1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains support for writing Microsoft CodeView debug info. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeViewDebug.h" 15 #include "DwarfExpression.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/DenseSet.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/TinyPtrVector.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/BinaryFormat/COFF.h" 31 #include "llvm/BinaryFormat/Dwarf.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/LexicalScopes.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/Config/llvm-config.h" 39 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h" 40 #include "llvm/DebugInfo/CodeView/CodeView.h" 41 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h" 42 #include "llvm/DebugInfo/CodeView/Line.h" 43 #include "llvm/DebugInfo/CodeView/SymbolRecord.h" 44 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h" 45 #include "llvm/DebugInfo/CodeView/TypeIndex.h" 46 #include "llvm/DebugInfo/CodeView/TypeRecord.h" 47 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DebugInfoMetadata.h" 51 #include "llvm/IR/DebugLoc.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/GlobalValue.h" 54 #include "llvm/IR/GlobalVariable.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/MC/MCAsmInfo.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCSectionCOFF.h" 60 #include "llvm/MC/MCStreamer.h" 61 #include "llvm/MC/MCSymbol.h" 62 #include "llvm/Support/BinaryByteStream.h" 63 #include "llvm/Support/BinaryStreamReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Endian.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ScopedPrinter.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Target/TargetFrameLowering.h" 72 #include "llvm/Target/TargetLoweringObjectFile.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Target/TargetSubtargetInfo.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cctype> 79 #include <cstddef> 80 #include <cstdint> 81 #include <iterator> 82 #include <limits> 83 #include <string> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 using namespace llvm::codeview; 89 90 CodeViewDebug::CodeViewDebug(AsmPrinter *AP) 91 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) { 92 // If module doesn't have named metadata anchors or COFF debug section 93 // is not available, skip any debug info related stuff. 94 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") || 95 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) { 96 Asm = nullptr; 97 return; 98 } 99 100 // Tell MMI that we have debug info. 101 MMI->setDebugInfoAvailability(true); 102 } 103 104 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) { 105 std::string &Filepath = FileToFilepathMap[File]; 106 if (!Filepath.empty()) 107 return Filepath; 108 109 StringRef Dir = File->getDirectory(), Filename = File->getFilename(); 110 111 // Clang emits directory and relative filename info into the IR, but CodeView 112 // operates on full paths. We could change Clang to emit full paths too, but 113 // that would increase the IR size and probably not needed for other users. 114 // For now, just concatenate and canonicalize the path here. 115 if (Filename.find(':') == 1) 116 Filepath = Filename; 117 else 118 Filepath = (Dir + "\\" + Filename).str(); 119 120 // Canonicalize the path. We have to do it textually because we may no longer 121 // have access the file in the filesystem. 122 // First, replace all slashes with backslashes. 123 std::replace(Filepath.begin(), Filepath.end(), '/', '\\'); 124 125 // Remove all "\.\" with "\". 126 size_t Cursor = 0; 127 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos) 128 Filepath.erase(Cursor, 2); 129 130 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original 131 // path should be well-formatted, e.g. start with a drive letter, etc. 132 Cursor = 0; 133 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) { 134 // Something's wrong if the path starts with "\..\", abort. 135 if (Cursor == 0) 136 break; 137 138 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1); 139 if (PrevSlash == std::string::npos) 140 // Something's wrong, abort. 141 break; 142 143 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash); 144 // The next ".." might be following the one we've just erased. 145 Cursor = PrevSlash; 146 } 147 148 // Remove all duplicate backslashes. 149 Cursor = 0; 150 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos) 151 Filepath.erase(Cursor, 1); 152 153 return Filepath; 154 } 155 156 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) { 157 unsigned NextId = FileIdMap.size() + 1; 158 auto Insertion = FileIdMap.insert(std::make_pair(F, NextId)); 159 if (Insertion.second) { 160 // We have to compute the full filepath and emit a .cv_file directive. 161 StringRef FullPath = getFullFilepath(F); 162 bool Success = OS.EmitCVFileDirective(NextId, FullPath); 163 (void)Success; 164 assert(Success && ".cv_file directive failed"); 165 } 166 return Insertion.first->second; 167 } 168 169 CodeViewDebug::InlineSite & 170 CodeViewDebug::getInlineSite(const DILocation *InlinedAt, 171 const DISubprogram *Inlinee) { 172 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()}); 173 InlineSite *Site = &SiteInsertion.first->second; 174 if (SiteInsertion.second) { 175 unsigned ParentFuncId = CurFn->FuncId; 176 if (const DILocation *OuterIA = InlinedAt->getInlinedAt()) 177 ParentFuncId = 178 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram()) 179 .SiteFuncId; 180 181 Site->SiteFuncId = NextFuncId++; 182 OS.EmitCVInlineSiteIdDirective( 183 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()), 184 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc()); 185 Site->Inlinee = Inlinee; 186 InlinedSubprograms.insert(Inlinee); 187 getFuncIdForSubprogram(Inlinee); 188 } 189 return *Site; 190 } 191 192 static StringRef getPrettyScopeName(const DIScope *Scope) { 193 StringRef ScopeName = Scope->getName(); 194 if (!ScopeName.empty()) 195 return ScopeName; 196 197 switch (Scope->getTag()) { 198 case dwarf::DW_TAG_enumeration_type: 199 case dwarf::DW_TAG_class_type: 200 case dwarf::DW_TAG_structure_type: 201 case dwarf::DW_TAG_union_type: 202 return "<unnamed-tag>"; 203 case dwarf::DW_TAG_namespace: 204 return "`anonymous namespace'"; 205 } 206 207 return StringRef(); 208 } 209 210 static const DISubprogram *getQualifiedNameComponents( 211 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) { 212 const DISubprogram *ClosestSubprogram = nullptr; 213 while (Scope != nullptr) { 214 if (ClosestSubprogram == nullptr) 215 ClosestSubprogram = dyn_cast<DISubprogram>(Scope); 216 StringRef ScopeName = getPrettyScopeName(Scope); 217 if (!ScopeName.empty()) 218 QualifiedNameComponents.push_back(ScopeName); 219 Scope = Scope->getScope().resolve(); 220 } 221 return ClosestSubprogram; 222 } 223 224 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents, 225 StringRef TypeName) { 226 std::string FullyQualifiedName; 227 for (StringRef QualifiedNameComponent : 228 llvm::reverse(QualifiedNameComponents)) { 229 FullyQualifiedName.append(QualifiedNameComponent); 230 FullyQualifiedName.append("::"); 231 } 232 FullyQualifiedName.append(TypeName); 233 return FullyQualifiedName; 234 } 235 236 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) { 237 SmallVector<StringRef, 5> QualifiedNameComponents; 238 getQualifiedNameComponents(Scope, QualifiedNameComponents); 239 return getQualifiedName(QualifiedNameComponents, Name); 240 } 241 242 struct CodeViewDebug::TypeLoweringScope { 243 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; } 244 ~TypeLoweringScope() { 245 // Don't decrement TypeEmissionLevel until after emitting deferred types, so 246 // inner TypeLoweringScopes don't attempt to emit deferred types. 