1 //===-- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp --*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains support for writing Microsoft CodeView debug info.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeViewDebug.h"
15 #include "llvm/ADT/TinyPtrVector.h"
16 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
17 #include "llvm/DebugInfo/CodeView/CodeView.h"
18 #include "llvm/DebugInfo/CodeView/FieldListRecordBuilder.h"
19 #include "llvm/DebugInfo/CodeView/Line.h"
20 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
21 #include "llvm/DebugInfo/CodeView/TypeDumper.h"
22 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
23 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
24 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbacks.h"
25 #include "llvm/DebugInfo/MSF/ByteStream.h"
26 #include "llvm/DebugInfo/MSF/StreamReader.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/MC/MCSectionCOFF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Support/COFF.h"
33 #include "llvm/Support/ScopedPrinter.h"
34 #include "llvm/Target/TargetFrameLowering.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 
38 using namespace llvm;
39 using namespace llvm::codeview;
40 using namespace llvm::msf;
41 
42 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
43     : DebugHandlerBase(AP), OS(*Asm->OutStreamer), Allocator(),
44       TypeTable(Allocator), CurFn(nullptr) {
45   // If module doesn't have named metadata anchors or COFF debug section
46   // is not available, skip any debug info related stuff.
47   if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
48       !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
49     Asm = nullptr;
50     return;
51   }
52 
53   // Tell MMI that we have debug info.
54   MMI->setDebugInfoAvailability(true);
55 }
56 
57 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
58   std::string &Filepath = FileToFilepathMap[File];
59   if (!Filepath.empty())
60     return Filepath;
61 
62   StringRef Dir = File->getDirectory(), Filename = File->getFilename();
63 
64   // Clang emits directory and relative filename info into the IR, but CodeView
65   // operates on full paths.  We could change Clang to emit full paths too, but
66   // that would increase the IR size and probably not needed for other users.
67   // For now, just concatenate and canonicalize the path here.
68   if (Filename.find(':') == 1)
69     Filepath = Filename;
70   else
71     Filepath = (Dir + "\\" + Filename).str();
72 
73   // Canonicalize the path.  We have to do it textually because we may no longer
74   // have access the file in the filesystem.
75   // First, replace all slashes with backslashes.
76   std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
77 
78   // Remove all "\.\" with "\".
79   size_t Cursor = 0;
80   while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
81     Filepath.erase(Cursor, 2);
82 
83   // Replace all "\XXX\..\" with "\".  Don't try too hard though as the original
84   // path should be well-formatted, e.g. start with a drive letter, etc.
85   Cursor = 0;
86   while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
87     // Something's wrong if the path starts with "\..\", abort.
88     if (Cursor == 0)
89       break;
90 
91     size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
92     if (PrevSlash == std::string::npos)
93       // Something's wrong, abort.
94       break;
95 
96     Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
97     // The next ".." might be following the one we've just erased.
98     Cursor = PrevSlash;
99   }
100 
101   // Remove all duplicate backslashes.
102   Cursor = 0;
103   while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
104     Filepath.erase(Cursor, 1);
105 
106   return Filepath;
107 }
108 
109 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
110   unsigned NextId = FileIdMap.size() + 1;
111   auto Insertion = FileIdMap.insert(std::make_pair(F, NextId));
112   if (Insertion.second) {
113     // We have to compute the full filepath and emit a .cv_file directive.
114     StringRef FullPath = getFullFilepath(F);
115     bool Success = OS.EmitCVFileDirective(NextId, FullPath);
116     (void)Success;
117     assert(Success && ".cv_file directive failed");
118   }
119   return Insertion.first->second;
120 }
121 
122 CodeViewDebug::InlineSite &
123 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
124                              const DISubprogram *Inlinee) {
125   auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
126   InlineSite *Site = &SiteInsertion.first->second;
127   if (SiteInsertion.second) {
128     unsigned ParentFuncId = CurFn->FuncId;
129     if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
130       ParentFuncId =
131           getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
132               .SiteFuncId;
133 
134     Site->SiteFuncId = NextFuncId++;
135     OS.EmitCVInlineSiteIdDirective(
136         Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
137         InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
138     Site->Inlinee = Inlinee;
139     InlinedSubprograms.insert(Inlinee);
140     getFuncIdForSubprogram(Inlinee);
141   }
142   return *Site;
143 }
144 
145 static StringRef getPrettyScopeName(const DIScope *Scope) {
146   StringRef ScopeName = Scope->getName();
147   if (!ScopeName.empty())
148     return ScopeName;
149 
150   switch (Scope->getTag()) {
151   case dwarf::DW_TAG_enumeration_type:
152   case dwarf::DW_TAG_class_type:
153   case dwarf::DW_TAG_structure_type:
154   case dwarf::DW_TAG_union_type:
155     return "<unnamed-tag>";
156   case dwarf::DW_TAG_namespace:
157     return "`anonymous namespace'";
158   }
159 
160   return StringRef();
161 }
162 
163 static const DISubprogram *getQualifiedNameComponents(
164     const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
165   const DISubprogram *ClosestSubprogram = nullptr;
166   while (Scope != nullptr) {
167     if (ClosestSubprogram == nullptr)
168       ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
169     StringRef ScopeName = getPrettyScopeName(Scope);
170     if (!ScopeName.empty())
171       QualifiedNameComponents.push_back(ScopeName);
172     Scope = Scope->getScope().resolve();
173   }
174   return ClosestSubprogram;
175 }
176 
177 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
178                                     StringRef TypeName) {
179   std::string FullyQualifiedName;
180   for (StringRef QualifiedNameComponent : reverse(QualifiedNameComponents)) {
181     FullyQualifiedName.append(QualifiedNameComponent);
182     FullyQualifiedName.append("::");
183   }
184   FullyQualifiedName.append(TypeName);
185   return FullyQualifiedName;
186 }
187 
188 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
189   SmallVector<StringRef, 5> QualifiedNameComponents;
190   getQualifiedNameComponents(Scope, QualifiedNameComponents);
191   return getQualifiedName(QualifiedNameComponents, Name);
192 }
193 
194 struct CodeViewDebug::TypeLoweringScope {
195   TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
196   ~TypeLoweringScope() {
197     // Don't decrement TypeEmissionLevel until after emitting deferred types, so
198     // inner TypeLoweringScopes don't attempt to emit deferred types.
199     if (CVD.TypeEmissionLevel == 1)
200       CVD.emitDeferredCompleteTypes();
201     --CVD.TypeEmissionLevel;
202   }
203   CodeViewDebug &CVD;
204 };
205 
206 static std::string getFullyQualifiedName(const DIScope *Ty) {
207   const DIScope *Scope = Ty->getScope().resolve();
208   return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
209 }
210 
211 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
212   // No scope means global scope and that uses the zero index.
213   if (!Scope || isa<DIFile>(Scope))
214     return TypeIndex();
215 
216   assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
217 
218   // Check if we've already translated this scope.
219   auto I = TypeIndices.find({Scope, nullptr});
220   if (I != TypeIndices.end())
221     return I->second;
222 
223   // Build the fully qualified name of the scope.
224   std::string ScopeName = getFullyQualifiedName(Scope);
225   TypeIndex TI =
226       TypeTable.writeKnownType(StringIdRecord(TypeIndex(), ScopeName));
227   return recordTypeIndexForDINode(Scope, TI);
228 }
229 
230 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
231   assert(SP);
232 
233   // Check if we've already translated this subprogram.
234   auto I = TypeIndices.find({SP, nullptr});
235   if (I != TypeIndices.end())
236     return I->second;
237 
238   // The display name includes function template arguments. Drop them to match
239   // MSVC.
240   StringRef DisplayName = SP->getDisplayName().split('<').first;
241 
242   const DIScope *Scope = SP->getScope().resolve();
243   TypeIndex TI;
244   if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
245     // If the scope is a DICompositeType, then this must be a method. Member
246     // function types take some special handling, and require access to the
247     // subprogram.
248     TypeIndex ClassType = getTypeIndex(Class);
249     MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
250                                DisplayName);
251     TI = TypeTable.writeKnownType(MFuncId);
252   } else {
253     // Otherwise, this must be a free function.
254     TypeIndex ParentScope = getScopeIndex(Scope);
255     FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
256     TI = TypeTable.writeKnownType(FuncId);
257   }
258 
259   return recordTypeIndexForDINode(SP, TI);
260 }
261 
262 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
263                                                const DICompositeType *Class) {
264   // Always use the method declaration as the key for the function type. The
265   // method declaration contains the this adjustment.
266   if (SP->getDeclaration())
267     SP = SP->getDeclaration();
268   assert(!SP->getDeclaration() && "should use declaration as key");
269 
270   // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
271   // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
272   auto I = TypeIndices.find({SP, Class});
273   if (I != TypeIndices.end())
274     return I->second;
275 
276   // Make sure complete type info for the class is emitted *after* the member
277   // function type, as the complete class type is likely to reference this
278   // member function type.
279   TypeLoweringScope S(*this);
280   TypeIndex TI =
281       lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment());
282   return recordTypeIndexForDINode(SP, TI, Class);
283 }
284 
285 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
286                                                   TypeIndex TI,
287                                                   const DIType *ClassTy) {
288   auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
289   (void)InsertResult;
290   assert(InsertResult.second && "DINode was already assigned a type index");
291   return TI;
292 }
293 
294 unsigned CodeViewDebug::getPointerSizeInBytes() {
295   return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
296 }
297 
298 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
299                                         const DILocation *InlinedAt) {
300   if (InlinedAt) {
301     // This variable was inlined. Associate it with the InlineSite.
302     const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
303     InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
304     Site.InlinedLocals.emplace_back(Var);
305   } else {
306     // This variable goes in the main ProcSym.
307     CurFn->Locals.emplace_back(Var);
308   }
309 }
310 
311 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
312                                const DILocation *Loc) {
313   auto B = Locs.begin(), E = Locs.end();
314   if (std::find(B, E, Loc) == E)
315     Locs.push_back(Loc);
316 }
317 
318 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
319                                         const MachineFunction *MF) {
320   // Skip this instruction if it has the same location as the previous one.
321   if (DL == CurFn->LastLoc)
322     return;
323 
324   const DIScope *Scope = DL.get()->getScope();
325   if (!Scope)
326     return;
327 
328   // Skip this line if it is longer than the maximum we can record.
