1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/TinyPtrVector.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/BinaryFormat/COFF.h"
25 #include "llvm/BinaryFormat/Dwarf.h"
26 #include "llvm/CodeGen/AsmPrinter.h"
27 #include "llvm/CodeGen/LexicalScopes.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineModuleInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/TargetFrameLowering.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
38 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
39 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
40 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
41 #include "llvm/DebugInfo/CodeView/EnumTables.h"
42 #include "llvm/DebugInfo/CodeView/Line.h"
43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
45 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
46 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
47 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DebugInfoMetadata.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/GlobalValue.h"
53 #include "llvm/IR/GlobalVariable.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/MC/MCAsmInfo.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSectionCOFF.h"
59 #include "llvm/MC/MCStreamer.h"
60 #include "llvm/MC/MCSymbol.h"
61 #include "llvm/Support/BinaryByteStream.h"
62 #include "llvm/Support/BinaryStreamReader.h"
63 #include "llvm/Support/BinaryStreamWriter.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Endian.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/FormatVariadic.h"
70 #include "llvm/Support/Path.h"
71 #include "llvm/Support/SMLoc.h"
72 #include "llvm/Support/ScopedPrinter.h"
73 #include "llvm/Target/TargetLoweringObjectFile.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <iterator>
80 #include <limits>
81 
82 using namespace llvm;
83 using namespace llvm::codeview;
84 
85 namespace {
86 class CVMCAdapter : public CodeViewRecordStreamer {
87 public:
88   CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
89       : OS(&OS), TypeTable(TypeTable) {}
90 
91   void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
92 
93   void emitIntValue(uint64_t Value, unsigned Size) override {
94     OS->emitIntValueInHex(Value, Size);
95   }
96 
97   void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
98 
99   void AddComment(const Twine &T) override { OS->AddComment(T); }
100 
101   void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
102 
103   bool isVerboseAsm() override { return OS->isVerboseAsm(); }
104 
105   std::string getTypeName(TypeIndex TI) override {
106     std::string TypeName;
107     if (!TI.isNoneType()) {
108       if (TI.isSimple())
109         TypeName = std::string(TypeIndex::simpleTypeName(TI));
110       else
111         TypeName = std::string(TypeTable.getTypeName(TI));
112     }
113     return TypeName;
114   }
115 
116 private:
117   MCStreamer *OS = nullptr;
118   TypeCollection &TypeTable;
119 };
120 } // namespace
121 
122 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
123   switch (Type) {
124   case Triple::ArchType::x86:
125     return CPUType::Pentium3;
126   case Triple::ArchType::x86_64:
127     return CPUType::X64;
128   case Triple::ArchType::thumb:
129     // LLVM currently doesn't support Windows CE and so thumb
130     // here is indiscriminately mapped to ARMNT specifically.
131     return CPUType::ARMNT;
132   case Triple::ArchType::aarch64:
133     return CPUType::ARM64;
134   default:
135     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
136   }
137 }
138 
139 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
140     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {}
141 
142 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
143   std::string &Filepath = FileToFilepathMap[File];
144   if (!Filepath.empty())
145     return Filepath;
146 
147   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
148 
149   // If this is a Unix-style path, just use it as is. Don't try to canonicalize
150   // it textually because one of the path components could be a symlink.
151   if (Dir.startswith("/") || Filename.startswith("/")) {
152     if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
153       return Filename;
154     Filepath = std::string(Dir);
155     if (Dir.back() != '/')
156       Filepath += '/';
157     Filepath += Filename;
158     return Filepath;
159   }
160 
161   // Clang emits directory and relative filename info into the IR, but CodeView
162   // operates on full paths.  We could change Clang to emit full paths too, but
163   // that would increase the IR size and probably not needed for other users.
164   // For now, just concatenate and canonicalize the path here.
165   if (Filename.find(':') == 1)
166     Filepath = std::string(Filename);
167   else
168     Filepath = (Dir + "\\" + Filename).str();
169 
170   // Canonicalize the path.  We have to do it textually because we may no longer
171   // have access the file in the filesystem.
172   // First, replace all slashes with backslashes.
173   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
174 
175   // Remove all "\.\" with "\".
176   size_t Cursor = 0;
177   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
178     Filepath.erase(Cursor, 2);
179 
180   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
181   // path should be well-formatted, e.g. start with a drive letter, etc.
182   Cursor = 0;
183   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
184     // Something's wrong if the path starts with "\..\", abort.
185     if (Cursor == 0)
186       break;
187 
188     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
189     if (PrevSlash == std::string::npos)
190       // Something's wrong, abort.
191       break;
192 
193     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
194     // The next ".." might be following the one we've just erased.
195     Cursor = PrevSlash;
196   }
197 
198   // Remove all duplicate backslashes.
199   Cursor = 0;
200   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
201     Filepath.erase(Cursor, 1);
202 
203   return Filepath;
204 }
205 
206 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
207   StringRef FullPath = getFullFilepath(F);
208   unsigned NextId = FileIdMap.size() + 1;
209   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
210   if (Insertion.second) {
211     // We have to compute the full filepath and emit a .cv_file directive.
212     ArrayRef<uint8_t> ChecksumAsBytes;
213     FileChecksumKind CSKind = FileChecksumKind::None;
214     if (F->getChecksum()) {
215       std::string Checksum = fromHex(F->getChecksum()->Value);
216       void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
217       memcpy(CKMem, Checksum.data(), Checksum.size());
218       ChecksumAsBytes = ArrayRef<uint8_t>(
219           reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
220       switch (F->getChecksum()->Kind) {
221       case DIFile::CSK_MD5:
222         CSKind = FileChecksumKind::MD5;
223         break;
224       case DIFile::CSK_SHA1:
225         CSKind = FileChecksumKind::SHA1;
226         break;
227       case DIFile::CSK_SHA256:
228         CSKind = FileChecksumKind::SHA256;
229         break;
230       }
231     }
232     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
233                                           static_cast<unsigned>(CSKind));
234     (void)Success;
235     assert(Success && ".cv_file directive failed");
236   }
237   return Insertion.first->second;
238 }
239 
240 CodeViewDebug::InlineSite &
241 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
242                              const DISubprogram *Inlinee) {
243   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
244   InlineSite *Site = &SiteInsertion.first->second;
245   if (SiteInsertion.second) {
246     unsigned ParentFuncId = CurFn->FuncId;
247     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
248       ParentFuncId =
249           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
250               .SiteFuncId;
251 
252     Site->SiteFuncId = NextFuncId++;
253     OS.EmitCVInlineSiteIdDirective(
254         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
255         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
256     Site->Inlinee = Inlinee;
257     InlinedSubprograms.insert(Inlinee);
258     getFuncIdForSubprogram(Inlinee);
259   }
260   return *Site;
261 }
262 
263 static StringRef getPrettyScopeName(const DIScope *Scope) {
264   StringRef ScopeName = Scope->getName();
265   if (!ScopeName.empty())
266     return ScopeName;
267 
268   switch (Scope->getTag()) {
269   case dwarf::DW_TAG_enumeration_type:
270   case dwarf::DW_TAG_class_type:
271   case dwarf::DW_TAG_structure_type:
272   case dwarf::DW_TAG_union_type:
273     return "<unnamed-tag>";
274   case dwarf::DW_TAG_namespace:
275     return "`anonymous namespace'";
276   default:
277     return StringRef();
278   }
279 }
280 
281 const DISubprogram *CodeViewDebug::collectParentScopeNames(
282     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
283   const DISubprogram *ClosestSubprogram = nullptr;
284   while (Scope != nullptr) {
285     if (ClosestSubprogram == nullptr)
286       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
287 
288     // If a type appears in a scope chain, make sure it gets emitted. The
289     // frontend will be responsible for deciding if this should be a forward
290     // declaration or a complete type.
291     if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
292       DeferredCompleteTypes.push_back(Ty);
293 
294     StringRef ScopeName = getPrettyScopeName(Scope);
295     if (!ScopeName.empty())
296       QualifiedNameComponents.push_back(ScopeName);
297     Scope = Scope->getScope();
298   }
299   return ClosestSubprogram;
300 }
301 
302 static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
303                                     StringRef TypeName) {
304   std::string FullyQualifiedName;
305   for (StringRef QualifiedNameComponent :
306        llvm::reverse(QualifiedNameComponents)) {
307     FullyQualifiedName.append(std::string(QualifiedNameComponent));
308     FullyQualifiedName.append("::");
309   }
310   FullyQualifiedName.append(std::string(TypeName));
311   return FullyQualifiedName;
312 }
313 
314 struct CodeViewDebug::TypeLoweringScope {
315   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
316   ~TypeLoweringScope() {
317     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
318     // inner TypeLoweringScopes don't attempt to emit deferred types.
319     if (CVD.TypeEmissionLevel == 1)
320       CVD.emitDeferredCompleteTypes();
321     --CVD.TypeEmissionLevel;
322   }
323   CodeViewDebug &CVD;
324 };
325 
326 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
327                                                  StringRef Name) {
328   // Ensure types in the scope chain are emitted as soon as possible.
329   // This can create otherwise a situation where S_UDTs are emitted while
330   // looping in emitDebugInfoForUDTs.
331   TypeLoweringScope S(*this);
332   SmallVector<StringRef, 5> QualifiedNameComponents;
333   collectParentScopeNames(Scope, QualifiedNameComponents);
334   return formatNestedName(QualifiedNameComponents, Name);
335 }
336 
337 std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
338   const DIScope *Scope = Ty->getScope();
339   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
340 }
341 
342 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
343   // No scope means global scope and that uses the zero index.
344   if (!Scope || isa<DIFile>(Scope))
345     return TypeIndex();
346 
347   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
348 
349   // Check if we've already translated this scope.
350   auto I = TypeIndices.find({Scope, nullptr});
351   if (I != TypeIndices.end())
352     return I->second;
353 
354   // Build the fully qualified name of the scope.
355   std::string ScopeName = getFullyQualifiedName(Scope);
356   StringIdRecord SID(TypeIndex(), ScopeName);
357   auto TI = TypeTable.writeLeafType(SID);
358   return recordTypeIndexForDINode(Scope, TI);
359 }
360 
361 static StringRef removeTemplateArgs(StringRef Name) {
362   // Remove template args from the display name. Assume that the template args
363   // are the last thing in the name.
364   if (Name.empty() || Name.back() != '>')
365     return Name;
366 
367   int OpenBrackets = 0;
368   for (int i = Name.size() - 1; i >= 0; --i) {
369     if (Name[i] == '>')
370       ++OpenBrackets;
371     else if (Name[i] == '<') {
372       --OpenBrackets;
373       if (OpenBrackets == 0)
374         return Name.substr(0, i);
375     }
376   }
377   return Name;
378 }
379 
380 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
381   assert(SP);
382 
383   // Check if we've already translated this subprogram.
384   auto I = TypeIndices.find({SP, nullptr});
385   if (I != TypeIndices.end())
386     return I->second;
387 
388   // The display name includes function template arguments. Drop them to match
389   // MSVC. We need to have the template arguments in the DISubprogram name
390   // because they are used in other symbol records, such as S_GPROC32_IDs.
391   StringRef DisplayName = removeTemplateArgs(SP->getName());
392 
393   const DIScope *Scope = SP->getScope();
394   TypeIndex TI;
395   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
396     // If the scope is a DICompositeType, then this must be a method. Member
397     // function types take some special handling, and require access to the
398     // subprogram.
399     TypeIndex ClassType = getTypeIndex(Class);
400     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
401                                DisplayName);
402     TI = TypeTable.writeLeafType(MFuncId);
403   } else {
404     // Otherwise, this must be a free function.
405     TypeIndex ParentScope = getScopeIndex(Scope);
406     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
407     TI = TypeTable.writeLeafType(FuncId);
408   }
409 
410   return recordTypeIndexForDINode(SP, TI);
411 }
412 
413 static bool isNonTrivial(const DICompositeType *DCTy) {
414   return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
415 }
416 
417 static FunctionOptions
418 getFunctionOptions(const DISubroutineType *Ty,
419                    const DICompositeType *ClassTy = nullptr,
420                    StringRef SPName = StringRef("")) {
421   FunctionOptions FO = FunctionOptions::None;
422   const DIType *ReturnTy = nullptr;
423   if (auto TypeArray = Ty->getTypeArray()) {
424     if (TypeArray.size())
425       ReturnTy = TypeArray[0];
426   }
427 
428   // Add CxxReturnUdt option to functions that return nontrivial record types
429   // or methods that return record types.
430   if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
431     if (isNonTrivial(ReturnDCTy) || ClassTy)
432       FO |= FunctionOptions::CxxReturnUdt;
433 
434   // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
435   if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
436     FO |= FunctionOptions::Constructor;
437 
438   // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
439 
440   }
441   return FO;
442 }
443 
444 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
445                                                const DICompositeType *Class) {
446   // Always use the method declaration as the key for the function type. The
447   // method declaration contains the this adjustment.
448   if (SP->getDeclaration())
449     SP = SP->getDeclaration();
450   assert(!SP->getDeclaration() && "should use declaration as key");
451 
452   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
453   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
454   auto I = TypeIndices.find({SP, Class});
455   if (I != TypeIndices.end())
456     return I->second;
457 
458   // Make sure complete type info for the class is emitted *after* the member
459   // function type, as the complete class type is likely to reference this
460   // member function type.
461   TypeLoweringScope S(*this);
462   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
463 
464   FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
465   TypeIndex TI = lowerTypeMemberFunction(
466       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
467   return recordTypeIndexForDINode(SP, TI, Class);
468 }
469 
470 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
471                                                   TypeIndex TI,
472                                                   const DIType *ClassTy) {
473   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
474   (void)InsertResult;
475   assert(InsertResult.second && "DINode was already assigned a type index");
476   return TI;
477 }
478 
479 unsigned CodeViewDebug::getPointerSizeInBytes() {
480   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
481 }
482 
483 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
484                                         const LexicalScope *LS) {
485   if (const DILocation *InlinedAt = LS->getInlinedAt()) {
486     // This variable was inlined. Associate it with the InlineSite.
487     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
488     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
489     Site.InlinedLocals.emplace_back(Var);
490   } else {
491     // This variable goes into the corresponding lexical scope.
