1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "DwarfExpression.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/DenseSet.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/Optional.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/TinyPtrVector.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/BinaryFormat/COFF.h"
31 #include "llvm/BinaryFormat/Dwarf.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/LexicalScopes.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
44 #include "llvm/DebugInfo/CodeView/CodeView.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/Line.h"
48 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
49 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
50 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
51 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
52 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugInfoMetadata.h"
56 #include "llvm/IR/DebugLoc.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/MC/MCAsmInfo.h"
63 #include "llvm/MC/MCContext.h"
64 #include "llvm/MC/MCSectionCOFF.h"
65 #include "llvm/MC/MCStreamer.h"
66 #include "llvm/MC/MCSymbol.h"
67 #include "llvm/Support/BinaryByteStream.h"
68 #include "llvm/Support/BinaryStreamReader.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Endian.h"
73 #include "llvm/Support/Error.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/FormatVariadic.h"
76 #include "llvm/Support/SMLoc.h"
77 #include "llvm/Support/ScopedPrinter.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include <algorithm>
80 #include <cassert>
81 #include <cctype>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <limits>
86 #include <string>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 using namespace llvm::codeview;
92 
93 static cl::opt<bool> EmitDebugGlobalHashes("emit-codeview-ghash-section",
94                                            cl::ReallyHidden, cl::init(false));
95 
96 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
97     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
98   // If module doesn't have named metadata anchors or COFF debug section
99   // is not available, skip any debug info related stuff.
100   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
101       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
102     Asm = nullptr;
103     return;
104   }
105 
106   // Tell MMI that we have debug info.
107   MMI->setDebugInfoAvailability(true);
108 }
109 
110 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
111   std::string &Filepath = FileToFilepathMap[File];
112   if (!Filepath.empty())
113     return Filepath;
114 
115   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
116 
117   // Clang emits directory and relative filename info into the IR, but CodeView
118   // operates on full paths.  We could change Clang to emit full paths too, but
119   // that would increase the IR size and probably not needed for other users.
120   // For now, just concatenate and canonicalize the path here.
121   if (Filename.find(':') == 1)
122     Filepath = Filename;
123   else
124     Filepath = (Dir + "\\" + Filename).str();
125 
126   // Canonicalize the path.  We have to do it textually because we may no longer
127   // have access the file in the filesystem.
128   // First, replace all slashes with backslashes.
129   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
130 
131   // Remove all "\.\" with "\".
132   size_t Cursor = 0;
133   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
134     Filepath.erase(Cursor, 2);
135 
136   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
137   // path should be well-formatted, e.g. start with a drive letter, etc.
138   Cursor = 0;
139   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
140     // Something's wrong if the path starts with "\..\", abort.
141     if (Cursor == 0)
142       break;
143 
144     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
145     if (PrevSlash == std::string::npos)
146       // Something's wrong, abort.
147       break;
148 
149     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
150     // The next ".." might be following the one we've just erased.
151     Cursor = PrevSlash;
152   }
153 
154   // Remove all duplicate backslashes.
155   Cursor = 0;
156   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
157     Filepath.erase(Cursor, 1);
158 
159   return Filepath;
160 }
161 
162 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
163   StringRef FullPath = getFullFilepath(F);
164   unsigned NextId = FileIdMap.size() + 1;
165   auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
166   if (Insertion.second) {
167     // We have to compute the full filepath and emit a .cv_file directive.
168     std::string Checksum = fromHex(F->getChecksum());
169     void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
170     memcpy(CKMem, Checksum.data(), Checksum.size());
171     ArrayRef<uint8_t> ChecksumAsBytes(reinterpret_cast<const uint8_t *>(CKMem),
172                                       Checksum.size());
173     DIFile::ChecksumKind ChecksumKind = F->getChecksumKind();
174     bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
175                                           static_cast<unsigned>(ChecksumKind));
176     (void)Success;
177     assert(Success && ".cv_file directive failed");
178   }
179   return Insertion.first->second;
180 }
181 
182 CodeViewDebug::InlineSite &
183 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
184                              const DISubprogram *Inlinee) {
185   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
186   InlineSite *Site = &SiteInsertion.first->second;
187   if (SiteInsertion.second) {
188     unsigned ParentFuncId = CurFn->FuncId;
189     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
190       ParentFuncId =
191           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
192               .SiteFuncId;
193 
194     Site->SiteFuncId = NextFuncId++;
195     OS.EmitCVInlineSiteIdDirective(
196         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
197         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
198     Site->Inlinee = Inlinee;
199     InlinedSubprograms.insert(Inlinee);
200     getFuncIdForSubprogram(Inlinee);
201   }
202   return *Site;
203 }
204 
205 static StringRef getPrettyScopeName(const DIScope *Scope) {
206   StringRef ScopeName = Scope->getName();
207   if (!ScopeName.empty())
208     return ScopeName;
209 
210   switch (Scope->getTag()) {
211   case dwarf::DW_TAG_enumeration_type:
212   case dwarf::DW_TAG_class_type:
213   case dwarf::DW_TAG_structure_type:
214   case dwarf::DW_TAG_union_type:
215     return "<unnamed-tag>";
216   case dwarf::DW_TAG_namespace:
217     return "`anonymous namespace'";
218   }
219 
220   return StringRef();
221 }
222 
223 static const DISubprogram *getQualifiedNameComponents(
224     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
225   const DISubprogram *ClosestSubprogram = nullptr;
226   while (Scope != nullptr) {
227     if (ClosestSubprogram == nullptr)
228       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
229     StringRef ScopeName = getPrettyScopeName(Scope);
230     if (!ScopeName.empty())
231       QualifiedNameComponents.push_back(ScopeName);
232     Scope = Scope->getScope().resolve();
233   }
234   return ClosestSubprogram;
235 }
236 
237 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
238                                     StringRef TypeName) {
239   std::string FullyQualifiedName;
240   for (StringRef QualifiedNameComponent :
241        llvm::reverse(QualifiedNameComponents)) {
242     FullyQualifiedName.append(QualifiedNameComponent);
243     FullyQualifiedName.append("::");
244   }
245   FullyQualifiedName.append(TypeName);
246   return FullyQualifiedName;
247 }
248 
249 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
250   SmallVector<StringRef, 5> QualifiedNameComponents;
251   getQualifiedNameComponents(Scope, QualifiedNameComponents);
252   return getQualifiedName(QualifiedNameComponents, Name);
253 }
254 
255 struct CodeViewDebug::TypeLoweringScope {
256   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
257   ~TypeLoweringScope() {
258     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
259     // inner TypeLoweringScopes don't attempt to emit deferred types.
260     if (CVD.TypeEmissionLevel == 1)
261       CVD.emitDeferredCompleteTypes();
262     --CVD.TypeEmissionLevel;
263   }
264   CodeViewDebug &CVD;
265 };
266 
267 static std::string getFullyQualifiedName(const DIScope *Ty) {
268   const DIScope *Scope = Ty->getScope().resolve();
269   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
270 }
271 
272 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
273   // No scope means global scope and that uses the zero index.
274   if (!Scope || isa<DIFile>(Scope))
275     return TypeIndex();
276 
277   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
278 
279   // Check if we've already translated this scope.
280   auto I = TypeIndices.find({Scope, nullptr});
281   if (I != TypeIndices.end())
282     return I->second;
283 
284   // Build the fully qualified name of the scope.
285   std::string ScopeName = getFullyQualifiedName(Scope);
286   StringIdRecord SID(TypeIndex(), ScopeName);
287   auto TI = TypeTable.writeLeafType(SID);
288   return recordTypeIndexForDINode(Scope, TI);
289 }
290 
291 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
292   assert(SP);
293 
294   // Check if we've already translated this subprogram.
295   auto I = TypeIndices.find({SP, nullptr});
296   if (I != TypeIndices.end())
297     return I->second;
298 
299   // The display name includes function template arguments. Drop them to match
300   // MSVC.
301   StringRef DisplayName = SP->getName().split('<').first;
302 
303   const DIScope *Scope = SP->getScope().resolve();
304   TypeIndex TI;
305   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
306     // If the scope is a DICompositeType, then this must be a method. Member
307     // function types take some special handling, and require access to the
308     // subprogram.
309     TypeIndex ClassType = getTypeIndex(Class);
310     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
311                                DisplayName);
312     TI = TypeTable.writeLeafType(MFuncId);
313   } else {
314     // Otherwise, this must be a free function.
315     TypeIndex ParentScope = getScopeIndex(Scope);
316     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
317     TI = TypeTable.writeLeafType(FuncId);
318   }
319 
320   return recordTypeIndexForDINode(SP, TI);
321 }
322 
323 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
324                                                const DICompositeType *Class) {
325   // Always use the method declaration as the key for the function type. The
326   // method declaration contains the this adjustment.
327   if (SP->getDeclaration())
328     SP = SP->getDeclaration();
329   assert(!SP->getDeclaration() && "should use declaration as key");
330 
331   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
332   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
333   auto I = TypeIndices.find({SP, Class});
334   if (I != TypeIndices.end())
335     return I->second;
336 
337   // Make sure complete type info for the class is emitted *after* the member
338   // function type, as the complete class type is likely to reference this
339   // member function type.
340   TypeLoweringScope S(*this);
341   const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
342   TypeIndex TI = lowerTypeMemberFunction(
343       SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod);
344   return recordTypeIndexForDINode(SP, TI, Class);
345 }
346 
347 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
348                                                   TypeIndex TI,
349                                                   const DIType *ClassTy) {
350   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
351   (void)InsertResult;
352   assert(InsertResult.second && "DINode was already assigned a type index");
353   return TI;
354 }
355 
356 unsigned CodeViewDebug::getPointerSizeInBytes() {
357   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
358 }
359 
360 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
361                                         const DILocation *InlinedAt) {
362   if (InlinedAt) {
363     // This variable was inlined. Associate it with the InlineSite.
364     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
365     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
366     Site.InlinedLocals.emplace_back(Var);
367   } else {
368     // This variable goes in the main ProcSym.
