1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 if (SP != nullptr) 864 emitDebugInfoForUDTs(LocalUDTs); 865 866 // We're done with this function. 867 OS.AddComment("Record length"); 868 OS.EmitIntValue(0x0002, 2); 869 OS.AddComment("Record kind: S_PROC_ID_END"); 870 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 871 } 872 endCVSubsection(SymbolsEnd); 873 874 // We have an assembler directive that takes care of the whole line table. 875 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 876 } 877 878 CodeViewDebug::LocalVarDefRange 879 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 880 LocalVarDefRange DR; 881 DR.InMemory = -1; 882 DR.DataOffset = Offset; 883 assert(DR.DataOffset == Offset && "truncation"); 884 DR.IsSubfield = 0; 885 DR.StructOffset = 0; 886 DR.CVRegister = CVRegister; 887 return DR; 888 } 889 890 CodeViewDebug::LocalVarDefRange 891 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 892 int Offset, bool IsSubfield, 893 uint16_t StructOffset) { 894 LocalVarDefRange DR; 895 DR.InMemory = InMemory; 896 DR.DataOffset = Offset; 897 DR.IsSubfield = IsSubfield; 898 DR.StructOffset = StructOffset; 899 DR.CVRegister = CVRegister; 900 return DR; 901 } 902 903 void CodeViewDebug::collectVariableInfoFromMFTable( 904 DenseSet<InlinedVariable> &Processed) { 905 const MachineFunction &MF = *Asm->MF; 906 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 907 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 908 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 909 910 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 911 if (!VI.Var) 912 continue; 913 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 914 "Expected inlined-at fields to agree"); 915 916 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 917 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 918 919 // If variable scope is not found then skip this variable. 920 if (!Scope) 921 continue; 922 923 // If the variable has an attached offset expression, extract it. 924 // FIXME: Try to handle DW_OP_deref as well. 925 int64_t ExprOffset = 0; 926 if (VI.Expr) 927 if (!VI.Expr->extractIfOffset(ExprOffset)) 928 continue; 929 930 // Get the frame register used and the offset. 931 unsigned FrameReg = 0; 932 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 933 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 934 935 // Calculate the label ranges. 936 LocalVarDefRange DefRange = 937 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 938 for (const InsnRange &Range : Scope->getRanges()) { 939 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 940 const MCSymbol *End = getLabelAfterInsn(Range.second); 941 End = End ? End : Asm->getFunctionEnd(); 942 DefRange.Ranges.emplace_back(Begin, End); 943 } 944 945 LocalVariable Var; 946 Var.DIVar = VI.Var; 947 Var.DefRanges.emplace_back(std::move(DefRange)); 948 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 949 } 950 } 951 952 void CodeViewDebug::calculateRanges( 953 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 954 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 955 956 // calculate the definition ranges. 957 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 958 const InsnRange &Range = *I; 959 const MachineInstr *DVInst = Range.first; 960 assert(DVInst->isDebugValue() && "Invalid History entry"); 961 // FIXME: Find a way to represent constant variables, since they are 962 // relatively common. 963 Optional<DbgVariableLocation> Location = 964 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 965 if (!Location) 966 continue; 967 968 // Because we cannot express DW_OP_deref in CodeView directly, 969 // we use a trick: we encode the type as a reference to the 970 // real type. 971 if (Var.Deref) { 972 // When we're encoding the type as a reference to the original type, 973 // we need to remove a level of indirection from incoming locations. 974 // E.g. [RSP+8] with DW_OP_deref becomes [RSP+8], 975 // and [RCX+0] without DW_OP_deref becomes RCX. 976 if (!Location->Deref) { 977 if (Location->InMemory) 978 Location->InMemory = false; 979 else 980 continue; 981 } 982 } else if (Location->Deref) { 983 // We've encountered a Deref range when we had not applied the 984 // reference encoding. Start over using reference encoding. 985 Var.Deref = true; 986 Var.DefRanges.clear(); 987 calculateRanges(Var, Ranges); 988 return; 989 } 990 991 // If we don't know how to handle this range, skip past it. 992 if (Location->Register == 0 || (Location->Offset && !Location->InMemory)) 993 continue; 994 995 // Handle the two cases we can handle: indirect in memory and in register. 996 { 997 LocalVarDefRange DR; 998 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 999 DR.InMemory = Location->InMemory; 1000 DR.DataOffset = Location->Offset; 1001 if (Location->FragmentInfo) { 1002 DR.IsSubfield = true; 1003 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1004 } else { 1005 DR.IsSubfield = false; 1006 DR.StructOffset = 0; 1007 } 1008 1009 if (Var.DefRanges.empty() || 1010 Var.DefRanges.back().isDifferentLocation(DR)) { 1011 Var.DefRanges.emplace_back(std::move(DR)); 1012 } 1013 } 1014 1015 // Compute the label range. 1016 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1017 const MCSymbol *End = getLabelAfterInsn(Range.second); 1018 if (!End) { 1019 // This range is valid until the next overlapping bitpiece. In the 1020 // common case, ranges will not be bitpieces, so they will overlap. 1021 auto J = std::next(I); 1022 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1023 while (J != E && 1024 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1025 ++J; 1026 if (J != E) 1027 End = getLabelBeforeInsn(J->first); 1028 else 1029 End = Asm->getFunctionEnd(); 1030 } 1031 1032 // If the last range end is our begin, just extend the last range. 1033 // Otherwise make a new range. 1034 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1035 Var.DefRanges.back().Ranges; 1036 if (!R.empty() && R.back().second == Begin) 1037 R.back().second = End; 1038 else 1039 R.emplace_back(Begin, End); 1040 1041 // FIXME: Do more range combining. 1042 } 1043 } 1044 1045 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1046 DenseSet<InlinedVariable> Processed; 1047 // Grab the variable info that was squirreled away in the MMI side-table. 1048 collectVariableInfoFromMFTable(Processed); 1049 1050 for (const auto &I : DbgValues) { 1051 InlinedVariable IV = I.first; 1052 if (Processed.count(IV)) 1053 continue; 1054 const DILocalVariable *DIVar = IV.first; 1055 const DILocation *InlinedAt = IV.second; 1056 1057 // Instruction ranges, specifying where IV is accessible. 