492     ScopeVariables[LS].emplace_back(Var);
493   }
494 }
495 
496 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
497                                const DILocation *Loc) {
498   if (!llvm::is_contained(Locs, Loc))
499     Locs.push_back(Loc);
500 }
501 
502 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
503                                         const MachineFunction *MF) {
504   // Skip this instruction if it has the same location as the previous one.
505   if (!DL || DL == PrevInstLoc)
506     return;
507 
508   const DIScope *Scope = DL.get()->getScope();
509   if (!Scope)
510     return;
511 
512   // Skip this line if it is longer than the maximum we can record.
513   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
514   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
515       LI.isNeverStepInto())
516     return;
517 
518   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
519   if (CI.getStartColumn() != DL.getCol())
520     return;
521 
522   if (!CurFn->HaveLineInfo)
523     CurFn->HaveLineInfo = true;
524   unsigned FileId = 0;
525   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
526     FileId = CurFn->LastFileId;
527   else
528     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
529   PrevInstLoc = DL;
530 
531   unsigned FuncId = CurFn->FuncId;
532   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
533     const DILocation *Loc = DL.get();
534 
535     // If this location was actually inlined from somewhere else, give it the ID
536     // of the inline call site.
537     FuncId =
538         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
539 
540     // Ensure we have links in the tree of inline call sites.
541     bool FirstLoc = true;
542     while ((SiteLoc = Loc->getInlinedAt())) {
543       InlineSite &Site =
544           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
545       if (!FirstLoc)
546         addLocIfNotPresent(Site.ChildSites, Loc);
547       FirstLoc = false;
548       Loc = SiteLoc;
549     }
550     addLocIfNotPresent(CurFn->ChildSites, Loc);
551   }
552 
553   OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
554                         /*PrologueEnd=*/false, /*IsStmt=*/false,
555                         DL->getFilename(), SMLoc());
556 }
557 
558 void CodeViewDebug::emitCodeViewMagicVersion() {
559   OS.emitValueToAlignment(4);
560   OS.AddComment("Debug section magic");
561   OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
562 }
563 
564 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
565   switch (DWLang) {
566   case dwarf::DW_LANG_C:
567   case dwarf::DW_LANG_C89:
568   case dwarf::DW_LANG_C99:
569   case dwarf::DW_LANG_C11:
570   case dwarf::DW_LANG_ObjC:
571     return SourceLanguage::C;
572   case dwarf::DW_LANG_C_plus_plus:
573   case dwarf::DW_LANG_C_plus_plus_03:
574   case dwarf::DW_LANG_C_plus_plus_11:
575   case dwarf::DW_LANG_C_plus_plus_14:
576     return SourceLanguage::Cpp;
577   case dwarf::DW_LANG_Fortran77:
578   case dwarf::DW_LANG_Fortran90:
579   case dwarf::DW_LANG_Fortran95:
580   case dwarf::DW_LANG_Fortran03:
581   case dwarf::DW_LANG_Fortran08:
582     return SourceLanguage::Fortran;
583   case dwarf::DW_LANG_Pascal83:
584     return SourceLanguage::Pascal;
585   case dwarf::DW_LANG_Cobol74:
586   case dwarf::DW_LANG_Cobol85:
587     return SourceLanguage::Cobol;
588   case dwarf::DW_LANG_Java:
589     return SourceLanguage::Java;
590   case dwarf::DW_LANG_D:
591     return SourceLanguage::D;
592   case dwarf::DW_LANG_Swift:
593     return SourceLanguage::Swift;
594   default:
595     // There's no CodeView representation for this language, and CV doesn't
596     // have an "unknown" option for the language field, so we'll use MASM,
597     // as it's very low level.
598     return SourceLanguage::Masm;
599   }
600 }
601 
602 void CodeViewDebug::beginModule(Module *M) {
603   // If module doesn't have named metadata anchors or COFF debug section
604   // is not available, skip any debug info related stuff.
605   if (!M->getNamedMetadata("llvm.dbg.cu") ||
606       !Asm->getObjFileLowering().getCOFFDebugSymbolsSection()) {
607     Asm = nullptr;
608     return;
609   }
610   // Tell MMI that we have and need debug info.
611   MMI->setDebugInfoAvailability(true);
612 
613   TheCPU = mapArchToCVCPUType(Triple(M->getTargetTriple()).getArch());
614 
615   // Get the current source language.
616   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
617   const MDNode *Node = *CUs->operands().begin();
618   const auto *CU = cast<DICompileUnit>(Node);
619 
620   CurrentSourceLanguage = MapDWLangToCVLang(CU->getSourceLanguage());
621 
622   collectGlobalVariableInfo();
623 
624   // Check if we should emit type record hashes.
625   ConstantInt *GH =
626       mdconst::extract_or_null<ConstantInt>(M->getModuleFlag("CodeViewGHash"));
627   EmitDebugGlobalHashes = GH && !GH->isZero();
628 }
629 
630 void CodeViewDebug::endModule() {
631   if (!Asm || !MMI->hasDebugInfo())
632     return;
633 
634   // The COFF .debug$S section consists of several subsections, each starting
635   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
636   // of the payload followed by the payload itself.  The subsections are 4-byte
637   // aligned.
638 
639   // Use the generic .debug$S section, and make a subsection for all the inlined
640   // subprograms.
641   switchToDebugSectionForSymbol(nullptr);
642 
643   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
644   emitCompilerInformation();
645   endCVSubsection(CompilerInfo);
646 
647   emitInlineeLinesSubsection();
648 
649   // Emit per-function debug information.
650   for (auto &P : FnDebugInfo)
651     if (!P.first->isDeclarationForLinker())
652       emitDebugInfoForFunction(P.first, *P.second);
653 
654   // Get types used by globals without emitting anything.
655   // This is meant to collect all static const data members so they can be
656   // emitted as globals.
657   collectDebugInfoForGlobals();
658 
659   // Emit retained types.
660   emitDebugInfoForRetainedTypes();
661 
662   // Emit global variable debug information.
663   setCurrentSubprogram(nullptr);
664   emitDebugInfoForGlobals();
665 
666   // Switch back to the generic .debug$S section after potentially processing
667   // comdat symbol sections.
668   switchToDebugSectionForSymbol(nullptr);
669 
670   // Emit UDT records for any types used by global variables.
671   if (!GlobalUDTs.empty()) {
672     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
673     emitDebugInfoForUDTs(GlobalUDTs);
674     endCVSubsection(SymbolsEnd);
675   }
676 
677   // This subsection holds a file index to offset in string table table.
678   OS.AddComment("File index to string table offset subsection");
679   OS.emitCVFileChecksumsDirective();
680 
681   // This subsection holds the string table.
682   OS.AddComment("String table");
683   OS.emitCVStringTableDirective();
684 
685   // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
686   // subsection in the generic .debug$S section at the end. There is no
687   // particular reason for this ordering other than to match MSVC.
688   emitBuildInfo();
689 
690   // Emit type information and hashes last, so that any types we translate while
691   // emitting function info are included.
692   emitTypeInformation();
693 
694   if (EmitDebugGlobalHashes)
695     emitTypeGlobalHashes();
696 
697   clear();
698 }
699 
700 static void
701 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
702                              unsigned MaxFixedRecordLength = 0xF00) {
703   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
704   // after a fixed length portion of the record. The fixed length portion should
705   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
706   // overall record size is less than the maximum allowed.
707   SmallString<32> NullTerminatedString(
708       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
709   NullTerminatedString.push_back('\0');
710   OS.emitBytes(NullTerminatedString);
711 }
712 
713 void CodeViewDebug::emitTypeInformation() {
714   if (TypeTable.empty())
715     return;
716 
717   // Start the .debug$T or .debug$P section with 0x4.
718   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
719   emitCodeViewMagicVersion();
720 
721   TypeTableCollection Table(TypeTable.records());
722   TypeVisitorCallbackPipeline Pipeline;
723 
724   // To emit type record using Codeview MCStreamer adapter
725   CVMCAdapter CVMCOS(OS, Table);
726   TypeRecordMapping typeMapping(CVMCOS);
727   Pipeline.addCallbackToPipeline(typeMapping);
728 
729   Optional<TypeIndex> B = Table.getFirst();
730   while (B) {
731     // This will fail if the record data is invalid.
732     CVType Record = Table.getType(*B);
733 
734     Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
735 
736     if (E) {
737       logAllUnhandledErrors(std::move(E), errs(), "error: ");
738       llvm_unreachable("produced malformed type record");
739     }
740 
741     B = Table.getNext(*B);
742   }
743 }
744 
745 void CodeViewDebug::emitTypeGlobalHashes() {
746   if (TypeTable.empty())
747     return;
748 
749   // Start the .debug$H section with the version and hash algorithm, currently
750   // hardcoded to version 0, SHA1.
751   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
752 
753   OS.emitValueToAlignment(4);
754   OS.AddComment("Magic");
755   OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
756   OS.AddComment("Section Version");
757   OS.emitInt16(0);
758   OS.AddComment("Hash Algorithm");
759   OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
760 
761   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
762   for (const auto &GHR : TypeTable.hashes()) {
763     if (OS.isVerboseAsm()) {
764       // Emit an EOL-comment describing which TypeIndex this hash corresponds
765       // to, as well as the stringified SHA1 hash.
766       SmallString<32> Comment;
767       raw_svector_ostream CommentOS(Comment);
768       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
769       OS.AddComment(Comment);
770       ++TI;
771     }
772     assert(GHR.Hash.size() == 8);
773     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
774                 GHR.Hash.size());
775     OS.emitBinaryData(S);
776   }
777 }
778 
779 namespace {
780 struct Version {
781   int Part[4];
782 };
783 } // end anonymous namespace
784 
785 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
786 // the version number.
787 static Version parseVersion(StringRef Name) {
788   Version V = {{0}};
789   int N = 0;
790   for (const char C : Name) {
791     if (isdigit(C)) {
792       V.Part[N] *= 10;
793       V.Part[N] += C - '0';
794     } else if (C == '.') {
795       ++N;
796       if (N >= 4)
797         return V;
798     } else if (N > 0)
799       return V;
800   }
801   return V;
802 }
803 
804 void CodeViewDebug::emitCompilerInformation() {
805   MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
806   uint32_t Flags = 0;
807 
808   // The low byte of the flags indicates the source language.
809   Flags = CurrentSourceLanguage;
810   // TODO:  Figure out which other flags need to be set.
811   if (MMI->getModule()->getProfileSummary(/*IsCS*/ false) != nullptr) {
812     Flags |= static_cast<uint32_t>(CompileSym3Flags::PGO);
813   }
814 
815   OS.AddComment("Flags and language");
816   OS.emitInt32(Flags);
817 
818   OS.AddComment("CPUType");
819   OS.emitInt16(static_cast<uint64_t>(TheCPU));
820 
821   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
822   const MDNode *Node = *CUs->operands().begin();
823   const auto *CU = cast<DICompileUnit>(Node);
824 
825   StringRef CompilerVersion = CU->getProducer();
826   Version FrontVer = parseVersion(CompilerVersion);
827   OS.AddComment("Frontend version");
828   for (int N : FrontVer.Part)
829     OS.emitInt16(N);
830 
831   // Some Microsoft tools, like Binscope, expect a backend version number of at
832   // least 8.something, so we'll coerce the LLVM version into a form that
833   // guarantees it'll be big enough without really lying about the version.
834   int Major = 1000 * LLVM_VERSION_MAJOR +
835               10 * LLVM_VERSION_MINOR +
836               LLVM_VERSION_PATCH;
837   // Clamp it for builds that use unusually large version numbers.
838   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
839   Version BackVer = {{ Major, 0, 0, 0 }};
840   OS.AddComment("Backend version");
841   for (int N : BackVer.Part)
842     OS.emitInt16(N);
843 
844   OS.AddComment("Null-terminated compiler version string");
845   emitNullTerminatedSymbolName(OS, CompilerVersion);
846 
847   endSymbolRecord(CompilerEnd);
848 }
849 
850 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
851                                     StringRef S) {
852   StringIdRecord SIR(TypeIndex(0x0), S);
853   return TypeTable.writeLeafType(SIR);
854 }
855 
856 void CodeViewDebug::emitBuildInfo() {
857   // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
858   // build info. The known prefix is:
859   // - Absolute path of current directory
860   // - Compiler path
861   // - Main source file path, relative to CWD or absolute
862   // - Type server PDB file
863   // - Canonical compiler command line
864   // If frontend and backend compilation are separated (think llc or LTO), it's
865   // not clear if the compiler path should refer to the executable for the
866   // frontend or the backend. Leave it blank for now.
867   TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
868   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
869   const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
870   const auto *CU = cast<DICompileUnit>(Node);
871   const DIFile *MainSourceFile = CU->getFile();
872   BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
873       getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
874   BuildInfoArgs[BuildInfoRecord::SourceFile] =
875       getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
876   // FIXME: Path to compiler and command line. PDB is intentionally blank unless
877   // we implement /Zi type servers.
878   BuildInfoRecord BIR(BuildInfoArgs);
879   TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
880 
881   // Make a new .debug$S subsection for the S_BUILDINFO record, which points
882   // from the module symbols into the type stream.
883   MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
884   MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
885   OS.AddComment("LF_BUILDINFO index");
886   OS.emitInt32(BuildInfoIndex.getIndex());
887   endSymbolRecord(BIEnd);
888   endCVSubsection(BISubsecEnd);
889 }
890 
891 void CodeViewDebug::emitInlineeLinesSubsection() {
892   if (InlinedSubprograms.empty())
893     return;
894 
895   OS.AddComment("Inlinee lines subsection");
896   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
897 
898   // We emit the checksum info for files.  This is used by debuggers to
899   // determine if a pdb matches the source before loading it.  Visual Studio,
900   // for instance, will display a warning that the breakpoints are not valid if
901   // the pdb does not match the source.
