1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 void CodeViewDebug::calculateRanges( 953 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 954 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 955 956 // calculate the definition ranges. 957 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 958 const InsnRange &Range = *I; 959 const MachineInstr *DVInst = Range.first; 960 assert(DVInst->isDebugValue() && "Invalid History entry"); 961 // FIXME: Find a way to represent constant variables, since they are 962 // relatively common. 963 DbgVariableLocation Location; 964 bool Supported = 965 DbgVariableLocation::extractFromMachineInstruction(Location, *DVInst); 966 // If not Supported, don't even look at Location because it's invalid. 967 if (!Supported) continue; 968 969 // Because we cannot express DW_OP_deref in CodeView directly, 970 // we use a trick: we encode the type as a reference to the 971 // real type. 972 if (Var.Deref) { 973 // When we're encoding the type as a reference to the original type, 974 // we need to remove a level of indirection from incoming locations. 975 // E.g. [RSP+8] with DW_OP_deref becomes [RSP+8], 976 // and [RCX+0] without DW_OP_deref becomes RCX. 977 if (!Location.Deref) { 978 if (Location.InMemory) 979 Location.InMemory = false; 980 else 981 Supported = false; 982 } 983 } else if (Location.Deref) { 984 // We've encountered a Deref range when we had not applied the 985 // reference encoding. Start over using reference encoding. 986 Var.Deref = true; 987 Var.DefRanges.clear(); 988 calculateRanges(Var, Ranges); 989 return; 990 } 991 992 // If we don't know how to handle this range, skip past it. 993 if (!Supported || Location.Register == 0 || (Location.Offset && !Location.InMemory)) 994 continue; 995 996 // Handle the two cases we can handle: indirect in memory and in register. 997 { 998 LocalVarDefRange DR; 999 DR.CVRegister = TRI->getCodeViewRegNum(Location.Register); 1000 DR.InMemory = Location.InMemory; 1001 DR.DataOffset = Location.Offset; 1002 if (Location.FragmentInfo) { 1003 DR.IsSubfield = true; 1004 DR.StructOffset = Location.FragmentInfo->OffsetInBits / 8; 1005 } else { 1006 DR.IsSubfield = false; 1007 DR.StructOffset = 0; 1008 } 1009 1010 if (Var.DefRanges.empty() || 1011 Var.DefRanges.back().isDifferentLocation(DR)) { 1012 Var.DefRanges.emplace_back(std::move(DR)); 1013 } 1014 } 1015 1016 // Compute the label range. 1017 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1018 const MCSymbol *End = getLabelAfterInsn(Range.second); 1019 if (!End) { 1020 // This range is valid until the next overlapping bitpiece. In the 1021 // common case, ranges will not be bitpieces, so they will overlap. 1022 auto J = std::next(I); 1023 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1024 while (J != E && 1025 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1026 ++J; 1027 if (J != E) 1028 End = getLabelBeforeInsn(J->first); 1029 else 1030 End = Asm->getFunctionEnd(); 1031 } 1032 1033 // If the last range end is our begin, just extend the last range. 1034 // Otherwise make a new range. 1035 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1036 Var.DefRanges.back().Ranges; 1037 if (!R.empty() && R.back().second == Begin) 1038 R.back().second = End; 1039 else 1040 R.emplace_back(Begin, End); 1041 1042 // FIXME: Do more range combining. 1043 } 1044 } 1045 1046 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1047 DenseSet<InlinedVariable> Processed; 1048 // Grab the variable info that was squirreled away in the MMI side-table. 1049 collectVariableInfoFromMFTable(Processed); 1050 1051 for (const auto &I : DbgValues) { 1052 InlinedVariable IV = I.first; 1053 if (Processed.count(IV)) 1054 continue; 1055 const DILocalVariable *DIVar = IV.first; 1056 const DILocation *InlinedAt = IV.second; 1057 1058 // Instruction ranges, specifying where IV is accessible. 1059 const auto &Ranges = I.second; 1060 1061 LexicalScope *Scope = nullptr; 1062 if (InlinedAt) 1063 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1064 else 1065 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1066 // If variable scope is not found then skip this variable. 1067 if (!Scope) 1068 continue; 1069 1070 LocalVariable Var; 1071 Var.DIVar = DIVar; 1072 1073 calculateRanges(Var, Ranges); 1074 recordLocalVariable(std::move(Var), InlinedAt); 1075 } 1076 } 1077 1078 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1079 const Function *GV = MF->getFunction(); 1080 assert(FnDebugInfo.count(GV) == false); 1081 CurFn = &FnDebugInfo[GV]; 1082 CurFn->FuncId = NextFuncId++; 1083 CurFn->Begin = Asm->getFunctionBegin(); 1084 1085 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1086 1087 // Find the end of the function prolog. First known non-DBG_VALUE and 1088 // non-frame setup location marks the beginning of the function body. 1089 // FIXME: is there a simpler a way to do this? Can we just search 1090 // for the first instruction of the function, not the last of the prolog? 1091 DebugLoc PrologEndLoc; 1092 bool EmptyPrologue = true; 1093 for (const auto &MBB : *MF) { 1094 for (const auto &MI : MBB) { 1095 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1096 MI.getDebugLoc()) { 1097 PrologEndLoc = MI.getDebugLoc(); 1098 break; 1099 } else if (!MI.isMetaInstruction()) { 1100 EmptyPrologue = false; 1101 } 1102 } 1103 } 1104 1105 // Record beginning of function if we have a non-empty prologue. 1106 if (PrologEndLoc && !EmptyPrologue) { 1107 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1108 maybeRecordLocation(FnStartDL, MF); 1109 } 1110 } 1111 1112 static bool shouldEmitUdt(const DIType *T) { 1113 while (true) { 1114 if (!T || T->isForwardDecl()) 1115 return false; 1116 1117 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1118 if (!DT) 1119 return true; 1120 T = DT->getBaseType().resolve(); 1121 } 1122 return true; 1123 } 1124 1125 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1126 // Don't record empty UDTs. 1127 if (Ty->getName().empty()) 1128 return; 1129 if (!shouldEmitUdt(Ty)) 1130 return; 1131 1132 SmallVector<StringRef, 5> QualifiedNameComponents; 1133 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1134 Ty->getScope().resolve(), QualifiedNameComponents); 1135 1136 std::string FullyQualifiedName = 1137 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1138 1139 if (ClosestSubprogram == nullptr) { 1140 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1141 } else if (ClosestSubprogram == CurrentSubprogram) { 1142 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1143 } 1144 1145 // TODO: What if the ClosestSubprogram is neither null or the current 1146 // subprogram? Currently, the UDT just gets dropped on the floor. 