1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), CurFn(nullptr) {
44   // If module doesn't have named metadata anchors or COFF debug section
45   // is not available, skip any debug info related stuff.
46   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
47       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
48     Asm = nullptr;
49     return;
50   }
51 
52   // Tell MMI that we have debug info.
53   MMI->setDebugInfoAvailability(true);
54 }
55 
56 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
57   std::string &Filepath = FileToFilepathMap[File];
58   if (!Filepath.empty())
59     return Filepath;
60 
61   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
62 
63   // Clang emits directory and relative filename info into the IR, but CodeView
64   // operates on full paths.  We could change Clang to emit full paths too, but
65   // that would increase the IR size and probably not needed for other users.
66   // For now, just concatenate and canonicalize the path here.
67   if (Filename.find(':') == 1)
68     Filepath = Filename;
69   else
70     Filepath = (Dir + "\\" + Filename).str();
71 
72   // Canonicalize the path.  We have to do it textually because we may no longer
73   // have access the file in the filesystem.
74   // First, replace all slashes with backslashes.
75   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
76 
77   // Remove all "\.\" with "\".
78   size_t Cursor = 0;
79   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
80     Filepath.erase(Cursor, 2);
81 
82   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
83   // path should be well-formatted, e.g. start with a drive letter, etc.
84   Cursor = 0;
85   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
86     // Something's wrong if the path starts with "\..\", abort.
87     if (Cursor == 0)
88       break;
89 
90     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
91     if (PrevSlash == std::string::npos)
92       // Something's wrong, abort.
93       break;
94 
95     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
96     // The next ".." might be following the one we've just erased.
97     Cursor = PrevSlash;
98   }
99 
100   // Remove all duplicate backslashes.
101   Cursor = 0;
102   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
103     Filepath.erase(Cursor, 1);
104 
105   return Filepath;
106 }
107 
108 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
109   unsigned NextId = FileIdMap.size() + 1;
110   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
111   if (Insertion.second) {
112     // We have to compute the full filepath and emit a .cv_file directive.
113     StringRef FullPath = getFullFilepath(F);
114     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
115     (void)Success;
116     assert(Success && ".cv_file directive failed");
117   }
118   return Insertion.first->second;
119 }
120 
121 CodeViewDebug::InlineSite &
122 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
123                              const DISubprogram *Inlinee) {
124   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
125   InlineSite *Site = &SiteInsertion.first->second;
126   if (SiteInsertion.second) {
127     unsigned ParentFuncId = CurFn->FuncId;
128     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
129       ParentFuncId =
130           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
131               .SiteFuncId;
132 
133     Site->SiteFuncId = NextFuncId++;
134     OS.EmitCVInlineSiteIdDirective(
135         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
136         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
137     Site->Inlinee = Inlinee;
138     InlinedSubprograms.insert(Inlinee);
139     getFuncIdForSubprogram(Inlinee);
140   }
141   return *Site;
142 }
143 
144 static StringRef getPrettyScopeName(const DIScope *Scope) {
145   StringRef ScopeName = Scope->getName();
146   if (!ScopeName.empty())
147     return ScopeName;
148 
149   switch (Scope->getTag()) {
150   case dwarf::DW_TAG_enumeration_type:
151   case dwarf::DW_TAG_class_type:
152   case dwarf::DW_TAG_structure_type:
153   case dwarf::DW_TAG_union_type:
154     return "<unnamed-tag>";
155   case dwarf::DW_TAG_namespace:
156     return "`anonymous namespace'";
157   }
158 
159   return StringRef();
160 }
161 
162 static const DISubprogram *getQualifiedNameComponents(
163     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
164   const DISubprogram *ClosestSubprogram = nullptr;
165   while (Scope != nullptr) {
166     if (ClosestSubprogram == nullptr)
167       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
168     StringRef ScopeName = getPrettyScopeName(Scope);
169     if (!ScopeName.empty())
170       QualifiedNameComponents.push_back(ScopeName);
171     Scope = Scope->getScope().resolve();
172   }
173   return ClosestSubprogram;
174 }
175 
176 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
177                                     StringRef TypeName) {
178   std::string FullyQualifiedName;
179   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
180     FullyQualifiedName.append(QualifiedNameComponent);
181     FullyQualifiedName.append("::");
182   }
183   FullyQualifiedName.append(TypeName);
184   return FullyQualifiedName;
185 }
186 
187 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
188   SmallVector<StringRef, 5> QualifiedNameComponents;
189   getQualifiedNameComponents(Scope, QualifiedNameComponents);
190   return getQualifiedName(QualifiedNameComponents, Name);
191 }
192 
193 struct CodeViewDebug::TypeLoweringScope {
194   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
195   ~TypeLoweringScope() {
196     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
197     // inner TypeLoweringScopes don't attempt to emit deferred types.
198     if (CVD.TypeEmissionLevel == 1)
199       CVD.emitDeferredCompleteTypes();
200     --CVD.TypeEmissionLevel;
201   }
202   CodeViewDebug &CVD;
203 };
204 
205 static std::string getFullyQualifiedName(const DIScope *Ty) {
206   const DIScope *Scope = Ty->getScope().resolve();
207   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
208 }
209 
210 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
211   // No scope means global scope and that uses the zero index.
212   if (!Scope || isa<DIFile>(Scope))
213     return TypeIndex();
214 
215   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
216 
217   // Check if we've already translated this scope.
218   auto I = TypeIndices.find({Scope, nullptr});
219   if (I != TypeIndices.end())
220     return I->second;
221 
222   // Build the fully qualified name of the scope.
223   std::string ScopeName = getFullyQualifiedName(Scope);
224   TypeIndex TI =
225       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
226   return recordTypeIndexForDINode(Scope, TI);
227 }
228 
229 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
230   assert(SP);
231 
232   // Check if we've already translated this subprogram.
233   auto I = TypeIndices.find({SP, nullptr});
234   if (I != TypeIndices.end())
235     return I->second;
236 
237   // The display name includes function template arguments. Drop them to match
238   // MSVC.
239   StringRef DisplayName = SP->getDisplayName().split('<').first;
240 
241   const DIScope *Scope = SP->getScope().resolve();
242   TypeIndex TI;
243   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
244     // If the scope is a DICompositeType, then this must be a method. Member
245     // function types take some special handling, and require access to the
246     // subprogram.
247     TypeIndex ClassType = getTypeIndex(Class);
248     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
249                                DisplayName);
250     TI = TypeTable.writeKnownType(MFuncId);
251   } else {
252     // Otherwise, this must be a free function.
253     TypeIndex ParentScope = getScopeIndex(Scope);
254     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
255     TI = TypeTable.writeKnownType(FuncId);
256   }
257 
258   return recordTypeIndexForDINode(SP, TI);
259 }
260 
261 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
262                                                const DICompositeType *Class) {
263   // Always use the method declaration as the key for the function type. The
264   // method declaration contains the this adjustment.
265   if (SP->getDeclaration())
266     SP = SP->getDeclaration();
267   assert(!SP->getDeclaration() && "should use declaration as key");
268 
269   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
270   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
271   auto I = TypeIndices.find({SP, Class});
272   if (I != TypeIndices.end())
273     return I->second;
274 
275   // Make sure complete type info for the class is emitted *after* the member
276   // function type, as the complete class type is likely to reference this
277   // member function type.
278   TypeLoweringScope S(*this);
279   TypeIndex TI =
280       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
281   return recordTypeIndexForDINode(SP, TI, Class);
282 }
283 
284 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
285                                                   TypeIndex TI,
286                                                   const DIType *ClassTy) {
287   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
288   (void)InsertResult;
289   assert(InsertResult.second && "DINode was already assigned a type index");
290   return TI;
291 }
292 
293 unsigned CodeViewDebug::getPointerSizeInBytes() {
294   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
295 }
296 
297 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
298                                         const DILocation *InlinedAt) {
299   if (InlinedAt) {
300     // This variable was inlined. Associate it with the InlineSite.
301     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
302     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
303     Site.InlinedLocals.emplace_back(Var);
304   } else {
305     // This variable goes in the main ProcSym.
306     CurFn->Locals.emplace_back(Var);
307   }
308 }
309 
310 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
311                                const DILocation *Loc) {
312   auto B = Locs.begin(), E = Locs.end();
313   if (std::find(B, E, Loc) == E)
314     Locs.push_back(Loc);
315 }
316 
317 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
318                                         const MachineFunction *MF) {
319   // Skip this instruction if it has the same location as the previous one.