329   LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
330   if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
331       LI.isNeverStepInto())
332     return;
333 
334   ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
335   if (CI.getStartColumn() != DL.getCol())
336     return;
337 
338   if (!CurFn->HaveLineInfo)
339     CurFn->HaveLineInfo = true;
340   unsigned FileId = 0;
341   if (CurFn->LastLoc.get() && CurFn->LastLoc->getFile() == DL->getFile())
342     FileId = CurFn->LastFileId;
343   else
344     FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
345   CurFn->LastLoc = DL;
346 
347   unsigned FuncId = CurFn->FuncId;
348   if (const DILocation *SiteLoc = DL->getInlinedAt()) {
349     const DILocation *Loc = DL.get();
350 
351     // If this location was actually inlined from somewhere else, give it the ID
352     // of the inline call site.
353     FuncId =
354         getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
355 
356     // Ensure we have links in the tree of inline call sites.
357     bool FirstLoc = true;
358     while ((SiteLoc = Loc->getInlinedAt())) {
359       InlineSite &Site =
360           getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
361       if (!FirstLoc)
362         addLocIfNotPresent(Site.ChildSites, Loc);
363       FirstLoc = false;
364       Loc = SiteLoc;
365     }
366     addLocIfNotPresent(CurFn->ChildSites, Loc);
367   }
368 
369   OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
370                         /*PrologueEnd=*/false, /*IsStmt=*/false,
371                         DL->getFilename(), SMLoc());
372 }
373 
374 void CodeViewDebug::emitCodeViewMagicVersion() {
375   OS.EmitValueToAlignment(4);
376   OS.AddComment("Debug section magic");
377   OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
378 }
379 
380 void CodeViewDebug::endModule() {
381   if (!Asm || !MMI->hasDebugInfo())
382     return;
383 
384   assert(Asm != nullptr);
385 
386   // The COFF .debug$S section consists of several subsections, each starting
387   // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
388   // of the payload followed by the payload itself.  The subsections are 4-byte
389   // aligned.
390 
391   // Use the generic .debug$S section, and make a subsection for all the inlined
392   // subprograms.
393   switchToDebugSectionForSymbol(nullptr);
394   emitInlineeLinesSubsection();
395 
396   // Emit per-function debug information.
397   for (auto &P : FnDebugInfo)
398     if (!P.first->isDeclarationForLinker())
399       emitDebugInfoForFunction(P.first, P.second);
400 
401   // Emit global variable debug information.
402   setCurrentSubprogram(nullptr);
403   emitDebugInfoForGlobals();
404 
405   // Emit retained types.
406   emitDebugInfoForRetainedTypes();
407 
408   // Switch back to the generic .debug$S section after potentially processing
409   // comdat symbol sections.
410   switchToDebugSectionForSymbol(nullptr);
411 
412   // Emit UDT records for any types used by global variables.
413   if (!GlobalUDTs.empty()) {
414     MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
415     emitDebugInfoForUDTs(GlobalUDTs);
416     endCVSubsection(SymbolsEnd);
417   }
418 
419   // This subsection holds a file index to offset in string table table.
420   OS.AddComment("File index to string table offset subsection");
421   OS.EmitCVFileChecksumsDirective();
422 
423   // This subsection holds the string table.
424   OS.AddComment("String table");
425   OS.EmitCVStringTableDirective();
426 
427   // Emit type information last, so that any types we translate while emitting
428   // function info are included.
429   emitTypeInformation();
430 
431   clear();
432 }
433 
434 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) {
435   // The maximum CV record length is 0xFF00. Most of the strings we emit appear
436   // after a fixed length portion of the record. The fixed length portion should
437   // always be less than 0xF00 (3840) bytes, so truncate the string so that the
438   // overall record size is less than the maximum allowed.
439   unsigned MaxFixedRecordLength = 0xF00;
440   SmallString<32> NullTerminatedString(
441       S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
442   NullTerminatedString.push_back('\0');
443   OS.EmitBytes(NullTerminatedString);
444 }
445 
446 void CodeViewDebug::emitTypeInformation() {
447   // Do nothing if we have no debug info or if no non-trivial types were emitted
448   // to TypeTable during codegen.
449   NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
450   if (!CU_Nodes)
451     return;
452   if (TypeTable.empty())
453     return;
454 
455   // Start the .debug$T section with 0x4.
456   OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
457   emitCodeViewMagicVersion();
458 
459   SmallString<8> CommentPrefix;
460   if (OS.isVerboseAsm()) {
461     CommentPrefix += '\t';
462     CommentPrefix += Asm->MAI->getCommentString();
463     CommentPrefix += ' ';
464   }
465 
466   CVTypeDumper CVTD(nullptr, /*PrintRecordBytes=*/false);
467   TypeTable.ForEachRecord(
468       [&](TypeIndex Index, StringRef Record) {
469         if (OS.isVerboseAsm()) {
470           // Emit a block comment describing the type record for readability.
471           SmallString<512> CommentBlock;
472           raw_svector_ostream CommentOS(CommentBlock);
473           ScopedPrinter SP(CommentOS);
474           SP.setPrefix(CommentPrefix);
475           CVTD.setPrinter(&SP);
476           Error E = CVTD.dump({Record.bytes_begin(), Record.bytes_end()});
477           if (E) {
478             logAllUnhandledErrors(std::move(E), errs(), "error: ");
479             llvm_unreachable("produced malformed type record");
480           }
481           // emitRawComment will insert its own tab and comment string before
482           // the first line, so strip off our first one. It also prints its own
483           // newline.
484           OS.emitRawComment(
485               CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim());
486         } else {
487 #ifndef NDEBUG
488           // Assert that the type data is valid even if we aren't dumping
489           // comments. The MSVC linker doesn't do much type record validation,
490           // so the first link of an invalid type record can succeed while
491           // subsequent links will fail with LNK1285.
492           ByteStream Stream({Record.bytes_begin(), Record.bytes_end()});
493           CVTypeArray Types;
494           StreamReader Reader(Stream);
495           Error E = Reader.readArray(Types, Reader.getLength());
496           if (!E) {
497             TypeVisitorCallbacks C;
498             E = CVTypeVisitor(C).visitTypeStream(Types);
499           }
500           if (E) {
501             logAllUnhandledErrors(std::move(E), errs(), "error: ");
502             llvm_unreachable("produced malformed type record");
503           }
504 #endif
505         }
506         OS.EmitBinaryData(Record);
507       });
508 }
509 
510 namespace {
511 
512 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
513   switch (DWLang) {
514   case dwarf::DW_LANG_C:
515   case dwarf::DW_LANG_C89:
516   case dwarf::DW_LANG_C99:
517   case dwarf::DW_LANG_C11:
518   case dwarf::DW_LANG_ObjC:
519     return SourceLanguage::C;
520   case dwarf::DW_LANG_C_plus_plus:
521   case dwarf::DW_LANG_C_plus_plus_03:
522   case dwarf::DW_LANG_C_plus_plus_11:
523   case dwarf::DW_LANG_C_plus_plus_14:
524     return SourceLanguage::Cpp;
525   case dwarf::DW_LANG_Fortran77:
526   case dwarf::DW_LANG_Fortran90:
527   case dwarf::DW_LANG_Fortran03:
528   case dwarf::DW_LANG_Fortran08:
529     return SourceLanguage::Fortran;
530   case dwarf::DW_LANG_Pascal83:
531     return SourceLanguage::Pascal;
532   case dwarf::DW_LANG_Cobol74:
533   case dwarf::DW_LANG_Cobol85:
534     return SourceLanguage::Cobol;
535   case dwarf::DW_LANG_Java:
536     return SourceLanguage::Java;
537   default:
538     // There's no CodeView representation for this language, and CV doesn't
539     // have an "unknown" option for the language field, so we'll use MASM,
540     // as it's very low level.
541     return SourceLanguage::Masm;
542   }
543 }
544 
545 struct Version {
546   int Part[4];
547 };
548 
549 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
550 // the version number.
551 static Version parseVersion(StringRef Name) {
552   Version V = {{0}};
553   int N = 0;
554   for (const char C : Name) {
555     if (isdigit(C)) {
556       V.Part[N] *= 10;
557       V.Part[N] += C - '0';
558     } else if (C == '.') {
559       ++N;
560       if (N >= 4)
561         return V;
562     } else if (N > 0)
563       return V;
564   }
565   return V;
566 }
567 
568 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
569   switch (Type) {
570     case Triple::ArchType::x86:
571       return CPUType::Pentium3;
572     case Triple::ArchType::x86_64:
573       return CPUType::X64;
574     case Triple::ArchType::thumb:
575       return CPUType::Thumb;
576     default:
577       report_fatal_error("target architecture doesn't map to a CodeView "
578                          "CPUType");
579   }
580 }
581 
582 }  // anonymous namespace
583 
584 void CodeViewDebug::emitCompilerInformation() {
585   MCContext &Context = MMI->getContext();
586   MCSymbol *CompilerBegin = Context.createTempSymbol(),
587            *CompilerEnd = Context.createTempSymbol();
588   OS.AddComment("Record length");
589   OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2);
590   OS.EmitLabel(CompilerBegin);
591   OS.AddComment("Record kind: S_COMPILE3");
592   OS.EmitIntValue(SymbolKind::S_COMPILE3, 2);
593   uint32_t Flags = 0;
594 
595   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
596   const MDNode *Node = *CUs->operands().begin();
597   const auto *CU = cast<DICompileUnit>(Node);
598 
599   // The low byte of the flags indicates the source language.
600   Flags = MapDWLangToCVLang(CU->getSourceLanguage());
601   // TODO:  Figure out which other flags need to be set.
602 
603   OS.AddComment("Flags and language");
604   OS.EmitIntValue(Flags, 4);
605 
606   OS.AddComment("CPUType");
607   CPUType CPU =
608       mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
609   OS.EmitIntValue(static_cast<uint64_t>(CPU), 2);
610 
611   StringRef CompilerVersion = CU->getProducer();
612   Version FrontVer = parseVersion(CompilerVersion);
613   OS.AddComment("Frontend version");
614   for (int N = 0; N < 4; ++N)
615     OS.EmitIntValue(FrontVer.Part[N], 2);
616 
617   // Some Microsoft tools, like Binscope, expect a backend version number of at
618   // least 8.something, so we'll coerce the LLVM version into a form that
619   // guarantees it'll be big enough without really lying about the version.
620   int Major = 1000 * LLVM_VERSION_MAJOR +
621               10 * LLVM_VERSION_MINOR +
622               LLVM_VERSION_PATCH;
623   // Clamp it for builds that use unusually large version numbers.
