1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
44   // If module doesn't have named metadata anchors or COFF debug section
45   // is not available, skip any debug info related stuff.
46   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
47       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
48     Asm = nullptr;
49     return;
50   }
51 
52   // Tell MMI that we have debug info.
53   MMI->setDebugInfoAvailability(true);
54 }
55 
56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
57   std::string &Filepath = FileToFilepathMap[File];
58   if (!Filepath.empty())
59     return Filepath;
60 
61   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
62 
63   // Clang emits directory and relative filename info into the IR, but CodeView
64   // operates on full paths.  We could change Clang to emit full paths too, but
65   // that would increase the IR size and probably not needed for other users.
66   // For now, just concatenate and canonicalize the path here.
67   if (Filename.find(':') == 1)
68     Filepath = Filename;
69   else
70     Filepath = (Dir + "\\" + Filename).str();
71 
72   // Canonicalize the path.  We have to do it textually because we may no longer
73   // have access the file in the filesystem.
74   // First, replace all slashes with backslashes.
75   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
76 
77   // Remove all "\.\" with "\".
78   size_t Cursor = 0;
79   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
80     Filepath.erase(Cursor, 2);
81 
82   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
83   // path should be well-formatted, e.g. start with a drive letter, etc.
84   Cursor = 0;
85   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
86     // Something's wrong if the path starts with "\..\", abort.
87     if (Cursor == 0)
88       break;
89 
90     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
91     if (PrevSlash == std::string::npos)
92       // Something's wrong, abort.
93       break;
94 
95     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
96     // The next ".." might be following the one we've just erased.
97     Cursor = PrevSlash;
98   }
99 
100   // Remove all duplicate backslashes.
101   Cursor = 0;
102   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
103     Filepath.erase(Cursor, 1);
104 
105   return Filepath;
106 }
107 
108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
109   unsigned NextId = FileIdMap.size() + 1;
110   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
111   if (Insertion.second) {
112     // We have to compute the full filepath and emit a .cv_file directive.
113     StringRef FullPath = getFullFilepath(F);
114     NextId = OS.EmitCVFileDirective(NextId, FullPath);
115     assert(NextId == FileIdMap.size() && ".cv_file directive failed");
116   }
117   return Insertion.first->second;
118 }
119 
120 CodeViewDebug::InlineSite &
121 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
122                              const DISubprogram *Inlinee) {
123   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
124   InlineSite *Site = &SiteInsertion.first->second;
125   if (SiteInsertion.second) {
126     Site->SiteFuncId = NextFuncId++;
127     Site->Inlinee = Inlinee;
128     InlinedSubprograms.insert(Inlinee);
129     getFuncIdForSubprogram(Inlinee);
130   }
131   return *Site;
132 }
133 
134 static StringRef getPrettyScopeName(const DIScope *Scope) {
135   StringRef ScopeName = Scope->getName();
136   if (!ScopeName.empty())
137     return ScopeName;
138 
139   switch (Scope->getTag()) {
140   case dwarf::DW_TAG_enumeration_type:
141   case dwarf::DW_TAG_class_type:
142   case dwarf::DW_TAG_structure_type:
143   case dwarf::DW_TAG_union_type:
144     return "<unnamed-tag>";
145   case dwarf::DW_TAG_namespace:
146     return "`anonymous namespace'";
147   }
148 
149   return StringRef();
150 }
151 
152 static const DISubprogram *getQualifiedNameComponents(
153     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
154   const DISubprogram *ClosestSubprogram = nullptr;
155   while (Scope != nullptr) {
156     if (ClosestSubprogram == nullptr)
157       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
158     StringRef ScopeName = getPrettyScopeName(Scope);
159     if (!ScopeName.empty())
160       QualifiedNameComponents.push_back(ScopeName);
161     Scope = Scope->getScope().resolve();
162   }
163   return ClosestSubprogram;
164 }
165 
166 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
167                                     StringRef TypeName) {
168   std::string FullyQualifiedName;
169   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
170     FullyQualifiedName.append(QualifiedNameComponent);
171     FullyQualifiedName.append("::");
172   }
173   FullyQualifiedName.append(TypeName);
174   return FullyQualifiedName;
175 }
176 
177 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
178   SmallVector<StringRef, 5> QualifiedNameComponents;
179   getQualifiedNameComponents(Scope, QualifiedNameComponents);
180   return getQualifiedName(QualifiedNameComponents, Name);
181 }
182 
183 struct CodeViewDebug::TypeLoweringScope {
184   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
185   ~TypeLoweringScope() {
186     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
187     // inner TypeLoweringScopes don't attempt to emit deferred types.
188     if (CVD.TypeEmissionLevel == 1)
189       CVD.emitDeferredCompleteTypes();
190     --CVD.TypeEmissionLevel;
191   }
192   CodeViewDebug &CVD;
193 };
194 
195 static std::string getFullyQualifiedName(const DIScope *Ty) {
196   const DIScope *Scope = Ty->getScope().resolve();
197   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
198 }
199 
200 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
201   // No scope means global scope and that uses the zero index.
202   if (!Scope || isa<DIFile>(Scope))
203     return TypeIndex();
204 
205   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
206 
207   // Check if we've already translated this scope.
208   auto I = TypeIndices.find({Scope, nullptr});
209   if (I != TypeIndices.end())
210     return I->second;
211 
212   // Build the fully qualified name of the scope.
213   std::string ScopeName = getFullyQualifiedName(Scope);
214   TypeIndex TI =
215       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
216   return recordTypeIndexForDINode(Scope, TI);
217 }
218 
219 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
220   assert(SP);
221 
222   // Check if we've already translated this subprogram.
223   auto I = TypeIndices.find({SP, nullptr});
224   if (I != TypeIndices.end())
225     return I->second;
226 
227   // The display name includes function template arguments. Drop them to match
228   // MSVC.
229   StringRef DisplayName = SP->getDisplayName().split('<').first;
230 
231   const DIScope *Scope = SP->getScope().resolve();
232   TypeIndex TI;
233   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
234     // If the scope is a DICompositeType, then this must be a method. Member
235     // function types take some special handling, and require access to the
236     // subprogram.
237     TypeIndex ClassType = getTypeIndex(Class);
238     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
239                                DisplayName);
240     TI = TypeTable.writeKnownType(MFuncId);
241   } else {
242     // Otherwise, this must be a free function.
243     TypeIndex ParentScope = getScopeIndex(Scope);
244     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
245     TI = TypeTable.writeKnownType(FuncId);
246   }
247 
248   return recordTypeIndexForDINode(SP, TI);
249 }
250 
251 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
252                                                const DICompositeType *Class) {
253   // Always use the method declaration as the key for the function type. The
254   // method declaration contains the this adjustment.
255   if (SP->getDeclaration())
256     SP = SP->getDeclaration();
257   assert(!SP->getDeclaration() && "should use declaration as key");
258 
259   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
260   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
261   auto I = TypeIndices.find({SP, Class});
262   if (I != TypeIndices.end())
263     return I->second;
264 
265   // Make sure complete type info for the class is emitted *after* the member
266   // function type, as the complete class type is likely to reference this
267   // member function type.
268   TypeLoweringScope S(*this);
269   TypeIndex TI =
270       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
271   return recordTypeIndexForDINode(SP, TI, Class);
272 }
273 
274 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
275                                                   TypeIndex TI,
276                                                   const DIType *ClassTy) {
277   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
278   (void)InsertResult;
279   assert(InsertResult.second && "DINode was already assigned a type index");
280   return TI;
281 }
282 
283 unsigned CodeViewDebug::getPointerSizeInBytes() {
284   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
285 }
286 
287 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
288                                         const DILocation *InlinedAt) {
289   if (InlinedAt) {
290     // This variable was inlined. Associate it with the InlineSite.
291     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
292     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
293     Site.InlinedLocals.emplace_back(Var);
294   } else {
295     // This variable goes in the main ProcSym.
296     CurFn->Locals.emplace_back(Var);
297   }
298 }
299 
300 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
301                                const DILocation *Loc) {
302   auto B = Locs.begin(), E = Locs.end();
303   if (std::find(B, E, Loc) == E)
304     Locs.push_back(Loc);
305 }
306 
307 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
308                                         const MachineFunction *MF) {
309   // Skip this instruction if it has the same location as the previous one.
