1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/Msf/ByteStream.h"
26 #include "llvm/DebugInfo/Msf/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
44   // If module doesn't have named metadata anchors or COFF debug section
45   // is not available, skip any debug info related stuff.
46   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
47       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
48     Asm = nullptr;
49     return;
50   }
51 
52   // Tell MMI that we have debug info.
53   MMI->setDebugInfoAvailability(true);
54 }
55 
56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
57   std::string &Filepath = FileToFilepathMap[File];
58   if (!Filepath.empty())
59     return Filepath;
60 
61   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
62 
63   // Clang emits directory and relative filename info into the IR, but CodeView
64   // operates on full paths.  We could change Clang to emit full paths too, but
65   // that would increase the IR size and probably not needed for other users.
66   // For now, just concatenate and canonicalize the path here.
67   if (Filename.find(':') == 1)
68     Filepath = Filename;
69   else
70     Filepath = (Dir + "\\" + Filename).str();
71 
72   // Canonicalize the path.  We have to do it textually because we may no longer
73   // have access the file in the filesystem.
74   // First, replace all slashes with backslashes.
75   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
76 
77   // Remove all "\.\" with "\".
78   size_t Cursor = 0;
79   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
80     Filepath.erase(Cursor, 2);
81 
82   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
83   // path should be well-formatted, e.g. start with a drive letter, etc.
84   Cursor = 0;
85   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
86     // Something's wrong if the path starts with "\..\", abort.
87     if (Cursor == 0)
88       break;
89 
90     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
91     if (PrevSlash == std::string::npos)
92       // Something's wrong, abort.
93       break;
94 
95     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
96     // The next ".." might be following the one we've just erased.
97     Cursor = PrevSlash;
98   }
99 
100   // Remove all duplicate backslashes.
101   Cursor = 0;
102   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
103     Filepath.erase(Cursor, 1);
104 
105   return Filepath;
106 }
107 
108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
109   unsigned NextId = FileIdMap.size() + 1;
110   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
111   if (Insertion.second) {
112     // We have to compute the full filepath and emit a .cv_file directive.
113     StringRef FullPath = getFullFilepath(F);
114     NextId = OS.EmitCVFileDirective(NextId, FullPath);
115     assert(NextId == FileIdMap.size() && ".cv_file directive failed");
116   }
117   return Insertion.first->second;
118 }
119 
120 CodeViewDebug::InlineSite &
121 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
122                              const DISubprogram *Inlinee) {
123   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
124   InlineSite *Site = &SiteInsertion.first->second;
125   if (SiteInsertion.second) {
126     Site->SiteFuncId = NextFuncId++;
127     Site->Inlinee = Inlinee;
128     InlinedSubprograms.insert(Inlinee);
129     getFuncIdForSubprogram(Inlinee);
130   }
131   return *Site;
132 }
133 
134 static StringRef getPrettyScopeName(const DIScope *Scope) {
135   StringRef ScopeName = Scope->getName();
136   if (!ScopeName.empty())
137     return ScopeName;
138 
139   switch (Scope->getTag()) {
140   case dwarf::DW_TAG_enumeration_type:
141   case dwarf::DW_TAG_class_type:
142   case dwarf::DW_TAG_structure_type:
143   case dwarf::DW_TAG_union_type:
144     return "<unnamed-tag>";
145   case dwarf::DW_TAG_namespace:
146     return "`anonymous namespace'";
147   }
148 
149   return StringRef();
150 }
151 
152 static const DISubprogram *getQualifiedNameComponents(
153     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
154   const DISubprogram *ClosestSubprogram = nullptr;
155   while (Scope != nullptr) {
156     if (ClosestSubprogram == nullptr)
157       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
158     StringRef ScopeName = getPrettyScopeName(Scope);
159     if (!ScopeName.empty())
160       QualifiedNameComponents.push_back(ScopeName);
161     Scope = Scope->getScope().resolve();
162   }
163   return ClosestSubprogram;
164 }
165 
166 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
167                                     StringRef TypeName) {
168   std::string FullyQualifiedName;
169   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
170     FullyQualifiedName.append(QualifiedNameComponent);
171     FullyQualifiedName.append("::");
172   }
173   FullyQualifiedName.append(TypeName);
174   return FullyQualifiedName;
175 }
176 
177 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
178   SmallVector<StringRef, 5> QualifiedNameComponents;
179   getQualifiedNameComponents(Scope, QualifiedNameComponents);
180   return getQualifiedName(QualifiedNameComponents, Name);
181 }
182 
183 struct CodeViewDebug::TypeLoweringScope {
184   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
185   ~TypeLoweringScope() {
186     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
187     // inner TypeLoweringScopes don't attempt to emit deferred types.
188     if (CVD.TypeEmissionLevel == 1)
189       CVD.emitDeferredCompleteTypes();
190     --CVD.TypeEmissionLevel;
191   }
192   CodeViewDebug &CVD;
193 };
194 
195 static std::string getFullyQualifiedName(const DIScope *Ty) {
196   const DIScope *Scope = Ty->getScope().resolve();
197   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
198 }
199 
200 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
201   // No scope means global scope and that uses the zero index.
202   if (!Scope || isa<DIFile>(Scope))
203     return TypeIndex();
204 
205   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
206 
207   // Check if we've already translated this scope.
208   auto I = TypeIndices.find({Scope, nullptr});
209   if (I != TypeIndices.end())
210     return I->second;
211 
212   // Build the fully qualified name of the scope.
213   std::string ScopeName = getFullyQualifiedName(Scope);
214   TypeIndex TI =
215       TypeTable.writeStringId(StringIdRecord(TypeIndex(), ScopeName));
216   return recordTypeIndexForDINode(Scope, TI);
217 }
218 
219 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
220   // It's possible to ask for the FuncId of a function which doesn't have a
221   // subprogram: inlining a function with debug info into a function with none.
222   if (!SP)
223     return TypeIndex::None();
224 
225   // Check if we've already translated this subprogram.
226   auto I = TypeIndices.find({SP, nullptr});
227   if (I != TypeIndices.end())
228     return I->second;
229 
230   // The display name includes function template arguments. Drop them to match
231   // MSVC.
232   StringRef DisplayName = SP->getDisplayName().split('<').first;
233 
234   const DIScope *Scope = SP->getScope().resolve();
235   TypeIndex TI;
236   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
237     // If the scope is a DICompositeType, then this must be a method. Member
238     // function types take some special handling, and require access to the
239     // subprogram.
240     TypeIndex ClassType = getTypeIndex(Class);
241     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
242                                DisplayName);
243     TI = TypeTable.writeMemberFuncId(MFuncId);
244   } else {
245     // Otherwise, this must be a free function.
246     TypeIndex ParentScope = getScopeIndex(Scope);
247     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
248     TI = TypeTable.writeFuncId(FuncId);
249   }
250 
251   return recordTypeIndexForDINode(SP, TI);
252 }
253 
254 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
255                                                const DICompositeType *Class) {
256   // Always use the method declaration as the key for the function type. The
257   // method declaration contains the this adjustment.
258   if (SP->getDeclaration())
259     SP = SP->getDeclaration();
260   assert(!SP->getDeclaration() && "should use declaration as key");
261 
262   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
263   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
264   auto I = TypeIndices.find({SP, Class});
265   if (I != TypeIndices.end())
266     return I->second;
267 
268   // Make sure complete type info for the class is emitted *after* the member
269   // function type, as the complete class type is likely to reference this
270   // member function type.
271   TypeLoweringScope S(*this);
272   TypeIndex TI =
273       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
274   return recordTypeIndexForDINode(SP, TI, Class);
275 }
276 
277 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
278                                                   TypeIndex TI,
279                                                   const DIType *ClassTy) {
280   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
281   (void)InsertResult;
282   assert(InsertResult.second && "DINode was already assigned a type index");
283   return TI;
284 }
285 
286 unsigned CodeViewDebug::getPointerSizeInBytes() {
287   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
288 }
289 
290 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
291                                         const DILocation *InlinedAt) {
292   if (InlinedAt) {
293     // This variable was inlined. Associate it with the InlineSite.
294     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
295     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
296     Site.InlinedLocals.emplace_back(Var);
297   } else {
298     // This variable goes in the main ProcSym.
299     CurFn->Locals.emplace_back(Var);
300   }
301 }
302 
303 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
304                                const DILocation *Loc) {
305   auto B = Locs.begin(), E = Locs.end();
306   if (std::find(B, E, Loc) == E)
307     Locs.push_back(Loc);
308 }
309 
310 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
311                                         const MachineFunction *MF) {
312   // Skip this instruction if it has the same location as the previous one.