1058 const auto &Ranges = I.second; 1059 1060 LexicalScope *Scope = nullptr; 1061 if (InlinedAt) 1062 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1063 else 1064 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1065 // If variable scope is not found then skip this variable. 1066 if (!Scope) 1067 continue; 1068 1069 LocalVariable Var; 1070 Var.DIVar = DIVar; 1071 1072 calculateRanges(Var, Ranges); 1073 recordLocalVariable(std::move(Var), InlinedAt); 1074 } 1075 } 1076 1077 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1078 const Function *GV = MF->getFunction(); 1079 assert(FnDebugInfo.count(GV) == false); 1080 CurFn = &FnDebugInfo[GV]; 1081 CurFn->FuncId = NextFuncId++; 1082 CurFn->Begin = Asm->getFunctionBegin(); 1083 1084 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1085 1086 // Find the end of the function prolog. First known non-DBG_VALUE and 1087 // non-frame setup location marks the beginning of the function body. 1088 // FIXME: is there a simpler a way to do this? Can we just search 1089 // for the first instruction of the function, not the last of the prolog? 1090 DebugLoc PrologEndLoc; 1091 bool EmptyPrologue = true; 1092 for (const auto &MBB : *MF) { 1093 for (const auto &MI : MBB) { 1094 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1095 MI.getDebugLoc()) { 1096 PrologEndLoc = MI.getDebugLoc(); 1097 break; 1098 } else if (!MI.isMetaInstruction()) { 1099 EmptyPrologue = false; 1100 } 1101 } 1102 } 1103 1104 // Record beginning of function if we have a non-empty prologue. 1105 if (PrologEndLoc && !EmptyPrologue) { 1106 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1107 maybeRecordLocation(FnStartDL, MF); 1108 } 1109 } 1110 1111 static bool shouldEmitUdt(const DIType *T) { 1112 while (true) { 1113 if (!T || T->isForwardDecl()) 1114 return false; 1115 1116 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1117 if (!DT) 1118 return true; 1119 T = DT->getBaseType().resolve(); 1120 } 1121 return true; 1122 } 1123 1124 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1125 // Don't record empty UDTs. 1126 if (Ty->getName().empty()) 1127 return; 1128 if (!shouldEmitUdt(Ty)) 1129 return; 1130 1131 SmallVector<StringRef, 5> QualifiedNameComponents; 1132 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1133 Ty->getScope().resolve(), QualifiedNameComponents); 1134 1135 std::string FullyQualifiedName = 1136 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1137 1138 if (ClosestSubprogram == nullptr) { 1139 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1140 } else if (ClosestSubprogram == CurrentSubprogram) { 1141 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1142 } 1143 1144 // TODO: What if the ClosestSubprogram is neither null or the current 1145 // subprogram? Currently, the UDT just gets dropped on the floor. 1146 // 1147 // The current behavior is not desirable. To get maximal fidelity, we would 1148 // need to perform all type translation before beginning emission of .debug$S 1149 // and then make LocalUDTs a member of FunctionInfo 1150 } 1151 1152 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1153 // Generic dispatch for lowering an unknown type. 1154 switch (Ty->getTag()) { 1155 case dwarf::DW_TAG_array_type: 1156 return lowerTypeArray(cast<DICompositeType>(Ty)); 1157 case dwarf::DW_TAG_typedef: 1158 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1159 case dwarf::DW_TAG_base_type: 1160 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1161 case dwarf::DW_TAG_pointer_type: 1162 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1163 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1164 LLVM_FALLTHROUGH; 1165 case dwarf::DW_TAG_reference_type: 1166 case dwarf::DW_TAG_rvalue_reference_type: 1167 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1168 case dwarf::DW_TAG_ptr_to_member_type: 1169 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1170 case dwarf::DW_TAG_const_type: 1171 case dwarf::DW_TAG_volatile_type: 1172 // TODO: add support for DW_TAG_atomic_type here 1173 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1174 case dwarf::DW_TAG_subroutine_type: 1175 if (ClassTy) { 1176 // The member function type of a member function pointer has no 1177 // ThisAdjustment. 1178 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1179 /*ThisAdjustment=*/0); 1180 } 1181 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1182 case dwarf::DW_TAG_enumeration_type: 1183 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1184 case dwarf::DW_TAG_class_type: 1185 case dwarf::DW_TAG_structure_type: 1186 return lowerTypeClass(cast<DICompositeType>(Ty)); 1187 case dwarf::DW_TAG_union_type: 1188 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1189 default: 1190 // Use the null type index. 1191 return TypeIndex(); 1192 } 1193 } 1194 1195 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1196 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1197 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1198 StringRef TypeName = Ty->getName(); 1199 1200 addToUDTs(Ty); 1201 1202 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1203 TypeName == "HRESULT") 1204 return TypeIndex(SimpleTypeKind::HResult); 1205 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1206 TypeName == "wchar_t") 1207 return TypeIndex(SimpleTypeKind::WideCharacter); 1208 1209 return UnderlyingTypeIndex; 1210 } 1211 1212 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1213 DITypeRef ElementTypeRef = Ty->getBaseType(); 1214 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1215 // IndexType is size_t, which depends on the bitness of the target. 1216 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1217 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1218 : TypeIndex(SimpleTypeKind::UInt32Long); 1219 1220 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1221 1222 // Add subranges to array type. 1223 DINodeArray Elements = Ty->getElements(); 1224 for (int i = Elements.size() - 1; i >= 0; --i) { 1225 const DINode *Element = Elements[i]; 1226 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1227 1228 const DISubrange *Subrange = cast<DISubrange>(Element); 1229 assert(Subrange->getLowerBound() == 0 && 1230 "codeview doesn't support subranges with lower bounds"); 1231 int64_t Count = Subrange->getCount(); 1232 1233 // Variable Length Array (VLA) has Count equal to '-1'. 1234 // Replace with Count '1', assume it is the minimum VLA length. 1235 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1236 if (Count == -1) 1237 Count = 1; 1238 1239 // Update the element size and element type index for subsequent subranges. 