369     CurFn->Locals.emplace_back(Var);
370   }
371 }
372 
373 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
374                                const DILocation *Loc) {
375   auto B = Locs.begin(), E = Locs.end();
376   if (std::find(B, E, Loc) == E)
377     Locs.push_back(Loc);
378 }
379 
380 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
381                                         const MachineFunction *MF) {
382   // Skip this instruction if it has the same location as the previous one.
383   if (!DL || DL == PrevInstLoc)
384     return;
385 
386   const DIScope *Scope = DL.get()->getScope();
387   if (!Scope)
388     return;
389 
390   // Skip this line if it is longer than the maximum we can record.
391   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
392   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
393       LI.isNeverStepInto())
394     return;
395 
396   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
397   if (CI.getStartColumn() != DL.getCol())
398     return;
399 
400   if (!CurFn->HaveLineInfo)
401     CurFn->HaveLineInfo = true;
402   unsigned FileId = 0;
403   if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
404     FileId = CurFn->LastFileId;
405   else
406     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
407   PrevInstLoc = DL;
408 
409   unsigned FuncId = CurFn->FuncId;
410   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
411     const DILocation *Loc = DL.get();
412 
413     // If this location was actually inlined from somewhere else, give it the ID
414     // of the inline call site.
415     FuncId =
416         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
417 
418     // Ensure we have links in the tree of inline call sites.
419     bool FirstLoc = true;
420     while ((SiteLoc = Loc->getInlinedAt())) {
421       InlineSite &Site =
422           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
423       if (!FirstLoc)
424         addLocIfNotPresent(Site.ChildSites, Loc);
425       FirstLoc = false;
426       Loc = SiteLoc;
427     }
428     addLocIfNotPresent(CurFn->ChildSites, Loc);
429   }
430 
431   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
432                         /*PrologueEnd=*/false, /*IsStmt=*/false,
433                         DL->getFilename(), SMLoc());
434 }
435 
436 void CodeViewDebug::emitCodeViewMagicVersion() {
437   OS.EmitValueToAlignment(4);
438   OS.AddComment("Debug section magic");
439   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
440 }
441 
442 void CodeViewDebug::endModule() {
443   if (!Asm || !MMI->hasDebugInfo())
444     return;
445 
446   assert(Asm != nullptr);
447 
448   // The COFF .debug$S section consists of several subsections, each starting
449   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
450   // of the payload followed by the payload itself.  The subsections are 4-byte
451   // aligned.
452 
453   // Use the generic .debug$S section, and make a subsection for all the inlined
454   // subprograms.
455   switchToDebugSectionForSymbol(nullptr);
456 
457   MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
458   emitCompilerInformation();
459   endCVSubsection(CompilerInfo);
460 
461   emitInlineeLinesSubsection();
462 
463   // Emit per-function debug information.
464   for (auto &P : FnDebugInfo)
465     if (!P.first->isDeclarationForLinker())
466       emitDebugInfoForFunction(P.first, P.second);
467 
468   // Emit global variable debug information.
469   setCurrentSubprogram(nullptr);
470   emitDebugInfoForGlobals();
471 
472   // Emit retained types.
473   emitDebugInfoForRetainedTypes();
474 
475   // Switch back to the generic .debug$S section after potentially processing
476   // comdat symbol sections.
477   switchToDebugSectionForSymbol(nullptr);
478 
479   // Emit UDT records for any types used by global variables.
480   if (!GlobalUDTs.empty()) {
481     MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
482     emitDebugInfoForUDTs(GlobalUDTs);
483     endCVSubsection(SymbolsEnd);
484   }
485 
486   // This subsection holds a file index to offset in string table table.
487   OS.AddComment("File index to string table offset subsection");
488   OS.EmitCVFileChecksumsDirective();
489 
490   // This subsection holds the string table.
491   OS.AddComment("String table");
492   OS.EmitCVStringTableDirective();
493 
494   // Emit type information and hashes last, so that any types we translate while
495   // emitting function info are included.
496   emitTypeInformation();
497 
498   if (EmitDebugGlobalHashes)
499     emitTypeGlobalHashes();
500 
501   clear();
502 }
503 
504 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
505   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
506   // after a fixed length portion of the record. The fixed length portion should
507   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
508   // overall record size is less than the maximum allowed.
509   unsigned MaxFixedRecordLength = 0xF00;
510   SmallString<32> NullTerminatedString(
511       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
512   NullTerminatedString.push_back('\0');
513   OS.EmitBytes(NullTerminatedString);
514 }
515 
516 void CodeViewDebug::emitTypeInformation() {
517   if (TypeTable.empty())
518     return;
519 
520   // Start the .debug$T section with 0x4.
521   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
522   emitCodeViewMagicVersion();
523 
524   SmallString<8> CommentPrefix;
525   if (OS.isVerboseAsm()) {
526     CommentPrefix += '\t';
527     CommentPrefix += Asm->MAI->getCommentString();
528     CommentPrefix += ' ';
529   }
530 
531   TypeTableCollection Table(TypeTable.records());
532   Optional<TypeIndex> B = Table.getFirst();
533   while (B) {
534     // This will fail if the record data is invalid.
535     CVType Record = Table.getType(*B);
536 
537     if (OS.isVerboseAsm()) {
538       // Emit a block comment describing the type record for readability.
539       SmallString<512> CommentBlock;
540       raw_svector_ostream CommentOS(CommentBlock);
541       ScopedPrinter SP(CommentOS);
542       SP.setPrefix(CommentPrefix);
543       TypeDumpVisitor TDV(Table, &SP, false);
544 
545       Error E = codeview::visitTypeRecord(Record, *B, TDV);
546       if (E) {
547         logAllUnhandledErrors(std::move(E), errs(), "error: ");
548         llvm_unreachable("produced malformed type record");
549       }
550       // emitRawComment will insert its own tab and comment string before
551       // the first line, so strip off our first one. It also prints its own
552       // newline.
553       OS.emitRawComment(
554           CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
555     }
556     OS.EmitBinaryData(Record.str_data());
557     B = Table.getNext(*B);
558   }
559 }
560 
561 void CodeViewDebug::emitTypeGlobalHashes() {
562   if (TypeTable.empty())
563     return;
564 
565   // Start the .debug$H section with the version and hash algorithm, currently
566   // hardcoded to version 0, SHA1.
567   OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
568 
569   OS.EmitValueToAlignment(4);
570   OS.AddComment("Magic");
571   OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
572   OS.AddComment("Section Version");
573   OS.EmitIntValue(0, 2);
574   OS.AddComment("Hash Algorithm");
575   OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1), 2);
576 
577   TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
578   for (const auto &GHR : TypeTable.hashes()) {
579     if (OS.isVerboseAsm()) {
580       // Emit an EOL-comment describing which TypeIndex this hash corresponds
581       // to, as well as the stringified SHA1 hash.
582       SmallString<32> Comment;
583       raw_svector_ostream CommentOS(Comment);
584       CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
585       OS.AddComment(Comment);
586       ++TI;
587     }
588     assert(GHR.Hash.size() % 20 == 0);
589     StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
590                 GHR.Hash.size());
591     OS.EmitBinaryData(S);
592   }
593 }
594 
595 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
596   switch (DWLang) {
597   case dwarf::DW_LANG_C:
598   case dwarf::DW_LANG_C89:
599   case dwarf::DW_LANG_C99:
600   case dwarf::DW_LANG_C11:
601   case dwarf::DW_LANG_ObjC:
602     return SourceLanguage::C;
603   case dwarf::DW_LANG_C_plus_plus:
604   case dwarf::DW_LANG_C_plus_plus_03:
605   case dwarf::DW_LANG_C_plus_plus_11:
606   case dwarf::DW_LANG_C_plus_plus_14:
607     return SourceLanguage::Cpp;
608   case dwarf::DW_LANG_Fortran77:
609   case dwarf::DW_LANG_Fortran90:
610   case dwarf::DW_LANG_Fortran03:
611   case dwarf::DW_LANG_Fortran08:
612     return SourceLanguage::Fortran;
613   case dwarf::DW_LANG_Pascal83:
614     return SourceLanguage::Pascal;
615   case dwarf::DW_LANG_Cobol74:
616   case dwarf::DW_LANG_Cobol85:
617     return SourceLanguage::Cobol;
618   case dwarf::DW_LANG_Java:
619     return SourceLanguage::Java;
620   case dwarf::DW_LANG_D:
621     return SourceLanguage::D;
622   default:
623     // There's no CodeView representation for this language, and CV doesn't
624     // have an "unknown" option for the language field, so we'll use MASM,
625     // as it's very low level.
626     return SourceLanguage::Masm;
627   }
628 }
629 
630 namespace {
631 struct Version {
632   int Part[4];
633 };
634 } // end anonymous namespace
635 
636 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
637 // the version number.
638 static Version parseVersion(StringRef Name) {
639   Version V = {{0}};
640   int N = 0;
641   for (const char C : Name) {
642     if (isdigit(C)) {
643       V.Part[N] *= 10;
644       V.Part[N] += C - '0';
645     } else if (C == '.') {
646       ++N;
647       if (N >= 4)
648         return V;
649     } else if (N > 0)
650       return V;
651   }
652   return V;
653 }
654 
655 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
656   switch (Type) {
657   case Triple::ArchType::x86:
658     return CPUType::Pentium3;
659   case Triple::ArchType::x86_64:
660     return CPUType::X64;
661   case Triple::ArchType::thumb:
662     return CPUType::Thumb;
663   case Triple::ArchType::aarch64:
664     return CPUType::ARM64;
665   default:
666     report_fatal_error("target architecture doesn't map to a CodeView CPUType");
667   }
668 }
669 
670 void CodeViewDebug::emitCompilerInformation() {
671   MCContext &Context = MMI->getContext();
672   MCSymbol *CompilerBegin = Context.createTempSymbol(),
673            *CompilerEnd = Context.createTempSymbol();
674   OS.AddComment("Record length");
675   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
676   OS.EmitLabel(CompilerBegin);
677   OS.AddComment("Record kind: S_COMPILE3");
678   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
679   uint32_t Flags = 0;
680 
681   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
682   const MDNode *Node = *CUs->operands().begin();
683   const auto *CU = cast<DICompileUnit>(Node);
684 
685   // The low byte of the flags indicates the source language.