313   if (DL == CurFn->LastLoc)
314     return;
315 
316   const DIScope *Scope = DL.get()->getScope();
317   if (!Scope)
318     return;
319 
320   // Skip this line if it is longer than the maximum we can record.
321   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
322   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
323       LI.isNeverStepInto())
324     return;
325 
326   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
327   if (CI.getStartColumn() != DL.getCol())
328     return;
329 
330   if (!CurFn->HaveLineInfo)
331     CurFn->HaveLineInfo = true;
332   unsigned FileId = 0;
333   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
334     FileId = CurFn->LastFileId;
335   else
336     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
337   CurFn->LastLoc = DL;
338 
339   unsigned FuncId = CurFn->FuncId;
340   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
341     const DILocation *Loc = DL.get();
342 
343     // If this location was actually inlined from somewhere else, give it the ID
344     // of the inline call site.
345     FuncId =
346         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
347 
348     // Ensure we have links in the tree of inline call sites.
349     bool FirstLoc = true;
350     while ((SiteLoc = Loc->getInlinedAt())) {
351       InlineSite &Site =
352           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
353       if (!FirstLoc)
354         addLocIfNotPresent(Site.ChildSites, Loc);
355       FirstLoc = false;
356       Loc = SiteLoc;
357     }
358     addLocIfNotPresent(CurFn->ChildSites, Loc);
359   }
360 
361   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
362                         /*PrologueEnd=*/false,
363                         /*IsStmt=*/false, DL->getFilename());
364 }
365 
366 void CodeViewDebug::emitCodeViewMagicVersion() {
367   OS.EmitValueToAlignment(4);
368   OS.AddComment("Debug section magic");
369   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
370 }
371 
372 void CodeViewDebug::endModule() {
373   if (!Asm || !MMI->hasDebugInfo())
374     return;
375 
376   assert(Asm != nullptr);
377 
378   // The COFF .debug$S section consists of several subsections, each starting
379   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
380   // of the payload followed by the payload itself.  The subsections are 4-byte
381   // aligned.
382 
383   // Use the generic .debug$S section, and make a subsection for all the inlined
384   // subprograms.
385   switchToDebugSectionForSymbol(nullptr);
386   emitInlineeLinesSubsection();
387 
388   // Emit per-function debug information.
389   for (auto &P : FnDebugInfo)
390     if (!P.first->isDeclarationForLinker())
391       emitDebugInfoForFunction(P.first, P.second);
392 
393   // Emit global variable debug information.
394   setCurrentSubprogram(nullptr);
395   emitDebugInfoForGlobals();
396 
397   // Emit retained types.
398   emitDebugInfoForRetainedTypes();
399 
400   // Switch back to the generic .debug$S section after potentially processing
401   // comdat symbol sections.
402   switchToDebugSectionForSymbol(nullptr);
403 
404   // Emit UDT records for any types used by global variables.
405   if (!GlobalUDTs.empty()) {
406     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
407     emitDebugInfoForUDTs(GlobalUDTs);
408     endCVSubsection(SymbolsEnd);
409   }
410 
411   // This subsection holds a file index to offset in string table table.
412   OS.AddComment("File index to string table offset subsection");
413   OS.EmitCVFileChecksumsDirective();
414 
415   // This subsection holds the string table.
416   OS.AddComment("String table");
417   OS.EmitCVStringTableDirective();
418 
419   // Emit type information last, so that any types we translate while emitting
420   // function info are included.
421   emitTypeInformation();
422 
423   clear();
424 }
425 
426 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
427   // Microsoft's linker seems to have trouble with symbol names longer than
428   // 0xffd8 bytes.
429   S = S.substr(0, 0xffd8);
430   SmallString<32> NullTerminatedString(S);
431   NullTerminatedString.push_back('\0');
432   OS.EmitBytes(NullTerminatedString);
433 }
434 
435 void CodeViewDebug::emitTypeInformation() {
436   // Do nothing if we have no debug info or if no non-trivial types were emitted
437   // to TypeTable during codegen.
438   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
439   if (!CU_Nodes)
440     return;
441   if (TypeTable.empty())
442     return;
443 
444   // Start the .debug$T section with 0x4.
445   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
446   emitCodeViewMagicVersion();
447 
448   SmallString<8> CommentPrefix;
449   if (OS.isVerboseAsm()) {
450     CommentPrefix += '\t';
451     CommentPrefix += Asm->MAI->getCommentString();
452     CommentPrefix += ' ';
453   }
454 
455   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
456   TypeTable.ForEachRecord(
457       [&](TypeIndex Index, StringRef Record) {
458         if (OS.isVerboseAsm()) {
459           // Emit a block comment describing the type record for readability.
460           SmallString<512> CommentBlock;
461           raw_svector_ostream CommentOS(CommentBlock);
462           ScopedPrinter SP(CommentOS);
463           SP.setPrefix(CommentPrefix);
464           CVTD.setPrinter(&SP);
465           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
466           if (E) {
467             logAllUnhandledErrors(std::move(E), errs(), "error: ");
468             llvm_unreachable("produced malformed type record");
469           }
470           // emitRawComment will insert its own tab and comment string before
471           // the first line, so strip off our first one. It also prints its own
472           // newline.
473           OS.emitRawComment(
474               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
475         } else {
476 #ifndef NDEBUG
477           // Assert that the type data is valid even if we aren't dumping
478           // comments. The MSVC linker doesn't do much type record validation,
479           // so the first link of an invalid type record can succeed while
480           // subsequent links will fail with LNK1285.
481           ByteStream<> Stream({Record.bytes_begin(), Record.bytes_end()});
482           CVTypeArray Types;
483           StreamReader Reader(Stream);
484           Error E = Reader.readArray(Types, Reader.getLength());
485           if (!E) {
486             TypeVisitorCallbacks C;
487             E = CVTypeVisitor(C).visitTypeStream(Types);
488           }
489           if (E) {
490             logAllUnhandledErrors(std::move(E), errs(), "error: ");
491             llvm_unreachable("produced malformed type record");
492           }
493 #endif
494         }
495         OS.EmitBinaryData(Record);
496       });
497 }
498 
499 void CodeViewDebug::emitInlineeLinesSubsection() {
500   if (InlinedSubprograms.empty())
501     return;
502 
503   OS.AddComment("Inlinee lines subsection");
504   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
505 
506   // We don't provide any extra file info.
507   // FIXME: Find out if debuggers use this info.
508   OS.AddComment("Inlinee lines signature");
509   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
510 
511   for (const DISubprogram *SP : InlinedSubprograms) {
512     assert(TypeIndices.count({SP, nullptr}));
513     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
514 
515     OS.AddBlankLine();
516     unsigned FileId = maybeRecordFile(SP->getFile());
517     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
518                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
519     OS.AddBlankLine();
520     // The filechecksum table uses 8 byte entries for now, and file ids start at
521     // 1.
522     unsigned FileOffset = (FileId - 1) * 8;
523     OS.AddComment("Type index of inlined function");
524     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
525     OS.AddComment("Offset into filechecksum table");
526     OS.EmitIntValue(FileOffset, 4);
527     OS.AddComment("Starting line number");
528     OS.EmitIntValue(SP->getLine(), 4);
529   }
530 
531   endCVSubsection(InlineEnd);
532 }
533 
534 void CodeViewDebug::collectInlineSiteChildren(
535     SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
536     const InlineSite &Site) {
537   for (const DILocation *ChildSiteLoc : Site.ChildSites) {
538     auto I = FI.InlineSites.find(ChildSiteLoc);
539     const InlineSite &ChildSite = I->second;
540     Children.push_back(ChildSite.SiteFuncId);
541     collectInlineSiteChildren(Children, FI, ChildSite);
542   }
543 }
544 
545 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
546                                         const DILocation *InlinedAt,
547                                         const InlineSite &Site) {
548   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
549            *InlineEnd = MMI->getContext().createTempSymbol();
550 
551   assert(TypeIndices.count({Site.Inlinee, nullptr}));
552   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
553 
554   // SymbolRecord
555   OS.AddComment("Record length");
556   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
557   OS.EmitLabel(InlineBegin);
558   OS.AddComment("Record kind: S_INLINESITE");
559   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
560 
561   OS.AddComment("PtrParent");
562   OS.EmitIntValue(0, 4);
563   OS.AddComment("PtrEnd");
564   OS.EmitIntValue(0, 4);
565   OS.AddComment("Inlinee type index");
566   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
567 
568   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
569   unsigned StartLineNum = Site.Inlinee->getLine();
570   SmallVector<unsigned, 3> SecondaryFuncIds;
571   collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
572 
573   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
574                                     FI.Begin, FI.End, SecondaryFuncIds);
575 
576   OS.EmitLabel(InlineEnd);
577 
578   emitLocalVariableList(Site.InlinedLocals);
579 
580   // Recurse on child inlined call sites before closing the scope.