1240 ElementSize *= Count; 1241 1242 // If this is the outermost array, use the size from the array. It will be 1243 // more accurate if we had a VLA or an incomplete element type size. 1244 uint64_t ArraySize = 1245 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1246 1247 StringRef Name = (i == 0) ? Ty->getName() : ""; 1248 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1249 ElementTypeIndex = TypeTable.writeKnownType(AR); 1250 } 1251 1252 return ElementTypeIndex; 1253 } 1254 1255 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1256 TypeIndex Index; 1257 dwarf::TypeKind Kind; 1258 uint32_t ByteSize; 1259 1260 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1261 ByteSize = Ty->getSizeInBits() / 8; 1262 1263 SimpleTypeKind STK = SimpleTypeKind::None; 1264 switch (Kind) { 1265 case dwarf::DW_ATE_address: 1266 // FIXME: Translate 1267 break; 1268 case dwarf::DW_ATE_boolean: 1269 switch (ByteSize) { 1270 case 1: STK = SimpleTypeKind::Boolean8; break; 1271 case 2: STK = SimpleTypeKind::Boolean16; break; 1272 case 4: STK = SimpleTypeKind::Boolean32; break; 1273 case 8: STK = SimpleTypeKind::Boolean64; break; 1274 case 16: STK = SimpleTypeKind::Boolean128; break; 1275 } 1276 break; 1277 case dwarf::DW_ATE_complex_float: 1278 switch (ByteSize) { 1279 case 2: STK = SimpleTypeKind::Complex16; break; 1280 case 4: STK = SimpleTypeKind::Complex32; break; 1281 case 8: STK = SimpleTypeKind::Complex64; break; 1282 case 10: STK = SimpleTypeKind::Complex80; break; 1283 case 16: STK = SimpleTypeKind::Complex128; break; 1284 } 1285 break; 1286 case dwarf::DW_ATE_float: 1287 switch (ByteSize) { 1288 case 2: STK = SimpleTypeKind::Float16; break; 1289 case 4: STK = SimpleTypeKind::Float32; break; 1290 case 6: STK = SimpleTypeKind::Float48; break; 1291 case 8: STK = SimpleTypeKind::Float64; break; 1292 case 10: STK = SimpleTypeKind::Float80; break; 1293 case 16: STK = SimpleTypeKind::Float128; break; 1294 } 1295 break; 1296 case dwarf::DW_ATE_signed: 1297 switch (ByteSize) { 1298 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1299 case 2: STK = SimpleTypeKind::Int16Short; break; 1300 case 4: STK = SimpleTypeKind::Int32; break; 1301 case 8: STK = SimpleTypeKind::Int64Quad; break; 1302 case 16: STK = SimpleTypeKind::Int128Oct; break; 1303 } 1304 break; 1305 case dwarf::DW_ATE_unsigned: 1306 switch (ByteSize) { 1307 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1308 case 2: STK = SimpleTypeKind::UInt16Short; break; 1309 case 4: STK = SimpleTypeKind::UInt32; break; 1310 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1311 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1312 } 1313 break; 1314 case dwarf::DW_ATE_UTF: 1315 switch (ByteSize) { 1316 case 2: STK = SimpleTypeKind::Character16; break; 1317 case 4: STK = SimpleTypeKind::Character32; break; 1318 } 1319 break; 1320 case dwarf::DW_ATE_signed_char: 1321 if (ByteSize == 1) 1322 STK = SimpleTypeKind::SignedCharacter; 1323 break; 1324 case dwarf::DW_ATE_unsigned_char: 1325 if (ByteSize == 1) 1326 STK = SimpleTypeKind::UnsignedCharacter; 1327 break; 1328 default: 1329 break; 1330 } 1331 1332 // Apply some fixups based on the source-level type name. 1333 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1334 STK = SimpleTypeKind::Int32Long; 1335 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1336 STK = SimpleTypeKind::UInt32Long; 1337 if (STK == SimpleTypeKind::UInt16Short && 1338 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1339 STK = SimpleTypeKind::WideCharacter; 1340 if ((STK == SimpleTypeKind::SignedCharacter || 1341 STK == SimpleTypeKind::UnsignedCharacter) && 1342 Ty->getName() == "char") 1343 STK = SimpleTypeKind::NarrowCharacter; 1344 1345 return TypeIndex(STK); 1346 } 1347 1348 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1349 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1350 1351 // Pointers to simple types can use SimpleTypeMode, rather than having a 1352 // dedicated pointer type record. 1353 if (PointeeTI.isSimple() && 1354 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1355 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1356 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1357 ? SimpleTypeMode::NearPointer64 1358 : SimpleTypeMode::NearPointer32; 1359 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1360 } 1361 1362 PointerKind PK = 1363 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1364 PointerMode PM = PointerMode::Pointer; 1365 switch (Ty->getTag()) { 1366 default: llvm_unreachable("not a pointer tag type"); 1367 case dwarf::DW_TAG_pointer_type: 1368 PM = PointerMode::Pointer; 1369 break; 1370 case dwarf::DW_TAG_reference_type: 1371 PM = PointerMode::LValueReference; 1372 break; 1373 case dwarf::DW_TAG_rvalue_reference_type: 1374 PM = PointerMode::RValueReference; 1375 break; 1376 } 1377 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1378 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1379 // do. 1380 PointerOptions PO = PointerOptions::None; 1381 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1382 return TypeTable.writeKnownType(PR); 1383 } 1384 1385 static PointerToMemberRepresentation 1386 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1387 // SizeInBytes being zero generally implies that the member pointer type was 1388 // incomplete, which can happen if it is part of a function prototype. In this 1389 // case, use the unknown model instead of the general model. 1390 if (IsPMF) { 1391 switch (Flags & DINode::FlagPtrToMemberRep) { 1392 case 0: 1393 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1394 : PointerToMemberRepresentation::GeneralFunction; 1395 case DINode::FlagSingleInheritance: 1396 return PointerToMemberRepresentation::SingleInheritanceFunction; 1397 case DINode::FlagMultipleInheritance: 1398 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1399 case DINode::FlagVirtualInheritance: 1400 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1401 } 1402 } else { 1403 switch (Flags & DINode::FlagPtrToMemberRep) { 1404 case 0: 1405 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1406 : PointerToMemberRepresentation::GeneralData; 1407 case DINode::FlagSingleInheritance: 1408 return PointerToMemberRepresentation::SingleInheritanceData; 1409 case DINode::FlagMultipleInheritance: 1410 return PointerToMemberRepresentation::MultipleInheritanceData; 1411 case DINode::FlagVirtualInheritance: 1412 return PointerToMemberRepresentation::VirtualInheritanceData; 1413 } 1414 } 1415 llvm_unreachable("invalid ptr to member representation"); 1416 } 1417 1418 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1419 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1420 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1421 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1422 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1423 : PointerKind::Near32; 1424 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1425 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1426 : PointerMode::PointerToDataMember; 1427 PointerOptions PO = PointerOptions::None; // FIXME 1428 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1429 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1430 MemberPointerInfo MPI( 1431 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1432 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1433 return TypeTable.writeKnownType(PR); 1434 } 1435 1436 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1437 /// have a translation, use the NearC convention. 