902   OS.AddComment("Inlinee lines signature");
903   OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
904 
905   for (const DISubprogram *SP : InlinedSubprograms) {
906     assert(TypeIndices.count({SP, nullptr}));
907     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
908 
909     OS.AddBlankLine();
910     unsigned FileId = maybeRecordFile(SP->getFile());
911     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
912                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
913     OS.AddBlankLine();
914     OS.AddComment("Type index of inlined function");
915     OS.emitInt32(InlineeIdx.getIndex());
916     OS.AddComment("Offset into filechecksum table");
917     OS.emitCVFileChecksumOffsetDirective(FileId);
918     OS.AddComment("Starting line number");
919     OS.emitInt32(SP->getLine());
920   }
921 
922   endCVSubsection(InlineEnd);
923 }
924 
925 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
926                                         const DILocation *InlinedAt,
927                                         const InlineSite &Site) {
928   assert(TypeIndices.count({Site.Inlinee, nullptr}));
929   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
930 
931   // SymbolRecord
932   MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
933 
934   OS.AddComment("PtrParent");
935   OS.emitInt32(0);
936   OS.AddComment("PtrEnd");
937   OS.emitInt32(0);
938   OS.AddComment("Inlinee type index");
939   OS.emitInt32(InlineeIdx.getIndex());
940 
941   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
942   unsigned StartLineNum = Site.Inlinee->getLine();
943 
944   OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
945                                     FI.Begin, FI.End);
946 
947   endSymbolRecord(InlineEnd);
948 
949   emitLocalVariableList(FI, Site.InlinedLocals);
950 
951   // Recurse on child inlined call sites before closing the scope.
952   for (const DILocation *ChildSite : Site.ChildSites) {
953     auto I = FI.InlineSites.find(ChildSite);
954     assert(I != FI.InlineSites.end() &&
955            "child site not in function inline site map");
956     emitInlinedCallSite(FI, ChildSite, I->second);
957   }
958 
959   // Close the scope.
960   emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
961 }
962 
963 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
964   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
965   // comdat key. A section may be comdat because of -ffunction-sections or
966   // because it is comdat in the IR.
967   MCSectionCOFF *GVSec =
968       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
969   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
970 
971   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
972       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
973   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
974 
975   OS.SwitchSection(DebugSec);
976 
977   // Emit the magic version number if this is the first time we've switched to
978   // this section.
979   if (ComdatDebugSections.insert(DebugSec).second)
980     emitCodeViewMagicVersion();
981 }
982 
983 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
984 // The only supported thunk ordinal is currently the standard type.
985 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
986                                           FunctionInfo &FI,
987                                           const MCSymbol *Fn) {
988   std::string FuncName =
989       std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
990   const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
991 
992   OS.AddComment("Symbol subsection for " + Twine(FuncName));
993   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
994 
995   // Emit S_THUNK32
996   MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
997   OS.AddComment("PtrParent");
998   OS.emitInt32(0);
999   OS.AddComment("PtrEnd");
1000   OS.emitInt32(0);
1001   OS.AddComment("PtrNext");
1002   OS.emitInt32(0);
1003   OS.AddComment("Thunk section relative address");
1004   OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1005   OS.AddComment("Thunk section index");
1006   OS.EmitCOFFSectionIndex(Fn);
1007   OS.AddComment("Code size");
1008   OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
1009   OS.AddComment("Ordinal");
1010   OS.emitInt8(unsigned(ordinal));
1011   OS.AddComment("Function name");
1012   emitNullTerminatedSymbolName(OS, FuncName);
1013   // Additional fields specific to the thunk ordinal would go here.
1014   endSymbolRecord(ThunkRecordEnd);
1015 
1016   // Local variables/inlined routines are purposely omitted here.  The point of
1017   // marking this as a thunk is so Visual Studio will NOT stop in this routine.
1018 
1019   // Emit S_PROC_ID_END
1020   emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1021 
1022   endCVSubsection(SymbolsEnd);
1023 }
1024 
1025 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
1026                                              FunctionInfo &FI) {
1027   // For each function there is a separate subsection which holds the PC to
1028   // file:line table.
1029   const MCSymbol *Fn = Asm->getSymbol(GV);
1030   assert(Fn);
1031 
1032   // Switch to the to a comdat section, if appropriate.
1033   switchToDebugSectionForSymbol(Fn);
1034 
1035   std::string FuncName;
1036   auto *SP = GV->getSubprogram();
1037   assert(SP);
1038   setCurrentSubprogram(SP);
1039 
1040   if (SP->isThunk()) {
1041     emitDebugInfoForThunk(GV, FI, Fn);
1042     return;
1043   }
1044 
1045   // If we have a display name, build the fully qualified name by walking the
1046   // chain of scopes.
1047   if (!SP->getName().empty())
1048     FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1049 
1050   // If our DISubprogram name is empty, use the mangled name.
1051   if (FuncName.empty())
1052     FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
1053 
1054   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1055   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1056     OS.EmitCVFPOData(Fn);
1057 
1058   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1059   OS.AddComment("Symbol subsection for " + Twine(FuncName));
1060   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1061   {
1062     SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1063                                                 : SymbolKind::S_GPROC32_ID;
1064     MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1065 
1066     // These fields are filled in by tools like CVPACK which run after the fact.
1067     OS.AddComment("PtrParent");
1068     OS.emitInt32(0);
1069     OS.AddComment("PtrEnd");
1070     OS.emitInt32(0);
1071     OS.AddComment("PtrNext");
1072     OS.emitInt32(0);
1073     // This is the important bit that tells the debugger where the function
1074     // code is located and what's its size:
1075     OS.AddComment("Code size");
1076     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1077     OS.AddComment("Offset after prologue");
1078     OS.emitInt32(0);
1079     OS.AddComment("Offset before epilogue");
1080     OS.emitInt32(0);
1081     OS.AddComment("Function type index");
1082     OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
1083     OS.AddComment("Function section relative address");
1084     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1085     OS.AddComment("Function section index");
1086     OS.EmitCOFFSectionIndex(Fn);
1087     OS.AddComment("Flags");
1088     OS.emitInt8(0);
1089     // Emit the function display name as a null-terminated string.
1090     OS.AddComment("Function name");
1091     // Truncate the name so we won't overflow the record length field.
1092     emitNullTerminatedSymbolName(OS, FuncName);
1093     endSymbolRecord(ProcRecordEnd);
1094 
1095     MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1096     // Subtract out the CSR size since MSVC excludes that and we include it.
1097     OS.AddComment("FrameSize");
1098     OS.emitInt32(FI.FrameSize - FI.CSRSize);
1099     OS.AddComment("Padding");
1100     OS.emitInt32(0);
1101     OS.AddComment("Offset of padding");
1102     OS.emitInt32(0);
1103     OS.AddComment("Bytes of callee saved registers");
1104     OS.emitInt32(FI.CSRSize);
1105     OS.AddComment("Exception handler offset");
1106     OS.emitInt32(0);
1107     OS.AddComment("Exception handler section");
1108     OS.emitInt16(0);
1109     OS.AddComment("Flags (defines frame register)");
1110     OS.emitInt32(uint32_t(FI.FrameProcOpts));
1111     endSymbolRecord(FrameProcEnd);
1112 
1113     emitLocalVariableList(FI, FI.Locals);
1114     emitGlobalVariableList(FI.Globals);
1115     emitLexicalBlockList(FI.ChildBlocks, FI);
1116 
1117     // Emit inlined call site information. Only emit functions inlined directly
1118     // into the parent function. We'll emit the other sites recursively as part
1119     // of their parent inline site.
1120     for (const DILocation *InlinedAt : FI.ChildSites) {
1121       auto I = FI.InlineSites.find(InlinedAt);
1122       assert(I != FI.InlineSites.end() &&
1123              "child site not in function inline site map");
1124       emitInlinedCallSite(FI, InlinedAt, I->second);
1125     }
1126 
1127     for (auto Annot : FI.Annotations) {
1128       MCSymbol *Label = Annot.first;
1129       MDTuple *Strs = cast<MDTuple>(Annot.second);
1130       MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1131       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1132       // FIXME: Make sure we don't overflow the max record size.
1133       OS.EmitCOFFSectionIndex(Label);
1134       OS.emitInt16(Strs->getNumOperands());
1135       for (Metadata *MD : Strs->operands()) {
1136         // MDStrings are null terminated, so we can do EmitBytes and get the
1137         // nice .asciz directive.
1138         StringRef Str = cast<MDString>(MD)->getString();
1139         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1140         OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
1141       }
1142       endSymbolRecord(AnnotEnd);
1143     }
1144 
1145     for (auto HeapAllocSite : FI.HeapAllocSites) {
1146       const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1147       const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1148       const DIType *DITy = std::get<2>(HeapAllocSite);
1149       MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1150       OS.AddComment("Call site offset");
1151       OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1152       OS.AddComment("Call site section index");
1153       OS.EmitCOFFSectionIndex(BeginLabel);
1154       OS.AddComment("Call instruction length");
1155       OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1156       OS.AddComment("Type index");
1157       OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
1158       endSymbolRecord(HeapAllocEnd);
1159     }
1160 
1161     if (SP != nullptr)
1162       emitDebugInfoForUDTs(LocalUDTs);
1163 
1164     // We're done with this function.
1165     emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1166   }
1167   endCVSubsection(SymbolsEnd);
1168 
1169   // We have an assembler directive that takes care of the whole line table.
1170   OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1171 }
1172 
1173 CodeViewDebug::LocalVarDefRange
1174 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1175   LocalVarDefRange DR;
1176   DR.InMemory = -1;
1177   DR.DataOffset = Offset;
1178   assert(DR.DataOffset == Offset && "truncation");
1179   DR.IsSubfield = 0;
1180   DR.StructOffset = 0;
1181   DR.CVRegister = CVRegister;
1182   return DR;
1183 }
1184 
1185 void CodeViewDebug::collectVariableInfoFromMFTable(
1186     DenseSet<InlinedEntity> &Processed) {
1187   const MachineFunction &MF = *Asm->MF;
1188   const TargetSubtargetInfo &TSI = MF.getSubtarget();
1189   const TargetFrameLowering *TFI = TSI.getFrameLowering();
1190   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1191 
1192   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1193     if (!VI.Var)
1194       continue;
1195     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1196            "Expected inlined-at fields to agree");
1197 
1198     Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1199     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1200 
1201     // If variable scope is not found then skip this variable.
1202     if (!Scope)
1203       continue;
1204 
1205     // If the variable has an attached offset expression, extract it.
1206     // FIXME: Try to handle DW_OP_deref as well.
1207     int64_t ExprOffset = 0;
1208     bool Deref = false;
1209     if (VI.Expr) {
1210       // If there is one DW_OP_deref element, use offset of 0 and keep going.
1211       if (VI.Expr->getNumElements() == 1 &&
1212           VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1213         Deref = true;
1214       else if (!VI.Expr->extractIfOffset(ExprOffset))
1215         continue;
1216     }
1217 
1218     // Get the frame register used and the offset.
1219     Register FrameReg;
1220     StackOffset FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1221     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1222 
1223     assert(!FrameOffset.getScalable() &&
1224            "Frame offsets with a scalable component are not supported");
1225 
1226     // Calculate the label ranges.
1227     LocalVarDefRange DefRange =
1228         createDefRangeMem(CVReg, FrameOffset.getFixed() + ExprOffset);
1229 
1230     for (const InsnRange &Range : Scope->getRanges()) {
1231       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1232       const MCSymbol *End = getLabelAfterInsn(Range.second);
1233       End = End ? End : Asm->getFunctionEnd();
1234       DefRange.Ranges.emplace_back(Begin, End);
1235     }
1236 
1237     LocalVariable Var;
1238     Var.DIVar = VI.Var;
1239     Var.DefRanges.emplace_back(std::move(DefRange));
1240     if (Deref)
1241       Var.UseReferenceType = true;
1242 
1243     recordLocalVariable(std::move(Var), Scope);
1244   }
1245 }
1246 
1247 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1248   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1249 }
1250 
1251 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1252   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1253 }
1254 
1255 void CodeViewDebug::calculateRanges(
1256     LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1257   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1258 
1259   // Calculate the definition ranges.
1260   for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1261     const auto &Entry = *I;
1262     if (!Entry.isDbgValue())
1263       continue;
1264     const MachineInstr *DVInst = Entry.getInstr();
1265     assert(DVInst->isDebugValue() && "Invalid History entry");
1266     // FIXME: Find a way to represent constant variables, since they are
1267     // relatively common.
1268     Optional<DbgVariableLocation> Location =
1269         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1270     if (!Location)
1271       continue;
1272 
1273     // CodeView can only express variables in register and variables in memory
1274     // at a constant offset from a register. However, for variables passed
1275     // indirectly by pointer, it is common for that pointer to be spilled to a
1276     // stack location. For the special case of one offseted load followed by a
1277     // zero offset load (a pointer spilled to the stack), we change the type of
1278     // the local variable from a value type to a reference type. This tricks the
1279     // debugger into doing the load for us.
1280     if (Var.UseReferenceType) {
1281       // We're using a reference type. Drop the last zero offset load.
1282       if (canUseReferenceType(*Location))
1283         Location->LoadChain.pop_back();
1284       else
1285         continue;
1286     } else if (needsReferenceType(*Location)) {
1287       // This location can't be expressed without switching to a reference type.
1288       // Start over using that.
1289       Var.UseReferenceType = true;
1290       Var.DefRanges.clear();
1291       calculateRanges(Var, Entries);
1292       return;
1293     }
1294 
1295     // We can only handle a register or an offseted load of a register.
1296     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1297       continue;
1298     {
1299       LocalVarDefRange DR;
1300       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1301       DR.InMemory = !Location->LoadChain.empty();
1302       DR.DataOffset =
1303           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1304       if (Location->FragmentInfo) {
1305         DR.IsSubfield = true;
1306         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1307       } else {
1308         DR.IsSubfield = false;
1309         DR.StructOffset = 0;
1310       }
1311 
1312       if (Var.DefRanges.empty() ||
1313           Var.DefRanges.back().isDifferentLocation(DR)) {
1314         Var.DefRanges.emplace_back(std::move(DR));
1315       }
1316     }
1317 
1318     // Compute the label range.
1319     const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1320     const MCSymbol *End;
1321     if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1322       auto &EndingEntry = Entries[Entry.getEndIndex()];
1323       End = EndingEntry.isDbgValue()
1324                 ? getLabelBeforeInsn(EndingEntry.getInstr())
1325                 : getLabelAfterInsn(EndingEntry.getInstr());
1326     } else
1327       End = Asm->getFunctionEnd();
1328 
1329     // If the last range end is our begin, just extend the last range.
1330     // Otherwise make a new range.
1331     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1332         Var.DefRanges.back().Ranges;
1333     if (!R.empty() && R.back().second == Begin)
1334       R.back().second = End;
1335     else
1336       R.emplace_back(Begin, End);
1337 
1338     // FIXME: Do more range combining.