581   for (const DILocation *ChildSite : Site.ChildSites) {
582     auto I = FI.InlineSites.find(ChildSite);
583     assert(I != FI.InlineSites.end() &&
584            "child site not in function inline site map");
585     emitInlinedCallSite(FI, ChildSite, I->second);
586   }
587 
588   // Close the scope.
589   OS.AddComment("Record length");
590   OS.EmitIntValue(2, 2);                                  // RecordLength
591   OS.AddComment("Record kind: S_INLINESITE_END");
592   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
593 }
594 
595 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
596   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
597   // comdat key. A section may be comdat because of -ffunction-sections or
598   // because it is comdat in the IR.
599   MCSectionCOFF *GVSec =
600       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
601   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
602 
603   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
604       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
605   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
606 
607   OS.SwitchSection(DebugSec);
608 
609   // Emit the magic version number if this is the first time we've switched to
610   // this section.
611   if (ComdatDebugSections.insert(DebugSec).second)
612     emitCodeViewMagicVersion();
613 }
614 
615 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
616                                              FunctionInfo &FI) {
617   // For each function there is a separate subsection
618   // which holds the PC to file:line table.
619   const MCSymbol *Fn = Asm->getSymbol(GV);
620   assert(Fn);
621 
622   // Switch to the to a comdat section, if appropriate.
623   switchToDebugSectionForSymbol(Fn);
624 
625   std::string FuncName;
626   auto *SP = GV->getSubprogram();
627   setCurrentSubprogram(SP);
628 
629   // If we have a display name, build the fully qualified name by walking the
630   // chain of scopes.
631   if (SP != nullptr && !SP->getDisplayName().empty())
632     FuncName =
633         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
634 
635   // If our DISubprogram name is empty, use the mangled name.
636   if (FuncName.empty())
637     FuncName = GlobalValue::getRealLinkageName(GV->getName());
638 
639   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
640   OS.AddComment("Symbol subsection for " + Twine(FuncName));
641   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
642   {
643     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
644              *ProcRecordEnd = MMI->getContext().createTempSymbol();
645     OS.AddComment("Record length");
646     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
647     OS.EmitLabel(ProcRecordBegin);
648 
649   if (GV->hasLocalLinkage()) {
650     OS.AddComment("Record kind: S_LPROC32_ID");
651     OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
652   } else {
653     OS.AddComment("Record kind: S_GPROC32_ID");
654     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
655   }
656 
657     // These fields are filled in by tools like CVPACK which run after the fact.
658     OS.AddComment("PtrParent");
659     OS.EmitIntValue(0, 4);
660     OS.AddComment("PtrEnd");
661     OS.EmitIntValue(0, 4);
662     OS.AddComment("PtrNext");
663     OS.EmitIntValue(0, 4);
664     // This is the important bit that tells the debugger where the function
665     // code is located and what's its size:
666     OS.AddComment("Code size");
667     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
668     OS.AddComment("Offset after prologue");
669     OS.EmitIntValue(0, 4);
670     OS.AddComment("Offset before epilogue");
671     OS.EmitIntValue(0, 4);
672     OS.AddComment("Function type index");
673     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
674     OS.AddComment("Function section relative address");
675     OS.EmitCOFFSecRel32(Fn);
676     OS.AddComment("Function section index");
677     OS.EmitCOFFSectionIndex(Fn);
678     OS.AddComment("Flags");
679     OS.EmitIntValue(0, 1);
680     // Emit the function display name as a null-terminated string.
681     OS.AddComment("Function name");
682     // Truncate the name so we won't overflow the record length field.
683     emitNullTerminatedSymbolName(OS, FuncName);
684     OS.EmitLabel(ProcRecordEnd);
685 
686     emitLocalVariableList(FI.Locals);
687 
688     // Emit inlined call site information. Only emit functions inlined directly
689     // into the parent function. We'll emit the other sites recursively as part
690     // of their parent inline site.
691     for (const DILocation *InlinedAt : FI.ChildSites) {
692       auto I = FI.InlineSites.find(InlinedAt);
693       assert(I != FI.InlineSites.end() &&
694              "child site not in function inline site map");
695       emitInlinedCallSite(FI, InlinedAt, I->second);
696     }
697 
698     if (SP != nullptr)
699       emitDebugInfoForUDTs(LocalUDTs);
700 
701     // We're done with this function.
702     OS.AddComment("Record length");
703     OS.EmitIntValue(0x0002, 2);
704     OS.AddComment("Record kind: S_PROC_ID_END");
705     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
706   }
707   endCVSubsection(SymbolsEnd);
708 
709   // We have an assembler directive that takes care of the whole line table.
710   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
711 }
712 
713 CodeViewDebug::LocalVarDefRange
714 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
715   LocalVarDefRange DR;
716   DR.InMemory = -1;
717   DR.DataOffset = Offset;
718   assert(DR.DataOffset == Offset && "truncation");
719   DR.StructOffset = 0;
720   DR.CVRegister = CVRegister;
721   return DR;
722 }
723 
724 CodeViewDebug::LocalVarDefRange
725 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
726   LocalVarDefRange DR;
727   DR.InMemory = 0;
728   DR.DataOffset = 0;
729   DR.StructOffset = 0;
730   DR.CVRegister = CVRegister;
731   return DR;
732 }
733 
734 void CodeViewDebug::collectVariableInfoFromMMITable(
735     DenseSet<InlinedVariable> &Processed) {
736   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
737   const TargetFrameLowering *TFI = TSI.getFrameLowering();
738   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
739 
740   for (const MachineModuleInfo::VariableDbgInfo &VI :
741        MMI->getVariableDbgInfo()) {
742     if (!VI.Var)
743       continue;
744     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
745            "Expected inlined-at fields to agree");
746 
747     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
748     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
749 
750     // If variable scope is not found then skip this variable.
751     if (!Scope)
752       continue;
753 
754     // Get the frame register used and the offset.
755     unsigned FrameReg = 0;
756     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
757     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
758 
759     // Calculate the label ranges.
760     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
761     for (const InsnRange &Range : Scope->getRanges()) {
762       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
763       const MCSymbol *End = getLabelAfterInsn(Range.second);
764       End = End ? End : Asm->getFunctionEnd();
765       DefRange.Ranges.emplace_back(Begin, End);
766     }
767 
768     LocalVariable Var;
769     Var.DIVar = VI.Var;
770     Var.DefRanges.emplace_back(std::move(DefRange));
771     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
772   }
773 }
774 
775 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
776   DenseSet<InlinedVariable> Processed;
777   // Grab the variable info that was squirreled away in the MMI side-table.
778   collectVariableInfoFromMMITable(Processed);
779 
780   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
781 
782   for (const auto &I : DbgValues) {
783     InlinedVariable IV = I.first;
784     if (Processed.count(IV))
785       continue;
786     const DILocalVariable *DIVar = IV.first;
787     const DILocation *InlinedAt = IV.second;
788 
789     // Instruction ranges, specifying where IV is accessible.
790     const auto &Ranges = I.second;
791 
792     LexicalScope *Scope = nullptr;
793     if (InlinedAt)
794       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
795     else
796       Scope = LScopes.findLexicalScope(DIVar->getScope());
797     // If variable scope is not found then skip this variable.
798     if (!Scope)
799       continue;
800 
801     LocalVariable Var;
802     Var.DIVar = DIVar;
803 
804     // Calculate the definition ranges.
805     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
806       const InsnRange &Range = *I;
807       const MachineInstr *DVInst = Range.first;
808       assert(DVInst->isDebugValue() && "Invalid History entry");
809       const DIExpression *DIExpr = DVInst->getDebugExpression();
810 
811       // Bail if there is a complex DWARF expression for now.
812       if (DIExpr && DIExpr->getNumElements() > 0)
813         continue;
814 
815       // Bail if operand 0 is not a valid register. This means the variable is a
816       // simple constant, or is described by a complex expression.
