_array_type:
1079     return lowerTypeArray(cast<DICompositeType>(Ty));
1080   case dwarf::DW_TAG_typedef:
1081     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1082   case dwarf::DW_TAG_base_type:
1083     return lowerTypeBasic(cast<DIBasicType>(Ty));
1084   case dwarf::DW_TAG_pointer_type:
1085     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1086       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1087     LLVM_FALLTHROUGH;
1088   case dwarf::DW_TAG_reference_type:
1089   case dwarf::DW_TAG_rvalue_reference_type:
1090     return lowerTypePointer(cast<DIDerivedType>(Ty));
1091   case dwarf::DW_TAG_ptr_to_member_type:
1092     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1093   case dwarf::DW_TAG_const_type:
1094   case dwarf::DW_TAG_volatile_type:
1095   // TODO: add support for DW_TAG_atomic_type here
1096     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1097   case dwarf::DW_TAG_subroutine_type:
1098     if (ClassTy) {
1099       // The member function type of a member function pointer has no
1100       // ThisAdjustment.
1101       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1102                                      /*ThisAdjustment=*/0);
1103     }
1104     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1105   case dwarf::DW_TAG_enumeration_type:
1106     return lowerTypeEnum(cast<DICompositeType>(Ty));
1107   case dwarf::DW_TAG_class_type:
1108   case dwarf::DW_TAG_structure_type:
1109     return lowerTypeClass(cast<DICompositeType>(Ty));
1110   case dwarf::DW_TAG_union_type:
1111     return lowerTypeUnion(cast<DICompositeType>(Ty));
1112   default:
1113     // Use the null type index.
1114     return TypeIndex();
1115   }
1116 }
1117 
1118 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1119   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1120   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1121   StringRef TypeName = Ty->getName();
1122 
1123   addToUDTs(Ty, UnderlyingTypeIndex);
1124 
1125   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1126       TypeName == "HRESULT")
1127     return TypeIndex(SimpleTypeKind::HResult);
1128   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1129       TypeName == "wchar_t")
1130     return TypeIndex(SimpleTypeKind::WideCharacter);
1131 
1132   return UnderlyingTypeIndex;
1133 }
1134 
1135 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1136   DITypeRef ElementTypeRef = Ty->getBaseType();
1137   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1138   // IndexType is size_t, which depends on the bitness of the target.
1139   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
1140                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1141                             : TypeIndex(SimpleTypeKind::UInt32Long);
1142 
1143   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1144 
1145 
1146   // We want to assert that the element type multiplied by the array lengths
1147   // match the size of the overall array. However, if we don't have complete
1148   // type information for the base type, we can't make this assertion. This
1149   // happens if limited debug info is enabled in this case:
1150   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1151   //   VTableOptzn array[3];
1152   // The DICompositeType of VTableOptzn will have size zero, and the array will
1153   // have size 3 * sizeof(void*), and we should avoid asserting.
1154   //
1155   // There is a related bug in the front-end where an array of a structure,
1156   // which was declared as incomplete structure first, ends up not getting a
1157   // size assigned to it. (PR28303)
1158   // Example:
1159   //   struct A(*p)[3];
1160   //   struct A { int f; } a[3];
1161   bool PartiallyIncomplete = false;
1162   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1163     PartiallyIncomplete = true;
1164   }
1165 
1166   // Add subranges to array type.
1167   DINodeArray Elements = Ty->getElements();
1168   for (int i = Elements.size() - 1; i >= 0; --i) {
1169     const DINode *Element = Elements[i];
1170     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1171 
1172     const DISubrange *Subrange = cast<DISubrange>(Element);
1173     assert(Subrange->getLowerBound() == 0 &&
1174            "codeview doesn't support subranges with lower bounds");
1175     int64_t Count = Subrange->getCount();
1176 
1177     // Variable Length Array (VLA) has Count equal to '-1'.
1178     // Replace with Count '1', assume it is the minimum VLA length.
1179     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1180     if (Count == -1) {
1181       Count = 1;
1182       PartiallyIncomplete = true;
1183     }
1184 
1185     // Update the element size and element type index for subsequent subranges.
1186     ElementSize *= Count;
1187 
1188     // If this is the outermost array, use the size from the array. It will be
1189     // more accurate if PartiallyIncomplete is true.