624   Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
625   Version BackVer = {{ Major, 0, 0, 0 }};
626   OS.AddComment("Backend version");
627   for (int N = 0; N < 4; ++N)
628     OS.EmitIntValue(BackVer.Part[N], 2);
629 
630   OS.AddComment("Null-terminated compiler version string");
631   emitNullTerminatedSymbolName(OS, CompilerVersion);
632 
633   OS.EmitLabel(CompilerEnd);
634 }
635 
636 void CodeViewDebug::emitInlineeLinesSubsection() {
637   if (InlinedSubprograms.empty())
638     return;
639 
640   OS.AddComment("Inlinee lines subsection");
641   MCSymbol *InlineEnd = beginCVSubsection(ModuleSubstreamKind::InlineeLines);
642 
643   // We don't provide any extra file info.
644   // FIXME: Find out if debuggers use this info.
645   OS.AddComment("Inlinee lines signature");
646   OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
647 
648   for (const DISubprogram *SP : InlinedSubprograms) {
649     assert(TypeIndices.count({SP, nullptr}));
650     TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
651 
652     OS.AddBlankLine();
653     unsigned FileId = maybeRecordFile(SP->getFile());
654     OS.AddComment("Inlined function " + SP->getDisplayName() + " starts at " +
655                   SP->getFilename() + Twine(':') + Twine(SP->getLine()));
656     OS.AddBlankLine();
657     // The filechecksum table uses 8 byte entries for now, and file ids start at
658     // 1.
659     unsigned FileOffset = (FileId - 1) * 8;
660     OS.AddComment("Type index of inlined function");
661     OS.EmitIntValue(InlineeIdx.getIndex(), 4);
662     OS.AddComment("Offset into filechecksum table");
663     OS.EmitIntValue(FileOffset, 4);
664     OS.AddComment("Starting line number");
665     OS.EmitIntValue(SP->getLine(), 4);
666   }
667 
668   endCVSubsection(InlineEnd);
669 }
670 
671 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
672                                         const DILocation *InlinedAt,
673                                         const InlineSite &Site) {
674   MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(),
675            *InlineEnd = MMI->getContext().createTempSymbol();
676 
677   assert(TypeIndices.count({Site.Inlinee, nullptr}));
678   TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
679 
680   // SymbolRecord
681   OS.AddComment("Record length");
682   OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2);   // RecordLength
683   OS.EmitLabel(InlineBegin);
684   OS.AddComment("Record kind: S_INLINESITE");
685   OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind
686 
687   OS.AddComment("PtrParent");
688   OS.EmitIntValue(0, 4);
689   OS.AddComment("PtrEnd");
690   OS.EmitIntValue(0, 4);
691   OS.AddComment("Inlinee type index");
692   OS.EmitIntValue(InlineeIdx.getIndex(), 4);
693 
694   unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
695   unsigned StartLineNum = Site.Inlinee->getLine();
696 
697   OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
698                                     FI.Begin, FI.End);
699 
700   OS.EmitLabel(InlineEnd);
701 
702   emitLocalVariableList(Site.InlinedLocals);
703 
704   // Recurse on child inlined call sites before closing the scope.
705   for (const DILocation *ChildSite : Site.ChildSites) {
706     auto I = FI.InlineSites.find(ChildSite);
707     assert(I != FI.InlineSites.end() &&
708            "child site not in function inline site map");
709     emitInlinedCallSite(FI, ChildSite, I->second);
710   }
711 
712   // Close the scope.
713   OS.AddComment("Record length");
714   OS.EmitIntValue(2, 2);                                  // RecordLength
715   OS.AddComment("Record kind: S_INLINESITE_END");
716   OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind
717 }
718 
719 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
720   // If we have a symbol, it may be in a section that is COMDAT. If so, find the
721   // comdat key. A section may be comdat because of -ffunction-sections or
722   // because it is comdat in the IR.
723   MCSectionCOFF *GVSec =
724       GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
725   const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
726 
727   MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
728       Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
729   DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
730 
731   OS.SwitchSection(DebugSec);
732 
733   // Emit the magic version number if this is the first time we've switched to
734   // this section.
735   if (ComdatDebugSections.insert(DebugSec).second)
736     emitCodeViewMagicVersion();
737 }
738 
739 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
740                                              FunctionInfo &FI) {
741   // For each function there is a separate subsection
742   // which holds the PC to file:line table.
743   const MCSymbol *Fn = Asm->getSymbol(GV);
744   assert(Fn);
745 
746   // Switch to the to a comdat section, if appropriate.
747   switchToDebugSectionForSymbol(Fn);
748 
749   std::string FuncName;
750   auto *SP = GV->getSubprogram();
751   assert(SP);
752   setCurrentSubprogram(SP);
753 
754   // If we have a display name, build the fully qualified name by walking the
755   // chain of scopes.
756   if (!SP->getDisplayName().empty())
757     FuncName =
758         getFullyQualifiedName(SP->getScope().resolve(), SP->getDisplayName());
759 
760   // If our DISubprogram name is empty, use the mangled name.
761   if (FuncName.empty())
762     FuncName = GlobalValue::getRealLinkageName(GV->getName());
763 
764   // Emit a symbol subsection, required by VS2012+ to find function boundaries.
765   OS.AddComment("Symbol subsection for " + Twine(FuncName));
766   MCSymbol *SymbolsEnd = beginCVSubsection(ModuleSubstreamKind::Symbols);
767   {
768     MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(),
769              *ProcRecordEnd = MMI->getContext().createTempSymbol();
770     OS.AddComment("Record length");
771     OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2);
772     OS.EmitLabel(ProcRecordBegin);
773 
774     if (GV->hasLocalLinkage()) {
775       OS.AddComment("Record kind: S_LPROC32_ID");
776       OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2);
777     } else {
778       OS.AddComment("Record kind: S_GPROC32_ID");
779       OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2);
780     }
781 
782     // These fields are filled in by tools like CVPACK which run after the fact.
783     OS.AddComment("PtrParent");
784     OS.EmitIntValue(0, 4);
785     OS.AddComment("PtrEnd");
786     OS.EmitIntValue(0, 4);
787     OS.AddComment("PtrNext");
788     OS.EmitIntValue(0, 4);
789     // This is the important bit that tells the debugger where the function
790     // code is located and what's its size:
791     OS.AddComment("Code size");
792     OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
793     OS.AddComment("Offset after prologue");
794     OS.EmitIntValue(0, 4);
795     OS.AddComment("Offset before epilogue");
796     OS.EmitIntValue(0, 4);
797     OS.AddComment("Function type index");
798     OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
799     OS.AddComment("Function section relative address");
800     OS.EmitCOFFSecRel32(Fn);
801     OS.AddComment("Function section index");
802     OS.EmitCOFFSectionIndex(Fn);
803     OS.AddComment("Flags");
804     OS.EmitIntValue(0, 1);
805     // Emit the function display name as a null-terminated string.
806     OS.AddComment("Function name");
807     // Truncate the name so we won't overflow the record length field.
808     emitNullTerminatedSymbolName(OS, FuncName);
809     OS.EmitLabel(ProcRecordEnd);
810 
811     emitLocalVariableList(FI.Locals);
812 
813     // Emit inlined call site information. Only emit functions inlined directly
814     // into the parent function. We'll emit the other sites recursively as part
815     // of their parent inline site.
816     for (const DILocation *InlinedAt : FI.ChildSites) {
817       auto I = FI.InlineSites.find(InlinedAt);
818       assert(I != FI.InlineSites.end() &&
819              "child site not in function inline site map");
820       emitInlinedCallSite(FI, InlinedAt, I->second);
821     }
822 
823     if (SP != nullptr)
824       emitDebugInfoForUDTs(LocalUDTs);
825 
826     // We're done with this function.
827     OS.AddComment("Record length");
828     OS.EmitIntValue(0x0002, 2);
829     OS.AddComment("Record kind: S_PROC_ID_END");
830     OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2);
831   }
832   endCVSubsection(SymbolsEnd);
833 
834   // We have an assembler directive that takes care of the whole line table.
835   OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
836 }
837 
838 CodeViewDebug::LocalVarDefRange
839 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
840   LocalVarDefRange DR;
841   DR.InMemory = -1;
842   DR.DataOffset = Offset;
843   assert(DR.DataOffset == Offset && "truncation");
844   DR.IsSubfield = 0;
845   DR.StructOffset = 0;
846   DR.CVRegister = CVRegister;
847   return DR;
848 }
849 
850 CodeViewDebug::LocalVarDefRange
851 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory,
852                                      int Offset, bool IsSubfield,
853                                      uint16_t StructOffset) {
854   LocalVarDefRange DR;
855   DR.InMemory = InMemory;
856   DR.DataOffset = Offset;
857   DR.IsSubfield = IsSubfield;
858   DR.StructOffset = StructOffset;
859   DR.CVRegister = CVRegister;
860   return DR;
861 }
862 
863 void CodeViewDebug::collectVariableInfoFromMMITable(
864     DenseSet<InlinedVariable> &Processed) {
865   const TargetSubtargetInfo &TSI = Asm->MF->getSubtarget();
866   const TargetFrameLowering *TFI = TSI.getFrameLowering();
867   const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
868 
869   for (const MachineModuleInfo::VariableDbgInfo &VI :
870        MMI->getVariableDbgInfo()) {
871     if (!VI.Var)
872       continue;
873     assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
874            "Expected inlined-at fields to agree");
875 
876     Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt()));
877     LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
878 
879     // If variable scope is not found then skip this variable.
880     if (!Scope)
881       continue;
882 
883     // Get the frame register used and the offset.
884     unsigned FrameReg = 0;
885     int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
886     uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
887 
888     // Calculate the label ranges.
889     LocalVarDefRange DefRange = createDefRangeMem(CVReg, FrameOffset);
890     for (const InsnRange &Range : Scope->getRanges()) {
891       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
892       const MCSymbol *End = getLabelAfterInsn(Range.second);
893       End = End ? End : Asm->getFunctionEnd();
894       DefRange.Ranges.emplace_back(Begin, End);
895     }
896 
897     LocalVariable Var;
898     Var.DIVar = VI.Var;
899     Var.DefRanges.emplace_back(std::move(DefRange));
900     recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt());
901   }
902 }
903 
904 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
905   DenseSet<InlinedVariable> Processed;
906   // Grab the variable info that was squirreled away in the MMI side-table.
907   collectVariableInfoFromMMITable(Processed);
908 
909   const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
910 
911   for (const auto &I : DbgValues) {
912     InlinedVariable IV = I.first;
913     if (Processed.count(IV))
914       continue;
915     const DILocalVariable *DIVar = IV.first;
916     const DILocation *InlinedAt = IV.second;
917 
918     // Instruction ranges, specifying where IV is accessible.