247 if (CVD.TypeEmissionLevel == 1) 248 CVD.emitDeferredCompleteTypes(); 249 --CVD.TypeEmissionLevel; 250 } 251 CodeViewDebug &CVD; 252 }; 253 254 static std::string getFullyQualifiedName(const DIScope *Ty) { 255 const DIScope *Scope = Ty->getScope().resolve(); 256 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty)); 257 } 258 259 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) { 260 // No scope means global scope and that uses the zero index. 261 if (!Scope || isa<DIFile>(Scope)) 262 return TypeIndex(); 263 264 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type"); 265 266 // Check if we've already translated this scope. 267 auto I = TypeIndices.find({Scope, nullptr}); 268 if (I != TypeIndices.end()) 269 return I->second; 270 271 // Build the fully qualified name of the scope. 272 std::string ScopeName = getFullyQualifiedName(Scope); 273 StringIdRecord SID(TypeIndex(), ScopeName); 274 auto TI = TypeTable.writeKnownType(SID); 275 return recordTypeIndexForDINode(Scope, TI); 276 } 277 278 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) { 279 assert(SP); 280 281 // Check if we've already translated this subprogram. 282 auto I = TypeIndices.find({SP, nullptr}); 283 if (I != TypeIndices.end()) 284 return I->second; 285 286 // The display name includes function template arguments. Drop them to match 287 // MSVC. 288 StringRef DisplayName = SP->getName().split('<').first; 289 290 const DIScope *Scope = SP->getScope().resolve(); 291 TypeIndex TI; 292 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) { 293 // If the scope is a DICompositeType, then this must be a method. Member 294 // function types take some special handling, and require access to the 295 // subprogram. 296 TypeIndex ClassType = getTypeIndex(Class); 297 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class), 298 DisplayName); 299 TI = TypeTable.writeKnownType(MFuncId); 300 } else { 301 // Otherwise, this must be a free function. 302 TypeIndex ParentScope = getScopeIndex(Scope); 303 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName); 304 TI = TypeTable.writeKnownType(FuncId); 305 } 306 307 return recordTypeIndexForDINode(SP, TI); 308 } 309 310 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP, 311 const DICompositeType *Class) { 312 // Always use the method declaration as the key for the function type. The 313 // method declaration contains the this adjustment. 314 if (SP->getDeclaration()) 315 SP = SP->getDeclaration(); 316 assert(!SP->getDeclaration() && "should use declaration as key"); 317 318 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide 319 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}. 320 auto I = TypeIndices.find({SP, Class}); 321 if (I != TypeIndices.end()) 322 return I->second; 323 324 // Make sure complete type info for the class is emitted *after* the member 325 // function type, as the complete class type is likely to reference this 326 // member function type. 327 TypeLoweringScope S(*this); 328 TypeIndex TI = 329 lowerTypeMemberFunction(SP->getType(), Class, SP->getThisAdjustment()); 330 return recordTypeIndexForDINode(SP, TI, Class); 331 } 332 333 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node, 334 TypeIndex TI, 335 const DIType *ClassTy) { 336 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI}); 337 (void)InsertResult; 338 assert(InsertResult.second && "DINode was already assigned a type index"); 339 return TI; 340 } 341 342 unsigned CodeViewDebug::getPointerSizeInBytes() { 343 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8; 344 } 345 346 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var, 347 const DILocation *InlinedAt) { 348 if (InlinedAt) { 349 // This variable was inlined. Associate it with the InlineSite. 350 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram(); 351 InlineSite &Site = getInlineSite(InlinedAt, Inlinee); 352 Site.InlinedLocals.emplace_back(Var); 353 } else { 354 // This variable goes in the main ProcSym. 355 CurFn->Locals.emplace_back(Var); 356 } 357 } 358 359 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs, 360 const DILocation *Loc) { 361 auto B = Locs.begin(), E = Locs.end(); 362 if (std::find(B, E, Loc) == E) 363 Locs.push_back(Loc); 364 } 365 366 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL, 367 const MachineFunction *MF) { 368 // Skip this instruction if it has the same location as the previous one. 369 if (!DL || DL == PrevInstLoc) 370 return; 371 372 const DIScope *Scope = DL.get()->getScope(); 373 if (!Scope) 374 return; 375 376 // Skip this line if it is longer than the maximum we can record. 377 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true); 378 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() || 379 LI.isNeverStepInto()) 380 return; 381 382 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0); 383 if (CI.getStartColumn() != DL.getCol()) 384 return; 385 386 if (!CurFn->HaveLineInfo) 387 CurFn->HaveLineInfo = true; 388 unsigned FileId = 0; 389 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile()) 390 FileId = CurFn->LastFileId; 391 else 392 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile()); 393 PrevInstLoc = DL; 394 395 unsigned FuncId = CurFn->FuncId; 396 if (const DILocation *SiteLoc = DL->getInlinedAt()) { 397 const DILocation *Loc = DL.get(); 398 399 // If this location was actually inlined from somewhere else, give it the ID 400 // of the inline call site. 401 FuncId = 402 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId; 403 404 // Ensure we have links in the tree of inline call sites. 