686   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
687   // TODO:  Figure out which other flags need to be set.
688 
689   OS.AddComment("Flags and language");
690   OS.EmitIntValue(Flags, 4);
691 
692   OS.AddComment("CPUType");
693   CPUType CPU =
694       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
695   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
696 
697   StringRef CompilerVersion = CU->getProducer();
698   Version FrontVer = parseVersion(CompilerVersion);
699   OS.AddComment("Frontend version");
700   for (int N = 0; N < 4; ++N)
701     OS.EmitIntValue(FrontVer.Part[N], 2);
702 
703   // Some Microsoft tools, like Binscope, expect a backend version number of at
704   // least 8.something, so we'll coerce the LLVM version into a form that
705   // guarantees it'll be big enough without really lying about the version.
706   int Major = 1000 * LLVM_VERSION_MAJOR +
707               10 * LLVM_VERSION_MINOR +
708               LLVM_VERSION_PATCH;
709   // Clamp it for builds that use unusually large version numbers.
710   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
711   Version BackVer = {{ Major, 0, 0, 0 }};
712   OS.AddComment("Backend version");
713   for (int N = 0; N < 4; ++N)
714     OS.EmitIntValue(BackVer.Part[N], 2);
715 
716   OS.AddComment("Null-terminated compiler version string");
717   emitNullTerminatedSymbolName(OS, CompilerVersion);
718 
719   OS.EmitLabel(CompilerEnd);
720 }
721 
722 void CodeViewDebug::emitInlineeLinesSubsection() {
723   if (InlinedSubprograms.empty())
724     return;
725 
726   OS.AddComment("Inlinee lines subsection");
727   MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
728 
729   // We emit the checksum info for files.  This is used by debuggers to
730   // determine if a pdb matches the source before loading it.  Visual Studio,
731   // for instance, will display a warning that the breakpoints are not valid if
732   // the pdb does not match the source.
733   OS.AddComment("Inlinee lines signature");
734   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
735 
736   for (const DISubprogram *SP : InlinedSubprograms) {
737     assert(TypeIndices.count({SP, nullptr}));
738     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
739 
740     OS.AddBlankLine();
741     unsigned FileId = maybeRecordFile(SP->getFile());
742     OS.AddComment("Inlined function " + SP->getName() + " starts at " +
743                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
744     OS.AddBlankLine();
745     OS.AddComment("Type index of inlined function");
746     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
747     OS.AddComment("Offset into filechecksum table");
748     OS.EmitCVFileChecksumOffsetDirective(FileId);
749     OS.AddComment("Starting line number");
750     OS.EmitIntValue(SP->getLine(), 4);
751   }
752 
753   endCVSubsection(InlineEnd);
754 }
755 
756 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
757                                         const DILocation *InlinedAt,
758                                         const InlineSite &Site) {
759   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
760            *InlineEnd = MMI->getContext().createTempSymbol();
761 
762   assert(TypeIndices.count({Site.Inlinee, nullptr}));
763   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
764 
765   // SymbolRecord
766   OS.AddComment("Record length");
767   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
768   OS.EmitLabel(InlineBegin);
769   OS.AddComment("Record kind: S_INLINESITE");
770   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
771 
772   OS.AddComment("PtrParent");
773   OS.EmitIntValue(0, 4);
774   OS.AddComment("PtrEnd");
775   OS.EmitIntValue(0, 4);
776   OS.AddComment("Inlinee type index");
777   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
778 
779   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
780   unsigned StartLineNum = Site.Inlinee->getLine();
781 
782   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
783                                     FI.Begin, FI.End);
784 
785   OS.EmitLabel(InlineEnd);
786 
787   emitLocalVariableList(Site.InlinedLocals);
788 
789   // Recurse on child inlined call sites before closing the scope.
790   for (const DILocation *ChildSite : Site.ChildSites) {
791     auto I = FI.InlineSites.find(ChildSite);
792     assert(I != FI.InlineSites.end() &&
793            "child site not in function inline site map");
794     emitInlinedCallSite(FI, ChildSite, I->second);
795   }
796 
797   // Close the scope.
798   OS.AddComment("Record length");
799   OS.EmitIntValue(2, 2);                                  // RecordLength
800   OS.AddComment("Record kind: S_INLINESITE_END");
801   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
802 }
803 
804 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
805   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
806   // comdat key. A section may be comdat because of -ffunction-sections or
807   // because it is comdat in the IR.
808   MCSectionCOFF *GVSec =
809       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
810   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
811 
812   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
813       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
814   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
815 
816   OS.SwitchSection(DebugSec);
817 
818   // Emit the magic version number if this is the first time we've switched to
819   // this section.
820   if (ComdatDebugSections.insert(DebugSec).second)
821     emitCodeViewMagicVersion();
822 }
823 
824 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
825                                              FunctionInfo &FI) {
826   // For each function there is a separate subsection
827   // which holds the PC to file:line table.
828   const MCSymbol *Fn = Asm->getSymbol(GV);
829   assert(Fn);
830 
831   // Switch to the to a comdat section, if appropriate.
832   switchToDebugSectionForSymbol(Fn);
833 
834   std::string FuncName;
835   auto *SP = GV->getSubprogram();
836   assert(SP);
837   setCurrentSubprogram(SP);
838 
839   // If we have a display name, build the fully qualified name by walking the
840   // chain of scopes.
841   if (!SP->getName().empty())
842     FuncName =
843         getFullyQualifiedName(SP->getScope().resolve(), SP->getName());
844 
845   // If our DISubprogram name is empty, use the mangled name.
846   if (FuncName.empty())
847     FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
848 
849   // Emit FPO data, but only on 32-bit x86. No other platforms use it.
850   if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
851     OS.EmitCVFPOData(Fn);
852 
853   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
854   OS.AddComment("Symbol subsection for " + Twine(FuncName));
855   MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
856   {
857     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
858              *ProcRecordEnd = MMI->getContext().createTempSymbol();
859     OS.AddComment("Record length");
860     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
861     OS.EmitLabel(ProcRecordBegin);
862 
863     if (GV->hasLocalLinkage()) {
864       OS.AddComment("Record kind: S_LPROC32_ID");
865       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
866     } else {
867       OS.AddComment("Record kind: S_GPROC32_ID");
868       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
869     }
870 
871     // These fields are filled in by tools like CVPACK which run after the fact.
872     OS.AddComment("PtrParent");
873     OS.EmitIntValue(0, 4);
874     OS.AddComment("PtrEnd");
875     OS.EmitIntValue(0, 4);
876     OS.AddComment("PtrNext");
877     OS.EmitIntValue(0, 4);
878     // This is the important bit that tells the debugger where the function
879     // code is located and what's its size:
880     OS.AddComment("Code size");
881     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
882     OS.AddComment("Offset after prologue");
883     OS.EmitIntValue(0, 4);
884     OS.AddComment("Offset before epilogue");
885     OS.EmitIntValue(0, 4);
886     OS.AddComment("Function type index");
887     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
888     OS.AddComment("Function section relative address");
889     OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
890     OS.AddComment("Function section index");
891     OS.EmitCOFFSectionIndex(Fn);
892     OS.AddComment("Flags");
893     OS.EmitIntValue(0, 1);
894     // Emit the function display name as a null-terminated string.
895     OS.AddComment("Function name");
896     // Truncate the name so we won't overflow the record length field.
897     emitNullTerminatedSymbolName(OS, FuncName);
898     OS.EmitLabel(ProcRecordEnd);
899 
900     emitLocalVariableList(FI.Locals);
901 
902     // Emit inlined call site information. Only emit functions inlined directly
903     // into the parent function. We'll emit the other sites recursively as part
904     // of their parent inline site.
905     for (const DILocation *InlinedAt : FI.ChildSites) {
906       auto I = FI.InlineSites.find(InlinedAt);
907       assert(I != FI.InlineSites.end() &&
908              "child site not in function inline site map");
909       emitInlinedCallSite(FI, InlinedAt, I->second);
910     }
911 
912     for (auto Annot : FI.Annotations) {
913       MCSymbol *Label = Annot.first;
914       MDTuple *Strs = cast<MDTuple>(Annot.second);
915       MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(),
916                *AnnotEnd = MMI->getContext().createTempSymbol();
917       OS.AddComment("Record length");
918       OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2);
919       OS.EmitLabel(AnnotBegin);
920       OS.AddComment("Record kind: S_ANNOTATION");
921       OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2);
922       OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
923       // FIXME: Make sure we don't overflow the max record size.
924       OS.EmitCOFFSectionIndex(Label);
925       OS.EmitIntValue(Strs->getNumOperands(), 2);
926       for (Metadata *MD : Strs->operands()) {
927         // MDStrings are null terminated, so we can do EmitBytes and get the
928         // nice .asciz directive.
929         StringRef Str = cast<MDString>(MD)->getString();
930         assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
931         OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
932       }
933       OS.EmitLabel(AnnotEnd);
934     }
935 
936     if (SP != nullptr)
937       emitDebugInfoForUDTs(LocalUDTs);
938 
939     // We're done with this function.
940     OS.AddComment("Record length");
941     OS.EmitIntValue(0x0002, 2);
942     OS.AddComment("Record kind: S_PROC_ID_END");
943     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
944   }
945   endCVSubsection(SymbolsEnd);
946 
947   // We have an assembler directive that takes care of the whole line table.
948   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
949 }
950 
951 CodeViewDebug::LocalVarDefRange
952 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
953   LocalVarDefRange DR;
954   DR.InMemory = -1;
955   DR.DataOffset = Offset;
956   assert(DR.DataOffset == Offset && "truncation");
957   DR.IsSubfield = 0;
958   DR.StructOffset = 0;
959   DR.CVRegister = CVRegister;
960   return DR;
961 }
962 
963 CodeViewDebug::LocalVarDefRange
964 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
965                                      int Offset, bool IsSubfield,
966                                      uint16_t StructOffset) {
967   LocalVarDefRange DR;
968   DR.InMemory = InMemory;
969   DR.DataOffset = Offset;
970   DR.IsSubfield = IsSubfield;
971   DR.StructOffset = StructOffset;
972   DR.CVRegister = CVRegister;
973   return DR;
974 }
975 
976 void CodeViewDebug::collectVariableInfoFromMFTable(
977     DenseSet<InlinedVariable> &Processed) {
978   const MachineFunction &MF = *Asm->MF;
979   const TargetSubtargetInfo &TSI = MF.getSubtarget();
980   const TargetFrameLowering *TFI = TSI.getFrameLowering();
981   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
982 
983   for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
984     if (!VI.Var)
985       continue;
986     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
987            "Expected inlined-at fields to agree");
988 
989     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
990     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
991 
992     // If variable scope is not found then skip this variable.