1438 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1439 switch (DwarfCC) { 1440 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1441 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1442 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1443 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1444 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1445 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1446 } 1447 return CallingConvention::NearC; 1448 } 1449 1450 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1451 ModifierOptions Mods = ModifierOptions::None; 1452 bool IsModifier = true; 1453 const DIType *BaseTy = Ty; 1454 while (IsModifier && BaseTy) { 1455 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1456 switch (BaseTy->getTag()) { 1457 case dwarf::DW_TAG_const_type: 1458 Mods |= ModifierOptions::Const; 1459 break; 1460 case dwarf::DW_TAG_volatile_type: 1461 Mods |= ModifierOptions::Volatile; 1462 break; 1463 default: 1464 IsModifier = false; 1465 break; 1466 } 1467 if (IsModifier) 1468 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1469 } 1470 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1471 ModifierRecord MR(ModifiedTI, Mods); 1472 return TypeTable.writeKnownType(MR); 1473 } 1474 1475 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1476 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1477 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1478 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1479 1480 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1481 ArrayRef<TypeIndex> ArgTypeIndices = None; 1482 if (!ReturnAndArgTypeIndices.empty()) { 1483 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1484 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1485 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1486 } 1487 1488 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1489 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1490 1491 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1492 1493 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1494 ArgTypeIndices.size(), ArgListIndex); 1495 return TypeTable.writeKnownType(Procedure); 1496 } 1497 1498 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1499 const DIType *ClassTy, 1500 int ThisAdjustment) { 1501 // Lower the containing class type. 1502 TypeIndex ClassType = getTypeIndex(ClassTy); 1503 1504 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1505 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1506 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1507 1508 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1509 ArrayRef<TypeIndex> ArgTypeIndices = None; 1510 if (!ReturnAndArgTypeIndices.empty()) { 1511 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1512 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1513 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1514 } 1515 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1516 if (!ArgTypeIndices.empty()) { 1517 ThisTypeIndex = ArgTypeIndices.front(); 1518 ArgTypeIndices = ArgTypeIndices.drop_front(); 1519 } 1520 1521 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1522 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1523 1524 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1525 1526 // TODO: Need to use the correct values for: 1527 // FunctionOptions 1528 // ThisPointerAdjustment. 1529 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1530 FunctionOptions::None, ArgTypeIndices.size(), 1531 ArgListIndex, ThisAdjustment); 1532 TypeIndex TI = TypeTable.writeKnownType(MFR); 1533 1534 return TI; 1535 } 1536 1537 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1538 unsigned VSlotCount = 1539 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1540 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1541 1542 VFTableShapeRecord VFTSR(Slots); 1543 return TypeTable.writeKnownType(VFTSR); 1544 } 1545 1546 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1547 switch (Flags & DINode::FlagAccessibility) { 1548 case DINode::FlagPrivate: return MemberAccess::Private; 1549 case DINode::FlagPublic: return MemberAccess::Public; 1550 case DINode::FlagProtected: return MemberAccess::Protected; 1551 case 0: 1552 // If there was no explicit access control, provide the default for the tag. 1553 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1554 : MemberAccess::Public; 1555 } 1556 llvm_unreachable("access flags are exclusive"); 1557 } 1558 1559 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1560 if (SP->isArtificial()) 1561 return MethodOptions::CompilerGenerated; 1562 1563 // FIXME: Handle other MethodOptions. 1564 1565 return MethodOptions::None; 1566 } 1567 1568 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1569 bool Introduced) { 1570 switch (SP->getVirtuality()) { 1571 case dwarf::DW_VIRTUALITY_none: 1572 break; 1573 case dwarf::DW_VIRTUALITY_virtual: 1574 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1575 case dwarf::DW_VIRTUALITY_pure_virtual: 1576 return Introduced ? MethodKind::PureIntroducingVirtual 1577 : MethodKind::PureVirtual; 1578 default: 1579 llvm_unreachable("unhandled virtuality case"); 1580 } 1581 1582 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1583 1584 return MethodKind::Vanilla; 1585 } 1586 1587 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1588 switch (Ty->getTag()) { 1589 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1590 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1591 } 1592 llvm_unreachable("unexpected tag"); 1593 } 1594 1595 /// Return ClassOptions that should be present on both the forward declaration 1596 /// and the defintion of a tag type. 1597 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1598 ClassOptions CO = ClassOptions::None; 1599 1600 // MSVC always sets this flag, even for local types. Clang doesn't always 1601 // appear to give every type a linkage name, which may be problematic for us. 1602 // FIXME: Investigate the consequences of not following them here. 1603 if (!Ty->getIdentifier().empty()) 1604 CO |= ClassOptions::HasUniqueName; 1605 1606 // Put the Nested flag on a type if it appears immediately inside a tag type. 1607 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1608 // here. That flag is only set on definitions, and not forward declarations. 