320   if (DL == CurFn->LastLoc)
321     return;
322 
323   const DIScope *Scope = DL.get()->getScope();
324   if (!Scope)
325     return;
326 
327   // Skip this line if it is longer than the maximum we can record.
328   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
329   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
330       LI.isNeverStepInto())
331     return;
332 
333   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
334   if (CI.getStartColumn() != DL.getCol())
335     return;
336 
337   if (!CurFn->HaveLineInfo)
338     CurFn->HaveLineInfo = true;
339   unsigned FileId = 0;
340   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
341     FileId = CurFn->LastFileId;
342   else
343     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
344   CurFn->LastLoc = DL;
345 
346   unsigned FuncId = CurFn->FuncId;
347   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
348     const DILocation *Loc = DL.get();
349 
350     // If this location was actually inlined from somewhere else, give it the ID
351     // of the inline call site.
352     FuncId =
353         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
354 
355     // Ensure we have links in the tree of inline call sites.
356     bool FirstLoc = true;
357     while ((SiteLoc = Loc->getInlinedAt())) {
358       InlineSite &Site =
359           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
360       if (!FirstLoc)
361         addLocIfNotPresent(Site.ChildSites, Loc);
362       FirstLoc = false;
363       Loc = SiteLoc;
364     }
365     addLocIfNotPresent(CurFn->ChildSites, Loc);
366   }
367 
368   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
369                         /*PrologueEnd=*/false, /*IsStmt=*/false,
370                         DL->getFilename(), SMLoc());
371 }
372 
373 void CodeViewDebug::emitCodeViewMagicVersion() {
374   OS.EmitValueToAlignment(4);
375   OS.AddComment("Debug section magic");
376   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
377 }
378 
379 void CodeViewDebug::endModule() {
380   if (!Asm || !MMI->hasDebugInfo())
381     return;
382 
383   assert(Asm != nullptr);
384 
385   // The COFF .debug$S section consists of several subsections, each starting
386   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
387   // of the payload followed by the payload itself.  The subsections are 4-byte
388   // aligned.
389 
390   // Use the generic .debug$S section, and make a subsection for all the inlined
391   // subprograms.
392   switchToDebugSectionForSymbol(nullptr);
393   emitInlineeLinesSubsection();
394 
395   // Emit per-function debug information.
396   for (auto &P : FnDebugInfo)
397     if (!P.first->isDeclarationForLinker())
398       emitDebugInfoForFunction(P.first, P.second);
399 
400   // Emit global variable debug information.
401   setCurrentSubprogram(nullptr);
402   emitDebugInfoForGlobals();
403 
404   // Emit retained types.
405   emitDebugInfoForRetainedTypes();
406 
407   // Switch back to the generic .debug$S section after potentially processing
408   // comdat symbol sections.
409   switchToDebugSectionForSymbol(nullptr);
410 
411   // Emit UDT records for any types used by global variables.
412   if (!GlobalUDTs.empty()) {
413     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
414     emitDebugInfoForUDTs(GlobalUDTs);
415     endCVSubsection(SymbolsEnd);
416   }
417 
418   // This subsection holds a file index to offset in string table table.
419   OS.AddComment("File index to string table offset subsection");
420   OS.EmitCVFileChecksumsDirective();
421 
422   // This subsection holds the string table.
423   OS.AddComment("String table");
424   OS.EmitCVStringTableDirective();
425 
426   // Emit type information last, so that any types we translate while emitting
427   // function info are included.
428   emitTypeInformation();
429 
430   clear();
431 }
432 
433 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
434   // Microsoft's linker seems to have trouble with symbol names longer than
435   // 0xffd8 bytes.
436   S = S.substr(0, 0xffd8);
437   SmallString<32> NullTerminatedString(S);
438   NullTerminatedString.push_back('\0');
439   OS.EmitBytes(NullTerminatedString);
440 }
441 
442 void CodeViewDebug::emitTypeInformation() {
443   // Do nothing if we have no debug info or if no non-trivial types were emitted
444   // to TypeTable during codegen.
445   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
446   if (!CU_Nodes)
447     return;
448   if (TypeTable.empty())
449     return;
450 
451   // Start the .debug$T section with 0x4.
452   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
453   emitCodeViewMagicVersion();
454 
455   SmallString<8> CommentPrefix;
456   if (OS.isVerboseAsm()) {
457     CommentPrefix += '\t';
458     CommentPrefix += Asm->MAI->getCommentString();
459     CommentPrefix += ' ';
460   }
461 
462   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
463   TypeTable.ForEachRecord(
464       [&](TypeIndex Index, StringRef Record) {
465         if (OS.isVerboseAsm()) {
466           // Emit a block comment describing the type record for readability.
467           SmallString<512> CommentBlock;
468           raw_svector_ostream CommentOS(CommentBlock);
469           ScopedPrinter SP(CommentOS);
470           SP.setPrefix(CommentPrefix);
471           CVTD.setPrinter(&SP);
472           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
473           if (E) {
474             logAllUnhandledErrors(std::move(E), errs(), "error: ");
475             llvm_unreachable("produced malformed type record");
476           }
477           // emitRawComment will insert its own tab and comment string before
478           // the first line, so strip off our first one. It also prints its own
479           // newline.
480           OS.emitRawComment(
481               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
482         } else {
483 #ifndef NDEBUG
484           // Assert that the type data is valid even if we aren't dumping
485           // comments. The MSVC linker doesn't do much type record validation,
486           // so the first link of an invalid type record can succeed while
487           // subsequent links will fail with LNK1285.
488           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
489           CVTypeArray Types;
490           StreamReader Reader(Stream);
491           Error E = Reader.readArray(Types, Reader.getLength());
492           if (!E) {
493             TypeVisitorCallbacks C;
494             E = CVTypeVisitor(C).visitTypeStream(Types);
495           }
496           if (E) {
497             logAllUnhandledErrors(std::move(E), errs(), "error: ");
498             llvm_unreachable("produced malformed type record");
499           }
500 #endif
501         }
502         OS.EmitBinaryData(Record);
503       });
504 }
505 
506 void CodeViewDebug::emitInlineeLinesSubsection() {
507   if (InlinedSubprograms.empty())
508     return;
509 
510   OS.AddComment("Inlinee lines subsection");
511   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
512 
513   // We don't provide any extra file info.
514   // FIXME: Find out if debuggers use this info.
515   OS.AddComment("Inlinee lines signature");
516   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
517 
518   for (const DISubprogram *SP : InlinedSubprograms) {
519     assert(TypeIndices.count({SP, nullptr}));
520     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
521 
522     OS.AddBlankLine();
523     unsigned FileId = maybeRecordFile(SP->getFile());
524     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
525                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
526     OS.AddBlankLine();
527     // The filechecksum table uses 8 byte entries for now, and file ids start at
528     // 1.
529     unsigned FileOffset = (FileId - 1) * 8;
530     OS.AddComment("Type index of inlined function");
531     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
532     OS.AddComment("Offset into filechecksum table");
533     OS.EmitIntValue(FileOffset, 4);
534     OS.AddComment("Starting line number");
535     OS.EmitIntValue(SP->getLine(), 4);
536   }
537 
538   endCVSubsection(InlineEnd);
539 }
540 
541 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
542                                         const DILocation *InlinedAt,
543                                         const InlineSite &Site) {
544   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
545            *InlineEnd = MMI->getContext().createTempSymbol();
546 
547   assert(TypeIndices.count({Site.Inlinee, nullptr}));
548   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
549 
550   // SymbolRecord
551   OS.AddComment("Record length");
552   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
553   OS.EmitLabel(InlineBegin);
554   OS.AddComment("Record kind: S_INLINESITE");
555   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
556 
557   OS.AddComment("PtrParent");
558   OS.EmitIntValue(0, 4);
559   OS.AddComment("PtrEnd");
560   OS.EmitIntValue(0, 4);
561   OS.AddComment("Inlinee type index");
562   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
563 
564   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
565   unsigned StartLineNum = Site.Inlinee->getLine();
566 
567   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
568                                     FI.Begin, FI.End);
569 
570   OS.EmitLabel(InlineEnd);
571 
572   emitLocalVariableList(Site.InlinedLocals);
573 
574   // Recurse on child inlined call sites before closing the scope.
575   for (const DILocation *ChildSite : Site.ChildSites) {
576     auto I = FI.InlineSites.find(ChildSite);
577     assert(I != FI.InlineSites.end() &&
578            "child site not in function inline site map");
579     emitInlinedCallSite(FI, ChildSite, I->second);
580   }
581 
582   // Close the scope.