1147 // 1148 // The current behavior is not desirable. To get maximal fidelity, we would 1149 // need to perform all type translation before beginning emission of .debug$S 1150 // and then make LocalUDTs a member of FunctionInfo 1151 } 1152 1153 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1154 // Generic dispatch for lowering an unknown type. 1155 switch (Ty->getTag()) { 1156 case dwarf::DW_TAG_array_type: 1157 return lowerTypeArray(cast<DICompositeType>(Ty)); 1158 case dwarf::DW_TAG_typedef: 1159 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1160 case dwarf::DW_TAG_base_type: 1161 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1162 case dwarf::DW_TAG_pointer_type: 1163 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1164 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1165 LLVM_FALLTHROUGH; 1166 case dwarf::DW_TAG_reference_type: 1167 case dwarf::DW_TAG_rvalue_reference_type: 1168 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1169 case dwarf::DW_TAG_ptr_to_member_type: 1170 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1171 case dwarf::DW_TAG_const_type: 1172 case dwarf::DW_TAG_volatile_type: 1173 // TODO: add support for DW_TAG_atomic_type here 1174 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1175 case dwarf::DW_TAG_subroutine_type: 1176 if (ClassTy) { 1177 // The member function type of a member function pointer has no 1178 // ThisAdjustment. 1179 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1180 /*ThisAdjustment=*/0); 1181 } 1182 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1183 case dwarf::DW_TAG_enumeration_type: 1184 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1185 case dwarf::DW_TAG_class_type: 1186 case dwarf::DW_TAG_structure_type: 1187 return lowerTypeClass(cast<DICompositeType>(Ty)); 1188 case dwarf::DW_TAG_union_type: 1189 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1190 default: 1191 // Use the null type index. 1192 return TypeIndex(); 1193 } 1194 } 1195 1196 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1197 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1198 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1199 StringRef TypeName = Ty->getName(); 1200 1201 addToUDTs(Ty); 1202 1203 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1204 TypeName == "HRESULT") 1205 return TypeIndex(SimpleTypeKind::HResult); 1206 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1207 TypeName == "wchar_t") 1208 return TypeIndex(SimpleTypeKind::WideCharacter); 1209 1210 return UnderlyingTypeIndex; 1211 } 1212 1213 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1214 DITypeRef ElementTypeRef = Ty->getBaseType(); 1215 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1216 // IndexType is size_t, which depends on the bitness of the target. 1217 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1218 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1219 : TypeIndex(SimpleTypeKind::UInt32Long); 1220 1221 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1222 1223 // Add subranges to array type. 1224 DINodeArray Elements = Ty->getElements(); 1225 for (int i = Elements.size() - 1; i >= 0; --i) { 1226 const DINode *Element = Elements[i]; 1227 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1228 1229 const DISubrange *Subrange = cast<DISubrange>(Element); 1230 assert(Subrange->getLowerBound() == 0 && 1231 "codeview doesn't support subranges with lower bounds"); 1232 int64_t Count = Subrange->getCount(); 1233 1234 // Variable Length Array (VLA) has Count equal to '-1'. 1235 // Replace with Count '1', assume it is the minimum VLA length. 1236 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1237 if (Count == -1) 1238 Count = 1; 1239 1240 // Update the element size and element type index for subsequent subranges. 1241 ElementSize *= Count; 1242 1243 // If this is the outermost array, use the size from the array. It will be 1244 // more accurate if we had a VLA or an incomplete element type size. 1245 uint64_t ArraySize = 1246 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1247 1248 StringRef Name = (i == 0) ? Ty->getName() : ""; 1249 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1250 ElementTypeIndex = TypeTable.writeKnownType(AR); 1251 } 1252 1253 return ElementTypeIndex; 1254 } 1255 1256 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1257 TypeIndex Index; 1258 dwarf::TypeKind Kind; 1259 uint32_t ByteSize; 1260 1261 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1262 ByteSize = Ty->getSizeInBits() / 8; 1263 1264 SimpleTypeKind STK = SimpleTypeKind::None; 1265 switch (Kind) { 1266 case dwarf::DW_ATE_address: 1267 // FIXME: Translate 1268 break; 1269 case dwarf::DW_ATE_boolean: 1270 switch (ByteSize) { 1271 case 1: STK = SimpleTypeKind::Boolean8; break; 1272 case 2: STK = SimpleTypeKind::Boolean16; break; 1273 case 4: STK = SimpleTypeKind::Boolean32; break; 1274 case 8: STK = SimpleTypeKind::Boolean64; break; 1275 case 16: STK = SimpleTypeKind::Boolean128; break; 1276 } 1277 break; 1278 case dwarf::DW_ATE_complex_float: 1279 switch (ByteSize) { 1280 case 2: STK = SimpleTypeKind::Complex16; break; 1281 case 4: STK = SimpleTypeKind::Complex32; break; 1282 case 8: STK = SimpleTypeKind::Complex64; break; 1283 case 10: STK = SimpleTypeKind::Complex80; break; 1284 case 16: STK = SimpleTypeKind::Complex128; break; 1285 } 1286 break; 1287 case dwarf::DW_ATE_float: 1288 switch (ByteSize) { 1289 case 2: STK = SimpleTypeKind::Float16; break; 1290 case 4: STK = SimpleTypeKind::Float32; break; 1291 case 6: STK = SimpleTypeKind::Float48; break; 1292 case 8: STK = SimpleTypeKind::Float64; break; 1293 case 10: STK = SimpleTypeKind::Float80; break; 1294 case 16: STK = SimpleTypeKind::Float128; break; 1295 } 1296 break; 1297 case dwarf::DW_ATE_signed: 1298 switch (ByteSize) { 1299 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1300 case 2: STK = SimpleTypeKind::Int16Short; break; 1301 case 4: STK = SimpleTypeKind::Int32; break; 1302 case 8: STK = SimpleTypeKind::Int64Quad; break; 1303 