1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 StringRef Checksum = F->getChecksum(); 163 DIFile::ChecksumKind ChecksumKind = F->getChecksumKind(); 164 bool Success = OS.EmitCVFileDirective(NextId, FullPath, Checksum, 165 static_cast<unsigned>(ChecksumKind)); 166 (void)Success; 167 assert(Success && ".cv_file directive failed"); 168 } 169 return Insertion.first->second; 170 } 171 172 CodeViewDebug::InlineSite & 173 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 174 const DISubprogram *Inlinee) { 175 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 176 InlineSite *Site = &SiteInsertion.first->second; 177 if (SiteInsertion.second) { 178 unsigned ParentFuncId = CurFn->FuncId; 179 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 180 ParentFuncId = 181 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 182 .SiteFuncId; 183 184 Site->SiteFuncId = NextFuncId++; 185 OS.EmitCVInlineSiteIdDirective( 186 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 187 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 188 Site->Inlinee = Inlinee; 189 InlinedSubprograms.insert(Inlinee); 190 getFuncIdForSubprogram(Inlinee); 191 } 192 return *Site; 193 } 194 195 static StringRef getPrettyScopeName(const DIScope *Scope) { 196 StringRef ScopeName = Scope->getName(); 197 if (!ScopeName.empty()) 198 return ScopeName; 199 200 switch (Scope->getTag()) { 201 case dwarf::DW_TAG_enumeration_type: 202 case dwarf::DW_TAG_class_type: 203 case dwarf::DW_TAG_structure_type: 204 case dwarf::DW_TAG_union_type: 205 return "<unnamed-tag>"; 206 case dwarf::DW_TAG_namespace: 207 return "`anonymous namespace'"; 208 } 209 210 return StringRef(); 211 } 212 213 static const DISubprogram *getQualifiedNameComponents( 214 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 215 const DISubprogram *ClosestSubprogram = nullptr; 216 while (Scope != nullptr) { 217 if (ClosestSubprogram == nullptr) 218 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 219 StringRef ScopeName = getPrettyScopeName(Scope); 220 if (!ScopeName.empty()) 221 QualifiedNameComponents.push_back(ScopeName); 222 Scope = Scope->getScope().resolve(); 223 } 224 return ClosestSubprogram; 225 } 226 227 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 228 StringRef TypeName) { 229 std::string FullyQualifiedName; 230 for (StringRef QualifiedNameComponent : 231 llvm::reverse(QualifiedNameComponents)) { 232 FullyQualifiedName.append(QualifiedNameComponent); 233 FullyQualifiedName.append("::"); 234 } 235 FullyQualifiedName.append(TypeName); 236 return FullyQualifiedName; 237 } 238 239 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 240 SmallVector<StringRef, 5> QualifiedNameComponents; 241 getQualifiedNameComponents(Scope, QualifiedNameComponents); 242 return getQualifiedName(QualifiedNameComponents, Name); 243 } 244 245 struct CodeViewDebug::TypeLoweringScope { 246 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 247 ~TypeLoweringScope() { 248 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 249 // inner TypeLoweringScopes don't attempt to emit deferred types. 250 if (CVD.TypeEmissionLevel == 1) 251 CVD.emitDeferredCompleteTypes(); 252 --CVD.TypeEmissionLevel; 253 } 254 CodeViewDebug &CVD; 255 }; 256 257 static std::string getFullyQualifiedName(const DIScope *Ty) { 258 const DIScope *Scope = Ty->getScope().resolve(); 259 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 260 } 261 262 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 263 // No scope means global scope and that uses the zero index. 264 if (!Scope || isa<DIFile>(Scope)) 265 return TypeIndex(); 266 267 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 268 269 // Check if we've already translated this scope. 270 auto I = TypeIndices.find({Scope, nullptr}); 271 if (I != TypeIndices.end()) 272 return I->second; 273 274 // Build the fully qualified name of the scope. 275 std::string ScopeName = getFullyQualifiedName(Scope); 276 StringIdRecord SID(TypeIndex(), ScopeName); 277 auto TI = TypeTable.writeKnownType(SID); 278 return recordTypeIndexForDINode(Scope, TI); 279 } 280 281 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 282 assert(SP); 283 284 // Check if we've already translated this subprogram. 285 auto I = TypeIndices.find({SP, nullptr}); 286 if (I != TypeIndices.end()) 287 return I->second; 288 289 // The display name includes function template arguments. Drop them to match 290 // MSVC. 291 StringRef DisplayName = SP->getName().split('<').first; 292 293 const DIScope *Scope = SP->getScope().resolve(); 294 TypeIndex TI; 295 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 296 // If the scope is a DICompositeType, then this must be a method. Member 297 // function types take some special handling, and require access to the 298 // subprogram. 299 TypeIndex ClassType = getTypeIndex(Class); 300 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 301 DisplayName); 302 TI = TypeTable.writeKnownType(MFuncId); 303 } else { 304 // Otherwise, this must be a free function. 305 TypeIndex ParentScope = getScopeIndex(Scope); 306 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 307 TI = TypeTable.writeKnownType(FuncId); 308 } 309 310 return recordTypeIndexForDINode(SP, TI); 311 } 312 313 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 314 const DICompositeType *Class) { 315 // Always use the method declaration as the key for the function type. The 316 // method declaration contains the this adjustment. 317 if (SP->getDeclaration()) 318 SP = SP->getDeclaration(); 319 assert(!SP->getDeclaration() && "should use declaration as key"); 320 321 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 322 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 323 auto I = TypeIndices.find({SP, Class}); 324 if (I != TypeIndices.end()) 325 return I->second; 326 327 // Make sure complete type info for the class is emitted *after* the member 328 // function type, as the complete class type is likely to reference this 329 // member function type. 330 TypeLoweringScope S(*this); 331 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0; 332 TypeIndex TI = lowerTypeMemberFunction( 333 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod); 334 return recordTypeIndexForDINode(SP, TI, Class); 335 } 336 337 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 338 TypeIndex TI, 339 const DIType *ClassTy) { 340 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 341 (void)InsertResult; 342 assert(InsertResult.second && "DINode was already assigned a type index"); 343 return TI; 344 } 345 346 unsigned CodeViewDebug::getPointerSizeInBytes() { 347 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 348 } 349 350 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 351 const DILocation *InlinedAt) { 352 if (InlinedAt) { 353 // This variable was inlined. Associate it with the InlineSite. 354 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 355 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 356 Site.InlinedLocals.emplace_back(Var); 357 } else { 358 // This variable goes in the main ProcSym. 359 CurFn->Locals.emplace_back(Var); 360 } 361 } 362 363 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 364 const DILocation *Loc) { 365 auto B = Locs.begin(), E = Locs.end(); 366 if (std::find(B, E, Loc) == E) 367 Locs.push_back(Loc); 368 } 369 370 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 371 const MachineFunction *MF) { 372 // Skip this instruction if it has the same location as the previous one. 373 if (!DL || DL == PrevInstLoc) 374 return; 375 376 const DIScope *Scope = DL.get()->getScope(); 377 if (!Scope) 378 return; 379 380 // Skip this line if it is longer than the maximum we can record. 381 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 382 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 383 LI.isNeverStepInto()) 384 return; 385 386 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 387 if (CI.getStartColumn() != DL.getCol()) 388 return; 389 390 if (!CurFn->HaveLineInfo) 391 CurFn->HaveLineInfo = true; 392 unsigned FileId = 0; 393 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 394 FileId = CurFn->LastFileId; 395 else 396 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 397 PrevInstLoc = DL; 398 399 unsigned FuncId = CurFn->FuncId; 400 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 401 const DILocation *Loc = DL.get(); 402 403 // If this location was actually inlined from somewhere else, give it the ID 404 // of the inline call site. 405 FuncId = 406 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 407 408 // Ensure we have links in the tree of inline call sites. 409 bool FirstLoc = true; 410 while ((SiteLoc = Loc->getInlinedAt())) { 411 InlineSite &Site = 412 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 413 if (!FirstLoc) 414 addLocIfNotPresent(Site.ChildSites, Loc); 415 FirstLoc = false; 416 Loc = SiteLoc; 417 } 418 addLocIfNotPresent(CurFn->ChildSites, Loc); 419 } 420 421 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 422 /*PrologueEnd=*/false, /*IsStmt=*/false, 423 DL->getFilename(), SMLoc()); 424 } 425 426 void CodeViewDebug::emitCodeViewMagicVersion() { 427 OS.EmitValueToAlignment(4); 428 OS.AddComment("Debug section magic"); 429 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 430 } 431 432 void CodeViewDebug::endModule() { 433 if (!Asm || !MMI->hasDebugInfo()) 434 return; 435 436 assert(Asm != nullptr); 437 438 // The COFF .debug$S section consists of several subsections, each starting 439 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 440 // of the payload followed by the payload itself. The subsections are 4-byte 441 // aligned. 442 443 // Use the generic .debug$S section, and make a subsection for all the inlined 444 // subprograms. 445 switchToDebugSectionForSymbol(nullptr); 446 447 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 448 emitCompilerInformation(); 449 endCVSubsection(CompilerInfo); 450 451 emitInlineeLinesSubsection(); 452 453 // Emit per-function debug information. 