405 bool FirstLoc = true; 406 while ((SiteLoc = Loc->getInlinedAt())) { 407 InlineSite &Site = 408 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()); 409 if (!FirstLoc) 410 addLocIfNotPresent(Site.ChildSites, Loc); 411 FirstLoc = false; 412 Loc = SiteLoc; 413 } 414 addLocIfNotPresent(CurFn->ChildSites, Loc); 415 } 416 417 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(), 418 /*PrologueEnd=*/false, /*IsStmt=*/false, 419 DL->getFilename(), SMLoc()); 420 } 421 422 void CodeViewDebug::emitCodeViewMagicVersion() { 423 OS.EmitValueToAlignment(4); 424 OS.AddComment("Debug section magic"); 425 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4); 426 } 427 428 void CodeViewDebug::endModule() { 429 if (!Asm || !MMI->hasDebugInfo()) 430 return; 431 432 assert(Asm != nullptr); 433 434 // The COFF .debug$S section consists of several subsections, each starting 435 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length 436 // of the payload followed by the payload itself. The subsections are 4-byte 437 // aligned. 438 439 // Use the generic .debug$S section, and make a subsection for all the inlined 440 // subprograms. 441 switchToDebugSectionForSymbol(nullptr); 442 443 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols); 444 emitCompilerInformation(); 445 endCVSubsection(CompilerInfo); 446 447 emitInlineeLinesSubsection(); 448 449 // Emit per-function debug information. 450 for (auto &P : FnDebugInfo) 451 if (!P.first->isDeclarationForLinker()) 452 emitDebugInfoForFunction(P.first, P.second); 453 454 // Emit global variable debug information. 455 setCurrentSubprogram(nullptr); 456 emitDebugInfoForGlobals(); 457 458 // Emit retained types. 459 emitDebugInfoForRetainedTypes(); 460 461 // Switch back to the generic .debug$S section after potentially processing 462 // comdat symbol sections. 463 switchToDebugSectionForSymbol(nullptr); 464 465 // Emit UDT records for any types used by global variables. 466 if (!GlobalUDTs.empty()) { 467 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 468 emitDebugInfoForUDTs(GlobalUDTs); 469 endCVSubsection(SymbolsEnd); 470 } 471 472 // This subsection holds a file index to offset in string table table. 473 OS.AddComment("File index to string table offset subsection"); 474 OS.EmitCVFileChecksumsDirective(); 475 476 // This subsection holds the string table. 477 OS.AddComment("String table"); 478 OS.EmitCVStringTableDirective(); 479 480 // Emit type information last, so that any types we translate while emitting 481 // function info are included. 482 emitTypeInformation(); 483 484 clear(); 485 } 486 487 static void emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S) { 488 // The maximum CV record length is 0xFF00. Most of the strings we emit appear 489 // after a fixed length portion of the record. The fixed length portion should 490 // always be less than 0xF00 (3840) bytes, so truncate the string so that the 491 // overall record size is less than the maximum allowed. 492 unsigned MaxFixedRecordLength = 0xF00; 493 SmallString<32> NullTerminatedString( 494 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1)); 495 NullTerminatedString.push_back('\0'); 496 OS.EmitBytes(NullTerminatedString); 497 } 498 499 void CodeViewDebug::emitTypeInformation() { 500 // Do nothing if we have no debug info or if no non-trivial types were emitted 501 // to TypeTable during codegen. 502 NamedMDNode *CU_Nodes = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 503 if (!CU_Nodes) 504 return; 505 if (TypeTable.empty()) 506 return; 507 508 // Start the .debug$T section with 0x4. 509 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection()); 510 emitCodeViewMagicVersion(); 511 512 SmallString<8> CommentPrefix; 513 if (OS.isVerboseAsm()) { 514 CommentPrefix += '\t'; 515 CommentPrefix += Asm->MAI->getCommentString(); 516 CommentPrefix += ' '; 517 } 518 519 TypeTableCollection Table(TypeTable.records()); 520 Optional<TypeIndex> B = Table.getFirst(); 521 while (B) { 522 // This will fail if the record data is invalid. 523 CVType Record = Table.getType(*B); 524 525 if (OS.isVerboseAsm()) { 526 // Emit a block comment describing the type record for readability. 527 SmallString<512> CommentBlock; 528 raw_svector_ostream CommentOS(CommentBlock); 529 ScopedPrinter SP(CommentOS); 530 SP.setPrefix(CommentPrefix); 531 TypeDumpVisitor TDV(Table, &SP, false); 532 533 Error E = codeview::visitTypeRecord(Record, *B, TDV); 534 if (E) { 535 logAllUnhandledErrors(std::move(E), errs(), "error: "); 536 llvm_unreachable("produced malformed type record"); 537 } 538 // emitRawComment will insert its own tab and comment string before 539 // the first line, so strip off our first one. It also prints its own 540 // newline. 541 OS.emitRawComment( 542 CommentOS.str().drop_front(CommentPrefix.size() - 1).rtrim()); 543 } 544 OS.EmitBinaryData(Record.str_data()); 545 B = Table.getNext(*B); 546 } 547 } 548 549 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) { 550 switch (DWLang) { 551 case dwarf::DW_LANG_C: 552 case dwarf::DW_LANG_C89: 553 case dwarf::DW_LANG_C99: 554 case dwarf::DW_LANG_C11: 555 case dwarf::DW_LANG_ObjC: 556 return SourceLanguage::C; 557 case dwarf::DW_LANG_C_plus_plus: 558 case dwarf::DW_LANG_C_plus_plus_03: 559 case dwarf::DW_LANG_C_plus_plus_11: 560 case dwarf::DW_LANG_C_plus_plus_14: 561 return SourceLanguage::Cpp; 562 case dwarf::DW_LANG_Fortran77: 563 case dwarf::DW_LANG_Fortran90: 564 case dwarf::DW_LANG_Fortran03: 565 case dwarf::DW_LANG_Fortran08: 566 return SourceLanguage::Fortran; 567 case dwarf::DW_LANG_Pascal83: 568 return SourceLanguage::Pascal; 569 case dwarf::DW_LANG_Cobol74: 570 case dwarf::DW_LANG_Cobol85: 571 return SourceLanguage::Cobol; 572 case dwarf::DW_LANG_Java: 573 return SourceLanguage::Java; 574 case dwarf::DW_LANG_D: 575 return SourceLanguage::D; 576 default: 577 // There's no CodeView representation for this language, and CV doesn't 578 // have an "unknown" option for the language field, so we'll use MASM, 579 // as it's very low level. 580 return SourceLanguage::Masm; 581 } 582 } 583 584 namespace { 585 struct Version { 586 int Part[4]; 587 }; 588 } // end anonymous namespace 589 590 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out 591 // the version number. 592 static Version parseVersion(StringRef Name) { 593 Version V = {{0}}; 594 int N = 0; 595 for (const char C : Name) { 596 if (isdigit(C)) { 597 V.Part[N] *= 10; 598 V.Part[N] += C - '0'; 599 } else if (C == '.') { 600 ++N; 601 if (N >= 4) 602 return V; 603 } else if (N > 0) 604 return V; 605 } 606 return V; 607 } 608 609 static CPUType mapArchToCVCPUType(Triple::ArchType Type) { 610 switch (Type) { 611 case Triple::ArchType::x86: 612 return CPUType::Pentium3; 613 case Triple::ArchType::x86_64: 614 return CPUType::X64; 615 case Triple::ArchType::thumb: 616 return CPUType::Thumb; 617 case Triple::ArchType::aarch64: 618 return CPUType::ARM64; 619 default: 620 report_fatal_error("target architecture doesn't map to a CodeView CPUType"); 621 } 622 } 623 624 void CodeViewDebug::emitCompilerInformation() { 625 MCContext &Context = MMI->getContext(); 626 MCSymbol *CompilerBegin = Context.createTempSymbol(), 627 *CompilerEnd = Context.createTempSymbol(); 628 OS.AddComment("Record length"); 629 OS.emitAbsoluteSymbolDiff(CompilerEnd, CompilerBegin, 2); 630 OS.EmitLabel(CompilerBegin); 631 OS.AddComment("Record kind: S_COMPILE3"); 632 OS.EmitIntValue(SymbolKind::S_COMPILE3, 2); 633 uint32_t Flags = 0; 634 635 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 636 const MDNode *Node = *CUs->operands().begin(); 637 const auto *CU = cast<DICompileUnit>(Node); 638 639 // The low byte of the flags indicates the source language. 