case 16: STK = SimpleTypeKind::Int128Oct; break; 1304 } 1305 break; 1306 case dwarf::DW_ATE_unsigned: 1307 switch (ByteSize) { 1308 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1309 case 2: STK = SimpleTypeKind::UInt16Short; break; 1310 case 4: STK = SimpleTypeKind::UInt32; break; 1311 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1312 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1313 } 1314 break; 1315 case dwarf::DW_ATE_UTF: 1316 switch (ByteSize) { 1317 case 2: STK = SimpleTypeKind::Character16; break; 1318 case 4: STK = SimpleTypeKind::Character32; break; 1319 } 1320 break; 1321 case dwarf::DW_ATE_signed_char: 1322 if (ByteSize == 1) 1323 STK = SimpleTypeKind::SignedCharacter; 1324 break; 1325 case dwarf::DW_ATE_unsigned_char: 1326 if (ByteSize == 1) 1327 STK = SimpleTypeKind::UnsignedCharacter; 1328 break; 1329 default: 1330 break; 1331 } 1332 1333 // Apply some fixups based on the source-level type name. 1334 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1335 STK = SimpleTypeKind::Int32Long; 1336 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1337 STK = SimpleTypeKind::UInt32Long; 1338 if (STK == SimpleTypeKind::UInt16Short && 1339 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1340 STK = SimpleTypeKind::WideCharacter; 1341 if ((STK == SimpleTypeKind::SignedCharacter || 1342 STK == SimpleTypeKind::UnsignedCharacter) && 1343 Ty->getName() == "char") 1344 STK = SimpleTypeKind::NarrowCharacter; 1345 1346 return TypeIndex(STK); 1347 } 1348 1349 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1350 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1351 1352 // Pointers to simple types can use SimpleTypeMode, rather than having a 1353 // dedicated pointer type record. 1354 if (PointeeTI.isSimple() && 1355 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1356 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1357 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1358 ? SimpleTypeMode::NearPointer64 1359 : SimpleTypeMode::NearPointer32; 1360 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1361 } 1362 1363 PointerKind PK = 1364 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1365 PointerMode PM = PointerMode::Pointer; 1366 switch (Ty->getTag()) { 1367 default: llvm_unreachable("not a pointer tag type"); 1368 case dwarf::DW_TAG_pointer_type: 1369 PM = PointerMode::Pointer; 1370 break; 1371 case dwarf::DW_TAG_reference_type: 1372 PM = PointerMode::LValueReference; 1373 break; 1374 case dwarf::DW_TAG_rvalue_reference_type: 1375 PM = PointerMode::RValueReference; 1376 break; 1377 } 1378 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1379 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1380 // do. 1381 PointerOptions PO = PointerOptions::None; 1382 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1383 return TypeTable.writeKnownType(PR); 1384 } 1385 1386 static PointerToMemberRepresentation 1387 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1388 // SizeInBytes being zero generally implies that the member pointer type was 1389 // incomplete, which can happen if it is part of a function prototype. In this 1390 // case, use the unknown model instead of the general model. 1391 if (IsPMF) { 1392 switch (Flags & DINode::FlagPtrToMemberRep) { 1393 case 0: 1394 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1395 : PointerToMemberRepresentation::GeneralFunction; 1396 case DINode::FlagSingleInheritance: 1397 return PointerToMemberRepresentation::SingleInheritanceFunction; 1398 case DINode::FlagMultipleInheritance: 1399 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1400 case DINode::FlagVirtualInheritance: 1401 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1402 } 1403 } else { 1404 switch (Flags & DINode::FlagPtrToMemberRep) { 1405 case 0: 1406 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1407 : PointerToMemberRepresentation::GeneralData; 1408 case DINode::FlagSingleInheritance: 1409 return PointerToMemberRepresentation::SingleInheritanceData; 1410 case DINode::FlagMultipleInheritance: 1411 return PointerToMemberRepresentation::MultipleInheritanceData; 1412 case DINode::FlagVirtualInheritance: 1413 return PointerToMemberRepresentation::VirtualInheritanceData; 1414 } 1415 } 1416 llvm_unreachable("invalid ptr to member representation"); 1417 } 1418 1419 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1420 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1421 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1422 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1423 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1424 : PointerKind::Near32; 1425 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1426 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1427 : PointerMode::PointerToDataMember; 1428 PointerOptions PO = PointerOptions::None; // FIXME 1429 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1430 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1431 MemberPointerInfo MPI( 1432 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1433 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1434 return TypeTable.writeKnownType(PR); 1435 } 1436 1437 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1438 /// have a translation, use the NearC convention. 1439 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1440 switch (DwarfCC) { 1441 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1442 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1443 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1444 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1445 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1446 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1447 } 1448 return CallingConvention::NearC; 1449 } 1450 1451 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1452 ModifierOptions Mods = ModifierOptions::None; 1453 bool IsModifier = true; 1454 const DIType *BaseTy = Ty; 1455 while (IsModifier && BaseTy) { 1456 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1457 switch (BaseTy->getTag()) { 1458 case dwarf::DW_TAG_const_type: 1459 Mods |= ModifierOptions::Const; 1460 break; 1461 case dwarf::DW_TAG_volatile_type: 1462 Mods |= ModifierOptions::Volatile; 1463 break; 1464 default: 1465 IsModifier = false; 1466 break; 1467 } 1468 if (IsModifier) 1469 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1470 } 1471 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1472 ModifierRecord MR(ModifiedTI, Mods); 1473 return TypeTable.writeKnownType(MR); 1474 } 1475 1476 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1477 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1478 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1479 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1480 1481 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1482 ArrayRef<TypeIndex> ArgTypeIndices = None; 1483 if (!ReturnAndArgTypeIndices.empty()) { 1484 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1485 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1486 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1487 } 1488 1489 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1490 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1491 1492 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1493 1494 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1495 ArgTypeIndices.size(), ArgListIndex); 1496 return TypeTable.writeKnownType(Procedure); 1497 } 1498 1499 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1500 const DIType *ClassTy, 1501 int ThisAdjustment) { 1502 // Lower the containing class type. 1503 TypeIndex ClassType = getTypeIndex(ClassTy); 1504 1505 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1506 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1507 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1508 1509 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1510 ArrayRef<TypeIndex> ArgTypeIndices = None; 1511 if (!ReturnAndArgTypeIndices.empty()) { 1512 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1513 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1514 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1515 } 1516 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1517 if (!ArgTypeIndices.empty()) { 1518 ThisTypeIndex = ArgTypeIndices.front(); 1519 ArgTypeIndices = ArgTypeIndices.drop_front(); 1520 } 1521 1522 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1523 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1524 1525 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1526 1527 // TODO: Need to use the correct values for: 1528 // FunctionOptions 1529 // ThisPointerAdjustment. 1530 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1531 FunctionOptions::None, ArgTypeIndices.size(), 1532 ArgListIndex, ThisAdjustment); 1533 TypeIndex TI = TypeTable.writeKnownType(MFR); 1534 1535 return TI; 1536 } 1537 1538 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1539 unsigned VSlotCount = 1540 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1541 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1542 1543 VFTableShapeRecord VFTSR(Slots); 1544 return TypeTable.writeKnownType(VFTSR); 1545 } 1546 1547 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1548 switch (Flags & DINode::FlagAccessibility) { 1549 case DINode::FlagPrivate: return MemberAccess::Private; 1550 case DINode::FlagPublic: return MemberAccess::Public; 1551 case DINode::FlagProtected: return MemberAccess::Protected; 1552 case 0: 1553 // If there was no explicit access control, provide the default for the tag. 1554 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1555 : MemberAccess::Public; 1556 } 1557 llvm_unreachable("access flags are exclusive"); 1558 } 1559 1560 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1561 if (SP->isArtificial()) 1562 return MethodOptions::CompilerGenerated; 1563 1564 // FIXME: Handle other MethodOptions. 1565 1566 return MethodOptions::None; 1567 } 1568 1569 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1570 bool Introduced) { 1571 switch (SP->getVirtuality()) { 1572 case dwarf::DW_VIRTUALITY_none: 1573 break; 1574 case dwarf::DW_VIRTUALITY_virtual: 1575 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1576 case dwarf::DW_VIRTUALITY_pure_virtual: 1577 return Introduced ? MethodKind::PureIntroducingVirtual 1578 : MethodKind::PureVirtual; 1579 default: 1580 llvm_unreachable("unhandled virtuality case"); 1581 } 1582 1583 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1584 1585 return MethodKind::Vanilla; 1586 } 1587 1588 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1589 switch (Ty->getTag()) { 1590 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1591 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1592 } 1593 llvm_unreachable("unexpected tag"); 1594 } 1595 1596 /// Return ClassOptions that should be present on both the forward declaration 1597 /// and the defintion of a tag type. 1598 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1599 ClassOptions CO = ClassOptions::None; 1600 1601 // MSVC always sets this flag, even for local types. Clang doesn't always 1602 // appear to give every type a linkage name, which may be problematic for us. 1603 // FIXME: Investigate the consequences of not following them here. 1604 if (!Ty->getIdentifier().empty()) 1605 CO |= ClassOptions::HasUniqueName; 1606 1607 // Put the Nested flag on a type if it appears immediately inside a tag type. 1608 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1609 // here. That flag is only set on definitions, and not forward declarations. 1610 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1611 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1612 CO |= ClassOptions::Nested; 1613 1614 // Put the Scoped flag on function-local types. 1615 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1616 Scope = Scope->getScope().resolve()) { 1617 if (isa<DISubprogram>(Scope)) { 1618 CO |= ClassOptions::Scoped; 1619 break; 1620 } 1621 } 1622 1623 return CO; 1624 } 1625 1626 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1627 ClassOptions CO = getCommonClassOptions(Ty); 1628 TypeIndex FTI; 1629 unsigned EnumeratorCount = 0; 1630 1631 if (Ty->isForwardDecl()) { 1632 CO |= ClassOptions::ForwardReference; 1633 } else { 1634 FieldListRecordBuilder FLRB(TypeTable); 1635 1636 FLRB.begin(); 1637 for (const DINode *Element : Ty->getElements()) { 1638 // We assume that the frontend provides all members in source declaration 1639 // order, which is what MSVC does. 1640 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1641 EnumeratorRecord ER(MemberAccess::Public, 1642 APSInt::getUnsigned(Enumerator->getValue()), 1643 Enumerator->getName()); 1644 FLRB.writeMemberType(ER); 1645 EnumeratorCount++; 1646 } 1647 } 1648 FTI = FLRB.end(true); 1649 } 1650 1651 std::string FullName = getFullyQualifiedName(Ty); 1652 1653 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1654 getTypeIndex(Ty->getBaseType())); 1655 return TypeTable.writeKnownType(ER); 1656 } 1657 1658 //===----------------------------------------------------------------------===// 1659 // ClassInfo 1660 //===----------------------------------------------------------------------===// 1661 1662 struct llvm::ClassInfo { 1663 struct MemberInfo { 1664 const DIDerivedType *MemberTypeNode; 1665 uint64_t BaseOffset; 1666 }; 1667 // [MemberInfo] 1668 using MemberList = std::vector<MemberInfo>; 1669 1670 using MethodsList = TinyPtrVector<const DISubprogram *>; 1671 // MethodName -> MethodsList 1672 using MethodsMap = MapVector<MDString *, MethodsList>; 1673 1674 /// Base classes. 