583   OS.AddComment("Record length");
584   OS.EmitIntValue(2, 2);                                  // RecordLength
585   OS.AddComment("Record kind: S_INLINESITE_END");
586   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
587 }
588 
589 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
590   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
591   // comdat key. A section may be comdat because of -ffunction-sections or
592   // because it is comdat in the IR.
593   MCSectionCOFF *GVSec =
594       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
595   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
596 
597   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
598       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
599   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
600 
601   OS.SwitchSection(DebugSec);
602 
603   // Emit the magic version number if this is the first time we've switched to
604   // this section.
605   if (ComdatDebugSections.insert(DebugSec).second)
606     emitCodeViewMagicVersion();
607 }
608 
609 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
610                                              FunctionInfo &FI) {
611   // For each function there is a separate subsection
612   // which holds the PC to file:line table.
613   const MCSymbol *Fn = Asm->getSymbol(GV);
614   assert(Fn);
615 
616   // Switch to the to a comdat section, if appropriate.
617   switchToDebugSectionForSymbol(Fn);
618 
619   std::string FuncName;
620   auto *SP = GV->getSubprogram();
621   assert(SP);
622   setCurrentSubprogram(SP);
623 
624   // If we have a display name, build the fully qualified name by walking the
625   // chain of scopes.
626   if (!SP->getDisplayName().empty())
627     FuncName =
628         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
629 
630   // If our DISubprogram name is empty, use the mangled name.
631   if (FuncName.empty())
632     FuncName = GlobalValue::getRealLinkageName(GV->getName());
633 
634   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
635   OS.AddComment("Symbol subsection for " + Twine(FuncName));
636   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
637   {
638     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
639              *ProcRecordEnd = MMI->getContext().createTempSymbol();
640     OS.AddComment("Record length");
641     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
642     OS.EmitLabel(ProcRecordBegin);
643 
644   if (GV->hasLocalLinkage()) {
645     OS.AddComment("Record kind: S_LPROC32_ID");
646     OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
647   } else {
648     OS.AddComment("Record kind: S_GPROC32_ID");
649     OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
650   }
651 
652     // These fields are filled in by tools like CVPACK which run after the fact.
653     OS.AddComment("PtrParent");
654     OS.EmitIntValue(0, 4);
655     OS.AddComment("PtrEnd");
656     OS.EmitIntValue(0, 4);
657     OS.AddComment("PtrNext");
658     OS.EmitIntValue(0, 4);
659     // This is the important bit that tells the debugger where the function
660     // code is located and what's its size:
661     OS.AddComment("Code size");
662     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
663     OS.AddComment("Offset after prologue");
664     OS.EmitIntValue(0, 4);
665     OS.AddComment("Offset before epilogue");
666     OS.EmitIntValue(0, 4);
667     OS.AddComment("Function type index");
668     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
669     OS.AddComment("Function section relative address");
670     OS.EmitCOFFSecRel32(Fn);
671     OS.AddComment("Function section index");
672     OS.EmitCOFFSectionIndex(Fn);
673     OS.AddComment("Flags");
674     OS.EmitIntValue(0, 1);
675     // Emit the function display name as a null-terminated string.
676     OS.AddComment("Function name");
677     // Truncate the name so we won't overflow the record length field.
678     emitNullTerminatedSymbolName(OS, FuncName);
679     OS.EmitLabel(ProcRecordEnd);
680 
681     emitLocalVariableList(FI.Locals);
682 
683     // Emit inlined call site information. Only emit functions inlined directly
684     // into the parent function. We'll emit the other sites recursively as part
685     // of their parent inline site.
686     for (const DILocation *InlinedAt : FI.ChildSites) {
687       auto I = FI.InlineSites.find(InlinedAt);
688       assert(I != FI.InlineSites.end() &&
689              "child site not in function inline site map");
690       emitInlinedCallSite(FI, InlinedAt, I->second);
691     }
692 
693     if (SP != nullptr)
694       emitDebugInfoForUDTs(LocalUDTs);
695 
696     // We're done with this function.
697     OS.AddComment("Record length");
698     OS.EmitIntValue(0x0002, 2);
699     OS.AddComment("Record kind: S_PROC_ID_END");
700     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
701   }
702   endCVSubsection(SymbolsEnd);
703 
704   // We have an assembler directive that takes care of the whole line table.
705   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
706 }
707 
708 CodeViewDebug::LocalVarDefRange
709 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
710   LocalVarDefRange DR;
711   DR.InMemory = -1;
712   DR.DataOffset = Offset;
713   assert(DR.DataOffset == Offset && "truncation");
714   DR.StructOffset = 0;
715   DR.CVRegister = CVRegister;
716   return DR;
717 }
718 
719 CodeViewDebug::LocalVarDefRange
720 CodeViewDebug::createDefRangeReg(uint16_t CVRegister) {
721   LocalVarDefRange DR;
722   DR.InMemory = 0;
723   DR.DataOffset = 0;
724   DR.StructOffset = 0;
725   DR.CVRegister = CVRegister;
726   return DR;
727 }
728 
729 void CodeViewDebug::collectVariableInfoFromMMITable(
730     DenseSet<InlinedVariable> &Processed) {
731   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
732   const TargetFrameLowering *TFI = TSI.getFrameLowering();
733   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
734 
735   for (const MachineModuleInfo::VariableDbgInfo &VI :
736        MMI->getVariableDbgInfo()) {
737     if (!VI.Var)
738       continue;
739     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
740            "Expected inlined-at fields to agree");
741 
742     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
743     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
744 
745     // If variable scope is not found then skip this variable.
746     if (!Scope)
747       continue;
748 
749     // Get the frame register used and the offset.
750     unsigned FrameReg = 0;
751     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
752     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
753 
754     // Calculate the label ranges.
755     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
756     for (const InsnRange &Range : Scope->getRanges()) {
757       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
758       const MCSymbol *End = getLabelAfterInsn(Range.second);
759       End = End ? End : Asm->getFunctionEnd();
760       DefRange.Ranges.emplace_back(Begin, End);
761     }
762 
763     LocalVariable Var;
764     Var.DIVar = VI.Var;
765     Var.DefRanges.emplace_back(std::move(DefRange));
766     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
767   }
768 }
769 
770 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
771   DenseSet<InlinedVariable> Processed;
772   // Grab the variable info that was squirreled away in the MMI side-table.
773   collectVariableInfoFromMMITable(Processed);
774 
775   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
776 
777   for (const auto &I : DbgValues) {
778     InlinedVariable IV = I.first;
779     if (Processed.count(IV))
780       continue;
781     const DILocalVariable *DIVar = IV.first;
782     const DILocation *InlinedAt = IV.second;
783 
784     // Instruction ranges, specifying where IV is accessible.
785     const auto &Ranges = I.second;
786 
787     LexicalScope *Scope = nullptr;
788     if (InlinedAt)
789       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
790     else
791       Scope = LScopes.findLexicalScope(DIVar->getScope());
792     // If variable scope is not found then skip this variable.
793     if (!Scope)
794       continue;
795 
796     LocalVariable Var;
797     Var.DIVar = DIVar;
798 
799     // Calculate the definition ranges.
800     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
801       const InsnRange &Range = *I;
802       const MachineInstr *DVInst = Range.first;
803       assert(DVInst->isDebugValue() && "Invalid History entry");
804       const DIExpression *DIExpr = DVInst->getDebugExpression();
805 
806       // Bail if there is a complex DWARF expression for now.
807       if (DIExpr && DIExpr->getNumElements() > 0)
808         continue;
809 
810       // Bail if operand 0 is not a valid register. This means the variable is a
811       // simple constant, or is described by a complex expression.
812       // FIXME: Find a way to represent constant variables, since they are
813       // relatively common.
814       unsigned Reg =
815           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
816       if (Reg == 0)
817         continue;
818 
819       // Handle the two cases we can handle: indirect in memory and in register.
820       bool IsIndirect = DVInst->getOperand(1).isImm();
821       unsigned CVReg = TRI->getCodeViewRegNum(DVInst->getOperand(0).getReg());
822       {
823         LocalVarDefRange DefRange;
824         if (IsIndirect) {
825           int64_t Offset = DVInst->getOperand(1).getImm();
826           DefRange = createDefRangeMem(CVReg, Offset);
827         } else {
828           DefRange = createDefRangeReg(CVReg);
829         }
830         if (Var.DefRanges.empty() ||
831             Var.DefRanges.back().isDifferentLocation(DefRange)) {
832           Var.DefRanges.emplace_back(std::move(DefRange));
833         }
834       }
835 
836       // Compute the label range.