919     const auto &Ranges = I.second;
920 
921     LexicalScope *Scope = nullptr;
922     if (InlinedAt)
923       Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
924     else
925       Scope = LScopes.findLexicalScope(DIVar->getScope());
926     // If variable scope is not found then skip this variable.
927     if (!Scope)
928       continue;
929 
930     LocalVariable Var;
931     Var.DIVar = DIVar;
932 
933     // Calculate the definition ranges.
934     for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) {
935       const InsnRange &Range = *I;
936       const MachineInstr *DVInst = Range.first;
937       assert(DVInst->isDebugValue() && "Invalid History entry");
938       const DIExpression *DIExpr = DVInst->getDebugExpression();
939       bool IsSubfield = false;
940       unsigned StructOffset = 0;
941 
942       // Handle bitpieces.
943       if (DIExpr && DIExpr->isBitPiece()) {
944         IsSubfield = true;
945         StructOffset = DIExpr->getBitPieceOffset() / 8;
946       } else if (DIExpr && DIExpr->getNumElements() > 0) {
947         continue; // Ignore unrecognized exprs.
948       }
949 
950       // Bail if operand 0 is not a valid register. This means the variable is a
951       // simple constant, or is described by a complex expression.
952       // FIXME: Find a way to represent constant variables, since they are
953       // relatively common.
954       unsigned Reg =
955           DVInst->getOperand(0).isReg() ? DVInst->getOperand(0).getReg() : 0;
956       if (Reg == 0)
957         continue;
958 
959       // Handle the two cases we can handle: indirect in memory and in register.
960       unsigned CVReg = TRI->getCodeViewRegNum(Reg);
961       bool InMemory = DVInst->getOperand(1).isImm();
962       int Offset = InMemory ? DVInst->getOperand(1).getImm() : 0;
963       {
964         LocalVarDefRange DR;
965         DR.CVRegister = CVReg;
966         DR.InMemory = InMemory;
967         DR.DataOffset = Offset;
968         DR.IsSubfield = IsSubfield;
969         DR.StructOffset = StructOffset;
970 
971         if (Var.DefRanges.empty() ||
972             Var.DefRanges.back().isDifferentLocation(DR)) {
973           Var.DefRanges.emplace_back(std::move(DR));
974         }
975       }
976 
977       // Compute the label range.
978       const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
979       const MCSymbol *End = getLabelAfterInsn(Range.second);
980       if (!End) {
981         // This range is valid until the next overlapping bitpiece. In the
982         // common case, ranges will not be bitpieces, so they will overlap.
983         auto J = std::next(I);
984         while (J != E && !piecesOverlap(DIExpr, J->first->getDebugExpression()))
985           ++J;
986         if (J != E)
987           End = getLabelBeforeInsn(J->first);
988         else
989           End = Asm->getFunctionEnd();
990       }
991 
992       // If the last range end is our begin, just extend the last range.
993       // Otherwise make a new range.
994       SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &Ranges =
995           Var.DefRanges.back().Ranges;
996       if (!Ranges.empty() && Ranges.back().second == Begin)
997         Ranges.back().second = End;
998       else
999         Ranges.emplace_back(Begin, End);
1000 
1001       // FIXME: Do more range combining.
1002     }
1003 
1004     recordLocalVariable(std::move(Var), InlinedAt);
1005   }
1006 }
1007 
1008 void CodeViewDebug::beginFunction(const MachineFunction *MF) {
1009   assert(!CurFn && "Can't process two functions at once!");
1010 
1011   if (!Asm || !MMI->hasDebugInfo() || !MF->getFunction()->getSubprogram())
1012     return;
1013 
1014   DebugHandlerBase::beginFunction(MF);
1015 
1016   const Function *GV = MF->getFunction();
1017   assert(FnDebugInfo.count(GV) == false);
1018   CurFn = &FnDebugInfo[GV];
1019   CurFn->FuncId = NextFuncId++;
1020   CurFn->Begin = Asm->getFunctionBegin();
1021 
1022   OS.EmitCVFuncIdDirective(CurFn->FuncId);
1023 
1024   // Find the end of the function prolog.  First known non-DBG_VALUE and
1025   // non-frame setup location marks the beginning of the function body.
1026   // FIXME: is there a simpler a way to do this? Can we just search
1027   // for the first instruction of the function, not the last of the prolog?
1028   DebugLoc PrologEndLoc;
1029   bool EmptyPrologue = true;
1030   for (const auto &MBB : *MF) {
1031     for (const auto &MI : MBB) {
1032       if (!MI.isDebugValue() && !MI.getFlag(MachineInstr::FrameSetup) &&
1033           MI.getDebugLoc()) {
1034         PrologEndLoc = MI.getDebugLoc();
1035         break;
1036       } else if (!MI.isDebugValue()) {
1037         EmptyPrologue = false;
1038       }
1039     }
1040   }
1041 
1042   // Record beginning of function if we have a non-empty prologue.
1043   if (PrologEndLoc && !EmptyPrologue) {
1044     DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1045     maybeRecordLocation(FnStartDL, MF);
1046   }
1047 }
1048 
1049 void CodeViewDebug::addToUDTs(const DIType *Ty, TypeIndex TI) {
1050   // Don't record empty UDTs.
1051   if (Ty->getName().empty())
1052     return;
1053 
1054   SmallVector<StringRef, 5> QualifiedNameComponents;
1055   const DISubprogram *ClosestSubprogram = getQualifiedNameComponents(
1056       Ty->getScope().resolve(), QualifiedNameComponents);
1057 
1058   std::string FullyQualifiedName =
1059       getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1060 
1061   if (ClosestSubprogram == nullptr)
1062     GlobalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1063   else if (ClosestSubprogram == CurrentSubprogram)
1064     LocalUDTs.emplace_back(std::move(FullyQualifiedName), TI);
1065 
1066   // TODO: What if the ClosestSubprogram is neither null or the current
1067   // subprogram?  Currently, the UDT just gets dropped on the floor.
1068   //
1069   // The current behavior is not desirable.  To get maximal fidelity, we would
1070   // need to perform all type translation before beginning emission of .debug$S
1071   // and then make LocalUDTs a member of FunctionInfo
1072 }
1073 
1074 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1075   // Generic dispatch for lowering an unknown type.
1076   switch (Ty->getTag()) {
1077   case dwarf::DW_TAG_array_type:
1078     return lowerTypeArray(cast<DICompositeType>(Ty));
1079   case dwarf::DW_TAG_typedef:
1080     return lowerTypeAlias(cast<DIDerivedType>(Ty));
1081   case dwarf::DW_TAG_base_type:
1082     return lowerTypeBasic(cast<DIBasicType>(Ty));
1083   case dwarf::DW_TAG_pointer_type:
1084     if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1085       return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1086     LLVM_FALLTHROUGH;
1087   case dwarf::DW_TAG_reference_type:
1088   case dwarf::DW_TAG_rvalue_reference_type:
1089     return lowerTypePointer(cast<DIDerivedType>(Ty));
1090   case dwarf::DW_TAG_ptr_to_member_type:
1091     return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1092   case dwarf::DW_TAG_const_type:
1093   case dwarf::DW_TAG_volatile_type:
1094     return lowerTypeModifier(cast<DIDerivedType>(Ty));
1095   case dwarf::DW_TAG_subroutine_type:
1096     if (ClassTy) {
1097       // The member function type of a member function pointer has no
1098       // ThisAdjustment.
1099       return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1100                                      /*ThisAdjustment=*/0);
1101     }
1102     return lowerTypeFunction(cast<DISubroutineType>(Ty));
1103   case dwarf::DW_TAG_enumeration_type:
1104     return lowerTypeEnum(cast<DICompositeType>(Ty));
1105   case dwarf::DW_TAG_class_type:
1106   case dwarf::DW_TAG_structure_type:
1107     return lowerTypeClass(cast<DICompositeType>(Ty));
1108   case dwarf::DW_TAG_union_type:
1109     return lowerTypeUnion(cast<DICompositeType>(Ty));
1110   default:
1111     // Use the null type index.
1112     return TypeIndex();
1113   }
1114 }
1115 
1116 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1117   DITypeRef UnderlyingTypeRef = Ty->getBaseType();
1118   TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef);
1119   StringRef TypeName = Ty->getName();
1120 
1121   addToUDTs(Ty, UnderlyingTypeIndex);
1122 
1123   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1124       TypeName == "HRESULT")
1125     return TypeIndex(SimpleTypeKind::HResult);
1126   if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1127       TypeName == "wchar_t")
1128     return TypeIndex(SimpleTypeKind::WideCharacter);
1129 
1130   return UnderlyingTypeIndex;
1131 }
1132 
1133 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1134   DITypeRef ElementTypeRef = Ty->getBaseType();
1135   TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef);
1136   // IndexType is size_t, which depends on the bitness of the target.
1137   TypeIndex IndexType = Asm->MAI->getPointerSize() == 8
1138                             ? TypeIndex(SimpleTypeKind::UInt64Quad)
1139                             : TypeIndex(SimpleTypeKind::UInt32Long);
1140 
1141   uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8;
1142 
1143 
1144   // We want to assert that the element type multiplied by the array lengths
1145   // match the size of the overall array. However, if we don't have complete
1146   // type information for the base type, we can't make this assertion. This
1147   // happens if limited debug info is enabled in this case:
1148   //   struct VTableOptzn { VTableOptzn(); virtual ~VTableOptzn(); };
1149   //   VTableOptzn array[3];
1150   // The DICompositeType of VTableOptzn will have size zero, and the array will
1151   // have size 3 * sizeof(void*), and we should avoid asserting.
1152   //
1153   // There is a related bug in the front-end where an array of a structure,
1154   // which was declared as incomplete structure first, ends up not getting a
1155   // size assigned to it. (PR28303)
1156   // Example:
1157   //   struct A(*p)[3];
1158   //   struct A { int f; } a[3];
1159   bool PartiallyIncomplete = false;
1160   if (Ty->getSizeInBits() == 0 || ElementSize == 0) {
1161     PartiallyIncomplete = true;
1162   }
1163 
1164   // Add subranges to array type.
1165   DINodeArray Elements = Ty->getElements();
1166   for (int i = Elements.size() - 1; i >= 0; --i) {
1167     const DINode *Element = Elements[i];
1168     assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1169 
1170     const DISubrange *Subrange = cast<DISubrange>(Element);
1171     assert(Subrange->getLowerBound() == 0 &&
1172            "codeview doesn't support subranges with lower bounds");
1173     int64_t Count = Subrange->getCount();
1174 
1175     // Variable Length Array (VLA) has Count equal to '-1'.