1675 std::vector<const DIDerivedType *> Inheritance; 1676 1677 /// Direct members. 1678 MemberList Members; 1679 // Direct overloaded methods gathered by name. 1680 MethodsMap Methods; 1681 1682 TypeIndex VShapeTI; 1683 1684 std::vector<const DIType *> NestedTypes; 1685 }; 1686 1687 void CodeViewDebug::clear() { 1688 assert(CurFn == nullptr); 1689 FileIdMap.clear(); 1690 FnDebugInfo.clear(); 1691 FileToFilepathMap.clear(); 1692 LocalUDTs.clear(); 1693 GlobalUDTs.clear(); 1694 TypeIndices.clear(); 1695 CompleteTypeIndices.clear(); 1696 } 1697 1698 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1699 const DIDerivedType *DDTy) { 1700 if (!DDTy->getName().empty()) { 1701 Info.Members.push_back({DDTy, 0}); 1702 return; 1703 } 1704 // An unnamed member must represent a nested struct or union. Add all the 1705 // indirect fields to the current record. 1706 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1707 uint64_t Offset = DDTy->getOffsetInBits(); 1708 const DIType *Ty = DDTy->getBaseType().resolve(); 1709 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1710 ClassInfo NestedInfo = collectClassInfo(DCTy); 1711 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1712 Info.Members.push_back( 1713 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1714 } 1715 1716 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1717 ClassInfo Info; 1718 // Add elements to structure type. 1719 DINodeArray Elements = Ty->getElements(); 1720 for (auto *Element : Elements) { 1721 // We assume that the frontend provides all members in source declaration 1722 // order, which is what MSVC does. 1723 if (!Element) 1724 continue; 1725 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1726 Info.Methods[SP->getRawName()].push_back(SP); 1727 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1728 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1729 collectMemberInfo(Info, DDTy); 1730 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1731 Info.Inheritance.push_back(DDTy); 1732 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1733 DDTy->getName() == "__vtbl_ptr_type") { 1734 Info.VShapeTI = getTypeIndex(DDTy); 1735 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1736 Info.NestedTypes.push_back(DDTy); 1737 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1738 // Ignore friend members. It appears that MSVC emitted info about 1739 // friends in the past, but modern versions do not. 1740 } 1741 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1742 Info.NestedTypes.push_back(Composite); 1743 } 1744 // Skip other unrecognized kinds of elements. 1745 } 1746 return Info; 1747 } 1748 1749 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1750 // First, construct the forward decl. Don't look into Ty to compute the 1751 // forward decl options, since it might not be available in all TUs. 1752 TypeRecordKind Kind = getRecordKind(Ty); 1753 ClassOptions CO = 1754 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1755 std::string FullName = getFullyQualifiedName(Ty); 1756 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1757 FullName, Ty->getIdentifier()); 1758 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1759 if (!Ty->isForwardDecl()) 1760 DeferredCompleteTypes.push_back(Ty); 1761 return FwdDeclTI; 1762 } 1763 1764 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1765 // Construct the field list and complete type record. 1766 TypeRecordKind Kind = getRecordKind(Ty); 1767 ClassOptions CO = getCommonClassOptions(Ty); 1768 TypeIndex FieldTI; 1769 TypeIndex VShapeTI; 1770 unsigned FieldCount; 1771 bool ContainsNestedClass; 1772 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1773 lowerRecordFieldList(Ty); 1774 1775 if (ContainsNestedClass) 1776 CO |= ClassOptions::ContainsNestedClass; 1777 1778 std::string FullName = getFullyQualifiedName(Ty); 1779 1780 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1781 1782 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1783 SizeInBytes, FullName, Ty->getIdentifier()); 1784 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1785 1786 if (const auto *File = Ty->getFile()) { 1787 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1788 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1789 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1790 TypeTable.writeKnownType(USLR); 1791 } 1792 1793 addToUDTs(Ty); 1794 1795 return ClassTI; 1796 } 1797 1798 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1799 ClassOptions CO = 1800 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1801 std::string FullName = getFullyQualifiedName(Ty); 1802 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1803 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1804 if (!Ty->isForwardDecl()) 1805 DeferredCompleteTypes.push_back(Ty); 1806 return FwdDeclTI; 1807 } 1808 1809 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1810 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1811 TypeIndex FieldTI; 1812 unsigned FieldCount; 1813 bool ContainsNestedClass; 1814 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1815 lowerRecordFieldList(Ty); 1816 1817 if (ContainsNestedClass) 1818 CO |= ClassOptions::ContainsNestedClass; 1819 1820 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1821 std::string FullName = getFullyQualifiedName(Ty); 1822 1823 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1824 Ty->getIdentifier()); 1825 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1826 1827 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1828 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1829 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1830 TypeTable.writeKnownType(USLR); 1831 1832 addToUDTs(Ty); 1833 1834 return UnionTI; 1835 } 1836 1837 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1838 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1839 // Manually count members. MSVC appears to count everything that generates a 1840 // field list record. Each individual overload in a method overload group 1841 // contributes to this count, even though the overload group is a single field 1842 // list record. 