454 for (auto &P : FnDebugInfo) 455 if (!P.first->isDeclarationForLinker()) 456 emitDebugInfoForFunction(P.first, P.second); 457 458 // Emit global variable debug information. 459 setCurrentSubprogram(nullptr); 460 emitDebugInfoForGlobals(); 461 462 // Emit retained types. 463 emitDebugInfoForRetainedTypes(); 464 465 // Switch back to the generic .debug$S section after potentially processing 466 // comdat symbol sections. 467 switchToDebugSectionForSymbol(nullptr); 468 469 // Emit UDT records for any types used by global variables. 470 if (!GlobalUDTs.empty()) { 471 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 472 emitDebugInfoForUDTs(GlobalUDTs); 473 endCVSubsection(SymbolsEnd); 474 } 475 476 // This subsection holds a file index to offset in string table table. 477 OS.AddComment("File index to string table offset subsection"); 478 OS.EmitCVFileChecksumsDirective(); 479 480 // This subsection holds the string table. 481 OS.AddComment("String table"); 482 OS.EmitCVStringTableDirective(); 483 484 // Emit type information last, so that any types we translate while emitting 485 // function info are included. 486 emitTypeInformation(); 487 488 clear(); 489 } 490 491 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 492 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 493 // after a fixed length portion of the record. The fixed length portion should 494 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 495 // overall record size is less than the maximum allowed. 496 unsigned MaxFixedRecordLength = 0xF00; 497 SmallString<32> NullTerminatedString( 498 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 499 NullTerminatedString.push_back('\0'); 500 OS.EmitBytes(NullTerminatedString); 501 } 502 503 void CodeViewDebug::emitTypeInformation() { 504 // Do nothing if we have no debug info or if no non-trivial types were emitted 505 // to TypeTable during codegen. 506 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 507 if (!CU_Nodes) 508 return; 509 if (TypeTable.empty()) 510 return; 511 512 // Start the .debug$T section with 0x4. 513 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 514 emitCodeViewMagicVersion(); 515 516 SmallString<8> CommentPrefix; 517 if (OS.isVerboseAsm()) { 518 CommentPrefix += '\t'; 519 CommentPrefix += Asm->MAI->getCommentString(); 520 CommentPrefix += ' '; 521 } 522 523 TypeTableCollection Table(TypeTable.records()); 524 Optional<TypeIndex> B = Table.getFirst(); 525 while (B) { 526 // This will fail if the record data is invalid. 527 CVType Record = Table.getType(*B); 528 529 if (OS.isVerboseAsm()) { 530 // Emit a block comment describing the type record for readability. 531 SmallString<512> CommentBlock; 532 raw_svector_ostream CommentOS(CommentBlock); 533 ScopedPrinter SP(CommentOS); 534 SP.setPrefix(CommentPrefix); 535 TypeDumpVisitor TDV(Table, &SP, false); 536 537 Error E = codeview::visitTypeRecord(Record, *B, TDV); 538 if (E) { 539 logAllUnhandledErrors(std::move(E), errs(), "error: "); 540 llvm_unreachable("produced malformed type record"); 541 } 542 // emitRawComment will insert its own tab and comment string before 543 // the first line, so strip off our first one. It also prints its own 544 // newline. 545 OS.emitRawComment( 546 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 547 } 548 OS.EmitBinaryData(Record.str_data()); 549 B = Table.getNext(*B); 550 } 551 } 552 553 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 554 switch (DWLang) { 555 case dwarf::DW_LANG_C: 556 case dwarf::DW_LANG_C89: 557 case dwarf::DW_LANG_C99: 558 case dwarf::DW_LANG_C11: 559 case dwarf::DW_LANG_ObjC: 560 return SourceLanguage::C; 561 case dwarf::DW_LANG_C_plus_plus: 562 case dwarf::DW_LANG_C_plus_plus_03: 563 case dwarf::DW_LANG_C_plus_plus_11: 564 case dwarf::DW_LANG_C_plus_plus_14: 565 return SourceLanguage::Cpp; 566 case dwarf::DW_LANG_Fortran77: 567 case dwarf::DW_LANG_Fortran90: 568 case dwarf::DW_LANG_Fortran03: 569 case dwarf::DW_LANG_Fortran08: 570 return SourceLanguage::Fortran; 571 case dwarf::DW_LANG_Pascal83: 572 return SourceLanguage::Pascal; 573 case dwarf::DW_LANG_Cobol74: 574 case dwarf::DW_LANG_Cobol85: 575 return SourceLanguage::Cobol; 576 case dwarf::DW_LANG_Java: 577 return SourceLanguage::Java; 578 case dwarf::DW_LANG_D: 579 return SourceLanguage::D; 580 default: 581 // There's no CodeView representation for this language, and CV doesn't 582 // have an "unknown" option for the language field, so we'll use MASM, 583 // as it's very low level. 584 return SourceLanguage::Masm; 585 } 586 } 587 588 namespace { 589 struct Version { 590 int Part[4]; 591 }; 592 } // end anonymous namespace 593 594 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 595 // the version number. 596 static Version parseVersion(StringRef Name) { 597 Version V = {{0}}; 598 int N = 0; 599 for (const char C : Name) { 600 if (isdigit(C)) { 601 V.Part[N] *= 10; 602 V.Part[N] += C - '0'; 603 } else if (C == '.') { 604 ++N; 605 if (N >= 4) 606 return V; 607 } else if (N > 0) 608 return V; 609 } 610 return V; 611 } 612 613 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 614 switch (Type) { 615 case Triple::ArchType::x86: 616 return CPUType::Pentium3; 617 case Triple::ArchType::x86_64: 618 return CPUType::X64; 619 case Triple::ArchType::thumb: 620 return CPUType::Thumb; 621 case Triple::ArchType::aarch64: 622 return CPUType::ARM64; 623 default: 624 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 625 } 626 } 627 628 void CodeViewDebug::emitCompilerInformation() { 629 MCContext &Context = MMI->getContext(); 630 MCSymbol *CompilerBegin = Context.createTempSymbol(), 631 *CompilerEnd = Context.createTempSymbol(); 632 OS.AddComment("Record length"); 633 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 634 OS.EmitLabel(CompilerBegin); 635 OS.AddComment("Record kind: S_COMPILE3"); 636 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 637 uint32_t Flags = 0; 638 639 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 640 const MDNode *Node = *CUs->operands().begin(); 641 const auto *CU = cast<DICompileUnit>(Node); 642 643 // The low byte of the flags indicates the source language. 644 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 645 // TODO: Figure out which other flags need to be set. 646 647 OS.AddComment("Flags and language"); 648 OS.EmitIntValue(Flags, 4); 649 650 OS.AddComment("CPUType"); 651 CPUType CPU = 652 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 653 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 654 655 StringRef CompilerVersion = CU->getProducer(); 656 Version FrontVer = parseVersion(CompilerVersion); 657 OS.AddComment("Frontend version"); 658 for (int N = 0; N < 4; ++N) 659 OS.EmitIntValue(FrontVer.Part[N], 2); 660 661 // Some Microsoft tools, like Binscope, expect a backend version number of at 662 // least 8.something, so we'll coerce the LLVM version into a form that 663 // guarantees it'll be big enough without really lying about the version. 664 int Major = 1000 * LLVM_VERSION_MAJOR + 665 10 * LLVM_VERSION_MINOR + 666 LLVM_VERSION_PATCH; 667 // Clamp it for builds that use unusually large version numbers. 668 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 669 Version BackVer = {{ Major, 0, 0, 0 }}; 670 OS.AddComment("Backend version"); 671 for (int N = 0; N < 4; ++N) 672 OS.EmitIntValue(BackVer.Part[N], 2); 673 674 OS.AddComment("Null-terminated compiler version string"); 675 emitNullTerminatedSymbolName(OS, CompilerVersion); 676 677 OS.EmitLabel(CompilerEnd); 678 } 679 680 void CodeViewDebug::emitInlineeLinesSubsection() { 681 if (InlinedSubprograms.empty()) 682 return; 683 684 OS.AddComment("Inlinee lines subsection"); 685 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 686 687 // We emit the checksum info for files. This is used by debuggers to 688 // determine if a pdb matches the source before loading it. Visual Studio, 689 // for instance, will display a warning that the breakpoints are not valid if 690 // the pdb does not match the source. 691 OS.AddComment("Inlinee lines signature"); 692 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 693 694 for (const DISubprogram *SP : InlinedSubprograms) { 695 assert(TypeIndices.count({SP, nullptr})); 696 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 697 698 OS.AddBlankLine(); 699 unsigned FileId = maybeRecordFile(SP->getFile()); 700 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 701 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 702 OS.AddBlankLine(); 703 OS.AddComment("Type index of inlined function"); 704 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 705 OS.AddComment("Offset into filechecksum table"); 706 OS.EmitCVFileChecksumOffsetDirective(FileId); 707 OS.AddComment("Starting line number"); 708 OS.EmitIntValue(SP->getLine(), 4); 709 } 710 711 endCVSubsection(InlineEnd); 712 } 713 714 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 715 const DILocation *InlinedAt, 716 const InlineSite &Site) { 717 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 718 *InlineEnd = MMI->getContext().createTempSymbol(); 719 720 assert(TypeIndices.count({Site.Inlinee, nullptr})); 721 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 722 723 // SymbolRecord 724 OS.AddComment("Record length"); 725 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 726 OS.EmitLabel(InlineBegin); 727 OS.AddComment("Record kind: S_INLINESITE"); 728 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 729 730 OS.AddComment("PtrParent"); 731 OS.EmitIntValue(0, 4); 732 OS.AddComment("PtrEnd"); 733 OS.EmitIntValue(0, 4); 734 OS.AddComment("Inlinee type index"); 735 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 736 737 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 738 unsigned StartLineNum = Site.Inlinee->getLine(); 739 740 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 741 FI.Begin, FI.End); 742 743 OS.EmitLabel(InlineEnd); 744 745 emitLocalVariableList(Site.InlinedLocals); 746 747 // Recurse on child inlined call sites before closing the scope. 