1176     // Replace with Count '1', assume it is the minimum VLA length.
1177     // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU.
1178     if (Count == -1) {
1179       Count = 1;
1180       PartiallyIncomplete = true;
1181     }
1182 
1183     // Update the element size and element type index for subsequent subranges.
1184     ElementSize *= Count;
1185 
1186     // If this is the outermost array, use the size from the array. It will be
1187     // more accurate if PartiallyIncomplete is true.
1188     uint64_t ArraySize =
1189         (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1190 
1191     StringRef Name = (i == 0) ? Ty->getName() : "";
1192     ElementTypeIndex = TypeTable.writeKnownType(
1193         ArrayRecord(ElementTypeIndex, IndexType, ArraySize, Name));
1194   }
1195 
1196   (void)PartiallyIncomplete;
1197   assert(PartiallyIncomplete || ElementSize == (Ty->getSizeInBits() / 8));
1198 
1199   return ElementTypeIndex;
1200 }
1201 
1202 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1203   TypeIndex Index;
1204   dwarf::TypeKind Kind;
1205   uint32_t ByteSize;
1206 
1207   Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1208   ByteSize = Ty->getSizeInBits() / 8;
1209 
1210   SimpleTypeKind STK = SimpleTypeKind::None;
1211   switch (Kind) {
1212   case dwarf::DW_ATE_address:
1213     // FIXME: Translate
1214     break;
1215   case dwarf::DW_ATE_boolean:
1216     switch (ByteSize) {
1217     case 1:  STK = SimpleTypeKind::Boolean8;   break;
1218     case 2:  STK = SimpleTypeKind::Boolean16;  break;
1219     case 4:  STK = SimpleTypeKind::Boolean32;  break;
1220     case 8:  STK = SimpleTypeKind::Boolean64;  break;
1221     case 16: STK = SimpleTypeKind::Boolean128; break;
1222     }
1223     break;
1224   case dwarf::DW_ATE_complex_float:
1225     switch (ByteSize) {
1226     case 2:  STK = SimpleTypeKind::Complex16;  break;
1227     case 4:  STK = SimpleTypeKind::Complex32;  break;
1228     case 8:  STK = SimpleTypeKind::Complex64;  break;
1229     case 10: STK = SimpleTypeKind::Complex80;  break;
1230     case 16: STK = SimpleTypeKind::Complex128; break;
1231     }
1232     break;
1233   case dwarf::DW_ATE_float:
1234     switch (ByteSize) {
1235     case 2:  STK = SimpleTypeKind::Float16;  break;
1236     case 4:  STK = SimpleTypeKind::Float32;  break;
1237     case 6:  STK = SimpleTypeKind::Float48;  break;
1238     case 8:  STK = SimpleTypeKind::Float64;  break;
1239     case 10: STK = SimpleTypeKind::Float80;  break;
1240     case 16: STK = SimpleTypeKind::Float128; break;
1241     }
1242     break;
1243   case dwarf::DW_ATE_signed:
1244     switch (ByteSize) {
1245     case 1:  STK = SimpleTypeKind::SignedCharacter; break;
1246     case 2:  STK = SimpleTypeKind::Int16Short;      break;
1247     case 4:  STK = SimpleTypeKind::Int32;           break;
1248     case 8:  STK = SimpleTypeKind::Int64Quad;       break;
1249     case 16: STK = SimpleTypeKind::Int128Oct;       break;
1250     }
1251     break;
1252   case dwarf::DW_ATE_unsigned:
1253     switch (ByteSize) {
1254     case 1:  STK = SimpleTypeKind::UnsignedCharacter; break;
1255     case 2:  STK = SimpleTypeKind::UInt16Short;       break;
1256     case 4:  STK = SimpleTypeKind::UInt32;            break;
1257     case 8:  STK = SimpleTypeKind::UInt64Quad;        break;
1258     case 16: STK = SimpleTypeKind::UInt128Oct;        break;
1259     }
1260     break;
1261   case dwarf::DW_ATE_UTF:
1262     switch (ByteSize) {
1263     case 2: STK = SimpleTypeKind::Character16; break;
1264     case 4: STK = SimpleTypeKind::Character32; break;
1265     }
1266     break;
1267   case dwarf::DW_ATE_signed_char:
1268     if (ByteSize == 1)
1269       STK = SimpleTypeKind::SignedCharacter;
1270     break;
1271   case dwarf::DW_ATE_unsigned_char:
1272     if (ByteSize == 1)
1273       STK = SimpleTypeKind::UnsignedCharacter;
1274     break;
1275   default:
1276     break;
1277   }
1278 
1279   // Apply some fixups based on the source-level type name.
1280   if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1281     STK = SimpleTypeKind::Int32Long;
1282   if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1283     STK = SimpleTypeKind::UInt32Long;
1284   if (STK == SimpleTypeKind::UInt16Short &&
1285       (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1286     STK = SimpleTypeKind::WideCharacter;
1287   if ((STK == SimpleTypeKind::SignedCharacter ||
1288        STK == SimpleTypeKind::UnsignedCharacter) &&
1289       Ty->getName() == "char")
1290     STK = SimpleTypeKind::NarrowCharacter;
1291 
1292   return TypeIndex(STK);
1293 }
1294 
1295 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) {
1296   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1297 
1298   // Pointers to simple types can use SimpleTypeMode, rather than having a
1299   // dedicated pointer type record.
1300   if (PointeeTI.isSimple() &&
1301       PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1302       Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1303     SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1304                               ? SimpleTypeMode::NearPointer64
1305                               : SimpleTypeMode::NearPointer32;
1306     return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1307   }
1308 
1309   PointerKind PK =
1310       Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1311   PointerMode PM = PointerMode::Pointer;
1312   switch (Ty->getTag()) {
1313   default: llvm_unreachable("not a pointer tag type");
1314   case dwarf::DW_TAG_pointer_type:
1315     PM = PointerMode::Pointer;
1316     break;
1317   case dwarf::DW_TAG_reference_type:
1318     PM = PointerMode::LValueReference;
1319     break;
1320   case dwarf::DW_TAG_rvalue_reference_type:
1321     PM = PointerMode::RValueReference;
1322     break;
1323   }
1324   // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method
1325   // 'this' pointer, but not normal contexts. Figure out what we're supposed to
1326   // do.
1327   PointerOptions PO = PointerOptions::None;
1328   PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1329   return TypeTable.writeKnownType(PR);
1330 }
1331 
1332 static PointerToMemberRepresentation
1333 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1334   // SizeInBytes being zero generally implies that the member pointer type was
1335   // incomplete, which can happen if it is part of a function prototype. In this
1336   // case, use the unknown model instead of the general model.
1337   if (IsPMF) {
1338     switch (Flags & DINode::FlagPtrToMemberRep) {
1339     case 0:
1340       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1341                               : PointerToMemberRepresentation::GeneralFunction;
1342     case DINode::FlagSingleInheritance:
1343       return PointerToMemberRepresentation::SingleInheritanceFunction;
1344     case DINode::FlagMultipleInheritance:
1345       return PointerToMemberRepresentation::MultipleInheritanceFunction;
1346     case DINode::FlagVirtualInheritance:
1347       return PointerToMemberRepresentation::VirtualInheritanceFunction;
1348     }
1349   } else {
1350     switch (Flags & DINode::FlagPtrToMemberRep) {
1351     case 0:
1352       return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1353                               : PointerToMemberRepresentation::GeneralData;
1354     case DINode::FlagSingleInheritance:
1355       return PointerToMemberRepresentation::SingleInheritanceData;
1356     case DINode::FlagMultipleInheritance:
1357       return PointerToMemberRepresentation::MultipleInheritanceData;
1358     case DINode::FlagVirtualInheritance:
1359       return PointerToMemberRepresentation::VirtualInheritanceData;
1360     }
1361   }
1362   llvm_unreachable("invalid ptr to member representation");
1363 }
1364 
1365 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) {
1366   assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1367   TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1368   TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1369   PointerKind PK = Asm->MAI->getPointerSize() == 8 ? PointerKind::Near64
1370                                                    : PointerKind::Near32;
1371   bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1372   PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1373                          : PointerMode::PointerToDataMember;
1374   PointerOptions PO = PointerOptions::None; // FIXME
1375   assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1376   uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1377   MemberPointerInfo MPI(
1378       ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1379   PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1380   return TypeTable.writeKnownType(PR);
1381 }
1382 
1383 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1384 /// have a translation, use the NearC convention.
1385 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1386   switch (DwarfCC) {
1387   case dwarf::DW_CC_normal:             return CallingConvention::NearC;
1388   case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1389   case dwarf::DW_CC_BORLAND_thiscall:   return CallingConvention::ThisCall;
1390   case dwarf::DW_CC_BORLAND_stdcall:    return CallingConvention::NearStdCall;
1391   case dwarf::DW_CC_BORLAND_pascal:     return CallingConvention::NearPascal;
1392   case dwarf::DW_CC_LLVM_vectorcall:    return CallingConvention::NearVector;
1393   }
1394   return CallingConvention::NearC;
1395 }
1396 
1397 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1398   ModifierOptions Mods = ModifierOptions::None;
1399   bool IsModifier = true;
1400   const DIType *BaseTy = Ty;
1401   while (IsModifier && BaseTy) {
1402     // FIXME: Need to add DWARF tag for __unaligned.
1403     switch (BaseTy->getTag()) {
1404     case dwarf::DW_TAG_const_type:
1405       Mods |= ModifierOptions::Const;
1406       break;
1407     case dwarf::DW_TAG_volatile_type:
1408       Mods |= ModifierOptions::Volatile;
1409       break;
1410     default:
1411       IsModifier = false;
1412       break;
1413     }
1414     if (IsModifier)
1415       BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve();
1416   }
1417   TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1418   return TypeTable.writeKnownType(ModifierRecord(ModifiedTI, Mods));
1419 }
1420 
1421 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1422   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1423   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1424     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1425 
1426   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1427   ArrayRef<TypeIndex> ArgTypeIndices = None;
1428   if (!ReturnAndArgTypeIndices.empty()) {
1429     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1430     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1431     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1432   }
1433 
1434   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1435   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1436 
1437   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1438 
1439   ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None,
1440                             ArgTypeIndices.size(), ArgListIndex);
1441   return TypeTable.writeKnownType(Procedure);
1442 }
1443 
1444 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1445                                                  const DIType *ClassTy,
1446                                                  int ThisAdjustment) {
1447   // Lower the containing class type.