1843 unsigned MemberCount = 0; 1844 ClassInfo Info = collectClassInfo(Ty); 1845 FieldListRecordBuilder FLBR(TypeTable); 1846 FLBR.begin(); 1847 1848 // Create base classes. 1849 for (const DIDerivedType *I : Info.Inheritance) { 1850 if (I->getFlags() & DINode::FlagVirtual) { 1851 // Virtual base. 1852 // FIXME: Emit VBPtrOffset when the frontend provides it. 1853 unsigned VBPtrOffset = 0; 1854 // FIXME: Despite the accessor name, the offset is really in bytes. 1855 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1856 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1857 ? TypeRecordKind::IndirectVirtualBaseClass 1858 : TypeRecordKind::VirtualBaseClass; 1859 VirtualBaseClassRecord VBCR( 1860 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1861 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1862 VBTableIndex); 1863 1864 FLBR.writeMemberType(VBCR); 1865 } else { 1866 assert(I->getOffsetInBits() % 8 == 0 && 1867 "bases must be on byte boundaries"); 1868 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1869 getTypeIndex(I->getBaseType()), 1870 I->getOffsetInBits() / 8); 1871 FLBR.writeMemberType(BCR); 1872 } 1873 } 1874 1875 // Create members. 1876 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1877 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1878 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1879 StringRef MemberName = Member->getName(); 1880 MemberAccess Access = 1881 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1882 1883 if (Member->isStaticMember()) { 1884 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1885 FLBR.writeMemberType(SDMR); 1886 MemberCount++; 1887 continue; 1888 } 1889 1890 // Virtual function pointer member. 1891 if ((Member->getFlags() & DINode::FlagArtificial) && 1892 Member->getName().startswith("_vptr$")) { 1893 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1894 FLBR.writeMemberType(VFPR); 1895 MemberCount++; 1896 continue; 1897 } 1898 1899 // Data member. 1900 uint64_t MemberOffsetInBits = 1901 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1902 if (Member->isBitField()) { 1903 uint64_t StartBitOffset = MemberOffsetInBits; 1904 if (const auto *CI = 1905 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1906 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1907 } 1908 StartBitOffset -= MemberOffsetInBits; 1909 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1910 StartBitOffset); 1911 MemberBaseType = TypeTable.writeKnownType(BFR); 1912 } 1913 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1914 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1915 MemberName); 1916 FLBR.writeMemberType(DMR); 1917 MemberCount++; 1918 } 1919 1920 // Create methods 1921 for (auto &MethodItr : Info.Methods) { 1922 StringRef Name = MethodItr.first->getString(); 1923 1924 std::vector<OneMethodRecord> Methods; 1925 for (const DISubprogram *SP : MethodItr.second) { 1926 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1927 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1928 1929 unsigned VFTableOffset = -1; 1930 if (Introduced) 1931 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1932 1933 Methods.push_back(OneMethodRecord( 1934 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1935 translateMethodKindFlags(SP, Introduced), 1936 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1937 MemberCount++; 1938 } 1939 assert(!Methods.empty() && "Empty methods map entry"); 1940 if (Methods.size() == 1) 1941 FLBR.writeMemberType(Methods[0]); 1942 else { 1943 MethodOverloadListRecord MOLR(Methods); 1944 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1945 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1946 FLBR.writeMemberType(OMR); 1947 } 1948 } 1949 1950 // Create nested classes. 1951 for (const DIType *Nested : Info.NestedTypes) { 1952 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1953 FLBR.writeMemberType(R); 1954 MemberCount++; 1955 } 1956 1957 TypeIndex FieldTI = FLBR.end(true); 1958 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1959 !Info.NestedTypes.empty()); 1960 } 1961 1962 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1963 if (!VBPType.getIndex()) { 1964 // Make a 'const int *' type. 1965 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1966 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1967 1968 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1969 : PointerKind::Near32; 1970 PointerMode PM = PointerMode::Pointer; 1971 PointerOptions PO = PointerOptions::None; 1972 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1973 1974 VBPType = TypeTable.writeKnownType(PR); 1975 } 1976 1977 return VBPType; 1978 } 1979 1980 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1981 const DIType *Ty = TypeRef.resolve(); 1982 const DIType *ClassTy = ClassTyRef.resolve(); 1983 1984 // The null DIType is the void type. Don't try to hash it. 1985 if (!Ty) 1986 return TypeIndex::Void(); 1987 1988 // Check if we've already translated this type. Don't try to do a 1989 // get-or-create style insertion that caches the hash lookup across the 1990 // lowerType call. It will update the TypeIndices map. 1991 auto I = TypeIndices.find({Ty, ClassTy}); 1992 if (I != TypeIndices.end()) 1993 return I->second; 1994 1995 TypeLoweringScope S(*this); 1996 TypeIndex TI = lowerType(Ty, ClassTy); 1997 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1998 } 1999 2000 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2001 DIType *Ty = TypeRef.resolve(); 2002 PointerRecord PR(getTypeIndex(Ty), 2003 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2004 : PointerKind::Near32, 2005 PointerMode::LValueReference, PointerOptions::None, 2006 Ty->getSizeInBits() / 8); 2007 return TypeTable.writeKnownType(PR); 2008 } 2009 2010 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2011 const DIType *Ty = TypeRef.resolve(); 2012 2013 // The null DIType is the void type. Don't try to hash it. 2014 if (!Ty) 2015 return TypeIndex::Void(); 2016 2017 // If this is a non-record type, the complete type index is the same as the 2018 // normal type index. Just call getTypeIndex. 