748 for (const DILocation *ChildSite : Site.ChildSites) { 749 auto I = FI.InlineSites.find(ChildSite); 750 assert(I != FI.InlineSites.end() && 751 "child site not in function inline site map"); 752 emitInlinedCallSite(FI, ChildSite, I->second); 753 } 754 755 // Close the scope. 756 OS.AddComment("Record length"); 757 OS.EmitIntValue(2, 2); // RecordLength 758 OS.AddComment("Record kind: S_INLINESITE_END"); 759 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 760 } 761 762 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 763 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 764 // comdat key. A section may be comdat because of -ffunction-sections or 765 // because it is comdat in the IR. 766 MCSectionCOFF *GVSec = 767 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 768 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 769 770 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 771 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 772 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 773 774 OS.SwitchSection(DebugSec); 775 776 // Emit the magic version number if this is the first time we've switched to 777 // this section. 778 if (ComdatDebugSections.insert(DebugSec).second) 779 emitCodeViewMagicVersion(); 780 } 781 782 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 783 FunctionInfo &FI) { 784 // For each function there is a separate subsection 785 // which holds the PC to file:line table. 786 const MCSymbol *Fn = Asm->getSymbol(GV); 787 assert(Fn); 788 789 // Switch to the to a comdat section, if appropriate. 790 switchToDebugSectionForSymbol(Fn); 791 792 std::string FuncName; 793 auto *SP = GV->getSubprogram(); 794 assert(SP); 795 setCurrentSubprogram(SP); 796 797 // If we have a display name, build the fully qualified name by walking the 798 // chain of scopes. 799 if (!SP->getName().empty()) 800 FuncName = 801 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 802 803 // If our DISubprogram name is empty, use the mangled name. 804 if (FuncName.empty()) 805 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 806 807 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 808 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 809 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 810 { 811 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 812 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 813 OS.AddComment("Record length"); 814 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 815 OS.EmitLabel(ProcRecordBegin); 816 817 if (GV->hasLocalLinkage()) { 818 OS.AddComment("Record kind: S_LPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 820 } else { 821 OS.AddComment("Record kind: S_GPROC32_ID"); 822 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 823 } 824 825 // These fields are filled in by tools like CVPACK which run after the fact. 826 OS.AddComment("PtrParent"); 827 OS.EmitIntValue(0, 4); 828 OS.AddComment("PtrEnd"); 829 OS.EmitIntValue(0, 4); 830 OS.AddComment("PtrNext"); 831 OS.EmitIntValue(0, 4); 832 // This is the important bit that tells the debugger where the function 833 // code is located and what's its size: 834 OS.AddComment("Code size"); 835 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 836 OS.AddComment("Offset after prologue"); 837 OS.EmitIntValue(0, 4); 838 OS.AddComment("Offset before epilogue"); 839 OS.EmitIntValue(0, 4); 840 OS.AddComment("Function type index"); 841 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 842 OS.AddComment("Function section relative address"); 843 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 844 OS.AddComment("Function section index"); 845 OS.EmitCOFFSectionIndex(Fn); 846 OS.AddComment("Flags"); 847 OS.EmitIntValue(0, 1); 848 // Emit the function display name as a null-terminated string. 849 OS.AddComment("Function name"); 850 // Truncate the name so we won't overflow the record length field. 851 emitNullTerminatedSymbolName(OS, FuncName); 852 OS.EmitLabel(ProcRecordEnd); 853 854 emitLocalVariableList(FI.Locals); 855 856 // Emit inlined call site information. Only emit functions inlined directly 857 // into the parent function. We'll emit the other sites recursively as part 858 // of their parent inline site. 859 for (const DILocation *InlinedAt : FI.ChildSites) { 860 auto I = FI.InlineSites.find(InlinedAt); 861 assert(I != FI.InlineSites.end() && 862 "child site not in function inline site map"); 863 emitInlinedCallSite(FI, InlinedAt, I->second); 864 } 865 866 for (auto Annot : FI.Annotations) { 867 MCSymbol *Label = Annot.first; 868 MDTuple *Strs = cast<MDTuple>(Annot.second); 869 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 870 *AnnotEnd = MMI->getContext().createTempSymbol(); 871 OS.AddComment("Record length"); 872 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 873 OS.EmitLabel(AnnotBegin); 874 OS.AddComment("Record kind: S_ANNOTATION"); 875 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 876 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 877 // FIXME: Make sure we don't overflow the max record size. 878 OS.EmitCOFFSectionIndex(Label); 879 OS.EmitIntValue(Strs->getNumOperands(), 2); 880 for (Metadata *MD : Strs->operands()) { 881 // MDStrings are null terminated, so we can do EmitBytes and get the 882 // nice .asciz directive. 883 StringRef Str = cast<MDString>(MD)->getString(); 884 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 885 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 886 } 887 OS.EmitLabel(AnnotEnd); 888 } 889 890 if (SP != nullptr) 891 emitDebugInfoForUDTs(LocalUDTs); 892 893 // We're done with this function. 894 OS.AddComment("Record length"); 895 OS.EmitIntValue(0x0002, 2); 896 OS.AddComment("Record kind: S_PROC_ID_END"); 897 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 898 } 899 endCVSubsection(SymbolsEnd); 900 901 // We have an assembler directive that takes care of the whole line table. 902 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 903 } 904 905 CodeViewDebug::LocalVarDefRange 906 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 907 LocalVarDefRange DR; 908 DR.InMemory = -1; 909 DR.DataOffset = Offset; 910 assert(DR.DataOffset == Offset && "truncation"); 911 DR.IsSubfield = 0; 912 DR.StructOffset = 0; 913 DR.CVRegister = CVRegister; 914 return DR; 915 } 916 917 CodeViewDebug::LocalVarDefRange 918 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 919 int Offset, bool IsSubfield, 920 uint16_t StructOffset) { 921 LocalVarDefRange DR; 922 DR.InMemory = InMemory; 923 DR.DataOffset = Offset; 924 DR.IsSubfield = IsSubfield; 925 DR.StructOffset = StructOffset; 926 DR.CVRegister = CVRegister; 927 return DR; 928 } 929 930 void CodeViewDebug::collectVariableInfoFromMFTable( 931 DenseSet<InlinedVariable> &Processed) { 932 const MachineFunction &MF = *Asm->MF; 933 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 934 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 935 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 936 937 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 938 if (!VI.Var) 939 continue; 940 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 941 "Expected inlined-at fields to agree"); 942 943 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 944 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 945 946 // If variable scope is not found then skip this variable. 947 if (!Scope) 948 continue; 949 950 // If the variable has an attached offset expression, extract it. 951 // FIXME: Try to handle DW_OP_deref as well. 952 int64_t ExprOffset = 0; 953 if (VI.Expr) 954 if (!VI.Expr->extractIfOffset(ExprOffset)) 955 continue; 956 957 // Get the frame register used and the offset. 958 unsigned FrameReg = 0; 959 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 960 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 961 962 // Calculate the label ranges. 963 LocalVarDefRange DefRange = 964 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 965 for (const InsnRange &Range : Scope->getRanges()) { 966 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 967 const MCSymbol *End = getLabelAfterInsn(Range.second); 968 End = End ? End : Asm->getFunctionEnd(); 969 DefRange.Ranges.emplace_back(Begin, End); 970 } 971 972 LocalVariable Var; 973 Var.DIVar = VI.Var; 974 Var.DefRanges.emplace_back(std::move(DefRange)); 975 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 976 } 977 } 978 979 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 980 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 981 } 982 983 static bool needsReferenceType(const DbgVariableLocation &Loc) { 984 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 985 } 986 987 void CodeViewDebug::calculateRanges( 988 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 989 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 990 991 // Calculate the definition ranges. 992 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 993 const InsnRange &Range = *I; 994 const MachineInstr *DVInst = Range.first; 995 assert(DVInst->isDebugValue() && "Invalid History entry"); 996 // FIXME: Find a way to represent constant variables, since they are 997 // relatively common. 998 Optional<DbgVariableLocation> Location = 999 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 1000 if (!Location) 1001 continue; 1002 1003 // CodeView can only express variables in register and variables in memory 1004 // at a constant offset from a register. However, for variables passed 1005 // indirectly by pointer, it is common for that pointer to be spilled to a 1006 // stack location. For the special case of one offseted load followed by a 1007 // zero offset load (a pointer spilled to the stack), we change the type of 1008 // the local variable from a value type to a reference type. This tricks the 1009 // debugger into doing the load for us. 1010 if (Var.UseReferenceType) { 1011 // We're using a reference type. Drop the last zero offset load. 1012 if (canUseReferenceType(*Location)) 1013 Location->LoadChain.pop_back(); 1014 else 1015 continue; 1016 } else if (needsReferenceType(*Location)) { 1017 // This location can't be expressed without switching to a reference type. 1018 // Start over using that. 1019 Var.UseReferenceType = true; 1020 Var.DefRanges.clear(); 1021 calculateRanges(Var, Ranges); 1022 return; 1023 } 1024 1025 // We can only handle a register or an offseted load of a register. 