1448   TypeIndex ClassType = getTypeIndex(ClassTy);
1449 
1450   SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1451   for (DITypeRef ArgTypeRef : Ty->getTypeArray())
1452     ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef));
1453 
1454   TypeIndex ReturnTypeIndex = TypeIndex::Void();
1455   ArrayRef<TypeIndex> ArgTypeIndices = None;
1456   if (!ReturnAndArgTypeIndices.empty()) {
1457     auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1458     ReturnTypeIndex = ReturnAndArgTypesRef.front();
1459     ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1460   }
1461   TypeIndex ThisTypeIndex = TypeIndex::Void();
1462   if (!ArgTypeIndices.empty()) {
1463     ThisTypeIndex = ArgTypeIndices.front();
1464     ArgTypeIndices = ArgTypeIndices.drop_front();
1465   }
1466 
1467   ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1468   TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec);
1469 
1470   CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1471 
1472   // TODO: Need to use the correct values for:
1473   //       FunctionOptions
1474   //       ThisPointerAdjustment.
1475   TypeIndex TI = TypeTable.writeKnownType(MemberFunctionRecord(
1476       ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FunctionOptions::None,
1477       ArgTypeIndices.size(), ArgListIndex, ThisAdjustment));
1478 
1479   return TI;
1480 }
1481 
1482 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1483   unsigned VSlotCount = Ty->getSizeInBits() / (8 * Asm->MAI->getPointerSize());
1484   SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1485   return TypeTable.writeKnownType(VFTableShapeRecord(Slots));
1486 }
1487 
1488 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1489   switch (Flags & DINode::FlagAccessibility) {
1490   case DINode::FlagPrivate:   return MemberAccess::Private;
1491   case DINode::FlagPublic:    return MemberAccess::Public;
1492   case DINode::FlagProtected: return MemberAccess::Protected;
1493   case 0:
1494     // If there was no explicit access control, provide the default for the tag.
1495     return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1496                                                  : MemberAccess::Public;
1497   }
1498   llvm_unreachable("access flags are exclusive");
1499 }
1500 
1501 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1502   if (SP->isArtificial())
1503     return MethodOptions::CompilerGenerated;
1504 
1505   // FIXME: Handle other MethodOptions.
1506 
1507   return MethodOptions::None;
1508 }
1509 
1510 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1511                                            bool Introduced) {
1512   switch (SP->getVirtuality()) {
1513   case dwarf::DW_VIRTUALITY_none:
1514     break;
1515   case dwarf::DW_VIRTUALITY_virtual:
1516     return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1517   case dwarf::DW_VIRTUALITY_pure_virtual:
1518     return Introduced ? MethodKind::PureIntroducingVirtual
1519                       : MethodKind::PureVirtual;
1520   default:
1521     llvm_unreachable("unhandled virtuality case");
1522   }
1523 
1524   // FIXME: Get Clang to mark DISubprogram as static and do something with it.
1525 
1526   return MethodKind::Vanilla;
1527 }
1528 
1529 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1530   switch (Ty->getTag()) {
1531   case dwarf::DW_TAG_class_type:     return TypeRecordKind::Class;
1532   case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1533   }
1534   llvm_unreachable("unexpected tag");
1535 }
1536 
1537 /// Return ClassOptions that should be present on both the forward declaration
1538 /// and the defintion of a tag type.
1539 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1540   ClassOptions CO = ClassOptions::None;
1541 
1542   // MSVC always sets this flag, even for local types. Clang doesn't always
1543   // appear to give every type a linkage name, which may be problematic for us.
1544   // FIXME: Investigate the consequences of not following them here.
1545   if (!Ty->getIdentifier().empty())
1546     CO |= ClassOptions::HasUniqueName;
1547 
1548   // Put the Nested flag on a type if it appears immediately inside a tag type.
1549   // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
1550   // here. That flag is only set on definitions, and not forward declarations.
1551   const DIScope *ImmediateScope = Ty->getScope().resolve();
1552   if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
1553     CO |= ClassOptions::Nested;
1554 
1555   // Put the Scoped flag on function-local types.
1556   for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
1557        Scope = Scope->getScope().resolve()) {
1558     if (isa<DISubprogram>(Scope)) {
1559       CO |= ClassOptions::Scoped;
1560       break;
1561     }
1562   }
1563 
1564   return CO;
1565 }
1566 
1567 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
1568   ClassOptions CO = getCommonClassOptions(Ty);
1569   TypeIndex FTI;
1570   unsigned EnumeratorCount = 0;
1571 
1572   if (Ty->isForwardDecl()) {
1573     CO |= ClassOptions::ForwardReference;
1574   } else {
1575     FieldListRecordBuilder Fields;
1576     for (const DINode *Element : Ty->getElements()) {
1577       // We assume that the frontend provides all members in source declaration
1578       // order, which is what MSVC does.
1579       if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
1580         Fields.writeMemberType(EnumeratorRecord(
1581             MemberAccess::Public, APSInt::getUnsigned(Enumerator->getValue()),
1582             Enumerator->getName()));
1583         EnumeratorCount++;
1584       }
1585     }
1586     FTI = TypeTable.writeFieldList(Fields);
1587   }
1588 
1589   std::string FullName = getFullyQualifiedName(Ty);
1590 
1591   return TypeTable.writeKnownType(EnumRecord(EnumeratorCount, CO, FTI, FullName,
1592                                              Ty->getIdentifier(),
1593                                              getTypeIndex(Ty->getBaseType())));
1594 }
1595 
1596 //===----------------------------------------------------------------------===//
1597 // ClassInfo
1598 //===----------------------------------------------------------------------===//
1599 
1600 struct llvm::ClassInfo {
1601   struct MemberInfo {
1602     const DIDerivedType *MemberTypeNode;
1603     uint64_t BaseOffset;
1604   };
1605   // [MemberInfo]
1606   typedef std::vector<MemberInfo> MemberList;
1607 
1608   typedef TinyPtrVector<const DISubprogram *> MethodsList;
1609   // MethodName -> MethodsList
1610   typedef MapVector<MDString *, MethodsList> MethodsMap;
1611 
1612   /// Base classes.
1613   std::vector<const DIDerivedType *> Inheritance;
1614 
1615   /// Direct members.
1616   MemberList Members;
1617   // Direct overloaded methods gathered by name.
1618   MethodsMap Methods;
1619 
1620   TypeIndex VShapeTI;
1621 
1622   std::vector<const DICompositeType *> NestedClasses;
1623 };
1624 
1625 void CodeViewDebug::clear() {
1626   assert(CurFn == nullptr);
1627   FileIdMap.clear();
1628   FnDebugInfo.clear();
1629   FileToFilepathMap.clear();
1630   LocalUDTs.clear();
1631   GlobalUDTs.clear();
1632   TypeIndices.clear();
1633   CompleteTypeIndices.clear();
1634 }
1635 
1636 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
1637                                       const DIDerivedType *DDTy) {
1638   if (!DDTy->getName().empty()) {
1639     Info.Members.push_back({DDTy, 0});
1640     return;
1641   }
1642   // An unnamed member must represent a nested struct or union. Add all the
1643   // indirect fields to the current record.
1644   assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
1645   uint64_t Offset = DDTy->getOffsetInBits();
1646   const DIType *Ty = DDTy->getBaseType().resolve();
1647   const DICompositeType *DCTy = cast<DICompositeType>(Ty);
1648   ClassInfo NestedInfo = collectClassInfo(DCTy);
1649   for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
1650     Info.Members.push_back(
1651         {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
1652 }
1653 
1654 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
1655   ClassInfo Info;
1656   // Add elements to structure type.
1657   DINodeArray Elements = Ty->getElements();
1658   for (auto *Element : Elements) {
1659     // We assume that the frontend provides all members in source declaration
1660     // order, which is what MSVC does.
1661     if (!Element)
1662       continue;
1663     if (auto *SP = dyn_cast<DISubprogram>(Element)) {
1664       Info.Methods[SP->getRawName()].push_back(SP);
1665     } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
1666       if (DDTy->getTag() == dwarf::DW_TAG_member) {
1667         collectMemberInfo(Info, DDTy);
1668       } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
1669         Info.Inheritance.push_back(DDTy);
1670       } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
1671                  DDTy->getName() == "__vtbl_ptr_type") {
1672         Info.VShapeTI = getTypeIndex(DDTy);
1673       } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
1674         // Ignore friend members. It appears that MSVC emitted info about
1675         // friends in the past, but modern versions do not.
1676       }
1677     } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
1678       Info.NestedClasses.push_back(Composite);
1679     }
1680     // Skip other unrecognized kinds of elements.
1681   }
1682   return Info;
1683 }
1684 
1685 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
1686   // First, construct the forward decl.  Don't look into Ty to compute the
1687   // forward decl options, since it might not be available in all TUs.
1688   TypeRecordKind Kind = getRecordKind(Ty);
1689   ClassOptions CO =
1690       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1691   std::string FullName = getFullyQualifiedName(Ty);
1692   TypeIndex FwdDeclTI = TypeTable.writeKnownType(ClassRecord(
1693       Kind, 0, CO, HfaKind::None, WindowsRTClassKind::None, TypeIndex(),
1694       TypeIndex(), TypeIndex(), 0, FullName, Ty->getIdentifier()));
1695   if (!Ty->isForwardDecl())
1696     DeferredCompleteTypes.push_back(Ty);
1697   return FwdDeclTI;
1698 }
1699 
1700 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
1701   // Construct the field list and complete type record.