1339   }
1340 }
1341 
1342 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1343   DenseSet<InlinedEntity> Processed;
1344   // Grab the variable info that was squirreled away in the MMI side-table.
1345   collectVariableInfoFromMFTable(Processed);
1346 
1347   for (const auto &I : DbgValues) {
1348     InlinedEntity IV = I.first;
1349     if (Processed.count(IV))
1350       continue;
1351     const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1352     const DILocation *InlinedAt = IV.second;
1353 
1354     // Instruction ranges, specifying where IV is accessible.
1355     const auto &Entries = I.second;
1356 
1357     LexicalScope *Scope = nullptr;
1358     if (InlinedAt)
1359       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1360     else
1361       Scope = LScopes.findLexicalScope(DIVar->getScope());
1362     // If variable scope is not found then skip this variable.
1363     if (!Scope)
1364       continue;
1365 
1366     LocalVariable Var;
1367     Var.DIVar = DIVar;
1368 
1369     calculateRanges(Var, Entries);
1370     recordLocalVariable(std::move(Var), Scope);
1371   }
1372 }
1373 
1374 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1375   const TargetSubtargetInfo &TSI = MF->getSubtarget();
1376   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1377   const MachineFrameInfo &MFI = MF->getFrameInfo();
1378   const Function &GV = MF->getFunction();
1379   auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1380   assert(Insertion.second && "function already has info");
1381   CurFn = Insertion.first->second.get();
1382   CurFn->FuncId = NextFuncId++;
1383   CurFn->Begin = Asm->getFunctionBegin();
1384 
1385   // The S_FRAMEPROC record reports the stack size, and how many bytes of
1386   // callee-saved registers were used. For targets that don't use a PUSH
1387   // instruction (AArch64), this will be zero.
1388   CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1389   CurFn->FrameSize = MFI.getStackSize();
1390   CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1391   CurFn->HasStackRealignment = TRI->hasStackRealignment(*MF);
1392 
1393   // For this function S_FRAMEPROC record, figure out which codeview register
1394   // will be the frame pointer.
1395   CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1396   CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1397   if (CurFn->FrameSize > 0) {
1398     if (!TSI.getFrameLowering()->hasFP(*MF)) {
1399       CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1400       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1401     } else {
1402       // If there is an FP, parameters are always relative to it.
1403       CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1404       if (CurFn->HasStackRealignment) {
1405         // If the stack needs realignment, locals are relative to SP or VFRAME.
1406         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1407       } else {
1408         // Otherwise, locals are relative to EBP, and we probably have VLAs or
1409         // other stack adjustments.
1410         CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1411       }
1412     }
1413   }
1414 
1415   // Compute other frame procedure options.
1416   FrameProcedureOptions FPO = FrameProcedureOptions::None;
1417   if (MFI.hasVarSizedObjects())
1418     FPO |= FrameProcedureOptions::HasAlloca;
1419   if (MF->exposesReturnsTwice())
1420     FPO |= FrameProcedureOptions::HasSetJmp;
1421   // FIXME: Set HasLongJmp if we ever track that info.
1422   if (MF->hasInlineAsm())
1423     FPO |= FrameProcedureOptions::HasInlineAssembly;
1424   if (GV.hasPersonalityFn()) {
1425     if (isAsynchronousEHPersonality(
1426             classifyEHPersonality(GV.getPersonalityFn())))
1427       FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1428     else
1429       FPO |= FrameProcedureOptions::HasExceptionHandling;
1430   }
1431   if (GV.hasFnAttribute(Attribute::InlineHint))
1432     FPO |= FrameProcedureOptions::MarkedInline;
1433   if (GV.hasFnAttribute(Attribute::Naked))
1434     FPO |= FrameProcedureOptions::Naked;
1435   if (MFI.hasStackProtectorIndex())
1436     FPO |= FrameProcedureOptions::SecurityChecks;
1437   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1438   FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1439   if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1440       !GV.hasOptSize() && !GV.hasOptNone())
1441     FPO |= FrameProcedureOptions::OptimizedForSpeed;
1442   if (GV.hasProfileData()) {
1443     FPO |= FrameProcedureOptions::ValidProfileCounts;
1444     FPO |= FrameProcedureOptions::ProfileGuidedOptimization;
1445   }
1446   // FIXME: Set GuardCfg when it is implemented.
1447   CurFn->FrameProcOpts = FPO;
1448 
1449   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1450 
1451   // Find the end of the function prolog.  First known non-DBG_VALUE and
1452   // non-frame setup location marks the beginning of the function body.
1453   // FIXME: is there a simpler a way to do this? Can we just search
1454   // for the first instruction of the function, not the last of the prolog?
1455   DebugLoc PrologEndLoc;
1456   bool EmptyPrologue = true;
1457   for (const auto &MBB : *MF) {
1458     for (const auto &MI : MBB) {
1459       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1460           MI.getDebugLoc()) {
1461         PrologEndLoc = MI.getDebugLoc();
1462         break;
1463       } else if (!MI.isMetaInstruction()) {
1464         EmptyPrologue = false;
1465       }
1466     }
1467   }
1468 
1469   // Record beginning of function if we have a non-empty prologue.
1470   if (PrologEndLoc && !EmptyPrologue) {
1471     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1472     maybeRecordLocation(FnStartDL, MF);
1473   }
1474 
1475   // Find heap alloc sites and emit labels around them.
1476   for (const auto &MBB : *MF) {
1477     for (const auto &MI : MBB) {
1478       if (MI.getHeapAllocMarker()) {
1479         requestLabelBeforeInsn(&MI);
1480         requestLabelAfterInsn(&MI);
1481       }
1482     }
1483   }
1484 }
1485 
1486 static bool shouldEmitUdt(const DIType *T) {
1487   if (!T)
1488     return false;
1489 
1490   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1491   if (T->getTag() == dwarf::DW_TAG_typedef) {
1492     if (DIScope *Scope = T->getScope()) {
1493       switch (Scope->getTag()) {
1494       case dwarf::DW_TAG_structure_type:
1495       case dwarf::DW_TAG_class_type:
1496       case dwarf::DW_TAG_union_type:
1497         return false;
1498       default:
1499           // do nothing.
1500           ;
1501       }
1502     }
1503   }
1504 
1505   while (true) {
1506     if (!T || T->isForwardDecl())
1507       return false;
1508 
1509     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1510     if (!DT)
1511       return true;
1512     T = DT->getBaseType();
1513   }
1514   return true;
1515 }
1516 
1517 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1518   // Don't record empty UDTs.
1519   if (Ty->getName().empty())
1520     return;
1521   if (!shouldEmitUdt(Ty))
1522     return;
1523 
1524   SmallVector<StringRef, 5> ParentScopeNames;
1525   const DISubprogram *ClosestSubprogram =
1526       collectParentScopeNames(Ty->getScope(), ParentScopeNames);
1527 
1528   std::string FullyQualifiedName =
1529       formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
1530 
1531   if (ClosestSubprogram == nullptr) {
1532     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1533   } else if (ClosestSubprogram == CurrentSubprogram) {
1534     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1535   }
1536 
1537   // TODO: What if the ClosestSubprogram is neither null or the current
1538   // subprogram?  Currently, the UDT just gets dropped on the floor.
1539   //
1540   // The current behavior is not desirable.  To get maximal fidelity, we would
1541   // need to perform all type translation before beginning emission of .debug$S
1542   // and then make LocalUDTs a member of FunctionInfo
1543 }
1544 
1545 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1546   // Generic dispatch for lowering an unknown type.
1547   switch (Ty->getTag()) {
1548   case dwarf::DW_TAG_array_type:
1549     return lowerTypeArray(cast<DICompositeType>(Ty));
1550   case dwarf::DW_TAG_typedef:
1551     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1552   case dwarf::DW_TAG_base_type:
1553     return lowerTypeBasic(cast<DIBasicType>(Ty));
1554   case dwarf::DW_TAG_pointer_type:
1555     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1556       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1557     LLVM_FALLTHROUGH;
1558   case dwarf::DW_TAG_reference_type:
1559   case dwarf::DW_TAG_rvalue_reference_type:
1560     return lowerTypePointer(cast<DIDerivedType>(Ty));
1561   case dwarf::DW_TAG_ptr_to_member_type:
1562     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1563   case dwarf::DW_TAG_restrict_type:
1564   case dwarf::DW_TAG_const_type:
1565   case dwarf::DW_TAG_volatile_type:
1566   // TODO: add support for DW_TAG_atomic_type here
1567     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1568   case dwarf::DW_TAG_subroutine_type:
1569     if (ClassTy) {
1570       // The member function type of a member function pointer has no
1571       // ThisAdjustment.
1572       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1573                                      /*ThisAdjustment=*/0,
1574                                      /*IsStaticMethod=*/false);
1575     }
1576     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1577   case dwarf::DW_TAG_enumeration_type:
1578     return lowerTypeEnum(cast<DICompositeType>(Ty));
1579   case dwarf::DW_TAG_class_type:
1580   case dwarf::DW_TAG_structure_type:
1581     return lowerTypeClass(cast<DICompositeType>(Ty));
1582   case dwarf::DW_TAG_union_type:
1583     return lowerTypeUnion(cast<DICompositeType>(Ty));
1584   case dwarf::DW_TAG_string_type:
1585     return lowerTypeString(cast<DIStringType>(Ty));
1586   case dwarf::DW_TAG_unspecified_type:
1587     if (Ty->getName() == "decltype(nullptr)")
1588       return TypeIndex::NullptrT();
1589     return TypeIndex::None();
1590   default:
1591     // Use the null type index.
1592     return TypeIndex();
1593   }
1594 }
1595 
1596 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1597   TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1598   StringRef TypeName = Ty->getName();
1599 
1600   addToUDTs(Ty);
1601 
1602   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1603       TypeName == "HRESULT")
1604     return TypeIndex(SimpleTypeKind::HResult);
1605   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1606       TypeName == "wchar_t")
1607     return TypeIndex(SimpleTypeKind::WideCharacter);
1608 
1609   return UnderlyingTypeIndex;
1610 }
1611 
1612 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1613   const DIType *ElementType = Ty->getBaseType();
1614   TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1615   // IndexType is size_t, which depends on the bitness of the target.
1616   TypeIndex IndexType = getPointerSizeInBytes() == 8
1617                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1618                             : TypeIndex(SimpleTypeKind::UInt32Long);
1619 
1620   uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1621 
1622   // Add subranges to array type.
1623   DINodeArray Elements = Ty->getElements();
1624   for (int i = Elements.size() - 1; i >= 0; --i) {
1625     const DINode *Element = Elements[i];
1626     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1627 
1628     const DISubrange *Subrange = cast<DISubrange>(Element);
1629     int64_t Count = -1;
1630 
1631     // If Subrange has a Count field, use it.
1632     // Otherwise, if it has an upperboud, use (upperbound - lowerbound + 1),
1633     // where lowerbound is from the LowerBound field of the Subrange,
1634     // or the language default lowerbound if that field is unspecified.
1635     if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt *>())
1636       Count = CI->getSExtValue();
1637     else if (auto *UI = Subrange->getUpperBound().dyn_cast<ConstantInt *>()) {
1638       // Fortran uses 1 as the default lowerbound; other languages use 0.
1639       int64_t Lowerbound = (moduleIsInFortran()) ? 1 : 0;
1640       auto *LI = Subrange->getLowerBound().dyn_cast<ConstantInt *>();
1641       Lowerbound = (LI) ? LI->getSExtValue() : Lowerbound;
1642       Count = UI->getSExtValue() - Lowerbound + 1;
1643     }
1644 
1645     // Forward declarations of arrays without a size and VLAs use a count of -1.
1646     // Emit a count of zero in these cases to match what MSVC does for arrays
1647     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1648     // should do for them even if we could distinguish them.
1649     if (Count == -1)
1650       Count = 0;
1651 
1652     // Update the element size and element type index for subsequent subranges.
1653     ElementSize *= Count;
1654 
1655     // If this is the outermost array, use the size from the array. It will be
1656     // more accurate if we had a VLA or an incomplete element type size.
1657     uint64_t ArraySize =
1658         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1659 
1660     StringRef Name = (i == 0) ? Ty->getName() : "";
1661     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1662     ElementTypeIndex = TypeTable.writeLeafType(AR);
1663   }
1664 
1665   return ElementTypeIndex;
1666 }
1667 
1668 // This function lowers a Fortran character type (DIStringType).
1669 // Note that it handles only the character*n variant (using SizeInBits
1670 // field in DIString to describe the type size) at the moment.
1671 // Other variants (leveraging the StringLength and StringLengthExp
1672 // fields in DIStringType) remain TBD.
1673 TypeIndex CodeViewDebug::lowerTypeString(const DIStringType *Ty) {
1674   TypeIndex CharType = TypeIndex(SimpleTypeKind::NarrowCharacter);
1675   uint64_t ArraySize = Ty->getSizeInBits() >> 3;
1676   StringRef Name = Ty->getName();
1677   // IndexType is size_t, which depends on the bitness of the target.
1678   TypeIndex IndexType = getPointerSizeInBytes() == 8
1679                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1680                             : TypeIndex(SimpleTypeKind::UInt32Long);
1681 
1682   // Create a type of character array of ArraySize.