993     if (!Scope)
994       continue;
995 
996     // If the variable has an attached offset expression, extract it.
997     // FIXME: Try to handle DW_OP_deref as well.
998     int64_t ExprOffset = 0;
999     if (VI.Expr)
1000       if (!VI.Expr->extractIfOffset(ExprOffset))
1001         continue;
1002 
1003     // Get the frame register used and the offset.
1004     unsigned FrameReg = 0;
1005     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1006     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1007 
1008     // Calculate the label ranges.
1009     LocalVarDefRange DefRange =
1010         createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1011     for (const InsnRange &Range : Scope->getRanges()) {
1012       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1013       const MCSymbol *End = getLabelAfterInsn(Range.second);
1014       End = End ? End : Asm->getFunctionEnd();
1015       DefRange.Ranges.emplace_back(Begin, End);
1016     }
1017 
1018     LocalVariable Var;
1019     Var.DIVar = VI.Var;
1020     Var.DefRanges.emplace_back(std::move(DefRange));
1021     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
1022   }
1023 }
1024 
1025 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1026   return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1027 }
1028 
1029 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1030   return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1031 }
1032 
1033 void CodeViewDebug::calculateRanges(
1034     LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) {
1035   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1036 
1037   // Calculate the definition ranges.
1038   for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
1039     const InsnRange &Range = *I;
1040     const MachineInstr *DVInst = Range.first;
1041     assert(DVInst->isDebugValue() && "Invalid History entry");
1042     // FIXME: Find a way to represent constant variables, since they are
1043     // relatively common.
1044     Optional<DbgVariableLocation> Location =
1045         DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1046     if (!Location)
1047       continue;
1048 
1049     // CodeView can only express variables in register and variables in memory
1050     // at a constant offset from a register. However, for variables passed
1051     // indirectly by pointer, it is common for that pointer to be spilled to a
1052     // stack location. For the special case of one offseted load followed by a
1053     // zero offset load (a pointer spilled to the stack), we change the type of
1054     // the local variable from a value type to a reference type. This tricks the
1055     // debugger into doing the load for us.
1056     if (Var.UseReferenceType) {
1057       // We're using a reference type. Drop the last zero offset load.
1058       if (canUseReferenceType(*Location))
1059         Location->LoadChain.pop_back();
1060       else
1061         continue;
1062     } else if (needsReferenceType(*Location)) {
1063       // This location can't be expressed without switching to a reference type.
1064       // Start over using that.
1065       Var.UseReferenceType = true;
1066       Var.DefRanges.clear();
1067       calculateRanges(Var, Ranges);
1068       return;
1069     }
1070 
1071     // We can only handle a register or an offseted load of a register.
1072     if (Location->Register == 0 || Location->LoadChain.size() > 1)
1073       continue;
1074     {
1075       LocalVarDefRange DR;
1076       DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1077       DR.InMemory = !Location->LoadChain.empty();
1078       DR.DataOffset =
1079           !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1080       if (Location->FragmentInfo) {
1081         DR.IsSubfield = true;
1082         DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1083       } else {
1084         DR.IsSubfield = false;
1085         DR.StructOffset = 0;
1086       }
1087 
1088       if (Var.DefRanges.empty() ||
1089           Var.DefRanges.back().isDifferentLocation(DR)) {
1090         Var.DefRanges.emplace_back(std::move(DR));
1091       }
1092     }
1093 
1094     // Compute the label range.
1095     const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1096     const MCSymbol *End = getLabelAfterInsn(Range.second);
1097     if (!End) {
1098       // This range is valid until the next overlapping bitpiece. In the
1099       // common case, ranges will not be bitpieces, so they will overlap.
1100       auto J = std::next(I);
1101       const DIExpression *DIExpr = DVInst->getDebugExpression();
1102       while (J != E &&
1103              !fragmentsOverlap(DIExpr, J->first->getDebugExpression()))
1104         ++J;
1105       if (J != E)
1106         End = getLabelBeforeInsn(J->first);
1107       else
1108         End = Asm->getFunctionEnd();
1109     }
1110 
1111     // If the last range end is our begin, just extend the last range.
1112     // Otherwise make a new range.
1113     SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1114         Var.DefRanges.back().Ranges;
1115     if (!R.empty() && R.back().second == Begin)
1116       R.back().second = End;
1117     else
1118       R.emplace_back(Begin, End);
1119 
1120     // FIXME: Do more range combining.
1121   }
1122 }
1123 
1124 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1125   DenseSet<InlinedVariable> Processed;
1126   // Grab the variable info that was squirreled away in the MMI side-table.
1127   collectVariableInfoFromMFTable(Processed);
1128 
1129   for (const auto &I : DbgValues) {
1130     InlinedVariable IV = I.first;
1131     if (Processed.count(IV))
1132       continue;
1133     const DILocalVariable *DIVar = IV.first;
1134     const DILocation *InlinedAt = IV.second;
1135 
1136     // Instruction ranges, specifying where IV is accessible.
1137     const auto &Ranges = I.second;
1138 
1139     LexicalScope *Scope = nullptr;
1140     if (InlinedAt)
1141       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1142     else
1143       Scope = LScopes.findLexicalScope(DIVar->getScope());
1144     // If variable scope is not found then skip this variable.
1145     if (!Scope)
1146       continue;
1147 
1148     LocalVariable Var;
1149     Var.DIVar = DIVar;
1150 
1151     calculateRanges(Var, Ranges);
1152     recordLocalVariable(std::move(Var), InlinedAt);
1153   }
1154 }
1155 
1156 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1157   const Function &GV = MF->getFunction();
1158   assert(FnDebugInfo.count(&GV) == false);
1159   CurFn = &FnDebugInfo[&GV];
1160   CurFn->FuncId = NextFuncId++;
1161   CurFn->Begin = Asm->getFunctionBegin();
1162 
1163   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1164 
1165   // Find the end of the function prolog.  First known non-DBG_VALUE and
1166   // non-frame setup location marks the beginning of the function body.
1167   // FIXME: is there a simpler a way to do this? Can we just search
1168   // for the first instruction of the function, not the last of the prolog?
1169   DebugLoc PrologEndLoc;
1170   bool EmptyPrologue = true;
1171   for (const auto &MBB : *MF) {
1172     for (const auto &MI : MBB) {
1173       if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1174           MI.getDebugLoc()) {
1175         PrologEndLoc = MI.getDebugLoc();
1176         break;
1177       } else if (!MI.isMetaInstruction()) {
1178         EmptyPrologue = false;
1179       }
1180     }
1181   }
1182 
1183   // Record beginning of function if we have a non-empty prologue.
1184   if (PrologEndLoc && !EmptyPrologue) {
1185     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1186     maybeRecordLocation(FnStartDL, MF);
1187   }
1188 }
1189 
1190 static bool shouldEmitUdt(const DIType *T) {
1191   if (!T)
1192     return false;
1193 
1194   // MSVC does not emit UDTs for typedefs that are scoped to classes.
1195   if (T->getTag() == dwarf::DW_TAG_typedef) {
1196     if (DIScope *Scope = T->getScope().resolve()) {
1197       switch (Scope->getTag()) {
1198       case dwarf::DW_TAG_structure_type:
1199       case dwarf::DW_TAG_class_type:
1200       case dwarf::DW_TAG_union_type:
1201         return false;
1202       }
1203     }
1204   }
1205 
1206   while (true) {
1207     if (!T || T->isForwardDecl())
1208       return false;
1209 
1210     const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1211     if (!DT)
1212       return true;
1213     T = DT->getBaseType().resolve();
1214   }
1215   return true;
1216 }
1217 
1218 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1219   // Don't record empty UDTs.
1220   if (Ty->getName().empty())
1221     return;
1222   if (!shouldEmitUdt(Ty))
1223     return;
1224 
1225   SmallVector<StringRef, 5> QualifiedNameComponents;
1226   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1227       Ty->getScope().resolve(), QualifiedNameComponents);
1228 
1229   std::string FullyQualifiedName =
1230       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1231 
1232   if (ClosestSubprogram == nullptr) {
1233     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1234   } else if (ClosestSubprogram == CurrentSubprogram) {
1235     LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1236   }
1237 
1238   // TODO: What if the ClosestSubprogram is neither null or the current
1239   // subprogram?  Currently, the UDT just gets dropped on the floor.
1240   //
1241   // The current behavior is not desirable.  To get maximal fidelity, we would
1242   // need to perform all type translation before beginning emission of .debug$S
1243   // and then make LocalUDTs a member of FunctionInfo
1244 }
1245 
1246 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1247   // Generic dispatch for lowering an unknown type.
1248   switch (Ty->getTag()) {
1249   case dwarf::DW_TAG_array_type:
1250     return lowerTypeArray(cast<DICompositeType>(Ty));
1251   case dwarf::DW_TAG_typedef:
1252     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1253   case dwarf::DW_TAG_base_type:
1254     return lowerTypeBasic(cast<DIBasicType>(Ty));
1255   case dwarf::DW_TAG_pointer_type:
1256     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1257       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1258     LLVM_FALLTHROUGH;
1259   case dwarf::DW_TAG_reference_type:
1260   case dwarf::DW_TAG_rvalue_reference_type:
1261     return lowerTypePointer(cast<DIDerivedType>(Ty));
1262   case dwarf::DW_TAG_ptr_to_member_type:
1263     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1264   case dwarf::DW_TAG_const_type:
1265   case dwarf::DW_TAG_volatile_type:
1266   // TODO: add support for DW_TAG_atomic_type here
1267     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1268   case dwarf::DW_TAG_subroutine_type:
1269     if (ClassTy) {
1270       // The member function type of a member function pointer has no
1271       // ThisAdjustment.
