1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/EnumTables.h"
48 #include "llvm/DebugInfo/CodeView/Line.h"
49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
51 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
52 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCContext.h"
66 #include "llvm/MC/MCSectionCOFF.h"
67 #include "llvm/MC/MCStreamer.h"
68 #include "llvm/MC/MCSymbol.h"
69 #include "llvm/Support/BinaryByteStream.h"
70 #include "llvm/Support/BinaryStreamReader.h"
71 #include "llvm/Support/BinaryStreamWriter.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Endian.h"
76 #include "llvm/Support/Error.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/FormatVariadic.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/Program.h"
81 #include "llvm/Support/SMLoc.h"
82 #include "llvm/Support/ScopedPrinter.h"
83 #include "llvm/Target/TargetLoweringObjectFile.h"
84 #include "llvm/Target/TargetMachine.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <cctype>
88 #include <cstddef>
89 #include <cstdint>
90 #include <iterator>
91 #include <limits>
92 #include <string>
93 #include <utility>
94 #include <vector>
95 
96 using namespace llvm;
97 using namespace llvm::codeview;
98 
99 namespace {
100 class CVMCAdapter : public CodeViewRecordStreamer {
101 public:
102   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
103       : OS(&OS), TypeTable(TypeTable) {}
104 
105   void emitBytes(StringRef Data) { OS->emitBytes(Data); }
106 
107   void emitIntValue(uint64_t Value, unsigned Size) {
108     OS->emitIntValueInHex(Value, Size);
109   }
110 
111   void emitBinaryData(StringRef Data) { OS->emitBinaryData(Data); }
112 
113   void AddComment(const Twine &T) { OS->AddComment(T); }
114 
115   void AddRawComment(const Twine &T) { OS->emitRawComment(T); }
116 
117   bool isVerboseAsm() { return OS->isVerboseAsm(); }
118 
119   std::string getTypeName(TypeIndex TI) {
120     std::string TypeName;
121     if (!TI.isNoneType()) {
122       if (TI.isSimple())
123         TypeName = std::string(TypeIndex::simpleTypeName(TI));
124       else
125         TypeName = std::string(TypeTable.getTypeName(TI));
126     }
127     return TypeName;
128   }
129 
130 private:
131   MCStreamer *OS = nullptr;
132   TypeCollection &TypeTable;
133 };
134 } // namespace
135 
136 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
137   switch (Type) {
138   case Triple::ArchType::x86:
139     return CPUType::Pentium3;
140   case Triple::ArchType::x86_64:
141     return CPUType::X64;
142   case Triple::ArchType::thumb:
143     return CPUType::Thumb;
144   case Triple::ArchType::aarch64:
145     return CPUType::ARM64;
146   default:
147     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
148   }
149 }
150 
151 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
152     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
153   // If module doesn't have named metadata anchors or COFF debug section
154   // is not available, skip any debug info related stuff.
155   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
156       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
157     Asm = nullptr;
158     MMI->setDebugInfoAvailability(false);
159     return;
160   }
161   // Tell MMI that we have debug info.
162   MMI->setDebugInfoAvailability(true);
163 
164   TheCPU =
165       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
166 
167   collectGlobalVariableInfo();
168 
169   // Check if we should emit type record hashes.
170   ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
171       MMI->getModule()->getModuleFlag("CodeViewGHash"));
172   EmitDebugGlobalHashes = GH && !GH->isZero();
173 }
174 
175 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
176   std::string &Filepath = FileToFilepathMap[File];
177   if (!Filepath.empty())
178     return Filepath;
179 
180   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
181 
182   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
183   // it textually because one of the path components could be a symlink.
184   if (Dir.startswith("/") || Filename.startswith("/")) {
185     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
186       return Filename;
187     Filepath = std::string(Dir);
188     if (Dir.back() != '/')
189       Filepath += '/';
190     Filepath += Filename;
191     return Filepath;
192   }
193 
194   // Clang emits directory and relative filename info into the IR, but CodeView
195   // operates on full paths.  We could change Clang to emit full paths too, but
196   // that would increase the IR size and probably not needed for other users.
197   // For now, just concatenate and canonicalize the path here.
198   if (Filename.find(':') == 1)
199     Filepath = std::string(Filename);
200   else
201     Filepath = (Dir + "\\" + Filename).str();
202 
203   // Canonicalize the path.  We have to do it textually because we may no longer
204   // have access the file in the filesystem.
205   // First, replace all slashes with backslashes.
206   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
207 
208   // Remove all "\.\" with "\".
209   size_t Cursor = 0;
210   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
211     Filepath.erase(Cursor, 2);
212 
213   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
214   // path should be well-formatted, e.g. start with a drive letter, etc.
215   Cursor = 0;
216   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
217     // Something's wrong if the path starts with "\..\", abort.
218     if (Cursor == 0)
219       break;
220 
221     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
222     if (PrevSlash == std::string::npos)
223       // Something's wrong, abort.
224       break;
225 
226     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
227     // The next ".." might be following the one we've just erased.
228     Cursor = PrevSlash;
229   }
230 
231   // Remove all duplicate backslashes.
232   Cursor = 0;
233   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
234     Filepath.erase(Cursor, 1);
235 
236   return Filepath;
237 }
238 
239 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
240   StringRef FullPath = getFullFilepath(F);
241   unsigned NextId = FileIdMap.size() + 1;
242   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
243   if (Insertion.second) {
244     // We have to compute the full filepath and emit a .cv_file directive.
245     ArrayRef<uint8_t> ChecksumAsBytes;
246     FileChecksumKind CSKind = FileChecksumKind::None;
247     if (F->getChecksum()) {
248       std::string Checksum = fromHex(F->getChecksum()->Value);
249       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
250       memcpy(CKMem, Checksum.data(), Checksum.size());
251       ChecksumAsBytes = ArrayRef<uint8_t>(
252           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
253       switch (F->getChecksum()->Kind) {
254       case DIFile::CSK_MD5:
255         CSKind = FileChecksumKind::MD5;
256         break;
257       case DIFile::CSK_SHA1:
258         CSKind = FileChecksumKind::SHA1;
259         break;
260       case DIFile::CSK_SHA256:
261         CSKind = FileChecksumKind::SHA256;
262         break;
263       }
264     }
265     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
266                                           static_cast<unsigned>(CSKind));
267     (void)Success;
268     assert(Success && ".cv_file directive failed");
269   }
270   return Insertion.first->second;
271 }
272 
273 CodeViewDebug::InlineSite &
274 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
275                              const DISubprogram *Inlinee) {
276   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
277   InlineSite *Site = &SiteInsertion.first->second;
278   if (SiteInsertion.second) {
279     unsigned ParentFuncId = CurFn->FuncId;
280     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
281       ParentFuncId =
282           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
283               .SiteFuncId;
284 
285     Site->SiteFuncId = NextFuncId++;
286     OS.EmitCVInlineSiteIdDirective(
287         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
288         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
289     Site->Inlinee = Inlinee;
290     InlinedSubprograms.insert(Inlinee);
291     getFuncIdForSubprogram(Inlinee);
292   }
293   return *Site;
294 }
295 
296 static StringRef getPrettyScopeName(const DIScope *Scope) {
297   StringRef ScopeName = Scope->getName();
298   if (!ScopeName.empty())
299     return ScopeName;
300 
301   switch (Scope->getTag()) {
302   case dwarf::DW_TAG_enumeration_type:
303   case dwarf::DW_TAG_class_type:
304   case dwarf::DW_TAG_structure_type:
305   case dwarf::DW_TAG_union_type:
306     return "<unnamed-tag>";
307   case dwarf::DW_TAG_namespace:
308     return "`anonymous namespace'";
309   }
310 
311   return StringRef();
312 }
313 
314 const DISubprogram *CodeViewDebug::collectParentScopeNames(
315     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
316   const DISubprogram *ClosestSubprogram = nullptr;
317   while (Scope != nullptr) {
318     if (ClosestSubprogram == nullptr)
319       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
320 
321     // If a type appears in a scope chain, make sure it gets emitted. The
322     // frontend will be responsible for deciding if this should be a forward
323     // declaration or a complete type.
324     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
325       DeferredCompleteTypes.push_back(Ty);
326 
327     StringRef ScopeName = getPrettyScopeName(Scope);
328     if (!ScopeName.empty())
329       QualifiedNameComponents.push_back(ScopeName);
330     Scope = Scope->getScope();
331   }
332   return ClosestSubprogram;
333 }
334 
335 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
336                                     StringRef TypeName) {
337   std::string FullyQualifiedName;
338   for (StringRef QualifiedNameComponent :
339        llvm::reverse(QualifiedNameComponents)) {
340     FullyQualifiedName.append(std::string(QualifiedNameComponent));
341     FullyQualifiedName.append("::");
342   }
343   FullyQualifiedName.append(std::string(TypeName));
344   return FullyQualifiedName;
345 }
346 
347 struct CodeViewDebug::TypeLoweringScope {
348   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
349   ~TypeLoweringScope() {
350     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
351     // inner TypeLoweringScopes don't attempt to emit deferred types.
352     if (CVD.TypeEmissionLevel == 1)
353       CVD.emitDeferredCompleteTypes();
354     --CVD.TypeEmissionLevel;
355   }
356   CodeViewDebug &CVD;
357 };
358 
359 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
360                                                  StringRef Name) {
361   // Ensure types in the scope chain are emitted as soon as possible.
362   // This can create otherwise a situation where S_UDTs are emitted while
363   // looping in emitDebugInfoForUDTs.
364   TypeLoweringScope S(*this);
365   SmallVector<StringRef, 5> QualifiedNameComponents;
366   collectParentScopeNames(Scope, QualifiedNameComponents);
367   return formatNestedName(QualifiedNameComponents, Name);
368 }
369 
370 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
371   const DIScope *Scope = Ty->getScope();
372   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
373 }
374 
375 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
376   // No scope means global scope and that uses the zero index.
377   if (!Scope || isa<DIFile>(Scope))
378     return TypeIndex();
379 
380   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
381 
382   // Check if we've already translated this scope.
383   auto I = TypeIndices.find({Scope, nullptr});
384   if (I != TypeIndices.end())
385     return I->second;
386 
387   // Build the fully qualified name of the scope.
388   std::string ScopeName = getFullyQualifiedName(Scope);
389   StringIdRecord SID(TypeIndex(), ScopeName);
390   auto TI = TypeTable.writeLeafType(SID);
391   return recordTypeIndexForDINode(Scope, TI);
392 }
393 
394 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
395   assert(SP);
396 
397   // Check if we've already translated this subprogram.
398   auto I = TypeIndices.find({SP, nullptr});
399   if (I != TypeIndices.end())
400     return I->second;
401 
402   // The display name includes function template arguments. Drop them to match
403   // MSVC.
404   StringRef DisplayName = SP->getName().split('<').first;
405 
406   const DIScope *Scope = SP->getScope();
407   TypeIndex TI;
408   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
409     // If the scope is a DICompositeType, then this must be a method. Member
410     // function types take some special handling, and require access to the
411     // subprogram.
412     TypeIndex ClassType = getTypeIndex(Class);
413     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
414                                DisplayName);
415     TI = TypeTable.writeLeafType(MFuncId);
416   } else {
417     // Otherwise, this must be a free function.
418     TypeIndex ParentScope = getScopeIndex(Scope);
419     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
420     TI = TypeTable.writeLeafType(FuncId);
421   }
422 
423   return recordTypeIndexForDINode(SP, TI);
424 }
425 
426 static bool isNonTrivial(const DICompositeType *DCTy) {
427   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
428 }
429 
430 static FunctionOptions
431 getFunctionOptions(const DISubroutineType *Ty,
432                    const DICompositeType *ClassTy = nullptr,
433                    StringRef SPName = StringRef("")) {
434   FunctionOptions FO = FunctionOptions::None;
435   const DIType *ReturnTy = nullptr;
436   if (auto TypeArray = Ty->getTypeArray()) {
437     if (TypeArray.size())
438       ReturnTy = TypeArray[0];
439   }
440 
441   // Add CxxReturnUdt option to functions that return nontrivial record types
442   // or methods that return record types.
443   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
444     if (isNonTrivial(ReturnDCTy) || ClassTy)
445       FO |= FunctionOptions::CxxReturnUdt;
446 
447   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
448   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
449     FO |= FunctionOptions::Constructor;
450 
451   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
452 
453   }
454   return FO;
455 }
456 
457 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
458                                                const DICompositeType *Class) {
459   // Always use the method declaration as the key for the function type. The
460   // method declaration contains the this adjustment.
461   if (SP->getDeclaration())
462     SP = SP->getDeclaration();
463   assert(!SP->getDeclaration() && "should use declaration as key");
464 
465   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
466   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
467   auto I = TypeIndices.find({SP, Class});
468   if (I != TypeIndices.end())
469     return I->second;
470 
471   // Make sure complete type info for the class is emitted *after* the member
472   // function type, as the complete class type is likely to reference this
473   // member function type.