817       // FIXME: Find a way to represent constant variables, since they are
818       // relatively common.
819       unsigned Reg =
820           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
821       if (Reg == 0)
822         continue;
823 
824       // Handle the two cases we can handle: indirect in memory and in register.
825       bool IsIndirect = DVInst->getOperand(1).isImm();
826       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
827       {
828         LocalVarDefRange DefRange;
829         if (IsIndirect) {
830           int64_t Offset = DVInst->getOperand(1).getImm();
831           DefRange = createDefRangeMem(CVReg, Offset);
832         } else {
833           DefRange = createDefRangeReg(CVReg);
834         }
835         if (Var.DefRanges.empty() ||
836             Var.DefRanges.back().isDifferentLocation(DefRange)) {
837           Var.DefRanges.emplace_back(std::move(DefRange));
838         }
839       }
840 
841       // Compute the label range.
842       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
843       const MCSymbol *End = getLabelAfterInsn(Range.second);
844       if (!End) {
845         if (std::next(I) != E)
846           End = getLabelBeforeInsn(std::next(I)->first);
847         else
848           End = Asm->getFunctionEnd();
849       }
850 
851       // If the last range end is our begin, just extend the last range.
852       // Otherwise make a new range.
853       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
854           Var.DefRanges.back().Ranges;
855       if (!Ranges.empty() && Ranges.back().second == Begin)
856         Ranges.back().second = End;
857       else
858         Ranges.emplace_back(Begin, End);
859 
860       // FIXME: Do more range combining.
861     }
862 
863     recordLocalVariable(std::move(Var), InlinedAt);
864   }
865 }
866 
867 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
868   assert(!CurFn && "Can't process two functions at once!");
869 
870   if (!Asm || !MMI->hasDebugInfo())
871     return;
872 
873   DebugHandlerBase::beginFunction(MF);
874 
875   const Function *GV = MF->getFunction();
876   assert(FnDebugInfo.count(GV) == false);
877   CurFn = &FnDebugInfo[GV];
878   CurFn->FuncId = NextFuncId++;
879   CurFn->Begin = Asm->getFunctionBegin();
880 
881   // Find the end of the function prolog.  First known non-DBG_VALUE and
882   // non-frame setup location marks the beginning of the function body.
883   // FIXME: is there a simpler a way to do this? Can we just search
884   // for the first instruction of the function, not the last of the prolog?
885   DebugLoc PrologEndLoc;
886   bool EmptyPrologue = true;
887   for (const auto &MBB : *MF) {
888     for (const auto &MI : MBB) {
889       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
890           MI.getDebugLoc()) {
891         PrologEndLoc = MI.getDebugLoc();
892         break;
893       } else if (!MI.isDebugValue()) {
894         EmptyPrologue = false;
895       }
896     }
897   }
898 
899   // Record beginning of function if we have a non-empty prologue.
900   if (PrologEndLoc && !EmptyPrologue) {
901     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
902     maybeRecordLocation(FnStartDL, MF);
903   }
904 }
905 
906 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
907   // Don't record empty UDTs.
908   if (Ty->getName().empty())
909     return;
910 
911   SmallVector<StringRef, 5> QualifiedNameComponents;
912   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
913       Ty->getScope().resolve(), QualifiedNameComponents);
914 
915   std::string FullyQualifiedName =
916       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
917 
918   if (ClosestSubprogram == nullptr)
919     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
920   else if (ClosestSubprogram == CurrentSubprogram)
921     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
922 
923   // TODO: What if the ClosestSubprogram is neither null or the current
924   // subprogram?  Currently, the UDT just gets dropped on the floor.
925   //
926   // The current behavior is not desirable.  To get maximal fidelity, we would
927   // need to perform all type translation before beginning emission of .debug$S
928   // and then make LocalUDTs a member of FunctionInfo
929 }
930 
931 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
932   // Generic dispatch for lowering an unknown type.
933   switch (Ty->getTag()) {
934   case dwarf::DW_TAG_array_type:
935     return lowerTypeArray(cast<DICompositeType>(Ty));
936   case dwarf::DW_TAG_typedef:
937     return lowerTypeAlias(cast<DIDerivedType>(Ty));
938   case dwarf::DW_TAG_base_type:
939     return lowerTypeBasic(cast<DIBasicType>(Ty));
940   case dwarf::DW_TAG_pointer_type:
941   case dwarf::DW_TAG_reference_type:
942   case dwarf::DW_TAG_rvalue_reference_type:
943     return lowerTypePointer(cast<DIDerivedType>(Ty));
944   case dwarf::DW_TAG_ptr_to_member_type:
945     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
946   case dwarf::DW_TAG_const_type:
947   case dwarf::DW_TAG_volatile_type:
948     return lowerTypeModifier(cast<DIDerivedType>(Ty));
949   case dwarf::DW_TAG_subroutine_type:
950     if (ClassTy) {
951       // The member function type of a member function pointer has no
952       // ThisAdjustment.
953       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
954                                      /*ThisAdjustment=*/0);
955     }
956     return lowerTypeFunction(cast<DISubroutineType>(Ty));
957   case dwarf::DW_TAG_enumeration_type:
958     return lowerTypeEnum(cast<DICompositeType>(Ty));
959   case dwarf::DW_TAG_class_type:
960   case dwarf::DW_TAG_structure_type:
961     return lowerTypeClass(cast<DICompositeType>(Ty));
962   case dwarf::DW_TAG_union_type:
963     return lowerTypeUnion(cast<DICompositeType>(Ty));
964   default:
965     // Use the null type index.
966     return TypeIndex();
967   }
968 }
969 
970 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
971   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
972   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
973   StringRef TypeName = Ty->getName();
974 
975   addToUDTs(Ty, UnderlyingTypeIndex);
976 
977   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
978       TypeName == "HRESULT")
979     return TypeIndex(SimpleTypeKind::HResult);
980   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
981       TypeName == "wchar_t")
982     return TypeIndex(SimpleTypeKind::WideCharacter);
983 
984   return UnderlyingTypeIndex;
985 }
986 
987 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
988   DITypeRef ElementTypeRef = Ty->getBaseType();
989   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
990   // IndexType is size_t, which depends on the bitness of the target.
991   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
992                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
993                             : TypeIndex(SimpleTypeKind::UInt32Long);
994 
995   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
996 
997   bool UndefinedSubrange = false;
998 
999   // FIXME:
1000   // There is a bug in the front-end where an array of a structure, which was
1001   // declared as incomplete structure first, ends up not getting a size assigned
1002   // to it. (PR28303)
1003   // Example:
1004   //   struct A(*p)[3];
1005   //   struct A { int f; } a[3];
1006   //
1007   // This needs to be fixed in the front-end, but in the meantime we don't want
1008   // to trigger an assertion because of this.
1009   if (Ty->getSizeInBits() == 0) {
1010     UndefinedSubrange = true;
1011   }
1012 
1013   // Add subranges to array type.
1014   DINodeArray Elements = Ty->getElements();
1015   for (int i = Elements.size() - 1; i >= 0; --i) {
1016     const DINode *Element = Elements[i];
1017     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1018 
1019     const DISubrange *Subrange = cast<DISubrange>(Element);
1020     assert(Subrange->getLowerBound() == 0 &&
1021            "codeview doesn't support subranges with lower bounds");
1022     int64_t Count = Subrange->getCount();
1023 
1024     // Variable Length Array (VLA) has Count equal to '-1'.
1025     // Replace with Count '1', assume it is the minimum VLA length.
1026     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1027     if (Count == -1) {
1028       Count = 1;
1029       UndefinedSubrange = true;
1030     }
1031 
1032     StringRef Name = (i == 0) ? Ty->getName() : "";
1033     // Update the element size and element type index for subsequent subranges.