640 Flags = MapDWLangToCVLang(CU->getSourceLanguage()); 641 // TODO: Figure out which other flags need to be set. 642 643 OS.AddComment("Flags and language"); 644 OS.EmitIntValue(Flags, 4); 645 646 OS.AddComment("CPUType"); 647 CPUType CPU = 648 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch()); 649 OS.EmitIntValue(static_cast<uint64_t>(CPU), 2); 650 651 StringRef CompilerVersion = CU->getProducer(); 652 Version FrontVer = parseVersion(CompilerVersion); 653 OS.AddComment("Frontend version"); 654 for (int N = 0; N < 4; ++N) 655 OS.EmitIntValue(FrontVer.Part[N], 2); 656 657 // Some Microsoft tools, like Binscope, expect a backend version number of at 658 // least 8.something, so we'll coerce the LLVM version into a form that 659 // guarantees it'll be big enough without really lying about the version. 660 int Major = 1000 * LLVM_VERSION_MAJOR + 661 10 * LLVM_VERSION_MINOR + 662 LLVM_VERSION_PATCH; 663 // Clamp it for builds that use unusually large version numbers. 664 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max()); 665 Version BackVer = {{ Major, 0, 0, 0 }}; 666 OS.AddComment("Backend version"); 667 for (int N = 0; N < 4; ++N) 668 OS.EmitIntValue(BackVer.Part[N], 2); 669 670 OS.AddComment("Null-terminated compiler version string"); 671 emitNullTerminatedSymbolName(OS, CompilerVersion); 672 673 OS.EmitLabel(CompilerEnd); 674 } 675 676 void CodeViewDebug::emitInlineeLinesSubsection() { 677 if (InlinedSubprograms.empty()) 678 return; 679 680 OS.AddComment("Inlinee lines subsection"); 681 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines); 682 683 // We don't provide any extra file info. 684 // FIXME: Find out if debuggers use this info. 685 OS.AddComment("Inlinee lines signature"); 686 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4); 687 688 for (const DISubprogram *SP : InlinedSubprograms) { 689 assert(TypeIndices.count({SP, nullptr})); 690 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}]; 691 692 OS.AddBlankLine(); 693 unsigned FileId = maybeRecordFile(SP->getFile()); 694 OS.AddComment("Inlined function " + SP->getName() + " starts at " + 695 SP->getFilename() + Twine(':') + Twine(SP->getLine())); 696 OS.AddBlankLine(); 697 // The filechecksum table uses 8 byte entries for now, and file ids start at 698 // 1. 699 unsigned FileOffset = (FileId - 1) * 8; 700 OS.AddComment("Type index of inlined function"); 701 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 702 OS.AddComment("Offset into filechecksum table"); 703 OS.EmitIntValue(FileOffset, 4); 704 OS.AddComment("Starting line number"); 705 OS.EmitIntValue(SP->getLine(), 4); 706 } 707 708 endCVSubsection(InlineEnd); 709 } 710 711 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI, 712 const DILocation *InlinedAt, 713 const InlineSite &Site) { 714 MCSymbol *InlineBegin = MMI->getContext().createTempSymbol(), 715 *InlineEnd = MMI->getContext().createTempSymbol(); 716 717 assert(TypeIndices.count({Site.Inlinee, nullptr})); 718 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}]; 719 720 // SymbolRecord 721 OS.AddComment("Record length"); 722 OS.emitAbsoluteSymbolDiff(InlineEnd, InlineBegin, 2); // RecordLength 723 OS.EmitLabel(InlineBegin); 724 OS.AddComment("Record kind: S_INLINESITE"); 725 OS.EmitIntValue(SymbolKind::S_INLINESITE, 2); // RecordKind 726 727 OS.AddComment("PtrParent"); 728 OS.EmitIntValue(0, 4); 729 OS.AddComment("PtrEnd"); 730 OS.EmitIntValue(0, 4); 731 OS.AddComment("Inlinee type index"); 732 OS.EmitIntValue(InlineeIdx.getIndex(), 4); 733 734 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile()); 735 unsigned StartLineNum = Site.Inlinee->getLine(); 736 737 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum, 738 FI.Begin, FI.End); 739 740 OS.EmitLabel(InlineEnd); 741 742 emitLocalVariableList(Site.InlinedLocals); 743 744 // Recurse on child inlined call sites before closing the scope. 745 for (const DILocation *ChildSite : Site.ChildSites) { 746 auto I = FI.InlineSites.find(ChildSite); 747 assert(I != FI.InlineSites.end() && 748 "child site not in function inline site map"); 749 emitInlinedCallSite(FI, ChildSite, I->second); 750 } 751 752 // Close the scope. 753 OS.AddComment("Record length"); 754 OS.EmitIntValue(2, 2); // RecordLength 755 OS.AddComment("Record kind: S_INLINESITE_END"); 756 OS.EmitIntValue(SymbolKind::S_INLINESITE_END, 2); // RecordKind 757 } 758 759 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) { 760 // If we have a symbol, it may be in a section that is COMDAT. If so, find the 761 // comdat key. A section may be comdat because of -ffunction-sections or 762 // because it is comdat in the IR. 763 MCSectionCOFF *GVSec = 764 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr; 765 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr; 766 767 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>( 768 Asm->getObjFileLowering().getCOFFDebugSymbolsSection()); 769 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym); 770 771 OS.SwitchSection(DebugSec); 772 773 // Emit the magic version number if this is the first time we've switched to 774 // this section. 775 if (ComdatDebugSections.insert(DebugSec).second) 776 emitCodeViewMagicVersion(); 777 } 778 779 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV, 780 FunctionInfo &FI) { 781 // For each function there is a separate subsection 782 // which holds the PC to file:line table. 783 const MCSymbol *Fn = Asm->getSymbol(GV); 784 assert(Fn); 785 786 // Switch to the to a comdat section, if appropriate. 787 switchToDebugSectionForSymbol(Fn); 788 789 std::string FuncName; 790 auto *SP = GV->getSubprogram(); 791 assert(SP); 792 setCurrentSubprogram(SP); 793 794 // If we have a display name, build the fully qualified name by walking the 795 // chain of scopes. 796 if (!SP->getName().empty()) 797 FuncName = 798 getFullyQualifiedName(SP->getScope().resolve(), SP->getName()); 799 800 // If our DISubprogram name is empty, use the mangled name. 801 if (FuncName.empty()) 802 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName()); 803 804 // Emit a symbol subsection, required by VS2012+ to find function boundaries. 