474   TypeLoweringScope S(*this);
475   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
476 
477   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
478   TypeIndex TI = lowerTypeMemberFunction(
479       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
480   return recordTypeIndexForDINode(SP, TI, Class);
481 }
482 
483 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
484                                                   TypeIndex TI,
485                                                   const DIType *ClassTy) {
486   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
487   (void)InsertResult;
488   assert(InsertResult.second && "DINode was already assigned a type index");
489   return TI;
490 }
491 
492 unsigned CodeViewDebug::getPointerSizeInBytes() {
493   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
494 }
495 
496 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
497                                         const LexicalScope *LS) {
498   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
499     // This variable was inlined. Associate it with the InlineSite.
500     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
501     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
502     Site.InlinedLocals.emplace_back(Var);
503   } else {
504     // This variable goes into the corresponding lexical scope.
505     ScopeVariables[LS].emplace_back(Var);
506   }
507 }
508 
509 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
510                                const DILocation *Loc) {
511   auto B = Locs.begin(), E = Locs.end();
512   if (std::find(B, E, Loc) == E)
513     Locs.push_back(Loc);
514 }
515 
516 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
517                                         const MachineFunction *MF) {
518   // Skip this instruction if it has the same location as the previous one.
519   if (!DL || DL == PrevInstLoc)
520     return;
521 
522   const DIScope *Scope = DL.get()->getScope();
523   if (!Scope)
524     return;
525 
526   // Skip this line if it is longer than the maximum we can record.
527   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
528   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
529       LI.isNeverStepInto())
530     return;
531 
532   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
533   if (CI.getStartColumn() != DL.getCol())
534     return;
535 
536   if (!CurFn->HaveLineInfo)
537     CurFn->HaveLineInfo = true;
538   unsigned FileId = 0;
539   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
540     FileId = CurFn->LastFileId;
541   else
542     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
543   PrevInstLoc = DL;
544 
545   unsigned FuncId = CurFn->FuncId;
546   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
547     const DILocation *Loc = DL.get();
548 
549     // If this location was actually inlined from somewhere else, give it the ID
550     // of the inline call site.
551     FuncId =
552         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
553 
554     // Ensure we have links in the tree of inline call sites.
555     bool FirstLoc = true;
556     while ((SiteLoc = Loc->getInlinedAt())) {
557       InlineSite &Site =
558           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
559       if (!FirstLoc)
560         addLocIfNotPresent(Site.ChildSites, Loc);
561       FirstLoc = false;
562       Loc = SiteLoc;
563     }
564     addLocIfNotPresent(CurFn->ChildSites, Loc);
565   }
566 
567   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
568                         /*PrologueEnd=*/false, /*IsStmt=*/false,
569                         DL->getFilename(), SMLoc());
570 }
571 
572 void CodeViewDebug::emitCodeViewMagicVersion() {
573   OS.emitValueToAlignment(4);
574   OS.AddComment("Debug section magic");
575   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
576 }
577 
578 void CodeViewDebug::endModule() {
579   if (!Asm || !MMI->hasDebugInfo())
580     return;
581 
582   assert(Asm != nullptr);
583 
584   // The COFF .debug$S section consists of several subsections, each starting
585   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
586   // of the payload followed by the payload itself.  The subsections are 4-byte
587   // aligned.
588 
589   // Use the generic .debug$S section, and make a subsection for all the inlined
590   // subprograms.
591   switchToDebugSectionForSymbol(nullptr);
592 
593   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
594   emitCompilerInformation();
595   endCVSubsection(CompilerInfo);
596 
597   emitInlineeLinesSubsection();
598 
599   // Emit per-function debug information.
600   for (auto &P : FnDebugInfo)
601     if (!P.first->isDeclarationForLinker())
602       emitDebugInfoForFunction(P.first, *P.second);
603 
604   // Emit global variable debug information.
605   setCurrentSubprogram(nullptr);
606   emitDebugInfoForGlobals();
607 
608   // Emit retained types.
609   emitDebugInfoForRetainedTypes();
610 
611   // Switch back to the generic .debug$S section after potentially processing
612   // comdat symbol sections.
613   switchToDebugSectionForSymbol(nullptr);
614 
615   // Emit UDT records for any types used by global variables.
616   if (!GlobalUDTs.empty()) {
617     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
618     emitDebugInfoForUDTs(GlobalUDTs);
619     endCVSubsection(SymbolsEnd);
620   }
621 
622   // This subsection holds a file index to offset in string table table.
623   OS.AddComment("File index to string table offset subsection");
624   OS.emitCVFileChecksumsDirective();
625 
626   // This subsection holds the string table.
627   OS.AddComment("String table");
628   OS.emitCVStringTableDirective();
629 
630   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
631   // subsection in the generic .debug$S section at the end. There is no
632   // particular reason for this ordering other than to match MSVC.
633   emitBuildInfo();
634 
635   // Emit type information and hashes last, so that any types we translate while
636   // emitting function info are included.
637   emitTypeInformation();
638 
639   if (EmitDebugGlobalHashes)
640     emitTypeGlobalHashes();
641 
642   clear();
643 }
644 
645 static void
646 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
647                              unsigned MaxFixedRecordLength = 0xF00) {
648   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
649   // after a fixed length portion of the record. The fixed length portion should
650   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
651   // overall record size is less than the maximum allowed.
652   SmallString<32> NullTerminatedString(
653       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
654   NullTerminatedString.push_back('\0');
655   OS.emitBytes(NullTerminatedString);
656 }
657 
658 void CodeViewDebug::emitTypeInformation() {
659   if (TypeTable.empty())
660     return;
661 
662   // Start the .debug$T or .debug$P section with 0x4.
663   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
664   emitCodeViewMagicVersion();
665 
666   TypeTableCollection Table(TypeTable.records());
667   TypeVisitorCallbackPipeline Pipeline;
668 
669   // To emit type record using Codeview MCStreamer adapter
670   CVMCAdapter CVMCOS(OS, Table);
671   TypeRecordMapping typeMapping(CVMCOS);
672   Pipeline.addCallbackToPipeline(typeMapping);
673 
674   Optional<TypeIndex> B = Table.getFirst();
675   while (B) {
676     // This will fail if the record data is invalid.
677     CVType Record = Table.getType(*B);
678 
679     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
680 
681     if (E) {
682       logAllUnhandledErrors(std::move(E), errs(), "error: ");
683       llvm_unreachable("produced malformed type record");
684     }
685 
686     B = Table.getNext(*B);
687   }
688 }
689 
690 void CodeViewDebug::emitTypeGlobalHashes() {
691   if (TypeTable.empty())
692     return;
693 
694   // Start the .debug$H section with the version and hash algorithm, currently
695   // hardcoded to version 0, SHA1.
696   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
697 
698   OS.emitValueToAlignment(4);
699   OS.AddComment("Magic");
700   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
701   OS.AddComment("Section Version");
702   OS.emitInt16(0);
703   OS.AddComment("Hash Algorithm");
704   OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
705 
706   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
707   for (const auto &GHR : TypeTable.hashes()) {
708     if (OS.isVerboseAsm()) {
709       // Emit an EOL-comment describing which TypeIndex this hash corresponds
710       // to, as well as the stringified SHA1 hash.
711       SmallString<32> Comment;
712       raw_svector_ostream CommentOS(Comment);
713       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
714       OS.AddComment(Comment);
715       ++TI;
716     }
717     assert(GHR.Hash.size() == 8);
718     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
719                 GHR.Hash.size());
720     OS.emitBinaryData(S);
721   }
722 }
723 
724 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
725   switch (DWLang) {
726   case dwarf::DW_LANG_C:
727   case dwarf::DW_LANG_C89:
728   case dwarf::DW_LANG_C99:
729   case dwarf::DW_LANG_C11:
730   case dwarf::DW_LANG_ObjC:
731     return SourceLanguage::C;
732   case dwarf::DW_LANG_C_plus_plus:
733   case dwarf::DW_LANG_C_plus_plus_03:
734   case dwarf::DW_LANG_C_plus_plus_11:
735   case dwarf::DW_LANG_C_plus_plus_14:
736     return SourceLanguage::Cpp;
737   case dwarf::DW_LANG_Fortran77:
738   case dwarf::DW_LANG_Fortran90:
739   case dwarf::DW_LANG_Fortran03:
740   case dwarf::DW_LANG_Fortran08:
741     return SourceLanguage::Fortran;
742   case dwarf::DW_LANG_Pascal83:
743     return SourceLanguage::Pascal;
744   case dwarf::DW_LANG_Cobol74:
745   case dwarf::DW_LANG_Cobol85:
746     return SourceLanguage::Cobol;
747   case dwarf::DW_LANG_Java:
748     return SourceLanguage::Java;
749   case dwarf::DW_LANG_D:
750     return SourceLanguage::D;
751   case dwarf::DW_LANG_Swift:
752     return SourceLanguage::Swift;
753   default:
754     // There's no CodeView representation for this language, and CV doesn't
755     // have an "unknown" option for the language field, so we'll use MASM,
756     // as it's very low level.
757     return SourceLanguage::Masm;
758   }
759 }
760 
761 namespace {
762 struct Version {
763   int Part[4];
764 };
765 } // end anonymous namespace
766 
767 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
768 // the version number.
769 static Version parseVersion(StringRef Name) {
770   Version V = {{0}};
771   int N = 0;
772   for (const char C : Name) {
773     if (isdigit(C)) {
774       V.Part[N] *= 10;
775       V.Part[N] += C - '0';
776     } else if (C == '.') {
777       ++N;
778       if (N >= 4)
779         return V;
780     } else if (N > 0)
781       return V;
782   }
783   return V;
784 }
785 
786 void CodeViewDebug::emitCompilerInformation() {
787   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
788   uint32_t Flags = 0;
789 
790   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
791   const MDNode *Node = *CUs->operands().begin();
792   const auto *CU = cast<DICompileUnit>(Node);
793 
794   // The low byte of the flags indicates the source language.
795   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
796   // TODO:  Figure out which other flags need to be set.
797 
798   OS.AddComment("Flags and language");
799   OS.emitInt32(Flags);
800 
801   OS.AddComment("CPUType");
802   OS.emitInt16(static_cast<uint64_t>(TheCPU));
803 
804   StringRef CompilerVersion = CU->getProducer();
805   Version FrontVer = parseVersion(CompilerVersion);
806   OS.AddComment("Frontend version");
807   for (int N = 0; N < 4; ++N)
808     OS.emitInt16(FrontVer.Part[N]);
809 
810   // Some Microsoft tools, like Binscope, expect a backend version number of at
811   // least 8.something, so we'll coerce the LLVM version into a form that
812   // guarantees it'll be big enough without really lying about the version.
813   int Major = 1000 * LLVM_VERSION_MAJOR +
814               10 * LLVM_VERSION_MINOR +
815               LLVM_VERSION_PATCH;
816   // Clamp it for builds that use unusually large version numbers.
817   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
818   Version BackVer = {{ Major, 0, 0, 0 }};
819   OS.AddComment("Backend version");
820   for (int N = 0; N < 4; ++N)
821     OS.emitInt16(BackVer.Part[N]);
822 
823   OS.AddComment("Null-terminated compiler version string");
824   emitNullTerminatedSymbolName(OS, CompilerVersion);
825 
826   endSymbolRecord(CompilerEnd);
827 }
828 
829 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
830                                     StringRef S) {
831   StringIdRecord SIR(TypeIndex(0x0), S);
832   return TypeTable.writeLeafType(SIR);
833 }
834 
835 static std::string flattenCommandLine(ArrayRef<const char *> Args,
836                                       StringRef MainFilename) {
837   std::string FlatCmdLine;
838   raw_string_ostream OS(FlatCmdLine);
839   StringRef LastArg;
840   for (StringRef Arg : Args) {
841     if (Arg.empty())
842       continue;
843     // The command-line shall not contain the file to compile.
844     if (Arg == MainFilename && LastArg != "-main-file-name")
845       continue;
846     // Also remove the output file.
847     if (Arg == "-o" || LastArg == "-o") {
848       LastArg = Arg;
849       continue;
850     }
851     if (!LastArg.empty())
852       FlatCmdLine += " ";
853     llvm::sys::printArg(OS, Arg, /*Quote=*/true);
854     LastArg = Arg;
855   }
856   return FlatCmdLine;
857 }
858 
859 void CodeViewDebug::emitBuildInfo() {
860   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
861   // build info. The known prefix is:
862   // - Absolute path of current directory
863   // - Compiler path
864   // - Main source file path, relative to CWD or absolute
865   // - Type server PDB file
866   // - Canonical compiler command line
867   // If frontend and backend compilation are separated (think llc or LTO), it's
868   // not clear if the compiler path should refer to the executable for the
869   // frontend or the backend. Leave it blank for now.