1683   ArrayRecord AR(CharType, IndexType, ArraySize, Name);
1684 
1685   return TypeTable.writeLeafType(AR);
1686 }
1687 
1688 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1689   TypeIndex Index;
1690   dwarf::TypeKind Kind;
1691   uint32_t ByteSize;
1692 
1693   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1694   ByteSize = Ty->getSizeInBits() / 8;
1695 
1696   SimpleTypeKind STK = SimpleTypeKind::None;
1697   switch (Kind) {
1698   case dwarf::DW_ATE_address:
1699     // FIXME: Translate
1700     break;
1701   case dwarf::DW_ATE_boolean:
1702     switch (ByteSize) {
1703     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1704     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1705     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1706     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1707     case 16: STK = SimpleTypeKind::Boolean128; break;
1708     }
1709     break;
1710   case dwarf::DW_ATE_complex_float:
1711     switch (ByteSize) {
1712     case 2:  STK = SimpleTypeKind::Complex16;  break;
1713     case 4:  STK = SimpleTypeKind::Complex32;  break;
1714     case 8:  STK = SimpleTypeKind::Complex64;  break;
1715     case 10: STK = SimpleTypeKind::Complex80;  break;
1716     case 16: STK = SimpleTypeKind::Complex128; break;
1717     }
1718     break;
1719   case dwarf::DW_ATE_float:
1720     switch (ByteSize) {
1721     case 2:  STK = SimpleTypeKind::Float16;  break;
1722     case 4:  STK = SimpleTypeKind::Float32;  break;
1723     case 6:  STK = SimpleTypeKind::Float48;  break;
1724     case 8:  STK = SimpleTypeKind::Float64;  break;
1725     case 10: STK = SimpleTypeKind::Float80;  break;
1726     case 16: STK = SimpleTypeKind::Float128; break;
1727     }
1728     break;
1729   case dwarf::DW_ATE_signed:
1730     switch (ByteSize) {
1731     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1732     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1733     case 4:  STK = SimpleTypeKind::Int32;           break;
1734     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1735     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1736     }
1737     break;
1738   case dwarf::DW_ATE_unsigned:
1739     switch (ByteSize) {
1740     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1741     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1742     case 4:  STK = SimpleTypeKind::UInt32;            break;
1743     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1744     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1745     }
1746     break;
1747   case dwarf::DW_ATE_UTF:
1748     switch (ByteSize) {
1749     case 2: STK = SimpleTypeKind::Character16; break;
1750     case 4: STK = SimpleTypeKind::Character32; break;
1751     }
1752     break;
1753   case dwarf::DW_ATE_signed_char:
1754     if (ByteSize == 1)
1755       STK = SimpleTypeKind::SignedCharacter;
1756     break;
1757   case dwarf::DW_ATE_unsigned_char:
1758     if (ByteSize == 1)
1759       STK = SimpleTypeKind::UnsignedCharacter;
1760     break;
1761   default:
1762     break;
1763   }
1764 
1765   // Apply some fixups based on the source-level type name.
1766   // Include some amount of canonicalization from an old naming scheme Clang
1767   // used to use for integer types (in an outdated effort to be compatible with
1768   // GCC's debug info/GDB's behavior, which has since been addressed).
1769   if (STK == SimpleTypeKind::Int32 &&
1770       (Ty->getName() == "long int" || Ty->getName() == "long"))
1771     STK = SimpleTypeKind::Int32Long;
1772   if (STK == SimpleTypeKind::UInt32 && (Ty->getName() == "long unsigned int" ||
1773                                         Ty->getName() == "unsigned long"))
1774     STK = SimpleTypeKind::UInt32Long;
1775   if (STK == SimpleTypeKind::UInt16Short &&
1776       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1777     STK = SimpleTypeKind::WideCharacter;
1778   if ((STK == SimpleTypeKind::SignedCharacter ||
1779        STK == SimpleTypeKind::UnsignedCharacter) &&
1780       Ty->getName() == "char")
1781     STK = SimpleTypeKind::NarrowCharacter;
1782 
1783   return TypeIndex(STK);
1784 }
1785 
1786 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1787                                           PointerOptions PO) {
1788   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1789 
1790   // Pointers to simple types without any options can use SimpleTypeMode, rather
1791   // than having a dedicated pointer type record.
1792   if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1793       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1794       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1795     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1796                               ? SimpleTypeMode::NearPointer64
1797                               : SimpleTypeMode::NearPointer32;
1798     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1799   }
1800 
1801   PointerKind PK =
1802       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1803   PointerMode PM = PointerMode::Pointer;
1804   switch (Ty->getTag()) {
1805   default: llvm_unreachable("not a pointer tag type");
1806   case dwarf::DW_TAG_pointer_type:
1807     PM = PointerMode::Pointer;
1808     break;
1809   case dwarf::DW_TAG_reference_type:
1810     PM = PointerMode::LValueReference;
1811     break;
1812   case dwarf::DW_TAG_rvalue_reference_type:
1813     PM = PointerMode::RValueReference;
1814     break;
1815   }
1816 
1817   if (Ty->isObjectPointer())
1818     PO |= PointerOptions::Const;
1819 
1820   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1821   return TypeTable.writeLeafType(PR);
1822 }
1823 
1824 static PointerToMemberRepresentation
1825 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1826   // SizeInBytes being zero generally implies that the member pointer type was
1827   // incomplete, which can happen if it is part of a function prototype. In this
1828   // case, use the unknown model instead of the general model.
1829   if (IsPMF) {
1830     switch (Flags & DINode::FlagPtrToMemberRep) {
1831     case 0:
1832       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1833                               : PointerToMemberRepresentation::GeneralFunction;
1834     case DINode::FlagSingleInheritance:
1835       return PointerToMemberRepresentation::SingleInheritanceFunction;
1836     case DINode::FlagMultipleInheritance:
1837       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1838     case DINode::FlagVirtualInheritance:
1839       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1840     }
1841   } else {
1842     switch (Flags & DINode::FlagPtrToMemberRep) {
1843     case 0:
1844       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1845                               : PointerToMemberRepresentation::GeneralData;
1846     case DINode::FlagSingleInheritance:
1847       return PointerToMemberRepresentation::SingleInheritanceData;
1848     case DINode::FlagMultipleInheritance:
1849       return PointerToMemberRepresentation::MultipleInheritanceData;
1850     case DINode::FlagVirtualInheritance:
1851       return PointerToMemberRepresentation::VirtualInheritanceData;
1852     }
1853   }
1854   llvm_unreachable("invalid ptr to member representation");
1855 }
1856 
1857 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1858                                                 PointerOptions PO) {
1859   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1860   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1861   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1862   TypeIndex PointeeTI =
1863       getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
1864   PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1865                                                 : PointerKind::Near32;
1866   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1867                          : PointerMode::PointerToDataMember;
1868 
1869   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1870   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1871   MemberPointerInfo MPI(
1872       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1873   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1874   return TypeTable.writeLeafType(PR);
1875 }
1876 
1877 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1878 /// have a translation, use the NearC convention.
1879 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1880   switch (DwarfCC) {
1881   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1882   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1883   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1884   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1885   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1886   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1887   }
1888   return CallingConvention::NearC;
1889 }
1890 
1891 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1892   ModifierOptions Mods = ModifierOptions::None;
1893   PointerOptions PO = PointerOptions::None;
1894   bool IsModifier = true;
1895   const DIType *BaseTy = Ty;
1896   while (IsModifier && BaseTy) {
1897     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1898     switch (BaseTy->getTag()) {
1899     case dwarf::DW_TAG_const_type:
1900       Mods |= ModifierOptions::Const;
1901       PO |= PointerOptions::Const;
1902       break;
1903     case dwarf::DW_TAG_volatile_type:
1904       Mods |= ModifierOptions::Volatile;
1905       PO |= PointerOptions::Volatile;
1906       break;
1907     case dwarf::DW_TAG_restrict_type:
1908       // Only pointer types be marked with __restrict. There is no known flag
1909       // for __restrict in LF_MODIFIER records.
1910       PO |= PointerOptions::Restrict;
1911       break;
1912     default:
1913       IsModifier = false;
1914       break;
1915     }
1916     if (IsModifier)
1917       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1918   }
1919 
1920   // Check if the inner type will use an LF_POINTER record. If so, the
1921   // qualifiers will go in the LF_POINTER record. This comes up for types like
1922   // 'int *const' and 'int *__restrict', not the more common cases like 'const
1923   // char *'.
1924   if (BaseTy) {
1925     switch (BaseTy->getTag()) {
1926     case dwarf::DW_TAG_pointer_type:
1927     case dwarf::DW_TAG_reference_type:
1928     case dwarf::DW_TAG_rvalue_reference_type:
1929       return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1930     case dwarf::DW_TAG_ptr_to_member_type:
1931       return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1932     default:
1933       break;
1934     }
1935   }
1936 
1937   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1938 
1939   // Return the base type index if there aren't any modifiers. For example, the
1940   // metadata could contain restrict wrappers around non-pointer types.
1941   if (Mods == ModifierOptions::None)
1942     return ModifiedTI;
1943 
1944   ModifierRecord MR(ModifiedTI, Mods);
1945   return TypeTable.writeLeafType(MR);
1946 }
1947 
1948 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1949   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1950   for (const DIType *ArgType : Ty->getTypeArray())
1951     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1952 
1953   // MSVC uses type none for variadic argument.
1954   if (ReturnAndArgTypeIndices.size() > 1 &&
1955       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1956     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1957   }
1958   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1959   ArrayRef<TypeIndex> ArgTypeIndices = None;
1960   if (!ReturnAndArgTypeIndices.empty()) {
1961     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1962     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1963     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1964   }
1965 
1966   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1967   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1968 
1969   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1970 
1971   FunctionOptions FO = getFunctionOptions(Ty);
1972   ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1973                             ArgListIndex);
1974   return TypeTable.writeLeafType(Procedure);
1975 }
1976 
1977 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1978                                                  const DIType *ClassTy,
1979                                                  int ThisAdjustment,
1980                                                  bool IsStaticMethod,
1981                                                  FunctionOptions FO) {
1982   // Lower the containing class type.
1983   TypeIndex ClassType = getTypeIndex(ClassTy);
1984 
1985   DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1986 
1987   unsigned Index = 0;
1988   SmallVector<TypeIndex, 8> ArgTypeIndices;
1989   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1990   if (ReturnAndArgs.size() > Index) {
1991     ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1992   }
1993 
1994   // If the first argument is a pointer type and this isn't a static method,
1995   // treat it as the special 'this' parameter, which is encoded separately from
1996   // the arguments.
1997   TypeIndex ThisTypeIndex;
1998   if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1999     if (const DIDerivedType *PtrTy =
2000             dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
2001       if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
2002         ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
2003         Index++;
2004       }
2005     }
2006   }
2007 
2008   while (Index < ReturnAndArgs.size())
2009     ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
2010 
2011   // MSVC uses type none for variadic argument.
2012   if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
2013     ArgTypeIndices.back() = TypeIndex::None();
2014 
2015   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
2016   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
2017 
2018   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
2019 
2020   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
2021                            ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
2022   return TypeTable.writeLeafType(MFR);
2023 }
2024 
2025 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
2026   unsigned VSlotCount =
2027       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
2028   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
2029 
2030   VFTableShapeRecord VFTSR(Slots);
2031   return TypeTable.writeLeafType(VFTSR);
2032 }
2033 
2034 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
2035   switch (Flags & DINode::FlagAccessibility) {
2036   case DINode::FlagPrivate:   return MemberAccess::Private;
2037   case DINode::FlagPublic:    return MemberAccess::Public;
2038   case DINode::FlagProtected: return MemberAccess::Protected;
2039   case 0:
2040     // If there was no explicit access control, provide the default for the tag.
2041     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
2042                                                  : MemberAccess::Public;
2043   }
2044   llvm_unreachable("access flags are exclusive");
2045 }
2046 
2047 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
2048   if (SP->isArtificial())
2049     return MethodOptions::CompilerGenerated;
2050 
2051   // FIXME: Handle other MethodOptions.
2052 
2053   return MethodOptions::None;
2054 }
2055 
2056 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
2057                                            bool Introduced) {
2058   if (SP->getFlags() & DINode::FlagStaticMember)
2059     return MethodKind::Static;
2060 
2061   switch (SP->getVirtuality()) {
2062   case dwarf::DW_VIRTUALITY_none:
2063     break;
2064   case dwarf::DW_VIRTUALITY_virtual:
2065     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
2066   case dwarf::DW_VIRTUALITY_pure_virtual:
2067     return Introduced ? MethodKind::PureIntroducingVirtual
2068                       : MethodKind::PureVirtual;
2069   default:
2070     llvm_unreachable("unhandled virtuality case");
2071   }
2072 
2073   return MethodKind::Vanilla;
2074 }
2075 
2076 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
2077   switch (Ty->getTag()) {
2078   case dwarf::DW_TAG_class_type:
2079     return TypeRecordKind::Class;
2080   case dwarf::DW_TAG_structure_type:
2081     return TypeRecordKind::Struct;
2082   default:
2083     llvm_unreachable("unexpected tag");
2084   }
2085 }
2086 
2087 /// Return ClassOptions that should be present on both the forward declaration
2088 /// and the defintion of a tag type.
2089 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
2090   ClassOptions CO = ClassOptions::None;
2091 
2092   // MSVC always sets this flag, even for local types. Clang doesn't always
2093   // appear to give every type a linkage name, which may be problematic for us.
2094   // FIXME: Investigate the consequences of not following them here.
2095   if (!Ty->getIdentifier().empty())
2096     CO |= ClassOptions::HasUniqueName;
2097 
2098   // Put the Nested flag on a type if it appears immediately inside a tag type.
2099   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2100   // here. That flag is only set on definitions, and not forward declarations.
2101   const DIScope *ImmediateScope = Ty->getScope();
2102   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2103     CO |= ClassOptions::Nested;
2104 
2105   // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2106   // type only when it has an immediate function scope. Clang never puts enums
2107   // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2108   // always in function, class, or file scopes.
2109   if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2110     if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2111       CO |= ClassOptions::Scoped;
2112   } else {
2113     for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2114          Scope = Scope->getScope()) {
2115       if (isa<DISubprogram>(Scope)) {
2116         CO |= ClassOptions::Scoped;
2117         break;
2118       }
2119     }
2120   }
2121 
2122   return CO;
2123 }
2124 
2125 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2126   switch (Ty->getTag()) {
2127   case dwarf::DW_TAG_class_type:
2128   case dwarf::DW_TAG_structure_type:
2129   case dwarf::DW_TAG_union_type:
2130   case dwarf::DW_TAG_enumeration_type:
2131     break;
2132   default:
2133     return;
2134   }
2135 
2136   if (const auto *File = Ty->getFile()) {
2137     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2138     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2139 
2140     UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2141     TypeTable.writeLeafType(USLR);
2142   }
2143 }
2144 
2145 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2146   ClassOptions CO = getCommonClassOptions(Ty);
2147   TypeIndex FTI;
2148   unsigned EnumeratorCount = 0;
2149 
2150   if (Ty->isForwardDecl()) {
2151     CO |= ClassOptions::ForwardReference;
2152   } else {
2153     ContinuationRecordBuilder ContinuationBuilder;
2154     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2155     for (const DINode *Element : Ty->getElements()) {
2156       // We assume that the frontend provides all members in source declaration
2157       // order, which is what MSVC does.
2158       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2159         // FIXME: Is it correct to always emit these as unsigned here?