805 OS.AddComment("Symbol subsection for " + Twine(FuncName)); 806 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols); 807 { 808 MCSymbol *ProcRecordBegin = MMI->getContext().createTempSymbol(), 809 *ProcRecordEnd = MMI->getContext().createTempSymbol(); 810 OS.AddComment("Record length"); 811 OS.emitAbsoluteSymbolDiff(ProcRecordEnd, ProcRecordBegin, 2); 812 OS.EmitLabel(ProcRecordBegin); 813 814 if (GV->hasLocalLinkage()) { 815 OS.AddComment("Record kind: S_LPROC32_ID"); 816 OS.EmitIntValue(unsigned(SymbolKind::S_LPROC32_ID), 2); 817 } else { 818 OS.AddComment("Record kind: S_GPROC32_ID"); 819 OS.EmitIntValue(unsigned(SymbolKind::S_GPROC32_ID), 2); 820 } 821 822 // These fields are filled in by tools like CVPACK which run after the fact. 823 OS.AddComment("PtrParent"); 824 OS.EmitIntValue(0, 4); 825 OS.AddComment("PtrEnd"); 826 OS.EmitIntValue(0, 4); 827 OS.AddComment("PtrNext"); 828 OS.EmitIntValue(0, 4); 829 // This is the important bit that tells the debugger where the function 830 // code is located and what's its size: 831 OS.AddComment("Code size"); 832 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4); 833 OS.AddComment("Offset after prologue"); 834 OS.EmitIntValue(0, 4); 835 OS.AddComment("Offset before epilogue"); 836 OS.EmitIntValue(0, 4); 837 OS.AddComment("Function type index"); 838 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4); 839 OS.AddComment("Function section relative address"); 840 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0); 841 OS.AddComment("Function section index"); 842 OS.EmitCOFFSectionIndex(Fn); 843 OS.AddComment("Flags"); 844 OS.EmitIntValue(0, 1); 845 // Emit the function display name as a null-terminated string. 846 OS.AddComment("Function name"); 847 // Truncate the name so we won't overflow the record length field. 848 emitNullTerminatedSymbolName(OS, FuncName); 849 OS.EmitLabel(ProcRecordEnd); 850 851 emitLocalVariableList(FI.Locals); 852 853 // Emit inlined call site information. Only emit functions inlined directly 854 // into the parent function. We'll emit the other sites recursively as part 855 // of their parent inline site. 856 for (const DILocation *InlinedAt : FI.ChildSites) { 857 auto I = FI.InlineSites.find(InlinedAt); 858 assert(I != FI.InlineSites.end() && 859 "child site not in function inline site map"); 860 emitInlinedCallSite(FI, InlinedAt, I->second); 861 } 862 863 for (auto Annot : FI.Annotations) { 864 MCSymbol *Label = Annot.first; 865 MDTuple *Strs = cast<MDTuple>(Annot.second); 866 MCSymbol *AnnotBegin = MMI->getContext().createTempSymbol(), 867 *AnnotEnd = MMI->getContext().createTempSymbol(); 868 OS.AddComment("Record length"); 869 OS.emitAbsoluteSymbolDiff(AnnotEnd, AnnotBegin, 2); 870 OS.EmitLabel(AnnotBegin); 871 OS.AddComment("Record kind: S_ANNOTATION"); 872 OS.EmitIntValue(SymbolKind::S_ANNOTATION, 2); 873 OS.EmitCOFFSecRel32(Label, /*Offset=*/0); 874 // FIXME: Make sure we don't overflow the max record size. 875 OS.EmitCOFFSectionIndex(Label); 876 OS.EmitIntValue(Strs->getNumOperands(), 2); 877 for (Metadata *MD : Strs->operands()) { 878 // MDStrings are null terminated, so we can do EmitBytes and get the 879 // nice .asciz directive. 880 StringRef Str = cast<MDString>(MD)->getString(); 881 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString"); 882 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1)); 883 } 884 OS.EmitLabel(AnnotEnd); 885 } 886 887 if (SP != nullptr) 888 emitDebugInfoForUDTs(LocalUDTs); 889 890 // We're done with this function. 891 OS.AddComment("Record length"); 892 OS.EmitIntValue(0x0002, 2); 893 OS.AddComment("Record kind: S_PROC_ID_END"); 894 OS.EmitIntValue(unsigned(SymbolKind::S_PROC_ID_END), 2); 895 } 896 endCVSubsection(SymbolsEnd); 897 898 // We have an assembler directive that takes care of the whole line table. 899 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End); 900 } 901 902 CodeViewDebug::LocalVarDefRange 903 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) { 904 LocalVarDefRange DR; 905 DR.InMemory = -1; 906 DR.DataOffset = Offset; 907 assert(DR.DataOffset == Offset && "truncation"); 908 DR.IsSubfield = 0; 909 DR.StructOffset = 0; 910 DR.CVRegister = CVRegister; 911 return DR; 912 } 913 914 CodeViewDebug::LocalVarDefRange 915 CodeViewDebug::createDefRangeGeneral(uint16_t CVRegister, bool InMemory, 916 int Offset, bool IsSubfield, 917 uint16_t StructOffset) { 918 LocalVarDefRange DR; 919 DR.InMemory = InMemory; 920 DR.DataOffset = Offset; 921 DR.IsSubfield = IsSubfield; 922 DR.StructOffset = StructOffset; 923 DR.CVRegister = CVRegister; 924 return DR; 925 } 926 927 void CodeViewDebug::collectVariableInfoFromMFTable( 928 DenseSet<InlinedVariable> &Processed) { 929 const MachineFunction &MF = *Asm->MF; 930 const TargetSubtargetInfo &TSI = MF.getSubtarget(); 931 const TargetFrameLowering *TFI = TSI.getFrameLowering(); 932 const TargetRegisterInfo *TRI = TSI.getRegisterInfo(); 933 934 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) { 935 if (!VI.Var) 936 continue; 937 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && 938 "Expected inlined-at fields to agree"); 939 940 Processed.insert(InlinedVariable(VI.Var, VI.Loc->getInlinedAt())); 941 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); 942 943 // If variable scope is not found then skip this variable. 944 if (!Scope) 945 continue; 946 947 // If the variable has an attached offset expression, extract it. 948 // FIXME: Try to handle DW_OP_deref as well. 949 int64_t ExprOffset = 0; 950 if (VI.Expr) 951 if (!VI.Expr->extractIfOffset(ExprOffset)) 952 continue; 953 954 // Get the frame register used and the offset. 955 unsigned FrameReg = 0; 956 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg); 957 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg); 958 959 // Calculate the label ranges. 960 LocalVarDefRange DefRange = 961 createDefRangeMem(CVReg, FrameOffset + ExprOffset); 962 for (const InsnRange &Range : Scope->getRanges()) { 963 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 964 const MCSymbol *End = getLabelAfterInsn(Range.second); 965 End = End ? End : Asm->getFunctionEnd(); 966 DefRange.Ranges.emplace_back(Begin, End); 967 } 968 969 LocalVariable Var; 970 Var.DIVar = VI.Var; 971 Var.DefRanges.emplace_back(std::move(DefRange)); 972 recordLocalVariable(std::move(Var), VI.Loc->getInlinedAt()); 973 } 974 } 975 976 static bool canUseReferenceType(const DbgVariableLocation &Loc) { 977 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0; 978 } 979 980 static bool needsReferenceType(const DbgVariableLocation &Loc) { 981 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0; 982 } 983 984 void CodeViewDebug::calculateRanges( 985 LocalVariable &Var, const DbgValueHistoryMap::InstrRanges &Ranges) { 986 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo(); 987 988 // Calculate the definition ranges. 