1609 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1610 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1611 CO |= ClassOptions::Nested; 1612 1613 // Put the Scoped flag on function-local types. 1614 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1615 Scope = Scope->getScope().resolve()) { 1616 if (isa<DISubprogram>(Scope)) { 1617 CO |= ClassOptions::Scoped; 1618 break; 1619 } 1620 } 1621 1622 return CO; 1623 } 1624 1625 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1626 ClassOptions CO = getCommonClassOptions(Ty); 1627 TypeIndex FTI; 1628 unsigned EnumeratorCount = 0; 1629 1630 if (Ty->isForwardDecl()) { 1631 CO |= ClassOptions::ForwardReference; 1632 } else { 1633 FieldListRecordBuilder FLRB(TypeTable); 1634 1635 FLRB.begin(); 1636 for (const DINode *Element : Ty->getElements()) { 1637 // We assume that the frontend provides all members in source declaration 1638 // order, which is what MSVC does. 1639 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1640 EnumeratorRecord ER(MemberAccess::Public, 1641 APSInt::getUnsigned(Enumerator->getValue()), 1642 Enumerator->getName()); 1643 FLRB.writeMemberType(ER); 1644 EnumeratorCount++; 1645 } 1646 } 1647 FTI = FLRB.end(true); 1648 } 1649 1650 std::string FullName = getFullyQualifiedName(Ty); 1651 1652 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1653 getTypeIndex(Ty->getBaseType())); 1654 return TypeTable.writeKnownType(ER); 1655 } 1656 1657 //===----------------------------------------------------------------------===// 1658 // ClassInfo 1659 //===----------------------------------------------------------------------===// 1660 1661 struct llvm::ClassInfo { 1662 struct MemberInfo { 1663 const DIDerivedType *MemberTypeNode; 1664 uint64_t BaseOffset; 1665 }; 1666 // [MemberInfo] 1667 using MemberList = std::vector<MemberInfo>; 1668 1669 using MethodsList = TinyPtrVector<const DISubprogram *>; 1670 // MethodName -> MethodsList 1671 using MethodsMap = MapVector<MDString *, MethodsList>; 1672 1673 /// Base classes. 1674 std::vector<const DIDerivedType *> Inheritance; 1675 1676 /// Direct members. 1677 MemberList Members; 1678 // Direct overloaded methods gathered by name. 1679 MethodsMap Methods; 1680 1681 TypeIndex VShapeTI; 1682 1683 std::vector<const DIType *> NestedTypes; 1684 }; 1685 1686 void CodeViewDebug::clear() { 1687 assert(CurFn == nullptr); 1688 FileIdMap.clear(); 1689 FnDebugInfo.clear(); 1690 FileToFilepathMap.clear(); 1691 LocalUDTs.clear(); 1692 GlobalUDTs.clear(); 1693 TypeIndices.clear(); 1694 CompleteTypeIndices.clear(); 1695 } 1696 1697 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1698 const DIDerivedType *DDTy) { 1699 if (!DDTy->getName().empty()) { 1700 Info.Members.push_back({DDTy, 0}); 1701 return; 1702 } 1703 // An unnamed member must represent a nested struct or union. Add all the 1704 // indirect fields to the current record. 1705 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1706 uint64_t Offset = DDTy->getOffsetInBits(); 1707 const DIType *Ty = DDTy->getBaseType().resolve(); 1708 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1709 ClassInfo NestedInfo = collectClassInfo(DCTy); 1710 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1711 Info.Members.push_back( 1712 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1713 } 1714 1715 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1716 ClassInfo Info; 1717 // Add elements to structure type. 1718 DINodeArray Elements = Ty->getElements(); 1719 for (auto *Element : Elements) { 1720 // We assume that the frontend provides all members in source declaration 1721 // order, which is what MSVC does. 1722 if (!Element) 1723 continue; 1724 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1725 Info.Methods[SP->getRawName()].push_back(SP); 1726 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1727 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1728 collectMemberInfo(Info, DDTy); 1729 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1730 Info.Inheritance.push_back(DDTy); 1731 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1732 DDTy->getName() == "__vtbl_ptr_type") { 1733 Info.VShapeTI = getTypeIndex(DDTy); 1734 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1735 Info.NestedTypes.push_back(DDTy); 1736 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1737 // Ignore friend members. It appears that MSVC emitted info about 1738 // friends in the past, but modern versions do not. 1739 } 1740 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1741 Info.NestedTypes.push_back(Composite); 1742 } 1743 // Skip other unrecognized kinds of elements. 1744 } 1745 return Info; 1746 } 1747 1748 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1749 // First, construct the forward decl. Don't look into Ty to compute the 1750 // forward decl options, since it might not be available in all TUs. 1751 TypeRecordKind Kind = getRecordKind(Ty); 1752 ClassOptions CO = 1753 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1754 std::string FullName = getFullyQualifiedName(Ty); 1755 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1756 FullName, Ty->getIdentifier()); 1757 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1758 if (!Ty->isForwardDecl()) 1759 DeferredCompleteTypes.push_back(Ty); 1760 return FwdDeclTI; 1761 } 1762 1763 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1764 // Construct the field list and complete type record. 1765 TypeRecordKind Kind = getRecordKind(Ty); 1766 ClassOptions CO = getCommonClassOptions(Ty); 1767 TypeIndex FieldTI; 1768 TypeIndex VShapeTI; 1769 unsigned FieldCount; 1770 bool ContainsNestedClass; 1771 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1772 lowerRecordFieldList(Ty); 1773 1774 if (ContainsNestedClass) 1775 CO |= ClassOptions::ContainsNestedClass; 1776 1777 std::string FullName = getFullyQualifiedName(Ty); 1778 1779 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1780 1781 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1782 SizeInBytes, FullName, Ty->getIdentifier()); 1783 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1784 1785 if (const auto *File = Ty->getFile()) { 1786 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1787 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1788 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1789 TypeTable.writeKnownType(USLR); 1790 } 1791 1792 addToUDTs(Ty); 1793 1794 return ClassTI; 1795 } 1796 1797 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1798 