870   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
871   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
872   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
873   const auto *CU = cast<DICompileUnit>(Node);
874   const DIFile *MainSourceFile = CU->getFile();
875   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
876       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
877   BuildInfoArgs[BuildInfoRecord::SourceFile] =
878       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
879   if (Asm->TM.Options.MCOptions.Argv0 != nullptr) {
880     BuildInfoArgs[BuildInfoRecord::BuildTool] =
881         getStringIdTypeIdx(TypeTable, Asm->TM.Options.MCOptions.Argv0);
882     BuildInfoArgs[BuildInfoRecord::CommandLine] = getStringIdTypeIdx(
883         TypeTable, flattenCommandLine(Asm->TM.Options.MCOptions.CommandLineArgs,
884                                       MainSourceFile->getFilename()));
885   }
886   // FIXME: PDB is intentionally blank unless we implement /Zi type servers.
887   BuildInfoRecord BIR(BuildInfoArgs);
888   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
889 
890   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
891   // from the module symbols into the type stream.
892   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
893   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
894   OS.AddComment("LF_BUILDINFO index");
895   OS.emitInt32(BuildInfoIndex.getIndex());
896   endSymbolRecord(BIEnd);
897   endCVSubsection(BISubsecEnd);
898 }
899 
900 void CodeViewDebug::emitInlineeLinesSubsection() {
901   if (InlinedSubprograms.empty())
902     return;
903 
904   OS.AddComment("Inlinee lines subsection");
905   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
906 
907   // We emit the checksum info for files.  This is used by debuggers to
908   // determine if a pdb matches the source before loading it.  Visual Studio,
909   // for instance, will display a warning that the breakpoints are not valid if
910   // the pdb does not match the source.
911   OS.AddComment("Inlinee lines signature");
912   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
913 
914   for (const DISubprogram *SP : InlinedSubprograms) {
915     assert(TypeIndices.count({SP, nullptr}));
916     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
917 
918     OS.AddBlankLine();
919     unsigned FileId = maybeRecordFile(SP->getFile());
920     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
921                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
922     OS.AddBlankLine();
923     OS.AddComment("Type index of inlined function");
924     OS.emitInt32(InlineeIdx.getIndex());
925     OS.AddComment("Offset into filechecksum table");
926     OS.emitCVFileChecksumOffsetDirective(FileId);
927     OS.AddComment("Starting line number");
928     OS.emitInt32(SP->getLine());
929   }
930 
931   endCVSubsection(InlineEnd);
932 }
933 
934 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
935                                         const DILocation *InlinedAt,
936                                         const InlineSite &Site) {
937   assert(TypeIndices.count({Site.Inlinee, nullptr}));
938   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
939 
940   // SymbolRecord
941   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
942 
943   OS.AddComment("PtrParent");
944   OS.emitInt32(0);
945   OS.AddComment("PtrEnd");
946   OS.emitInt32(0);
947   OS.AddComment("Inlinee type index");
948   OS.emitInt32(InlineeIdx.getIndex());
949 
950   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
951   unsigned StartLineNum = Site.Inlinee->getLine();
952 
953   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
954                                     FI.Begin, FI.End);
955 
956   endSymbolRecord(InlineEnd);
957 
958   emitLocalVariableList(FI, Site.InlinedLocals);
959 
960   // Recurse on child inlined call sites before closing the scope.
961   for (const DILocation *ChildSite : Site.ChildSites) {
962     auto I = FI.InlineSites.find(ChildSite);
963     assert(I != FI.InlineSites.end() &&
964            "child site not in function inline site map");
965     emitInlinedCallSite(FI, ChildSite, I->second);
966   }
967 
968   // Close the scope.
969   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
970 }
971 
972 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
973   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
974   // comdat key. A section may be comdat because of -ffunction-sections or
975   // because it is comdat in the IR.
976   MCSectionCOFF *GVSec =
977       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
978   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
979 
980   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
981       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
982   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
983 
984   OS.SwitchSection(DebugSec);
985 
986   // Emit the magic version number if this is the first time we've switched to
987   // this section.
988   if (ComdatDebugSections.insert(DebugSec).second)
989     emitCodeViewMagicVersion();
990 }
991 
992 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
993 // The only supported thunk ordinal is currently the standard type.
994 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
995                                           FunctionInfo &FI,
996                                           const MCSymbol *Fn) {
997   std::string FuncName =
998       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
999   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
1000 
1001   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1002   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1003 
1004   // Emit S_THUNK32
1005   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
1006   OS.AddComment("PtrParent");
1007   OS.emitInt32(0);
1008   OS.AddComment("PtrEnd");
1009   OS.emitInt32(0);
1010   OS.AddComment("PtrNext");
1011   OS.emitInt32(0);
1012   OS.AddComment("Thunk section relative address");
1013   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1014   OS.AddComment("Thunk section index");
1015   OS.EmitCOFFSectionIndex(Fn);
1016   OS.AddComment("Code size");
1017   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1018   OS.AddComment("Ordinal");
1019   OS.emitInt8(unsigned(ordinal));
1020   OS.AddComment("Function name");
1021   emitNullTerminatedSymbolName(OS, FuncName);
1022   // Additional fields specific to the thunk ordinal would go here.
1023   endSymbolRecord(ThunkRecordEnd);
1024 
1025   // Local variables/inlined routines are purposely omitted here.  The point of
1026   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1027 
1028   // Emit S_PROC_ID_END
1029   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1030 
1031   endCVSubsection(SymbolsEnd);
1032 }
1033 
1034 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1035                                              FunctionInfo &FI) {
1036   // For each function there is a separate subsection which holds the PC to
1037   // file:line table.
1038   const MCSymbol *Fn = Asm->getSymbol(GV);
1039   assert(Fn);
1040 
1041   // Switch to the to a comdat section, if appropriate.
1042   switchToDebugSectionForSymbol(Fn);
1043 
1044   std::string FuncName;
1045   auto *SP = GV->getSubprogram();
1046   assert(SP);
1047   setCurrentSubprogram(SP);
1048 
1049   if (SP->isThunk()) {
1050     emitDebugInfoForThunk(GV, FI, Fn);
1051     return;
1052   }
1053 
1054   // If we have a display name, build the fully qualified name by walking the
1055   // chain of scopes.
1056   if (!SP->getName().empty())
1057     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1058 
1059   // If our DISubprogram name is empty, use the mangled name.
1060   if (FuncName.empty())
1061     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1062 
1063   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1064   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1065     OS.EmitCVFPOData(Fn);
1066 
1067   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1068   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1069   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1070   {
1071     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1072                                                 : SymbolKind::S_GPROC32_ID;
1073     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1074 
1075     // These fields are filled in by tools like CVPACK which run after the fact.
1076     OS.AddComment("PtrParent");
1077     OS.emitInt32(0);
1078     OS.AddComment("PtrEnd");
1079     OS.emitInt32(0);
1080     OS.AddComment("PtrNext");
1081     OS.emitInt32(0);
1082     // This is the important bit that tells the debugger where the function
1083     // code is located and what's its size:
1084     OS.AddComment("Code size");
1085     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1086     OS.AddComment("Offset after prologue");
1087     OS.emitInt32(0);
1088     OS.AddComment("Offset before epilogue");
1089     OS.emitInt32(0);
1090     OS.AddComment("Function type index");
1091     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1092     OS.AddComment("Function section relative address");
1093     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1094     OS.AddComment("Function section index");
1095     OS.EmitCOFFSectionIndex(Fn);
1096     OS.AddComment("Flags");
1097     OS.emitInt8(0);
1098     // Emit the function display name as a null-terminated string.
1099     OS.AddComment("Function name");
1100     // Truncate the name so we won't overflow the record length field.
1101     emitNullTerminatedSymbolName(OS, FuncName);
1102     endSymbolRecord(ProcRecordEnd);
1103 
1104     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1105     // Subtract out the CSR size since MSVC excludes that and we include it.
1106     OS.AddComment("FrameSize");
1107     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1108     OS.AddComment("Padding");
1109     OS.emitInt32(0);
1110     OS.AddComment("Offset of padding");
1111     OS.emitInt32(0);
1112     OS.AddComment("Bytes of callee saved registers");
1113     OS.emitInt32(FI.CSRSize);
1114     OS.AddComment("Exception handler offset");
1115     OS.emitInt32(0);
1116     OS.AddComment("Exception handler section");
1117     OS.emitInt16(0);
1118     OS.AddComment("Flags (defines frame register)");
1119     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1120     endSymbolRecord(FrameProcEnd);
1121 
1122     emitLocalVariableList(FI, FI.Locals);
1123     emitGlobalVariableList(FI.Globals);
1124     emitLexicalBlockList(FI.ChildBlocks, FI);
1125 
1126     // Emit inlined call site information. Only emit functions inlined directly
1127     // into the parent function. We'll emit the other sites recursively as part
1128     // of their parent inline site.
1129     for (const DILocation *InlinedAt : FI.ChildSites) {
1130       auto I = FI.InlineSites.find(InlinedAt);
1131       assert(I != FI.InlineSites.end() &&
1132              "child site not in function inline site map");
1133       emitInlinedCallSite(FI, InlinedAt, I->second);
1134     }
1135 
1136     for (auto Annot : FI.Annotations) {
1137       MCSymbol *Label = Annot.first;
1138       MDTuple *Strs = cast<MDTuple>(Annot.second);
1139       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1140       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1141       // FIXME: Make sure we don't overflow the max record size.
1142       OS.EmitCOFFSectionIndex(Label);
1143       OS.emitInt16(Strs->getNumOperands());
1144       for (Metadata *MD : Strs->operands()) {
1145         // MDStrings are null terminated, so we can do EmitBytes and get the
1146         // nice .asciz directive.
1147         StringRef Str = cast<MDString>(MD)->getString();
1148         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1149         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1150       }
1151       endSymbolRecord(AnnotEnd);
1152     }
1153 
1154     for (auto HeapAllocSite : FI.HeapAllocSites) {
1155       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1156       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1157       const DIType *DITy = std::get<2>(HeapAllocSite);
1158       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1159       OS.AddComment("Call site offset");
1160       OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1161       OS.AddComment("Call site section index");
1162       OS.EmitCOFFSectionIndex(BeginLabel);
1163       OS.AddComment("Call instruction length");
1164       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1165       OS.AddComment("Type index");
1166       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1167       endSymbolRecord(HeapAllocEnd);
1168     }
1169 
1170     if (SP != nullptr)
1171       emitDebugInfoForUDTs(LocalUDTs);
1172 
1173     // We're done with this function.
1174     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1175   }
1176   endCVSubsection(SymbolsEnd);
1177 
1178   // We have an assembler directive that takes care of the whole line table.
1179   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1180 }
1181 
1182 CodeViewDebug::LocalVarDefRange
1183 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1184   LocalVarDefRange DR;
1185   DR.InMemory = -1;
1186   DR.DataOffset = Offset;
1187   assert(DR.DataOffset == Offset && "truncation");
1188   DR.IsSubfield = 0;
1189   DR.StructOffset = 0;
1190   DR.CVRegister = CVRegister;
1191   return DR;
1192 }
1193 
1194 void CodeViewDebug::collectVariableInfoFromMFTable(
1195     DenseSet<InlinedEntity> &Processed) {
1196   const MachineFunction &MF = *Asm->MF;
1197   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1198   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1199   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1200 
1201   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1202     if (!VI.Var)
1203       continue;
1204     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1205            "Expected inlined-at fields to agree");
1206 
1207     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1208     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1209 
1210     // If variable scope is not found then skip this variable.
1211     if (!Scope)
1212       continue;
1213 
1214     // If the variable has an attached offset expression, extract it.
1215     // FIXME: Try to handle DW_OP_deref as well.
1216     int64_t ExprOffset = 0;
1217     bool Deref = false;
1218     if (VI.Expr) {
1219       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1220       if (VI.Expr->getNumElements() == 1 &&
1221           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1222         Deref = true;
1223       else if (!VI.Expr->extractIfOffset(ExprOffset))
1224         continue;
1225     }
1226 
1227     // Get the frame register used and the offset.
1228     Register FrameReg;
1229     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1230     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1231 
1232     // Calculate the label ranges.
1233     LocalVarDefRange DefRange =
1234         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1235 
1236     for (const InsnRange &Range : Scope->getRanges()) {
1237       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1238       const MCSymbol *End = getLabelAfterInsn(Range.second);
1239       End = End ? End : Asm->getFunctionEnd();
1240       DefRange.Ranges.emplace_back(Begin, End);
1241     }
1242 
1243     LocalVariable Var;
1244     Var.DIVar = VI.Var;
1245     Var.DefRanges.emplace_back(std::move(DefRange));
1246     if (Deref)
1247       Var.UseReferenceType = true;
1248 
1249     recordLocalVariable(std::move(Var), Scope);
1250   }
1251 }
1252 
1253 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1254   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1255 }
1256 
1257 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1258   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1259 }
1260 
1261 void CodeViewDebug::calculateRanges(
1262     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1263   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1264 
1265   // Calculate the definition ranges.