1190     uint64_t ArraySize =
1191         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1192 
1193     StringRef Name = (i == 0) ? Ty->getName() : "";
1194     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1195     ElementTypeIndex = TypeTable.writeKnownType(AR);
1196   }
1197 
1198   (void)PartiallyIncomplete;
1199   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1200 
1201   return ElementTypeIndex;
1202 }
1203 
1204 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1205   TypeIndex Index;
1206   dwarf::TypeKind Kind;
1207   uint32_t ByteSize;
1208 
1209   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1210   ByteSize = Ty->getSizeInBits() / 8;
1211 
1212   SimpleTypeKind STK = SimpleTypeKind::None;
1213   switch (Kind) {
1214   case dwarf::DW_ATE_address:
1215     // FIXME: Translate
1216     break;
1217   case dwarf::DW_ATE_boolean:
1218     switch (ByteSize) {
1219     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1220     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1221     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1222     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1223     case 16: STK = SimpleTypeKind::Boolean128; break;
1224     }
1225     break;
1226   case dwarf::DW_ATE_complex_float:
1227     switch (ByteSize) {
1228     case 2:  STK = SimpleTypeKind::Complex16;  break;
1229     case 4:  STK = SimpleTypeKind::Complex32;  break;
1230     case 8:  STK = SimpleTypeKind::Complex64;  break;
1231     case 10: STK = SimpleTypeKind::Complex80;  break;
1232     case 16: STK = SimpleTypeKind::Complex128; break;
1233     }
1234     break;
1235   case dwarf::DW_ATE_float:
1236     switch (ByteSize) {
1237     case 2:  STK = SimpleTypeKind::Float16;  break;
1238     case 4:  STK = SimpleTypeKind::Float32;  break;
1239     case 6:  STK = SimpleTypeKind::Float48;  break;
1240     case 8:  STK = SimpleTypeKind::Float64;  break;
1241     case 10: STK = SimpleTypeKind::Float80;  break;
1242     case 16: STK = SimpleTypeKind::Float128; break;
1243     }
1244     break;
1245   case dwarf::DW_ATE_signed:
1246     switch (ByteSize) {
1247     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1248     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1249     case 4:  STK = SimpleTypeKind::Int32;           break;
1250     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1251     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1252     }
1253     break;
1254   case dwarf::DW_ATE_unsigned:
1255     switch (ByteSize) {
1256     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1257     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1258     case 4:  STK = SimpleTypeKind::UInt32;            break;
1259     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1260     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1261     }
1262     break;
1263   case dwarf::DW_ATE_UTF:
1264     switch (ByteSize) {
1265     case 2: STK = SimpleTypeKind::Character16; break;
1266     case 4: STK = SimpleTypeKind::Character32; break;
1267     }
1268     break;
1269   case dwarf::DW_ATE_signed_char:
1270     if (ByteSize == 1)
1271       STK = SimpleTypeKind::SignedCharacter;
1272     break;
1273   case dwarf::DW_ATE_unsigned_char:
1274     if (ByteSize == 1)
1275       STK = SimpleTypeKind::UnsignedCharacter;
1276     break;
1277   default:
1278     break;
1279   }
1280 
1281   // Apply some fixups based on the source-level type name.
1282   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1283     STK = SimpleTypeKind::Int32Long;
1284   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1285     STK = SimpleTypeKind::UInt32Long;
1286   if (STK == SimpleTypeKind::UInt16Short &&
1287       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1288     STK = SimpleTypeKind::WideCharacter;
1289   if ((STK == SimpleTypeKind::SignedCharacter ||
1290        STK == SimpleTypeKind::UnsignedCharacter) &&
1291       Ty->getName() == "char")
1292     STK = SimpleTypeKind::NarrowCharacter;
1293 
1294   return TypeIndex(STK);
1295 }
1296 
1297 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1298   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1299 
1300   // Pointers to simple types can use SimpleTypeMode, rather than having a
1301   // dedicated pointer type record.
1302   if (PointeeTI.isSimple() &&
1303       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1304       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1305     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1306                               ? SimpleTypeMode::NearPointer64
1307                               : SimpleTypeMode::NearPointer32;
1308     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1309   }
1310 
1311   PointerKind PK =
1312       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1313   PointerMode PM = PointerMode::Pointer;
1314   switch (Ty->getTag()) {
1315   default: llvm_unreachable("not a pointer tag type");
1316   case dwarf::DW_TAG_pointer_type:
1317     PM = PointerMode::Pointer;
1318     break;
1319   case dwarf::DW_TAG_reference_type:
1320     PM = PointerMode::LValueReference;
1321     break;
1322   case dwarf::DW_TAG_rvalue_reference_type:
1323     PM = PointerMode::RValueReference;
1324     break;
1325   }
1326   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1327   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1328   // do.
1329   PointerOptions PO = PointerOptions::None;
1330   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1331   return TypeTable.writeKnownType(PR);
1332 }
1333 
1334 static PointerToMemberRepresentation
1335 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1336   // SizeInBytes being zero generally implies that the member pointer type was
1337   // incomplete, which can happen if it is part of a function prototype. In this
1338   // case, use the unknown model instead of the general model.