1034     ElementSize *= Count;
1035     ElementTypeIndex = TypeTable.writeArray(
1036         ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name));
1037   }
1038 
1039   (void)UndefinedSubrange;
1040   assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8));
1041 
1042   return ElementTypeIndex;
1043 }
1044 
1045 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1046   TypeIndex Index;
1047   dwarf::TypeKind Kind;
1048   uint32_t ByteSize;
1049 
1050   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1051   ByteSize = Ty->getSizeInBits() / 8;
1052 
1053   SimpleTypeKind STK = SimpleTypeKind::None;
1054   switch (Kind) {
1055   case dwarf::DW_ATE_address:
1056     // FIXME: Translate
1057     break;
1058   case dwarf::DW_ATE_boolean:
1059     switch (ByteSize) {
1060     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1061     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1062     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1063     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1064     case 16: STK = SimpleTypeKind::Boolean128; break;
1065     }
1066     break;
1067   case dwarf::DW_ATE_complex_float:
1068     switch (ByteSize) {
1069     case 2:  STK = SimpleTypeKind::Complex16;  break;
1070     case 4:  STK = SimpleTypeKind::Complex32;  break;
1071     case 8:  STK = SimpleTypeKind::Complex64;  break;
1072     case 10: STK = SimpleTypeKind::Complex80;  break;
1073     case 16: STK = SimpleTypeKind::Complex128; break;
1074     }
1075     break;
1076   case dwarf::DW_ATE_float:
1077     switch (ByteSize) {
1078     case 2:  STK = SimpleTypeKind::Float16;  break;
1079     case 4:  STK = SimpleTypeKind::Float32;  break;
1080     case 6:  STK = SimpleTypeKind::Float48;  break;
1081     case 8:  STK = SimpleTypeKind::Float64;  break;
1082     case 10: STK = SimpleTypeKind::Float80;  break;
1083     case 16: STK = SimpleTypeKind::Float128; break;
1084     }
1085     break;
1086   case dwarf::DW_ATE_signed:
1087     switch (ByteSize) {
1088     case 1:  STK = SimpleTypeKind::SByte;      break;
1089     case 2:  STK = SimpleTypeKind::Int16Short; break;
1090     case 4:  STK = SimpleTypeKind::Int32;      break;
1091     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1092     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1093     }
1094     break;
1095   case dwarf::DW_ATE_unsigned:
1096     switch (ByteSize) {
1097     case 1:  STK = SimpleTypeKind::Byte;        break;
1098     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1099     case 4:  STK = SimpleTypeKind::UInt32;      break;
1100     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1101     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1102     }
1103     break;
1104   case dwarf::DW_ATE_UTF:
1105     switch (ByteSize) {
1106     case 2: STK = SimpleTypeKind::Character16; break;
1107     case 4: STK = SimpleTypeKind::Character32; break;
1108     }
1109     break;
1110   case dwarf::DW_ATE_signed_char:
1111     if (ByteSize == 1)
1112       STK = SimpleTypeKind::SignedCharacter;
1113     break;
1114   case dwarf::DW_ATE_unsigned_char:
1115     if (ByteSize == 1)
1116       STK = SimpleTypeKind::UnsignedCharacter;
1117     break;
1118   default:
1119     break;
1120   }
1121 
1122   // Apply some fixups based on the source-level type name.
1123   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1124     STK = SimpleTypeKind::Int32Long;
1125   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1126     STK = SimpleTypeKind::UInt32Long;
1127   if (STK == SimpleTypeKind::UInt16Short &&
1128       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1129     STK = SimpleTypeKind::WideCharacter;
1130   if ((STK == SimpleTypeKind::SignedCharacter ||
1131        STK == SimpleTypeKind::UnsignedCharacter) &&
1132       Ty->getName() == "char")
1133     STK = SimpleTypeKind::NarrowCharacter;
1134 
1135   return TypeIndex(STK);
1136 }
1137 
1138 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1139   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1140 
1141   // While processing the type being pointed to it is possible we already
1142   // created this pointer type.  If so, we check here and return the existing
1143   // pointer type.
1144   auto I = TypeIndices.find({Ty, nullptr});
1145   if (I != TypeIndices.end())
1146     return I->second;
1147 
1148   // Pointers to simple types can use SimpleTypeMode, rather than having a
1149   // dedicated pointer type record.
1150   if (PointeeTI.isSimple() &&
1151       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1152       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1153     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1154                               ? SimpleTypeMode::NearPointer64
1155                               : SimpleTypeMode::NearPointer32;
1156     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1157   }
1158 
1159   PointerKind PK =
1160       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1161   PointerMode PM = PointerMode::Pointer;
1162   switch (Ty->getTag()) {
1163   default: llvm_unreachable("not a pointer tag type");
1164   case dwarf::DW_TAG_pointer_type:
1165     PM = PointerMode::Pointer;
1166     break;
1167   case dwarf::DW_TAG_reference_type:
1168     PM = PointerMode::LValueReference;
1169     break;
1170   case dwarf::DW_TAG_rvalue_reference_type:
1171     PM = PointerMode::RValueReference;
1172     break;
1173   }
1174   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1175   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1176   // do.
1177   PointerOptions PO = PointerOptions::None;
1178   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1179   return TypeTable.writePointer(PR);
1180 }
1181 
1182 static PointerToMemberRepresentation
1183 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1184   // SizeInBytes being zero generally implies that the member pointer type was
1185   // incomplete, which can happen if it is part of a function prototype. In this
1186   // case, use the unknown model instead of the general model.
1187   if (IsPMF) {
1188     switch (Flags & DINode::FlagPtrToMemberRep) {
1189     case 0:
1190       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1191                               : PointerToMemberRepresentation::GeneralFunction;
1192     case DINode::FlagSingleInheritance:
1193       return PointerToMemberRepresentation::SingleInheritanceFunction;
1194     case DINode::FlagMultipleInheritance:
1195       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1196     case DINode::FlagVirtualInheritance:
1197       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1198     }
1199   } else {
1200     switch (Flags & DINode::FlagPtrToMemberRep) {
1201     case 0:
1202       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1203                               : PointerToMemberRepresentation::GeneralData;
1204     case DINode::FlagSingleInheritance:
1205       return PointerToMemberRepresentation::SingleInheritanceData;
1206     case DINode::FlagMultipleInheritance:
1207       return PointerToMemberRepresentation::MultipleInheritanceData;
1208     case DINode::FlagVirtualInheritance:
1209       return PointerToMemberRepresentation::VirtualInheritanceData;
1210     }
1211   }
1212   llvm_unreachable("invalid ptr to member representation");
1213 }
1214 
1215 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1216   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1217   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1218   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1219   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1220                                                    : PointerKind::Near32;
1221   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1222   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1223                          : PointerMode::PointerToDataMember;
1224   PointerOptions PO = PointerOptions::None; // FIXME
1225   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1226   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1227   MemberPointerInfo MPI(
1228       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1229   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1230   return TypeTable.writePointer(PR);
1231 }
1232 
1233 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1234 /// have a translation, use the NearC convention.
1235 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1236   switch (DwarfCC) {
1237   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1238   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1239   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1240   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1241   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1242   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1243   }
1244   return CallingConvention::NearC;
1245 }
1246 
1247 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1248   ModifierOptions Mods = ModifierOptions::None;
1249   bool IsModifier = true;
1250   const DIType *BaseTy = Ty;
1251   while (IsModifier && BaseTy) {
1252     // FIXME: Need to add DWARF tag for __unaligned.
1253     switch (BaseTy->getTag()) {
1254     case dwarf::DW_TAG_const_type:
1255       Mods |= ModifierOptions::Const;
1256       break;
1257     case dwarf::DW_TAG_volatile_type:
1258       Mods |= ModifierOptions::Volatile;
1259       break;
1260     default:
1261       IsModifier = false;
1262       break;
1263     }
1264     if (IsModifier)
1265       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1266   }
1267   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1268 
1269   // While processing the type being pointed to, it is possible we already
1270   // created this modifier type.  If so, we check here and return the existing
1271   // modifier type.
1272   auto I = TypeIndices.find({Ty, nullptr});
1273   if (I != TypeIndices.end())
1274     return I->second;
1275 
1276   ModifierRecord MR(ModifiedTI, Mods);
1277   return TypeTable.writeModifier(MR);
1278 }
1279 
1280 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1281   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1282   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1283     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1284 
1285   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1286   ArrayRef<TypeIndex> ArgTypeIndices = None;
1287   if (!ReturnAndArgTypeIndices.empty()) {
1288     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1289     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1290     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1291   }
1292 
1293   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1294   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1295 
1296   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1297 
1298   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1299                             ArgTypeIndices.size(), ArgListIndex);
1300   return TypeTable.writeProcedure(Procedure);
1301 }
1302 
1303 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1304                                                  const DIType *ClassTy,
1305                                                  int ThisAdjustment) {
1306   // Lower the containing class type.