1702   TypeRecordKind Kind = getRecordKind(Ty);
1703   ClassOptions CO = getCommonClassOptions(Ty);
1704   TypeIndex FieldTI;
1705   TypeIndex VShapeTI;
1706   unsigned FieldCount;
1707   bool ContainsNestedClass;
1708   std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
1709       lowerRecordFieldList(Ty);
1710 
1711   if (ContainsNestedClass)
1712     CO |= ClassOptions::ContainsNestedClass;
1713 
1714   std::string FullName = getFullyQualifiedName(Ty);
1715 
1716   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1717 
1718   TypeIndex ClassTI = TypeTable.writeKnownType(ClassRecord(
1719       Kind, FieldCount, CO, HfaKind::None, WindowsRTClassKind::None, FieldTI,
1720       TypeIndex(), VShapeTI, SizeInBytes, FullName, Ty->getIdentifier()));
1721 
1722   TypeTable.writeKnownType(UdtSourceLineRecord(
1723       ClassTI, TypeTable.writeKnownType(StringIdRecord(
1724                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1725       Ty->getLine()));
1726 
1727   addToUDTs(Ty, ClassTI);
1728 
1729   return ClassTI;
1730 }
1731 
1732 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
1733   ClassOptions CO =
1734       ClassOptions::ForwardReference | getCommonClassOptions(Ty);
1735   std::string FullName = getFullyQualifiedName(Ty);
1736   TypeIndex FwdDeclTI = TypeTable.writeKnownType(UnionRecord(
1737       0, CO, HfaKind::None, TypeIndex(), 0, FullName, Ty->getIdentifier()));
1738   if (!Ty->isForwardDecl())
1739     DeferredCompleteTypes.push_back(Ty);
1740   return FwdDeclTI;
1741 }
1742 
1743 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
1744   ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
1745   TypeIndex FieldTI;
1746   unsigned FieldCount;
1747   bool ContainsNestedClass;
1748   std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
1749       lowerRecordFieldList(Ty);
1750 
1751   if (ContainsNestedClass)
1752     CO |= ClassOptions::ContainsNestedClass;
1753 
1754   uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
1755   std::string FullName = getFullyQualifiedName(Ty);
1756 
1757   TypeIndex UnionTI = TypeTable.writeKnownType(
1758       UnionRecord(FieldCount, CO, HfaKind::None, FieldTI, SizeInBytes, FullName,
1759                   Ty->getIdentifier()));
1760 
1761   TypeTable.writeKnownType(UdtSourceLineRecord(
1762       UnionTI, TypeTable.writeKnownType(StringIdRecord(
1763                    TypeIndex(0x0), getFullFilepath(Ty->getFile()))),
1764       Ty->getLine()));
1765 
1766   addToUDTs(Ty, UnionTI);
1767 
1768   return UnionTI;
1769 }
1770 
1771 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
1772 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
1773   // Manually count members. MSVC appears to count everything that generates a
1774   // field list record. Each individual overload in a method overload group
1775   // contributes to this count, even though the overload group is a single field
1776   // list record.
1777   unsigned MemberCount = 0;
1778   ClassInfo Info = collectClassInfo(Ty);
1779   FieldListRecordBuilder Fields;
1780 
1781   // Create base classes.
1782   for (const DIDerivedType *I : Info.Inheritance) {
1783     if (I->getFlags() & DINode::FlagVirtual) {
1784       // Virtual base.
1785       // FIXME: Emit VBPtrOffset when the frontend provides it.
1786       unsigned VBPtrOffset = 0;
1787       // FIXME: Despite the accessor name, the offset is really in bytes.
1788       unsigned VBTableIndex = I->getOffsetInBits() / 4;
1789       Fields.writeMemberType(VirtualBaseClassRecord(
1790           translateAccessFlags(Ty->getTag(), I->getFlags()),
1791           getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
1792           VBTableIndex));
1793     } else {
1794       assert(I->getOffsetInBits() % 8 == 0 &&
1795              "bases must be on byte boundaries");
1796       Fields.writeMemberType(BaseClassRecord(
1797           translateAccessFlags(Ty->getTag(), I->getFlags()),
1798           getTypeIndex(I->getBaseType()), I->getOffsetInBits() / 8));
1799     }
1800   }
1801 
1802   // Create members.
1803   for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
1804     const DIDerivedType *Member = MemberInfo.MemberTypeNode;
1805     TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
1806     StringRef MemberName = Member->getName();
1807     MemberAccess Access =
1808         translateAccessFlags(Ty->getTag(), Member->getFlags());
1809 
1810     if (Member->isStaticMember()) {
1811       Fields.writeMemberType(
1812           StaticDataMemberRecord(Access, MemberBaseType, MemberName));
1813       MemberCount++;
1814       continue;
1815     }
1816 
1817     // Virtual function pointer member.
1818     if ((Member->getFlags() & DINode::FlagArtificial) &&
1819         Member->getName().startswith("_vptr$")) {
1820       Fields.writeMemberType(VFPtrRecord(getTypeIndex(Member->getBaseType())));
1821       MemberCount++;
1822       continue;
1823     }
1824 
1825     // Data member.
1826     uint64_t MemberOffsetInBits =
1827         Member->getOffsetInBits() + MemberInfo.BaseOffset;
1828     if (Member->isBitField()) {
1829       uint64_t StartBitOffset = MemberOffsetInBits;
1830       if (const auto *CI =
1831               dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
1832         MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
1833       }
1834       StartBitOffset -= MemberOffsetInBits;
1835       MemberBaseType = TypeTable.writeKnownType(BitFieldRecord(
1836           MemberBaseType, Member->getSizeInBits(), StartBitOffset));
1837     }
1838     uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
1839     Fields.writeMemberType(DataMemberRecord(Access, MemberBaseType,
1840                                             MemberOffsetInBytes, MemberName));
1841     MemberCount++;
1842   }
1843 
1844   // Create methods
1845   for (auto &MethodItr : Info.Methods) {
1846     StringRef Name = MethodItr.first->getString();
1847 
1848     std::vector<OneMethodRecord> Methods;
1849     for (const DISubprogram *SP : MethodItr.second) {
1850       TypeIndex MethodType = getMemberFunctionType(SP, Ty);
1851       bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
1852 
1853       unsigned VFTableOffset = -1;
1854       if (Introduced)
1855         VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
1856 
1857       Methods.push_back(
1858           OneMethodRecord(MethodType, translateMethodKindFlags(SP, Introduced),
1859                           translateMethodOptionFlags(SP),
1860                           translateAccessFlags(Ty->getTag(), SP->getFlags()),
1861                           VFTableOffset, Name));
1862       MemberCount++;
1863     }
1864     assert(Methods.size() > 0 && "Empty methods map entry");
1865     if (Methods.size() == 1)
1866       Fields.writeMemberType(Methods[0]);
1867     else {
1868       TypeIndex MethodList =
1869           TypeTable.writeKnownType(MethodOverloadListRecord(Methods));
1870       Fields.writeMemberType(
1871           OverloadedMethodRecord(Methods.size(), MethodList, Name));
1872     }
1873   }
1874 
1875   // Create nested classes.
1876   for (const DICompositeType *Nested : Info.NestedClasses) {
1877     NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName());
1878     Fields.writeMemberType(R);
1879     MemberCount++;
1880   }
1881 
1882   TypeIndex FieldTI = TypeTable.writeFieldList(Fields);
1883   return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
1884                          !Info.NestedClasses.empty());
1885 }
1886 
1887 TypeIndex CodeViewDebug::getVBPTypeIndex() {
1888   if (!VBPType.getIndex()) {
1889     // Make a 'const int *' type.
1890     ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
1891     TypeIndex ModifiedTI = TypeTable.writeKnownType(MR);
1892 
1893     PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1894                                                   : PointerKind::Near32;
1895     PointerMode PM = PointerMode::Pointer;
1896     PointerOptions PO = PointerOptions::None;
1897     PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
1898 
1899     VBPType = TypeTable.writeKnownType(PR);
1900   }
1901 
1902   return VBPType;
1903 }
1904 
1905 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) {
1906   const DIType *Ty = TypeRef.resolve();
1907   const DIType *ClassTy = ClassTyRef.resolve();
1908 
1909   // The null DIType is the void type. Don't try to hash it.
1910   if (!Ty)
1911     return TypeIndex::Void();
1912 
1913   // Check if we've already translated this type. Don't try to do a
1914   // get-or-create style insertion that caches the hash lookup across the
1915   // lowerType call. It will update the TypeIndices map.
1916   auto I = TypeIndices.find({Ty, ClassTy});
1917   if (I != TypeIndices.end())
1918     return I->second;
1919 
1920   TypeLoweringScope S(*this);
1921   TypeIndex TI = lowerType(Ty, ClassTy);
1922   return recordTypeIndexForDINode(Ty, TI, ClassTy);
1923 }
1924 
1925 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) {
1926   const DIType *Ty = TypeRef.resolve();
1927 
1928   // The null DIType is the void type. Don't try to hash it.
1929   if (!Ty)
1930     return TypeIndex::Void();
1931 
1932   // If this is a non-record type, the complete type index is the same as the
1933   // normal type index. Just call getTypeIndex.
1934   switch (Ty->getTag()) {
1935   case dwarf::DW_TAG_class_type:
1936   case dwarf::DW_TAG_structure_type:
1937   case dwarf::DW_TAG_union_type:
1938     break;
1939   default:
1940     return getTypeIndex(Ty);
1941   }
1942 
1943   // Check if we've already translated the complete record type.  Lowering a
1944   // complete type should never trigger lowering another complete type, so we
1945   // can reuse the hash table lookup result.
1946   const auto *CTy = cast<DICompositeType>(Ty);
1947   auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
1948   if (!InsertResult.second)
1949     return InsertResult.first->second;
1950 
1951   TypeLoweringScope S(*this);
1952 
1953   // Make sure the forward declaration is emitted first. It's unclear if this
1954   // is necessary, but MSVC does it, and we should follow suit until we can show
1955   // otherwise.
1956   TypeIndex FwdDeclTI = getTypeIndex(CTy);
1957 
1958   // Just use the forward decl if we don't have complete type info. This might
1959   // happen if the frontend is using modules and expects the complete definition
1960   // to be emitted elsewhere.
1961   if (CTy->isForwardDecl())
1962     return FwdDeclTI;
1963 
1964   TypeIndex TI;
1965   switch (CTy->getTag()) {
1966   case dwarf::DW_TAG_class_type:
1967   case dwarf::DW_TAG_structure_type:
1968     TI = lowerCompleteTypeClass(CTy);
1969     break;
1970   case dwarf::DW_TAG_union_type:
1971     TI = lowerCompleteTypeUnion(CTy);
1972     break;
1973   default:
1974     llvm_unreachable("not a record");
1975   }
1976 
1977   InsertResult.first->second = TI;
1978   return TI;
1979 }
1980 
1981 /// Emit all the deferred complete record types. Try to do this in FIFO order,
1982 /// and do this until fixpoint, as each complete record type typically
1983 /// references
1984 /// many other record types.
1985 void CodeViewDebug::emitDeferredCompleteTypes() {
1986   SmallVector<const DICompositeType *, 4> TypesToEmit;
1987   while (!DeferredCompleteTypes.empty()) {
1988     std::swap(DeferredCompleteTypes, TypesToEmit);
1989     for (const DICompositeType *RecordTy : TypesToEmit)
1990       getCompleteTypeIndex(RecordTy);
1991     TypesToEmit.clear();
1992   }
1993 }
1994 
1995 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) {
1996   // Get the sorted list of parameters and emit them first.