1266   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1267     const auto &Entry = *I;
1268     if (!Entry.isDbgValue())
1269       continue;
1270     const MachineInstr *DVInst = Entry.getInstr();
1271     assert(DVInst->isDebugValue() && "Invalid History entry");
1272     // FIXME: Find a way to represent constant variables, since they are
1273     // relatively common.
1274     Optional<DbgVariableLocation> Location =
1275         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1276     if (!Location)
1277       continue;
1278 
1279     // CodeView can only express variables in register and variables in memory
1280     // at a constant offset from a register. However, for variables passed
1281     // indirectly by pointer, it is common for that pointer to be spilled to a
1282     // stack location. For the special case of one offseted load followed by a
1283     // zero offset load (a pointer spilled to the stack), we change the type of
1284     // the local variable from a value type to a reference type. This tricks the
1285     // debugger into doing the load for us.
1286     if (Var.UseReferenceType) {
1287       // We're using a reference type. Drop the last zero offset load.
1288       if (canUseReferenceType(*Location))
1289         Location->LoadChain.pop_back();
1290       else
1291         continue;
1292     } else if (needsReferenceType(*Location)) {
1293       // This location can't be expressed without switching to a reference type.
1294       // Start over using that.
1295       Var.UseReferenceType = true;
1296       Var.DefRanges.clear();
1297       calculateRanges(Var, Entries);
1298       return;
1299     }
1300 
1301     // We can only handle a register or an offseted load of a register.
1302     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1303       continue;
1304     {
1305       LocalVarDefRange DR;
1306       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1307       DR.InMemory = !Location->LoadChain.empty();
1308       DR.DataOffset =
1309           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1310       if (Location->FragmentInfo) {
1311         DR.IsSubfield = true;
1312         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1313       } else {
1314         DR.IsSubfield = false;
1315         DR.StructOffset = 0;
1316       }
1317 
1318       if (Var.DefRanges.empty() ||
1319           Var.DefRanges.back().isDifferentLocation(DR)) {
1320         Var.DefRanges.emplace_back(std::move(DR));
1321       }
1322     }
1323 
1324     // Compute the label range.
1325     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1326     const MCSymbol *End;
1327     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1328       auto &EndingEntry = Entries[Entry.getEndIndex()];
1329       End = EndingEntry.isDbgValue()
1330                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1331                 : getLabelAfterInsn(EndingEntry.getInstr());
1332     } else
1333       End = Asm->getFunctionEnd();
1334 
1335     // If the last range end is our begin, just extend the last range.
1336     // Otherwise make a new range.
1337     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1338         Var.DefRanges.back().Ranges;
1339     if (!R.empty() && R.back().second == Begin)
1340       R.back().second = End;
1341     else
1342       R.emplace_back(Begin, End);
1343 
1344     // FIXME: Do more range combining.
1345   }
1346 }
1347 
1348 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1349   DenseSet<InlinedEntity> Processed;
1350   // Grab the variable info that was squirreled away in the MMI side-table.
1351   collectVariableInfoFromMFTable(Processed);
1352 
1353   for (const auto &I : DbgValues) {
1354     InlinedEntity IV = I.first;
1355     if (Processed.count(IV))
1356       continue;
1357     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1358     const DILocation *InlinedAt = IV.second;
1359 
1360     // Instruction ranges, specifying where IV is accessible.
1361     const auto &Entries = I.second;
1362 
1363     LexicalScope *Scope = nullptr;
1364     if (InlinedAt)
1365       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1366     else
1367       Scope = LScopes.findLexicalScope(DIVar->getScope());
1368     // If variable scope is not found then skip this variable.
1369     if (!Scope)
1370       continue;
1371 
1372     LocalVariable Var;
1373     Var.DIVar = DIVar;
1374 
1375     calculateRanges(Var, Entries);
1376     recordLocalVariable(std::move(Var), Scope);
1377   }
1378 }
1379 
1380 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1381   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1382   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1383   const MachineFrameInfo &MFI = MF->getFrameInfo();
1384   const Function &GV = MF->getFunction();
1385   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1386   assert(Insertion.second && "function already has info");
1387   CurFn = Insertion.first->second.get();
1388   CurFn->FuncId = NextFuncId++;
1389   CurFn->Begin = Asm->getFunctionBegin();
1390 
1391   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1392   // callee-saved registers were used. For targets that don't use a PUSH
1393   // instruction (AArch64), this will be zero.
1394   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1395   CurFn->FrameSize = MFI.getStackSize();
1396   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1397   CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1398 
1399   // For this function S_FRAMEPROC record, figure out which codeview register
1400   // will be the frame pointer.
1401   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1402   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1403   if (CurFn->FrameSize > 0) {
1404     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1405       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1406       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1407     } else {
1408       // If there is an FP, parameters are always relative to it.
1409       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1410       if (CurFn->HasStackRealignment) {
1411         // If the stack needs realignment, locals are relative to SP or VFRAME.
1412         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1413       } else {
1414         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1415         // other stack adjustments.
1416         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1417       }
1418     }
1419   }
1420 
1421   // Compute other frame procedure options.
1422   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1423   if (MFI.hasVarSizedObjects())
1424     FPO |= FrameProcedureOptions::HasAlloca;
1425   if (MF->exposesReturnsTwice())
1426     FPO |= FrameProcedureOptions::HasSetJmp;
1427   // FIXME: Set HasLongJmp if we ever track that info.
1428   if (MF->hasInlineAsm())
1429     FPO |= FrameProcedureOptions::HasInlineAssembly;
1430   if (GV.hasPersonalityFn()) {
1431     if (isAsynchronousEHPersonality(
1432             classifyEHPersonality(GV.getPersonalityFn())))
1433       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1434     else
1435       FPO |= FrameProcedureOptions::HasExceptionHandling;
1436   }
1437   if (GV.hasFnAttribute(Attribute::InlineHint))
1438     FPO |= FrameProcedureOptions::MarkedInline;
1439   if (GV.hasFnAttribute(Attribute::Naked))
1440     FPO |= FrameProcedureOptions::Naked;
1441   if (MFI.hasStackProtectorIndex())
1442     FPO |= FrameProcedureOptions::SecurityChecks;
1443   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1444   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1445   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1446       !GV.hasOptSize() && !GV.hasOptNone())
1447     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1448   // FIXME: Set GuardCfg when it is implemented.
1449   CurFn->FrameProcOpts = FPO;
1450 
1451   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1452 
1453   // Find the end of the function prolog.  First known non-DBG_VALUE and
1454   // non-frame setup location marks the beginning of the function body.
1455   // FIXME: is there a simpler a way to do this? Can we just search
1456   // for the first instruction of the function, not the last of the prolog?
1457   DebugLoc PrologEndLoc;
1458   bool EmptyPrologue = true;
1459   for (const auto &MBB : *MF) {
1460     for (const auto &MI : MBB) {
1461       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1462           MI.getDebugLoc()) {
1463         PrologEndLoc = MI.getDebugLoc();
1464         break;
1465       } else if (!MI.isMetaInstruction()) {
1466         EmptyPrologue = false;
1467       }
1468     }
1469   }
1470 
1471   // Record beginning of function if we have a non-empty prologue.
1472   if (PrologEndLoc && !EmptyPrologue) {
1473     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1474     maybeRecordLocation(FnStartDL, MF);
1475   }
1476 
1477   // Find heap alloc sites and emit labels around them.
1478   for (const auto &MBB : *MF) {
1479     for (const auto &MI : MBB) {
1480       if (MI.getHeapAllocMarker()) {
1481         requestLabelBeforeInsn(&MI);
1482         requestLabelAfterInsn(&MI);
1483       }
1484     }
1485   }
1486 }
1487 
1488 static bool shouldEmitUdt(const DIType *T) {
1489   if (!T)
1490     return false;
1491 
1492   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1493   if (T->getTag() == dwarf::DW_TAG_typedef) {
1494     if (DIScope *Scope = T->getScope()) {
1495       switch (Scope->getTag()) {
1496       case dwarf::DW_TAG_structure_type:
1497       case dwarf::DW_TAG_class_type:
1498       case dwarf::DW_TAG_union_type:
1499         return false;
1500       }
1501     }
1502   }
1503 
1504   while (true) {
1505     if (!T || T->isForwardDecl())
1506       return false;
1507 
1508     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1509     if (!DT)
1510       return true;
1511     T = DT->getBaseType();
1512   }
1513   return true;
1514 }
1515 
1516 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1517   // Don't record empty UDTs.
1518   if (Ty->getName().empty())
1519     return;
1520   if (!shouldEmitUdt(Ty))
1521     return;
1522 
1523   SmallVector<StringRef, 5> ParentScopeNames;
1524   const DISubprogram *ClosestSubprogram =
1525       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1526 
1527   std::string FullyQualifiedName =
1528       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1529 
1530   if (ClosestSubprogram == nullptr) {
1531     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1532   } else if (ClosestSubprogram == CurrentSubprogram) {
1533     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1534   }
1535 
1536   // TODO: What if the ClosestSubprogram is neither null or the current
1537   // subprogram?  Currently, the UDT just gets dropped on the floor.
1538   //
1539   // The current behavior is not desirable.  To get maximal fidelity, we would
1540   // need to perform all type translation before beginning emission of .debug$S
1541   // and then make LocalUDTs a member of FunctionInfo
1542 }
1543 
1544 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1545   // Generic dispatch for lowering an unknown type.
1546   switch (Ty->getTag()) {
1547   case dwarf::DW_TAG_array_type:
1548     return lowerTypeArray(cast<DICompositeType>(Ty));
1549   case dwarf::DW_TAG_typedef:
1550     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1551   case dwarf::DW_TAG_base_type:
1552     return lowerTypeBasic(cast<DIBasicType>(Ty));
1553   case dwarf::DW_TAG_pointer_type:
1554     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1555       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1556     LLVM_FALLTHROUGH;
1557   case dwarf::DW_TAG_reference_type:
1558   case dwarf::DW_TAG_rvalue_reference_type:
1559     return lowerTypePointer(cast<DIDerivedType>(Ty));
1560   case dwarf::DW_TAG_ptr_to_member_type:
1561     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1562   case dwarf::DW_TAG_restrict_type:
1563   case dwarf::DW_TAG_const_type:
1564   case dwarf::DW_TAG_volatile_type:
1565   // TODO: add support for DW_TAG_atomic_type here
1566     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1567   case dwarf::DW_TAG_subroutine_type:
1568     if (ClassTy) {
1569       // The member function type of a member function pointer has no
1570       // ThisAdjustment.
1571       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1572                                      /*ThisAdjustment=*/0,
1573                                      /*IsStaticMethod=*/false);
1574     }
1575     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1576   case dwarf::DW_TAG_enumeration_type:
1577     return lowerTypeEnum(cast<DICompositeType>(Ty));
1578   case dwarf::DW_TAG_class_type:
1579   case dwarf::DW_TAG_structure_type:
1580     return lowerTypeClass(cast<DICompositeType>(Ty));
1581   case dwarf::DW_TAG_union_type:
1582     return lowerTypeUnion(cast<DICompositeType>(Ty));
1583   case dwarf::DW_TAG_unspecified_type:
1584     if (Ty->getName() == "decltype(nullptr)")
1585       return TypeIndex::NullptrT();
1586     return TypeIndex::None();
1587   default:
1588     // Use the null type index.
1589     return TypeIndex();
1590   }
1591 }
1592 
1593 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1594   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1595   StringRef TypeName = Ty->getName();
1596 
1597   addToUDTs(Ty);
1598 
1599   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1600       TypeName == "HRESULT")
1601     return TypeIndex(SimpleTypeKind::HResult);
1602   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1603       TypeName == "wchar_t")
1604     return TypeIndex(SimpleTypeKind::WideCharacter);
1605 
1606   return UnderlyingTypeIndex;
1607 }
1608 
1609 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1610   const DIType *ElementType = Ty->getBaseType();
1611   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1612   // IndexType is size_t, which depends on the bitness of the target.
1613   TypeIndex IndexType = getPointerSizeInBytes() == 8
1614                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1615                             : TypeIndex(SimpleTypeKind::UInt32Long);
1616 
1617   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1618 
1619   // Add subranges to array type.
1620   DINodeArray Elements = Ty->getElements();
1621   for (int i = Elements.size() - 1; i >= 0; --i) {
1622     const DINode *Element = Elements[i];
1623     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1624 
1625     const DISubrange *Subrange = cast<DISubrange>(Element);
1626     assert(!Subrange->getRawLowerBound() &&
1627            "codeview doesn't support subranges with lower bounds");
1628     int64_t Count = -1;
1629     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1630       Count = CI->getSExtValue();
1631 
1632     // Forward declarations of arrays without a size and VLAs use a count of -1.
1633     // Emit a count of zero in these cases to match what MSVC does for arrays
1634     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1635     // should do for them even if we could distinguish them.
1636     if (Count == -1)
1637       Count = 0;
1638 
1639     // Update the element size and element type index for subsequent subranges.