837       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
838       const MCSymbol *End = getLabelAfterInsn(Range.second);
839       if (!End) {
840         if (std::next(I) != E)
841           End = getLabelBeforeInsn(std::next(I)->first);
842         else
843           End = Asm->getFunctionEnd();
844       }
845 
846       // If the last range end is our begin, just extend the last range.
847       // Otherwise make a new range.
848       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
849           Var.DefRanges.back().Ranges;
850       if (!Ranges.empty() && Ranges.back().second == Begin)
851         Ranges.back().second = End;
852       else
853         Ranges.emplace_back(Begin, End);
854 
855       // FIXME: Do more range combining.
856     }
857 
858     recordLocalVariable(std::move(Var), InlinedAt);
859   }
860 }
861 
862 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
863   assert(!CurFn && "Can't process two functions at once!");
864 
865   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
866     return;
867 
868   DebugHandlerBase::beginFunction(MF);
869 
870   const Function *GV = MF->getFunction();
871   assert(FnDebugInfo.count(GV) == false);
872   CurFn = &FnDebugInfo[GV];
873   CurFn->FuncId = NextFuncId++;
874   CurFn->Begin = Asm->getFunctionBegin();
875 
876   OS.EmitCVFuncIdDirective(CurFn->FuncId);
877 
878   // Find the end of the function prolog.  First known non-DBG_VALUE and
879   // non-frame setup location marks the beginning of the function body.
880   // FIXME: is there a simpler a way to do this? Can we just search
881   // for the first instruction of the function, not the last of the prolog?
882   DebugLoc PrologEndLoc;
883   bool EmptyPrologue = true;
884   for (const auto &MBB : *MF) {
885     for (const auto &MI : MBB) {
886       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
887           MI.getDebugLoc()) {
888         PrologEndLoc = MI.getDebugLoc();
889         break;
890       } else if (!MI.isDebugValue()) {
891         EmptyPrologue = false;
892       }
893     }
894   }
895 
896   // Record beginning of function if we have a non-empty prologue.
897   if (PrologEndLoc && !EmptyPrologue) {
898     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
899     maybeRecordLocation(FnStartDL, MF);
900   }
901 }
902 
903 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
904   // Don't record empty UDTs.
905   if (Ty->getName().empty())
906     return;
907 
908   SmallVector<StringRef, 5> QualifiedNameComponents;
909   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
910       Ty->getScope().resolve(), QualifiedNameComponents);
911 
912   std::string FullyQualifiedName =
913       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
914 
915   if (ClosestSubprogram == nullptr)
916     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
917   else if (ClosestSubprogram == CurrentSubprogram)
918     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
919 
920   // TODO: What if the ClosestSubprogram is neither null or the current
921   // subprogram?  Currently, the UDT just gets dropped on the floor.
922   //
923   // The current behavior is not desirable.  To get maximal fidelity, we would
924   // need to perform all type translation before beginning emission of .debug$S
925   // and then make LocalUDTs a member of FunctionInfo
926 }
927 
928 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
929   // Generic dispatch for lowering an unknown type.
930   switch (Ty->getTag()) {
931   case dwarf::DW_TAG_array_type:
932     return lowerTypeArray(cast<DICompositeType>(Ty));
933   case dwarf::DW_TAG_typedef:
934     return lowerTypeAlias(cast<DIDerivedType>(Ty));
935   case dwarf::DW_TAG_base_type:
936     return lowerTypeBasic(cast<DIBasicType>(Ty));
937   case dwarf::DW_TAG_pointer_type:
938     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
939       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
940     LLVM_FALLTHROUGH;
941   case dwarf::DW_TAG_reference_type:
942   case dwarf::DW_TAG_rvalue_reference_type:
943     return lowerTypePointer(cast<DIDerivedType>(Ty));
944   case dwarf::DW_TAG_ptr_to_member_type:
945     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
946   case dwarf::DW_TAG_const_type:
947   case dwarf::DW_TAG_volatile_type:
948     return lowerTypeModifier(cast<DIDerivedType>(Ty));
949   case dwarf::DW_TAG_subroutine_type:
950     if (ClassTy) {
951       // The member function type of a member function pointer has no
952       // ThisAdjustment.
953       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
954                                      /*ThisAdjustment=*/0);
955     }
956     return lowerTypeFunction(cast<DISubroutineType>(Ty));
957   case dwarf::DW_TAG_enumeration_type:
958     return lowerTypeEnum(cast<DICompositeType>(Ty));
959   case dwarf::DW_TAG_class_type:
960   case dwarf::DW_TAG_structure_type:
961     return lowerTypeClass(cast<DICompositeType>(Ty));
962   case dwarf::DW_TAG_union_type:
963     return lowerTypeUnion(cast<DICompositeType>(Ty));
964   default:
965     // Use the null type index.
966     return TypeIndex();
967   }
968 }
969 
970 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
971   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
972   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
973   StringRef TypeName = Ty->getName();
974 
975   addToUDTs(Ty, UnderlyingTypeIndex);
976 
977   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
978       TypeName == "HRESULT")
979     return TypeIndex(SimpleTypeKind::HResult);
980   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
981       TypeName == "wchar_t")
982     return TypeIndex(SimpleTypeKind::WideCharacter);
983 
984   return UnderlyingTypeIndex;
985 }
986 
987 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
988   DITypeRef ElementTypeRef = Ty->getBaseType();
989   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
990   // IndexType is size_t, which depends on the bitness of the target.
991   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
992                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
993                             : TypeIndex(SimpleTypeKind::UInt32Long);
994 
995   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
996 
997 
998   // We want to assert that the element type multiplied by the array lengths
999   // match the size of the overall array. However, if we don't have complete
1000   // type information for the base type, we can't make this assertion. This
1001   // happens if limited debug info is enabled in this case:
1002   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1003   //   VTableOptzn array[3];
1004   // The DICompositeType of VTableOptzn will have size zero, and the array will
1005   // have size 3 * sizeof(void*), and we should avoid asserting.
1006   //
1007   // There is a related bug in the front-end where an array of a structure,
1008   // which was declared as incomplete structure first, ends up not getting a
1009   // size assigned to it. (PR28303)
1010   // Example:
1011   //   struct A(*p)[3];
1012   //   struct A { int f; } a[3];
1013   bool PartiallyIncomplete = false;
1014   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1015     PartiallyIncomplete = true;
1016   }
1017 
1018   // Add subranges to array type.
1019   DINodeArray Elements = Ty->getElements();
1020   for (int i = Elements.size() - 1; i >= 0; --i) {
1021     const DINode *Element = Elements[i];
1022     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1023 
1024     const DISubrange *Subrange = cast<DISubrange>(Element);
1025     assert(Subrange->getLowerBound() == 0 &&
1026            "codeview doesn't support subranges with lower bounds");
1027     int64_t Count = Subrange->getCount();
1028 
1029     // Variable Length Array (VLA) has Count equal to '-1'.
1030     // Replace with Count '1', assume it is the minimum VLA length.
1031     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1032     if (Count == -1) {
1033       Count = 1;
1034       PartiallyIncomplete = true;
1035     }
1036 
1037     // Update the element size and element type index for subsequent subranges.
1038     ElementSize *= Count;
1039 
1040     // If this is the outermost array, use the size from the array. It will be
1041     // more accurate if PartiallyIncomplete is true.