1997   SmallVector<const LocalVariable *, 6> Params;
1998   for (const LocalVariable &L : Locals)
1999     if (L.DIVar->isParameter())
2000       Params.push_back(&L);
2001   std::sort(Params.begin(), Params.end(),
2002             [](const LocalVariable *L, const LocalVariable *R) {
2003               return L->DIVar->getArg() < R->DIVar->getArg();
2004             });
2005   for (const LocalVariable *L : Params)
2006     emitLocalVariable(*L);
2007 
2008   // Next emit all non-parameters in the order that we found them.
2009   for (const LocalVariable &L : Locals)
2010     if (!L.DIVar->isParameter())
2011       emitLocalVariable(L);
2012 }
2013 
2014 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) {
2015   // LocalSym record, see SymbolRecord.h for more info.
2016   MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(),
2017            *LocalEnd = MMI->getContext().createTempSymbol();
2018   OS.AddComment("Record length");
2019   OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2);
2020   OS.EmitLabel(LocalBegin);
2021 
2022   OS.AddComment("Record kind: S_LOCAL");
2023   OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2);
2024 
2025   LocalSymFlags Flags = LocalSymFlags::None;
2026   if (Var.DIVar->isParameter())
2027     Flags |= LocalSymFlags::IsParameter;
2028   if (Var.DefRanges.empty())
2029     Flags |= LocalSymFlags::IsOptimizedOut;
2030 
2031   OS.AddComment("TypeIndex");
2032   TypeIndex TI = getCompleteTypeIndex(Var.DIVar->getType());
2033   OS.EmitIntValue(TI.getIndex(), 4);
2034   OS.AddComment("Flags");
2035   OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2036   // Truncate the name so we won't overflow the record length field.
2037   emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2038   OS.EmitLabel(LocalEnd);
2039 
2040   // Calculate the on disk prefix of the appropriate def range record. The
2041   // records and on disk formats are described in SymbolRecords.h. BytePrefix
2042   // should be big enough to hold all forms without memory allocation.
2043   SmallString<20> BytePrefix;
2044   for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2045     BytePrefix.clear();
2046     if (DefRange.InMemory) {
2047       uint16_t RegRelFlags = 0;
2048       if (DefRange.IsSubfield) {
2049         RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2050                       (DefRange.StructOffset
2051                        << DefRangeRegisterRelSym::OffsetInParentShift);
2052       }
2053       DefRangeRegisterRelSym Sym(DefRange.CVRegister, RegRelFlags,
2054                                  DefRange.DataOffset, None);
2055       ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL);
2056       BytePrefix +=
2057           StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind));
2058       BytePrefix +=
2059           StringRef(reinterpret_cast<const char *>(&Sym.Header),
2060                     sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2061     } else {
2062       assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2063       if (DefRange.IsSubfield) {
2064         // Unclear what matters here.
2065         DefRangeSubfieldRegisterSym Sym(DefRange.CVRegister, 0,
2066                                         DefRange.StructOffset, None);
2067         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER);
2068         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2069                                 sizeof(SymKind));
2070         BytePrefix +=
2071             StringRef(reinterpret_cast<const char *>(&Sym.Header),
2072                       sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2073       } else {
2074         // Unclear what matters here.
2075         DefRangeRegisterSym Sym(DefRange.CVRegister, 0, None);
2076         ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER);
2077         BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind),
2078                                 sizeof(SymKind));
2079         BytePrefix +=
2080             StringRef(reinterpret_cast<const char *>(&Sym.Header),
2081                       sizeof(Sym.Header) - sizeof(LocalVariableAddrRange));
2082       }
2083     }
2084     OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix);
2085   }
2086 }
2087 
2088 void CodeViewDebug::endFunction(const MachineFunction *MF) {
2089   if (!Asm || !CurFn)  // We haven't created any debug info for this function.
2090     return;
2091 
2092   const Function *GV = MF->getFunction();
2093   assert(FnDebugInfo.count(GV));
2094   assert(CurFn == &FnDebugInfo[GV]);
2095 
2096   collectVariableInfo(GV->getSubprogram());
2097 
2098   DebugHandlerBase::endFunction(MF);
2099 
2100   // Don't emit anything if we don't have any line tables.
2101   if (!CurFn->HaveLineInfo) {
2102     FnDebugInfo.erase(GV);
2103     CurFn = nullptr;
2104     return;
2105   }
2106 
2107   CurFn->End = Asm->getFunctionEnd();
2108 
2109   CurFn = nullptr;
2110 }
2111 
2112 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2113   DebugHandlerBase::beginInstruction(MI);
2114 
2115   // Ignore DBG_VALUE locations and function prologue.
2116   if (!Asm || !CurFn || MI->isDebugValue() ||
2117       MI->getFlag(MachineInstr::FrameSetup))
2118     return;
2119   DebugLoc DL = MI->getDebugLoc();
2120   if (DL == PrevInstLoc || !DL)
2121     return;
2122   maybeRecordLocation(DL, Asm->MF);
2123 }
2124 
2125 MCSymbol *CodeViewDebug::beginCVSubsection(ModuleSubstreamKind Kind) {
2126   MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2127            *EndLabel = MMI->getContext().createTempSymbol();
2128   OS.EmitIntValue(unsigned(Kind), 4);
2129   OS.AddComment("Subsection size");
2130   OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2131   OS.EmitLabel(BeginLabel);
2132   if (Kind == ModuleSubstreamKind::Symbols)
2133     emitCompilerInformation();
2134   return EndLabel;
2135 }
2136 
2137 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2138   OS.EmitLabel(EndLabel);
2139   // Every subsection must be aligned to a 4-byte boundary.
2140   OS.EmitValueToAlignment(4);
2141 }
2142 
2143 void CodeViewDebug::emitDebugInfoForUDTs(
2144     ArrayRef<std::pair<std::string, TypeIndex>> UDTs) {
2145   for (const std::pair<std::string, codeview::TypeIndex> &UDT : UDTs) {
2146     MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(),
2147              *UDTRecordEnd = MMI->getContext().createTempSymbol();
2148     OS.AddComment("Record length");
2149     OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2);
2150     OS.EmitLabel(UDTRecordBegin);
2151 
2152     OS.AddComment("Record kind: S_UDT");
2153     OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2);
2154 
2155     OS.AddComment("Type");
2156     OS.EmitIntValue(UDT.second.getIndex(), 4);
2157 
2158     emitNullTerminatedSymbolName(OS, UDT.first);
2159     OS.EmitLabel(UDTRecordEnd);
2160   }
2161 }
2162 
2163 void CodeViewDebug::emitDebugInfoForGlobals() {
2164   DenseMap<const DIGlobalVariable *, const GlobalVariable *> GlobalMap;
2165   for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2166     SmallVector<MDNode *, 1> MDs;
2167     GV.getMetadata(LLVMContext::MD_dbg, MDs);
2168     for (MDNode *MD : MDs)
2169       GlobalMap[cast<DIGlobalVariable>(MD)] = &GV;
2170   }
2171 
2172   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2173   for (const MDNode *Node : CUs->operands()) {
2174     const auto *CU = cast<DICompileUnit>(Node);
2175 
2176     // First, emit all globals that are not in a comdat in a single symbol
2177     // substream. MSVC doesn't like it if the substream is empty, so only open
2178     // it if we have at least one global to emit.
2179     switchToDebugSectionForSymbol(nullptr);
2180     MCSymbol *EndLabel = nullptr;
2181     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2182       if (const auto *GV = GlobalMap.lookup(G))
2183         if (!GV->hasComdat() && !GV->isDeclarationForLinker()) {
2184           if (!EndLabel) {
2185             OS.AddComment("Symbol subsection for globals");
2186             EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2187           }
2188           emitDebugInfoForGlobal(G, GV, Asm->getSymbol(GV));
2189         }
2190     }
2191     if (EndLabel)
2192       endCVSubsection(EndLabel);
2193 
2194     // Second, emit each global that is in a comdat into its own .debug$S
2195     // section along with its own symbol substream.
2196     for (const DIGlobalVariable *G : CU->getGlobalVariables()) {
2197       if (const auto *GV = GlobalMap.lookup(G)) {
2198         if (GV->hasComdat()) {
2199           MCSymbol *GVSym = Asm->getSymbol(GV);
2200           OS.AddComment("Symbol subsection for " +
2201                         Twine(GlobalValue::getRealLinkageName(GV->getName())));
2202           switchToDebugSectionForSymbol(GVSym);
2203           EndLabel = beginCVSubsection(ModuleSubstreamKind::Symbols);
2204           emitDebugInfoForGlobal(G, GV, GVSym);
2205           endCVSubsection(EndLabel);
2206         }
2207       }
2208     }
2209   }
2210 }
2211 
2212 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
2213   NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2214   for (const MDNode *Node : CUs->operands()) {
2215     for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
2216       if (DIType *RT = dyn_cast<DIType>(Ty)) {
2217         getTypeIndex(RT);
2218         // FIXME: Add to global/local DTU list.
2219       }
2220     }
2221   }
2222 }
2223 
2224 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV,
2225                                            const GlobalVariable *GV,
2226                                            MCSymbol *GVSym) {
2227   // DataSym record, see SymbolRecord.h for more info.
2228   // FIXME: Thread local data, etc
2229   MCSymbol *DataBegin = MMI->getContext().createTempSymbol(),
2230            *DataEnd = MMI->getContext().createTempSymbol();
2231   OS.AddComment("Record length");
2232   OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2);
2233   OS.EmitLabel(DataBegin);
2234   if (DIGV->isLocalToUnit()) {
2235     if (GV->isThreadLocal()) {
2236       OS.AddComment("Record kind: S_LTHREAD32");
2237       OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2);
2238     } else {
2239       OS.AddComment("Record kind: S_LDATA32");
2240       OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2);
2241     }
2242   } else {
2243     if (GV->isThreadLocal()) {
2244       OS.AddComment("Record kind: S_GTHREAD32");
2245       OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2);
2246     } else {
2247       OS.AddComment("Record kind: S_GDATA32");
2248       OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2);
2249     }
2250   }
2251   OS.AddComment("Type");
2252   OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
2253   OS.AddComment("DataOffset");
2254   OS.EmitCOFFSecRel32(GVSym);
2255   OS.AddComment("Segment");
2256   OS.EmitCOFFSectionIndex(GVSym);
2257   OS.AddComment("Name");
2258   emitNullTerminatedSymbolName(OS, DIGV->getName());
2259   OS.EmitLabel(DataEnd);
2260 }
2261