1640     ElementSize *= Count;
1641 
1642     // If this is the outermost array, use the size from the array. It will be
1643     // more accurate if we had a VLA or an incomplete element type size.
1644     uint64_t ArraySize =
1645         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1646 
1647     StringRef Name = (i == 0) ? Ty->getName() : "";
1648     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1649     ElementTypeIndex = TypeTable.writeLeafType(AR);
1650   }
1651 
1652   return ElementTypeIndex;
1653 }
1654 
1655 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1656   TypeIndex Index;
1657   dwarf::TypeKind Kind;
1658   uint32_t ByteSize;
1659 
1660   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1661   ByteSize = Ty->getSizeInBits() / 8;
1662 
1663   SimpleTypeKind STK = SimpleTypeKind::None;
1664   switch (Kind) {
1665   case dwarf::DW_ATE_address:
1666     // FIXME: Translate
1667     break;
1668   case dwarf::DW_ATE_boolean:
1669     switch (ByteSize) {
1670     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1671     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1672     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1673     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1674     case 16: STK = SimpleTypeKind::Boolean128; break;
1675     }
1676     break;
1677   case dwarf::DW_ATE_complex_float:
1678     switch (ByteSize) {
1679     case 2:  STK = SimpleTypeKind::Complex16;  break;
1680     case 4:  STK = SimpleTypeKind::Complex32;  break;
1681     case 8:  STK = SimpleTypeKind::Complex64;  break;
1682     case 10: STK = SimpleTypeKind::Complex80;  break;
1683     case 16: STK = SimpleTypeKind::Complex128; break;
1684     }
1685     break;
1686   case dwarf::DW_ATE_float:
1687     switch (ByteSize) {
1688     case 2:  STK = SimpleTypeKind::Float16;  break;
1689     case 4:  STK = SimpleTypeKind::Float32;  break;
1690     case 6:  STK = SimpleTypeKind::Float48;  break;
1691     case 8:  STK = SimpleTypeKind::Float64;  break;
1692     case 10: STK = SimpleTypeKind::Float80;  break;
1693     case 16: STK = SimpleTypeKind::Float128; break;
1694     }
1695     break;
1696   case dwarf::DW_ATE_signed:
1697     switch (ByteSize) {
1698     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1699     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1700     case 4:  STK = SimpleTypeKind::Int32;           break;
1701     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1702     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1703     }
1704     break;
1705   case dwarf::DW_ATE_unsigned:
1706     switch (ByteSize) {
1707     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1708     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1709     case 4:  STK = SimpleTypeKind::UInt32;            break;
1710     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1711     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1712     }
1713     break;
1714   case dwarf::DW_ATE_UTF:
1715     switch (ByteSize) {
1716     case 2: STK = SimpleTypeKind::Character16; break;
1717     case 4: STK = SimpleTypeKind::Character32; break;
1718     }
1719     break;
1720   case dwarf::DW_ATE_signed_char:
1721     if (ByteSize == 1)
1722       STK = SimpleTypeKind::SignedCharacter;
1723     break;
1724   case dwarf::DW_ATE_unsigned_char:
1725     if (ByteSize == 1)
1726       STK = SimpleTypeKind::UnsignedCharacter;
1727     break;
1728   default:
1729     break;
1730   }
1731 
1732   // Apply some fixups based on the source-level type name.
1733   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1734     STK = SimpleTypeKind::Int32Long;
1735   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1736     STK = SimpleTypeKind::UInt32Long;
1737   if (STK == SimpleTypeKind::UInt16Short &&
1738       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1739     STK = SimpleTypeKind::WideCharacter;
1740   if ((STK == SimpleTypeKind::SignedCharacter ||
1741        STK == SimpleTypeKind::UnsignedCharacter) &&
1742       Ty->getName() == "char")
1743     STK = SimpleTypeKind::NarrowCharacter;
1744 
1745   return TypeIndex(STK);
1746 }
1747 
1748 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1749                                           PointerOptions PO) {
1750   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1751 
1752   // Pointers to simple types without any options can use SimpleTypeMode, rather
1753   // than having a dedicated pointer type record.
1754   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1755       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1756       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1757     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1758                               ? SimpleTypeMode::NearPointer64
1759                               : SimpleTypeMode::NearPointer32;
1760     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1761   }
1762 
1763   PointerKind PK =
1764       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1765   PointerMode PM = PointerMode::Pointer;
1766   switch (Ty->getTag()) {
1767   default: llvm_unreachable("not a pointer tag type");
1768   case dwarf::DW_TAG_pointer_type:
1769     PM = PointerMode::Pointer;
1770     break;
1771   case dwarf::DW_TAG_reference_type:
1772     PM = PointerMode::LValueReference;
1773     break;
1774   case dwarf::DW_TAG_rvalue_reference_type:
1775     PM = PointerMode::RValueReference;
1776     break;
1777   }
1778 
1779   if (Ty->isObjectPointer())
1780     PO |= PointerOptions::Const;
1781 
1782   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1783   return TypeTable.writeLeafType(PR);
1784 }
1785 
1786 static PointerToMemberRepresentation
1787 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1788   // SizeInBytes being zero generally implies that the member pointer type was
1789   // incomplete, which can happen if it is part of a function prototype. In this
1790   // case, use the unknown model instead of the general model.
1791   if (IsPMF) {
1792     switch (Flags & DINode::FlagPtrToMemberRep) {
1793     case 0:
1794       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1795                               : PointerToMemberRepresentation::GeneralFunction;
1796     case DINode::FlagSingleInheritance:
1797       return PointerToMemberRepresentation::SingleInheritanceFunction;
1798     case DINode::FlagMultipleInheritance:
1799       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1800     case DINode::FlagVirtualInheritance:
1801       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1802     }
1803   } else {
1804     switch (Flags & DINode::FlagPtrToMemberRep) {
1805     case 0:
1806       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1807                               : PointerToMemberRepresentation::GeneralData;
1808     case DINode::FlagSingleInheritance:
1809       return PointerToMemberRepresentation::SingleInheritanceData;
1810     case DINode::FlagMultipleInheritance:
1811       return PointerToMemberRepresentation::MultipleInheritanceData;
1812     case DINode::FlagVirtualInheritance:
1813       return PointerToMemberRepresentation::VirtualInheritanceData;
1814     }
1815   }
1816   llvm_unreachable("invalid ptr to member representation");
1817 }
1818 
1819 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1820                                                 PointerOptions PO) {
1821   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1822   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1823   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1824   TypeIndex PointeeTI =
1825       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1826   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1827                                                 : PointerKind::Near32;
1828   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1829                          : PointerMode::PointerToDataMember;
1830 
1831   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1832   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1833   MemberPointerInfo MPI(
1834       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1835   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1836   return TypeTable.writeLeafType(PR);
1837 }
1838 
1839 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1840 /// have a translation, use the NearC convention.
1841 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1842   switch (DwarfCC) {
1843   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1844   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1845   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1846   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1847   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1848   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1849   }
1850   return CallingConvention::NearC;
1851 }
1852 
1853 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1854   ModifierOptions Mods = ModifierOptions::None;
1855   PointerOptions PO = PointerOptions::None;
1856   bool IsModifier = true;
1857   const DIType *BaseTy = Ty;
1858   while (IsModifier && BaseTy) {
1859     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1860     switch (BaseTy->getTag()) {
1861     case dwarf::DW_TAG_const_type:
1862       Mods |= ModifierOptions::Const;
1863       PO |= PointerOptions::Const;
1864       break;
1865     case dwarf::DW_TAG_volatile_type:
1866       Mods |= ModifierOptions::Volatile;
1867       PO |= PointerOptions::Volatile;
1868       break;
1869     case dwarf::DW_TAG_restrict_type:
1870       // Only pointer types be marked with __restrict. There is no known flag
1871       // for __restrict in LF_MODIFIER records.
1872       PO |= PointerOptions::Restrict;
1873       break;
1874     default:
1875       IsModifier = false;
1876       break;
1877     }
1878     if (IsModifier)
1879       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1880   }
1881 
1882   // Check if the inner type will use an LF_POINTER record. If so, the
1883   // qualifiers will go in the LF_POINTER record. This comes up for types like
1884   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1885   // char *'.
1886   if (BaseTy) {
1887     switch (BaseTy->getTag()) {
1888     case dwarf::DW_TAG_pointer_type:
1889     case dwarf::DW_TAG_reference_type:
1890     case dwarf::DW_TAG_rvalue_reference_type:
1891       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1892     case dwarf::DW_TAG_ptr_to_member_type:
1893       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1894     default:
1895       break;
1896     }
1897   }
1898 
1899   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1900 
1901   // Return the base type index if there aren't any modifiers. For example, the
1902   // metadata could contain restrict wrappers around non-pointer types.
1903   if (Mods == ModifierOptions::None)
1904     return ModifiedTI;
1905 
1906   ModifierRecord MR(ModifiedTI, Mods);
1907   return TypeTable.writeLeafType(MR);
1908 }
1909 
1910 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1911   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1912   for (const DIType *ArgType : Ty->getTypeArray())
1913     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1914 
1915   // MSVC uses type none for variadic argument.
1916   if (ReturnAndArgTypeIndices.size() > 1 &&
1917       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1918     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1919   }
1920   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1921   ArrayRef<TypeIndex> ArgTypeIndices = None;
1922   if (!ReturnAndArgTypeIndices.empty()) {
1923     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1924     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1925     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1926   }
1927 
1928   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1929   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1930 
1931   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1932 
1933   FunctionOptions FO = getFunctionOptions(Ty);
1934   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1935                             ArgListIndex);
1936   return TypeTable.writeLeafType(Procedure);
1937 }
1938 
1939 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1940                                                  const DIType *ClassTy,
1941                                                  int ThisAdjustment,
1942                                                  bool IsStaticMethod,
1943                                                  FunctionOptions FO) {
1944   // Lower the containing class type.
1945   TypeIndex ClassType = getTypeIndex(ClassTy);
1946 
1947   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1948 
1949   unsigned Index = 0;
1950   SmallVector<TypeIndex, 8> ArgTypeIndices;
1951   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1952   if (ReturnAndArgs.size() > Index) {
1953     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1954   }
1955 
1956   // If the first argument is a pointer type and this isn't a static method,
1957   // treat it as the special 'this' parameter, which is encoded separately from
1958   // the arguments.
1959   TypeIndex ThisTypeIndex;
1960   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1961     if (const DIDerivedType *PtrTy =
1962             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
1963       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1964         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1965         Index++;
1966       }
1967     }
1968   }
1969 
1970   while (Index < ReturnAndArgs.size())
1971     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1972 
1973   // MSVC uses type none for variadic argument.
1974   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1975     ArgTypeIndices.back() = TypeIndex::None();
1976 
1977   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1978   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1979 
1980   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1981 
1982   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1983                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1984   return TypeTable.writeLeafType(MFR);
1985 }
1986 
1987 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1988   unsigned VSlotCount =
1989       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1990   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1991 
1992   VFTableShapeRecord VFTSR(Slots);
1993   return TypeTable.writeLeafType(VFTSR);
1994 }
1995 
1996 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1997   switch (Flags & DINode::FlagAccessibility) {
1998   case DINode::FlagPrivate:   return MemberAccess::Private;
1999   case DINode::FlagPublic:    return MemberAccess::Public;
2000   case DINode::FlagProtected: return MemberAccess::Protected;
2001   case 0:
2002     // If there was no explicit access control, provide the default for the tag.
2003     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2004                                                  : MemberAccess::Public;
2005   }
2006   llvm_unreachable("access flags are exclusive");
2007 }
2008 
2009 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2010   if (SP->isArtificial())
2011     return MethodOptions::CompilerGenerated;
2012 
2013   // FIXME: Handle other MethodOptions.
2014 
2015   return MethodOptions::None;
2016 }
2017 
2018 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2019                                            bool Introduced) {
2020   if (SP->getFlags() & DINode::FlagStaticMember)
2021     return MethodKind::Static;
2022 
2023   switch (SP->getVirtuality()) {
2024   case dwarf::DW_VIRTUALITY_none:
2025     break;
2026   case dwarf::DW_VIRTUALITY_virtual:
2027     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2028   case dwarf::DW_VIRTUALITY_pure_virtual:
2029     return Introduced ? MethodKind::PureIntroducingVirtual
2030                       : MethodKind::PureVirtual;
2031   default:
2032     llvm_unreachable("unhandled virtuality case");
2033   }
2034 
2035   return MethodKind::Vanilla;
2036 }
2037 
2038 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2039   switch (Ty->getTag()) {
2040   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
2041   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
2042   }
2043   llvm_unreachable("unexpected tag");
2044 }
2045 
2046 /// Return ClassOptions that should be present on both the forward declaration
2047 /// and the defintion of a tag type.
2048 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2049   ClassOptions CO = ClassOptions::None;
2050 
2051   // MSVC always sets this flag, even for local types. Clang doesn't always
2052   // appear to give every type a linkage name, which may be problematic for us.
2053   // FIXME: Investigate the consequences of not following them here.