1307   TypeIndex ClassType = getTypeIndex(ClassTy);
1308 
1309   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1310   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1311     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1312 
1313   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1314   ArrayRef<TypeIndex> ArgTypeIndices = None;
1315   if (!ReturnAndArgTypeIndices.empty()) {
1316     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1317     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1318     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1319   }
1320   TypeIndex ThisTypeIndex = TypeIndex::Void();
1321   if (!ArgTypeIndices.empty()) {
1322     ThisTypeIndex = ArgTypeIndices.front();
1323     ArgTypeIndices = ArgTypeIndices.drop_front();
1324   }
1325 
1326   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1327   TypeIndex ArgListIndex = TypeTable.writeArgList(ArgListRec);
1328 
1329   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1330 
1331   // TODO: Need to use the correct values for:
1332   //       FunctionOptions
1333   //       ThisPointerAdjustment.
1334   TypeIndex TI = TypeTable.writeMemberFunction(MemberFunctionRecord(
1335       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1336       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1337 
1338   return TI;
1339 }
1340 
1341 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1342   switch (Flags & DINode::FlagAccessibility) {
1343   case DINode::FlagPrivate:   return MemberAccess::Private;
1344   case DINode::FlagPublic:    return MemberAccess::Public;
1345   case DINode::FlagProtected: return MemberAccess::Protected;
1346   case 0:
1347     // If there was no explicit access control, provide the default for the tag.
1348     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1349                                                  : MemberAccess::Public;
1350   }
1351   llvm_unreachable("access flags are exclusive");
1352 }
1353 
1354 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1355   if (SP->isArtificial())
1356     return MethodOptions::CompilerGenerated;
1357 
1358   // FIXME: Handle other MethodOptions.
1359 
1360   return MethodOptions::None;
1361 }
1362 
1363 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1364                                            bool Introduced) {
1365   switch (SP->getVirtuality()) {
1366   case dwarf::DW_VIRTUALITY_none:
1367     break;
1368   case dwarf::DW_VIRTUALITY_virtual:
1369     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1370   case dwarf::DW_VIRTUALITY_pure_virtual:
1371     return Introduced ? MethodKind::PureIntroducingVirtual
1372                       : MethodKind::PureVirtual;
1373   default:
1374     llvm_unreachable("unhandled virtuality case");
1375   }
1376 
1377   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1378 
1379   return MethodKind::Vanilla;
1380 }
1381 
1382 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1383   switch (Ty->getTag()) {
1384   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1385   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1386   }
1387   llvm_unreachable("unexpected tag");
1388 }
1389 
1390 /// Return ClassOptions that should be present on both the forward declaration
1391 /// and the defintion of a tag type.
1392 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1393   ClassOptions CO = ClassOptions::None;
1394 
1395   // MSVC always sets this flag, even for local types. Clang doesn't always
1396   // appear to give every type a linkage name, which may be problematic for us.
1397   // FIXME: Investigate the consequences of not following them here.
1398   if (!Ty->getIdentifier().empty())
1399     CO |= ClassOptions::HasUniqueName;
1400 
1401   // Put the Nested flag on a type if it appears immediately inside a tag type.
1402   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1403   // here. That flag is only set on definitions, and not forward declarations.
1404   const DIScope *ImmediateScope = Ty->getScope().resolve();
1405   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1406     CO |= ClassOptions::Nested;
1407 
1408   // Put the Scoped flag on function-local types.
1409   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1410        Scope = Scope->getScope().resolve()) {
1411     if (isa<DISubprogram>(Scope)) {
1412       CO |= ClassOptions::Scoped;
1413       break;
1414     }
1415   }
1416 
1417   return CO;
1418 }
1419 
1420 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1421   ClassOptions CO = getCommonClassOptions(Ty);
1422   TypeIndex FTI;
1423   unsigned EnumeratorCount = 0;
1424 
1425   if (Ty->isForwardDecl()) {
1426     CO |= ClassOptions::ForwardReference;
1427   } else {
1428     FieldListRecordBuilder Fields;
1429     for (const DINode *Element : Ty->getElements()) {
1430       // We assume that the frontend provides all members in source declaration
1431       // order, which is what MSVC does.
1432       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1433         Fields.writeEnumerator(EnumeratorRecord(
1434             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1435             Enumerator->getName()));
1436         EnumeratorCount++;
1437       }
1438     }
1439     FTI = TypeTable.writeFieldList(Fields);
1440   }
1441 
1442   std::string FullName = getFullyQualifiedName(Ty);
1443 
1444   return TypeTable.writeEnum(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1445                                         Ty->getIdentifier(),
1446                                         getTypeIndex(Ty->getBaseType())));
1447 }
1448 
1449 //===----------------------------------------------------------------------===//
1450 // ClassInfo
1451 //===----------------------------------------------------------------------===//
1452 
1453 struct llvm::ClassInfo {
1454   struct MemberInfo {
1455     const DIDerivedType *MemberTypeNode;
1456     uint64_t BaseOffset;
1457   };
1458   // [MemberInfo]
1459   typedef std::vector<MemberInfo> MemberList;
1460 
1461   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1462   // MethodName -> MethodsList
1463   typedef MapVector<MDString *, MethodsList> MethodsMap;
1464 
1465   /// Base classes.
1466   std::vector<const DIDerivedType *> Inheritance;
1467 
1468   /// Direct members.
1469   MemberList Members;
1470   // Direct overloaded methods gathered by name.
1471   MethodsMap Methods;
1472 
1473   std::vector<const DICompositeType *> NestedClasses;
1474 };
1475 
1476 void CodeViewDebug::clear() {
1477   assert(CurFn == nullptr);
1478   FileIdMap.clear();
1479   FnDebugInfo.clear();
1480   FileToFilepathMap.clear();
1481   LocalUDTs.clear();
1482   GlobalUDTs.clear();
1483   TypeIndices.clear();
1484   CompleteTypeIndices.clear();
1485 }
1486 
1487 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1488                                       const DIDerivedType *DDTy) {
1489   if (!DDTy->getName().empty()) {
1490     Info.Members.push_back({DDTy, 0});
1491     return;
1492   }
1493   // An unnamed member must represent a nested struct or union. Add all the
1494   // indirect fields to the current record.
1495   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1496   uint64_t Offset = DDTy->getOffsetInBits();
1497   const DIType *Ty = DDTy->getBaseType().resolve();
1498   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1499   ClassInfo NestedInfo = collectClassInfo(DCTy);
1500   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1501     Info.Members.push_back(
1502         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1503 }
1504 
1505 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1506   ClassInfo Info;
1507   // Add elements to structure type.
1508   DINodeArray Elements = Ty->getElements();
1509   for (auto *Element : Elements) {
1510     // We assume that the frontend provides all members in source declaration
1511     // order, which is what MSVC does.
1512     if (!Element)
1513       continue;
1514     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1515       Info.Methods[SP->getRawName()].push_back(SP);
1516     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1517       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1518         collectMemberInfo(Info, DDTy);
1519       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1520         Info.Inheritance.push_back(DDTy);
1521       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1522         // Ignore friend members. It appears that MSVC emitted info about
1523         // friends in the past, but modern versions do not.
1524       }
1525       // FIXME: Get Clang to emit function virtual table here and handle it.
1526     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1527       Info.NestedClasses.push_back(Composite);
1528     }
1529     // Skip other unrecognized kinds of elements.
1530   }
1531   return Info;
1532 }
1533 
1534 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1535   // First, construct the forward decl.  Don't look into Ty to compute the
1536   // forward decl options, since it might not be available in all TUs.
1537   TypeRecordKind Kind = getRecordKind(Ty);
1538   ClassOptions CO =
1539       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1540   std::string FullName = getFullyQualifiedName(Ty);
1541   TypeIndex FwdDeclTI = TypeTable.writeClass(ClassRecord(
1542       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1543       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1544   if (!Ty->isForwardDecl())
1545     DeferredCompleteTypes.push_back(Ty);
1546   return FwdDeclTI;
1547 }
1548 
1549 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1550   // Construct the field list and complete type record.