1272       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1273                                      /*ThisAdjustment=*/0,
1274                                      /*IsStaticMethod=*/false);
1275     }
1276     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1277   case dwarf::DW_TAG_enumeration_type:
1278     return lowerTypeEnum(cast<DICompositeType>(Ty));
1279   case dwarf::DW_TAG_class_type:
1280   case dwarf::DW_TAG_structure_type:
1281     return lowerTypeClass(cast<DICompositeType>(Ty));
1282   case dwarf::DW_TAG_union_type:
1283     return lowerTypeUnion(cast<DICompositeType>(Ty));
1284   case dwarf::DW_TAG_unspecified_type:
1285     return TypeIndex::None();
1286   default:
1287     // Use the null type index.
1288     return TypeIndex();
1289   }
1290 }
1291 
1292 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1293   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1294   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1295   StringRef TypeName = Ty->getName();
1296 
1297   addToUDTs(Ty);
1298 
1299   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1300       TypeName == "HRESULT")
1301     return TypeIndex(SimpleTypeKind::HResult);
1302   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1303       TypeName == "wchar_t")
1304     return TypeIndex(SimpleTypeKind::WideCharacter);
1305 
1306   return UnderlyingTypeIndex;
1307 }
1308 
1309 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1310   DITypeRef ElementTypeRef = Ty->getBaseType();
1311   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1312   // IndexType is size_t, which depends on the bitness of the target.
1313   TypeIndex IndexType = Asm->TM.getPointerSize() == 8
1314                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1315                             : TypeIndex(SimpleTypeKind::UInt32Long);
1316 
1317   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1318 
1319   // Add subranges to array type.
1320   DINodeArray Elements = Ty->getElements();
1321   for (int i = Elements.size() - 1; i >= 0; --i) {
1322     const DINode *Element = Elements[i];
1323     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1324 
1325     const DISubrange *Subrange = cast<DISubrange>(Element);
1326     assert(Subrange->getLowerBound() == 0 &&
1327            "codeview doesn't support subranges with lower bounds");
1328     int64_t Count = Subrange->getCount();
1329 
1330     // Forward declarations of arrays without a size and VLAs use a count of -1.
1331     // Emit a count of zero in these cases to match what MSVC does for arrays
1332     // without a size. MSVC doesn't support VLAs, so it's not clear what we
1333     // should do for them even if we could distinguish them.
1334     if (Count == -1)
1335       Count = 0;
1336 
1337     // Update the element size and element type index for subsequent subranges.
1338     ElementSize *= Count;
1339 
1340     // If this is the outermost array, use the size from the array. It will be
1341     // more accurate if we had a VLA or an incomplete element type size.
1342     uint64_t ArraySize =
1343         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1344 
1345     StringRef Name = (i == 0) ? Ty->getName() : "";
1346     ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1347     ElementTypeIndex = TypeTable.writeLeafType(AR);
1348   }
1349 
1350   return ElementTypeIndex;
1351 }
1352 
1353 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1354   TypeIndex Index;
1355   dwarf::TypeKind Kind;
1356   uint32_t ByteSize;
1357 
1358   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1359   ByteSize = Ty->getSizeInBits() / 8;
1360 
1361   SimpleTypeKind STK = SimpleTypeKind::None;
1362   switch (Kind) {
1363   case dwarf::DW_ATE_address:
1364     // FIXME: Translate
1365     break;
1366   case dwarf::DW_ATE_boolean:
1367     switch (ByteSize) {
1368     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1369     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1370     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1371     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1372     case 16: STK = SimpleTypeKind::Boolean128; break;
1373     }
1374     break;
1375   case dwarf::DW_ATE_complex_float:
1376     switch (ByteSize) {
1377     case 2:  STK = SimpleTypeKind::Complex16;  break;
1378     case 4:  STK = SimpleTypeKind::Complex32;  break;
1379     case 8:  STK = SimpleTypeKind::Complex64;  break;
1380     case 10: STK = SimpleTypeKind::Complex80;  break;
1381     case 16: STK = SimpleTypeKind::Complex128; break;
1382     }
1383     break;
1384   case dwarf::DW_ATE_float:
1385     switch (ByteSize) {
1386     case 2:  STK = SimpleTypeKind::Float16;  break;
1387     case 4:  STK = SimpleTypeKind::Float32;  break;
1388     case 6:  STK = SimpleTypeKind::Float48;  break;
1389     case 8:  STK = SimpleTypeKind::Float64;  break;
1390     case 10: STK = SimpleTypeKind::Float80;  break;
1391     case 16: STK = SimpleTypeKind::Float128; break;
1392     }
1393     break;
1394   case dwarf::DW_ATE_signed:
1395     switch (ByteSize) {
1396     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1397     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1398     case 4:  STK = SimpleTypeKind::Int32;           break;
1399     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1400     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1401     }
1402     break;
1403   case dwarf::DW_ATE_unsigned:
1404     switch (ByteSize) {
1405     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1406     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1407     case 4:  STK = SimpleTypeKind::UInt32;            break;
1408     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1409     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1410     }
1411     break;
1412   case dwarf::DW_ATE_UTF:
1413     switch (ByteSize) {
1414     case 2: STK = SimpleTypeKind::Character16; break;
1415     case 4: STK = SimpleTypeKind::Character32; break;
1416     }
1417     break;
1418   case dwarf::DW_ATE_signed_char:
1419     if (ByteSize == 1)
1420       STK = SimpleTypeKind::SignedCharacter;
1421     break;
1422   case dwarf::DW_ATE_unsigned_char:
1423     if (ByteSize == 1)
1424       STK = SimpleTypeKind::UnsignedCharacter;
1425     break;
1426   default:
1427     break;
1428   }
1429 
1430   // Apply some fixups based on the source-level type name.
1431   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1432     STK = SimpleTypeKind::Int32Long;
1433   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1434     STK = SimpleTypeKind::UInt32Long;
1435   if (STK == SimpleTypeKind::UInt16Short &&
1436       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1437     STK = SimpleTypeKind::WideCharacter;
1438   if ((STK == SimpleTypeKind::SignedCharacter ||
1439        STK == SimpleTypeKind::UnsignedCharacter) &&
1440       Ty->getName() == "char")
1441     STK = SimpleTypeKind::NarrowCharacter;
1442 
1443   return TypeIndex(STK);
1444 }
1445 
1446 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1447   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1448 
1449   // Pointers to simple types can use SimpleTypeMode, rather than having a
1450   // dedicated pointer type record.
1451   if (PointeeTI.isSimple() &&
1452       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1453       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1454     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1455                               ? SimpleTypeMode::NearPointer64
1456                               : SimpleTypeMode::NearPointer32;
1457     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1458   }
1459 
1460   PointerKind PK =
1461       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1462   PointerMode PM = PointerMode::Pointer;
1463   switch (Ty->getTag()) {
1464   default: llvm_unreachable("not a pointer tag type");
1465   case dwarf::DW_TAG_pointer_type:
1466     PM = PointerMode::Pointer;
1467     break;
1468   case dwarf::DW_TAG_reference_type:
1469     PM = PointerMode::LValueReference;
1470     break;
1471   case dwarf::DW_TAG_rvalue_reference_type:
1472     PM = PointerMode::RValueReference;
1473     break;
1474   }
1475   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1476   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1477   // do.
1478   PointerOptions PO = PointerOptions::None;
1479   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1480   return TypeTable.writeLeafType(PR);
1481 }
1482 
1483 static PointerToMemberRepresentation
1484 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1485   // SizeInBytes being zero generally implies that the member pointer type was
1486   // incomplete, which can happen if it is part of a function prototype. In this
1487   // case, use the unknown model instead of the general model.
1488   if (IsPMF) {
1489     switch (Flags & DINode::FlagPtrToMemberRep) {
1490     case 0:
1491       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1492                               : PointerToMemberRepresentation::GeneralFunction;
1493     case DINode::FlagSingleInheritance:
1494       return PointerToMemberRepresentation::SingleInheritanceFunction;
1495     case DINode::FlagMultipleInheritance:
1496       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1497     case DINode::FlagVirtualInheritance:
1498       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1499     }
1500   } else {
1501     switch (Flags & DINode::FlagPtrToMemberRep) {
1502     case 0:
1503       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1504                               : PointerToMemberRepresentation::GeneralData;
1505     case DINode::FlagSingleInheritance:
1506       return PointerToMemberRepresentation::SingleInheritanceData;
1507     case DINode::FlagMultipleInheritance:
1508       return PointerToMemberRepresentation::MultipleInheritanceData;
1509     case DINode::FlagVirtualInheritance:
1510       return PointerToMemberRepresentation::VirtualInheritanceData;
1511     }
1512   }
1513   llvm_unreachable("invalid ptr to member representation");
1514 }
1515 
1516 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1517   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1518   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1519   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1520   PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64
1521                                                  : PointerKind::Near32;
1522   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1523   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1524                          : PointerMode::PointerToDataMember;
1525   PointerOptions PO = PointerOptions::None; // FIXME
1526   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1527   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1528   MemberPointerInfo MPI(
1529       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1530   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1531   return TypeTable.writeLeafType(PR);
1532 }
1533 
1534 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1535 /// have a translation, use the NearC convention.
1536 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1537   switch (DwarfCC) {
1538   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1539   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1540   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1541   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1542   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1543   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1544   }
1545   return CallingConvention::NearC;
1546 }
1547 
1548 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1549   ModifierOptions Mods = ModifierOptions::None;
1550   bool IsModifier = true;
1551   const DIType *BaseTy = Ty;
1552   while (IsModifier && BaseTy) {
1553     // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1554     switch (BaseTy->getTag()) {
1555     case dwarf::DW_TAG_const_type:
1556       Mods |= ModifierOptions::Const;
1557       break;
1558     case dwarf::DW_TAG_volatile_type:
1559       Mods |= ModifierOptions::Volatile;
1560       break;
1561     default:
1562       IsModifier = false;
1563       break;
1564     }
1565     if (IsModifier)
1566       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1567   }
1568   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1569   ModifierRecord MR(ModifiedTI, Mods);
1570   return TypeTable.writeLeafType(MR);
1571 }
1572 
1573 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1574   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1575   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1576     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1577 
1578   // MSVC uses type none for variadic argument.