2054   if (!Ty->getIdentifier().empty())
2055     CO |= ClassOptions::HasUniqueName;
2056 
2057   // Put the Nested flag on a type if it appears immediately inside a tag type.
2058   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2059   // here. That flag is only set on definitions, and not forward declarations.
2060   const DIScope *ImmediateScope = Ty->getScope();
2061   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2062     CO |= ClassOptions::Nested;
2063 
2064   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2065   // type only when it has an immediate function scope. Clang never puts enums
2066   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2067   // always in function, class, or file scopes.
2068   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2069     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2070       CO |= ClassOptions::Scoped;
2071   } else {
2072     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2073          Scope = Scope->getScope()) {
2074       if (isa<DISubprogram>(Scope)) {
2075         CO |= ClassOptions::Scoped;
2076         break;
2077       }
2078     }
2079   }
2080 
2081   return CO;
2082 }
2083 
2084 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2085   switch (Ty->getTag()) {
2086   case dwarf::DW_TAG_class_type:
2087   case dwarf::DW_TAG_structure_type:
2088   case dwarf::DW_TAG_union_type:
2089   case dwarf::DW_TAG_enumeration_type:
2090     break;
2091   default:
2092     return;
2093   }
2094 
2095   if (const auto *File = Ty->getFile()) {
2096     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2097     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2098 
2099     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2100     TypeTable.writeLeafType(USLR);
2101   }
2102 }
2103 
2104 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2105   ClassOptions CO = getCommonClassOptions(Ty);
2106   TypeIndex FTI;
2107   unsigned EnumeratorCount = 0;
2108 
2109   if (Ty->isForwardDecl()) {
2110     CO |= ClassOptions::ForwardReference;
2111   } else {
2112     ContinuationRecordBuilder ContinuationBuilder;
2113     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2114     for (const DINode *Element : Ty->getElements()) {
2115       // We assume that the frontend provides all members in source declaration
2116       // order, which is what MSVC does.
2117       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2118         EnumeratorRecord ER(MemberAccess::Public,
2119                             APSInt(Enumerator->getValue(), true),
2120                             Enumerator->getName());
2121         ContinuationBuilder.writeMemberType(ER);
2122         EnumeratorCount++;
2123       }
2124     }
2125     FTI = TypeTable.insertRecord(ContinuationBuilder);
2126   }
2127 
2128   std::string FullName = getFullyQualifiedName(Ty);
2129 
2130   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2131                 getTypeIndex(Ty->getBaseType()));
2132   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2133 
2134   addUDTSrcLine(Ty, EnumTI);
2135 
2136   return EnumTI;
2137 }
2138 
2139 //===----------------------------------------------------------------------===//
2140 // ClassInfo
2141 //===----------------------------------------------------------------------===//
2142 
2143 struct llvm::ClassInfo {
2144   struct MemberInfo {
2145     const DIDerivedType *MemberTypeNode;
2146     uint64_t BaseOffset;
2147   };
2148   // [MemberInfo]
2149   using MemberList = std::vector<MemberInfo>;
2150 
2151   using MethodsList = TinyPtrVector<const DISubprogram *>;
2152   // MethodName -> MethodsList
2153   using MethodsMap = MapVector<MDString *, MethodsList>;
2154 
2155   /// Base classes.
2156   std::vector<const DIDerivedType *> Inheritance;
2157 
2158   /// Direct members.
2159   MemberList Members;
2160   // Direct overloaded methods gathered by name.
2161   MethodsMap Methods;
2162 
2163   TypeIndex VShapeTI;
2164 
2165   std::vector<const DIType *> NestedTypes;
2166 };
2167 
2168 void CodeViewDebug::clear() {
2169   assert(CurFn == nullptr);
2170   FileIdMap.clear();
2171   FnDebugInfo.clear();
2172   FileToFilepathMap.clear();
2173   LocalUDTs.clear();
2174   GlobalUDTs.clear();
2175   TypeIndices.clear();
2176   CompleteTypeIndices.clear();
2177   ScopeGlobals.clear();
2178 }
2179 
2180 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2181                                       const DIDerivedType *DDTy) {
2182   if (!DDTy->getName().empty()) {
2183     Info.Members.push_back({DDTy, 0});
2184     return;
2185   }
2186 
2187   // An unnamed member may represent a nested struct or union. Attempt to
2188   // interpret the unnamed member as a DICompositeType possibly wrapped in
2189   // qualifier types. Add all the indirect fields to the current record if that
2190   // succeeds, and drop the member if that fails.
2191   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2192   uint64_t Offset = DDTy->getOffsetInBits();
2193   const DIType *Ty = DDTy->getBaseType();
2194   bool FullyResolved = false;
2195   while (!FullyResolved) {
2196     switch (Ty->getTag()) {
2197     case dwarf::DW_TAG_const_type:
2198     case dwarf::DW_TAG_volatile_type:
2199       // FIXME: we should apply the qualifier types to the indirect fields
2200       // rather than dropping them.
2201       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2202       break;
2203     default:
2204       FullyResolved = true;
2205       break;
2206     }
2207   }
2208 
2209   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2210   if (!DCTy)
2211     return;
2212 
2213   ClassInfo NestedInfo = collectClassInfo(DCTy);
2214   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2215     Info.Members.push_back(
2216         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2217 }
2218 
2219 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2220   ClassInfo Info;
2221   // Add elements to structure type.
2222   DINodeArray Elements = Ty->getElements();
2223   for (auto *Element : Elements) {
2224     // We assume that the frontend provides all members in source declaration
2225     // order, which is what MSVC does.
2226     if (!Element)
2227       continue;
2228     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2229       Info.Methods[SP->getRawName()].push_back(SP);
2230     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2231       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2232         collectMemberInfo(Info, DDTy);
2233       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2234         Info.Inheritance.push_back(DDTy);
2235       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2236                  DDTy->getName() == "__vtbl_ptr_type") {
2237         Info.VShapeTI = getTypeIndex(DDTy);
2238       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2239         Info.NestedTypes.push_back(DDTy);
2240       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2241         // Ignore friend members. It appears that MSVC emitted info about
2242         // friends in the past, but modern versions do not.
2243       }
2244     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2245       Info.NestedTypes.push_back(Composite);
2246     }
2247     // Skip other unrecognized kinds of elements.
2248   }
2249   return Info;
2250 }
2251 
2252 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2253   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2254   // if a complete type should be emitted instead of a forward reference.
2255   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2256       !Ty->isForwardDecl();
2257 }
2258 
2259 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2260   // Emit the complete type for unnamed structs.  C++ classes with methods
2261   // which have a circular reference back to the class type are expected to
2262   // be named by the front-end and should not be "unnamed".  C unnamed
2263   // structs should not have circular references.
2264   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2265     // If this unnamed complete type is already in the process of being defined
2266     // then the description of the type is malformed and cannot be emitted
2267     // into CodeView correctly so report a fatal error.
2268     auto I = CompleteTypeIndices.find(Ty);
2269     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2270       report_fatal_error("cannot debug circular reference to unnamed type");
2271     return getCompleteTypeIndex(Ty);
2272   }
2273 
2274   // First, construct the forward decl.  Don't look into Ty to compute the
2275   // forward decl options, since it might not be available in all TUs.
2276   TypeRecordKind Kind = getRecordKind(Ty);
2277   ClassOptions CO =
2278       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2279   std::string FullName = getFullyQualifiedName(Ty);
2280   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2281                  FullName, Ty->getIdentifier());
2282   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2283   if (!Ty->isForwardDecl())
2284     DeferredCompleteTypes.push_back(Ty);
2285   return FwdDeclTI;
2286 }
2287 
2288 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2289   // Construct the field list and complete type record.
2290   TypeRecordKind Kind = getRecordKind(Ty);
2291   ClassOptions CO = getCommonClassOptions(Ty);
2292   TypeIndex FieldTI;
2293   TypeIndex VShapeTI;
2294   unsigned FieldCount;
2295   bool ContainsNestedClass;
2296   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2297       lowerRecordFieldList(Ty);
2298 
2299   if (ContainsNestedClass)
2300     CO |= ClassOptions::ContainsNestedClass;
2301 
2302   // MSVC appears to set this flag by searching any destructor or method with
2303   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2304   // the members, however special member functions are not yet emitted into
2305   // debug information. For now checking a class's non-triviality seems enough.
2306   // FIXME: not true for a nested unnamed struct.
2307   if (isNonTrivial(Ty))
2308     CO |= ClassOptions::HasConstructorOrDestructor;
2309 
2310   std::string FullName = getFullyQualifiedName(Ty);
2311 
2312   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2313 
2314   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2315                  SizeInBytes, FullName, Ty->getIdentifier());
2316   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2317 
2318   addUDTSrcLine(Ty, ClassTI);
2319 
2320   addToUDTs(Ty);
2321 
2322   return ClassTI;
2323 }
2324 
2325 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2326   // Emit the complete type for unnamed unions.
2327   if (shouldAlwaysEmitCompleteClassType(Ty))
2328     return getCompleteTypeIndex(Ty);
2329 
2330   ClassOptions CO =
2331       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2332   std::string FullName = getFullyQualifiedName(Ty);
2333   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2334   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2335   if (!Ty->isForwardDecl())
2336     DeferredCompleteTypes.push_back(Ty);
2337   return FwdDeclTI;
2338 }
2339 
2340 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2341   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2342   TypeIndex FieldTI;
2343   unsigned FieldCount;
2344   bool ContainsNestedClass;
2345   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2346       lowerRecordFieldList(Ty);
2347 
2348   if (ContainsNestedClass)
2349     CO |= ClassOptions::ContainsNestedClass;
2350 
2351   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2352   std::string FullName = getFullyQualifiedName(Ty);
2353 
2354   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2355                  Ty->getIdentifier());
2356   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2357 
2358   addUDTSrcLine(Ty, UnionTI);
2359 
2360   addToUDTs(Ty);
2361 
2362   return UnionTI;
2363 }
2364 
2365 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2366 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2367   // Manually count members. MSVC appears to count everything that generates a
2368   // field list record. Each individual overload in a method overload group
2369   // contributes to this count, even though the overload group is a single field
2370   // list record.
2371   unsigned MemberCount = 0;
2372   ClassInfo Info = collectClassInfo(Ty);
2373   ContinuationRecordBuilder ContinuationBuilder;
2374   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2375 
2376   // Create base classes.
2377   for (const DIDerivedType *I : Info.Inheritance) {
2378     if (I->getFlags() & DINode::FlagVirtual) {
2379       // Virtual base.
2380       unsigned VBPtrOffset = I->getVBPtrOffset();
2381       // FIXME: Despite the accessor name, the offset is really in bytes.
2382       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2383       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2384                             ? TypeRecordKind::IndirectVirtualBaseClass
2385                             : TypeRecordKind::VirtualBaseClass;
2386       VirtualBaseClassRecord VBCR(
2387           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2388           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2389           VBTableIndex);
2390 
2391       ContinuationBuilder.writeMemberType(VBCR);
2392       MemberCount++;
2393     } else {
2394       assert(I->getOffsetInBits() % 8 == 0 &&
2395              "bases must be on byte boundaries");
2396       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2397                           getTypeIndex(I->getBaseType()),
2398                           I->getOffsetInBits() / 8);
2399       ContinuationBuilder.writeMemberType(BCR);
2400       MemberCount++;
2401     }
2402   }
2403 
2404   // Create members.
2405   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2406     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2407     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2408     StringRef MemberName = Member->getName();
2409     MemberAccess Access =
2410         translateAccessFlags(Ty->getTag(), Member->getFlags());
2411 
2412     if (Member->isStaticMember()) {
2413       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2414       ContinuationBuilder.writeMemberType(SDMR);
2415       MemberCount++;
2416       continue;
2417     }
2418 
2419     // Virtual function pointer member.
2420     if ((Member->getFlags() & DINode::FlagArtificial) &&
2421         Member->getName().startswith("_vptr$")) {
2422       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2423       ContinuationBuilder.writeMemberType(VFPR);
2424       MemberCount++;
2425       continue;
2426     }
2427 
2428     // Data member.
2429     uint64_t MemberOffsetInBits =
2430         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2431     if (Member->isBitField()) {
2432       uint64_t StartBitOffset = MemberOffsetInBits;
2433       if (const auto *CI =
2434               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2435         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2436       }
2437       StartBitOffset -= MemberOffsetInBits;
2438       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2439                          StartBitOffset);
2440       MemberBaseType = TypeTable.writeLeafType(BFR);
2441     }
2442     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2443     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2444                          MemberName);
2445     ContinuationBuilder.writeMemberType(DMR);
2446     MemberCount++;
2447   }
2448 
2449   // Create methods
2450   for (auto &MethodItr : Info.Methods) {
2451     StringRef Name = MethodItr.first->getString();
2452 
2453     std::vector<OneMethodRecord> Methods;
2454     for (const DISubprogram *SP : MethodItr.second) {
2455       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2456       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2457 
2458       unsigned VFTableOffset = -1;
2459       if (Introduced)
2460         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2461 
2462       Methods.push_back(OneMethodRecord(
2463           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2464           translateMethodKindFlags(SP, Introduced),
2465           translateMethodOptionFlags(SP), VFTableOffset, Name));
2466       MemberCount++;
2467     }
2468     assert(!Methods.empty() && "Empty methods map entry");
2469     if (Methods.size() == 1)
2470       ContinuationBuilder.writeMemberType(Methods[0]);
2471     else {
2472       // FIXME: Make this use its own ContinuationBuilder so that
2473       // MethodOverloadList can be split correctly.