1026 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1027 continue; 1028 { 1029 LocalVarDefRange DR; 1030 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1031 DR.InMemory = !Location->LoadChain.empty(); 1032 DR.DataOffset = 1033 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1034 if (Location->FragmentInfo) { 1035 DR.IsSubfield = true; 1036 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1037 } else { 1038 DR.IsSubfield = false; 1039 DR.StructOffset = 0; 1040 } 1041 1042 if (Var.DefRanges.empty() || 1043 Var.DefRanges.back().isDifferentLocation(DR)) { 1044 Var.DefRanges.emplace_back(std::move(DR)); 1045 } 1046 } 1047 1048 // Compute the label range. 1049 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1050 const MCSymbol *End = getLabelAfterInsn(Range.second); 1051 if (!End) { 1052 // This range is valid until the next overlapping bitpiece. In the 1053 // common case, ranges will not be bitpieces, so they will overlap. 1054 auto J = std::next(I); 1055 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1056 while (J != E && 1057 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1058 ++J; 1059 if (J != E) 1060 End = getLabelBeforeInsn(J->first); 1061 else 1062 End = Asm->getFunctionEnd(); 1063 } 1064 1065 // If the last range end is our begin, just extend the last range. 1066 // Otherwise make a new range. 1067 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1068 Var.DefRanges.back().Ranges; 1069 if (!R.empty() && R.back().second == Begin) 1070 R.back().second = End; 1071 else 1072 R.emplace_back(Begin, End); 1073 1074 // FIXME: Do more range combining. 1075 } 1076 } 1077 1078 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1079 DenseSet<InlinedVariable> Processed; 1080 // Grab the variable info that was squirreled away in the MMI side-table. 1081 collectVariableInfoFromMFTable(Processed); 1082 1083 for (const auto &I : DbgValues) { 1084 InlinedVariable IV = I.first; 1085 if (Processed.count(IV)) 1086 continue; 1087 const DILocalVariable *DIVar = IV.first; 1088 const DILocation *InlinedAt = IV.second; 1089 1090 // Instruction ranges, specifying where IV is accessible. 1091 const auto &Ranges = I.second; 1092 1093 LexicalScope *Scope = nullptr; 1094 if (InlinedAt) 1095 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1096 else 1097 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1098 // If variable scope is not found then skip this variable. 1099 if (!Scope) 1100 continue; 1101 1102 LocalVariable Var; 1103 Var.DIVar = DIVar; 1104 1105 calculateRanges(Var, Ranges); 1106 recordLocalVariable(std::move(Var), InlinedAt); 1107 } 1108 } 1109 1110 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1111 const Function *GV = MF->getFunction(); 1112 assert(FnDebugInfo.count(GV) == false); 1113 CurFn = &FnDebugInfo[GV]; 1114 CurFn->FuncId = NextFuncId++; 1115 CurFn->Begin = Asm->getFunctionBegin(); 1116 1117 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1118 1119 // Find the end of the function prolog. First known non-DBG_VALUE and 1120 // non-frame setup location marks the beginning of the function body. 1121 // FIXME: is there a simpler a way to do this? Can we just search 1122 // for the first instruction of the function, not the last of the prolog? 1123 DebugLoc PrologEndLoc; 1124 bool EmptyPrologue = true; 1125 for (const auto &MBB : *MF) { 1126 for (const auto &MI : MBB) { 1127 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1128 MI.getDebugLoc()) { 1129 PrologEndLoc = MI.getDebugLoc(); 1130 break; 1131 } else if (!MI.isMetaInstruction()) { 1132 EmptyPrologue = false; 1133 } 1134 } 1135 } 1136 1137 // Record beginning of function if we have a non-empty prologue. 1138 if (PrologEndLoc && !EmptyPrologue) { 1139 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1140 maybeRecordLocation(FnStartDL, MF); 1141 } 1142 } 1143 1144 static bool shouldEmitUdt(const DIType *T) { 1145 if (!T) 1146 return false; 1147 1148 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1149 if (T->getTag() == dwarf::DW_TAG_typedef) { 1150 if (DIScope *Scope = T->getScope().resolve()) { 1151 switch (Scope->getTag()) { 1152 case dwarf::DW_TAG_structure_type: 1153 case dwarf::DW_TAG_class_type: 1154 case dwarf::DW_TAG_union_type: 1155 return false; 1156 } 1157 } 1158 } 1159 1160 while (true) { 1161 if (!T || T->isForwardDecl()) 1162 return false; 1163 1164 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1165 if (!DT) 1166 return true; 1167 T = DT->getBaseType().resolve(); 1168 } 1169 return true; 1170 } 1171 1172 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1173 // Don't record empty UDTs. 1174 if (Ty->getName().empty()) 1175 return; 1176 if (!shouldEmitUdt(Ty)) 1177 return; 1178 1179 SmallVector<StringRef, 5> QualifiedNameComponents; 1180 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1181 Ty->getScope().resolve(), QualifiedNameComponents); 1182 1183 std::string FullyQualifiedName = 1184 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1185 1186 if (ClosestSubprogram == nullptr) { 1187 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1188 } else if (ClosestSubprogram == CurrentSubprogram) { 1189 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1190 } 1191 1192 // TODO: What if the ClosestSubprogram is neither null or the current 1193 // subprogram? Currently, the UDT just gets dropped on the floor. 1194 // 1195 // The current behavior is not desirable. To get maximal fidelity, we would 1196 // need to perform all type translation before beginning emission of .debug$S 1197 // and then make LocalUDTs a member of FunctionInfo 1198 } 1199 1200 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1201 // Generic dispatch for lowering an unknown type. 1202 switch (Ty->getTag()) { 1203 case dwarf::DW_TAG_array_type: 1204 return lowerTypeArray(cast<DICompositeType>(Ty)); 1205 case dwarf::DW_TAG_typedef: 1206 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1207 case dwarf::DW_TAG_base_type: 1208 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1209 case dwarf::DW_TAG_pointer_type: 1210 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1211 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1212 LLVM_FALLTHROUGH; 1213 case dwarf::DW_TAG_reference_type: 1214 case dwarf::DW_TAG_rvalue_reference_type: 1215 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1216 case dwarf::DW_TAG_ptr_to_member_type: 1217 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1218 case dwarf::DW_TAG_const_type: 1219 case dwarf::DW_TAG_volatile_type: 1220 // TODO: add support for DW_TAG_atomic_type here 1221 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1222 case dwarf::DW_TAG_subroutine_type: 1223 if (ClassTy) { 1224 // The member function type of a member function pointer has no 1225 // ThisAdjustment. 1226 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1227 /*ThisAdjustment=*/0, 1228 /*IsStaticMethod=*/false); 1229 } 1230 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1231 case dwarf::DW_TAG_enumeration_type: 1232 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1233 case dwarf::DW_TAG_class_type: 1234 case dwarf::DW_TAG_structure_type: 1235 return lowerTypeClass(cast<DICompositeType>(Ty)); 1236 case dwarf::DW_TAG_union_type: 1237 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1238 default: 1239 // Use the null type index. 1240 return TypeIndex(); 1241 } 1242 } 1243 1244 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1245 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1246 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1247 StringRef TypeName = Ty->getName(); 1248 1249 addToUDTs(Ty); 1250 1251 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1252 TypeName == "HRESULT") 1253 return TypeIndex(SimpleTypeKind::HResult); 1254 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1255 TypeName == "wchar_t") 1256 return TypeIndex(SimpleTypeKind::WideCharacter); 1257 1258 return UnderlyingTypeIndex; 1259 } 1260 1261 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1262 DITypeRef ElementTypeRef = Ty->getBaseType(); 1263 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1264 // IndexType is size_t, which depends on the bitness of the target. 1265 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1266 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1267 : TypeIndex(SimpleTypeKind::UInt32Long); 1268 1269 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1270 1271 // Add subranges to array type. 1272 DINodeArray Elements = Ty->getElements(); 1273 for (int i = Elements.size() - 1; i >= 0; --i) { 1274 const DINode *Element = Elements[i]; 1275 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1276 1277 const DISubrange *Subrange = cast<DISubrange>(Element); 1278 assert(Subrange->getLowerBound() == 0 && 1279 "codeview doesn't support subranges with lower bounds"); 1280 int64_t Count = Subrange->getCount(); 1281 1282 // Forward declarations of arrays without a size and VLAs use a count of -1. 1283 // Emit a count of zero in these cases to match what MSVC does for arrays 1284 // without a size. MSVC doesn't support VLAs, so it's not clear what we 1285 // should do for them even if we could distinguish them. 1286 if (Count == -1) 1287 Count = 0; 1288 1289 // Update the element size and element type index for subsequent subranges. 