ClassOptions CO = 1799 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1800 std::string FullName = getFullyQualifiedName(Ty); 1801 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1802 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1803 if (!Ty->isForwardDecl()) 1804 DeferredCompleteTypes.push_back(Ty); 1805 return FwdDeclTI; 1806 } 1807 1808 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1809 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1810 TypeIndex FieldTI; 1811 unsigned FieldCount; 1812 bool ContainsNestedClass; 1813 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1814 lowerRecordFieldList(Ty); 1815 1816 if (ContainsNestedClass) 1817 CO |= ClassOptions::ContainsNestedClass; 1818 1819 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1820 std::string FullName = getFullyQualifiedName(Ty); 1821 1822 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1823 Ty->getIdentifier()); 1824 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1825 1826 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1827 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1828 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1829 TypeTable.writeKnownType(USLR); 1830 1831 addToUDTs(Ty); 1832 1833 return UnionTI; 1834 } 1835 1836 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1837 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1838 // Manually count members. MSVC appears to count everything that generates a 1839 // field list record. Each individual overload in a method overload group 1840 // contributes to this count, even though the overload group is a single field 1841 // list record. 1842 unsigned MemberCount = 0; 1843 ClassInfo Info = collectClassInfo(Ty); 1844 FieldListRecordBuilder FLBR(TypeTable); 1845 FLBR.begin(); 1846 1847 // Create base classes. 1848 for (const DIDerivedType *I : Info.Inheritance) { 1849 if (I->getFlags() & DINode::FlagVirtual) { 1850 // Virtual base. 1851 // FIXME: Emit VBPtrOffset when the frontend provides it. 1852 unsigned VBPtrOffset = 0; 1853 // FIXME: Despite the accessor name, the offset is really in bytes. 1854 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1855 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1856 ? TypeRecordKind::IndirectVirtualBaseClass 1857 : TypeRecordKind::VirtualBaseClass; 1858 VirtualBaseClassRecord VBCR( 1859 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1860 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1861 VBTableIndex); 1862 1863 FLBR.writeMemberType(VBCR); 1864 } else { 1865 assert(I->getOffsetInBits() % 8 == 0 && 1866 "bases must be on byte boundaries"); 1867 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1868 getTypeIndex(I->getBaseType()), 1869 I->getOffsetInBits() / 8); 1870 FLBR.writeMemberType(BCR); 1871 } 1872 } 1873 1874 // Create members. 1875 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1876 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1877 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1878 StringRef MemberName = Member->getName(); 1879 MemberAccess Access = 1880 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1881 1882 if (Member->isStaticMember()) { 1883 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1884 FLBR.writeMemberType(SDMR); 1885 MemberCount++; 1886 continue; 1887 } 1888 1889 // Virtual function pointer member. 1890 if ((Member->getFlags() & DINode::FlagArtificial) && 1891 Member->getName().startswith("_vptr$")) { 1892 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1893 FLBR.writeMemberType(VFPR); 1894 MemberCount++; 1895 continue; 1896 } 1897 1898 // Data member. 1899 uint64_t MemberOffsetInBits = 1900 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1901 if (Member->isBitField()) { 1902 uint64_t StartBitOffset = MemberOffsetInBits; 1903 if (const auto *CI = 1904 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1905 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1906 } 1907 StartBitOffset -= MemberOffsetInBits; 1908 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1909 StartBitOffset); 1910 MemberBaseType = TypeTable.writeKnownType(BFR); 1911 } 1912 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1913 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1914 MemberName); 1915 FLBR.writeMemberType(DMR); 1916 MemberCount++; 1917 } 1918 1919 // Create methods 1920 for (auto &MethodItr : Info.Methods) { 1921 StringRef Name = MethodItr.first->getString(); 1922 1923 std::vector<OneMethodRecord> Methods; 1924 for (const DISubprogram *SP : MethodItr.second) { 1925 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1926 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1927 1928 unsigned VFTableOffset = -1; 1929 if (Introduced) 1930 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1931 1932 Methods.push_back(OneMethodRecord( 1933 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1934 translateMethodKindFlags(SP, Introduced), 1935 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1936 MemberCount++; 1937 } 1938 assert(!Methods.empty() && "Empty methods map entry"); 1939 if (Methods.size() == 1) 1940 FLBR.writeMemberType(Methods[0]); 1941 else { 1942 MethodOverloadListRecord MOLR(Methods); 1943 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1944 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1945 FLBR.writeMemberType(OMR); 1946 } 1947 } 1948 1949 // Create nested classes. 1950 for (const DIType *Nested : Info.NestedTypes) { 1951 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1952 FLBR.writeMemberType(R); 1953 MemberCount++; 1954 } 1955 1956 TypeIndex FieldTI = FLBR.end(true); 1957 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 1958 !Info.NestedTypes.empty()); 1959 } 1960 1961 TypeIndex CodeViewDebug::getVBPTypeIndex() { 1962 if (!VBPType.getIndex()) { 1963 // Make a 'const int *' type. 1964 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 1965 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 1966 1967 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 1968 : PointerKind::Near32; 1969 PointerMode PM = PointerMode::Pointer; 1970 PointerOptions PO = PointerOptions::None; 1971 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 1972 1973 VBPType = TypeTable.writeKnownType(PR); 1974 } 1975 1976 return VBPType; 1977 } 1978 1979 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 1980 const DIType *Ty = TypeRef.resolve(); 1981 const DIType *ClassTy = ClassTyRef.resolve(); 1982 1983 // The null DIType is the void type. Don't try to hash it. 1984 if (!Ty) 1985 return TypeIndex::Void(); 1986 1987 // Check if we've already translated this type. Don't try to do a 1988 // get-or-create style insertion that caches