310   if (DL == CurFn->LastLoc)
311     return;
312 
313   const DIScope *Scope = DL.get()->getScope();
314   if (!Scope)
315     return;
316 
317   // Skip this line if it is longer than the maximum we can record.
318   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
319   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
320       LI.isNeverStepInto())
321     return;
322 
323   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
324   if (CI.getStartColumn() != DL.getCol())
325     return;
326 
327   if (!CurFn->HaveLineInfo)
328     CurFn->HaveLineInfo = true;
329   unsigned FileId = 0;
330   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
331     FileId = CurFn->LastFileId;
332   else
333     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
334   CurFn->LastLoc = DL;
335 
336   unsigned FuncId = CurFn->FuncId;
337   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
338     const DILocation *Loc = DL.get();
339 
340     // If this location was actually inlined from somewhere else, give it the ID
341     // of the inline call site.
342     FuncId =
343         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
344 
345     // Ensure we have links in the tree of inline call sites.
346     bool FirstLoc = true;
347     while ((SiteLoc = Loc->getInlinedAt())) {
348       InlineSite &Site =
349           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
350       if (!FirstLoc)
351         addLocIfNotPresent(Site.ChildSites, Loc);
352       FirstLoc = false;
353       Loc = SiteLoc;
354     }
355     addLocIfNotPresent(CurFn->ChildSites, Loc);
356   }
357 
358   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
359                         /*PrologueEnd=*/false,
360                         /*IsStmt=*/false, DL->getFilename());
361 }
362 
363 void CodeViewDebug::emitCodeViewMagicVersion() {
364   OS.EmitValueToAlignment(4);
365   OS.AddComment("Debug section magic");
366   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
367 }
368 
369 void CodeViewDebug::endModule() {
370   if (!Asm || !MMI->hasDebugInfo())
371     return;
372 
373   assert(Asm != nullptr);
374 
375   // The COFF .debug$S section consists of several subsections, each starting
376   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
377   // of the payload followed by the payload itself.  The subsections are 4-byte
378   // aligned.
379 
380   // Use the generic .debug$S section, and make a subsection for all the inlined
381   // subprograms.
382   switchToDebugSectionForSymbol(nullptr);
383   emitInlineeLinesSubsection();
384 
385   // Emit per-function debug information.
386   for (auto &P : FnDebugInfo)
387     if (!P.first->isDeclarationForLinker())
388       emitDebugInfoForFunction(P.first, P.second);
389 
390   // Emit global variable debug information.
391   setCurrentSubprogram(nullptr);
392   emitDebugInfoForGlobals();
393 
394   // Emit retained types.
395   emitDebugInfoForRetainedTypes();
396 
397   // Switch back to the generic .debug$S section after potentially processing
398   // comdat symbol sections.
399   switchToDebugSectionForSymbol(nullptr);
400 
401   // Emit UDT records for any types used by global variables.
402   if (!GlobalUDTs.empty()) {
403     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
404     emitDebugInfoForUDTs(GlobalUDTs);
405     endCVSubsection(SymbolsEnd);
406   }
407 
408   // This subsection holds a file index to offset in string table table.
409   OS.AddComment("File index to string table offset subsection");
410   OS.EmitCVFileChecksumsDirective();
411 
412   // This subsection holds the string table.
413   OS.AddComment("String table");
414   OS.EmitCVStringTableDirective();
415 
416   // Emit type information last, so that any types we translate while emitting
417   // function info are included.
418   emitTypeInformation();
419 
420   clear();
421 }
422 
423 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
424   // Microsoft's linker seems to have trouble with symbol names longer than
425   // 0xffd8 bytes.
426   S = S.substr(0, 0xffd8);
427   SmallString<32> NullTerminatedString(S);
428   NullTerminatedString.push_back('\0');
429   OS.EmitBytes(NullTerminatedString);
430 }
431 
432 void CodeViewDebug::emitTypeInformation() {
433   // Do nothing if we have no debug info or if no non-trivial types were emitted
434   // to TypeTable during codegen.
435   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
436   if (!CU_Nodes)
437     return;
438   if (TypeTable.empty())
439     return;
440 
441   // Start the .debug$T section with 0x4.
442   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
443   emitCodeViewMagicVersion();
444 
445   SmallString<8> CommentPrefix;
446   if (OS.isVerboseAsm()) {
447     CommentPrefix += '\t';
448     CommentPrefix += Asm->MAI->getCommentString();
449     CommentPrefix += ' ';
450   }
451 
452   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
453   TypeTable.ForEachRecord(
454       [&](TypeIndex Index, StringRef Record) {
455         if (OS.isVerboseAsm()) {
456           // Emit a block comment describing the type record for readability.
457           SmallString<512> CommentBlock;
458           raw_svector_ostream CommentOS(CommentBlock);
459           ScopedPrinter SP(CommentOS);
460           SP.setPrefix(CommentPrefix);
461           CVTD.setPrinter(&SP);
462           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
463           if (E) {
464             logAllUnhandledErrors(std::move(E), errs(), "error: ");
465             llvm_unreachable("produced malformed type record");
466           }
467           // emitRawComment will insert its own tab and comment string before
468           // the first line, so strip off our first one. It also prints its own
469           // newline.
470           OS.emitRawComment(
471               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
472         } else {
473 #ifndef NDEBUG
474           // Assert that the type data is valid even if we aren't dumping
475           // comments. The MSVC linker doesn't do much type record validation,
476           // so the first link of an invalid type record can succeed while
477           // subsequent links will fail with LNK1285.
478           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
479           CVTypeArray Types;
480           StreamReader Reader(Stream);
481           Error E = Reader.readArray(Types, Reader.getLength());
482           if (!E) {
483             TypeVisitorCallbacks C;
484             E = CVTypeVisitor(C).visitTypeStream(Types);
485           }
486           if (E) {
487             logAllUnhandledErrors(std::move(E), errs(), "error: ");
488             llvm_unreachable("produced malformed type record");
489           }
490 #endif
491         }
492         OS.EmitBinaryData(Record);
493       });
494 }
495 
496 void CodeViewDebug::emitInlineeLinesSubsection() {
497   if (InlinedSubprograms.empty())
498     return;
499 
500   OS.AddComment("Inlinee lines subsection");
501   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
502 
503   // We don't provide any extra file info.
504   // FIXME: Find out if debuggers use this info.
505   OS.AddComment("Inlinee lines signature");
506   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
507 
508   for (const DISubprogram *SP : InlinedSubprograms) {
509     assert(TypeIndices.count({SP, nullptr}));
510     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
511 
512     OS.AddBlankLine();
513     unsigned FileId = maybeRecordFile(SP->getFile());
514     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
515                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
516     OS.AddBlankLine();
517     // The filechecksum table uses 8 byte entries for now, and file ids start at
518     // 1.
519     unsigned FileOffset = (FileId - 1) * 8;
520     OS.AddComment("Type index of inlined function");
521     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
522     OS.AddComment("Offset into filechecksum table");
523     OS.EmitIntValue(FileOffset, 4);
524     OS.AddComment("Starting line number");
525     OS.EmitIntValue(SP->getLine(), 4);
526   }
527 
528   endCVSubsection(InlineEnd);
529 }
530 
531 void CodeViewDebug::collectInlineSiteChildren(
532     SmallVectorImpl<unsigned> &Children, const FunctionInfo &FI,
533     const InlineSite &Site) {
534   for (const DILocation *ChildSiteLoc : Site.ChildSites) {
535     auto I = FI.InlineSites.find(ChildSiteLoc);
536     const InlineSite &ChildSite = I->second;
537     Children.push_back(ChildSite.SiteFuncId);
538     collectInlineSiteChildren(Children, FI, ChildSite);
539   }
540 }
541 
542 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
543                                         const DILocation *InlinedAt,
544                                         const InlineSite &Site) {
545   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
546            *InlineEnd = MMI->getContext().createTempSymbol();
547 
548   assert(TypeIndices.count({Site.Inlinee, nullptr}));
549   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
550 
551   // SymbolRecord
552   OS.AddComment("Record length");
553   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
554   OS.EmitLabel(InlineBegin);
555   OS.AddComment("Record kind: S_INLINESITE");
556   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
557 
558   OS.AddComment("PtrParent");
559   OS.EmitIntValue(0, 4);
560   OS.AddComment("PtrEnd");
561   OS.EmitIntValue(0, 4);
562   OS.AddComment("Inlinee type index");
563   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
564 
565   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
566   unsigned StartLineNum = Site.Inlinee->getLine();
567   SmallVector<unsigned, 3> SecondaryFuncIds;
568   collectInlineSiteChildren(SecondaryFuncIds, FI, Site);
569 
570   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
571                                     FI.Begin, FI.End, SecondaryFuncIds);
572 
573   OS.EmitLabel(InlineEnd);
574 
575   emitLocalVariableList(Site.InlinedLocals);
576 
577   // Recurse on child inlined call sites before closing the scope.