1290 ElementSize *= Count; 1291 1292 // If this is the outermost array, use the size from the array. It will be 1293 // more accurate if we had a VLA or an incomplete element type size. 1294 uint64_t ArraySize = 1295 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1296 1297 StringRef Name = (i == 0) ? Ty->getName() : ""; 1298 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1299 ElementTypeIndex = TypeTable.writeKnownType(AR); 1300 } 1301 1302 return ElementTypeIndex; 1303 } 1304 1305 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1306 TypeIndex Index; 1307 dwarf::TypeKind Kind; 1308 uint32_t ByteSize; 1309 1310 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1311 ByteSize = Ty->getSizeInBits() / 8; 1312 1313 SimpleTypeKind STK = SimpleTypeKind::None; 1314 switch (Kind) { 1315 case dwarf::DW_ATE_address: 1316 // FIXME: Translate 1317 break; 1318 case dwarf::DW_ATE_boolean: 1319 switch (ByteSize) { 1320 case 1: STK = SimpleTypeKind::Boolean8; break; 1321 case 2: STK = SimpleTypeKind::Boolean16; break; 1322 case 4: STK = SimpleTypeKind::Boolean32; break; 1323 case 8: STK = SimpleTypeKind::Boolean64; break; 1324 case 16: STK = SimpleTypeKind::Boolean128; break; 1325 } 1326 break; 1327 case dwarf::DW_ATE_complex_float: 1328 switch (ByteSize) { 1329 case 2: STK = SimpleTypeKind::Complex16; break; 1330 case 4: STK = SimpleTypeKind::Complex32; break; 1331 case 8: STK = SimpleTypeKind::Complex64; break; 1332 case 10: STK = SimpleTypeKind::Complex80; break; 1333 case 16: STK = SimpleTypeKind::Complex128; break; 1334 } 1335 break; 1336 case dwarf::DW_ATE_float: 1337 switch (ByteSize) { 1338 case 2: STK = SimpleTypeKind::Float16; break; 1339 case 4: STK = SimpleTypeKind::Float32; break; 1340 case 6: STK = SimpleTypeKind::Float48; break; 1341 case 8: STK = SimpleTypeKind::Float64; break; 1342 case 10: STK = SimpleTypeKind::Float80; break; 1343 case 16: STK = SimpleTypeKind::Float128; break; 1344 } 1345 break; 1346 case dwarf::DW_ATE_signed: 1347 switch (ByteSize) { 1348 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1349 case 2: STK = SimpleTypeKind::Int16Short; break; 1350 case 4: STK = SimpleTypeKind::Int32; break; 1351 case 8: STK = SimpleTypeKind::Int64Quad; break; 1352 case 16: STK = SimpleTypeKind::Int128Oct; break; 1353 } 1354 break; 1355 case dwarf::DW_ATE_unsigned: 1356 switch (ByteSize) { 1357 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1358 case 2: STK = SimpleTypeKind::UInt16Short; break; 1359 case 4: STK = SimpleTypeKind::UInt32; break; 1360 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1361 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1362 } 1363 break; 1364 case dwarf::DW_ATE_UTF: 1365 switch (ByteSize) { 1366 case 2: STK = SimpleTypeKind::Character16; break; 1367 case 4: STK = SimpleTypeKind::Character32; break; 1368 } 1369 break; 1370 case dwarf::DW_ATE_signed_char: 1371 if (ByteSize == 1) 1372 STK = SimpleTypeKind::SignedCharacter; 1373 break; 1374 case dwarf::DW_ATE_unsigned_char: 1375 if (ByteSize == 1) 1376 STK = SimpleTypeKind::UnsignedCharacter; 1377 break; 1378 default: 1379 break; 1380 } 1381 1382 // Apply some fixups based on the source-level type name. 1383 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1384 STK = SimpleTypeKind::Int32Long; 1385 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1386 STK = SimpleTypeKind::UInt32Long; 1387 if (STK == SimpleTypeKind::UInt16Short && 1388 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1389 STK = SimpleTypeKind::WideCharacter; 1390 if ((STK == SimpleTypeKind::SignedCharacter || 1391 STK == SimpleTypeKind::UnsignedCharacter) && 1392 Ty->getName() == "char") 1393 STK = SimpleTypeKind::NarrowCharacter; 1394 1395 return TypeIndex(STK); 1396 } 1397 1398 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1399 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1400 1401 // Pointers to simple types can use SimpleTypeMode, rather than having a 1402 // dedicated pointer type record. 1403 if (PointeeTI.isSimple() && 1404 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1405 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1406 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1407 ? SimpleTypeMode::NearPointer64 1408 : SimpleTypeMode::NearPointer32; 1409 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1410 } 1411 1412 PointerKind PK = 1413 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1414 PointerMode PM = PointerMode::Pointer; 1415 switch (Ty->getTag()) { 1416 default: llvm_unreachable("not a pointer tag type"); 1417 case dwarf::DW_TAG_pointer_type: 1418 PM = PointerMode::Pointer; 1419 break; 1420 case dwarf::DW_TAG_reference_type: 1421 PM = PointerMode::LValueReference; 1422 break; 1423 case dwarf::DW_TAG_rvalue_reference_type: 1424 PM = PointerMode::RValueReference; 1425 break; 1426 } 1427 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1428 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1429 // do. 1430 PointerOptions PO = PointerOptions::None; 1431 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1432 return TypeTable.writeKnownType(PR); 1433 } 1434 1435 static PointerToMemberRepresentation 1436 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1437 // SizeInBytes being zero generally implies that the member pointer type was 1438 // incomplete, which can happen if it is part of a function prototype. In this 1439 // case, use the unknown model instead of the general model. 1440 if (IsPMF) { 1441 switch (Flags & DINode::FlagPtrToMemberRep) { 1442 case 0: 1443 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1444 : PointerToMemberRepresentation::GeneralFunction; 1445 case DINode::FlagSingleInheritance: 1446 return PointerToMemberRepresentation::SingleInheritanceFunction; 1447 case DINode::FlagMultipleInheritance: 1448 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1449 case DINode::FlagVirtualInheritance: 1450 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1451 } 1452 } else { 1453 switch (Flags & DINode::FlagPtrToMemberRep) { 1454 case 0: 1455 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1456 : PointerToMemberRepresentation::GeneralData; 1457 case DINode::FlagSingleInheritance: 1458 return PointerToMemberRepresentation::SingleInheritanceData; 1459 case DINode::FlagMultipleInheritance: 1460 return PointerToMemberRepresentation::MultipleInheritanceData; 1461 case DINode::FlagVirtualInheritance: 1462 return PointerToMemberRepresentation::VirtualInheritanceData; 1463 } 1464 } 1465 llvm_unreachable("invalid ptr to member representation"); 1466 } 1467 1468 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1469 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1470 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1471 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1472 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1473 : PointerKind::Near32; 1474 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1475 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1476 : PointerMode::PointerToDataMember; 1477 PointerOptions PO = PointerOptions::None; // FIXME 1478 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1479 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1480 MemberPointerInfo MPI( 1481 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1482 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1483 return TypeTable.writeKnownType(PR); 1484 } 1485 1486 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1487 /// have a translation, use the NearC convention. 1488 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1489 switch (DwarfCC) { 1490 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1491 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1492 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1493 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1494 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1495 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1496 } 1497 return CallingConvention::NearC; 1498 } 1499 1500 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1501 ModifierOptions Mods = ModifierOptions::None; 1502 bool IsModifier = true; 1503 const DIType *BaseTy = Ty; 1504 while (IsModifier && BaseTy) { 1505 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1506 switch (BaseTy->getTag()) { 1507 case dwarf::DW_TAG_const_type: 1508 Mods |= ModifierOptions::Const; 1509 break; 1510 case dwarf::DW_TAG_volatile_type: 1511 Mods |= ModifierOptions::Volatile; 1512 break; 1513 default: 1514 IsModifier = false; 1515 break; 1516 } 1517 if (IsModifier) 1518 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1519 } 1520 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1521 ModifierRecord MR(ModifiedTI, Mods); 1522 return TypeTable.writeKnownType(MR); 1523 } 1524 1525 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1526 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1527 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1528 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1529 1530 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1531 ArrayRef<TypeIndex> ArgTypeIndices = None; 1532 if (!ReturnAndArgTypeIndices.empty()) { 1533 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1534 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1535 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1536 } 1537 1538 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1539 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1540 1541 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1542 1543 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1544 ArgTypeIndices.size(), ArgListIndex); 1545 return TypeTable.writeKnownType(Procedure); 1546 } 1547 1548 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1549 const DIType *ClassTy, 1550 int ThisAdjustment, 1551 bool IsStaticMethod) { 1552 // Lower the containing class type. 1553 TypeIndex ClassType = getTypeIndex(ClassTy); 1554 1555 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1556 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1557 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1558 1559 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1560 ArrayRef<TypeIndex> ArgTypeIndices = None; 1561 if (!ReturnAndArgTypeIndices.empty()) { 1562 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1563 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1564 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1565 } 1566 TypeIndex ThisTypeIndex; 1567 if (!IsStaticMethod && !ArgTypeIndices.empty()) { 1568 ThisTypeIndex = ArgTypeIndices.front(); 1569 ArgTypeIndices = ArgTypeIndices.drop_front(); 1570 } 1571 1572 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1573 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1574 1575 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1576 1577 // TODO: Need to use the correct values for FunctionOptions. 