1042     uint64_t ArraySize =
1043         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1044 
1045     StringRef Name = (i == 0) ? Ty->getName() : "";
1046     ElementTypeIndex = TypeTable.writeKnownType(
1047         ArrayRecord(ElementTypeIndex, IndexType, ArraySize, Name));
1048   }
1049 
1050   (void)PartiallyIncomplete;
1051   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1052 
1053   return ElementTypeIndex;
1054 }
1055 
1056 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1057   TypeIndex Index;
1058   dwarf::TypeKind Kind;
1059   uint32_t ByteSize;
1060 
1061   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1062   ByteSize = Ty->getSizeInBits() / 8;
1063 
1064   SimpleTypeKind STK = SimpleTypeKind::None;
1065   switch (Kind) {
1066   case dwarf::DW_ATE_address:
1067     // FIXME: Translate
1068     break;
1069   case dwarf::DW_ATE_boolean:
1070     switch (ByteSize) {
1071     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1072     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1073     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1074     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1075     case 16: STK = SimpleTypeKind::Boolean128; break;
1076     }
1077     break;
1078   case dwarf::DW_ATE_complex_float:
1079     switch (ByteSize) {
1080     case 2:  STK = SimpleTypeKind::Complex16;  break;
1081     case 4:  STK = SimpleTypeKind::Complex32;  break;
1082     case 8:  STK = SimpleTypeKind::Complex64;  break;
1083     case 10: STK = SimpleTypeKind::Complex80;  break;
1084     case 16: STK = SimpleTypeKind::Complex128; break;
1085     }
1086     break;
1087   case dwarf::DW_ATE_float:
1088     switch (ByteSize) {
1089     case 2:  STK = SimpleTypeKind::Float16;  break;
1090     case 4:  STK = SimpleTypeKind::Float32;  break;
1091     case 6:  STK = SimpleTypeKind::Float48;  break;
1092     case 8:  STK = SimpleTypeKind::Float64;  break;
1093     case 10: STK = SimpleTypeKind::Float80;  break;
1094     case 16: STK = SimpleTypeKind::Float128; break;
1095     }
1096     break;
1097   case dwarf::DW_ATE_signed:
1098     switch (ByteSize) {
1099     case 1:  STK = SimpleTypeKind::SByte;      break;
1100     case 2:  STK = SimpleTypeKind::Int16Short; break;
1101     case 4:  STK = SimpleTypeKind::Int32;      break;
1102     case 8:  STK = SimpleTypeKind::Int64Quad;  break;
1103     case 16: STK = SimpleTypeKind::Int128Oct;  break;
1104     }
1105     break;
1106   case dwarf::DW_ATE_unsigned:
1107     switch (ByteSize) {
1108     case 1:  STK = SimpleTypeKind::Byte;        break;
1109     case 2:  STK = SimpleTypeKind::UInt16Short; break;
1110     case 4:  STK = SimpleTypeKind::UInt32;      break;
1111     case 8:  STK = SimpleTypeKind::UInt64Quad;  break;
1112     case 16: STK = SimpleTypeKind::UInt128Oct;  break;
1113     }
1114     break;
1115   case dwarf::DW_ATE_UTF:
1116     switch (ByteSize) {
1117     case 2: STK = SimpleTypeKind::Character16; break;
1118     case 4: STK = SimpleTypeKind::Character32; break;
1119     }
1120     break;
1121   case dwarf::DW_ATE_signed_char:
1122     if (ByteSize == 1)
1123       STK = SimpleTypeKind::SignedCharacter;
1124     break;
1125   case dwarf::DW_ATE_unsigned_char:
1126     if (ByteSize == 1)
1127       STK = SimpleTypeKind::UnsignedCharacter;
1128     break;
1129   default:
1130     break;
1131   }
1132 
1133   // Apply some fixups based on the source-level type name.
1134   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1135     STK = SimpleTypeKind::Int32Long;
1136   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1137     STK = SimpleTypeKind::UInt32Long;
1138   if (STK == SimpleTypeKind::UInt16Short &&
1139       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1140     STK = SimpleTypeKind::WideCharacter;
1141   if ((STK == SimpleTypeKind::SignedCharacter ||
1142        STK == SimpleTypeKind::UnsignedCharacter) &&
1143       Ty->getName() == "char")
1144     STK = SimpleTypeKind::NarrowCharacter;
1145 
1146   return TypeIndex(STK);
1147 }
1148 
1149 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1150   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1151 
1152   // Pointers to simple types can use SimpleTypeMode, rather than having a
1153   // dedicated pointer type record.
1154   if (PointeeTI.isSimple() &&
1155       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1156       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1157     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1158                               ? SimpleTypeMode::NearPointer64
1159                               : SimpleTypeMode::NearPointer32;
1160     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1161   }
1162 
1163   PointerKind PK =
1164       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1165   PointerMode PM = PointerMode::Pointer;
1166   switch (Ty->getTag()) {
1167   default: llvm_unreachable("not a pointer tag type");
1168   case dwarf::DW_TAG_pointer_type:
1169     PM = PointerMode::Pointer;
1170     break;
1171   case dwarf::DW_TAG_reference_type:
1172     PM = PointerMode::LValueReference;
1173     break;
1174   case dwarf::DW_TAG_rvalue_reference_type:
1175     PM = PointerMode::RValueReference;
1176     break;
1177   }
1178   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1179   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1180   // do.
1181   PointerOptions PO = PointerOptions::None;
1182   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1183   return TypeTable.writeKnownType(PR);
1184 }
1185 
1186 static PointerToMemberRepresentation
1187 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1188   // SizeInBytes being zero generally implies that the member pointer type was
1189   // incomplete, which can happen if it is part of a function prototype. In this
1190   // case, use the unknown model instead of the general model.
1191   if (IsPMF) {
1192     switch (Flags & DINode::FlagPtrToMemberRep) {
1193     case 0:
1194       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1195                               : PointerToMemberRepresentation::GeneralFunction;
1196     case DINode::FlagSingleInheritance:
1197       return PointerToMemberRepresentation::SingleInheritanceFunction;
1198     case DINode::FlagMultipleInheritance:
1199       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1200     case DINode::FlagVirtualInheritance:
1201       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1202     }
1203   } else {
1204     switch (Flags & DINode::FlagPtrToMemberRep) {
1205     case 0:
1206       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1207                               : PointerToMemberRepresentation::GeneralData;
1208     case DINode::FlagSingleInheritance:
1209       return PointerToMemberRepresentation::SingleInheritanceData;
1210     case DINode::FlagMultipleInheritance:
1211       return PointerToMemberRepresentation::MultipleInheritanceData;
1212     case DINode::FlagVirtualInheritance:
1213       return PointerToMemberRepresentation::VirtualInheritanceData;
1214     }
1215   }
1216   llvm_unreachable("invalid ptr to member representation");
1217 }
1218 
1219 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1220   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1221   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1222   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1223   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1224                                                    : PointerKind::Near32;
1225   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1226   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1227                          : PointerMode::PointerToDataMember;
1228   PointerOptions PO = PointerOptions::None; // FIXME
1229   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1230   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1231   MemberPointerInfo MPI(
1232       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1233   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1234   return TypeTable.writeKnownType(PR);
1235 }
1236 
1237 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1238 /// have a translation, use the NearC convention.
1239 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1240   switch (DwarfCC) {
1241   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1242   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1243   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1244   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1245   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1246   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1247   }
1248   return CallingConvention::NearC;
1249 }
1250 
1251 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1252   ModifierOptions Mods = ModifierOptions::None;
1253   bool IsModifier = true;
1254   const DIType *BaseTy = Ty;
1255   while (IsModifier && BaseTy) {
1256     // FIXME: Need to add DWARF tag for __unaligned.
1257     switch (BaseTy->getTag()) {
1258     case dwarf::DW_TAG_const_type:
1259       Mods |= ModifierOptions::Const;
1260       break;
1261     case dwarf::DW_TAG_volatile_type:
1262       Mods |= ModifierOptions::Volatile;
1263       break;
1264     default:
1265       IsModifier = false;
1266       break;
1267     }
1268     if (IsModifier)
1269       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1270   }
1271   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1272   return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods));
1273 }
1274 
1275 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1276   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1277   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1278     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1279 
1280   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1281   ArrayRef<TypeIndex> ArgTypeIndices = None;
1282   if (!ReturnAndArgTypeIndices.empty()) {
1283     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1284     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1285     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1286   }
1287 
1288   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1289   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1290 
1291   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1292 
1293   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1294                             ArgTypeIndices.size(), ArgListIndex);
1295   return TypeTable.writeKnownType(Procedure);
1296 }
1297 
1298 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1299                                                  const DIType *ClassTy,
1300                                                  int ThisAdjustment) {
1301   // Lower the containing class type.
1302   TypeIndex ClassType = getTypeIndex(ClassTy);
1303 
1304   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1305   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1306     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1307 
1308   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1309   ArrayRef<TypeIndex> ArgTypeIndices = None;
1310   if (!ReturnAndArgTypeIndices.empty()) {
1311     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1312     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1313     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1314   }
1315   TypeIndex ThisTypeIndex = TypeIndex::Void();
1316   if (!ArgTypeIndices.empty()) {
1317     ThisTypeIndex = ArgTypeIndices.front();
1318     ArgTypeIndices = ArgTypeIndices.drop_front();
1319   }
1320 
1321   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1322   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1323 
1324   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1325 
1326   // TODO: Need to use the correct values for:
1327   //       FunctionOptions
1328   //       ThisPointerAdjustment.