2474       MethodOverloadListRecord MOLR(Methods);
2475       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2476 
2477       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2478       ContinuationBuilder.writeMemberType(OMR);
2479     }
2480   }
2481 
2482   // Create nested classes.
2483   for (const DIType *Nested : Info.NestedTypes) {
2484     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2485     ContinuationBuilder.writeMemberType(R);
2486     MemberCount++;
2487   }
2488 
2489   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2490   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2491                          !Info.NestedTypes.empty());
2492 }
2493 
2494 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2495   if (!VBPType.getIndex()) {
2496     // Make a 'const int *' type.
2497     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2498     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2499 
2500     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2501                                                   : PointerKind::Near32;
2502     PointerMode PM = PointerMode::Pointer;
2503     PointerOptions PO = PointerOptions::None;
2504     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2505     VBPType = TypeTable.writeLeafType(PR);
2506   }
2507 
2508   return VBPType;
2509 }
2510 
2511 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2512   // The null DIType is the void type. Don't try to hash it.
2513   if (!Ty)
2514     return TypeIndex::Void();
2515 
2516   // Check if we've already translated this type. Don't try to do a
2517   // get-or-create style insertion that caches the hash lookup across the
2518   // lowerType call. It will update the TypeIndices map.
2519   auto I = TypeIndices.find({Ty, ClassTy});
2520   if (I != TypeIndices.end())
2521     return I->second;
2522 
2523   TypeLoweringScope S(*this);
2524   TypeIndex TI = lowerType(Ty, ClassTy);
2525   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2526 }
2527 
2528 codeview::TypeIndex
2529 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2530                                       const DISubroutineType *SubroutineTy) {
2531   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2532          "this type must be a pointer type");
2533 
2534   PointerOptions Options = PointerOptions::None;
2535   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2536     Options = PointerOptions::LValueRefThisPointer;
2537   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2538     Options = PointerOptions::RValueRefThisPointer;
2539 
2540   // Check if we've already translated this type.  If there is no ref qualifier
2541   // on the function then we look up this pointer type with no associated class
2542   // so that the TypeIndex for the this pointer can be shared with the type
2543   // index for other pointers to this class type.  If there is a ref qualifier
2544   // then we lookup the pointer using the subroutine as the parent type.
2545   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2546   if (I != TypeIndices.end())
2547     return I->second;
2548 
2549   TypeLoweringScope S(*this);
2550   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2551   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2552 }
2553 
2554 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2555   PointerRecord PR(getTypeIndex(Ty),
2556                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2557                                                 : PointerKind::Near32,
2558                    PointerMode::LValueReference, PointerOptions::None,
2559                    Ty->getSizeInBits() / 8);
2560   return TypeTable.writeLeafType(PR);
2561 }
2562 
2563 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2564   // The null DIType is the void type. Don't try to hash it.
2565   if (!Ty)
2566     return TypeIndex::Void();
2567 
2568   // Look through typedefs when getting the complete type index. Call
2569   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2570   // emitted only once.
2571   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2572     (void)getTypeIndex(Ty);
2573   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2574     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2575 
2576   // If this is a non-record type, the complete type index is the same as the
2577   // normal type index. Just call getTypeIndex.
2578   switch (Ty->getTag()) {
2579   case dwarf::DW_TAG_class_type:
2580   case dwarf::DW_TAG_structure_type:
2581   case dwarf::DW_TAG_union_type:
2582     break;
2583   default:
2584     return getTypeIndex(Ty);
2585   }
2586 
2587   const auto *CTy = cast<DICompositeType>(Ty);
2588 
2589   TypeLoweringScope S(*this);
2590 
2591   // Make sure the forward declaration is emitted first. It's unclear if this
2592   // is necessary, but MSVC does it, and we should follow suit until we can show
2593   // otherwise.
2594   // We only emit a forward declaration for named types.
2595   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2596     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2597 
2598     // Just use the forward decl if we don't have complete type info. This
2599     // might happen if the frontend is using modules and expects the complete
2600     // definition to be emitted elsewhere.
2601     if (CTy->isForwardDecl())
2602       return FwdDeclTI;
2603   }
2604 
2605   // Check if we've already translated the complete record type.
2606   // Insert the type with a null TypeIndex to signify that the type is currently
2607   // being lowered.
2608   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2609   if (!InsertResult.second)
2610     return InsertResult.first->second;
2611 
2612   TypeIndex TI;
2613   switch (CTy->getTag()) {
2614   case dwarf::DW_TAG_class_type:
2615   case dwarf::DW_TAG_structure_type:
2616     TI = lowerCompleteTypeClass(CTy);
2617     break;
2618   case dwarf::DW_TAG_union_type:
2619     TI = lowerCompleteTypeUnion(CTy);
2620     break;
2621   default:
2622     llvm_unreachable("not a record");
2623   }
2624 
2625   // Update the type index associated with this CompositeType.  This cannot
2626   // use the 'InsertResult' iterator above because it is potentially
2627   // invalidated by map insertions which can occur while lowering the class
2628   // type above.
2629   CompleteTypeIndices[CTy] = TI;
2630   return TI;
2631 }
2632 
2633 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2634 /// and do this until fixpoint, as each complete record type typically
2635 /// references
2636 /// many other record types.
2637 void CodeViewDebug::emitDeferredCompleteTypes() {
2638   SmallVector<const DICompositeType *, 4> TypesToEmit;
2639   while (!DeferredCompleteTypes.empty()) {
2640     std::swap(DeferredCompleteTypes, TypesToEmit);
2641     for (const DICompositeType *RecordTy : TypesToEmit)
2642       getCompleteTypeIndex(RecordTy);
2643     TypesToEmit.clear();
2644   }
2645 }
2646 
2647 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2648                                           ArrayRef<LocalVariable> Locals) {
2649   // Get the sorted list of parameters and emit them first.
2650   SmallVector<const LocalVariable *, 6> Params;
2651   for (const LocalVariable &L : Locals)
2652     if (L.DIVar->isParameter())
2653       Params.push_back(&L);
2654   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2655     return L->DIVar->getArg() < R->DIVar->getArg();
2656   });
2657   for (const LocalVariable *L : Params)
2658     emitLocalVariable(FI, *L);
2659 
2660   // Next emit all non-parameters in the order that we found them.
2661   for (const LocalVariable &L : Locals)
2662     if (!L.DIVar->isParameter())
2663       emitLocalVariable(FI, L);
2664 }
2665 
2666 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2667                                       const LocalVariable &Var) {
2668   // LocalSym record, see SymbolRecord.h for more info.
2669   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2670 
2671   LocalSymFlags Flags = LocalSymFlags::None;
2672   if (Var.DIVar->isParameter())
2673     Flags |= LocalSymFlags::IsParameter;
2674   if (Var.DefRanges.empty())
2675     Flags |= LocalSymFlags::IsOptimizedOut;
2676 
2677   OS.AddComment("TypeIndex");
2678   TypeIndex TI = Var.UseReferenceType
2679                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2680                      : getCompleteTypeIndex(Var.DIVar->getType());
2681   OS.emitInt32(TI.getIndex());
2682   OS.AddComment("Flags");
2683   OS.emitInt16(static_cast<uint16_t>(Flags));
2684   // Truncate the name so we won't overflow the record length field.
2685   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2686   endSymbolRecord(LocalEnd);
2687 
2688   // Calculate the on disk prefix of the appropriate def range record. The
2689   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2690   // should be big enough to hold all forms without memory allocation.
2691   SmallString<20> BytePrefix;
2692   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2693     BytePrefix.clear();
2694     if (DefRange.InMemory) {
2695       int Offset = DefRange.DataOffset;
2696       unsigned Reg = DefRange.CVRegister;
2697 
2698       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2699       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2700       // instead. In frames without stack realignment, $T0 will be the CFA.
2701       if (RegisterId(Reg) == RegisterId::ESP) {
2702         Reg = unsigned(RegisterId::VFRAME);
2703         Offset += FI.OffsetAdjustment;
2704       }
2705 
2706       // If we can use the chosen frame pointer for the frame and this isn't a
2707       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2708       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2709       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2710       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2711           (bool(Flags & LocalSymFlags::IsParameter)
2712                ? (EncFP == FI.EncodedParamFramePtrReg)
2713                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2714         DefRangeFramePointerRelHeader DRHdr;
2715         DRHdr.Offset = Offset;
2716         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2717       } else {
2718         uint16_t RegRelFlags = 0;
2719         if (DefRange.IsSubfield) {
2720           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2721                         (DefRange.StructOffset
2722                          << DefRangeRegisterRelSym::OffsetInParentShift);
2723         }
2724         DefRangeRegisterRelHeader DRHdr;
2725         DRHdr.Register = Reg;
2726         DRHdr.Flags = RegRelFlags;
2727         DRHdr.BasePointerOffset = Offset;
2728         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2729       }
2730     } else {
2731       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2732       if (DefRange.IsSubfield) {
2733         DefRangeSubfieldRegisterHeader DRHdr;
2734         DRHdr.Register = DefRange.CVRegister;
2735         DRHdr.MayHaveNoName = 0;
2736         DRHdr.OffsetInParent = DefRange.StructOffset;
2737         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2738       } else {
2739         DefRangeRegisterHeader DRHdr;
2740         DRHdr.Register = DefRange.CVRegister;
2741         DRHdr.MayHaveNoName = 0;
2742         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2743       }
2744     }
2745   }
2746 }
2747 
2748 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2749                                          const FunctionInfo& FI) {
2750   for (LexicalBlock *Block : Blocks)
2751     emitLexicalBlock(*Block, FI);
2752 }
2753 
2754 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2755 /// lexical block scope.
2756 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2757                                      const FunctionInfo& FI) {
2758   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2759   OS.AddComment("PtrParent");
2760   OS.emitInt32(0); // PtrParent
2761   OS.AddComment("PtrEnd");
2762   OS.emitInt32(0); // PtrEnd
2763   OS.AddComment("Code size");
2764   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2765   OS.AddComment("Function section relative address");
2766   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2767   OS.AddComment("Function section index");
2768   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2769   OS.AddComment("Lexical block name");
2770   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2771   endSymbolRecord(RecordEnd);
2772 
2773   // Emit variables local to this lexical block.
2774   emitLocalVariableList(FI, Block.Locals);
2775   emitGlobalVariableList(Block.Globals);
2776 
2777   // Emit lexical blocks contained within this block.
2778   emitLexicalBlockList(Block.Children, FI);
2779 
2780   // Close the lexical block scope.
2781   emitEndSymbolRecord(SymbolKind::S_END);
2782 }
2783 
2784 /// Convenience routine for collecting lexical block information for a list
2785 /// of lexical scopes.
2786 void CodeViewDebug::collectLexicalBlockInfo(
2787         SmallVectorImpl<LexicalScope *> &Scopes,
2788         SmallVectorImpl<LexicalBlock *> &Blocks,
2789         SmallVectorImpl<LocalVariable> &Locals,
2790         SmallVectorImpl<CVGlobalVariable> &Globals) {
2791   for (LexicalScope *Scope : Scopes)
2792     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2793 }
2794 
2795 /// Populate the lexical blocks and local variable lists of the parent with
2796 /// information about the specified lexical scope.
2797 void CodeViewDebug::collectLexicalBlockInfo(
2798     LexicalScope &Scope,
2799     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2800     SmallVectorImpl<LocalVariable> &ParentLocals,
2801     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2802   if (Scope.isAbstractScope())
2803     return;
2804 
2805   // Gather information about the lexical scope including local variables,
2806   // global variables, and address ranges.
2807   bool IgnoreScope = false;
2808   auto LI = ScopeVariables.find(&Scope);
2809   SmallVectorImpl<LocalVariable> *Locals =
2810       LI != ScopeVariables.end() ? &LI->second : nullptr;
2811   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2812   SmallVectorImpl<CVGlobalVariable> *Globals =
2813       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2814   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2815   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2816 
2817   // Ignore lexical scopes which do not contain variables.
2818   if (!Locals && !Globals)
2819     IgnoreScope = true;
2820 
2821   // Ignore lexical scopes which are not lexical blocks.
2822   if (!DILB)
2823     IgnoreScope = true;
2824 
2825   // Ignore scopes which have too many address ranges to represent in the
2826   // current CodeView format or do not have a valid address range.