1578 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1579 FunctionOptions::None, ArgTypeIndices.size(), 1580 ArgListIndex, ThisAdjustment); 1581 TypeIndex TI = TypeTable.writeKnownType(MFR); 1582 1583 return TI; 1584 } 1585 1586 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1587 unsigned VSlotCount = 1588 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1589 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1590 1591 VFTableShapeRecord VFTSR(Slots); 1592 return TypeTable.writeKnownType(VFTSR); 1593 } 1594 1595 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1596 switch (Flags & DINode::FlagAccessibility) { 1597 case DINode::FlagPrivate: return MemberAccess::Private; 1598 case DINode::FlagPublic: return MemberAccess::Public; 1599 case DINode::FlagProtected: return MemberAccess::Protected; 1600 case 0: 1601 // If there was no explicit access control, provide the default for the tag. 1602 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1603 : MemberAccess::Public; 1604 } 1605 llvm_unreachable("access flags are exclusive"); 1606 } 1607 1608 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1609 if (SP->isArtificial()) 1610 return MethodOptions::CompilerGenerated; 1611 1612 // FIXME: Handle other MethodOptions. 1613 1614 return MethodOptions::None; 1615 } 1616 1617 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1618 bool Introduced) { 1619 if (SP->getFlags() & DINode::FlagStaticMember) 1620 return MethodKind::Static; 1621 1622 switch (SP->getVirtuality()) { 1623 case dwarf::DW_VIRTUALITY_none: 1624 break; 1625 case dwarf::DW_VIRTUALITY_virtual: 1626 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1627 case dwarf::DW_VIRTUALITY_pure_virtual: 1628 return Introduced ? MethodKind::PureIntroducingVirtual 1629 : MethodKind::PureVirtual; 1630 default: 1631 llvm_unreachable("unhandled virtuality case"); 1632 } 1633 1634 return MethodKind::Vanilla; 1635 } 1636 1637 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1638 switch (Ty->getTag()) { 1639 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1640 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1641 } 1642 llvm_unreachable("unexpected tag"); 1643 } 1644 1645 /// Return ClassOptions that should be present on both the forward declaration 1646 /// and the defintion of a tag type. 1647 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1648 ClassOptions CO = ClassOptions::None; 1649 1650 // MSVC always sets this flag, even for local types. Clang doesn't always 1651 // appear to give every type a linkage name, which may be problematic for us. 1652 // FIXME: Investigate the consequences of not following them here. 1653 if (!Ty->getIdentifier().empty()) 1654 CO |= ClassOptions::HasUniqueName; 1655 1656 // Put the Nested flag on a type if it appears immediately inside a tag type. 1657 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1658 // here. That flag is only set on definitions, and not forward declarations. 1659 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1660 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1661 CO |= ClassOptions::Nested; 1662 1663 // Put the Scoped flag on function-local types. 1664 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1665 Scope = Scope->getScope().resolve()) { 1666 if (isa<DISubprogram>(Scope)) { 1667 CO |= ClassOptions::Scoped; 1668 break; 1669 } 1670 } 1671 1672 return CO; 1673 } 1674 1675 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1676 ClassOptions CO = getCommonClassOptions(Ty); 1677 TypeIndex FTI; 1678 unsigned EnumeratorCount = 0; 1679 1680 if (Ty->isForwardDecl()) { 1681 CO |= ClassOptions::ForwardReference; 1682 } else { 1683 FieldListRecordBuilder FLRB(TypeTable); 1684 1685 FLRB.begin(); 1686 for (const DINode *Element : Ty->getElements()) { 1687 // We assume that the frontend provides all members in source declaration 1688 // order, which is what MSVC does. 1689 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1690 EnumeratorRecord ER(MemberAccess::Public, 1691 APSInt::getUnsigned(Enumerator->getValue()), 1692 Enumerator->getName()); 1693 FLRB.writeMemberType(ER); 1694 EnumeratorCount++; 1695 } 1696 } 1697 FTI = FLRB.end(true); 1698 } 1699 1700 std::string FullName = getFullyQualifiedName(Ty); 1701 1702 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1703 getTypeIndex(Ty->getBaseType())); 1704 return TypeTable.writeKnownType(ER); 1705 } 1706 1707 //===----------------------------------------------------------------------===// 1708 // ClassInfo 1709 //===----------------------------------------------------------------------===// 1710 1711 struct llvm::ClassInfo { 1712 struct MemberInfo { 1713 const DIDerivedType *MemberTypeNode; 1714 uint64_t BaseOffset; 1715 }; 1716 // [MemberInfo] 1717 using MemberList = std::vector<MemberInfo>; 1718 1719 using MethodsList = TinyPtrVector<const DISubprogram *>; 1720 // MethodName -> MethodsList 1721 using MethodsMap = MapVector<MDString *, MethodsList>; 1722 1723 /// Base classes. 1724 std::vector<const DIDerivedType *> Inheritance; 1725 1726 /// Direct members. 1727 MemberList Members; 1728 // Direct overloaded methods gathered by name. 1729 MethodsMap Methods; 1730 1731 TypeIndex VShapeTI; 1732 1733 std::vector<const DIType *> NestedTypes; 1734 }; 1735 1736 void CodeViewDebug::clear() { 1737 assert(CurFn == nullptr); 1738 FileIdMap.clear(); 1739 FnDebugInfo.clear(); 1740 FileToFilepathMap.clear(); 1741 LocalUDTs.clear(); 1742 GlobalUDTs.clear(); 1743 TypeIndices.clear(); 1744 CompleteTypeIndices.clear(); 1745 } 1746 1747 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1748 const DIDerivedType *DDTy) { 1749 if (!DDTy->getName().empty()) { 1750 Info.Members.push_back({DDTy, 0}); 1751 return; 1752 } 1753 // An unnamed member must represent a nested struct or union. Add all the 1754 // indirect fields to the current record. 1755 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1756 uint64_t Offset = DDTy->getOffsetInBits(); 1757 const DIType *Ty = DDTy->getBaseType().resolve(); 1758 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1759 ClassInfo NestedInfo = collectClassInfo(DCTy); 1760 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1761 Info.Members.push_back( 1762 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1763 } 1764 1765 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1766 ClassInfo Info; 1767 // Add elements to structure type. 1768 DINodeArray Elements = Ty->getElements(); 1769 for (auto *Element : Elements) { 1770 // We assume that the frontend provides all members in source declaration 1771 // order, which is what MSVC does. 1772 if (!Element) 1773 continue; 1774 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1775 Info.Methods[SP->getRawName()].push_back(SP); 1776 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1777 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1778 collectMemberInfo(Info, DDTy); 1779 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1780 Info.Inheritance.push_back(DDTy); 1781 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1782 DDTy->getName() == "__vtbl_ptr_type") { 1783 Info.VShapeTI = getTypeIndex(DDTy); 1784 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1785 Info.NestedTypes.push_back(DDTy); 1786 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1787 // Ignore friend members. It appears that MSVC emitted info about 1788 // friends in the past, but modern versions do not. 1789 } 1790 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1791 Info.NestedTypes.push_back(Composite); 1792 } 1793 // Skip other unrecognized kinds of elements. 1794 } 1795 return Info; 1796 } 1797 1798 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1799 // First, construct the forward decl. Don't look into Ty to compute the 1800 // forward decl options, since it might not be available in all TUs. 1801 TypeRecordKind Kind = getRecordKind(Ty); 1802 ClassOptions CO = 1803 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1804 std::string FullName = getFullyQualifiedName(Ty); 1805 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1806 FullName, Ty->getIdentifier()); 1807 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1808 if (!Ty->isForwardDecl()) 1809 DeferredCompleteTypes.push_back(Ty); 1810 return FwdDeclTI; 1811 } 1812 1813 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1814 // Construct the field list and complete type record. 