1329   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1330       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1331       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1332 
1333   return TI;
1334 }
1335 
1336 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1337   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1338   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1339   return TypeTable.writeKnownType(VFTableShapeRecord(Slots));
1340 }
1341 
1342 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1343   switch (Flags & DINode::FlagAccessibility) {
1344   case DINode::FlagPrivate:   return MemberAccess::Private;
1345   case DINode::FlagPublic:    return MemberAccess::Public;
1346   case DINode::FlagProtected: return MemberAccess::Protected;
1347   case 0:
1348     // If there was no explicit access control, provide the default for the tag.
1349     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1350                                                  : MemberAccess::Public;
1351   }
1352   llvm_unreachable("access flags are exclusive");
1353 }
1354 
1355 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1356   if (SP->isArtificial())
1357     return MethodOptions::CompilerGenerated;
1358 
1359   // FIXME: Handle other MethodOptions.
1360 
1361   return MethodOptions::None;
1362 }
1363 
1364 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1365                                            bool Introduced) {
1366   switch (SP->getVirtuality()) {
1367   case dwarf::DW_VIRTUALITY_none:
1368     break;
1369   case dwarf::DW_VIRTUALITY_virtual:
1370     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1371   case dwarf::DW_VIRTUALITY_pure_virtual:
1372     return Introduced ? MethodKind::PureIntroducingVirtual
1373                       : MethodKind::PureVirtual;
1374   default:
1375     llvm_unreachable("unhandled virtuality case");
1376   }
1377 
1378   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1379 
1380   return MethodKind::Vanilla;
1381 }
1382 
1383 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1384   switch (Ty->getTag()) {
1385   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1386   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1387   }
1388   llvm_unreachable("unexpected tag");
1389 }
1390 
1391 /// Return ClassOptions that should be present on both the forward declaration
1392 /// and the defintion of a tag type.
1393 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1394   ClassOptions CO = ClassOptions::None;
1395 
1396   // MSVC always sets this flag, even for local types. Clang doesn't always
1397   // appear to give every type a linkage name, which may be problematic for us.
1398   // FIXME: Investigate the consequences of not following them here.
1399   if (!Ty->getIdentifier().empty())
1400     CO |= ClassOptions::HasUniqueName;
1401 
1402   // Put the Nested flag on a type if it appears immediately inside a tag type.
1403   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1404   // here. That flag is only set on definitions, and not forward declarations.
1405   const DIScope *ImmediateScope = Ty->getScope().resolve();
1406   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1407     CO |= ClassOptions::Nested;
1408 
1409   // Put the Scoped flag on function-local types.
1410   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1411        Scope = Scope->getScope().resolve()) {
1412     if (isa<DISubprogram>(Scope)) {
1413       CO |= ClassOptions::Scoped;
1414       break;
1415     }
1416   }
1417 
1418   return CO;
1419 }
1420 
1421 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1422   ClassOptions CO = getCommonClassOptions(Ty);
1423   TypeIndex FTI;
1424   unsigned EnumeratorCount = 0;
1425 
1426   if (Ty->isForwardDecl()) {
1427     CO |= ClassOptions::ForwardReference;
1428   } else {
1429     FieldListRecordBuilder Fields;
1430     for (const DINode *Element : Ty->getElements()) {
1431       // We assume that the frontend provides all members in source declaration
1432       // order, which is what MSVC does.
1433       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1434         Fields.writeMemberType(EnumeratorRecord(
1435             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1436             Enumerator->getName()));
1437         EnumeratorCount++;
1438       }
1439     }
1440     FTI = TypeTable.writeFieldList(Fields);
1441   }
1442 
1443   std::string FullName = getFullyQualifiedName(Ty);
1444 
1445   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1446                                              Ty->getIdentifier(),
1447                                              getTypeIndex(Ty->getBaseType())));
1448 }
1449 
1450 //===----------------------------------------------------------------------===//
1451 // ClassInfo
1452 //===----------------------------------------------------------------------===//
1453 
1454 struct llvm::ClassInfo {
1455   struct MemberInfo {
1456     const DIDerivedType *MemberTypeNode;
1457     uint64_t BaseOffset;
1458   };
1459   // [MemberInfo]
1460   typedef std::vector<MemberInfo> MemberList;
1461 
1462   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1463   // MethodName -> MethodsList
1464   typedef MapVector<MDString *, MethodsList> MethodsMap;
1465 
1466   /// Base classes.
1467   std::vector<const DIDerivedType *> Inheritance;
1468 
1469   /// Direct members.
1470   MemberList Members;
1471   // Direct overloaded methods gathered by name.
1472   MethodsMap Methods;
1473 
1474   TypeIndex VShapeTI;
1475 
1476   std::vector<const DICompositeType *> NestedClasses;
1477 };
1478 
1479 void CodeViewDebug::clear() {
1480   assert(CurFn == nullptr);
1481   FileIdMap.clear();
1482   FnDebugInfo.clear();
1483   FileToFilepathMap.clear();
1484   LocalUDTs.clear();
1485   GlobalUDTs.clear();
1486   TypeIndices.clear();
1487   CompleteTypeIndices.clear();
1488 }
1489 
1490 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1491                                       const DIDerivedType *DDTy) {
1492   if (!DDTy->getName().empty()) {
1493     Info.Members.push_back({DDTy, 0});
1494     return;
1495   }
1496   // An unnamed member must represent a nested struct or union. Add all the
1497   // indirect fields to the current record.
1498   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1499   uint64_t Offset = DDTy->getOffsetInBits();
1500   const DIType *Ty = DDTy->getBaseType().resolve();
1501   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1502   ClassInfo NestedInfo = collectClassInfo(DCTy);
1503   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1504     Info.Members.push_back(
1505         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1506 }
1507 
1508 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1509   ClassInfo Info;
1510   // Add elements to structure type.
1511   DINodeArray Elements = Ty->getElements();
1512   for (auto *Element : Elements) {
1513     // We assume that the frontend provides all members in source declaration
1514     // order, which is what MSVC does.
1515     if (!Element)
1516       continue;
1517     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1518       Info.Methods[SP->getRawName()].push_back(SP);
1519     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1520       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1521         collectMemberInfo(Info, DDTy);
1522       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1523         Info.Inheritance.push_back(DDTy);
1524       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1525                  DDTy->getName() == "__vtbl_ptr_type") {
1526         Info.VShapeTI = getTypeIndex(DDTy);
1527       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1528         // Ignore friend members. It appears that MSVC emitted info about
1529         // friends in the past, but modern versions do not.
1530       }
1531     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1532       Info.NestedClasses.push_back(Composite);
1533     }
1534     // Skip other unrecognized kinds of elements.
1535   }
1536   return Info;
1537 }
1538 
1539 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1540   // First, construct the forward decl.  Don't look into Ty to compute the
1541   // forward decl options, since it might not be available in all TUs.
1542   TypeRecordKind Kind = getRecordKind(Ty);
1543   ClassOptions CO =
1544       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1545   std::string FullName = getFullyQualifiedName(Ty);
1546   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1547       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1548       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1549   if (!Ty->isForwardDecl())
1550     DeferredCompleteTypes.push_back(Ty);
1551   return FwdDeclTI;
1552 }
1553 
1554 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1555   // Construct the field list and complete type record.