578   for (const DILocation *ChildSite : Site.ChildSites) {
579     auto I = FI.InlineSites.find(ChildSite);
580     assert(I != FI.InlineSites.end() &&
581            "child site not in function inline site map");
582     emitInlinedCallSite(FI, ChildSite, I->second);
583   }
584 
585   // Close the scope.
586   OS.AddComment("Record length");
587   OS.EmitIntValue(2, 2);                                  // RecordLength
588   OS.AddComment("Record kind: S_INLINESITE_END");
589   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
590 }
591 
592 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
593   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
594   // comdat key. A section may be comdat because of -ffunction-sections or
595   // because it is comdat in the IR.
596   MCSectionCOFF *GVSec =
597       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
598   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
599 
600   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
601       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
602   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
603 
604   OS.SwitchSection(DebugSec);
605 
606   // Emit the magic version number if this is the first time we've switched to
607   // this section.
608   if (ComdatDebugSections.insert(DebugSec).second)
609     emitCodeViewMagicVersion();
610 }
611 
612 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
613                                              FunctionInfo &FI) {
614   // For each function there is a separate subsection
615   // which holds the PC to file:line table.
616   const MCSymbol *Fn = Asm->getSymbol(GV);
617   assert(Fn);
618 
619   // Switch to the to a comdat section, if appropriate.
620   switchToDebugSectionForSymbol(Fn);
621 
622   std::string FuncName;
623   auto *SP = GV->getSubprogram();
624   assert(SP);
625   setCurrentSubprogram(SP);
626 
627   // If we have a display name, build the fully qualified name by walking the
628   // chain of scopes.
629   if (!SP->getDisplayName().empty())
630     FuncName =
631         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
632 
633   // If our DISubprogram name is empty, use the mangled name.
634   if (FuncName.empty())
635     FuncName = GlobalValue::getRealLinkageName(GV->getName());
636 
637   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
638   OS.AddComment("Symbol subsection for " + Twine(FuncName));
639   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
640   {
641     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
642              *ProcRecordEnd = MMI->getContext().createTempSymbol();
643     OS.AddComment("Record length");
644     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
645     OS.EmitLabel(ProcRecordBegin);
646 
647   if (GV->hasLocalLinkage()) {
648     OS.AddComment("Record kind: S_LPROC32_ID");
649     OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
650   } else {
651     OS.AddComment("Record kind: S_GPROC32_ID");
652     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
653   }
654 
655     // These fields are filled in by tools like CVPACK which run after the fact.
656     OS.AddComment("PtrParent");
657     OS.EmitIntValue(0, 4);
658     OS.AddComment("PtrEnd");
659     OS.EmitIntValue(0, 4);
660     OS.AddComment("PtrNext");
661     OS.EmitIntValue(0, 4);
662     // This is the important bit that tells the debugger where the function
663     // code is located and what's its size:
664     OS.AddComment("Code size");
665     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
666     OS.AddComment("Offset after prologue");
667     OS.EmitIntValue(0, 4);
668     OS.AddComment("Offset before epilogue");
669     OS.EmitIntValue(0, 4);
670     OS.AddComment("Function type index");
671     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
672     OS.AddComment("Function section relative address");
673     OS.EmitCOFFSecRel32(Fn);
674     OS.AddComment("Function section index");
675     OS.EmitCOFFSectionIndex(Fn);
676     OS.AddComment("Flags");
677     OS.EmitIntValue(0, 1);
678     // Emit the function display name as a null-terminated string.
679     OS.AddComment("Function name");
680     // Truncate the name so we won't overflow the record length field.
681     emitNullTerminatedSymbolName(OS, FuncName);
682     OS.EmitLabel(ProcRecordEnd);
683 
684     emitLocalVariableList(FI.Locals);
685 
686     // Emit inlined call site information. Only emit functions inlined directly
687     // into the parent function. We'll emit the other sites recursively as part
688     // of their parent inline site.
689     for (const DILocation *InlinedAt : FI.ChildSites) {
690       auto I = FI.InlineSites.find(InlinedAt);
691       assert(I != FI.InlineSites.end() &&
692              "child site not in function inline site map");
693       emitInlinedCallSite(FI, InlinedAt, I->second);
694     }
695 
696     if (SP != nullptr)
697       emitDebugInfoForUDTs(LocalUDTs);
698 
699     // We're done with this function.
700     OS.AddComment("Record length");
701     OS.EmitIntValue(0x0002, 2);
702     OS.AddComment("Record kind: S_PROC_ID_END");
703     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
704   }
705   endCVSubsection(SymbolsEnd);
706 
707   // We have an assembler directive that takes care of the whole line table.
708   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
709 }
710 
711 CodeViewDebug::LocalVarDefRange
712 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
713   LocalVarDefRange DR;
714   DR.InMemory = -1;
715   DR.DataOffset = Offset;
716   assert(DR.DataOffset == Offset && "truncation");
717   DR.StructOffset = 0;
718   DR.CVRegister = CVRegister;
719   return DR;
720 }
721 
722 CodeViewDebug::LocalVarDefRange
723 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
724   LocalVarDefRange DR;
725   DR.InMemory = 0;
726   DR.DataOffset = 0;
727   DR.StructOffset = 0;
728   DR.CVRegister = CVRegister;
729   return DR;
730 }
731 
732 void CodeViewDebug::collectVariableInfoFromMMITable(
733     DenseSet<InlinedVariable> &Processed) {
734   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
735   const TargetFrameLowering *TFI = TSI.getFrameLowering();
736   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
737 
738   for (const MachineModuleInfo::VariableDbgInfo &VI :
739        MMI->getVariableDbgInfo()) {
740     if (!VI.Var)
741       continue;
742     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
743            "Expected inlined-at fields to agree");
744 
745     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
746     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
747 
748     // If variable scope is not found then skip this variable.
749     if (!Scope)
750       continue;
751 
752     // Get the frame register used and the offset.
753     unsigned FrameReg = 0;
754     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
755     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
756 
757     // Calculate the label ranges.
758     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
759     for (const InsnRange &Range : Scope->getRanges()) {
760       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
761       const MCSymbol *End = getLabelAfterInsn(Range.second);
762       End = End ? End : Asm->getFunctionEnd();
763       DefRange.Ranges.emplace_back(Begin, End);
764     }
765 
766     LocalVariable Var;
767     Var.DIVar = VI.Var;
768     Var.DefRanges.emplace_back(std::move(DefRange));
769     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
770   }
771 }
772 
773 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
774   DenseSet<InlinedVariable> Processed;
775   // Grab the variable info that was squirreled away in the MMI side-table.
776   collectVariableInfoFromMMITable(Processed);
777 
778   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
779 
780   for (const auto &I : DbgValues) {
781     InlinedVariable IV = I.first;
782     if (Processed.count(IV))
783       continue;
784     const DILocalVariable *DIVar = IV.first;
785     const DILocation *InlinedAt = IV.second;
786 
787     // Instruction ranges, specifying where IV is accessible.
788     const auto &Ranges = I.second;
789 
790     LexicalScope *Scope = nullptr;
791     if (InlinedAt)
792       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
793     else
794       Scope = LScopes.findLexicalScope(DIVar->getScope());
795     // If variable scope is not found then skip this variable.
796     if (!Scope)
797       continue;
798 
799     LocalVariable Var;
800     Var.DIVar = DIVar;
801 
802     // Calculate the definition ranges.
803     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
804       const InsnRange &Range = *I;
805       const MachineInstr *DVInst = Range.first;
806       assert(DVInst->isDebugValue() && "Invalid History entry");
807       const DIExpression *DIExpr = DVInst->getDebugExpression();
808 
809       // Bail if there is a complex DWARF expression for now.