the hash lookup across the 1989 // lowerType call. It will update the TypeIndices map. 1990 auto I = TypeIndices.find({Ty, ClassTy}); 1991 if (I != TypeIndices.end()) 1992 return I->second; 1993 1994 TypeLoweringScope S(*this); 1995 TypeIndex TI = lowerType(Ty, ClassTy); 1996 return recordTypeIndexForDINode(Ty, TI, ClassTy); 1997 } 1998 1999 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2000 DIType *Ty = TypeRef.resolve(); 2001 PointerRecord PR(getTypeIndex(Ty), 2002 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2003 : PointerKind::Near32, 2004 PointerMode::LValueReference, PointerOptions::None, 2005 Ty->getSizeInBits() / 8); 2006 return TypeTable.writeKnownType(PR); 2007 } 2008 2009 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2010 const DIType *Ty = TypeRef.resolve(); 2011 2012 // The null DIType is the void type. Don't try to hash it. 2013 if (!Ty) 2014 return TypeIndex::Void(); 2015 2016 // If this is a non-record type, the complete type index is the same as the 2017 // normal type index. Just call getTypeIndex. 2018 switch (Ty->getTag()) { 2019 case dwarf::DW_TAG_class_type: 2020 case dwarf::DW_TAG_structure_type: 2021 case dwarf::DW_TAG_union_type: 2022 break; 2023 default: 2024 return getTypeIndex(Ty); 2025 } 2026 2027 // Check if we've already translated the complete record type. Lowering a 2028 // complete type should never trigger lowering another complete type, so we 2029 // can reuse the hash table lookup result. 2030 const auto *CTy = cast<DICompositeType>(Ty); 2031 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2032 if (!InsertResult.second) 2033 return InsertResult.first->second; 2034 2035 TypeLoweringScope S(*this); 2036 2037 // Make sure the forward declaration is emitted first. It's unclear if this 2038 // is necessary, but MSVC does it, and we should follow suit until we can show 2039 // otherwise. 2040 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2041 2042 // Just use the forward decl if we don't have complete type info. This might 2043 // happen if the frontend is using modules and expects the complete definition 2044 // to be emitted elsewhere. 2045 if (CTy->isForwardDecl()) 2046 return FwdDeclTI; 2047 2048 TypeIndex TI; 2049 switch (CTy->getTag()) { 2050 case dwarf::DW_TAG_class_type: 2051 case dwarf::DW_TAG_structure_type: 2052 TI = lowerCompleteTypeClass(CTy); 2053 break; 2054 case dwarf::DW_TAG_union_type: 2055 TI = lowerCompleteTypeUnion(CTy); 2056 break; 2057 default: 2058 llvm_unreachable("not a record"); 2059 } 2060 2061 InsertResult.first->second = TI; 2062 return TI; 2063 } 2064 2065 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2066 /// and do this until fixpoint, as each complete record type typically 2067 /// references 2068 /// many other record types. 2069 void CodeViewDebug::emitDeferredCompleteTypes() { 2070 SmallVector<const DICompositeType *, 4> TypesToEmit; 2071 while (!DeferredCompleteTypes.empty()) { 2072 std::swap(DeferredCompleteTypes, TypesToEmit); 2073 for (const DICompositeType *RecordTy : TypesToEmit) 2074 getCompleteTypeIndex(RecordTy); 2075 TypesToEmit.clear(); 2076 } 2077 } 2078 2079 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2080 // Get the sorted list of parameters and emit them first. 2081 SmallVector<const LocalVariable *, 6> Params; 2082 for (const LocalVariable &L : Locals) 2083 if (L.DIVar->isParameter()) 2084 Params.push_back(&L); 2085 std::sort(Params.begin(), Params.end(), 2086 [](const LocalVariable *L, const LocalVariable *R) { 2087 return L->DIVar->getArg() < R->DIVar->getArg(); 2088 }); 2089 for (const LocalVariable *L : Params) 2090 emitLocalVariable(*L); 2091 2092 // Next emit all non-parameters in the order that we found them. 2093 for (const LocalVariable &L : Locals) 2094 if (!L.DIVar->isParameter()) 2095 emitLocalVariable(L); 2096 } 2097 2098 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2099 // LocalSym record, see SymbolRecord.h for more info. 2100 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2101 *LocalEnd = MMI->getContext().createTempSymbol(); 2102 OS.AddComment("Record length"); 2103 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2104 OS.EmitLabel(LocalBegin); 2105 2106 OS.AddComment("Record kind: S_LOCAL"); 2107 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2108 2109 LocalSymFlags Flags = LocalSymFlags::None; 2110 if (Var.DIVar->isParameter()) 2111 Flags |= LocalSymFlags::IsParameter; 2112 if (Var.DefRanges.empty()) 2113 Flags |= LocalSymFlags::IsOptimizedOut; 2114 2115 OS.AddComment("TypeIndex"); 2116 TypeIndex TI = Var.Deref ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2117 : getCompleteTypeIndex(Var.DIVar->getType()); 2118 OS.EmitIntValue(TI.getIndex(), 4); 2119 OS.AddComment("Flags"); 2120 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2121 // Truncate the name so we won't overflow the record length field. 2122 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2123 OS.EmitLabel(LocalEnd); 2124 2125 // Calculate the on disk prefix of the appropriate def range record. The 2126 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2127 // should be big enough to hold all forms without memory allocation. 2128 SmallString<20> BytePrefix; 2129 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2130 BytePrefix.clear(); 2131 if (DefRange.InMemory) { 2132 uint16_t RegRelFlags = 0; 2133 if (DefRange.IsSubfield) { 2134 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2135 (DefRange.StructOffset 2136 << DefRangeRegisterRelSym::OffsetInParentShift); 2137 } 2138 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2139 Sym.Hdr.Register = DefRange.CVRegister; 2140 Sym.Hdr.Flags = RegRelFlags; 2141 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2142 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2143 BytePrefix += 2144 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2145 BytePrefix += 2146 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2147 } else { 2148 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2149 if (DefRange.IsSubfield) { 2150 // Unclear what matters here. 2151 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2152 Sym.Hdr.Register = DefRange.CVRegister; 2153 Sym.Hdr.MayHaveNoName = 0; 2154 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2155 2156 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2157 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2158 sizeof(SymKind)); 2159 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2160 sizeof(Sym.Hdr)); 2161 } else { 2162 // Unclear what matters here. 2163 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2164 Sym.Hdr.Register = DefRange.CVRegister; 2165 Sym.Hdr.MayHaveNoName = 0; 2166 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2167 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2168 sizeof(SymKind)); 2169 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2170 sizeof(Sym.Hdr)); 2171 } 2172 } 2173 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2174 } 2175 } 2176 2177 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2178 const Function *GV = MF->getFunction(); 2179 assert(FnDebugInfo.count(GV)); 2180 assert(CurFn == &FnDebugInfo[GV]); 2181 2182 collectVariableInfo(GV->getSubprogram()); 2183 2184 // Don't emit anything if we don't have any line tables. 