1339   if (IsPMF) {
1340     switch (Flags & DINode::FlagPtrToMemberRep) {
1341     case 0:
1342       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1343                               : PointerToMemberRepresentation::GeneralFunction;
1344     case DINode::FlagSingleInheritance:
1345       return PointerToMemberRepresentation::SingleInheritanceFunction;
1346     case DINode::FlagMultipleInheritance:
1347       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1348     case DINode::FlagVirtualInheritance:
1349       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1350     }
1351   } else {
1352     switch (Flags & DINode::FlagPtrToMemberRep) {
1353     case 0:
1354       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1355                               : PointerToMemberRepresentation::GeneralData;
1356     case DINode::FlagSingleInheritance:
1357       return PointerToMemberRepresentation::SingleInheritanceData;
1358     case DINode::FlagMultipleInheritance:
1359       return PointerToMemberRepresentation::MultipleInheritanceData;
1360     case DINode::FlagVirtualInheritance:
1361       return PointerToMemberRepresentation::VirtualInheritanceData;
1362     }
1363   }
1364   llvm_unreachable("invalid ptr to member representation");
1365 }
1366 
1367 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1368   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1369   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1370   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1371   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1372                                                    : PointerKind::Near32;
1373   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1374   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1375                          : PointerMode::PointerToDataMember;
1376   PointerOptions PO = PointerOptions::None; // FIXME
1377   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1378   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1379   MemberPointerInfo MPI(
1380       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1381   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1382   return TypeTable.writeKnownType(PR);
1383 }
1384 
1385 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1386 /// have a translation, use the NearC convention.
1387 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1388   switch (DwarfCC) {
1389   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1390   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1391   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1392   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1393   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1394   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1395   }
1396   return CallingConvention::NearC;
1397 }
1398 
1399 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1400   ModifierOptions Mods = ModifierOptions::None;
1401   bool IsModifier = true;
1402   const DIType *BaseTy = Ty;
1403   while (IsModifier && BaseTy) {
1404     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1405     switch (BaseTy->getTag()) {
1406     case dwarf::DW_TAG_const_type:
1407       Mods |= ModifierOptions::Const;
1408       break;
1409     case dwarf::DW_TAG_volatile_type:
1410       Mods |= ModifierOptions::Volatile;
1411       break;
1412     default:
1413       IsModifier = false;
1414       break;
1415     }
1416     if (IsModifier)
1417       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1418   }
1419   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1420   ModifierRecord MR(ModifiedTI, Mods);
1421   return TypeTable.writeKnownType(MR);
1422 }
1423 
1424 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1425   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1426   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1427     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1428 
1429   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1430   ArrayRef<TypeIndex> ArgTypeIndices = None;
1431   if (!ReturnAndArgTypeIndices.empty()) {
1432     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1433     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1434     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1435   }
1436 
1437   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1438   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1439 
1440   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1441 
1442   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1443                             ArgTypeIndices.size(), ArgListIndex);
1444   return TypeTable.writeKnownType(Procedure);
1445 }
1446 
1447 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1448                                                  const DIType *ClassTy,
1449                                                  int ThisAdjustment) {
1450   // Lower the containing class type.
1451   TypeIndex ClassType = getTypeIndex(ClassTy);
1452 
1453   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1454   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1455     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1456 
1457   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1458   ArrayRef<TypeIndex> ArgTypeIndices = None;
1459   if (!ReturnAndArgTypeIndices.empty()) {
1460     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1461     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1462     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1463   }
1464   TypeIndex ThisTypeIndex = TypeIndex::Void();
1465   if (!ArgTypeIndices.empty()) {
1466     ThisTypeIndex = ArgTypeIndices.front();
1467     ArgTypeIndices = ArgTypeIndices.drop_front();
1468   }
1469 
1470   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1471   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1472 
1473   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1474 
1475   // TODO: Need to use the correct values for:
1476   //       FunctionOptions
1477   //       ThisPointerAdjustment.
1478   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1479                            FunctionOptions::None, ArgTypeIndices.size(),
1480                            ArgListIndex, ThisAdjustment);
1481   TypeIndex TI = TypeTable.writeKnownType(MFR);
1482 
1483   return TI;
1484 }
1485 
1486 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1487   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1488   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1489 
1490   VFTableShapeRecord VFTSR(Slots);
1491   return TypeTable.writeKnownType(VFTSR);
1492 }
1493 
1494 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1495   switch (Flags & DINode::FlagAccessibility) {
1496   case DINode::FlagPrivate:   return MemberAccess::Private;
1497   case DINode::FlagPublic:    return MemberAccess::Public;
1498   case DINode::FlagProtected: return MemberAccess::Protected;
1499   case 0:
1500     // If there was no explicit access control, provide the default for the tag.
1501     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1502                                                  : MemberAccess::Public;
1503   }
1504   llvm_unreachable("access flags are exclusive");
1505 }
1506 
1507 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1508   if (SP->isArtificial())
1509     return MethodOptions::CompilerGenerated;
1510 
1511   // FIXME: Handle other MethodOptions.
1512 
1513   return MethodOptions::None;
1514 }
1515 
1516 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1517                                            bool Introduced) {
1518   switch (SP->getVirtuality()) {
1519   case dwarf::DW_VIRTUALITY_none:
1520     break;
1521   case dwarf::DW_VIRTUALITY_virtual:
1522     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1523   case dwarf::DW_VIRTUALITY_pure_virtual:
1524     return Introduced ? MethodKind::PureIntroducingVirtual
1525                       : MethodKind::PureVirtual;
1526   default:
1527     llvm_unreachable("unhandled virtuality case");
1528   }
1529 
1530   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1531 
1532   return MethodKind::Vanilla;
1533 }
1534 
1535 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1536   switch (Ty->getTag()) {
1537   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1538   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1539   }
1540   llvm_unreachable("unexpected tag");
1541 }
1542 
1543 /// Return ClassOptions that should be present on both the forward declaration
1544 /// and the defintion of a tag type.