1556   TypeRecordKind Kind = getRecordKind(Ty);
1557   ClassOptions CO = getCommonClassOptions(Ty);
1558   TypeIndex FieldTI;
1559   TypeIndex VShapeTI;
1560   unsigned FieldCount;
1561   bool ContainsNestedClass;
1562   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1563       lowerRecordFieldList(Ty);
1564 
1565   if (ContainsNestedClass)
1566     CO |= ClassOptions::ContainsNestedClass;
1567 
1568   std::string FullName = getFullyQualifiedName(Ty);
1569 
1570   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1571 
1572   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1573       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1574       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1575 
1576   TypeTable.writeKnownType(UdtSourceLineRecord(
1577       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1578                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1579       Ty->getLine()));
1580 
1581   addToUDTs(Ty, ClassTI);
1582 
1583   return ClassTI;
1584 }
1585 
1586 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1587   ClassOptions CO =
1588       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1589   std::string FullName = getFullyQualifiedName(Ty);
1590   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1591       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1592   if (!Ty->isForwardDecl())
1593     DeferredCompleteTypes.push_back(Ty);
1594   return FwdDeclTI;
1595 }
1596 
1597 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1598   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1599   TypeIndex FieldTI;
1600   unsigned FieldCount;
1601   bool ContainsNestedClass;
1602   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1603       lowerRecordFieldList(Ty);
1604 
1605   if (ContainsNestedClass)
1606     CO |= ClassOptions::ContainsNestedClass;
1607 
1608   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1609   std::string FullName = getFullyQualifiedName(Ty);
1610 
1611   TypeIndex UnionTI = TypeTable.writeKnownType(
1612       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1613                   Ty->getIdentifier()));
1614 
1615   TypeTable.writeKnownType(UdtSourceLineRecord(
1616       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1617                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1618       Ty->getLine()));
1619 
1620   addToUDTs(Ty, UnionTI);
1621 
1622   return UnionTI;
1623 }
1624 
1625 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1626 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1627   // Manually count members. MSVC appears to count everything that generates a
1628   // field list record. Each individual overload in a method overload group
1629   // contributes to this count, even though the overload group is a single field
1630   // list record.
1631   unsigned MemberCount = 0;
1632   ClassInfo Info = collectClassInfo(Ty);
1633   FieldListRecordBuilder Fields;
1634 
1635   // Create base classes.
1636   for (const DIDerivedType *I : Info.Inheritance) {
1637     if (I->getFlags() & DINode::FlagVirtual) {
1638       // Virtual base.
1639       // FIXME: Emit VBPtrOffset when the frontend provides it.
1640       unsigned VBPtrOffset = 0;
1641       // FIXME: Despite the accessor name, the offset is really in bytes.
1642       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1643       Fields.writeMemberType(VirtualBaseClassRecord(
1644           translateAccessFlags(Ty->getTag(), I->getFlags()),
1645           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1646           VBTableIndex));
1647     } else {
1648       assert(I->getOffsetInBits() % 8 == 0 &&
1649              "bases must be on byte boundaries");
1650       Fields.writeMemberType(BaseClassRecord(
1651           translateAccessFlags(Ty->getTag(), I->getFlags()),
1652           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1653     }
1654   }
1655 
1656   // Create members.
1657   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1658     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1659     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1660     StringRef MemberName = Member->getName();
1661     MemberAccess Access =
1662         translateAccessFlags(Ty->getTag(), Member->getFlags());
1663 
1664     if (Member->isStaticMember()) {
1665       Fields.writeMemberType(
1666           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1667       MemberCount++;
1668       continue;
1669     }
1670 
1671     // Virtual function pointer member.
1672     if ((Member->getFlags() & DINode::FlagArtificial) &&
1673         Member->getName().startswith("_vptr$")) {
1674       Fields.writeMemberType(VFPtrRecord(getTypeIndex(Member->getBaseType())));
1675       MemberCount++;
1676       continue;
1677     }
1678 
1679     // Data member.
1680     uint64_t MemberOffsetInBits =
1681         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1682     if (Member->isBitField()) {
1683       uint64_t StartBitOffset = MemberOffsetInBits;
1684       if (const auto *CI =
1685               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1686         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1687       }
1688       StartBitOffset -= MemberOffsetInBits;
1689       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1690           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1691     }
1692     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1693     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1694                                             MemberOffsetInBytes, MemberName));
1695     MemberCount++;
1696   }
1697 
1698   // Create methods
1699   for (auto &MethodItr : Info.Methods) {
1700     StringRef Name = MethodItr.first->getString();
1701 
1702     std::vector<OneMethodRecord> Methods;
1703     for (const DISubprogram *SP : MethodItr.second) {
1704       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1705       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1706 
1707       unsigned VFTableOffset = -1;
1708       if (Introduced)
1709         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1710 
1711       Methods.push_back(
1712           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1713                           translateMethodOptionFlags(SP),
1714                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1715                           VFTableOffset, Name));
1716       MemberCount++;
1717     }
1718     assert(Methods.size() > 0 && "Empty methods map entry");
1719     if (Methods.size() == 1)
1720       Fields.writeMemberType(Methods[0]);
1721     else {
1722       TypeIndex MethodList =
1723           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1724       Fields.writeMemberType(
1725           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1726     }
1727   }
1728 
1729   // Create nested classes.
1730   for (const DICompositeType *Nested : Info.NestedClasses) {
1731     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1732     Fields.writeMemberType(R);
1733     MemberCount++;
1734   }
1735 
1736   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1737   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1738                          !Info.NestedClasses.empty());
1739 }
1740 
1741 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1742   if (!VBPType.getIndex()) {
1743     // Make a 'const int *' type.
1744     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1745     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1746 
1747     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1748                                                   : PointerKind::Near32;
1749     PointerMode PM = PointerMode::Pointer;
1750     PointerOptions PO = PointerOptions::None;
1751     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1752 
1753     VBPType = TypeTable.writeKnownType(PR);
1754   }
1755 
1756   return VBPType;
1757 }
1758 
1759 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1760   const DIType *Ty = TypeRef.resolve();
1761   const DIType *ClassTy = ClassTyRef.resolve();
1762 
1763   // The null DIType is the void type. Don't try to hash it.
1764   if (!Ty)
1765     return TypeIndex::Void();
1766 
1767   // Check if we've already translated this type. Don't try to do a
1768   // get-or-create style insertion that caches the hash lookup across the
1769   // lowerType call. It will update the TypeIndices map.
1770   auto I = TypeIndices.find({Ty, ClassTy});
1771   if (I != TypeIndices.end())
1772     return I->second;
1773 
1774   TypeLoweringScope S(*this);
1775   TypeIndex TI = lowerType(Ty, ClassTy);
1776   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1777 }
1778 
1779 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1780   const DIType *Ty = TypeRef.resolve();
1781 
1782   // The null DIType is the void type. Don't try to hash it.
1783   if (!Ty)
1784     return TypeIndex::Void();
1785 
1786   // If this is a non-record type, the complete type index is the same as the
1787   // normal type index. Just call getTypeIndex.
1788   switch (Ty->getTag()) {
1789   case dwarf::DW_TAG_class_type:
1790   case dwarf::DW_TAG_structure_type:
1791   case dwarf::DW_TAG_union_type:
1792     break;
1793   default:
1794     return getTypeIndex(Ty);
1795   }
1796 
1797   // Check if we've already translated the complete record type.  Lowering a
1798   // complete type should never trigger lowering another complete type, so we
1799   // can reuse the hash table lookup result.
1800   const auto *CTy = cast<DICompositeType>(Ty);
1801   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1802   if (!InsertResult.second)
1803     return InsertResult.first->second;
1804 
1805   TypeLoweringScope S(*this);
1806 
1807   // Make sure the forward declaration is emitted first. It's unclear if this
1808   // is necessary, but MSVC does it, and we should follow suit until we can show
1809   // otherwise.
1810   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1811 
1812   // Just use the forward decl if we don't have complete type info. This might
1813   // happen if the frontend is using modules and expects the complete definition
1814   // to be emitted elsewhere.
1815   if (CTy->isForwardDecl())
1816     return FwdDeclTI;
1817 
1818   TypeIndex TI;
1819   switch (CTy->getTag()) {
1820   case dwarf::DW_TAG_class_type:
1821   case dwarf::DW_TAG_structure_type:
1822     TI = lowerCompleteTypeClass(CTy);
1823     break;
1824   case dwarf::DW_TAG_union_type:
1825     TI = lowerCompleteTypeUnion(CTy);
1826     break;
1827   default:
1828     llvm_unreachable("not a record");
1829   }
1830 
1831   InsertResult.first->second = TI;
1832   return TI;
1833 }
1834 
1835 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1836 /// and do this until fixpoint, as each complete record type typically
1837 /// references
1838 /// many other record types.
1839 void CodeViewDebug::emitDeferredCompleteTypes() {
1840   SmallVector<const DICompositeType *, 4> TypesToEmit;
1841   while (!DeferredCompleteTypes.empty()) {
1842     std::swap(DeferredCompleteTypes, TypesToEmit);
1843     for (const DICompositeType *RecordTy : TypesToEmit)
1844       getCompleteTypeIndex(RecordTy);
1845     TypesToEmit.clear();
1846   }
1847 }
1848 
1849 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1850   // Get the sorted list of parameters and emit them first.