1551   TypeRecordKind Kind = getRecordKind(Ty);
1552   ClassOptions CO = getCommonClassOptions(Ty);
1553   TypeIndex FieldTI;
1554   TypeIndex VShapeTI;
1555   unsigned FieldCount;
1556   bool ContainsNestedClass;
1557   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1558       lowerRecordFieldList(Ty);
1559 
1560   if (ContainsNestedClass)
1561     CO |= ClassOptions::ContainsNestedClass;
1562 
1563   std::string FullName = getFullyQualifiedName(Ty);
1564 
1565   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1566 
1567   TypeIndex ClassTI = TypeTable.writeClass(ClassRecord(
1568       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1569       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1570 
1571   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1572       ClassTI, TypeTable.writeStringId(StringIdRecord(
1573                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1574       Ty->getLine()));
1575 
1576   addToUDTs(Ty, ClassTI);
1577 
1578   return ClassTI;
1579 }
1580 
1581 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1582   ClassOptions CO =
1583       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1584   std::string FullName = getFullyQualifiedName(Ty);
1585   TypeIndex FwdDeclTI =
1586       TypeTable.writeUnion(UnionRecord(0, CO, HfaKind::None, TypeIndex(), 0,
1587                                        FullName, Ty->getIdentifier()));
1588   if (!Ty->isForwardDecl())
1589     DeferredCompleteTypes.push_back(Ty);
1590   return FwdDeclTI;
1591 }
1592 
1593 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1594   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1595   TypeIndex FieldTI;
1596   unsigned FieldCount;
1597   bool ContainsNestedClass;
1598   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1599       lowerRecordFieldList(Ty);
1600 
1601   if (ContainsNestedClass)
1602     CO |= ClassOptions::ContainsNestedClass;
1603 
1604   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1605   std::string FullName = getFullyQualifiedName(Ty);
1606 
1607   TypeIndex UnionTI = TypeTable.writeUnion(
1608       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1609                   Ty->getIdentifier()));
1610 
1611   TypeTable.writeUdtSourceLine(UdtSourceLineRecord(
1612       UnionTI, TypeTable.writeStringId(StringIdRecord(
1613                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1614       Ty->getLine()));
1615 
1616   addToUDTs(Ty, UnionTI);
1617 
1618   return UnionTI;
1619 }
1620 
1621 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1622 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1623   // Manually count members. MSVC appears to count everything that generates a
1624   // field list record. Each individual overload in a method overload group
1625   // contributes to this count, even though the overload group is a single field
1626   // list record.
1627   unsigned MemberCount = 0;
1628   ClassInfo Info = collectClassInfo(Ty);
1629   FieldListRecordBuilder Fields;
1630 
1631   // Create base classes.
1632   for (const DIDerivedType *I : Info.Inheritance) {
1633     if (I->getFlags() & DINode::FlagVirtual) {
1634       // Virtual base.
1635       // FIXME: Emit VBPtrOffset when the frontend provides it.
1636       unsigned VBPtrOffset = 0;
1637       // FIXME: Despite the accessor name, the offset is really in bytes.
1638       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1639       Fields.writeVirtualBaseClass(VirtualBaseClassRecord(
1640           translateAccessFlags(Ty->getTag(), I->getFlags()),
1641           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1642           VBTableIndex));
1643     } else {
1644       assert(I->getOffsetInBits() % 8 == 0 &&
1645              "bases must be on byte boundaries");
1646       Fields.writeBaseClass(BaseClassRecord(
1647           translateAccessFlags(Ty->getTag(), I->getFlags()),
1648           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1649     }
1650   }
1651 
1652   // Create members.
1653   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1654     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1655     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1656     StringRef MemberName = Member->getName();
1657     MemberAccess Access =
1658         translateAccessFlags(Ty->getTag(), Member->getFlags());
1659 
1660     if (Member->isStaticMember()) {
1661       Fields.writeStaticDataMember(
1662           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1663       MemberCount++;
1664       continue;
1665     }
1666 
1667     // Data member.
1668     uint64_t MemberOffsetInBits =
1669         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1670     if (Member->isBitField()) {
1671       uint64_t StartBitOffset = MemberOffsetInBits;
1672       if (const auto *CI =
1673               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1674         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1675       }
1676       StartBitOffset -= MemberOffsetInBits;
1677       MemberBaseType = TypeTable.writeBitField(BitFieldRecord(
1678           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1679     }
1680     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1681     Fields.writeDataMember(DataMemberRecord(Access, MemberBaseType,
1682                                             MemberOffsetInBytes, MemberName));
1683     MemberCount++;
1684   }
1685 
1686   // Create methods
1687   for (auto &MethodItr : Info.Methods) {
1688     StringRef Name = MethodItr.first->getString();
1689 
1690     std::vector<OneMethodRecord> Methods;
1691     for (const DISubprogram *SP : MethodItr.second) {
1692       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1693       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1694 
1695       unsigned VFTableOffset = -1;
1696       if (Introduced)
1697         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1698 
1699       Methods.push_back(
1700           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1701                           translateMethodOptionFlags(SP),
1702                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1703                           VFTableOffset, Name));
1704       MemberCount++;
1705     }
1706     assert(Methods.size() > 0 && "Empty methods map entry");
1707     if (Methods.size() == 1)
1708       Fields.writeOneMethod(Methods[0]);
1709     else {
1710       TypeIndex MethodList =
1711           TypeTable.writeMethodOverloadList(MethodOverloadListRecord(Methods));
1712       Fields.writeOverloadedMethod(
1713           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1714     }
1715   }
1716 
1717   // Create nested classes.
1718   for (const DICompositeType *Nested : Info.NestedClasses) {
1719     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1720     Fields.writeNestedType(R);
1721     MemberCount++;
1722   }
1723 
1724   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1725   return std::make_tuple(FieldTI, TypeIndex(), MemberCount,
1726                          !Info.NestedClasses.empty());
1727 }
1728 
1729 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1730   if (!VBPType.getIndex()) {
1731     // Make a 'const int *' type.
1732     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1733     TypeIndex ModifiedTI = TypeTable.writeModifier(MR);
1734 
1735     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1736                                                   : PointerKind::Near32;
1737     PointerMode PM = PointerMode::Pointer;
1738     PointerOptions PO = PointerOptions::None;
1739     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1740 
1741     VBPType = TypeTable.writePointer(PR);
1742   }
1743 
1744   return VBPType;
1745 }
1746 
1747 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1748   const DIType *Ty = TypeRef.resolve();
1749   const DIType *ClassTy = ClassTyRef.resolve();
1750 
1751   // The null DIType is the void type. Don't try to hash it.
1752   if (!Ty)
1753     return TypeIndex::Void();
1754 
1755   // Check if we've already translated this type. Don't try to do a
1756   // get-or-create style insertion that caches the hash lookup across the
1757   // lowerType call. It will update the TypeIndices map.
1758   auto I = TypeIndices.find({Ty, ClassTy});
1759   if (I != TypeIndices.end())
1760     return I->second;
1761 
1762   TypeLoweringScope S(*this);
1763   TypeIndex TI = lowerType(Ty, ClassTy);
1764   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1765 }
1766 
1767 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1768   const DIType *Ty = TypeRef.resolve();
1769 
1770   // The null DIType is the void type. Don't try to hash it.
1771   if (!Ty)
1772     return TypeIndex::Void();
1773 
1774   // If this is a non-record type, the complete type index is the same as the
1775   // normal type index. Just call getTypeIndex.
1776   switch (Ty->getTag()) {
1777   case dwarf::DW_TAG_class_type:
1778   case dwarf::DW_TAG_structure_type:
1779   case dwarf::DW_TAG_union_type:
1780     break;
1781   default:
1782     return getTypeIndex(Ty);
1783   }
1784 
1785   // Check if we've already translated the complete record type.  Lowering a
1786   // complete type should never trigger lowering another complete type, so we
1787   // can reuse the hash table lookup result.
1788   const auto *CTy = cast<DICompositeType>(Ty);
1789   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1790   if (!InsertResult.second)
1791     return InsertResult.first->second;
1792 
1793   TypeLoweringScope S(*this);
1794 
1795   // Make sure the forward declaration is emitted first. It's unclear if this
1796   // is necessary, but MSVC does it, and we should follow suit until we can show
1797   // otherwise.
1798   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1799 
1800   // Just use the forward decl if we don't have complete type info. This might
1801   // happen if the frontend is using modules and expects the complete definition
1802   // to be emitted elsewhere.
1803   if (CTy->isForwardDecl())
1804     return FwdDeclTI;
1805 
1806   TypeIndex TI;
1807   switch (CTy->getTag()) {
1808   case dwarf::DW_TAG_class_type:
1809   case dwarf::DW_TAG_structure_type:
1810     TI = lowerCompleteTypeClass(CTy);
1811     break;
1812   case dwarf::DW_TAG_union_type:
1813     TI = lowerCompleteTypeUnion(CTy);
1814     break;
1815   default:
1816     llvm_unreachable("not a record");
1817   }
1818 
1819   InsertResult.first->second = TI;
1820   return TI;
1821 }
1822 
1823 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1824 /// and do this until fixpoint, as each complete record type typically
1825 /// references
1826 /// many other record types.