1579   if (ReturnAndArgTypeIndices.size() > 1 &&
1580       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1581     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1582   }
1583   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1584   ArrayRef<TypeIndex> ArgTypeIndices = None;
1585   if (!ReturnAndArgTypeIndices.empty()) {
1586     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1587     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1588     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1589   }
1590 
1591   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1592   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1593 
1594   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1595 
1596   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1597                             ArgTypeIndices.size(), ArgListIndex);
1598   return TypeTable.writeLeafType(Procedure);
1599 }
1600 
1601 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1602                                                  const DIType *ClassTy,
1603                                                  int ThisAdjustment,
1604                                                  bool IsStaticMethod) {
1605   // Lower the containing class type.
1606   TypeIndex ClassType = getTypeIndex(ClassTy);
1607 
1608   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1609   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1610     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1611 
1612   // MSVC uses type none for variadic argument.
1613   if (ReturnAndArgTypeIndices.size() > 1 &&
1614       ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1615     ReturnAndArgTypeIndices.back() = TypeIndex::None();
1616   }
1617   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1618   ArrayRef<TypeIndex> ArgTypeIndices = None;
1619   if (!ReturnAndArgTypeIndices.empty()) {
1620     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1621     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1622     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1623   }
1624   TypeIndex ThisTypeIndex;
1625   if (!IsStaticMethod && !ArgTypeIndices.empty()) {
1626     ThisTypeIndex = ArgTypeIndices.front();
1627     ArgTypeIndices = ArgTypeIndices.drop_front();
1628   }
1629 
1630   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1631   TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1632 
1633   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1634 
1635   // TODO: Need to use the correct values for FunctionOptions.
1636   MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC,
1637                            FunctionOptions::None, ArgTypeIndices.size(),
1638                            ArgListIndex, ThisAdjustment);
1639   return TypeTable.writeLeafType(MFR);
1640 }
1641 
1642 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1643   unsigned VSlotCount =
1644       Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1645   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1646 
1647   VFTableShapeRecord VFTSR(Slots);
1648   return TypeTable.writeLeafType(VFTSR);
1649 }
1650 
1651 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1652   switch (Flags & DINode::FlagAccessibility) {
1653   case DINode::FlagPrivate:   return MemberAccess::Private;
1654   case DINode::FlagPublic:    return MemberAccess::Public;
1655   case DINode::FlagProtected: return MemberAccess::Protected;
1656   case 0:
1657     // If there was no explicit access control, provide the default for the tag.
1658     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1659                                                  : MemberAccess::Public;
1660   }
1661   llvm_unreachable("access flags are exclusive");
1662 }
1663 
1664 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1665   if (SP->isArtificial())
1666     return MethodOptions::CompilerGenerated;
1667 
1668   // FIXME: Handle other MethodOptions.
1669 
1670   return MethodOptions::None;
1671 }
1672 
1673 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1674                                            bool Introduced) {
1675   if (SP->getFlags() & DINode::FlagStaticMember)
1676     return MethodKind::Static;
1677 
1678   switch (SP->getVirtuality()) {
1679   case dwarf::DW_VIRTUALITY_none:
1680     break;
1681   case dwarf::DW_VIRTUALITY_virtual:
1682     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1683   case dwarf::DW_VIRTUALITY_pure_virtual:
1684     return Introduced ? MethodKind::PureIntroducingVirtual
1685                       : MethodKind::PureVirtual;
1686   default:
1687     llvm_unreachable("unhandled virtuality case");
1688   }
1689 
1690   return MethodKind::Vanilla;
1691 }
1692 
1693 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1694   switch (Ty->getTag()) {
1695   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1696   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1697   }
1698   llvm_unreachable("unexpected tag");
1699 }
1700 
1701 /// Return ClassOptions that should be present on both the forward declaration
1702 /// and the defintion of a tag type.
1703 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1704   ClassOptions CO = ClassOptions::None;
1705 
1706   // MSVC always sets this flag, even for local types. Clang doesn't always
1707   // appear to give every type a linkage name, which may be problematic for us.
1708   // FIXME: Investigate the consequences of not following them here.
1709   if (!Ty->getIdentifier().empty())
1710     CO |= ClassOptions::HasUniqueName;
1711 
1712   // Put the Nested flag on a type if it appears immediately inside a tag type.
1713   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1714   // here. That flag is only set on definitions, and not forward declarations.
1715   const DIScope *ImmediateScope = Ty->getScope().resolve();
1716   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1717     CO |= ClassOptions::Nested;
1718 
1719   // Put the Scoped flag on function-local types.
1720   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1721        Scope = Scope->getScope().resolve()) {
1722     if (isa<DISubprogram>(Scope)) {
1723       CO |= ClassOptions::Scoped;
1724       break;
1725     }
1726   }
1727 
1728   return CO;
1729 }
1730 
1731 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1732   ClassOptions CO = getCommonClassOptions(Ty);
1733   TypeIndex FTI;
1734   unsigned EnumeratorCount = 0;
1735 
1736   if (Ty->isForwardDecl()) {
1737     CO |= ClassOptions::ForwardReference;
1738   } else {
1739     ContinuationRecordBuilder ContinuationBuilder;
1740     ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
1741     for (const DINode *Element : Ty->getElements()) {
1742       // We assume that the frontend provides all members in source declaration
1743       // order, which is what MSVC does.
1744       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1745         EnumeratorRecord ER(MemberAccess::Public,
1746                             APSInt::getUnsigned(Enumerator->getValue()),
1747                             Enumerator->getName());
1748         ContinuationBuilder.writeMemberType(ER);
1749         EnumeratorCount++;
1750       }
1751     }
1752     FTI = TypeTable.insertRecord(ContinuationBuilder);
1753   }
1754 
1755   std::string FullName = getFullyQualifiedName(Ty);
1756 
1757   EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
1758                 getTypeIndex(Ty->getBaseType()));
1759   return TypeTable.writeLeafType(ER);
1760 }
1761 
1762 //===----------------------------------------------------------------------===//
1763 // ClassInfo
1764 //===----------------------------------------------------------------------===//
1765 
1766 struct llvm::ClassInfo {
1767   struct MemberInfo {
1768     const DIDerivedType *MemberTypeNode;
1769     uint64_t BaseOffset;
1770   };
1771   // [MemberInfo]
1772   using MemberList = std::vector<MemberInfo>;
1773 
1774   using MethodsList = TinyPtrVector<const DISubprogram *>;
1775   // MethodName -> MethodsList
1776   using MethodsMap = MapVector<MDString *, MethodsList>;
1777 
1778   /// Base classes.
1779   std::vector<const DIDerivedType *> Inheritance;
1780 
1781   /// Direct members.
1782   MemberList Members;
1783   // Direct overloaded methods gathered by name.
1784   MethodsMap Methods;
1785 
1786   TypeIndex VShapeTI;
1787 
1788   std::vector<const DIType *> NestedTypes;
1789 };
1790 
1791 void CodeViewDebug::clear() {
1792   assert(CurFn == nullptr);
1793   FileIdMap.clear();
1794   FnDebugInfo.clear();
1795   FileToFilepathMap.clear();
1796   LocalUDTs.clear();
1797   GlobalUDTs.clear();
1798   TypeIndices.clear();
1799   CompleteTypeIndices.clear();
1800 }
1801 
1802 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1803                                       const DIDerivedType *DDTy) {
1804   if (!DDTy->getName().empty()) {
1805     Info.Members.push_back({DDTy, 0});
1806     return;
1807   }
1808   // An unnamed member must represent a nested struct or union. Add all the
1809   // indirect fields to the current record.
1810   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1811   uint64_t Offset = DDTy->getOffsetInBits();
1812   const DIType *Ty = DDTy->getBaseType().resolve();
1813   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1814   ClassInfo NestedInfo = collectClassInfo(DCTy);
1815   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1816     Info.Members.push_back(
1817         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1818 }
1819 
1820 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1821   ClassInfo Info;
1822   // Add elements to structure type.
1823   DINodeArray Elements = Ty->getElements();
1824   for (auto *Element : Elements) {
1825     // We assume that the frontend provides all members in source declaration
1826     // order, which is what MSVC does.
1827     if (!Element)
1828       continue;
1829     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1830       Info.Methods[SP->getRawName()].push_back(SP);
1831     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1832       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1833         collectMemberInfo(Info, DDTy);
1834       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1835         Info.Inheritance.push_back(DDTy);
1836       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1837                  DDTy->getName() == "__vtbl_ptr_type") {
1838         Info.VShapeTI = getTypeIndex(DDTy);
1839       } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
1840         Info.NestedTypes.push_back(DDTy);
1841       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1842         // Ignore friend members. It appears that MSVC emitted info about
1843         // friends in the past, but modern versions do not.
1844       }
1845     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1846       Info.NestedTypes.push_back(Composite);
1847     }
1848     // Skip other unrecognized kinds of elements.
1849   }
1850   return Info;
1851 }
1852 
1853 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1854   // First, construct the forward decl.  Don't look into Ty to compute the
1855   // forward decl options, since it might not be available in all TUs.
1856   TypeRecordKind Kind = getRecordKind(Ty);
1857   ClassOptions CO =
1858       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1859   std::string FullName = getFullyQualifiedName(Ty);
1860   ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
1861                  FullName, Ty->getIdentifier());
1862   TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
1863   if (!Ty->isForwardDecl())
1864     DeferredCompleteTypes.push_back(Ty);
1865   return FwdDeclTI;
1866 }
1867 
1868 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1869   // Construct the field list and complete type record.