989 for (auto I = Ranges.begin(), E = Ranges.end(); I != E; ++I) { 990 const InsnRange &Range = *I; 991 const MachineInstr *DVInst = Range.first; 992 assert(DVInst->isDebugValue() && "Invalid History entry"); 993 // FIXME: Find a way to represent constant variables, since they are 994 // relatively common. 995 Optional<DbgVariableLocation> Location = 996 DbgVariableLocation::extractFromMachineInstruction(*DVInst); 997 if (!Location) 998 continue; 999 1000 // CodeView can only express variables in register and variables in memory 1001 // at a constant offset from a register. However, for variables passed 1002 // indirectly by pointer, it is common for that pointer to be spilled to a 1003 // stack location. For the special case of one offseted load followed by a 1004 // zero offset load (a pointer spilled to the stack), we change the type of 1005 // the local variable from a value type to a reference type. This tricks the 1006 // debugger into doing the load for us. 1007 if (Var.UseReferenceType) { 1008 // We're using a reference type. Drop the last zero offset load. 1009 if (canUseReferenceType(*Location)) 1010 Location->LoadChain.pop_back(); 1011 else 1012 continue; 1013 } else if (needsReferenceType(*Location)) { 1014 // This location can't be expressed without switching to a reference type. 1015 // Start over using that. 1016 Var.UseReferenceType = true; 1017 Var.DefRanges.clear(); 1018 calculateRanges(Var, Ranges); 1019 return; 1020 } 1021 1022 // We can only handle a register or an offseted load of a register. 1023 if (Location->Register == 0 || Location->LoadChain.size() > 1) 1024 continue; 1025 { 1026 LocalVarDefRange DR; 1027 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register); 1028 DR.InMemory = !Location->LoadChain.empty(); 1029 DR.DataOffset = 1030 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0; 1031 if (Location->FragmentInfo) { 1032 DR.IsSubfield = true; 1033 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8; 1034 } else { 1035 DR.IsSubfield = false; 1036 DR.StructOffset = 0; 1037 } 1038 1039 if (Var.DefRanges.empty() || 1040 Var.DefRanges.back().isDifferentLocation(DR)) { 1041 Var.DefRanges.emplace_back(std::move(DR)); 1042 } 1043 } 1044 1045 // Compute the label range. 1046 const MCSymbol *Begin = getLabelBeforeInsn(Range.first); 1047 const MCSymbol *End = getLabelAfterInsn(Range.second); 1048 if (!End) { 1049 // This range is valid until the next overlapping bitpiece. In the 1050 // common case, ranges will not be bitpieces, so they will overlap. 1051 auto J = std::next(I); 1052 const DIExpression *DIExpr = DVInst->getDebugExpression(); 1053 while (J != E && 1054 !fragmentsOverlap(DIExpr, J->first->getDebugExpression())) 1055 ++J; 1056 if (J != E) 1057 End = getLabelBeforeInsn(J->first); 1058 else 1059 End = Asm->getFunctionEnd(); 1060 } 1061 1062 // If the last range end is our begin, just extend the last range. 1063 // Otherwise make a new range. 1064 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R = 1065 Var.DefRanges.back().Ranges; 1066 if (!R.empty() && R.back().second == Begin) 1067 R.back().second = End; 1068 else 1069 R.emplace_back(Begin, End); 1070 1071 // FIXME: Do more range combining. 1072 } 1073 } 1074 1075 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) { 1076 DenseSet<InlinedVariable> Processed; 1077 // Grab the variable info that was squirreled away in the MMI side-table. 1078 collectVariableInfoFromMFTable(Processed); 1079 1080 for (const auto &I : DbgValues) { 1081 InlinedVariable IV = I.first; 1082 if (Processed.count(IV)) 1083 continue; 1084 const DILocalVariable *DIVar = IV.first; 1085 const DILocation *InlinedAt = IV.second; 1086 1087 // Instruction ranges, specifying where IV is accessible. 1088 const auto &Ranges = I.second; 1089 1090 LexicalScope *Scope = nullptr; 1091 if (InlinedAt) 1092 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt); 1093 else 1094 Scope = LScopes.findLexicalScope(DIVar->getScope()); 1095 // If variable scope is not found then skip this variable. 1096 if (!Scope) 1097 continue; 1098 1099 LocalVariable Var; 1100 Var.DIVar = DIVar; 1101 1102 calculateRanges(Var, Ranges); 1103 recordLocalVariable(std::move(Var), InlinedAt); 1104 } 1105 } 1106 1107 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) { 1108 const Function *GV = MF->getFunction(); 1109 assert(FnDebugInfo.count(GV) == false); 1110 CurFn = &FnDebugInfo[GV]; 1111 CurFn->FuncId = NextFuncId++; 1112 CurFn->Begin = Asm->getFunctionBegin(); 1113 1114 OS.EmitCVFuncIdDirective(CurFn->FuncId); 1115 1116 // Find the end of the function prolog. First known non-DBG_VALUE and 1117 // non-frame setup location marks the beginning of the function body. 1118 // FIXME: is there a simpler a way to do this? Can we just search 1119 // for the first instruction of the function, not the last of the prolog? 1120 DebugLoc PrologEndLoc; 1121 bool EmptyPrologue = true; 1122 for (const auto &MBB : *MF) { 1123 for (const auto &MI : MBB) { 1124 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && 1125 MI.getDebugLoc()) { 1126 PrologEndLoc = MI.getDebugLoc(); 1127 break; 1128 } else if (!MI.isMetaInstruction()) { 1129 EmptyPrologue = false; 1130 } 1131 } 1132 } 1133 1134 // Record beginning of function if we have a non-empty prologue. 1135 if (PrologEndLoc && !EmptyPrologue) { 1136 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc(); 1137 maybeRecordLocation(FnStartDL, MF); 1138 } 1139 } 1140 1141 static bool shouldEmitUdt(const DIType *T) { 1142 if (!T) 1143 return false; 1144 1145 // MSVC does not emit UDTs for typedefs that are scoped to classes. 1146 if (T->getTag() == dwarf::DW_TAG_typedef) { 1147 if (DIScope *Scope = T->getScope().resolve()) { 1148 switch (Scope->getTag()) { 1149 case dwarf::DW_TAG_structure_type: 1150 case dwarf::DW_TAG_class_type: 1151 case dwarf::DW_TAG_union_type: 1152 return false; 1153 } 1154 } 1155 } 1156 1157 while (true) { 1158 if (!T || T->isForwardDecl()) 1159 return false; 1160 1161 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T); 1162 if (!DT) 1163 return true; 1164 T = DT->getBaseType().resolve(); 1165 } 1166 return true; 1167 } 1168 1169 void CodeViewDebug::addToUDTs(const DIType *Ty) { 1170 // Don't record empty UDTs. 1171 if (Ty->getName().empty()) 1172 return; 1173 if (!shouldEmitUdt(Ty)) 1174 return; 1175 1176 SmallVector<StringRef, 5> QualifiedNameComponents; 1177 const DISubprogram *ClosestSubprogram = getQualifiedNameComponents( 1178 Ty->getScope().resolve(), QualifiedNameComponents); 1179 1180 std::string FullyQualifiedName = 1181 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty)); 1182 1183 if (ClosestSubprogram == nullptr) { 1184 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1185 } else if (ClosestSubprogram == CurrentSubprogram) { 1186 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty); 1187 } 1188 1189 // TODO: What if the ClosestSubprogram is neither null or the current 1190 // subprogram? Currently, the UDT just gets dropped on the floor. 