1851   SmallVector<const LocalVariable *, 6> Params;
1852   for (const LocalVariable &L : Locals)
1853     if (L.DIVar->isParameter())
1854       Params.push_back(&L);
1855   std::sort(Params.begin(), Params.end(),
1856             [](const LocalVariable *L, const LocalVariable *R) {
1857               return L->DIVar->getArg() < R->DIVar->getArg();
1858             });
1859   for (const LocalVariable *L : Params)
1860     emitLocalVariable(*L);
1861 
1862   // Next emit all non-parameters in the order that we found them.
1863   for (const LocalVariable &L : Locals)
1864     if (!L.DIVar->isParameter())
1865       emitLocalVariable(L);
1866 }
1867 
1868 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
1869   // LocalSym record, see SymbolRecord.h for more info.
1870   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
1871            *LocalEnd = MMI->getContext().createTempSymbol();
1872   OS.AddComment("Record length");
1873   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
1874   OS.EmitLabel(LocalBegin);
1875 
1876   OS.AddComment("Record kind: S_LOCAL");
1877   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
1878 
1879   LocalSymFlags Flags = LocalSymFlags::None;
1880   if (Var.DIVar->isParameter())
1881     Flags |= LocalSymFlags::IsParameter;
1882   if (Var.DefRanges.empty())
1883     Flags |= LocalSymFlags::IsOptimizedOut;
1884 
1885   OS.AddComment("TypeIndex");
1886   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
1887   OS.EmitIntValue(TI.getIndex(), 4);
1888   OS.AddComment("Flags");
1889   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
1890   // Truncate the name so we won't overflow the record length field.
1891   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
1892   OS.EmitLabel(LocalEnd);
1893 
1894   // Calculate the on disk prefix of the appropriate def range record. The
1895   // records and on disk formats are described in SymbolRecords.h. BytePrefix
1896   // should be big enough to hold all forms without memory allocation.
1897   SmallString<20> BytePrefix;
1898   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
1899     BytePrefix.clear();
1900     // FIXME: Handle bitpieces.
1901     if (DefRange.StructOffset != 0)
1902       continue;
1903 
1904     if (DefRange.InMemory) {
1905       DefRangeRegisterRelSym Sym(DefRange.CVRegister, 0, DefRange.DataOffset, 0,
1906                                  0, 0, ArrayRef<LocalVariableAddrGap>());
1907       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
1908       BytePrefix +=
1909           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1910       BytePrefix +=
1911           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1912                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1913     } else {
1914       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
1915       // Unclear what matters here.
1916       DefRangeRegisterSym Sym(DefRange.CVRegister, 0, 0, 0, 0,
1917                               ArrayRef<LocalVariableAddrGap>());
1918       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
1919       BytePrefix +=
1920           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
1921       BytePrefix +=
1922           StringRef(reinterpret_cast<const char *>(&Sym.Header),
1923                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
1924     }
1925     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
1926   }
1927 }
1928 
1929 void CodeViewDebug::endFunction(const MachineFunction *MF) {
1930   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
1931     return;
1932 
1933   const Function *GV = MF->getFunction();
1934   assert(FnDebugInfo.count(GV));
1935   assert(CurFn == &FnDebugInfo[GV]);
1936 
1937   collectVariableInfo(GV->getSubprogram());
1938 
1939   DebugHandlerBase::endFunction(MF);
1940 
1941   // Don't emit anything if we don't have any line tables.
1942   if (!CurFn->HaveLineInfo) {
1943     FnDebugInfo.erase(GV);
1944     CurFn = nullptr;
1945     return;
1946   }
1947 
1948   CurFn->End = Asm->getFunctionEnd();
1949 
1950   CurFn = nullptr;
1951 }
1952 
1953 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
1954   DebugHandlerBase::beginInstruction(MI);
1955 
1956   // Ignore DBG_VALUE locations and function prologue.
1957   if (!Asm || !CurFn || MI->isDebugValue() ||
1958       MI->getFlag(MachineInstr::FrameSetup))
1959     return;
1960   DebugLoc DL = MI->getDebugLoc();
1961   if (DL == PrevInstLoc || !DL)
1962     return;
1963   maybeRecordLocation(DL, Asm->MF);
1964 }
1965 
1966 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
1967   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
1968            *EndLabel = MMI->getContext().createTempSymbol();
1969   OS.EmitIntValue(unsigned(Kind), 4);
1970   OS.AddComment("Subsection size");
1971   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
1972   OS.EmitLabel(BeginLabel);
1973   return EndLabel;
1974 }
1975 
1976 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
1977   OS.EmitLabel(EndLabel);
1978   // Every subsection must be aligned to a 4-byte boundary.
1979   OS.EmitValueToAlignment(4);
1980 }
1981 
1982 void CodeViewDebug::emitDebugInfoForUDTs(
1983     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
1984   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
1985     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
1986              *UDTRecordEnd = MMI->getContext().createTempSymbol();
1987     OS.AddComment("Record length");
1988     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
1989     OS.EmitLabel(UDTRecordBegin);
1990 
1991     OS.AddComment("Record kind: S_UDT");
1992     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
1993 
1994     OS.AddComment("Type");
1995     OS.EmitIntValue(UDT.second.getIndex(), 4);
1996 
1997     emitNullTerminatedSymbolName(OS, UDT.first);
1998     OS.EmitLabel(UDTRecordEnd);
1999   }
2000 }
2001 
2002 void CodeViewDebug::emitDebugInfoForGlobals() {
2003   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2004   for (const MDNode *Node : CUs->operands()) {
2005     const auto *CU = cast<DICompileUnit>(Node);
2006 
2007     // First, emit all globals that are not in a comdat in a single symbol
2008     // substream. MSVC doesn't like it if the substream is empty, so only open
2009     // it if we have at least one global to emit.
2010     switchToDebugSectionForSymbol(nullptr);
2011     MCSymbol *EndLabel = nullptr;
2012     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2013       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2014         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2015           if (!EndLabel) {
2016             OS.AddComment("Symbol subsection for globals");
2017             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2018           }
2019           emitDebugInfoForGlobal(G, Asm->getSymbol(GV));
2020         }
2021       }
2022     }
2023     if (EndLabel)
2024       endCVSubsection(EndLabel);
2025 
2026     // Second, emit each global that is in a comdat into its own .debug$S
2027     // section along with its own symbol substream.
2028     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2029       if (const auto *GV = dyn_cast_or_null<GlobalVariable>(G->getVariable())) {
2030         if (GV->hasComdat()) {
2031           MCSymbol *GVSym = Asm->getSymbol(GV);
2032           OS.AddComment("Symbol subsection for " +
2033                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2034           switchToDebugSectionForSymbol(GVSym);
2035           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2036           emitDebugInfoForGlobal(G, GVSym);
2037           endCVSubsection(EndLabel);
2038         }
2039       }
2040     }
2041   }
2042 }
2043 
2044 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2045   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2046   for (const MDNode *Node : CUs->operands()) {
2047     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2048       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2049         getTypeIndex(RT);
2050         // FIXME: Add to global/local DTU list.
2051       }
2052     }
2053   }
2054 }
2055 
2056 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2057                                            MCSymbol *GVSym) {
2058   // DataSym record, see SymbolRecord.h for more info.
2059   // FIXME: Thread local data, etc
2060   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2061            *DataEnd = MMI->getContext().createTempSymbol();
2062   OS.AddComment("Record length");
2063   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2064   OS.EmitLabel(DataBegin);
2065   const auto *GV = cast<GlobalVariable>(DIGV->getVariable());
2066   if (DIGV->isLocalToUnit()) {
2067     if (GV->isThreadLocal()) {
2068       OS.AddComment("Record kind: S_LTHREAD32");
2069       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2070     } else {
2071       OS.AddComment("Record kind: S_LDATA32");
2072       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2073     }
2074   } else {
2075     if (GV->isThreadLocal()) {
2076       OS.AddComment("Record kind: S_GTHREAD32");
2077       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2078     } else {
2079       OS.AddComment("Record kind: S_GDATA32");
2080       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2081     }
2082   }
2083   OS.AddComment("Type");
2084   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2085   OS.AddComment("DataOffset");
2086   OS.EmitCOFFSecRel32(GVSym);
2087   OS.AddComment("Segment");
2088   OS.EmitCOFFSectionIndex(GVSym);
2089   OS.AddComment("Name");
2090   emitNullTerminatedSymbolName(OS, DIGV->getName());
2091   OS.EmitLabel(DataEnd);
2092 }
2093