810       if (DIExpr && DIExpr->getNumElements() > 0)
811         continue;
812 
813       // Bail if operand 0 is not a valid register. This means the variable is a
814       // simple constant, or is described by a complex expression.
815       // FIXME: Find a way to represent constant variables, since they are
816       // relatively common.
817       unsigned Reg =
818           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
819       if (Reg == 0)
820         continue;
821 
822       // Handle the two cases we can handle: indirect in memory and in register.
823       bool IsIndirect = DVInst->getOperand(1).isImm();
824       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
825       {
826         LocalVarDefRange DefRange;
827         if (IsIndirect) {
828           int64_t Offset = DVInst->getOperand(1).getImm();
829           DefRange = createDefRangeMem(CVReg, Offset);
830         } else {
831           DefRange = createDefRangeReg(CVReg);
832         }
833         if (Var.DefRanges.empty() ||
834             Var.DefRanges.back().isDifferentLocation(DefRange)) {
835           Var.DefRanges.emplace_back(std::move(DefRange));
836         }
837       }
838 
839       // Compute the label range.
840       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
841       const MCSymbol *End = getLabelAfterInsn(Range.second);
842       if (!End) {
843         if (std::next(I) != E)
844           End = getLabelBeforeInsn(std::next(I)->first);
845         else
846           End = Asm->getFunctionEnd();
847       }
848 
849       // If the last range end is our begin, just extend the last range.
850       // Otherwise make a new range.
851       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
852           Var.DefRanges.back().Ranges;
853       if (!Ranges.empty() && Ranges.back().second == Begin)
854         Ranges.back().second = End;
855       else
856         Ranges.emplace_back(Begin, End);
857 
858       // FIXME: Do more range combining.
859     }
860 
861     recordLocalVariable(std::move(Var), InlinedAt);
862   }
863 }
864 
865 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
866   assert(!CurFn && "Can't process two functions at once!");
867 
868   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
869     return;
870 
871   DebugHandlerBase::beginFunction(MF);
872 
873   const Function *GV = MF->getFunction();
874   assert(FnDebugInfo.count(GV) == false);
875   CurFn = &FnDebugInfo[GV];
876   CurFn->FuncId = NextFuncId++;
877   CurFn->Begin = Asm->getFunctionBegin();
878 
879   // Find the end of the function prolog.  First known non-DBG_VALUE and
880   // non-frame setup location marks the beginning of the function body.
881   // FIXME: is there a simpler a way to do this? Can we just search
882   // for the first instruction of the function, not the last of the prolog?
883   DebugLoc PrologEndLoc;
884   bool EmptyPrologue = true;
885   for (const auto &MBB : *MF) {
886     for (const auto &MI : MBB) {
887       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
888           MI.getDebugLoc()) {
889         PrologEndLoc = MI.getDebugLoc();
890         break;
891       } else if (!MI.isDebugValue()) {
892         EmptyPrologue = false;
893       }
894     }
895   }
896 
897   // Record beginning of function if we have a non-empty prologue.
898   if (PrologEndLoc && !EmptyPrologue) {
899     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
900     maybeRecordLocation(FnStartDL, MF);
901   }
902 }
903 
904 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
905   // Don't record empty UDTs.
906   if (Ty->getName().empty())
907     return;
908 
909   SmallVector<StringRef, 5> QualifiedNameComponents;
910   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
911       Ty->getScope().resolve(), QualifiedNameComponents);
912 
913   std::string FullyQualifiedName =
914       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
915 
916   if (ClosestSubprogram == nullptr)
917     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
918   else if (ClosestSubprogram == CurrentSubprogram)
919     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
920 
921   // TODO: What if the ClosestSubprogram is neither null or the current
922   // subprogram?  Currently, the UDT just gets dropped on the floor.
923   //
924   // The current behavior is not desirable.  To get maximal fidelity, we would
925   // need to perform all type translation before beginning emission of .debug$S
926   // and then make LocalUDTs a member of FunctionInfo
927 }
928 
929 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
930   // Generic dispatch for lowering an unknown type.
931   switch (Ty->getTag()) {
932   case dwarf::DW_TAG_array_type:
933     return lowerTypeArray(cast<DICompositeType>(Ty));
934   case dwarf::DW_TAG_typedef:
935     return lowerTypeAlias(cast<DIDerivedType>(Ty));
936   case dwarf::DW_TAG_base_type:
937     return lowerTypeBasic(cast<DIBasicType>(Ty));
938   case dwarf::DW_TAG_pointer_type:
939   case dwarf::DW_TAG_reference_type:
940   case dwarf::DW_TAG_rvalue_reference_type:
941     return lowerTypePointer(cast<DIDerivedType>(Ty));
942   case dwarf::DW_TAG_ptr_to_member_type:
943     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
944   case dwarf::DW_TAG_const_type:
945   case dwarf::DW_TAG_volatile_type:
946     return lowerTypeModifier(cast<DIDerivedType>(Ty));
947   case dwarf::DW_TAG_subroutine_type:
948     if (ClassTy) {
949       // The member function type of a member function pointer has no
950       // ThisAdjustment.
951       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
952                                      /*ThisAdjustment=*/0);
953     }
954     return lowerTypeFunction(cast<DISubroutineType>(Ty));
955   case dwarf::DW_TAG_enumeration_type:
956     return lowerTypeEnum(cast<DICompositeType>(Ty));
957   case dwarf::DW_TAG_class_type:
958   case dwarf::DW_TAG_structure_type:
959     return lowerTypeClass(cast<DICompositeType>(Ty));
960   case dwarf::DW_TAG_union_type:
961     return lowerTypeUnion(cast<DICompositeType>(Ty));
962   default:
963     // Use the null type index.
964     return TypeIndex();
965   }
966 }
967 
968 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
969   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
970   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
971   StringRef TypeName = Ty->getName();
972 
973   addToUDTs(Ty, UnderlyingTypeIndex);
974 
975   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
976       TypeName == "HRESULT")
977     return TypeIndex(SimpleTypeKind::HResult);
978   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
979       TypeName == "wchar_t")
980     return TypeIndex(SimpleTypeKind::WideCharacter);
981 
982   return UnderlyingTypeIndex;
983 }
984 
985 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
986   DITypeRef ElementTypeRef = Ty->getBaseType();
987   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
988   // IndexType is size_t, which depends on the bitness of the target.
989   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
990                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
991                             : TypeIndex(SimpleTypeKind::UInt32Long);
992 
993   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
994 
995   bool UndefinedSubrange = false;
996 
997   // FIXME:
998   // There is a bug in the front-end where an array of a structure, which was
999   // declared as incomplete structure first, ends up not getting a size assigned
1000   // to it. (PR28303)
1001   // Example:
1002   //   struct A(*p)[3];
1003   //   struct A { int f; } a[3];
1004   //
1005   // This needs to be fixed in the front-end, but in the meantime we don't want
1006   // to trigger an assertion because of this.
1007   if (Ty->getSizeInBits() == 0) {
1008     UndefinedSubrange = true;
1009   }
1010 
1011   // Add subranges to array type.
1012   DINodeArray Elements = Ty->getElements();
1013   for (int i = Elements.size() - 1; i >= 0; --i) {
1014     const DINode *Element = Elements[i];
1015     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1016 
1017     const DISubrange *Subrange = cast<DISubrange>(Element);
1018     assert(Subrange->getLowerBound() == 0 &&
1019            "codeview doesn't support subranges with lower bounds");
1020     int64_t Count = Subrange->getCount();
1021 
1022     // Variable Length Array (VLA) has Count equal to '-1'.
1023     // Replace with Count '1', assume it is the minimum VLA length.
1024     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1025     if (Count == -1) {
1026       Count = 1;
1027       UndefinedSubrange = true;
1028     }
1029 
1030     StringRef Name = (i == 0) ? Ty->getName() : "";
1031     // Update the element size and element type index for subsequent subranges.