1815 TypeRecordKind Kind = getRecordKind(Ty); 1816 ClassOptions CO = getCommonClassOptions(Ty); 1817 TypeIndex FieldTI; 1818 TypeIndex VShapeTI; 1819 unsigned FieldCount; 1820 bool ContainsNestedClass; 1821 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1822 lowerRecordFieldList(Ty); 1823 1824 if (ContainsNestedClass) 1825 CO |= ClassOptions::ContainsNestedClass; 1826 1827 std::string FullName = getFullyQualifiedName(Ty); 1828 1829 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1830 1831 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1832 SizeInBytes, FullName, Ty->getIdentifier()); 1833 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1834 1835 if (const auto *File = Ty->getFile()) { 1836 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1837 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1838 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1839 TypeTable.writeKnownType(USLR); 1840 } 1841 1842 addToUDTs(Ty); 1843 1844 return ClassTI; 1845 } 1846 1847 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1848 ClassOptions CO = 1849 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1850 std::string FullName = getFullyQualifiedName(Ty); 1851 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1852 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1853 if (!Ty->isForwardDecl()) 1854 DeferredCompleteTypes.push_back(Ty); 1855 return FwdDeclTI; 1856 } 1857 1858 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1859 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1860 TypeIndex FieldTI; 1861 unsigned FieldCount; 1862 bool ContainsNestedClass; 1863 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1864 lowerRecordFieldList(Ty); 1865 1866 if (ContainsNestedClass) 1867 CO |= ClassOptions::ContainsNestedClass; 1868 1869 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1870 std::string FullName = getFullyQualifiedName(Ty); 1871 1872 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1873 Ty->getIdentifier()); 1874 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1875 1876 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1877 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1878 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1879 TypeTable.writeKnownType(USLR); 1880 1881 addToUDTs(Ty); 1882 1883 return UnionTI; 1884 } 1885 1886 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1887 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1888 // Manually count members. MSVC appears to count everything that generates a 1889 // field list record. Each individual overload in a method overload group 1890 // contributes to this count, even though the overload group is a single field 1891 // list record. 1892 unsigned MemberCount = 0; 1893 ClassInfo Info = collectClassInfo(Ty); 1894 FieldListRecordBuilder FLBR(TypeTable); 1895 FLBR.begin(); 1896 1897 // Create base classes. 1898 for (const DIDerivedType *I : Info.Inheritance) { 1899 if (I->getFlags() & DINode::FlagVirtual) { 1900 // Virtual base. 1901 // FIXME: Emit VBPtrOffset when the frontend provides it. 1902 unsigned VBPtrOffset = 0; 1903 // FIXME: Despite the accessor name, the offset is really in bytes. 1904 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1905 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1906 ? TypeRecordKind::IndirectVirtualBaseClass 1907 : TypeRecordKind::VirtualBaseClass; 1908 VirtualBaseClassRecord VBCR( 1909 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1910 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1911 VBTableIndex); 1912 1913 FLBR.writeMemberType(VBCR); 1914 } else { 1915 assert(I->getOffsetInBits() % 8 == 0 && 1916 "bases must be on byte boundaries"); 1917 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1918 getTypeIndex(I->getBaseType()), 1919 I->getOffsetInBits() / 8); 1920 FLBR.writeMemberType(BCR); 1921 } 1922 } 1923 1924 // Create members. 1925 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1926 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1927 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1928 StringRef MemberName = Member->getName(); 1929 MemberAccess Access = 1930 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1931 1932 if (Member->isStaticMember()) { 1933 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1934 FLBR.writeMemberType(SDMR); 1935 MemberCount++; 1936 continue; 1937 } 1938 1939 // Virtual function pointer member. 1940 if ((Member->getFlags() & DINode::FlagArtificial) && 1941 Member->getName().startswith("_vptr$")) { 1942 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1943 FLBR.writeMemberType(VFPR); 1944 MemberCount++; 1945 continue; 1946 } 1947 1948 // Data member. 1949 uint64_t MemberOffsetInBits = 1950 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1951 if (Member->isBitField()) { 1952 uint64_t StartBitOffset = MemberOffsetInBits; 1953 if (const auto *CI = 1954 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1955 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1956 } 1957 StartBitOffset -= MemberOffsetInBits; 1958 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1959 StartBitOffset); 1960 MemberBaseType = TypeTable.writeKnownType(BFR); 1961 } 1962 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1963 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1964 MemberName); 1965 FLBR.writeMemberType(DMR); 1966 MemberCount++; 1967 } 1968 1969 // Create methods 1970 for (auto &MethodItr : Info.Methods) { 1971 StringRef Name = MethodItr.first->getString(); 1972 1973 std::vector<OneMethodRecord> Methods; 1974 for (const DISubprogram *SP : MethodItr.second) { 1975 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1976 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1977 1978 unsigned VFTableOffset = -1; 1979 if (Introduced) 1980 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1981 1982 Methods.push_back(OneMethodRecord( 1983 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1984 translateMethodKindFlags(SP, Introduced), 1985 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1986 MemberCount++; 1987 } 1988 assert(!Methods.empty() && "Empty methods map entry"); 1989 if (Methods.size() == 1) 1990 FLBR.writeMemberType(Methods[0]); 1991 else { 1992 MethodOverloadListRecord MOLR(Methods); 1993 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1994 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1995 FLBR.writeMemberType(OMR); 1996 } 1997 } 1998 1999 // Create nested classes. 2000 for (const DIType *Nested : Info.NestedTypes) { 2001 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 2002 FLBR.writeMemberType(R); 2003 MemberCount++; 2004 } 2005 2006 TypeIndex FieldTI = FLBR.end(true); 2007 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2008 !Info.NestedTypes.empty()); 2009 } 2010 2011 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2012 if (!VBPType.getIndex()) { 2013 // Make a 'const int *' type. 2014 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2015 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 2016 2017 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2018 : PointerKind::Near32; 2019 PointerMode PM = PointerMode::Pointer; 2020 PointerOptions PO = PointerOptions::None; 2021 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2022 2023 VBPType = TypeTable.writeKnownType(PR); 2024 } 2025 2026 return VBPType; 2027 } 2028 2029 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2030 const DIType *Ty = TypeRef.resolve(); 2031 const DIType *ClassTy = ClassTyRef.resolve(); 2032 2033 // The null DIType is the void type. Don't try to hash it. 2034 if (!Ty) 2035 return TypeIndex::Void(); 2036 2037 // Check if we've already translated this type. Don't try to do a 2038 // get-or-create style insertion that caches the hash lookup across the 2039 // lowerType call. It will update the TypeIndices map. 2040 auto I = TypeIndices.find({Ty, ClassTy}); 2041 if (I != TypeIndices.end()) 2042 return I->second; 2043 2044 TypeLoweringScope S(*this); 2045 TypeIndex TI = lowerType(Ty, ClassTy); 2046 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2047 } 2048 2049 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2050 DIType *Ty = TypeRef.resolve(); 2051 PointerRecord PR(getTypeIndex(Ty), 2052 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2053 : PointerKind::Near32, 2054 PointerMode::LValueReference, PointerOptions::None, 2055 Ty->getSizeInBits() / 8); 2056 return TypeTable.writeKnownType(PR); 2057 } 2058 2059 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2060 const DIType *Ty = TypeRef.resolve(); 2061 2062 // The null DIType is the void type. Don't try to hash it. 2063 if (!Ty) 2064 return TypeIndex::Void(); 2065 2066 // If this is a non-record type, the complete type index is the same as the 2067 // normal type index. Just call getTypeIndex. 2068 switch (Ty->getTag()) { 2069 case dwarf::DW_TAG_class_type: 2070 case dwarf::DW_TAG_structure_type: 2071 case dwarf::DW_TAG_union_type: 2072 break; 2073 default: 2074 return getTypeIndex(Ty); 2075 } 2076 2077 // Check if we've already translated the complete record type. Lowering a 2078 // complete type should never trigger lowering another complete type, so we 2079 // can reuse the hash table lookup result. 2080 const auto *CTy = cast<DICompositeType>(Ty); 2081 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2082 if (!InsertResult.second) 2083 return InsertResult.first->second; 2084 2085 TypeLoweringScope S(*this); 2086 2087 // Make sure the forward declaration is emitted first. It's unclear if this 2088 // is necessary, but MSVC does it, and we should follow suit until we can show 2089 // otherwise. 2090 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2091 2092 // Just use the forward decl if we don't have complete type info. This might 2093 // happen if the frontend is using modules and expects the complete definition 2094 // to be emitted elsewhere. 2095 if (CTy->isForwardDecl()) 2096 return FwdDeclTI; 2097 2098 TypeIndex TI; 2099 switch (CTy->getTag()) { 2100 case dwarf::DW_TAG_class_type: 2101 case dwarf::DW_TAG_structure_type: 2102 TI = lowerCompleteTypeClass(CTy); 2103 break; 2104 case dwarf::DW_TAG_union_type: 2105 TI = lowerCompleteTypeUnion(CTy); 2106 break; 2107 default: 2108 llvm_unreachable("not a record"); 2109 } 2110 2111 InsertResult.first->second = TI; 2112 return TI; 2113 } 2114 2115 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2116 /// and do this until fixpoint, as each complete record type typically 2117 /// references 2118 /// many other record types. 2119 void CodeViewDebug::emitDeferredCompleteTypes() { 2120 SmallVector<const DICompositeType *, 4> TypesToEmit; 2121 while (!DeferredCompleteTypes.empty()) { 2122 std::swap(DeferredCompleteTypes, TypesToEmit); 2123 for (const DICompositeType *RecordTy : TypesToEmit) 2124 getCompleteTypeIndex(RecordTy); 2125 TypesToEmit.clear(); 2126 } 2127 } 2128 2129 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2130 // Get the sorted list of parameters and emit them first. 