1545 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1546   ClassOptions CO = ClassOptions::None;
1547 
1548   // MSVC always sets this flag, even for local types. Clang doesn't always
1549   // appear to give every type a linkage name, which may be problematic for us.
1550   // FIXME: Investigate the consequences of not following them here.
1551   if (!Ty->getIdentifier().empty())
1552     CO |= ClassOptions::HasUniqueName;
1553 
1554   // Put the Nested flag on a type if it appears immediately inside a tag type.
1555   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1556   // here. That flag is only set on definitions, and not forward declarations.
1557   const DIScope *ImmediateScope = Ty->getScope().resolve();
1558   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1559     CO |= ClassOptions::Nested;
1560 
1561   // Put the Scoped flag on function-local types.
1562   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1563        Scope = Scope->getScope().resolve()) {
1564     if (isa<DISubprogram>(Scope)) {
1565       CO |= ClassOptions::Scoped;
1566       break;
1567     }
1568   }
1569 
1570   return CO;
1571 }
1572 
1573 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1574   ClassOptions CO = getCommonClassOptions(Ty);
1575   TypeIndex FTI;
1576   unsigned EnumeratorCount = 0;
1577 
1578   if (Ty->isForwardDecl()) {
1579     CO |= ClassOptions::ForwardReference;
1580   } else {
1581     FieldListRecordBuilder FLRB(TypeTable);
1582 
1583     FLRB.begin();
1584     for (const DINode *Element : Ty->getElements()) {
1585       // We assume that the frontend provides all members in source declaration
1586       // order, which is what MSVC does.
1587       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1588         EnumeratorRecord ER(MemberAccess::Public,
1589                             APSInt::getUnsigned(Enumerator->getValue()),
1590                             Enumerator->getName());
1591         FLRB.writeMemberType(ER);
1592         EnumeratorCount++;
1593       }
1594     }
1595     FTI = FLRB.end();
1596   }
1597 
1598   std::string FullName = getFullyQualifiedName(Ty);
1599 
1600   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1601                 getTypeIndex(Ty->getBaseType()));
1602   return TypeTable.writeKnownType(ER);
1603 }
1604 
1605 //===----------------------------------------------------------------------===//
1606 // ClassInfo
1607 //===----------------------------------------------------------------------===//
1608 
1609 struct llvm::ClassInfo {
1610   struct MemberInfo {
1611     const DIDerivedType *MemberTypeNode;
1612     uint64_t BaseOffset;
1613   };
1614   // [MemberInfo]
1615   typedef std::vector<MemberInfo> MemberList;
1616 
1617   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1618   // MethodName -> MethodsList
1619   typedef MapVector<MDString *, MethodsList> MethodsMap;
1620 
1621   /// Base classes.
1622   std::vector<const DIDerivedType *> Inheritance;
1623 
1624   /// Direct members.
1625   MemberList Members;
1626   // Direct overloaded methods gathered by name.
1627   MethodsMap Methods;
1628 
1629   TypeIndex VShapeTI;
1630 
1631   std::vector<const DICompositeType *> NestedClasses;
1632 };
1633 
1634 void CodeViewDebug::clear() {
1635   assert(CurFn == nullptr);
1636   FileIdMap.clear();
1637   FnDebugInfo.clear();
1638   FileToFilepathMap.clear();
1639   LocalUDTs.clear();
1640   GlobalUDTs.clear();
1641   TypeIndices.clear();
1642   CompleteTypeIndices.clear();
1643 }
1644 
1645 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1646                                       const DIDerivedType *DDTy) {
1647   if (!DDTy->getName().empty()) {
1648     Info.Members.push_back({DDTy, 0});
1649     return;
1650   }
1651   // An unnamed member must represent a nested struct or union. Add all the
1652   // indirect fields to the current record.
1653   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1654   uint64_t Offset = DDTy->getOffsetInBits();
1655   const DIType *Ty = DDTy->getBaseType().resolve();
1656   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1657   ClassInfo NestedInfo = collectClassInfo(DCTy);
1658   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1659     Info.Members.push_back(
1660         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1661 }
1662 
1663 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1664   ClassInfo Info;
1665   // Add elements to structure type.
1666   DINodeArray Elements = Ty->getElements();
1667   for (auto *Element : Elements) {
1668     // We assume that the frontend provides all members in source declaration
1669     // order, which is what MSVC does.