2185 if (!CurFn->HaveLineInfo) { 2186 FnDebugInfo.erase(GV); 2187 CurFn = nullptr; 2188 return; 2189 } 2190 2191 CurFn->End = Asm->getFunctionEnd(); 2192 2193 CurFn = nullptr; 2194 } 2195 2196 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2197 DebugHandlerBase::beginInstruction(MI); 2198 2199 // Ignore DBG_VALUE locations and function prologue. 2200 if (!Asm || !CurFn || MI->isDebugValue() || 2201 MI->getFlag(MachineInstr::FrameSetup)) 2202 return; 2203 2204 // If the first instruction of a new MBB has no location, find the first 2205 // instruction with a location and use that. 2206 DebugLoc DL = MI->getDebugLoc(); 2207 if (!DL && MI->getParent() != PrevInstBB) { 2208 for (const auto &NextMI : *MI->getParent()) { 2209 if (NextMI.isDebugValue()) 2210 continue; 2211 DL = NextMI.getDebugLoc(); 2212 if (DL) 2213 break; 2214 } 2215 } 2216 PrevInstBB = MI->getParent(); 2217 2218 // If we still don't have a debug location, don't record a location. 2219 if (!DL) 2220 return; 2221 2222 maybeRecordLocation(DL, Asm->MF); 2223 } 2224 2225 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2226 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2227 *EndLabel = MMI->getContext().createTempSymbol(); 2228 OS.EmitIntValue(unsigned(Kind), 4); 2229 OS.AddComment("Subsection size"); 2230 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2231 OS.EmitLabel(BeginLabel); 2232 return EndLabel; 2233 } 2234 2235 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2236 OS.EmitLabel(EndLabel); 2237 // Every subsection must be aligned to a 4-byte boundary. 2238 OS.EmitValueToAlignment(4); 2239 } 2240 2241 void CodeViewDebug::emitDebugInfoForUDTs( 2242 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2243 for (const auto &UDT : UDTs) { 2244 const DIType *T = UDT.second; 2245 assert(shouldEmitUdt(T)); 2246 2247 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2248 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2249 OS.AddComment("Record length"); 2250 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2251 OS.EmitLabel(UDTRecordBegin); 2252 2253 OS.AddComment("Record kind: S_UDT"); 2254 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2255 2256 OS.AddComment("Type"); 2257 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2258 2259 emitNullTerminatedSymbolName(OS, UDT.first); 2260 OS.EmitLabel(UDTRecordEnd); 2261 } 2262 } 2263 2264 void CodeViewDebug::emitDebugInfoForGlobals() { 2265 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2266 GlobalMap; 2267 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2268 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2269 GV.getDebugInfo(GVEs); 2270 for (const auto *GVE : GVEs) 2271 GlobalMap[GVE] = &GV; 2272 } 2273 2274 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2275 for (const MDNode *Node : CUs->operands()) { 2276 const auto *CU = cast<DICompileUnit>(Node); 2277 2278 // First, emit all globals that are not in a comdat in a single symbol 2279 // substream. MSVC doesn't like it if the substream is empty, so only open 2280 // it if we have at least one global to emit. 2281 switchToDebugSectionForSymbol(nullptr); 2282 MCSymbol *EndLabel = nullptr; 2283 for (const auto *GVE : CU->getGlobalVariables()) { 2284 if (const auto *GV = GlobalMap.lookup(GVE)) 2285 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2286 if (!EndLabel) { 2287 OS.AddComment("Symbol subsection for globals"); 2288 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2289 } 2290 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2291 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2292 } 2293 } 2294 if (EndLabel) 2295 endCVSubsection(EndLabel); 2296 2297 // Second, emit each global that is in a comdat into its own .debug$S 2298 // section along with its own symbol substream. 2299 for (const auto *GVE : CU->getGlobalVariables()) { 2300 if (const auto *GV = GlobalMap.lookup(GVE)) { 2301 if (GV->hasComdat()) { 2302 MCSymbol *GVSym = Asm->getSymbol(GV); 2303 OS.AddComment("Symbol subsection for " + 2304 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2305 switchToDebugSectionForSymbol(GVSym); 2306 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2307 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2308 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2309 endCVSubsection(EndLabel); 2310 } 2311 } 2312 } 2313 } 2314 } 2315 2316 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2317 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2318 for (const MDNode *Node : CUs->operands()) { 2319 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2320 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2321 getTypeIndex(RT); 2322 // FIXME: Add to global/local DTU list. 2323 } 2324 } 2325 } 2326 } 2327 2328 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2329 const GlobalVariable *GV, 2330 MCSymbol *GVSym) { 2331 // DataSym record, see SymbolRecord.h for more info. 2332 // FIXME: Thread local data, etc 2333 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2334 *DataEnd = MMI->getContext().createTempSymbol(); 2335 OS.AddComment("Record length"); 2336 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2337 OS.EmitLabel(DataBegin); 2338 if (DIGV->isLocalToUnit()) { 2339 if (GV->isThreadLocal()) { 2340 OS.AddComment("Record kind: S_LTHREAD32"); 2341 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2342 } else { 2343 OS.AddComment("Record kind: S_LDATA32"); 2344 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2345 } 2346 } else { 2347 if (GV->isThreadLocal()) { 2348 OS.AddComment("Record kind: S_GTHREAD32"); 2349 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2350 } else { 2351 OS.AddComment("Record kind: S_GDATA32"); 2352 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2353 } 2354 } 2355 OS.AddComment("Type"); 2356 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2357 OS.AddComment("DataOffset"); 2358 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2359 OS.AddComment("Segment"); 2360 OS.EmitCOFFSectionIndex(GVSym); 2361 OS.AddComment("Name"); 2362 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2363 OS.EmitLabel(DataEnd); 2364 } 2365