1032     ElementSize *= Count;
1033     ElementTypeIndex = TypeTable.writeKnownType(
1034         ArrayRecord(ElementTypeIndex, IndexType, ElementSize, Name));
1035   }
1036 
1037   (void)UndefinedSubrange;
1038   assert(UndefinedSubrange || ElementSize == (Ty->getSizeInBits() / 8));
1039 
1040   return ElementTypeIndex;
1041 }
1042 
1043 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1044   TypeIndex Index;
1045   dwarf::TypeKind Kind;
1046   uint32_t ByteSize;
1047 
1048   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1049   ByteSize = Ty->getSizeInBits() / 8;
1050 
1051   SimpleTypeKind STK = SimpleTypeKind::None;
1052   switch (Kind) {
1053   case dwarf::DW_ATE_address:
1054     // FIXME: Translate
1055     break;
1056   case dwarf::DW_ATE_boolean:
1057     switch (ByteSize) {
1058     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1059     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1060     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1061     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1062     case 16: STK = SimpleTypeKind::Boolean128; break;
1063     }
1064     break;
1065   case dwarf::DW_ATE_complex_float:
1066     switch (ByteSize) {
1067     case 2:  STK = SimpleTypeKind::Complex16;  break;
1068     case 4:  STK = SimpleTypeKind::Complex32;  break;
1069     case 8:  STK = SimpleTypeKind::Complex64;  break;
1070     case 10: STK = SimpleTypeKind::Complex80;  break;
1071     case 16: STK = SimpleTypeKind::Complex128; break;
1072     }
1073     break;
1074   case dwarf::DW_ATE_float:
1075     switch (ByteSize) {
1076     case 2:  STK = SimpleTypeKind::Float16;  break;
1077     case 4:  STK = SimpleTypeKind::Float32;  break;
1078     case 6:  STK = SimpleTypeKind::Float48;  break;
1079     case 8:  STK = SimpleTypeKind::Float64;  break;
1080     case 10: STK = SimpleTypeKind::Float80;  break;
1081     case 16: STK = SimpleTypeKind::Float128; break;
1082     }
1083     break;
1084   case dwarf::DW_ATE_signed:
1085     switch (ByteSize) {
1086     case 1:  STK = SimpleTypeKind::SByte;      break;
1087     case 2:  STK = SimpleTypeKind::Int16Short; break;
1088     case 4:  STK = SimpleTypeKind::Int32;      break;
1089     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1090     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1091     }
1092     break;
1093   case dwarf::DW_ATE_unsigned:
1094     switch (ByteSize) {
1095     case 1:  STK = SimpleTypeKind::Byte;        break;
1096     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1097     case 4:  STK = SimpleTypeKind::UInt32;      break;
1098     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1099     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1100     }
1101     break;
1102   case dwarf::DW_ATE_UTF:
1103     switch (ByteSize) {
1104     case 2: STK = SimpleTypeKind::Character16; break;
1105     case 4: STK = SimpleTypeKind::Character32; break;
1106     }
1107     break;
1108   case dwarf::DW_ATE_signed_char:
1109     if (ByteSize == 1)
1110       STK = SimpleTypeKind::SignedCharacter;
1111     break;
1112   case dwarf::DW_ATE_unsigned_char:
1113     if (ByteSize == 1)
1114       STK = SimpleTypeKind::UnsignedCharacter;
1115     break;
1116   default:
1117     break;
1118   }
1119 
1120   // Apply some fixups based on the source-level type name.
1121   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1122     STK = SimpleTypeKind::Int32Long;
1123   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1124     STK = SimpleTypeKind::UInt32Long;
1125   if (STK == SimpleTypeKind::UInt16Short &&
1126       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1127     STK = SimpleTypeKind::WideCharacter;
1128   if ((STK == SimpleTypeKind::SignedCharacter ||
1129        STK == SimpleTypeKind::UnsignedCharacter) &&
1130       Ty->getName() == "char")
1131     STK = SimpleTypeKind::NarrowCharacter;
1132 
1133   return TypeIndex(STK);
1134 }
1135 
1136 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1137   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1138 
1139   // While processing the type being pointed to it is possible we already
1140   // created this pointer type.  If so, we check here and return the existing
1141   // pointer type.
1142   auto I = TypeIndices.find({Ty, nullptr});
1143   if (I != TypeIndices.end())
1144     return I->second;
1145 
1146   // Pointers to simple types can use SimpleTypeMode, rather than having a
1147   // dedicated pointer type record.
1148   if (PointeeTI.isSimple() &&
1149       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1150       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1151     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1152                               ? SimpleTypeMode::NearPointer64
1153                               : SimpleTypeMode::NearPointer32;
1154     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1155   }
1156 
1157   PointerKind PK =
1158       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1159   PointerMode PM = PointerMode::Pointer;
1160   switch (Ty->getTag()) {
1161   default: llvm_unreachable("not a pointer tag type");
1162   case dwarf::DW_TAG_pointer_type:
1163     PM = PointerMode::Pointer;
1164     break;
1165   case dwarf::DW_TAG_reference_type:
1166     PM = PointerMode::LValueReference;
1167     break;
1168   case dwarf::DW_TAG_rvalue_reference_type:
1169     PM = PointerMode::RValueReference;
1170     break;
1171   }
1172   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1173   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1174   // do.
1175   PointerOptions PO = PointerOptions::None;
1176   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1177   return TypeTable.writeKnownType(PR);
1178 }
1179 
1180 static PointerToMemberRepresentation
1181 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1182   // SizeInBytes being zero generally implies that the member pointer type was
1183   // incomplete, which can happen if it is part of a function prototype. In this
1184   // case, use the unknown model instead of the general model.
1185   if (IsPMF) {
1186     switch (Flags & DINode::FlagPtrToMemberRep) {
1187     case 0:
1188       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1189                               : PointerToMemberRepresentation::GeneralFunction;
1190     case DINode::FlagSingleInheritance:
1191       return PointerToMemberRepresentation::SingleInheritanceFunction;
1192     case DINode::FlagMultipleInheritance:
1193       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1194     case DINode::FlagVirtualInheritance:
1195       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1196     }
1197   } else {
1198     switch (Flags & DINode::FlagPtrToMemberRep) {
1199     case 0:
1200       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1201                               : PointerToMemberRepresentation::GeneralData;
1202     case DINode::FlagSingleInheritance:
1203       return PointerToMemberRepresentation::SingleInheritanceData;
1204     case DINode::FlagMultipleInheritance:
1205       return PointerToMemberRepresentation::MultipleInheritanceData;
1206     case DINode::FlagVirtualInheritance:
1207       return PointerToMemberRepresentation::VirtualInheritanceData;
1208     }
1209   }
1210   llvm_unreachable("invalid ptr to member representation");
1211 }
1212 
1213 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1214   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1215   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1216   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1217   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1218                                                    : PointerKind::Near32;
1219   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1220   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1221                          : PointerMode::PointerToDataMember;
1222   PointerOptions PO = PointerOptions::None; // FIXME
1223   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1224   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1225   MemberPointerInfo MPI(
1226       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1227   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1228   return TypeTable.writeKnownType(PR);
1229 }
1230 
1231 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1232 /// have a translation, use the NearC convention.
1233 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1234   switch (DwarfCC) {
1235   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1236   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1237   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1238   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1239   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1240   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1241   }
1242   return CallingConvention::NearC;
1243 }
1244 
1245 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1246   ModifierOptions Mods = ModifierOptions::None;
1247   bool IsModifier = true;
1248   const DIType *BaseTy = Ty;
1249   while (IsModifier && BaseTy) {
1250     // FIXME: Need to add DWARF tag for __unaligned.
1251     switch (BaseTy->getTag()) {
1252     case dwarf::DW_TAG_const_type:
1253       Mods |= ModifierOptions::Const;
1254       break;
1255     case dwarf::DW_TAG_volatile_type:
1256       Mods |= ModifierOptions::Volatile;
1257       break;
1258     default:
1259       IsModifier = false;
1260       break;
1261     }
1262     if (IsModifier)
1263       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1264   }
1265   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1266 
1267   // While processing the type being pointed to, it is possible we already
1268   // created this modifier type.  If so, we check here and return the existing
1269   // modifier type.
1270   auto I = TypeIndices.find({Ty, nullptr});
1271   if (I != TypeIndices.end())
1272     return I->second;
1273 
1274   ModifierRecord MR(ModifiedTI, Mods);
1275   return TypeTable.writeKnownType(MR);
1276 }
1277 
1278 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1279   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1280   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1281     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1282 
1283   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1284   ArrayRef<TypeIndex> ArgTypeIndices = None;
1285   if (!ReturnAndArgTypeIndices.empty()) {
1286     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1287     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1288     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1289   }
1290 
1291   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1292   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1293 
1294   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1295 
1296   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1297                             ArgTypeIndices.size(), ArgListIndex);
1298   return TypeTable.writeKnownType(Procedure);
1299 }
1300 
1301 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1302                                                  const DIType *ClassTy,
1303                                                  int ThisAdjustment) {
1304   // Lower the containing class type.