2160         EnumeratorRecord ER(MemberAccess::Public,
2161                             APSInt(Enumerator->getValue(), true),
2162                             Enumerator->getName());
2163         ContinuationBuilder.writeMemberType(ER);
2164         EnumeratorCount++;
2165       }
2166     }
2167     FTI = TypeTable.insertRecord(ContinuationBuilder);
2168   }
2169 
2170   std::string FullName = getFullyQualifiedName(Ty);
2171 
2172   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2173                 getTypeIndex(Ty->getBaseType()));
2174   TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2175 
2176   addUDTSrcLine(Ty, EnumTI);
2177 
2178   return EnumTI;
2179 }
2180 
2181 //===----------------------------------------------------------------------===//
2182 // ClassInfo
2183 //===----------------------------------------------------------------------===//
2184 
2185 struct llvm::ClassInfo {
2186   struct MemberInfo {
2187     const DIDerivedType *MemberTypeNode;
2188     uint64_t BaseOffset;
2189   };
2190   // [MemberInfo]
2191   using MemberList = std::vector<MemberInfo>;
2192 
2193   using MethodsList = TinyPtrVector<const DISubprogram *>;
2194   // MethodName -> MethodsList
2195   using MethodsMap = MapVector<MDString *, MethodsList>;
2196 
2197   /// Base classes.
2198   std::vector<const DIDerivedType *> Inheritance;
2199 
2200   /// Direct members.
2201   MemberList Members;
2202   // Direct overloaded methods gathered by name.
2203   MethodsMap Methods;
2204 
2205   TypeIndex VShapeTI;
2206 
2207   std::vector<const DIType *> NestedTypes;
2208 };
2209 
2210 void CodeViewDebug::clear() {
2211   assert(CurFn == nullptr);
2212   FileIdMap.clear();
2213   FnDebugInfo.clear();
2214   FileToFilepathMap.clear();
2215   LocalUDTs.clear();
2216   GlobalUDTs.clear();
2217   TypeIndices.clear();
2218   CompleteTypeIndices.clear();
2219   ScopeGlobals.clear();
2220   CVGlobalVariableOffsets.clear();
2221 }
2222 
2223 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2224                                       const DIDerivedType *DDTy) {
2225   if (!DDTy->getName().empty()) {
2226     Info.Members.push_back({DDTy, 0});
2227 
2228     // Collect static const data members with values.
2229     if ((DDTy->getFlags() & DINode::FlagStaticMember) ==
2230         DINode::FlagStaticMember) {
2231       if (DDTy->getConstant() && (isa<ConstantInt>(DDTy->getConstant()) ||
2232                                   isa<ConstantFP>(DDTy->getConstant())))
2233         StaticConstMembers.push_back(DDTy);
2234     }
2235 
2236     return;
2237   }
2238 
2239   // An unnamed member may represent a nested struct or union. Attempt to
2240   // interpret the unnamed member as a DICompositeType possibly wrapped in
2241   // qualifier types. Add all the indirect fields to the current record if that
2242   // succeeds, and drop the member if that fails.
2243   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2244   uint64_t Offset = DDTy->getOffsetInBits();
2245   const DIType *Ty = DDTy->getBaseType();
2246   bool FullyResolved = false;
2247   while (!FullyResolved) {
2248     switch (Ty->getTag()) {
2249     case dwarf::DW_TAG_const_type:
2250     case dwarf::DW_TAG_volatile_type:
2251       // FIXME: we should apply the qualifier types to the indirect fields
2252       // rather than dropping them.
2253       Ty = cast<DIDerivedType>(Ty)->getBaseType();
2254       break;
2255     default:
2256       FullyResolved = true;
2257       break;
2258     }
2259   }
2260 
2261   const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2262   if (!DCTy)
2263     return;
2264 
2265   ClassInfo NestedInfo = collectClassInfo(DCTy);
2266   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2267     Info.Members.push_back(
2268         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2269 }
2270 
2271 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2272   ClassInfo Info;
2273   // Add elements to structure type.
2274   DINodeArray Elements = Ty->getElements();
2275   for (auto *Element : Elements) {
2276     // We assume that the frontend provides all members in source declaration
2277     // order, which is what MSVC does.
2278     if (!Element)
2279       continue;
2280     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2281       Info.Methods[SP->getRawName()].push_back(SP);
2282     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2283       if (DDTy->getTag() == dwarf::DW_TAG_member) {
2284         collectMemberInfo(Info, DDTy);
2285       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2286         Info.Inheritance.push_back(DDTy);
2287       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2288                  DDTy->getName() == "__vtbl_ptr_type") {
2289         Info.VShapeTI = getTypeIndex(DDTy);
2290       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2291         Info.NestedTypes.push_back(DDTy);
2292       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2293         // Ignore friend members. It appears that MSVC emitted info about
2294         // friends in the past, but modern versions do not.
2295       }
2296     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2297       Info.NestedTypes.push_back(Composite);
2298     }
2299     // Skip other unrecognized kinds of elements.
2300   }
2301   return Info;
2302 }
2303 
2304 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2305   // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2306   // if a complete type should be emitted instead of a forward reference.
2307   return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2308       !Ty->isForwardDecl();
2309 }
2310 
2311 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2312   // Emit the complete type for unnamed structs.  C++ classes with methods
2313   // which have a circular reference back to the class type are expected to
2314   // be named by the front-end and should not be "unnamed".  C unnamed
2315   // structs should not have circular references.
2316   if (shouldAlwaysEmitCompleteClassType(Ty)) {
2317     // If this unnamed complete type is already in the process of being defined
2318     // then the description of the type is malformed and cannot be emitted
2319     // into CodeView correctly so report a fatal error.
2320     auto I = CompleteTypeIndices.find(Ty);
2321     if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2322       report_fatal_error("cannot debug circular reference to unnamed type");
2323     return getCompleteTypeIndex(Ty);
2324   }
2325 
2326   // First, construct the forward decl.  Don't look into Ty to compute the
2327   // forward decl options, since it might not be available in all TUs.
2328   TypeRecordKind Kind = getRecordKind(Ty);
2329   ClassOptions CO =
2330       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2331   std::string FullName = getFullyQualifiedName(Ty);
2332   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2333                  FullName, Ty->getIdentifier());
2334   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2335   if (!Ty->isForwardDecl())
2336     DeferredCompleteTypes.push_back(Ty);
2337   return FwdDeclTI;
2338 }
2339 
2340 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2341   // Construct the field list and complete type record.
2342   TypeRecordKind Kind = getRecordKind(Ty);
2343   ClassOptions CO = getCommonClassOptions(Ty);
2344   TypeIndex FieldTI;
2345   TypeIndex VShapeTI;
2346   unsigned FieldCount;
2347   bool ContainsNestedClass;
2348   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2349       lowerRecordFieldList(Ty);
2350 
2351   if (ContainsNestedClass)
2352     CO |= ClassOptions::ContainsNestedClass;
2353 
2354   // MSVC appears to set this flag by searching any destructor or method with
2355   // FunctionOptions::Constructor among the emitted members. Clang AST has all
2356   // the members, however special member functions are not yet emitted into
2357   // debug information. For now checking a class's non-triviality seems enough.
2358   // FIXME: not true for a nested unnamed struct.
2359   if (isNonTrivial(Ty))
2360     CO |= ClassOptions::HasConstructorOrDestructor;
2361 
2362   std::string FullName = getFullyQualifiedName(Ty);
2363 
2364   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2365 
2366   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2367                  SizeInBytes, FullName, Ty->getIdentifier());
2368   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2369 
2370   addUDTSrcLine(Ty, ClassTI);
2371 
2372   addToUDTs(Ty);
2373 
2374   return ClassTI;
2375 }
2376 
2377 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2378   // Emit the complete type for unnamed unions.
2379   if (shouldAlwaysEmitCompleteClassType(Ty))
2380     return getCompleteTypeIndex(Ty);
2381 
2382   ClassOptions CO =
2383       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2384   std::string FullName = getFullyQualifiedName(Ty);
2385   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2386   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2387   if (!Ty->isForwardDecl())
2388     DeferredCompleteTypes.push_back(Ty);
2389   return FwdDeclTI;
2390 }
2391 
2392 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2393   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2394   TypeIndex FieldTI;
2395   unsigned FieldCount;
2396   bool ContainsNestedClass;
2397   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2398       lowerRecordFieldList(Ty);
2399 
2400   if (ContainsNestedClass)
2401     CO |= ClassOptions::ContainsNestedClass;
2402 
2403   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2404   std::string FullName = getFullyQualifiedName(Ty);
2405 
2406   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2407                  Ty->getIdentifier());
2408   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2409 
2410   addUDTSrcLine(Ty, UnionTI);
2411 
2412   addToUDTs(Ty);
2413 
2414   return UnionTI;
2415 }
2416 
2417 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
2418 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2419   // Manually count members. MSVC appears to count everything that generates a
2420   // field list record. Each individual overload in a method overload group
2421   // contributes to this count, even though the overload group is a single field
2422   // list record.
2423   unsigned MemberCount = 0;
2424   ClassInfo Info = collectClassInfo(Ty);
2425   ContinuationRecordBuilder ContinuationBuilder;
2426   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2427 
2428   // Create base classes.
2429   for (const DIDerivedType *I : Info.Inheritance) {
2430     if (I->getFlags() & DINode::FlagVirtual) {
2431       // Virtual base.
2432       unsigned VBPtrOffset = I->getVBPtrOffset();
2433       // FIXME: Despite the accessor name, the offset is really in bytes.
2434       unsigned VBTableIndex = I->getOffsetInBits() / 4;
2435       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2436                             ? TypeRecordKind::IndirectVirtualBaseClass
2437                             : TypeRecordKind::VirtualBaseClass;
2438       VirtualBaseClassRecord VBCR(
2439           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2440           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2441           VBTableIndex);
2442 
2443       ContinuationBuilder.writeMemberType(VBCR);
2444       MemberCount++;
2445     } else {
2446       assert(I->getOffsetInBits() % 8 == 0 &&
2447              "bases must be on byte boundaries");
2448       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2449                           getTypeIndex(I->getBaseType()),
2450                           I->getOffsetInBits() / 8);
2451       ContinuationBuilder.writeMemberType(BCR);
2452       MemberCount++;
2453     }
2454   }
2455 
2456   // Create members.
2457   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2458     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2459     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2460     StringRef MemberName = Member->getName();
2461     MemberAccess Access =
2462         translateAccessFlags(Ty->getTag(), Member->getFlags());
2463 
2464     if (Member->isStaticMember()) {
2465       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2466       ContinuationBuilder.writeMemberType(SDMR);
2467       MemberCount++;
2468       continue;
2469     }
2470 
2471     // Virtual function pointer member.
2472     if ((Member->getFlags() & DINode::FlagArtificial) &&
2473         Member->getName().startswith("_vptr$")) {
2474       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2475       ContinuationBuilder.writeMemberType(VFPR);
2476       MemberCount++;
2477       continue;
2478     }
2479 
2480     // Data member.
2481     uint64_t MemberOffsetInBits =
2482         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2483     if (Member->isBitField()) {
2484       uint64_t StartBitOffset = MemberOffsetInBits;
2485       if (const auto *CI =
2486               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2487         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2488       }
2489       StartBitOffset -= MemberOffsetInBits;
2490       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2491                          StartBitOffset);
2492       MemberBaseType = TypeTable.writeLeafType(BFR);
2493     }
2494     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2495     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2496                          MemberName);
2497     ContinuationBuilder.writeMemberType(DMR);
2498     MemberCount++;
2499   }
2500 
2501   // Create methods
2502   for (auto &MethodItr : Info.Methods) {
2503     StringRef Name = MethodItr.first->getString();
2504 
2505     std::vector<OneMethodRecord> Methods;
2506     for (const DISubprogram *SP : MethodItr.second) {
2507       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2508       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2509 
2510       unsigned VFTableOffset = -1;
2511       if (Introduced)
2512         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2513 
2514       Methods.push_back(OneMethodRecord(
2515           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2516           translateMethodKindFlags(SP, Introduced),
2517           translateMethodOptionFlags(SP), VFTableOffset, Name));
2518       MemberCount++;
2519     }
2520     assert(!Methods.empty() && "Empty methods map entry");
2521     if (Methods.size() == 1)
2522       ContinuationBuilder.writeMemberType(Methods[0]);
2523     else {
2524       // FIXME: Make this use its own ContinuationBuilder so that
2525       // MethodOverloadList can be split correctly.
2526       MethodOverloadListRecord MOLR(Methods);
2527       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2528 
2529       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2530       ContinuationBuilder.writeMemberType(OMR);
2531     }
2532   }
2533 
2534   // Create nested classes.
2535   for (const DIType *Nested : Info.NestedTypes) {
2536     NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2537     ContinuationBuilder.writeMemberType(R);
2538     MemberCount++;
2539   }
2540 
2541   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2542   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2543                          !Info.NestedTypes.empty());
2544 }
2545 
2546 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2547   if (!VBPType.getIndex()) {
2548     // Make a 'const int *' type.
2549     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2550     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2551 
2552     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2553                                                   : PointerKind::Near32;
2554     PointerMode PM = PointerMode::Pointer;
2555     PointerOptions PO = PointerOptions::None;
2556     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2557     VBPType = TypeTable.writeLeafType(PR);
2558   }
2559 
2560   return VBPType;
2561 }
2562 
2563 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2564   // The null DIType is the void type. Don't try to hash it.
2565   if (!Ty)
2566     return TypeIndex::Void();
2567 
2568   // Check if we've already translated this type. Don't try to do a
2569   // get-or-create style insertion that caches the hash lookup across the
2570   // lowerType call. It will update the TypeIndices map.
2571   auto I = TypeIndices.find({Ty, ClassTy});
2572   if (I != TypeIndices.end())
2573     return I->second;
2574 
2575   TypeLoweringScope S(*this);
2576   TypeIndex TI = lowerType(Ty, ClassTy);
2577   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2578 }
2579 
2580 codeview::TypeIndex
2581 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2582                                       const DISubroutineType *SubroutineTy) {
2583   assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2584          "this type must be a pointer type");
2585 
2586   PointerOptions Options = PointerOptions::None;
2587   if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2588     Options = PointerOptions::LValueRefThisPointer;
2589   else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2590     Options = PointerOptions::RValueRefThisPointer;
2591 
2592   // Check if we've already translated this type.  If there is no ref qualifier
2593   // on the function then we look up this pointer type with no associated class
2594   // so that the TypeIndex for the this pointer can be shared with the type
2595   // index for other pointers to this class type.  If there is a ref qualifier
2596   // then we lookup the pointer using the subroutine as the parent type.