2827   //
2828   // For lexical scopes with multiple address ranges you may be tempted to
2829   // construct a single range covering every instruction where the block is
2830   // live and everything in between.  Unfortunately, Visual Studio only
2831   // displays variables from the first matching lexical block scope.  If the
2832   // first lexical block contains exception handling code or cold code which
2833   // is moved to the bottom of the routine creating a single range covering
2834   // nearly the entire routine, then it will hide all other lexical blocks
2835   // and the variables they contain.
2836   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2837     IgnoreScope = true;
2838 
2839   if (IgnoreScope) {
2840     // This scope can be safely ignored and eliminating it will reduce the
2841     // size of the debug information. Be sure to collect any variable and scope
2842     // information from the this scope or any of its children and collapse them
2843     // into the parent scope.
2844     if (Locals)
2845       ParentLocals.append(Locals->begin(), Locals->end());
2846     if (Globals)
2847       ParentGlobals.append(Globals->begin(), Globals->end());
2848     collectLexicalBlockInfo(Scope.getChildren(),
2849                             ParentBlocks,
2850                             ParentLocals,
2851                             ParentGlobals);
2852     return;
2853   }
2854 
2855   // Create a new CodeView lexical block for this lexical scope.  If we've
2856   // seen this DILexicalBlock before then the scope tree is malformed and
2857   // we can handle this gracefully by not processing it a second time.
2858   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2859   if (!BlockInsertion.second)
2860     return;
2861 
2862   // Create a lexical block containing the variables and collect the the
2863   // lexical block information for the children.
2864   const InsnRange &Range = Ranges.front();
2865   assert(Range.first && Range.second);
2866   LexicalBlock &Block = BlockInsertion.first->second;
2867   Block.Begin = getLabelBeforeInsn(Range.first);
2868   Block.End = getLabelAfterInsn(Range.second);
2869   assert(Block.Begin && "missing label for scope begin");
2870   assert(Block.End && "missing label for scope end");
2871   Block.Name = DILB->getName();
2872   if (Locals)
2873     Block.Locals = std::move(*Locals);
2874   if (Globals)
2875     Block.Globals = std::move(*Globals);
2876   ParentBlocks.push_back(&Block);
2877   collectLexicalBlockInfo(Scope.getChildren(),
2878                           Block.Children,
2879                           Block.Locals,
2880                           Block.Globals);
2881 }
2882 
2883 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2884   const Function &GV = MF->getFunction();
2885   assert(FnDebugInfo.count(&GV));
2886   assert(CurFn == FnDebugInfo[&GV].get());
2887 
2888   collectVariableInfo(GV.getSubprogram());
2889 
2890   // Build the lexical block structure to emit for this routine.
2891   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2892     collectLexicalBlockInfo(*CFS,
2893                             CurFn->ChildBlocks,
2894                             CurFn->Locals,
2895                             CurFn->Globals);
2896 
2897   // Clear the scope and variable information from the map which will not be
2898   // valid after we have finished processing this routine.  This also prepares
2899   // the map for the subsequent routine.
2900   ScopeVariables.clear();
2901 
2902   // Don't emit anything if we don't have any line tables.
2903   // Thunks are compiler-generated and probably won't have source correlation.
2904   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2905     FnDebugInfo.erase(&GV);
2906     CurFn = nullptr;
2907     return;
2908   }
2909 
2910   // Find heap alloc sites and add to list.
2911   for (const auto &MBB : *MF) {
2912     for (const auto &MI : MBB) {
2913       if (MDNode *MD = MI.getHeapAllocMarker()) {
2914         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2915                                                         getLabelAfterInsn(&MI),
2916                                                         dyn_cast<DIType>(MD)));
2917       }
2918     }
2919   }
2920 
2921   CurFn->Annotations = MF->getCodeViewAnnotations();
2922 
2923   CurFn->End = Asm->getFunctionEnd();
2924 
2925   CurFn = nullptr;
2926 }
2927 
2928 // Usable locations are valid with non-zero line numbers. A line number of zero
2929 // corresponds to optimized code that doesn't have a distinct source location.
2930 // In this case, we try to use the previous or next source location depending on
2931 // the context.
2932 static bool isUsableDebugLoc(DebugLoc DL) {
2933   return DL && DL.getLine() != 0;
2934 }
2935 
2936 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2937   DebugHandlerBase::beginInstruction(MI);
2938 
2939   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2940   if (!Asm || !CurFn || MI->isDebugInstr() ||
2941       MI->getFlag(MachineInstr::FrameSetup))
2942     return;
2943 
2944   // If the first instruction of a new MBB has no location, find the first
2945   // instruction with a location and use that.
2946   DebugLoc DL = MI->getDebugLoc();
2947   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
2948     for (const auto &NextMI : *MI->getParent()) {
2949       if (NextMI.isDebugInstr())
2950         continue;
2951       DL = NextMI.getDebugLoc();
2952       if (isUsableDebugLoc(DL))
2953         break;
2954     }
2955     // FIXME: Handle the case where the BB has no valid locations. This would
2956     // probably require doing a real dataflow analysis.
2957   }
2958   PrevInstBB = MI->getParent();
2959 
2960   // If we still don't have a debug location, don't record a location.
2961   if (!isUsableDebugLoc(DL))
2962     return;
2963 
2964   maybeRecordLocation(DL, Asm->MF);
2965 }
2966 
2967 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2968   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2969            *EndLabel = MMI->getContext().createTempSymbol();
2970   OS.emitInt32(unsigned(Kind));
2971   OS.AddComment("Subsection size");
2972   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2973   OS.emitLabel(BeginLabel);
2974   return EndLabel;
2975 }
2976 
2977 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2978   OS.emitLabel(EndLabel);
2979   // Every subsection must be aligned to a 4-byte boundary.
2980   OS.emitValueToAlignment(4);
2981 }
2982 
2983 static StringRef getSymbolName(SymbolKind SymKind) {
2984   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2985     if (EE.Value == SymKind)
2986       return EE.Name;
2987   return "";
2988 }
2989 
2990 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2991   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2992            *EndLabel = MMI->getContext().createTempSymbol();
2993   OS.AddComment("Record length");
2994   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2995   OS.emitLabel(BeginLabel);
2996   if (OS.isVerboseAsm())
2997     OS.AddComment("Record kind: " + getSymbolName(SymKind));
2998   OS.emitInt16(unsigned(SymKind));
2999   return EndLabel;
3000 }
3001 
3002 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3003   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3004   // an extra copy of every symbol record in LLD. This increases object file
3005   // size by less than 1% in the clang build, and is compatible with the Visual
3006   // C++ linker.
3007   OS.emitValueToAlignment(4);
3008   OS.emitLabel(SymEnd);
3009 }
3010 
3011 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3012   OS.AddComment("Record length");
3013   OS.emitInt16(2);
3014   if (OS.isVerboseAsm())
3015     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3016   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3017 }
3018 
3019 void CodeViewDebug::emitDebugInfoForUDTs(
3020     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3021 #ifndef NDEBUG
3022   size_t OriginalSize = UDTs.size();
3023 #endif
3024   for (const auto &UDT : UDTs) {
3025     const DIType *T = UDT.second;
3026     assert(shouldEmitUdt(T));
3027     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3028     OS.AddComment("Type");
3029     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3030     assert(OriginalSize == UDTs.size() &&
3031            "getCompleteTypeIndex found new UDTs!");
3032     emitNullTerminatedSymbolName(OS, UDT.first);
3033     endSymbolRecord(UDTRecordEnd);
3034   }
3035 }
3036 
3037 void CodeViewDebug::collectGlobalVariableInfo() {
3038   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3039       GlobalMap;
3040   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3041     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3042     GV.getDebugInfo(GVEs);
3043     for (const auto *GVE : GVEs)
3044       GlobalMap[GVE] = &GV;
3045   }
3046 
3047   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3048   for (const MDNode *Node : CUs->operands()) {
3049     const auto *CU = cast<DICompileUnit>(Node);
3050     for (const auto *GVE : CU->getGlobalVariables()) {
3051       const DIGlobalVariable *DIGV = GVE->getVariable();
3052       const DIExpression *DIE = GVE->getExpression();
3053 
3054       // Emit constant global variables in a global symbol section.
3055       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3056         CVGlobalVariable CVGV = {DIGV, DIE};
3057         GlobalVariables.emplace_back(std::move(CVGV));
3058       }
3059 
3060       const auto *GV = GlobalMap.lookup(GVE);
3061       if (!GV || GV->isDeclarationForLinker())
3062         continue;
3063 
3064       DIScope *Scope = DIGV->getScope();
3065       SmallVector<CVGlobalVariable, 1> *VariableList;
3066       if (Scope && isa<DILocalScope>(Scope)) {
3067         // Locate a global variable list for this scope, creating one if
3068         // necessary.
3069         auto Insertion = ScopeGlobals.insert(
3070             {Scope, std::unique_ptr<GlobalVariableList>()});
3071         if (Insertion.second)
3072           Insertion.first->second = std::make_unique<GlobalVariableList>();
3073         VariableList = Insertion.first->second.get();
3074       } else if (GV->hasComdat())
3075         // Emit this global variable into a COMDAT section.
3076         VariableList = &ComdatVariables;
3077       else
3078         // Emit this global variable in a single global symbol section.
3079         VariableList = &GlobalVariables;
3080       CVGlobalVariable CVGV = {DIGV, GV};
3081       VariableList->emplace_back(std::move(CVGV));
3082     }
3083   }
3084 }
3085 
3086 void CodeViewDebug::emitDebugInfoForGlobals() {
3087   // First, emit all globals that are not in a comdat in a single symbol
3088   // substream. MSVC doesn't like it if the substream is empty, so only open
3089   // it if we have at least one global to emit.
3090   switchToDebugSectionForSymbol(nullptr);
3091   if (!GlobalVariables.empty()) {
3092     OS.AddComment("Symbol subsection for globals");
3093     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3094     emitGlobalVariableList(GlobalVariables);
3095     endCVSubsection(EndLabel);
3096   }
3097 
3098   // Second, emit each global that is in a comdat into its own .debug$S
3099   // section along with its own symbol substream.
3100   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3101     const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3102     MCSymbol *GVSym = Asm->getSymbol(GV);
3103     OS.AddComment("Symbol subsection for " +
3104                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3105     switchToDebugSectionForSymbol(GVSym);
3106     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3107     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3108     emitDebugInfoForGlobal(CVGV);
3109     endCVSubsection(EndLabel);
3110   }
3111 }
3112 
3113 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3114   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3115   for (const MDNode *Node : CUs->operands()) {
3116     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3117       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3118         getTypeIndex(RT);
3119         // FIXME: Add to global/local DTU list.
3120       }
3121     }
3122   }
3123 }
3124 
3125 // Emit each global variable in the specified array.
3126 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3127   for (const CVGlobalVariable &CVGV : Globals) {
3128     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3129     emitDebugInfoForGlobal(CVGV);
3130   }
3131 }
3132 
3133 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3134   const DIGlobalVariable *DIGV = CVGV.DIGV;
3135 
3136   const DIScope *Scope = DIGV->getScope();
3137   // For static data members, get the scope from the declaration.
3138   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3139           DIGV->getRawStaticDataMemberDeclaration()))
3140     Scope = MemberDecl->getScope();
3141   std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName());
3142 
3143   if (const GlobalVariable *GV =
3144           CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3145     // DataSym record, see SymbolRecord.h for more info. Thread local data
3146     // happens to have the same format as global data.
3147     MCSymbol *GVSym = Asm->getSymbol(GV);
3148     SymbolKind DataSym = GV->isThreadLocal()
3149                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3150                                                       : SymbolKind::S_GTHREAD32)
3151                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3152                                                       : SymbolKind::S_GDATA32);
3153     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3154     OS.AddComment("Type");
3155     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3156     OS.AddComment("DataOffset");
3157     OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3158     OS.AddComment("Segment");
3159     OS.EmitCOFFSectionIndex(GVSym);
3160     OS.AddComment("Name");
3161     const unsigned LengthOfDataRecord = 12;
3162     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3163     endSymbolRecord(DataEnd);
3164   } else {
3165     const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3166     assert(DIE->isConstant() &&
3167            "Global constant variables must contain a constant expression.");
3168     uint64_t Val = DIE->getElement(1);
3169 
3170     MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3171     OS.AddComment("Type");
3172     OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex());
3173     OS.AddComment("Value");
3174 
3175     // Encoded integers shouldn't need more than 10 bytes.
3176     uint8_t data[10];
3177     BinaryStreamWriter Writer(data, llvm::support::endianness::little);
3178     CodeViewRecordIO IO(Writer);
3179     cantFail(IO.mapEncodedInteger(Val));
3180     StringRef SRef((char *)data, Writer.getOffset());
3181     OS.emitBinaryData(SRef);
3182 
3183     OS.AddComment("Name");
3184     emitNullTerminatedSymbolName(OS, QualifiedName);
3185     endSymbolRecord(SConstantEnd);
3186   }
3187 }
3188