1670     if (!Element)
1671       continue;
1672     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1673       Info.Methods[SP->getRawName()].push_back(SP);
1674     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1675       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1676         collectMemberInfo(Info, DDTy);
1677       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1678         Info.Inheritance.push_back(DDTy);
1679       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1680                  DDTy->getName() == "__vtbl_ptr_type") {
1681         Info.VShapeTI = getTypeIndex(DDTy);
1682       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1683         // Ignore friend members. It appears that MSVC emitted info about
1684         // friends in the past, but modern versions do not.
1685       }
1686     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1687       Info.NestedClasses.push_back(Composite);
1688     }
1689     // Skip other unrecognized kinds of elements.
1690   }
1691   return Info;
1692 }
1693 
1694 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1695   // First, construct the forward decl.  Don't look into Ty to compute the
1696   // forward decl options, since it might not be available in all TUs.
1697   TypeRecordKind Kind = getRecordKind(Ty);
1698   ClassOptions CO =
1699       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1700   std::string FullName = getFullyQualifiedName(Ty);
1701   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1702                  FullName, Ty->getIdentifier());
1703   TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR);
1704   if (!Ty->isForwardDecl())
1705     DeferredCompleteTypes.push_back(Ty);
1706   return FwdDeclTI;
1707 }
1708 
1709 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1710   // Construct the field list and complete type record.
1711   TypeRecordKind Kind = getRecordKind(Ty);
1712   ClassOptions CO = getCommonClassOptions(Ty);
1713   TypeIndex FieldTI;
1714   TypeIndex VShapeTI;
1715   unsigned FieldCount;
1716   bool ContainsNestedClass;
1717   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1718       lowerRecordFieldList(Ty);
1719 
1720   if (ContainsNestedClass)
1721     CO |= ClassOptions::ContainsNestedClass;
1722 
1723   std::string FullName = getFullyQualifiedName(Ty);
1724 
1725   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1726 
1727   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1728                  SizeInBytes, FullName, Ty->getIdentifier());
1729   TypeIndex ClassTI = TypeTable.writeKnownType(CR);
1730 
1731   StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1732   TypeIndex SIDI = TypeTable.writeKnownType(SIDR);
1733   UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1734   TypeTable.writeKnownType(USLR);
1735 
1736   addToUDTs(Ty, ClassTI);
1737 
1738   return ClassTI;
1739 }
1740 
1741 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1742   ClassOptions CO =
1743       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1744   std::string FullName = getFullyQualifiedName(Ty);
1745   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1746   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR);
1747   if (!Ty->isForwardDecl())
1748     DeferredCompleteTypes.push_back(Ty);
1749   return FwdDeclTI;
1750 }
1751 
1752 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1753   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1754   TypeIndex FieldTI;
1755   unsigned FieldCount;
1756   bool ContainsNestedClass;
1757   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1758       lowerRecordFieldList(Ty);
1759 
1760   if (ContainsNestedClass)
1761     CO |= ClassOptions::ContainsNestedClass;
1762 
1763   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1764   std::string FullName = getFullyQualifiedName(Ty);
1765 
1766   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1767                  Ty->getIdentifier());
1768   TypeIndex UnionTI = TypeTable.writeKnownType(UR);
1769 
1770   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1771   TypeIndex SIRI = TypeTable.writeKnownType(SIR);
1772   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1773   TypeTable.writeKnownType(USLR);
1774 
1775   addToUDTs(Ty, UnionTI);
1776 
1777   return UnionTI;
1778 }
1779 
1780 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1781 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1782   // Manually count members. MSVC appears to count everything that generates a
1783   // field list record. Each individual overload in a method overload group
1784   // contributes to this count, even though the overload group is a single field
1785   // list record.
1786   unsigned MemberCount = 0;
1787   ClassInfo Info = collectClassInfo(Ty);
1788   FieldListRecordBuilder FLBR(TypeTable);
1789   FLBR.begin();
1790 
1791   // Create base classes.
1792   for (const DIDerivedType *I : Info.Inheritance) {
1793     if (I->getFlags() & DINode::FlagVirtual) {
1794       // Virtual base.
1795       // FIXME: Emit VBPtrOffset when the frontend provides it.
1796       unsigned VBPtrOffset = 0;
1797       // FIXME: Despite the accessor name, the offset is really in bytes.
1798       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1799       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1800                             ? TypeRecordKind::IndirectVirtualBaseClass
1801                             : TypeRecordKind::VirtualBaseClass;
1802       VirtualBaseClassRecord VBCR(
1803           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1804           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1805           VBTableIndex);
1806 
1807       FLBR.writeMemberType(VBCR);
1808     } else {
1809       assert(I->getOffsetInBits() % 8 == 0 &&
1810              "bases must be on byte boundaries");
1811       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1812                           getTypeIndex(I->getBaseType()),
1813                           I->getOffsetInBits() / 8);
1814       FLBR.writeMemberType(BCR);
1815     }
1816   }
1817 
1818   // Create members.
1819   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1820     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1821     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1822     StringRef MemberName = Member->getName();
1823     MemberAccess Access =
1824         translateAccessFlags(Ty->getTag(), Member->getFlags());
1825 
1826     if (Member->isStaticMember()) {
1827       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1828       FLBR.writeMemberType(SDMR);
1829       MemberCount++;
1830       continue;
1831     }
1832 
1833     // Virtual function pointer member.