2131 SmallVector<const LocalVariable *, 6> Params; 2132 for (const LocalVariable &L : Locals) 2133 if (L.DIVar->isParameter()) 2134 Params.push_back(&L); 2135 std::sort(Params.begin(), Params.end(), 2136 [](const LocalVariable *L, const LocalVariable *R) { 2137 return L->DIVar->getArg() < R->DIVar->getArg(); 2138 }); 2139 for (const LocalVariable *L : Params) 2140 emitLocalVariable(*L); 2141 2142 // Next emit all non-parameters in the order that we found them. 2143 for (const LocalVariable &L : Locals) 2144 if (!L.DIVar->isParameter()) 2145 emitLocalVariable(L); 2146 } 2147 2148 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2149 // LocalSym record, see SymbolRecord.h for more info. 2150 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2151 *LocalEnd = MMI->getContext().createTempSymbol(); 2152 OS.AddComment("Record length"); 2153 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2154 OS.EmitLabel(LocalBegin); 2155 2156 OS.AddComment("Record kind: S_LOCAL"); 2157 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2158 2159 LocalSymFlags Flags = LocalSymFlags::None; 2160 if (Var.DIVar->isParameter()) 2161 Flags |= LocalSymFlags::IsParameter; 2162 if (Var.DefRanges.empty()) 2163 Flags |= LocalSymFlags::IsOptimizedOut; 2164 2165 OS.AddComment("TypeIndex"); 2166 TypeIndex TI = Var.UseReferenceType 2167 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2168 : getCompleteTypeIndex(Var.DIVar->getType()); 2169 OS.EmitIntValue(TI.getIndex(), 4); 2170 OS.AddComment("Flags"); 2171 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2172 // Truncate the name so we won't overflow the record length field. 2173 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2174 OS.EmitLabel(LocalEnd); 2175 2176 // Calculate the on disk prefix of the appropriate def range record. The 2177 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2178 // should be big enough to hold all forms without memory allocation. 2179 SmallString<20> BytePrefix; 2180 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2181 BytePrefix.clear(); 2182 if (DefRange.InMemory) { 2183 uint16_t RegRelFlags = 0; 2184 if (DefRange.IsSubfield) { 2185 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2186 (DefRange.StructOffset 2187 << DefRangeRegisterRelSym::OffsetInParentShift); 2188 } 2189 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2190 Sym.Hdr.Register = DefRange.CVRegister; 2191 Sym.Hdr.Flags = RegRelFlags; 2192 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2193 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2194 BytePrefix += 2195 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2196 BytePrefix += 2197 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2198 } else { 2199 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2200 if (DefRange.IsSubfield) { 2201 // Unclear what matters here. 2202 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2203 Sym.Hdr.Register = DefRange.CVRegister; 2204 Sym.Hdr.MayHaveNoName = 0; 2205 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2206 2207 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2208 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2209 sizeof(SymKind)); 2210 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2211 sizeof(Sym.Hdr)); 2212 } else { 2213 // Unclear what matters here. 2214 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2215 Sym.Hdr.Register = DefRange.CVRegister; 2216 Sym.Hdr.MayHaveNoName = 0; 2217 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2218 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2219 sizeof(SymKind)); 2220 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2221 sizeof(Sym.Hdr)); 2222 } 2223 } 2224 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2225 } 2226 } 2227 2228 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2229 const Function *GV = MF->getFunction(); 2230 assert(FnDebugInfo.count(GV)); 2231 assert(CurFn == &FnDebugInfo[GV]); 2232 2233 collectVariableInfo(GV->getSubprogram()); 2234 2235 // Don't emit anything if we don't have any line tables. 2236 if (!CurFn->HaveLineInfo) { 2237 FnDebugInfo.erase(GV); 2238 CurFn = nullptr; 2239 return; 2240 } 2241 2242 CurFn->Annotations = MF->getCodeViewAnnotations(); 2243 2244 CurFn->End = Asm->getFunctionEnd(); 2245 2246 CurFn = nullptr; 2247 } 2248 2249 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2250 DebugHandlerBase::beginInstruction(MI); 2251 2252 // Ignore DBG_VALUE locations and function prologue. 2253 if (!Asm || !CurFn || MI->isDebugValue() || 2254 MI->getFlag(MachineInstr::FrameSetup)) 2255 return; 2256 2257 // If the first instruction of a new MBB has no location, find the first 2258 // instruction with a location and use that. 2259 DebugLoc DL = MI->getDebugLoc(); 2260 if (!DL && MI->getParent() != PrevInstBB) { 2261 for (const auto &NextMI : *MI->getParent()) { 2262 if (NextMI.isDebugValue()) 2263 continue; 2264 DL = NextMI.getDebugLoc(); 2265 if (DL) 2266 break; 2267 } 2268 } 2269 PrevInstBB = MI->getParent(); 2270 2271 // If we still don't have a debug location, don't record a location. 2272 if (!DL) 2273 return; 2274 2275 maybeRecordLocation(DL, Asm->MF); 2276 } 2277 2278 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2279 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2280 *EndLabel = MMI->getContext().createTempSymbol(); 2281 OS.EmitIntValue(unsigned(Kind), 4); 2282 OS.AddComment("Subsection size"); 2283 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2284 OS.EmitLabel(BeginLabel); 2285 return EndLabel; 2286 } 2287 2288 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2289 OS.EmitLabel(EndLabel); 2290 // Every subsection must be aligned to a 4-byte boundary. 2291 OS.EmitValueToAlignment(4); 2292 } 2293 2294 void CodeViewDebug::emitDebugInfoForUDTs( 2295 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2296 for (const auto &UDT : UDTs) { 2297 const DIType *T = UDT.second; 2298 assert(shouldEmitUdt(T)); 2299 2300 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2301 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2302 OS.AddComment("Record length"); 2303 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2304 OS.EmitLabel(UDTRecordBegin); 2305 2306 OS.AddComment("Record kind: S_UDT"); 2307 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2308 2309 OS.AddComment("Type"); 2310 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2311 2312 emitNullTerminatedSymbolName(OS, UDT.first); 2313 OS.EmitLabel(UDTRecordEnd); 2314 } 2315 } 2316 2317 void CodeViewDebug::emitDebugInfoForGlobals() { 2318 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2319 GlobalMap; 2320 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2321 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2322 GV.getDebugInfo(GVEs); 2323 for (const auto *GVE : GVEs) 2324 GlobalMap[GVE] = &GV; 2325 } 2326 2327 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2328 for (const MDNode *Node : CUs->operands()) { 2329 const auto *CU = cast<DICompileUnit>(Node); 2330 2331 // First, emit all globals that are not in a comdat in a single symbol 2332 // substream. MSVC doesn't like it if the substream is empty, so only open 2333 // it if we have at least one global to emit. 2334 switchToDebugSectionForSymbol(nullptr); 2335 MCSymbol *EndLabel = nullptr; 2336 for (const auto *GVE : CU->getGlobalVariables()) { 2337 if (const auto *GV = GlobalMap.lookup(GVE)) 2338 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2339 if (!EndLabel) { 2340 OS.AddComment("Symbol subsection for globals"); 2341 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2342 } 2343 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2344 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2345 } 2346 } 2347 if (EndLabel) 2348 endCVSubsection(EndLabel); 2349 2350 // Second, emit each global that is in a comdat into its own .debug$S 2351 // section along with its own symbol substream. 2352 for (const auto *GVE : CU->getGlobalVariables()) { 2353 if (const auto *GV = GlobalMap.lookup(GVE)) { 2354 if (GV->hasComdat()) { 2355 MCSymbol *GVSym = Asm->getSymbol(GV); 2356 OS.AddComment("Symbol subsection for " + 2357 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2358 switchToDebugSectionForSymbol(GVSym); 2359 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2360 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2361 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2362 endCVSubsection(EndLabel); 2363 } 2364 } 2365 } 2366 } 2367 } 2368 2369 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2370 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2371 for (const MDNode *Node : CUs->operands()) { 2372 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2373 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2374 getTypeIndex(RT); 2375 // FIXME: Add to global/local DTU list. 2376 } 2377 } 2378 } 2379 } 2380 2381 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2382 const GlobalVariable *GV, 2383 MCSymbol *GVSym) { 2384 // DataSym record, see SymbolRecord.h for more info. 2385 // FIXME: Thread local data, etc 2386 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2387 *DataEnd = MMI->getContext().createTempSymbol(); 2388 OS.AddComment("Record length"); 2389 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2390 OS.EmitLabel(DataBegin); 2391 if (DIGV->isLocalToUnit()) { 2392 if (GV->isThreadLocal()) { 2393 OS.AddComment("Record kind: S_LTHREAD32"); 2394 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2395 } else { 2396 OS.AddComment("Record kind: S_LDATA32"); 2397 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2398 } 2399 } else { 2400 if (GV->isThreadLocal()) { 2401 OS.AddComment("Record kind: S_GTHREAD32"); 2402 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2403 } else { 2404 OS.AddComment("Record kind: S_GDATA32"); 2405 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2406 } 2407 } 2408 OS.AddComment("Type"); 2409 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2410 OS.AddComment("DataOffset"); 2411 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2412 OS.AddComment("Segment"); 2413 OS.EmitCOFFSectionIndex(GVSym); 2414 OS.AddComment("Name"); 2415 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2416 OS.EmitLabel(DataEnd); 2417 } 2418