1305   TypeIndex ClassType = getTypeIndex(ClassTy);
1306 
1307   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1308   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1309     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1310 
1311   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1312   ArrayRef<TypeIndex> ArgTypeIndices = None;
1313   if (!ReturnAndArgTypeIndices.empty()) {
1314     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1315     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1316     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1317   }
1318   TypeIndex ThisTypeIndex = TypeIndex::Void();
1319   if (!ArgTypeIndices.empty()) {
1320     ThisTypeIndex = ArgTypeIndices.front();
1321     ArgTypeIndices = ArgTypeIndices.drop_front();
1322   }
1323 
1324   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1325   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1326 
1327   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1328 
1329   // TODO: Need to use the correct values for:
1330   //       FunctionOptions
1331   //       ThisPointerAdjustment.
1332   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1333       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1334       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1335 
1336   return TI;
1337 }
1338 
1339 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1340   switch (Flags & DINode::FlagAccessibility) {
1341   case DINode::FlagPrivate:   return MemberAccess::Private;
1342   case DINode::FlagPublic:    return MemberAccess::Public;
1343   case DINode::FlagProtected: return MemberAccess::Protected;
1344   case 0:
1345     // If there was no explicit access control, provide the default for the tag.
1346     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1347                                                  : MemberAccess::Public;
1348   }
1349   llvm_unreachable("access flags are exclusive");
1350 }
1351 
1352 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1353   if (SP->isArtificial())
1354     return MethodOptions::CompilerGenerated;
1355 
1356   // FIXME: Handle other MethodOptions.
1357 
1358   return MethodOptions::None;
1359 }
1360 
1361 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1362                                            bool Introduced) {
1363   switch (SP->getVirtuality()) {
1364   case dwarf::DW_VIRTUALITY_none:
1365     break;
1366   case dwarf::DW_VIRTUALITY_virtual:
1367     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1368   case dwarf::DW_VIRTUALITY_pure_virtual:
1369     return Introduced ? MethodKind::PureIntroducingVirtual
1370                       : MethodKind::PureVirtual;
1371   default:
1372     llvm_unreachable("unhandled virtuality case");
1373   }
1374 
1375   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1376 
1377   return MethodKind::Vanilla;
1378 }
1379 
1380 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1381   switch (Ty->getTag()) {
1382   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1383   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1384   }
1385   llvm_unreachable("unexpected tag");
1386 }
1387 
1388 /// Return ClassOptions that should be present on both the forward declaration
1389 /// and the defintion of a tag type.
1390 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1391   ClassOptions CO = ClassOptions::None;
1392 
1393   // MSVC always sets this flag, even for local types. Clang doesn't always
1394   // appear to give every type a linkage name, which may be problematic for us.
1395   // FIXME: Investigate the consequences of not following them here.
1396   if (!Ty->getIdentifier().empty())
1397     CO |= ClassOptions::HasUniqueName;
1398 
1399   // Put the Nested flag on a type if it appears immediately inside a tag type.
1400   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1401   // here. That flag is only set on definitions, and not forward declarations.
1402   const DIScope *ImmediateScope = Ty->getScope().resolve();
1403   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1404     CO |= ClassOptions::Nested;
1405 
1406   // Put the Scoped flag on function-local types.
1407   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1408        Scope = Scope->getScope().resolve()) {
1409     if (isa<DISubprogram>(Scope)) {
1410       CO |= ClassOptions::Scoped;
1411       break;
1412     }
1413   }
1414 
1415   return CO;
1416 }
1417 
1418 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1419   ClassOptions CO = getCommonClassOptions(Ty);
1420   TypeIndex FTI;
1421   unsigned EnumeratorCount = 0;
1422 
1423   if (Ty->isForwardDecl()) {
1424     CO |= ClassOptions::ForwardReference;
1425   } else {
1426     FieldListRecordBuilder Fields;
1427     for (const DINode *Element : Ty->getElements()) {
1428       // We assume that the frontend provides all members in source declaration
1429       // order, which is what MSVC does.
1430       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1431         Fields.writeMemberType(EnumeratorRecord(
1432             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1433             Enumerator->getName()));
1434         EnumeratorCount++;
1435       }
1436     }
1437     FTI = TypeTable.writeFieldList(Fields);
1438   }
1439 
1440   std::string FullName = getFullyQualifiedName(Ty);
1441 
1442   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1443                                              Ty->getIdentifier(),
1444                                              getTypeIndex(Ty->getBaseType())));
1445 }
1446 
1447 //===----------------------------------------------------------------------===//
1448 // ClassInfo
1449 //===----------------------------------------------------------------------===//
1450 
1451 struct llvm::ClassInfo {
1452   struct MemberInfo {
1453     const DIDerivedType *MemberTypeNode;
1454     uint64_t BaseOffset;
1455   };
1456   // [MemberInfo]
1457   typedef std::vector<MemberInfo> MemberList;
1458 
1459   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1460   // MethodName -> MethodsList
1461   typedef MapVector<MDString *, MethodsList> MethodsMap;
1462 
1463   /// Base classes.
1464   std::vector<const DIDerivedType *> Inheritance;
1465 
1466   /// Direct members.
1467   MemberList Members;
1468   // Direct overloaded methods gathered by name.
1469   MethodsMap Methods;
1470 
1471   std::vector<const DICompositeType *> NestedClasses;
1472 };
1473 
1474 void CodeViewDebug::clear() {
1475   assert(CurFn == nullptr);
1476   FileIdMap.clear();
1477   FnDebugInfo.clear();
1478   FileToFilepathMap.clear();
1479   LocalUDTs.clear();
1480   GlobalUDTs.clear();
1481   TypeIndices.clear();
1482   CompleteTypeIndices.clear();
1483 }
1484 
1485 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1486                                       const DIDerivedType *DDTy) {
1487   if (!DDTy->getName().empty()) {
1488     Info.Members.push_back({DDTy, 0});
1489     return;
1490   }
1491   // An unnamed member must represent a nested struct or union. Add all the
1492   // indirect fields to the current record.
1493   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1494   uint64_t Offset = DDTy->getOffsetInBits();
1495   const DIType *Ty = DDTy->getBaseType().resolve();
1496   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1497   ClassInfo NestedInfo = collectClassInfo(DCTy);
1498   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1499     Info.Members.push_back(
1500         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1501 }
1502 
1503 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1504   ClassInfo Info;
1505   // Add elements to structure type.
1506   DINodeArray Elements = Ty->getElements();
1507   for (auto *Element : Elements) {
1508     // We assume that the frontend provides all members in source declaration
1509     // order, which is what MSVC does.
1510     if (!Element)
1511       continue;
1512     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1513       Info.Methods[SP->getRawName()].push_back(SP);
1514     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1515       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1516         collectMemberInfo(Info, DDTy);
1517       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1518         Info.Inheritance.push_back(DDTy);
1519       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1520         // Ignore friend members. It appears that MSVC emitted info about
1521         // friends in the past, but modern versions do not.
1522       }
1523       // FIXME: Get Clang to emit function virtual table here and handle it.
1524     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1525       Info.NestedClasses.push_back(Composite);
1526     }
1527     // Skip other unrecognized kinds of elements.
1528   }
1529   return Info;
1530 }
1531 
1532 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1533   // First, construct the forward decl.  Don't look into Ty to compute the
1534   // forward decl options, since it might not be available in all TUs.
1535   TypeRecordKind Kind = getRecordKind(Ty);
1536   ClassOptions CO =
1537       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1538   std::string FullName = getFullyQualifiedName(Ty);
1539   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1540       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1541       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1542   if (!Ty->isForwardDecl())
1543     DeferredCompleteTypes.push_back(Ty);
1544   return FwdDeclTI;
1545 }
1546 
1547 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1548   // Construct the field list and complete type record.