1834     if ((Member->getFlags() & DINode::FlagArtificial) &&
1835         Member->getName().startswith("_vptr$")) {
1836       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
1837       FLBR.writeMemberType(VFPR);
1838       MemberCount++;
1839       continue;
1840     }
1841 
1842     // Data member.
1843     uint64_t MemberOffsetInBits =
1844         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1845     if (Member->isBitField()) {
1846       uint64_t StartBitOffset = MemberOffsetInBits;
1847       if (const auto *CI =
1848               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1849         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1850       }
1851       StartBitOffset -= MemberOffsetInBits;
1852       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
1853                          StartBitOffset);
1854       MemberBaseType = TypeTable.writeKnownType(BFR);
1855     }
1856     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1857     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
1858                          MemberName);
1859     FLBR.writeMemberType(DMR);
1860     MemberCount++;
1861   }
1862 
1863   // Create methods
1864   for (auto &MethodItr : Info.Methods) {
1865     StringRef Name = MethodItr.first->getString();
1866 
1867     std::vector<OneMethodRecord> Methods;
1868     for (const DISubprogram *SP : MethodItr.second) {
1869       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1870       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1871 
1872       unsigned VFTableOffset = -1;
1873       if (Introduced)
1874         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1875 
1876       Methods.push_back(OneMethodRecord(
1877           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
1878           translateMethodKindFlags(SP, Introduced),
1879           translateMethodOptionFlags(SP), VFTableOffset, Name));
1880       MemberCount++;
1881     }
1882     assert(Methods.size() > 0 && "Empty methods map entry");
1883     if (Methods.size() == 1)
1884       FLBR.writeMemberType(Methods[0]);
1885     else {
1886       MethodOverloadListRecord MOLR(Methods);
1887       TypeIndex MethodList = TypeTable.writeKnownType(MOLR);
1888       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
1889       FLBR.writeMemberType(OMR);
1890     }
1891   }
1892 
1893   // Create nested classes.
1894   for (const DICompositeType *Nested : Info.NestedClasses) {
1895     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1896     FLBR.writeMemberType(R);
1897     MemberCount++;
1898   }
1899 
1900   TypeIndex FieldTI = FLBR.end();
1901   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1902                          !Info.NestedClasses.empty());
1903 }
1904 
1905 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1906   if (!VBPType.getIndex()) {
1907     // Make a 'const int *' type.
1908     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1909     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1910 
1911     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1912                                                   : PointerKind::Near32;
1913     PointerMode PM = PointerMode::Pointer;
1914     PointerOptions PO = PointerOptions::None;
1915     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1916 
1917     VBPType = TypeTable.writeKnownType(PR);
1918   }
1919 
1920   return VBPType;
1921 }
1922 
1923 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1924   const DIType *Ty = TypeRef.resolve();
1925   const DIType *ClassTy = ClassTyRef.resolve();
1926 
1927   // The null DIType is the void type. Don't try to hash it.
1928   if (!Ty)
1929     return TypeIndex::Void();
1930 
1931   // Check if we've already translated this type. Don't try to do a
1932   // get-or-create style insertion that caches the hash lookup across the
1933   // lowerType call. It will update the TypeIndices map.
1934   auto I = TypeIndices.find({Ty, ClassTy});
1935   if (I != TypeIndices.end())
1936     return I->second;
1937 
1938   TypeLoweringScope S(*this);
1939   TypeIndex TI = lowerType(Ty, ClassTy);
1940   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1941 }
1942 
1943 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1944   const DIType *Ty = TypeRef.resolve();
1945 
1946   // The null DIType is the void type. Don't try to hash it.
1947   if (!Ty)
1948     return TypeIndex::Void();
1949 
1950   // If this is a non-record type, the complete type index is the same as the
1951   // normal type index. Just call getTypeIndex.
1952   switch (Ty->getTag()) {
1953   case dwarf::DW_TAG_class_type:
1954   case dwarf::DW_TAG_structure_type:
1955   case dwarf::DW_TAG_union_type:
1956     break;
1957   default:
1958     return getTypeIndex(Ty);
1959   }
1960 
1961   // Check if we've already translated the complete record type.  Lowering a
1962   // complete type should never trigger lowering another complete type, so we
1963   // can reuse the hash table lookup result.
1964   const auto *CTy = cast<DICompositeType>(Ty);
1965   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1966   if (!InsertResult.second)
1967     return InsertResult.first->second;
1968 
1969   TypeLoweringScope S(*this);
1970 
1971   // Make sure the forward declaration is emitted first. It's unclear if this
1972   // is necessary, but MSVC does it, and we should follow suit until we can show
1973   // otherwise.
1974   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1975 
1976   // Just use the forward decl if we don't have complete type info. This might
1977   // happen if the frontend is using modules and expects the complete definition
1978   // to be emitted elsewhere.