2019 switch (Ty->getTag()) { 2020 case dwarf::DW_TAG_class_type: 2021 case dwarf::DW_TAG_structure_type: 2022 case dwarf::DW_TAG_union_type: 2023 break; 2024 default: 2025 return getTypeIndex(Ty); 2026 } 2027 2028 // Check if we've already translated the complete record type. Lowering a 2029 // complete type should never trigger lowering another complete type, so we 2030 // can reuse the hash table lookup result. 2031 const auto *CTy = cast<DICompositeType>(Ty); 2032 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2033 if (!InsertResult.second) 2034 return InsertResult.first->second; 2035 2036 TypeLoweringScope S(*this); 2037 2038 // Make sure the forward declaration is emitted first. It's unclear if this 2039 // is necessary, but MSVC does it, and we should follow suit until we can show 2040 // otherwise. 2041 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2042 2043 // Just use the forward decl if we don't have complete type info. This might 2044 // happen if the frontend is using modules and expects the complete definition 2045 // to be emitted elsewhere. 2046 if (CTy->isForwardDecl()) 2047 return FwdDeclTI; 2048 2049 TypeIndex TI; 2050 switch (CTy->getTag()) { 2051 case dwarf::DW_TAG_class_type: 2052 case dwarf::DW_TAG_structure_type: 2053 TI = lowerCompleteTypeClass(CTy); 2054 break; 2055 case dwarf::DW_TAG_union_type: 2056 TI = lowerCompleteTypeUnion(CTy); 2057 break; 2058 default: 2059 llvm_unreachable("not a record"); 2060 } 2061 2062 InsertResult.first->second = TI; 2063 return TI; 2064 } 2065 2066 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2067 /// and do this until fixpoint, as each complete record type typically 2068 /// references 2069 /// many other record types. 2070 void CodeViewDebug::emitDeferredCompleteTypes() { 2071 SmallVector<const DICompositeType *, 4> TypesToEmit; 2072 while (!DeferredCompleteTypes.empty()) { 2073 std::swap(DeferredCompleteTypes, TypesToEmit); 2074 for (const DICompositeType *RecordTy : TypesToEmit) 2075 getCompleteTypeIndex(RecordTy); 2076 TypesToEmit.clear(); 2077 } 2078 } 2079 2080 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2081 // Get the sorted list of parameters and emit them first. 2082 SmallVector<const LocalVariable *, 6> Params; 2083 for (const LocalVariable &L : Locals) 2084 if (L.DIVar->isParameter()) 2085 Params.push_back(&L); 2086 std::sort(Params.begin(), Params.end(), 2087 [](const LocalVariable *L, const LocalVariable *R) { 2088 return L->DIVar->getArg() < R->DIVar->getArg(); 2089 }); 2090 for (const LocalVariable *L : Params) 2091 emitLocalVariable(*L); 2092 2093 // Next emit all non-parameters in the order that we found them. 2094 for (const LocalVariable &L : Locals) 2095 if (!L.DIVar->isParameter()) 2096 emitLocalVariable(L); 2097 } 2098 2099 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2100 // LocalSym record, see SymbolRecord.h for more info. 2101 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2102 *LocalEnd = MMI->getContext().createTempSymbol(); 2103 OS.AddComment("Record length"); 2104 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2105 OS.EmitLabel(LocalBegin); 2106 2107 OS.AddComment("Record kind: S_LOCAL"); 2108 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2109 2110 LocalSymFlags Flags = LocalSymFlags::None; 2111 if (Var.DIVar->isParameter()) 2112 Flags |= LocalSymFlags::IsParameter; 2113 if (Var.DefRanges.empty()) 2114 Flags |= LocalSymFlags::IsOptimizedOut; 2115 2116 OS.AddComment("TypeIndex"); 2117 TypeIndex TI = Var.Deref ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2118 : getCompleteTypeIndex(Var.DIVar->getType()); 2119 OS.EmitIntValue(TI.getIndex(), 4); 2120 OS.AddComment("Flags"); 2121 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2122 // Truncate the name so we won't overflow the record length field. 2123 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2124 OS.EmitLabel(LocalEnd); 2125 2126 // Calculate the on disk prefix of the appropriate def range record. The 2127 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2128 // should be big enough to hold all forms without memory allocation. 2129 SmallString<20> BytePrefix; 2130 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2131 BytePrefix.clear(); 2132 if (DefRange.InMemory) { 2133 uint16_t RegRelFlags = 0; 2134 if (DefRange.IsSubfield) { 2135 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2136 (DefRange.StructOffset 2137 << DefRangeRegisterRelSym::OffsetInParentShift); 2138 } 2139 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2140 Sym.Hdr.Register = DefRange.CVRegister; 2141 Sym.Hdr.Flags = RegRelFlags; 2142 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2143 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2144 BytePrefix += 2145 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2146 BytePrefix += 2147 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2148 } else { 2149 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2150 if (DefRange.IsSubfield) { 2151 // Unclear what matters here. 2152 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2153 Sym.Hdr.Register = DefRange.CVRegister; 2154 Sym.Hdr.MayHaveNoName = 0; 2155 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2156 2157 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2158 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2159 sizeof(SymKind)); 2160 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2161 sizeof(Sym.Hdr)); 2162 } else { 2163 // Unclear what matters here. 2164 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2165 Sym.Hdr.Register = DefRange.CVRegister; 2166 Sym.Hdr.MayHaveNoName = 0; 2167 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2168 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2169 sizeof(SymKind)); 2170 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2171 sizeof(Sym.Hdr)); 2172 } 2173 } 2174 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2175 } 2176 } 2177 2178 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2179 const Function *GV = MF->getFunction(); 2180 assert(FnDebugInfo.count(GV)); 2181 assert(CurFn == &FnDebugInfo[GV]); 2182 2183 collectVariableInfo(GV->getSubprogram()); 2184 2185 // Don't emit anything if we don't have any line tables. 