1827 void CodeViewDebug::emitDeferredCompleteTypes() {
1828   SmallVector<const DICompositeType *, 4> TypesToEmit;
1829   while (!DeferredCompleteTypes.empty()) {
1830     std::swap(DeferredCompleteTypes, TypesToEmit);
1831     for (const DICompositeType *RecordTy : TypesToEmit)
1832       getCompleteTypeIndex(RecordTy);
1833     TypesToEmit.clear();
1834   }
1835 }
1836 
1837 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1838   // Get the sorted list of parameters and emit them first.
1839   SmallVector<const LocalVariable *, 6> Params;
1840   for (const LocalVariable &L : Locals)
1841     if (L.DIVar->isParameter())
1842       Params.push_back(&L);
1843   std::sort(Params.begin(), Params.end(),
1844             [](const LocalVariable *L, const LocalVariable *R) {
1845               return L->DIVar->getArg() < R->DIVar->getArg();
1846             });
1847   for (const LocalVariable *L : Params)
1848     emitLocalVariable(*L);
1849 
1850   // Next emit all non-parameters in the order that we found them.
1851   for (const LocalVariable &L : Locals)
1852     if (!L.DIVar->isParameter())
1853       emitLocalVariable(L);
1854 }
1855 
1856 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1857   // LocalSym record, see SymbolRecord.h for more info.
1858   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1859            *LocalEnd = MMI->getContext().createTempSymbol();
1860   OS.AddComment("Record length");
1861   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1862   OS.EmitLabel(LocalBegin);
1863 
1864   OS.AddComment("Record kind: S_LOCAL");
1865   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1866 
1867   LocalSymFlags Flags = LocalSymFlags::None;
1868   if (Var.DIVar->isParameter())
1869     Flags |= LocalSymFlags::IsParameter;
1870   if (Var.DefRanges.empty())
1871     Flags |= LocalSymFlags::IsOptimizedOut;
1872 
1873   OS.AddComment("TypeIndex");
1874   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1875   OS.EmitIntValue(TI.getIndex(), 4);
1876   OS.AddComment("Flags");
1877   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1878   // Truncate the name so we won't overflow the record length field.
1879   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1880   OS.EmitLabel(LocalEnd);
1881 
1882   // Calculate the on disk prefix of the appropriate def range record. The
1883   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1884   // should be big enough to hold all forms without memory allocation.
1885   SmallString<20> BytePrefix;
1886   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1887     BytePrefix.clear();
1888     // FIXME: Handle bitpieces.
1889     if (DefRange.StructOffset != 0)
1890       continue;
1891 
1892     if (DefRange.InMemory) {
1893       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1894                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1895       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1896       BytePrefix +=
1897           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1898       BytePrefix +=
1899           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1900                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1901     } else {
1902       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1903       // Unclear what matters here.
1904       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1905                               ArrayRef<LocalVariableAddrGap>());
1906       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1907       BytePrefix +=
1908           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1909       BytePrefix +=
1910           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1911                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1912     }
1913     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1914   }
1915 }
1916 
1917 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1918   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1919     return;
1920 
1921   const Function *GV = MF->getFunction();
1922   assert(FnDebugInfo.count(GV));
1923   assert(CurFn == &FnDebugInfo[GV]);
1924 
1925   collectVariableInfo(GV->getSubprogram());
1926 
1927   DebugHandlerBase::endFunction(MF);
1928 
1929   // Don't emit anything if we don't have any line tables.
1930   if (!CurFn->HaveLineInfo) {
1931     FnDebugInfo.erase(GV);
1932     CurFn = nullptr;
1933     return;
1934   }
1935 
1936   CurFn->End = Asm->getFunctionEnd();
1937 
1938   CurFn = nullptr;
1939 }
1940 
1941 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1942   DebugHandlerBase::beginInstruction(MI);
1943 
1944   // Ignore DBG_VALUE locations and function prologue.
1945   if (!Asm || MI->isDebugValue() || MI->getFlag(MachineInstr::FrameSetup))
1946     return;
1947   DebugLoc DL = MI->getDebugLoc();
1948   if (DL == PrevInstLoc || !DL)
1949     return;
1950   maybeRecordLocation(DL, Asm->MF);
1951 }
1952 
1953 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1954   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1955            *EndLabel = MMI->getContext().createTempSymbol();
1956   OS.EmitIntValue(unsigned(Kind), 4);
1957   OS.AddComment("Subsection size");
1958   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1959   OS.EmitLabel(BeginLabel);
1960   return EndLabel;
1961 }
1962 
1963 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1964   OS.EmitLabel(EndLabel);
1965   // Every subsection must be aligned to a 4-byte boundary.
1966   OS.EmitValueToAlignment(4);
1967 }
1968 
1969 void CodeViewDebug::emitDebugInfoForUDTs(
1970     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1971   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1972     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1973              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1974     OS.AddComment("Record length");
1975     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1976     OS.EmitLabel(UDTRecordBegin);
1977 
1978     OS.AddComment("Record kind: S_UDT");
1979     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1980 
1981     OS.AddComment("Type");
1982     OS.EmitIntValue(UDT.second.getIndex(), 4);
1983 
1984     emitNullTerminatedSymbolName(OS, UDT.first);
1985     OS.EmitLabel(UDTRecordEnd);
1986   }
1987 }
1988 
1989 void CodeViewDebug::emitDebugInfoForGlobals() {
1990   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1991   for (const MDNode *Node : CUs->operands()) {
1992     const auto *CU = cast<DICompileUnit>(Node);
1993 
1994     // First, emit all globals that are not in a comdat in a single symbol
1995     // substream. MSVC doesn't like it if the substream is empty, so only open
1996     // it if we have at least one global to emit.
1997     switchToDebugSectionForSymbol(nullptr);
1998     MCSymbol *EndLabel = nullptr;
1999     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2000       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2001         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2002           if (!EndLabel) {
2003             OS.AddComment("Symbol subsection for globals");
2004             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2005           }
2006           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
2007         }
2008       }
2009     }
2010     if (EndLabel)
2011       endCVSubsection(EndLabel);
2012 
2013     // Second, emit each global that is in a comdat into its own .debug$S
2014     // section along with its own symbol substream.
2015     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2016       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2017         if (GV->hasComdat()) {
2018           MCSymbol *GVSym = Asm->getSymbol(GV);
2019           OS.AddComment("Symbol subsection for " +
2020                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2021           switchToDebugSectionForSymbol(GVSym);
2022           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2023           emitDebugInfoForGlobal(G, GVSym);
2024           endCVSubsection(EndLabel);
2025         }
2026       }
2027     }
2028   }
2029 }
2030 
2031 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2032   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2033   for (const MDNode *Node : CUs->operands()) {
2034     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2035       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2036         getTypeIndex(RT);
2037         // FIXME: Add to global/local DTU list.
2038       }
2039     }
2040   }
2041 }
2042 
2043 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2044                                            MCSymbol *GVSym) {
2045   // DataSym record, see SymbolRecord.h for more info.
2046   // FIXME: Thread local data, etc
2047   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2048            *DataEnd = MMI->getContext().createTempSymbol();
2049   OS.AddComment("Record length");
2050   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2051   OS.EmitLabel(DataBegin);
2052   const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
2053   if (DIGV->isLocalToUnit()) {
2054     if (GV->isThreadLocal()) {
2055       OS.AddComment("Record kind: S_LTHREAD32");
2056       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2057     } else {
2058       OS.AddComment("Record kind: S_LDATA32");
2059       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2060     }
2061   } else {
2062     if (GV->isThreadLocal()) {
2063       OS.AddComment("Record kind: S_GTHREAD32");
2064       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2065     } else {
2066       OS.AddComment("Record kind: S_GDATA32");
2067       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2068     }
2069   }
2070   OS.AddComment("Type");
2071   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2072   OS.AddComment("DataOffset");
2073   OS.EmitCOFFSecRel32(GVSym);
2074   OS.AddComment("Segment");
2075   OS.EmitCOFFSectionIndex(GVSym);
2076   OS.AddComment("Name");
2077   emitNullTerminatedSymbolName(OS, DIGV->getName());
2078   OS.EmitLabel(DataEnd);
2079 }
2080