1870   TypeRecordKind Kind = getRecordKind(Ty);
1871   ClassOptions CO = getCommonClassOptions(Ty);
1872   TypeIndex FieldTI;
1873   TypeIndex VShapeTI;
1874   unsigned FieldCount;
1875   bool ContainsNestedClass;
1876   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1877       lowerRecordFieldList(Ty);
1878 
1879   if (ContainsNestedClass)
1880     CO |= ClassOptions::ContainsNestedClass;
1881 
1882   std::string FullName = getFullyQualifiedName(Ty);
1883 
1884   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1885 
1886   ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
1887                  SizeInBytes, FullName, Ty->getIdentifier());
1888   TypeIndex ClassTI = TypeTable.writeLeafType(CR);
1889 
1890   if (const auto *File = Ty->getFile()) {
1891     StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
1892     TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
1893 
1894     UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine());
1895     TypeTable.writeLeafType(USLR);
1896   }
1897 
1898   addToUDTs(Ty);
1899 
1900   return ClassTI;
1901 }
1902 
1903 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1904   ClassOptions CO =
1905       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1906   std::string FullName = getFullyQualifiedName(Ty);
1907   UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
1908   TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
1909   if (!Ty->isForwardDecl())
1910     DeferredCompleteTypes.push_back(Ty);
1911   return FwdDeclTI;
1912 }
1913 
1914 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1915   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1916   TypeIndex FieldTI;
1917   unsigned FieldCount;
1918   bool ContainsNestedClass;
1919   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1920       lowerRecordFieldList(Ty);
1921 
1922   if (ContainsNestedClass)
1923     CO |= ClassOptions::ContainsNestedClass;
1924 
1925   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1926   std::string FullName = getFullyQualifiedName(Ty);
1927 
1928   UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
1929                  Ty->getIdentifier());
1930   TypeIndex UnionTI = TypeTable.writeLeafType(UR);
1931 
1932   StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile()));
1933   TypeIndex SIRI = TypeTable.writeLeafType(SIR);
1934 
1935   UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine());
1936   TypeTable.writeLeafType(USLR);
1937 
1938   addToUDTs(Ty);
1939 
1940   return UnionTI;
1941 }
1942 
1943 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1944 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1945   // Manually count members. MSVC appears to count everything that generates a
1946   // field list record. Each individual overload in a method overload group
1947   // contributes to this count, even though the overload group is a single field
1948   // list record.
1949   unsigned MemberCount = 0;
1950   ClassInfo Info = collectClassInfo(Ty);
1951   ContinuationRecordBuilder ContinuationBuilder;
1952   ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
1953 
1954   // Create base classes.
1955   for (const DIDerivedType *I : Info.Inheritance) {
1956     if (I->getFlags() & DINode::FlagVirtual) {
1957       // Virtual base.
1958       // FIXME: Emit VBPtrOffset when the frontend provides it.
1959       unsigned VBPtrOffset = 0;
1960       // FIXME: Despite the accessor name, the offset is really in bytes.
1961       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1962       auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
1963                             ? TypeRecordKind::IndirectVirtualBaseClass
1964                             : TypeRecordKind::VirtualBaseClass;
1965       VirtualBaseClassRecord VBCR(
1966           RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
1967           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1968           VBTableIndex);
1969 
1970       ContinuationBuilder.writeMemberType(VBCR);
1971     } else {
1972       assert(I->getOffsetInBits() % 8 == 0 &&
1973              "bases must be on byte boundaries");
1974       BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
1975                           getTypeIndex(I->getBaseType()),
1976                           I->getOffsetInBits() / 8);
1977       ContinuationBuilder.writeMemberType(BCR);
1978     }
1979   }
1980 
1981   // Create members.
1982   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1983     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1984     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1985     StringRef MemberName = Member->getName();
1986     MemberAccess Access =
1987         translateAccessFlags(Ty->getTag(), Member->getFlags());
1988 
1989     if (Member->isStaticMember()) {
1990       StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
1991       ContinuationBuilder.writeMemberType(SDMR);
1992       MemberCount++;
1993       continue;
1994     }
1995 
1996     // Virtual function pointer member.
1997     if ((Member->getFlags() & DINode::FlagArtificial) &&
1998         Member->getName().startswith("_vptr$")) {
1999       VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2000       ContinuationBuilder.writeMemberType(VFPR);
2001       MemberCount++;
2002       continue;
2003     }
2004 
2005     // Data member.
2006     uint64_t MemberOffsetInBits =
2007         Member->getOffsetInBits() + MemberInfo.BaseOffset;
2008     if (Member->isBitField()) {
2009       uint64_t StartBitOffset = MemberOffsetInBits;
2010       if (const auto *CI =
2011               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2012         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2013       }
2014       StartBitOffset -= MemberOffsetInBits;
2015       BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2016                          StartBitOffset);
2017       MemberBaseType = TypeTable.writeLeafType(BFR);
2018     }
2019     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2020     DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2021                          MemberName);
2022     ContinuationBuilder.writeMemberType(DMR);
2023     MemberCount++;
2024   }
2025 
2026   // Create methods
2027   for (auto &MethodItr : Info.Methods) {
2028     StringRef Name = MethodItr.first->getString();
2029 
2030     std::vector<OneMethodRecord> Methods;
2031     for (const DISubprogram *SP : MethodItr.second) {
2032       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2033       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2034 
2035       unsigned VFTableOffset = -1;
2036       if (Introduced)
2037         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2038 
2039       Methods.push_back(OneMethodRecord(
2040           MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2041           translateMethodKindFlags(SP, Introduced),
2042           translateMethodOptionFlags(SP), VFTableOffset, Name));
2043       MemberCount++;
2044     }
2045     assert(!Methods.empty() && "Empty methods map entry");
2046     if (Methods.size() == 1)
2047       ContinuationBuilder.writeMemberType(Methods[0]);
2048     else {
2049       // FIXME: Make this use its own ContinuationBuilder so that
2050       // MethodOverloadList can be split correctly.
2051       MethodOverloadListRecord MOLR(Methods);
2052       TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2053 
2054       OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2055       ContinuationBuilder.writeMemberType(OMR);
2056     }
2057   }
2058 
2059   // Create nested classes.
2060   for (const DIType *Nested : Info.NestedTypes) {
2061     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
2062     ContinuationBuilder.writeMemberType(R);
2063     MemberCount++;
2064   }
2065 
2066   TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2067   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2068                          !Info.NestedTypes.empty());
2069 }
2070 
2071 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2072   if (!VBPType.getIndex()) {
2073     // Make a 'const int *' type.
2074     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2075     TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2076 
2077     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2078                                                   : PointerKind::Near32;
2079     PointerMode PM = PointerMode::Pointer;
2080     PointerOptions PO = PointerOptions::None;
2081     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2082     VBPType = TypeTable.writeLeafType(PR);
2083   }
2084 
2085   return VBPType;
2086 }
2087 
2088 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
2089   const DIType *Ty = TypeRef.resolve();
2090   const DIType *ClassTy = ClassTyRef.resolve();
2091 
2092   // The null DIType is the void type. Don't try to hash it.
2093   if (!Ty)
2094     return TypeIndex::Void();
2095 
2096   // Check if we've already translated this type. Don't try to do a
2097   // get-or-create style insertion that caches the hash lookup across the
2098   // lowerType call. It will update the TypeIndices map.
2099   auto I = TypeIndices.find({Ty, ClassTy});
2100   if (I != TypeIndices.end())
2101     return I->second;
2102 
2103   TypeLoweringScope S(*this);
2104   TypeIndex TI = lowerType(Ty, ClassTy);
2105   return recordTypeIndexForDINode(Ty, TI, ClassTy);
2106 }
2107 
2108 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) {
2109   DIType *Ty = TypeRef.resolve();
2110   PointerRecord PR(getTypeIndex(Ty),
2111                    getPointerSizeInBytes() == 8 ? PointerKind::Near64
2112                                                 : PointerKind::Near32,
2113                    PointerMode::LValueReference, PointerOptions::None,
2114                    Ty->getSizeInBits() / 8);
2115   return TypeTable.writeLeafType(PR);
2116 }
2117 
2118 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
2119   const DIType *Ty = TypeRef.resolve();
2120 
2121   // The null DIType is the void type. Don't try to hash it.
2122   if (!Ty)
2123     return TypeIndex::Void();
2124 
2125   // If this is a non-record type, the complete type index is the same as the
2126   // normal type index. Just call getTypeIndex.
2127   switch (Ty->getTag()) {
2128   case dwarf::DW_TAG_class_type:
2129   case dwarf::DW_TAG_structure_type:
2130   case dwarf::DW_TAG_union_type:
2131     break;
2132   default:
2133     return getTypeIndex(Ty);
2134   }
2135 
2136   // Check if we've already translated the complete record type.  Lowering a
2137   // complete type should never trigger lowering another complete type, so we
2138   // can reuse the hash table lookup result.
2139   const auto *CTy = cast<DICompositeType>(Ty);
2140   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2141   if (!InsertResult.second)
2142     return InsertResult.first->second;
2143 
2144   TypeLoweringScope S(*this);
2145 
2146   // Make sure the forward declaration is emitted first. It's unclear if this
2147   // is necessary, but MSVC does it, and we should follow suit until we can show
2148   // otherwise.
2149   TypeIndex FwdDeclTI = getTypeIndex(CTy);
2150 
2151   // Just use the forward decl if we don't have complete type info. This might
2152   // happen if the frontend is using modules and expects the complete definition
2153   // to be emitted elsewhere.
2154   if (CTy->isForwardDecl())
2155     return FwdDeclTI;
2156 
2157   TypeIndex TI;
2158   switch (CTy->getTag()) {
2159   case dwarf::DW_TAG_class_type:
2160   case dwarf::DW_TAG_structure_type:
2161     TI = lowerCompleteTypeClass(CTy);
2162     break;
2163   case dwarf::DW_TAG_union_type:
2164     TI = lowerCompleteTypeUnion(CTy);
2165     break;
2166   default:
2167     llvm_unreachable("not a record");
2168   }
2169 
2170   InsertResult.first->second = TI;
2171   return TI;
2172 }
2173 
2174 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2175 /// and do this until fixpoint, as each complete record type typically
2176 /// references
2177 /// many other record types.