2597   auto I = TypeIndices.find({PtrTy, SubroutineTy});
2598   if (I != TypeIndices.end())
2599     return I->second;
2600 
2601   TypeLoweringScope S(*this);
2602   TypeIndex TI = lowerTypePointer(PtrTy, Options);
2603   return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2604 }
2605 
2606 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2607   PointerRecord PR(getTypeIndex(Ty),
2608                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2609                                                 : PointerKind::Near32,
2610                    PointerMode::LValueReference, PointerOptions::None,
2611                    Ty->getSizeInBits() / 8);
2612   return TypeTable.writeLeafType(PR);
2613 }
2614 
2615 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2616   // The null DIType is the void type. Don't try to hash it.
2617   if (!Ty)
2618     return TypeIndex::Void();
2619 
2620   // Look through typedefs when getting the complete type index. Call
2621   // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2622   // emitted only once.
2623   if (Ty->getTag() == dwarf::DW_TAG_typedef)
2624     (void)getTypeIndex(Ty);
2625   while (Ty->getTag() == dwarf::DW_TAG_typedef)
2626     Ty = cast<DIDerivedType>(Ty)->getBaseType();
2627 
2628   // If this is a non-record type, the complete type index is the same as the
2629   // normal type index. Just call getTypeIndex.
2630   switch (Ty->getTag()) {
2631   case dwarf::DW_TAG_class_type:
2632   case dwarf::DW_TAG_structure_type:
2633   case dwarf::DW_TAG_union_type:
2634     break;
2635   default:
2636     return getTypeIndex(Ty);
2637   }
2638 
2639   const auto *CTy = cast<DICompositeType>(Ty);
2640 
2641   TypeLoweringScope S(*this);
2642 
2643   // Make sure the forward declaration is emitted first. It's unclear if this
2644   // is necessary, but MSVC does it, and we should follow suit until we can show
2645   // otherwise.
2646   // We only emit a forward declaration for named types.
2647   if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2648     TypeIndex FwdDeclTI = getTypeIndex(CTy);
2649 
2650     // Just use the forward decl if we don't have complete type info. This
2651     // might happen if the frontend is using modules and expects the complete
2652     // definition to be emitted elsewhere.
2653     if (CTy->isForwardDecl())
2654       return FwdDeclTI;
2655   }
2656 
2657   // Check if we've already translated the complete record type.
2658   // Insert the type with a null TypeIndex to signify that the type is currently
2659   // being lowered.
2660   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2661   if (!InsertResult.second)
2662     return InsertResult.first->second;
2663 
2664   TypeIndex TI;
2665   switch (CTy->getTag()) {
2666   case dwarf::DW_TAG_class_type:
2667   case dwarf::DW_TAG_structure_type:
2668     TI = lowerCompleteTypeClass(CTy);
2669     break;
2670   case dwarf::DW_TAG_union_type:
2671     TI = lowerCompleteTypeUnion(CTy);
2672     break;
2673   default:
2674     llvm_unreachable("not a record");
2675   }
2676 
2677   // Update the type index associated with this CompositeType.  This cannot
2678   // use the 'InsertResult' iterator above because it is potentially
2679   // invalidated by map insertions which can occur while lowering the class
2680   // type above.
2681   CompleteTypeIndices[CTy] = TI;
2682   return TI;
2683 }
2684 
2685 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2686 /// and do this until fixpoint, as each complete record type typically
2687 /// references
2688 /// many other record types.
2689 void CodeViewDebug::emitDeferredCompleteTypes() {
2690   SmallVector<const DICompositeType *, 4> TypesToEmit;
2691   while (!DeferredCompleteTypes.empty()) {
2692     std::swap(DeferredCompleteTypes, TypesToEmit);
2693     for (const DICompositeType *RecordTy : TypesToEmit)
2694       getCompleteTypeIndex(RecordTy);
2695     TypesToEmit.clear();
2696   }
2697 }
2698 
2699 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2700                                           ArrayRef<LocalVariable> Locals) {
2701   // Get the sorted list of parameters and emit them first.
2702   SmallVector<const LocalVariable *, 6> Params;
2703   for (const LocalVariable &L : Locals)
2704     if (L.DIVar->isParameter())
2705       Params.push_back(&L);
2706   llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2707     return L->DIVar->getArg() < R->DIVar->getArg();
2708   });
2709   for (const LocalVariable *L : Params)
2710     emitLocalVariable(FI, *L);
2711 
2712   // Next emit all non-parameters in the order that we found them.
2713   for (const LocalVariable &L : Locals)
2714     if (!L.DIVar->isParameter())
2715       emitLocalVariable(FI, L);
2716 }
2717 
2718 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2719                                       const LocalVariable &Var) {
2720   // LocalSym record, see SymbolRecord.h for more info.
2721   MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2722 
2723   LocalSymFlags Flags = LocalSymFlags::None;
2724   if (Var.DIVar->isParameter())
2725     Flags |= LocalSymFlags::IsParameter;
2726   if (Var.DefRanges.empty())
2727     Flags |= LocalSymFlags::IsOptimizedOut;
2728 
2729   OS.AddComment("TypeIndex");
2730   TypeIndex TI = Var.UseReferenceType
2731                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2732                      : getCompleteTypeIndex(Var.DIVar->getType());
2733   OS.emitInt32(TI.getIndex());
2734   OS.AddComment("Flags");
2735   OS.emitInt16(static_cast<uint16_t>(Flags));
2736   // Truncate the name so we won't overflow the record length field.
2737   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2738   endSymbolRecord(LocalEnd);
2739 
2740   // Calculate the on disk prefix of the appropriate def range record. The
2741   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2742   // should be big enough to hold all forms without memory allocation.
2743   SmallString<20> BytePrefix;
2744   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2745     BytePrefix.clear();
2746     if (DefRange.InMemory) {
2747       int Offset = DefRange.DataOffset;
2748       unsigned Reg = DefRange.CVRegister;
2749 
2750       // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2751       // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2752       // instead. In frames without stack realignment, $T0 will be the CFA.
2753       if (RegisterId(Reg) == RegisterId::ESP) {
2754         Reg = unsigned(RegisterId::VFRAME);
2755         Offset += FI.OffsetAdjustment;
2756       }
2757 
2758       // If we can use the chosen frame pointer for the frame and this isn't a
2759       // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2760       // Otherwise, use S_DEFRANGE_REGISTER_REL.
2761       EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2762       if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2763           (bool(Flags & LocalSymFlags::IsParameter)
2764                ? (EncFP == FI.EncodedParamFramePtrReg)
2765                : (EncFP == FI.EncodedLocalFramePtrReg))) {
2766         DefRangeFramePointerRelHeader DRHdr;
2767         DRHdr.Offset = Offset;
2768         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2769       } else {
2770         uint16_t RegRelFlags = 0;
2771         if (DefRange.IsSubfield) {
2772           RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2773                         (DefRange.StructOffset
2774                          << DefRangeRegisterRelSym::OffsetInParentShift);
2775         }
2776         DefRangeRegisterRelHeader DRHdr;
2777         DRHdr.Register = Reg;
2778         DRHdr.Flags = RegRelFlags;
2779         DRHdr.BasePointerOffset = Offset;
2780         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2781       }
2782     } else {
2783       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2784       if (DefRange.IsSubfield) {
2785         DefRangeSubfieldRegisterHeader DRHdr;
2786         DRHdr.Register = DefRange.CVRegister;
2787         DRHdr.MayHaveNoName = 0;
2788         DRHdr.OffsetInParent = DefRange.StructOffset;
2789         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2790       } else {
2791         DefRangeRegisterHeader DRHdr;
2792         DRHdr.Register = DefRange.CVRegister;
2793         DRHdr.MayHaveNoName = 0;
2794         OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2795       }
2796     }
2797   }
2798 }
2799 
2800 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2801                                          const FunctionInfo& FI) {
2802   for (LexicalBlock *Block : Blocks)
2803     emitLexicalBlock(*Block, FI);
2804 }
2805 
2806 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2807 /// lexical block scope.
2808 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2809                                      const FunctionInfo& FI) {
2810   MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2811   OS.AddComment("PtrParent");
2812   OS.emitInt32(0); // PtrParent
2813   OS.AddComment("PtrEnd");
2814   OS.emitInt32(0); // PtrEnd
2815   OS.AddComment("Code size");
2816   OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4);   // Code Size
2817   OS.AddComment("Function section relative address");
2818   OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0);         // Func Offset
2819   OS.AddComment("Function section index");
2820   OS.EmitCOFFSectionIndex(FI.Begin);                      // Func Symbol
2821   OS.AddComment("Lexical block name");
2822   emitNullTerminatedSymbolName(OS, Block.Name);           // Name
2823   endSymbolRecord(RecordEnd);
2824 
2825   // Emit variables local to this lexical block.
2826   emitLocalVariableList(FI, Block.Locals);
2827   emitGlobalVariableList(Block.Globals);
2828 
2829   // Emit lexical blocks contained within this block.
2830   emitLexicalBlockList(Block.Children, FI);
2831 
2832   // Close the lexical block scope.
2833   emitEndSymbolRecord(SymbolKind::S_END);
2834 }
2835 
2836 /// Convenience routine for collecting lexical block information for a list
2837 /// of lexical scopes.
2838 void CodeViewDebug::collectLexicalBlockInfo(
2839         SmallVectorImpl<LexicalScope *> &Scopes,
2840         SmallVectorImpl<LexicalBlock *> &Blocks,
2841         SmallVectorImpl<LocalVariable> &Locals,
2842         SmallVectorImpl<CVGlobalVariable> &Globals) {
2843   for (LexicalScope *Scope : Scopes)
2844     collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2845 }
2846 
2847 /// Populate the lexical blocks and local variable lists of the parent with
2848 /// information about the specified lexical scope.
2849 void CodeViewDebug::collectLexicalBlockInfo(
2850     LexicalScope &Scope,
2851     SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2852     SmallVectorImpl<LocalVariable> &ParentLocals,
2853     SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2854   if (Scope.isAbstractScope())
2855     return;
2856 
2857   // Gather information about the lexical scope including local variables,
2858   // global variables, and address ranges.
2859   bool IgnoreScope = false;
2860   auto LI = ScopeVariables.find(&Scope);
2861   SmallVectorImpl<LocalVariable> *Locals =
2862       LI != ScopeVariables.end() ? &LI->second : nullptr;
2863   auto GI = ScopeGlobals.find(Scope.getScopeNode());
2864   SmallVectorImpl<CVGlobalVariable> *Globals =
2865       GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2866   const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2867   const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2868 
2869   // Ignore lexical scopes which do not contain variables.
2870   if (!Locals && !Globals)
2871     IgnoreScope = true;
2872 
2873   // Ignore lexical scopes which are not lexical blocks.
2874   if (!DILB)
2875     IgnoreScope = true;
2876 
2877   // Ignore scopes which have too many address ranges to represent in the
2878   // current CodeView format or do not have a valid address range.
2879   //
2880   // For lexical scopes with multiple address ranges you may be tempted to
2881   // construct a single range covering every instruction where the block is
2882   // live and everything in between.  Unfortunately, Visual Studio only
2883   // displays variables from the first matching lexical block scope.  If the
2884   // first lexical block contains exception handling code or cold code which
2885   // is moved to the bottom of the routine creating a single range covering
2886   // nearly the entire routine, then it will hide all other lexical blocks
2887   // and the variables they contain.
2888   if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2889     IgnoreScope = true;
2890 
2891   if (IgnoreScope) {
2892     // This scope can be safely ignored and eliminating it will reduce the
2893     // size of the debug information. Be sure to collect any variable and scope
2894     // information from the this scope or any of its children and collapse them
2895     // into the parent scope.
2896     if (Locals)
2897       ParentLocals.append(Locals->begin(), Locals->end());
2898     if (Globals)
2899       ParentGlobals.append(Globals->begin(), Globals->end());
2900     collectLexicalBlockInfo(Scope.getChildren(),
2901                             ParentBlocks,
2902                             ParentLocals,
2903                             ParentGlobals);
2904     return;
2905   }
2906 
2907   // Create a new CodeView lexical block for this lexical scope.  If we've
2908   // seen this DILexicalBlock before then the scope tree is malformed and
2909   // we can handle this gracefully by not processing it a second time.
2910   auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2911   if (!BlockInsertion.second)
2912     return;
2913 
2914   // Create a lexical block containing the variables and collect the the
2915   // lexical block information for the children.
2916   const InsnRange &Range = Ranges.front();
2917   assert(Range.first && Range.second);
2918   LexicalBlock &Block = BlockInsertion.first->second;
2919   Block.Begin = getLabelBeforeInsn(Range.first);
2920   Block.End = getLabelAfterInsn(Range.second);
2921   assert(Block.Begin && "missing label for scope begin");
2922   assert(Block.End && "missing label for scope end");
2923   Block.Name = DILB->getName();
2924   if (Locals)
2925     Block.Locals = std::move(*Locals);
2926   if (Globals)
2927     Block.Globals = std::move(*Globals);
2928   ParentBlocks.push_back(&Block);
2929   collectLexicalBlockInfo(Scope.getChildren(),
2930                           Block.Children,
2931                           Block.Locals,
2932                           Block.Globals);
2933 }
2934 
2935 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2936   const Function &GV = MF->getFunction();
2937   assert(FnDebugInfo.count(&GV));
2938   assert(CurFn == FnDebugInfo[&GV].get());
2939 
2940   collectVariableInfo(GV.getSubprogram());
2941 
2942   // Build the lexical block structure to emit for this routine.
2943   if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2944     collectLexicalBlockInfo(*CFS,
2945                             CurFn->ChildBlocks,
2946                             CurFn->Locals,
2947                             CurFn->Globals);
2948 
2949   // Clear the scope and variable information from the map which will not be
2950   // valid after we have finished processing this routine.  This also prepares
2951   // the map for the subsequent routine.
2952   ScopeVariables.clear();
2953 
2954   // Don't emit anything if we don't have any line tables.
2955   // Thunks are compiler-generated and probably won't have source correlation.
2956   if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2957     FnDebugInfo.erase(&GV);
2958     CurFn = nullptr;
2959     return;
2960   }
2961 
2962   // Find heap alloc sites and add to list.