1979   if (CTy->isForwardDecl())
1980     return FwdDeclTI;
1981 
1982   TypeIndex TI;
1983   switch (CTy->getTag()) {
1984   case dwarf::DW_TAG_class_type:
1985   case dwarf::DW_TAG_structure_type:
1986     TI = lowerCompleteTypeClass(CTy);
1987     break;
1988   case dwarf::DW_TAG_union_type:
1989     TI = lowerCompleteTypeUnion(CTy);
1990     break;
1991   default:
1992     llvm_unreachable("not a record");
1993   }
1994 
1995   InsertResult.first->second = TI;
1996   return TI;
1997 }
1998 
1999 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2000 /// and do this until fixpoint, as each complete record type typically
2001 /// references
2002 /// many other record types.
2003 void CodeViewDebug::emitDeferredCompleteTypes() {
2004   SmallVector<const DICompositeType *, 4> TypesToEmit;
2005   while (!DeferredCompleteTypes.empty()) {
2006     std::swap(DeferredCompleteTypes, TypesToEmit);
2007     for (const DICompositeType *RecordTy : TypesToEmit)
2008       getCompleteTypeIndex(RecordTy);
2009     TypesToEmit.clear();
2010   }
2011 }
2012 
2013 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2014   // Get the sorted list of parameters and emit them first.
2015   SmallVector<const LocalVariable *, 6> Params;
2016   for (const LocalVariable &L : Locals)
2017     if (L.DIVar->isParameter())
2018       Params.push_back(&L);
2019   std::sort(Params.begin(), Params.end(),
2020             [](const LocalVariable *L, const LocalVariable *R) {
2021               return L->DIVar->getArg() < R->DIVar->getArg();
2022             });
2023   for (const LocalVariable *L : Params)
2024     emitLocalVariable(*L);
2025 
2026   // Next emit all non-parameters in the order that we found them.
2027   for (const LocalVariable &L : Locals)
2028     if (!L.DIVar->isParameter())
2029       emitLocalVariable(L);
2030 }
2031 
2032 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2033   // LocalSym record, see SymbolRecord.h for more info.
2034   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2035            *LocalEnd = MMI->getContext().createTempSymbol();
2036   OS.AddComment("Record length");
2037   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2038   OS.EmitLabel(LocalBegin);
2039 
2040   OS.AddComment("Record kind: S_LOCAL");
2041   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2042 
2043   LocalSymFlags Flags = LocalSymFlags::None;
2044   if (Var.DIVar->isParameter())
2045     Flags |= LocalSymFlags::IsParameter;
2046   if (Var.DefRanges.empty())
2047     Flags |= LocalSymFlags::IsOptimizedOut;
2048 
2049   OS.AddComment("TypeIndex");
2050   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2051   OS.EmitIntValue(TI.getIndex(), 4);
2052   OS.AddComment("Flags");
2053   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2054   // Truncate the name so we won't overflow the record length field.
2055   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2056   OS.EmitLabel(LocalEnd);
2057 
2058   // Calculate the on disk prefix of the appropriate def range record. The
2059   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2060   // should be big enough to hold all forms without memory allocation.
2061   SmallString<20> BytePrefix;
2062   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2063     BytePrefix.clear();
2064     if (DefRange.InMemory) {
2065       uint16_t RegRelFlags = 0;
2066       if (DefRange.IsSubfield) {
2067         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2068                       (DefRange.StructOffset
2069                        << DefRangeRegisterRelSym::OffsetInParentShift);
2070       }
2071       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2072       Sym.Hdr.Register = DefRange.CVRegister;
2073       Sym.Hdr.Flags = RegRelFlags;
2074       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2075       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2076       BytePrefix +=
2077           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2078       BytePrefix +=
2079           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2080     } else {
2081       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2082       if (DefRange.IsSubfield) {
2083         // Unclear what matters here.
2084         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2085         Sym.Hdr.Register = DefRange.CVRegister;
2086         Sym.Hdr.MayHaveNoName = 0;
2087         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2088 
2089         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2090         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2091                                 sizeof(SymKind));
2092         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2093                                 sizeof(Sym.Hdr));
2094       } else {
2095         // Unclear what matters here.
2096         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2097         Sym.Hdr.Register = DefRange.CVRegister;
2098         Sym.Hdr.MayHaveNoName = 0;
2099         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2100         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2101                                 sizeof(SymKind));
2102         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2103                                 sizeof(Sym.Hdr));
2104       }
2105     }
2106     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2107   }
2108 }
2109 
2110 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2111   const Function *GV = MF->getFunction();
2112   assert(FnDebugInfo.count(GV));
2113   assert(CurFn == &FnDebugInfo[GV]);
2114 
2115   collectVariableInfo(GV->getSubprogram());
2116 
2117   // Don't emit anything if we don't have any line tables.
2118   if (!CurFn->HaveLineInfo) {
2119     FnDebugInfo.erase(GV);
2120     CurFn = nullptr;
2121     return;
2122   }
2123 
2124   CurFn->End = Asm->getFunctionEnd();
2125 
2126   CurFn = nullptr;
2127 }
2128 
2129 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2130   DebugHandlerBase::beginInstruction(MI);
2131 
2132   // Ignore DBG_VALUE locations and function prologue.