2186 if (!CurFn->HaveLineInfo) { 2187 FnDebugInfo.erase(GV); 2188 CurFn = nullptr; 2189 return; 2190 } 2191 2192 CurFn->End = Asm->getFunctionEnd(); 2193 2194 CurFn = nullptr; 2195 } 2196 2197 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2198 DebugHandlerBase::beginInstruction(MI); 2199 2200 // Ignore DBG_VALUE locations and function prologue. 2201 if (!Asm || !CurFn || MI->isDebugValue() || 2202 MI->getFlag(MachineInstr::FrameSetup)) 2203 return; 2204 2205 // If the first instruction of a new MBB has no location, find the first 2206 // instruction with a location and use that. 2207 DebugLoc DL = MI->getDebugLoc(); 2208 if (!DL && MI->getParent() != PrevInstBB) { 2209 for (const auto &NextMI : *MI->getParent()) { 2210 if (NextMI.isDebugValue()) 2211 continue; 2212 DL = NextMI.getDebugLoc(); 2213 if (DL) 2214 break; 2215 } 2216 } 2217 PrevInstBB = MI->getParent(); 2218 2219 // If we still don't have a debug location, don't record a location. 2220 if (!DL) 2221 return; 2222 2223 maybeRecordLocation(DL, Asm->MF); 2224 } 2225 2226 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2227 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2228 *EndLabel = MMI->getContext().createTempSymbol(); 2229 OS.EmitIntValue(unsigned(Kind), 4); 2230 OS.AddComment("Subsection size"); 2231 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2232 OS.EmitLabel(BeginLabel); 2233 return EndLabel; 2234 } 2235 2236 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2237 OS.EmitLabel(EndLabel); 2238 // Every subsection must be aligned to a 4-byte boundary. 2239 OS.EmitValueToAlignment(4); 2240 } 2241 2242 void CodeViewDebug::emitDebugInfoForUDTs( 2243 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2244 for (const auto &UDT : UDTs) { 2245 const DIType *T = UDT.second; 2246 assert(shouldEmitUdt(T)); 2247 2248 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2249 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2250 OS.AddComment("Record length"); 2251 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2252 OS.EmitLabel(UDTRecordBegin); 2253 2254 OS.AddComment("Record kind: S_UDT"); 2255 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2256 2257 OS.AddComment("Type"); 2258 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2259 2260 emitNullTerminatedSymbolName(OS, UDT.first); 2261 OS.EmitLabel(UDTRecordEnd); 2262 } 2263 } 2264 2265 void CodeViewDebug::emitDebugInfoForGlobals() { 2266 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2267 GlobalMap; 2268 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2269 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2270 GV.getDebugInfo(GVEs); 2271 for (const auto *GVE : GVEs) 2272 GlobalMap[GVE] = &GV; 2273 } 2274 2275 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2276 for (const MDNode *Node : CUs->operands()) { 2277 const auto *CU = cast<DICompileUnit>(Node); 2278 2279 // First, emit all globals that are not in a comdat in a single symbol 2280 // substream. MSVC doesn't like it if the substream is empty, so only open 2281 // it if we have at least one global to emit. 2282 switchToDebugSectionForSymbol(nullptr); 2283 MCSymbol *EndLabel = nullptr; 2284 for (const auto *GVE : CU->getGlobalVariables()) { 2285 if (const auto *GV = GlobalMap.lookup(GVE)) 2286 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2287 if (!EndLabel) { 2288 OS.AddComment("Symbol subsection for globals"); 2289 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2290 } 2291 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2292 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2293 } 2294 } 2295 if (EndLabel) 2296 endCVSubsection(EndLabel); 2297 2298 // Second, emit each global that is in a comdat into its own .debug$S 2299 // section along with its own symbol substream. 2300 for (const auto *GVE : CU->getGlobalVariables()) { 2301 if (const auto *GV = GlobalMap.lookup(GVE)) { 2302 if (GV->hasComdat()) { 2303 MCSymbol *GVSym = Asm->getSymbol(GV); 2304 OS.AddComment("Symbol subsection for " + 2305 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2306 switchToDebugSectionForSymbol(GVSym); 2307 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2308 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2309 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2310 endCVSubsection(EndLabel); 2311 } 2312 } 2313 } 2314 } 2315 } 2316 2317 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2318 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2319 for (const MDNode *Node : CUs->operands()) { 2320 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2321 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2322 getTypeIndex(RT); 2323 // FIXME: Add to global/local DTU list. 2324 } 2325 } 2326 } 2327 } 2328 2329 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2330 const GlobalVariable *GV, 2331 MCSymbol *GVSym) { 2332 // DataSym record, see SymbolRecord.h for more info. 2333 // FIXME: Thread local data, etc 2334 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2335 *DataEnd = MMI->getContext().createTempSymbol(); 2336 OS.AddComment("Record length"); 2337 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2338 OS.EmitLabel(DataBegin); 2339 if (DIGV->isLocalToUnit()) { 2340 if (GV->isThreadLocal()) { 2341 OS.AddComment("Record kind: S_LTHREAD32"); 2342 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2343 } else { 2344 OS.AddComment("Record kind: S_LDATA32"); 2345 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2346 } 2347 } else { 2348 if (GV->isThreadLocal()) { 2349 OS.AddComment("Record kind: S_GTHREAD32"); 2350 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2351 } else { 2352 OS.AddComment("Record kind: S_GDATA32"); 2353 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2354 } 2355 } 2356 OS.AddComment("Type"); 2357 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2358 OS.AddComment("DataOffset"); 2359 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2360 OS.AddComment("Segment"); 2361 OS.EmitCOFFSectionIndex(GVSym); 2362 OS.AddComment("Name"); 2363 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2364 OS.EmitLabel(DataEnd); 2365 } 2366