2963   for (const auto &MBB : *MF) {
2964     for (const auto &MI : MBB) {
2965       if (MDNode *MD = MI.getHeapAllocMarker()) {
2966         CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2967                                                         getLabelAfterInsn(&MI),
2968                                                         dyn_cast<DIType>(MD)));
2969       }
2970     }
2971   }
2972 
2973   CurFn->Annotations = MF->getCodeViewAnnotations();
2974 
2975   CurFn->End = Asm->getFunctionEnd();
2976 
2977   CurFn = nullptr;
2978 }
2979 
2980 // Usable locations are valid with non-zero line numbers. A line number of zero
2981 // corresponds to optimized code that doesn't have a distinct source location.
2982 // In this case, we try to use the previous or next source location depending on
2983 // the context.
2984 static bool isUsableDebugLoc(DebugLoc DL) {
2985   return DL && DL.getLine() != 0;
2986 }
2987 
2988 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2989   DebugHandlerBase::beginInstruction(MI);
2990 
2991   // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2992   if (!Asm || !CurFn || MI->isDebugInstr() ||
2993       MI->getFlag(MachineInstr::FrameSetup))
2994     return;
2995 
2996   // If the first instruction of a new MBB has no location, find the first
2997   // instruction with a location and use that.
2998   DebugLoc DL = MI->getDebugLoc();
2999   if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
3000     for (const auto &NextMI : *MI->getParent()) {
3001       if (NextMI.isDebugInstr())
3002         continue;
3003       DL = NextMI.getDebugLoc();
3004       if (isUsableDebugLoc(DL))
3005         break;
3006     }
3007     // FIXME: Handle the case where the BB has no valid locations. This would
3008     // probably require doing a real dataflow analysis.
3009   }
3010   PrevInstBB = MI->getParent();
3011 
3012   // If we still don't have a debug location, don't record a location.
3013   if (!isUsableDebugLoc(DL))
3014     return;
3015 
3016   maybeRecordLocation(DL, Asm->MF);
3017 }
3018 
3019 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
3020   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3021            *EndLabel = MMI->getContext().createTempSymbol();
3022   OS.emitInt32(unsigned(Kind));
3023   OS.AddComment("Subsection size");
3024   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
3025   OS.emitLabel(BeginLabel);
3026   return EndLabel;
3027 }
3028 
3029 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
3030   OS.emitLabel(EndLabel);
3031   // Every subsection must be aligned to a 4-byte boundary.
3032   OS.emitValueToAlignment(4);
3033 }
3034 
3035 static StringRef getSymbolName(SymbolKind SymKind) {
3036   for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
3037     if (EE.Value == SymKind)
3038       return EE.Name;
3039   return "";
3040 }
3041 
3042 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
3043   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
3044            *EndLabel = MMI->getContext().createTempSymbol();
3045   OS.AddComment("Record length");
3046   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
3047   OS.emitLabel(BeginLabel);
3048   if (OS.isVerboseAsm())
3049     OS.AddComment("Record kind: " + getSymbolName(SymKind));
3050   OS.emitInt16(unsigned(SymKind));
3051   return EndLabel;
3052 }
3053 
3054 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
3055   // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
3056   // an extra copy of every symbol record in LLD. This increases object file
3057   // size by less than 1% in the clang build, and is compatible with the Visual
3058   // C++ linker.
3059   OS.emitValueToAlignment(4);
3060   OS.emitLabel(SymEnd);
3061 }
3062 
3063 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
3064   OS.AddComment("Record length");
3065   OS.emitInt16(2);
3066   if (OS.isVerboseAsm())
3067     OS.AddComment("Record kind: " + getSymbolName(EndKind));
3068   OS.emitInt16(uint16_t(EndKind)); // Record Kind
3069 }
3070 
3071 void CodeViewDebug::emitDebugInfoForUDTs(
3072     const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
3073 #ifndef NDEBUG
3074   size_t OriginalSize = UDTs.size();
3075 #endif
3076   for (const auto &UDT : UDTs) {
3077     const DIType *T = UDT.second;
3078     assert(shouldEmitUdt(T));
3079     MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
3080     OS.AddComment("Type");
3081     OS.emitInt32(getCompleteTypeIndex(T).getIndex());
3082     assert(OriginalSize == UDTs.size() &&
3083            "getCompleteTypeIndex found new UDTs!");
3084     emitNullTerminatedSymbolName(OS, UDT.first);
3085     endSymbolRecord(UDTRecordEnd);
3086   }
3087 }
3088 
3089 void CodeViewDebug::collectGlobalVariableInfo() {
3090   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
3091       GlobalMap;
3092   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
3093     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
3094     GV.getDebugInfo(GVEs);
3095     for (const auto *GVE : GVEs)
3096       GlobalMap[GVE] = &GV;
3097   }
3098 
3099   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3100   for (const MDNode *Node : CUs->operands()) {
3101     const auto *CU = cast<DICompileUnit>(Node);
3102     for (const auto *GVE : CU->getGlobalVariables()) {
3103       const DIGlobalVariable *DIGV = GVE->getVariable();
3104       const DIExpression *DIE = GVE->getExpression();
3105 
3106       if ((DIE->getNumElements() == 2) &&
3107           (DIE->getElement(0) == dwarf::DW_OP_plus_uconst))
3108         // Record the constant offset for the variable.
3109         //
3110         // A Fortran common block uses this idiom to encode the offset
3111         // of a variable from the common block's starting address.
3112         CVGlobalVariableOffsets.insert(
3113             std::make_pair(DIGV, DIE->getElement(1)));
3114 
3115       // Emit constant global variables in a global symbol section.
3116       if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
3117         CVGlobalVariable CVGV = {DIGV, DIE};
3118         GlobalVariables.emplace_back(std::move(CVGV));
3119       }
3120 
3121       const auto *GV = GlobalMap.lookup(GVE);
3122       if (!GV || GV->isDeclarationForLinker())
3123         continue;
3124 
3125       DIScope *Scope = DIGV->getScope();
3126       SmallVector<CVGlobalVariable, 1> *VariableList;
3127       if (Scope && isa<DILocalScope>(Scope)) {
3128         // Locate a global variable list for this scope, creating one if
3129         // necessary.
3130         auto Insertion = ScopeGlobals.insert(
3131             {Scope, std::unique_ptr<GlobalVariableList>()});
3132         if (Insertion.second)
3133           Insertion.first->second = std::make_unique<GlobalVariableList>();
3134         VariableList = Insertion.first->second.get();
3135       } else if (GV->hasComdat())
3136         // Emit this global variable into a COMDAT section.
3137         VariableList = &ComdatVariables;
3138       else
3139         // Emit this global variable in a single global symbol section.
3140         VariableList = &GlobalVariables;
3141       CVGlobalVariable CVGV = {DIGV, GV};
3142       VariableList->emplace_back(std::move(CVGV));
3143     }
3144   }
3145 }
3146 
3147 void CodeViewDebug::collectDebugInfoForGlobals() {
3148   for (const CVGlobalVariable &CVGV : GlobalVariables) {
3149     const DIGlobalVariable *DIGV = CVGV.DIGV;
3150     const DIScope *Scope = DIGV->getScope();
3151     getCompleteTypeIndex(DIGV->getType());
3152     getFullyQualifiedName(Scope, DIGV->getName());
3153   }
3154 
3155   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3156     const DIGlobalVariable *DIGV = CVGV.DIGV;
3157     const DIScope *Scope = DIGV->getScope();
3158     getCompleteTypeIndex(DIGV->getType());
3159     getFullyQualifiedName(Scope, DIGV->getName());
3160   }
3161 }
3162 
3163 void CodeViewDebug::emitDebugInfoForGlobals() {
3164   // First, emit all globals that are not in a comdat in a single symbol
3165   // substream. MSVC doesn't like it if the substream is empty, so only open
3166   // it if we have at least one global to emit.
3167   switchToDebugSectionForSymbol(nullptr);
3168   if (!GlobalVariables.empty() || !StaticConstMembers.empty()) {
3169     OS.AddComment("Symbol subsection for globals");
3170     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3171     emitGlobalVariableList(GlobalVariables);
3172     emitStaticConstMemberList();
3173     endCVSubsection(EndLabel);
3174   }
3175 
3176   // Second, emit each global that is in a comdat into its own .debug$S
3177   // section along with its own symbol substream.
3178   for (const CVGlobalVariable &CVGV : ComdatVariables) {
3179     const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3180     MCSymbol *GVSym = Asm->getSymbol(GV);
3181     OS.AddComment("Symbol subsection for " +
3182                   Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3183     switchToDebugSectionForSymbol(GVSym);
3184     MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3185     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3186     emitDebugInfoForGlobal(CVGV);
3187     endCVSubsection(EndLabel);
3188   }
3189 }
3190 
3191 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3192   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3193   for (const MDNode *Node : CUs->operands()) {
3194     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3195       if (DIType *RT = dyn_cast<DIType>(Ty)) {
3196         getTypeIndex(RT);
3197         // FIXME: Add to global/local DTU list.
3198       }
3199     }
3200   }
3201 }
3202 
3203 // Emit each global variable in the specified array.
3204 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3205   for (const CVGlobalVariable &CVGV : Globals) {
3206     // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3207     emitDebugInfoForGlobal(CVGV);
3208   }
3209 }
3210 
3211 void CodeViewDebug::emitConstantSymbolRecord(const DIType *DTy, APSInt &Value,
3212                                              const std::string &QualifiedName) {
3213   MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3214   OS.AddComment("Type");
3215   OS.emitInt32(getTypeIndex(DTy).getIndex());
3216 
3217   OS.AddComment("Value");
3218 
3219   // Encoded integers shouldn't need more than 10 bytes.
3220   uint8_t Data[10];
3221   BinaryStreamWriter Writer(Data, llvm::support::endianness::little);
3222   CodeViewRecordIO IO(Writer);
3223   cantFail(IO.mapEncodedInteger(Value));
3224   StringRef SRef((char *)Data, Writer.getOffset());
3225   OS.emitBinaryData(SRef);
3226 
3227   OS.AddComment("Name");
3228   emitNullTerminatedSymbolName(OS, QualifiedName);
3229   endSymbolRecord(SConstantEnd);
3230 }
3231 
3232 void CodeViewDebug::emitStaticConstMemberList() {
3233   for (const DIDerivedType *DTy : StaticConstMembers) {
3234     const DIScope *Scope = DTy->getScope();
3235 
3236     APSInt Value;
3237     if (const ConstantInt *CI =
3238             dyn_cast_or_null<ConstantInt>(DTy->getConstant()))
3239       Value = APSInt(CI->getValue(),
3240                      DebugHandlerBase::isUnsignedDIType(DTy->getBaseType()));
3241     else if (const ConstantFP *CFP =
3242                  dyn_cast_or_null<ConstantFP>(DTy->getConstant()))
3243       Value = APSInt(CFP->getValueAPF().bitcastToAPInt(), true);
3244     else
3245       llvm_unreachable("cannot emit a constant without a value");
3246 
3247     emitConstantSymbolRecord(DTy->getBaseType(), Value,
3248                              getFullyQualifiedName(Scope, DTy->getName()));
3249   }
3250 }
3251 
3252 static bool isFloatDIType(const DIType *Ty) {
3253   if (isa<DICompositeType>(Ty))
3254     return false;
3255 
3256   if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
3257     dwarf::Tag T = (dwarf::Tag)Ty->getTag();
3258     if (T == dwarf::DW_TAG_pointer_type ||
3259         T == dwarf::DW_TAG_ptr_to_member_type ||
3260         T == dwarf::DW_TAG_reference_type ||
3261         T == dwarf::DW_TAG_rvalue_reference_type)
3262       return false;
3263     assert(DTy->getBaseType() && "Expected valid base type");
3264     return isFloatDIType(DTy->getBaseType());
3265   }
3266 
3267   auto *BTy = cast<DIBasicType>(Ty);
3268   return (BTy->getEncoding() == dwarf::DW_ATE_float);
3269 }
3270 
3271 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3272   const DIGlobalVariable *DIGV = CVGV.DIGV;
3273 
3274   const DIScope *Scope = DIGV->getScope();
3275   // For static data members, get the scope from the declaration.
3276   if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3277           DIGV->getRawStaticDataMemberDeclaration()))
3278     Scope = MemberDecl->getScope();
3279   // For Fortran, the scoping portion is elided in its name so that we can
3280   // reference the variable in the command line of the VS debugger.
3281   std::string QualifiedName =
3282       (moduleIsInFortran()) ? std::string(DIGV->getName())
3283                             : getFullyQualifiedName(Scope, DIGV->getName());
3284 
3285   if (const GlobalVariable *GV =
3286           CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3287     // DataSym record, see SymbolRecord.h for more info. Thread local data
3288     // happens to have the same format as global data.
3289     MCSymbol *GVSym = Asm->getSymbol(GV);
3290     SymbolKind DataSym = GV->isThreadLocal()
3291                              ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3292                                                       : SymbolKind::S_GTHREAD32)
3293                              : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3294                                                       : SymbolKind::S_GDATA32);
3295     MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3296     OS.AddComment("Type");
3297     OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
3298     OS.AddComment("DataOffset");
3299 
3300     uint64_t Offset = 0;
3301     if (CVGlobalVariableOffsets.find(DIGV) != CVGlobalVariableOffsets.end())
3302       // Use the offset seen while collecting info on globals.
3303       Offset = CVGlobalVariableOffsets[DIGV];
3304     OS.EmitCOFFSecRel32(GVSym, Offset);
3305 
3306     OS.AddComment("Segment");
3307     OS.EmitCOFFSectionIndex(GVSym);
3308     OS.AddComment("Name");
3309     const unsigned LengthOfDataRecord = 12;
3310     emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
3311     endSymbolRecord(DataEnd);
3312   } else {
3313     const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3314     assert(DIE->isConstant() &&
3315            "Global constant variables must contain a constant expression.");
3316 
3317     // Use unsigned for floats.
3318     bool isUnsigned = isFloatDIType(DIGV->getType())
3319                           ? true
3320                           : DebugHandlerBase::isUnsignedDIType(DIGV->getType());
3321     APSInt Value(APInt(/*BitWidth=*/64, DIE->getElement(1)), isUnsigned);
3322     emitConstantSymbolRecord(DIGV->getType(), Value, QualifiedName);
3323   }
3324 }
3325