2133   if (!Asm || !CurFn || MI->isDebugValue() ||
2134       MI->getFlag(MachineInstr::FrameSetup))
2135     return;
2136   DebugLoc DL = MI->getDebugLoc();
2137   if (DL == PrevInstLoc || !DL)
2138     return;
2139   maybeRecordLocation(DL, Asm->MF);
2140 }
2141 
2142 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
2143   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2144            *EndLabel = MMI->getContext().createTempSymbol();
2145   OS.EmitIntValue(unsigned(Kind), 4);
2146   OS.AddComment("Subsection size");
2147   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2148   OS.EmitLabel(BeginLabel);
2149   return EndLabel;
2150 }
2151 
2152 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2153   OS.EmitLabel(EndLabel);
2154   // Every subsection must be aligned to a 4-byte boundary.
2155   OS.EmitValueToAlignment(4);
2156 }
2157 
2158 void CodeViewDebug::emitDebugInfoForUDTs(
2159     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2160   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2161     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2162              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2163     OS.AddComment("Record length");
2164     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2165     OS.EmitLabel(UDTRecordBegin);
2166 
2167     OS.AddComment("Record kind: S_UDT");
2168     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2169 
2170     OS.AddComment("Type");
2171     OS.EmitIntValue(UDT.second.getIndex(), 4);
2172 
2173     emitNullTerminatedSymbolName(OS, UDT.first);
2174     OS.EmitLabel(UDTRecordEnd);
2175   }
2176 }
2177 
2178 void CodeViewDebug::emitDebugInfoForGlobals() {
2179   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2180       GlobalMap;
2181   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2182     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2183     GV.getDebugInfo(GVEs);
2184     for (const auto *GVE : GVEs)
2185       GlobalMap[GVE] = &GV;
2186   }
2187 
2188   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2189   for (const MDNode *Node : CUs->operands()) {
2190     const auto *CU = cast<DICompileUnit>(Node);
2191 
2192     // First, emit all globals that are not in a comdat in a single symbol
2193     // substream. MSVC doesn't like it if the substream is empty, so only open
2194     // it if we have at least one global to emit.
2195     switchToDebugSectionForSymbol(nullptr);
2196     MCSymbol *EndLabel = nullptr;
2197     for (const auto *GVE : CU->getGlobalVariables()) {
2198       if (const auto *GV = GlobalMap.lookup(GVE))
2199         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2200           if (!EndLabel) {
2201             OS.AddComment("Symbol subsection for globals");
2202             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2203           }
2204           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2205           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2206         }
2207     }
2208     if (EndLabel)
2209       endCVSubsection(EndLabel);
2210 
2211     // Second, emit each global that is in a comdat into its own .debug$S
2212     // section along with its own symbol substream.
2213     for (const auto *GVE : CU->getGlobalVariables()) {
2214       if (const auto *GV = GlobalMap.lookup(GVE)) {
2215         if (GV->hasComdat()) {
2216           MCSymbol *GVSym = Asm->getSymbol(GV);
2217           OS.AddComment("Symbol subsection for " +
2218                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2219           switchToDebugSectionForSymbol(GVSym);
2220           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2221           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2222           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2223           endCVSubsection(EndLabel);
2224         }
2225       }
2226     }
2227   }
2228 }
2229 
2230 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2231   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2232   for (const MDNode *Node : CUs->operands()) {
2233     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2234       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2235         getTypeIndex(RT);
2236         // FIXME: Add to global/local DTU list.
2237       }
2238     }
2239   }
2240 }
2241 
2242 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2243                                            const GlobalVariable *GV,
2244                                            MCSymbol *GVSym) {
2245   // DataSym record, see SymbolRecord.h for more info.
2246   // FIXME: Thread local data, etc
2247   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2248            *DataEnd = MMI->getContext().createTempSymbol();
2249   OS.AddComment("Record length");
2250   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2251   OS.EmitLabel(DataBegin);
2252   if (DIGV->isLocalToUnit()) {
2253     if (GV->isThreadLocal()) {
2254       OS.AddComment("Record kind: S_LTHREAD32");
2255       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2256     } else {
2257       OS.AddComment("Record kind: S_LDATA32");
2258       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2259     }
2260   } else {
2261     if (GV->isThreadLocal()) {
2262       OS.AddComment("Record kind: S_GTHREAD32");
2263       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2264     } else {
2265       OS.AddComment("Record kind: S_GDATA32");
2266       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2267     }
2268   }
2269   OS.AddComment("Type");
2270   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2271   OS.AddComment("DataOffset");
2272   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2273   OS.AddComment("Segment");
2274   OS.EmitCOFFSectionIndex(GVSym);
2275   OS.AddComment("Name");
2276   emitNullTerminatedSymbolName(OS, DIGV->getName());
2277   OS.EmitLabel(DataEnd);
2278 }
2279