1549   TypeRecordKind Kind = getRecordKind(Ty);
1550   ClassOptions CO = getCommonClassOptions(Ty);
1551   TypeIndex FieldTI;
1552   TypeIndex VShapeTI;
1553   unsigned FieldCount;
1554   bool ContainsNestedClass;
1555   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1556       lowerRecordFieldList(Ty);
1557 
1558   if (ContainsNestedClass)
1559     CO |= ClassOptions::ContainsNestedClass;
1560 
1561   std::string FullName = getFullyQualifiedName(Ty);
1562 
1563   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1564 
1565   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1566       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1567       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1568 
1569   TypeTable.writeKnownType(UdtSourceLineRecord(
1570       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1571                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1572       Ty->getLine()));
1573 
1574   addToUDTs(Ty, ClassTI);
1575 
1576   return ClassTI;
1577 }
1578 
1579 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1580   ClassOptions CO =
1581       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1582   std::string FullName = getFullyQualifiedName(Ty);
1583   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1584       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1585   if (!Ty->isForwardDecl())
1586     DeferredCompleteTypes.push_back(Ty);
1587   return FwdDeclTI;
1588 }
1589 
1590 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1591   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1592   TypeIndex FieldTI;
1593   unsigned FieldCount;
1594   bool ContainsNestedClass;
1595   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1596       lowerRecordFieldList(Ty);
1597 
1598   if (ContainsNestedClass)
1599     CO |= ClassOptions::ContainsNestedClass;
1600 
1601   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1602   std::string FullName = getFullyQualifiedName(Ty);
1603 
1604   TypeIndex UnionTI = TypeTable.writeKnownType(
1605       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1606                   Ty->getIdentifier()));
1607 
1608   TypeTable.writeKnownType(UdtSourceLineRecord(
1609       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1610                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1611       Ty->getLine()));
1612 
1613   addToUDTs(Ty, UnionTI);
1614 
1615   return UnionTI;
1616 }
1617 
1618 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1619 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1620   // Manually count members. MSVC appears to count everything that generates a
1621   // field list record. Each individual overload in a method overload group
1622   // contributes to this count, even though the overload group is a single field
1623   // list record.
1624   unsigned MemberCount = 0;
1625   ClassInfo Info = collectClassInfo(Ty);
1626   FieldListRecordBuilder Fields;
1627 
1628   // Create base classes.
1629   for (const DIDerivedType *I : Info.Inheritance) {
1630     if (I->getFlags() & DINode::FlagVirtual) {
1631       // Virtual base.
1632       // FIXME: Emit VBPtrOffset when the frontend provides it.
1633       unsigned VBPtrOffset = 0;
1634       // FIXME: Despite the accessor name, the offset is really in bytes.
1635       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1636       Fields.writeMemberType(VirtualBaseClassRecord(
1637           translateAccessFlags(Ty->getTag(), I->getFlags()),
1638           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1639           VBTableIndex));
1640     } else {
1641       assert(I->getOffsetInBits() % 8 == 0 &&
1642              "bases must be on byte boundaries");
1643       Fields.writeMemberType(BaseClassRecord(
1644           translateAccessFlags(Ty->getTag(), I->getFlags()),
1645           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1646     }
1647   }
1648 
1649   // Create members.
1650   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1651     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1652     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1653     StringRef MemberName = Member->getName();
1654     MemberAccess Access =
1655         translateAccessFlags(Ty->getTag(), Member->getFlags());
1656 
1657     if (Member->isStaticMember()) {
1658       Fields.writeMemberType(
1659           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1660       MemberCount++;
1661       continue;
1662     }
1663 
1664     // Data member.
1665     uint64_t MemberOffsetInBits =
1666         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1667     if (Member->isBitField()) {
1668       uint64_t StartBitOffset = MemberOffsetInBits;
1669       if (const auto *CI =
1670               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1671         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1672       }
1673       StartBitOffset -= MemberOffsetInBits;
1674       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1675           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1676     }
1677     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1678     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1679                                             MemberOffsetInBytes, MemberName));
1680     MemberCount++;
1681   }
1682 
1683   // Create methods
1684   for (auto &MethodItr : Info.Methods) {
1685     StringRef Name = MethodItr.first->getString();
1686 
1687     std::vector<OneMethodRecord> Methods;
1688     for (const DISubprogram *SP : MethodItr.second) {
1689       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1690       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1691 
1692       unsigned VFTableOffset = -1;
1693       if (Introduced)
1694         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1695 
1696       Methods.push_back(
1697           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1698                           translateMethodOptionFlags(SP),
1699                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1700                           VFTableOffset, Name));
1701       MemberCount++;
1702     }
1703     assert(Methods.size() > 0 && "Empty methods map entry");
1704     if (Methods.size() == 1)
1705       Fields.writeMemberType(Methods[0]);
1706     else {
1707       TypeIndex MethodList =
1708           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1709       Fields.writeMemberType(
1710           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1711     }
1712   }
1713 
1714   // Create nested classes.
1715   for (const DICompositeType *Nested : Info.NestedClasses) {
1716     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1717     Fields.writeMemberType(R);
1718     MemberCount++;
1719   }
1720 
1721   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1722   return std::make_tuple(FieldTI, TypeIndex(), MemberCount,
1723                          !Info.NestedClasses.empty());
1724 }
1725 
1726 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1727   if (!VBPType.getIndex()) {
1728     // Make a 'const int *' type.
1729     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1730     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1731 
1732     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1733                                                   : PointerKind::Near32;
1734     PointerMode PM = PointerMode::Pointer;
1735     PointerOptions PO = PointerOptions::None;
1736     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1737 
1738     VBPType = TypeTable.writeKnownType(PR);
1739   }
1740 
1741   return VBPType;
1742 }
1743 
1744 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1745   const DIType *Ty = TypeRef.resolve();
1746   const DIType *ClassTy = ClassTyRef.resolve();
1747 
1748   // The null DIType is the void type. Don't try to hash it.
1749   if (!Ty)
1750     return TypeIndex::Void();
1751 
1752   // Check if we've already translated this type. Don't try to do a
1753   // get-or-create style insertion that caches the hash lookup across the
1754   // lowerType call. It will update the TypeIndices map.
1755   auto I = TypeIndices.find({Ty, ClassTy});
1756   if (I != TypeIndices.end())
1757     return I->second;
1758 
1759   TypeLoweringScope S(*this);
1760   TypeIndex TI = lowerType(Ty, ClassTy);
1761   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1762 }
1763 
1764 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1765   const DIType *Ty = TypeRef.resolve();
1766 
1767   // The null DIType is the void type. Don't try to hash it.
1768   if (!Ty)
1769     return TypeIndex::Void();
1770 
1771   // If this is a non-record type, the complete type index is the same as the
1772   // normal type index. Just call getTypeIndex.
1773   switch (Ty->getTag()) {
1774   case dwarf::DW_TAG_class_type:
1775   case dwarf::DW_TAG_structure_type:
1776   case dwarf::DW_TAG_union_type:
1777     break;
1778   default:
1779     return getTypeIndex(Ty);
1780   }
1781 
1782   // Check if we've already translated the complete record type.  Lowering a
1783   // complete type should never trigger lowering another complete type, so we
1784   // can reuse the hash table lookup result.
1785   const auto *CTy = cast<DICompositeType>(Ty);
1786   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1787   if (!InsertResult.second)
1788     return InsertResult.first->second;
1789 
1790   TypeLoweringScope S(*this);
1791 
1792   // Make sure the forward declaration is emitted first. It's unclear if this
1793   // is necessary, but MSVC does it, and we should follow suit until we can show
1794   // otherwise.
1795   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1796 
1797   // Just use the forward decl if we don't have complete type info. This might
1798   // happen if the frontend is using modules and expects the complete definition
1799   // to be emitted elsewhere.
1800   if (CTy->isForwardDecl())
1801     return FwdDeclTI;
1802 
1803   TypeIndex TI;
1804   switch (CTy->getTag()) {
1805   case dwarf::DW_TAG_class_type:
1806   case dwarf::DW_TAG_structure_type:
1807     TI = lowerCompleteTypeClass(CTy);
1808     break;
1809   case dwarf::DW_TAG_union_type:
1810     TI = lowerCompleteTypeUnion(CTy);
1811     break;
1812   default:
1813     llvm_unreachable("not a record");
1814   }
1815 
1816   InsertResult.first->second = TI;
1817   return TI;
1818 }
1819 
1820 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1821 /// and do this until fixpoint, as each complete record type typically
1822 /// references
1823 /// many other record types.