2178 void CodeViewDebug::emitDeferredCompleteTypes() {
2179   SmallVector<const DICompositeType *, 4> TypesToEmit;
2180   while (!DeferredCompleteTypes.empty()) {
2181     std::swap(DeferredCompleteTypes, TypesToEmit);
2182     for (const DICompositeType *RecordTy : TypesToEmit)
2183       getCompleteTypeIndex(RecordTy);
2184     TypesToEmit.clear();
2185   }
2186 }
2187 
2188 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
2189   // Get the sorted list of parameters and emit them first.
2190   SmallVector<const LocalVariable *, 6> Params;
2191   for (const LocalVariable &L : Locals)
2192     if (L.DIVar->isParameter())
2193       Params.push_back(&L);
2194   std::sort(Params.begin(), Params.end(),
2195             [](const LocalVariable *L, const LocalVariable *R) {
2196               return L->DIVar->getArg() < R->DIVar->getArg();
2197             });
2198   for (const LocalVariable *L : Params)
2199     emitLocalVariable(*L);
2200 
2201   // Next emit all non-parameters in the order that we found them.
2202   for (const LocalVariable &L : Locals)
2203     if (!L.DIVar->isParameter())
2204       emitLocalVariable(L);
2205 }
2206 
2207 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2208   // LocalSym record, see SymbolRecord.h for more info.
2209   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2210            *LocalEnd = MMI->getContext().createTempSymbol();
2211   OS.AddComment("Record length");
2212   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2213   OS.EmitLabel(LocalBegin);
2214 
2215   OS.AddComment("Record kind: S_LOCAL");
2216   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2217 
2218   LocalSymFlags Flags = LocalSymFlags::None;
2219   if (Var.DIVar->isParameter())
2220     Flags |= LocalSymFlags::IsParameter;
2221   if (Var.DefRanges.empty())
2222     Flags |= LocalSymFlags::IsOptimizedOut;
2223 
2224   OS.AddComment("TypeIndex");
2225   TypeIndex TI = Var.UseReferenceType
2226                      ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2227                      : getCompleteTypeIndex(Var.DIVar->getType());
2228   OS.EmitIntValue(TI.getIndex(), 4);
2229   OS.AddComment("Flags");
2230   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2231   // Truncate the name so we won't overflow the record length field.
2232   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2233   OS.EmitLabel(LocalEnd);
2234 
2235   // Calculate the on disk prefix of the appropriate def range record. The
2236   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2237   // should be big enough to hold all forms without memory allocation.
2238   SmallString<20> BytePrefix;
2239   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2240     BytePrefix.clear();
2241     if (DefRange.InMemory) {
2242       uint16_t RegRelFlags = 0;
2243       if (DefRange.IsSubfield) {
2244         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2245                       (DefRange.StructOffset
2246                        << DefRangeRegisterRelSym::OffsetInParentShift);
2247       }
2248       DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL);
2249       Sym.Hdr.Register = DefRange.CVRegister;
2250       Sym.Hdr.Flags = RegRelFlags;
2251       Sym.Hdr.BasePointerOffset = DefRange.DataOffset;
2252       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2253       BytePrefix +=
2254           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2255       BytePrefix +=
2256           StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr));
2257     } else {
2258       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2259       if (DefRange.IsSubfield) {
2260         // Unclear what matters here.
2261         DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER);
2262         Sym.Hdr.Register = DefRange.CVRegister;
2263         Sym.Hdr.MayHaveNoName = 0;
2264         Sym.Hdr.OffsetInParent = DefRange.StructOffset;
2265 
2266         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2267         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2268                                 sizeof(SymKind));
2269         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2270                                 sizeof(Sym.Hdr));
2271       } else {
2272         // Unclear what matters here.
2273         DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER);
2274         Sym.Hdr.Register = DefRange.CVRegister;
2275         Sym.Hdr.MayHaveNoName = 0;
2276         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2277         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2278                                 sizeof(SymKind));
2279         BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr),
2280                                 sizeof(Sym.Hdr));
2281       }
2282     }
2283     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2284   }
2285 }
2286 
2287 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2288   const Function &GV = MF->getFunction();
2289   assert(FnDebugInfo.count(&GV));
2290   assert(CurFn == &FnDebugInfo[&GV]);
2291 
2292   collectVariableInfo(GV.getSubprogram());
2293 
2294   // Don't emit anything if we don't have any line tables.
2295   if (!CurFn->HaveLineInfo) {
2296     FnDebugInfo.erase(&GV);
2297     CurFn = nullptr;
2298     return;
2299   }
2300 
2301   CurFn->Annotations = MF->getCodeViewAnnotations();
2302 
2303   CurFn->End = Asm->getFunctionEnd();
2304 
2305   CurFn = nullptr;
2306 }
2307 
2308 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2309   DebugHandlerBase::beginInstruction(MI);
2310 
2311   // Ignore DBG_VALUE locations and function prologue.
2312   if (!Asm || !CurFn || MI->isDebugValue() ||
2313       MI->getFlag(MachineInstr::FrameSetup))
2314     return;
2315 
2316   // If the first instruction of a new MBB has no location, find the first
2317   // instruction with a location and use that.
2318   DebugLoc DL = MI->getDebugLoc();
2319   if (!DL && MI->getParent() != PrevInstBB) {
2320     for (const auto &NextMI : *MI->getParent()) {
2321       if (NextMI.isDebugValue())
2322         continue;
2323       DL = NextMI.getDebugLoc();
2324       if (DL)
2325         break;
2326     }
2327   }
2328   PrevInstBB = MI->getParent();
2329 
2330   // If we still don't have a debug location, don't record a location.
2331   if (!DL)
2332     return;
2333 
2334   maybeRecordLocation(DL, Asm->MF);
2335 }
2336 
2337 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2338   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2339            *EndLabel = MMI->getContext().createTempSymbol();
2340   OS.EmitIntValue(unsigned(Kind), 4);
2341   OS.AddComment("Subsection size");
2342   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2343   OS.EmitLabel(BeginLabel);
2344   return EndLabel;
2345 }
2346 
2347 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2348   OS.EmitLabel(EndLabel);
2349   // Every subsection must be aligned to a 4-byte boundary.
2350   OS.EmitValueToAlignment(4);
2351 }
2352 
2353 void CodeViewDebug::emitDebugInfoForUDTs(
2354     ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2355   for (const auto &UDT : UDTs) {
2356     const DIType *T = UDT.second;
2357     assert(shouldEmitUdt(T));
2358 
2359     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2360              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2361     OS.AddComment("Record length");
2362     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2363     OS.EmitLabel(UDTRecordBegin);
2364 
2365     OS.AddComment("Record kind: S_UDT");
2366     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2367 
2368     OS.AddComment("Type");
2369     OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2370 
2371     emitNullTerminatedSymbolName(OS, UDT.first);
2372     OS.EmitLabel(UDTRecordEnd);
2373   }
2374 }
2375 
2376 void CodeViewDebug::emitDebugInfoForGlobals() {
2377   DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2378       GlobalMap;
2379   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2380     SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2381     GV.getDebugInfo(GVEs);
2382     for (const auto *GVE : GVEs)
2383       GlobalMap[GVE] = &GV;
2384   }
2385 
2386   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2387   for (const MDNode *Node : CUs->operands()) {
2388     const auto *CU = cast<DICompileUnit>(Node);
2389 
2390     // First, emit all globals that are not in a comdat in a single symbol
2391     // substream. MSVC doesn't like it if the substream is empty, so only open
2392     // it if we have at least one global to emit.
2393     switchToDebugSectionForSymbol(nullptr);
2394     MCSymbol *EndLabel = nullptr;
2395     for (const auto *GVE : CU->getGlobalVariables()) {
2396       if (const auto *GV = GlobalMap.lookup(GVE))
2397         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2398           if (!EndLabel) {
2399             OS.AddComment("Symbol subsection for globals");
2400             EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2401           }
2402           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2403           emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV));
2404         }
2405     }
2406     if (EndLabel)
2407       endCVSubsection(EndLabel);
2408 
2409     // Second, emit each global that is in a comdat into its own .debug$S
2410     // section along with its own symbol substream.
2411     for (const auto *GVE : CU->getGlobalVariables()) {
2412       if (const auto *GV = GlobalMap.lookup(GVE)) {
2413         if (GV->hasComdat()) {
2414           MCSymbol *GVSym = Asm->getSymbol(GV);
2415           OS.AddComment("Symbol subsection for " +
2416                         Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
2417           switchToDebugSectionForSymbol(GVSym);
2418           EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
2419           // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
2420           emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym);
2421           endCVSubsection(EndLabel);
2422         }
2423       }
2424     }
2425   }
2426 }
2427 
2428 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2429   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2430   for (const MDNode *Node : CUs->operands()) {
2431     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2432       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2433         getTypeIndex(RT);
2434         // FIXME: Add to global/local DTU list.
2435       }
2436     }
2437   }
2438 }
2439 
2440 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2441                                            const GlobalVariable *GV,
2442                                            MCSymbol *GVSym) {
2443   // DataSym record, see SymbolRecord.h for more info.
2444   // FIXME: Thread local data, etc
2445   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2446            *DataEnd = MMI->getContext().createTempSymbol();
2447   OS.AddComment("Record length");
2448   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2449   OS.EmitLabel(DataBegin);
2450   if (DIGV->isLocalToUnit()) {
2451     if (GV->isThreadLocal()) {
2452       OS.AddComment("Record kind: S_LTHREAD32");
2453       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2454     } else {
2455       OS.AddComment("Record kind: S_LDATA32");
2456       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2457     }
2458   } else {
2459     if (GV->isThreadLocal()) {
2460       OS.AddComment("Record kind: S_GTHREAD32");
2461       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2462     } else {
2463       OS.AddComment("Record kind: S_GDATA32");
2464       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2465     }
2466   }
2467   OS.AddComment("Type");
2468   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2469   OS.AddComment("DataOffset");
2470   OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
2471   OS.AddComment("Segment");
2472   OS.EmitCOFFSectionIndex(GVSym);
2473   OS.AddComment("Name");
2474   emitNullTerminatedSymbolName(OS, DIGV->getName());
2475   OS.EmitLabel(DataEnd);
2476 }
2477