1824 void CodeViewDebug::emitDeferredCompleteTypes() {
1825   SmallVector<const DICompositeType *, 4> TypesToEmit;
1826   while (!DeferredCompleteTypes.empty()) {
1827     std::swap(DeferredCompleteTypes, TypesToEmit);
1828     for (const DICompositeType *RecordTy : TypesToEmit)
1829       getCompleteTypeIndex(RecordTy);
1830     TypesToEmit.clear();
1831   }
1832 }
1833 
1834 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1835   // Get the sorted list of parameters and emit them first.
1836   SmallVector<const LocalVariable *, 6> Params;
1837   for (const LocalVariable &L : Locals)
1838     if (L.DIVar->isParameter())
1839       Params.push_back(&L);
1840   std::sort(Params.begin(), Params.end(),
1841             [](const LocalVariable *L, const LocalVariable *R) {
1842               return L->DIVar->getArg() < R->DIVar->getArg();
1843             });
1844   for (const LocalVariable *L : Params)
1845     emitLocalVariable(*L);
1846 
1847   // Next emit all non-parameters in the order that we found them.
1848   for (const LocalVariable &L : Locals)
1849     if (!L.DIVar->isParameter())
1850       emitLocalVariable(L);
1851 }
1852 
1853 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1854   // LocalSym record, see SymbolRecord.h for more info.
1855   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1856            *LocalEnd = MMI->getContext().createTempSymbol();
1857   OS.AddComment("Record length");
1858   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1859   OS.EmitLabel(LocalBegin);
1860 
1861   OS.AddComment("Record kind: S_LOCAL");
1862   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1863 
1864   LocalSymFlags Flags = LocalSymFlags::None;
1865   if (Var.DIVar->isParameter())
1866     Flags |= LocalSymFlags::IsParameter;
1867   if (Var.DefRanges.empty())
1868     Flags |= LocalSymFlags::IsOptimizedOut;
1869 
1870   OS.AddComment("TypeIndex");
1871   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1872   OS.EmitIntValue(TI.getIndex(), 4);
1873   OS.AddComment("Flags");
1874   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1875   // Truncate the name so we won't overflow the record length field.
1876   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1877   OS.EmitLabel(LocalEnd);
1878 
1879   // Calculate the on disk prefix of the appropriate def range record. The
1880   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1881   // should be big enough to hold all forms without memory allocation.
1882   SmallString<20> BytePrefix;
1883   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1884     BytePrefix.clear();
1885     // FIXME: Handle bitpieces.
1886     if (DefRange.StructOffset != 0)
1887       continue;
1888 
1889     if (DefRange.InMemory) {
1890       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1891                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1892       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1893       BytePrefix +=
1894           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1895       BytePrefix +=
1896           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1897                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1898     } else {
1899       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1900       // Unclear what matters here.
1901       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1902                               ArrayRef<LocalVariableAddrGap>());
1903       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1904       BytePrefix +=
1905           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1906       BytePrefix +=
1907           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1908                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1909     }
1910     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1911   }
1912 }
1913 
1914 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1915   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1916     return;
1917 
1918   const Function *GV = MF->getFunction();
1919   assert(FnDebugInfo.count(GV));
1920   assert(CurFn == &FnDebugInfo[GV]);
1921 
1922   collectVariableInfo(GV->getSubprogram());
1923 
1924   DebugHandlerBase::endFunction(MF);
1925 
1926   // Don't emit anything if we don't have any line tables.
1927   if (!CurFn->HaveLineInfo) {
1928     FnDebugInfo.erase(GV);
1929     CurFn = nullptr;
1930     return;
1931   }
1932 
1933   CurFn->End = Asm->getFunctionEnd();
1934 
1935   CurFn = nullptr;
1936 }
1937 
1938 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1939   DebugHandlerBase::beginInstruction(MI);
1940 
1941   // Ignore DBG_VALUE locations and function prologue.
1942   if (!Asm || !CurFn || MI->isDebugValue() ||
1943       MI->getFlag(MachineInstr::FrameSetup))
1944     return;
1945   DebugLoc DL = MI->getDebugLoc();
1946   if (DL == PrevInstLoc || !DL)
1947     return;
1948   maybeRecordLocation(DL, Asm->MF);
1949 }
1950 
1951 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1952   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1953            *EndLabel = MMI->getContext().createTempSymbol();
1954   OS.EmitIntValue(unsigned(Kind), 4);
1955   OS.AddComment("Subsection size");
1956   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1957   OS.EmitLabel(BeginLabel);
1958   return EndLabel;
1959 }
1960 
1961 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1962   OS.EmitLabel(EndLabel);
1963   // Every subsection must be aligned to a 4-byte boundary.
1964   OS.EmitValueToAlignment(4);
1965 }
1966 
1967 void CodeViewDebug::emitDebugInfoForUDTs(
1968     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1969   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1970     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1971              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1972     OS.AddComment("Record length");
1973     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1974     OS.EmitLabel(UDTRecordBegin);
1975 
1976     OS.AddComment("Record kind: S_UDT");
1977     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1978 
1979     OS.AddComment("Type");
1980     OS.EmitIntValue(UDT.second.getIndex(), 4);
1981 
1982     emitNullTerminatedSymbolName(OS, UDT.first);
1983     OS.EmitLabel(UDTRecordEnd);
1984   }
1985 }
1986 
1987 void CodeViewDebug::emitDebugInfoForGlobals() {
1988   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
1989   for (const MDNode *Node : CUs->operands()) {
1990     const auto *CU = cast<DICompileUnit>(Node);
1991 
1992     // First, emit all globals that are not in a comdat in a single symbol
1993     // substream. MSVC doesn't like it if the substream is empty, so only open
1994     // it if we have at least one global to emit.
1995     switchToDebugSectionForSymbol(nullptr);
1996     MCSymbol *EndLabel = nullptr;
1997     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
1998       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
1999         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2000           if (!EndLabel) {
2001             OS.AddComment("Symbol subsection for globals");
2002             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2003           }
2004           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
2005         }
2006       }
2007     }
2008     if (EndLabel)
2009       endCVSubsection(EndLabel);
2010 
2011     // Second, emit each global that is in a comdat into its own .debug$S
2012     // section along with its own symbol substream.
2013     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2014       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2015         if (GV->hasComdat()) {
2016           MCSymbol *GVSym = Asm->getSymbol(GV);
2017           OS.AddComment("Symbol subsection for " +
2018                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2019           switchToDebugSectionForSymbol(GVSym);
2020           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2021           emitDebugInfoForGlobal(G, GVSym);
2022           endCVSubsection(EndLabel);
2023         }
2024       }
2025     }
2026   }
2027 }
2028 
2029 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2030   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2031   for (const MDNode *Node : CUs->operands()) {
2032     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2033       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2034         getTypeIndex(RT);
2035         // FIXME: Add to global/local DTU list.
2036       }
2037     }
2038   }
2039 }
2040 
2041 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2042                                            MCSymbol *GVSym) {
2043   // DataSym record, see SymbolRecord.h for more info.
2044   // FIXME: Thread local data, etc
2045   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2046            *DataEnd = MMI->getContext().createTempSymbol();
2047   OS.AddComment("Record length");
2048   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2049   OS.EmitLabel(DataBegin);
2050   const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
2051   if (DIGV->isLocalToUnit()) {
2052     if (GV->isThreadLocal()) {
2053       OS.AddComment("Record kind: S_LTHREAD32");
2054       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2055     } else {
2056       OS.AddComment("Record kind: S_LDATA32");
2057       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2058     }
2059   } else {
2060     if (GV->isThreadLocal()) {
2061       OS.AddComment("Record kind: S_GTHREAD32");
2062       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2063     } else {
2064       OS.AddComment("Record kind: S_GDATA32");
2065       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2066     }
2067   }
2068   OS.AddComment("Type");
2069   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2070   OS.AddComment("DataOffset");
2071   OS.EmitCOFFSecRel32(GVSym);
2072   OS.AddComment("Segment");
2073   OS.EmitCOFFSectionIndex(GVSym);
2074   OS.AddComment("Name");
2075   emitNullTerminatedSymbolName(OS, DIGV->getName());
2076   OS.EmitLabel(DataEnd);
2077 }
2078