1191 // 1192 // The current behavior is not desirable. To get maximal fidelity, we would 1193 // need to perform all type translation before beginning emission of .debug$S 1194 // and then make LocalUDTs a member of FunctionInfo 1195 } 1196 1197 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) { 1198 // Generic dispatch for lowering an unknown type. 1199 switch (Ty->getTag()) { 1200 case dwarf::DW_TAG_array_type: 1201 return lowerTypeArray(cast<DICompositeType>(Ty)); 1202 case dwarf::DW_TAG_typedef: 1203 return lowerTypeAlias(cast<DIDerivedType>(Ty)); 1204 case dwarf::DW_TAG_base_type: 1205 return lowerTypeBasic(cast<DIBasicType>(Ty)); 1206 case dwarf::DW_TAG_pointer_type: 1207 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type") 1208 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty)); 1209 LLVM_FALLTHROUGH; 1210 case dwarf::DW_TAG_reference_type: 1211 case dwarf::DW_TAG_rvalue_reference_type: 1212 return lowerTypePointer(cast<DIDerivedType>(Ty)); 1213 case dwarf::DW_TAG_ptr_to_member_type: 1214 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty)); 1215 case dwarf::DW_TAG_const_type: 1216 case dwarf::DW_TAG_volatile_type: 1217 // TODO: add support for DW_TAG_atomic_type here 1218 return lowerTypeModifier(cast<DIDerivedType>(Ty)); 1219 case dwarf::DW_TAG_subroutine_type: 1220 if (ClassTy) { 1221 // The member function type of a member function pointer has no 1222 // ThisAdjustment. 1223 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy, 1224 /*ThisAdjustment=*/0); 1225 } 1226 return lowerTypeFunction(cast<DISubroutineType>(Ty)); 1227 case dwarf::DW_TAG_enumeration_type: 1228 return lowerTypeEnum(cast<DICompositeType>(Ty)); 1229 case dwarf::DW_TAG_class_type: 1230 case dwarf::DW_TAG_structure_type: 1231 return lowerTypeClass(cast<DICompositeType>(Ty)); 1232 case dwarf::DW_TAG_union_type: 1233 return lowerTypeUnion(cast<DICompositeType>(Ty)); 1234 default: 1235 // Use the null type index. 1236 return TypeIndex(); 1237 } 1238 } 1239 1240 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) { 1241 DITypeRef UnderlyingTypeRef = Ty->getBaseType(); 1242 TypeIndex UnderlyingTypeIndex = getTypeIndex(UnderlyingTypeRef); 1243 StringRef TypeName = Ty->getName(); 1244 1245 addToUDTs(Ty); 1246 1247 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) && 1248 TypeName == "HRESULT") 1249 return TypeIndex(SimpleTypeKind::HResult); 1250 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) && 1251 TypeName == "wchar_t") 1252 return TypeIndex(SimpleTypeKind::WideCharacter); 1253 1254 return UnderlyingTypeIndex; 1255 } 1256 1257 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) { 1258 DITypeRef ElementTypeRef = Ty->getBaseType(); 1259 TypeIndex ElementTypeIndex = getTypeIndex(ElementTypeRef); 1260 // IndexType is size_t, which depends on the bitness of the target. 1261 TypeIndex IndexType = Asm->TM.getPointerSize() == 8 1262 ? TypeIndex(SimpleTypeKind::UInt64Quad) 1263 : TypeIndex(SimpleTypeKind::UInt32Long); 1264 1265 uint64_t ElementSize = getBaseTypeSize(ElementTypeRef) / 8; 1266 1267 // Add subranges to array type. 1268 DINodeArray Elements = Ty->getElements(); 1269 for (int i = Elements.size() - 1; i >= 0; --i) { 1270 const DINode *Element = Elements[i]; 1271 assert(Element->getTag() == dwarf::DW_TAG_subrange_type); 1272 1273 const DISubrange *Subrange = cast<DISubrange>(Element); 1274 assert(Subrange->getLowerBound() == 0 && 1275 "codeview doesn't support subranges with lower bounds"); 1276 int64_t Count = Subrange->getCount(); 1277 1278 // Variable Length Array (VLA) has Count equal to '-1'. 1279 // Replace with Count '1', assume it is the minimum VLA length. 1280 // FIXME: Make front-end support VLA subrange and emit LF_DIMVARLU. 1281 if (Count == -1) 1282 Count = 1; 1283 1284 // Update the element size and element type index for subsequent subranges. 1285 ElementSize *= Count; 1286 1287 // If this is the outermost array, use the size from the array. It will be 1288 // more accurate if we had a VLA or an incomplete element type size. 1289 uint64_t ArraySize = 1290 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize; 1291 1292 StringRef Name = (i == 0) ? Ty->getName() : ""; 1293 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name); 1294 ElementTypeIndex = TypeTable.writeKnownType(AR); 1295 } 1296 1297 return ElementTypeIndex; 1298 } 1299 1300 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) { 1301 TypeIndex Index; 1302 dwarf::TypeKind Kind; 1303 uint32_t ByteSize; 1304 1305 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding()); 1306 ByteSize = Ty->getSizeInBits() / 8; 1307 1308 SimpleTypeKind STK = SimpleTypeKind::None; 1309 switch (Kind) { 1310 case dwarf::DW_ATE_address: 1311 // FIXME: Translate 1312 break; 1313 case dwarf::DW_ATE_boolean: 1314 switch (ByteSize) { 1315 case 1: STK = SimpleTypeKind::Boolean8; break; 1316 case 2: STK = SimpleTypeKind::Boolean16; break; 1317 case 4: STK = SimpleTypeKind::Boolean32; break; 1318 case 8: STK = SimpleTypeKind::Boolean64; break; 1319 case 16: STK = SimpleTypeKind::Boolean128; break; 1320 } 1321 break; 1322 case dwarf::DW_ATE_complex_float: 1323 switch (ByteSize) { 1324 case 2: STK = SimpleTypeKind::Complex16; break; 1325 case 4: STK = SimpleTypeKind::Complex32; break; 1326 case 8: STK = SimpleTypeKind::Complex64; break; 1327 case 10: STK = SimpleTypeKind::Complex80; break; 1328 case 16: STK = SimpleTypeKind::Complex128; break; 1329 } 1330 break; 1331 case dwarf::DW_ATE_float: 1332 switch (ByteSize) { 1333 case 2: STK = SimpleTypeKind::Float16; break; 1334 case 4: STK = SimpleTypeKind::Float32; break; 1335 case 6: STK = SimpleTypeKind::Float48; break; 1336 case 8: STK = SimpleTypeKind::Float64; break; 1337 case 10: STK = SimpleTypeKind::Float80; break; 1338 case 16: STK = SimpleTypeKind::Float128; break; 1339 } 1340 break; 1341 case dwarf::DW_ATE_signed: 1342 switch (ByteSize) { 1343 case 1: STK = SimpleTypeKind::SignedCharacter; break; 1344 case 2: STK = SimpleTypeKind::Int16Short; break; 1345 case 4: STK = SimpleTypeKind::Int32; break; 1346 case 8: STK = SimpleTypeKind::Int64Quad; break; 1347 case 16: STK = SimpleTypeKind::Int128Oct; break; 1348 } 1349 break; 1350 case dwarf::DW_ATE_unsigned: 1351 switch (ByteSize) { 1352 case 1: STK = SimpleTypeKind::UnsignedCharacter; break; 1353 case 2: STK = SimpleTypeKind::UInt16Short; break; 1354 case 4: STK = SimpleTypeKind::UInt32; break; 1355 case 8: STK = SimpleTypeKind::UInt64Quad; break; 1356 case 16: STK = SimpleTypeKind::UInt128Oct; break; 1357 } 1358 break; 1359 case dwarf::DW_ATE_UTF: 1360 switch (ByteSize) { 1361 case 2: STK = SimpleTypeKind::Character16; break; 1362 case 4: STK = SimpleTypeKind::Character32; break; 1363 } 1364 break; 1365 case dwarf::DW_ATE_signed_char: 1366 if (ByteSize == 1) 1367 STK = SimpleTypeKind::SignedCharacter; 1368 break; 1369 case dwarf::DW_ATE_unsigned_char: 1370 if (ByteSize == 1) 1371 STK = SimpleTypeKind::UnsignedCharacter; 1372 break; 1373 default: 1374 break; 1375 } 1376 1377 // Apply some fixups based on the source-level type name. 1378 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int") 1379 STK = SimpleTypeKind::Int32Long; 1380 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int") 1381 STK = SimpleTypeKind::UInt32Long; 1382 if (STK == SimpleTypeKind::UInt16Short && 1383 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t")) 1384 STK = SimpleTypeKind::WideCharacter; 1385 if ((STK == SimpleTypeKind::SignedCharacter || 1386 STK == SimpleTypeKind::UnsignedCharacter) && 1387 Ty->getName() == "char") 1388 STK = SimpleTypeKind::NarrowCharacter; 1389 1390 return TypeIndex(STK); 1391 } 1392 1393 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty) { 1394 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType()); 1395 1396 // Pointers to simple types can use SimpleTypeMode, rather than having a 1397 // dedicated pointer type record. 1398 if (PointeeTI.isSimple() && 1399 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct && 1400 Ty->getTag() == dwarf::DW_TAG_pointer_type) { 1401 SimpleTypeMode Mode = Ty->getSizeInBits() == 64 1402 ? SimpleTypeMode::NearPointer64 1403 : SimpleTypeMode::NearPointer32; 1404 return TypeIndex(PointeeTI.getSimpleKind(), Mode); 1405 } 1406 1407 PointerKind PK = 1408 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32; 1409 PointerMode PM = PointerMode::Pointer; 1410 switch (Ty->getTag()) { 1411 default: llvm_unreachable("not a pointer tag type"); 1412 case dwarf::DW_TAG_pointer_type: 1413 PM = PointerMode::Pointer; 1414 break; 1415 case dwarf::DW_TAG_reference_type: 1416 PM = PointerMode::LValueReference; 1417 break; 1418 case dwarf::DW_TAG_rvalue_reference_type: 1419 PM = PointerMode::RValueReference; 1420 break; 1421 } 1422 // FIXME: MSVC folds qualifiers into PointerOptions in the context of a method 1423 // 'this' pointer, but not normal contexts. Figure out what we're supposed to 1424 // do. 1425 PointerOptions PO = PointerOptions::None; 1426 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8); 1427 return TypeTable.writeKnownType(PR); 1428 } 1429 1430 static PointerToMemberRepresentation 1431 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) { 1432 // SizeInBytes being zero generally implies that the member pointer type was 1433 // incomplete, which can happen if it is part of a function prototype. In this 1434 // case, use the unknown model instead of the general model. 1435 if (IsPMF) { 1436 switch (Flags & DINode::FlagPtrToMemberRep) { 1437 case 0: 1438 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1439 : PointerToMemberRepresentation::GeneralFunction; 1440 case DINode::FlagSingleInheritance: 1441 return PointerToMemberRepresentation::SingleInheritanceFunction; 1442 case DINode::FlagMultipleInheritance: 1443 return PointerToMemberRepresentation::MultipleInheritanceFunction; 1444 case DINode::FlagVirtualInheritance: 1445 return PointerToMemberRepresentation::VirtualInheritanceFunction; 1446 } 1447 } else { 1448 switch (Flags & DINode::FlagPtrToMemberRep) { 1449 case 0: 1450 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown 1451 : PointerToMemberRepresentation::GeneralData; 1452 case DINode::FlagSingleInheritance: 1453 return PointerToMemberRepresentation::SingleInheritanceData; 1454 case DINode::FlagMultipleInheritance: 1455 return PointerToMemberRepresentation::MultipleInheritanceData; 1456 case DINode::FlagVirtualInheritance: 1457 return PointerToMemberRepresentation::VirtualInheritanceData; 1458 } 1459 } 1460 llvm_unreachable("invalid ptr to member representation"); 1461 } 1462 1463 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty) { 1464 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type); 1465 TypeIndex ClassTI = getTypeIndex(Ty->getClassType()); 1466 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType()); 1467 PointerKind PK = Asm->TM.getPointerSize() == 8 ? PointerKind::Near64 1468 : PointerKind::Near32; 1469 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType()); 1470 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction 1471 : PointerMode::PointerToDataMember; 1472 PointerOptions PO = PointerOptions::None; // FIXME 1473 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big"); 1474 uint8_t SizeInBytes = Ty->getSizeInBits() / 8; 1475 MemberPointerInfo MPI( 1476 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags())); 1477 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI); 1478 return TypeTable.writeKnownType(PR); 1479 } 1480 1481 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't 1482 /// have a translation, use the NearC convention. 1483 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) { 1484 switch (DwarfCC) { 1485 case dwarf::DW_CC_normal: return CallingConvention::NearC; 1486 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast; 1487 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall; 1488 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall; 1489 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal; 1490 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector; 1491 } 1492 return CallingConvention::NearC; 1493 } 1494 1495 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) { 1496 ModifierOptions Mods = ModifierOptions::None; 1497 bool IsModifier = true; 1498 const DIType *BaseTy = Ty; 1499 while (IsModifier && BaseTy) { 1500 // FIXME: Need to add DWARF tags for __unaligned and _Atomic 1501 switch (BaseTy->getTag()) { 1502 case dwarf::DW_TAG_const_type: 1503 Mods |= ModifierOptions::Const; 1504 break; 1505 case dwarf::DW_TAG_volatile_type: 1506 Mods |= ModifierOptions::Volatile; 1507 break; 1508 default: 1509 IsModifier = false; 1510 break; 1511 } 1512 if (IsModifier) 1513 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType().resolve(); 1514 } 1515 TypeIndex ModifiedTI = getTypeIndex(BaseTy); 1516 ModifierRecord MR(ModifiedTI, Mods); 1517 return TypeTable.writeKnownType(MR); 1518 } 1519 1520 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) { 1521 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1522 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1523 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1524 1525 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1526 ArrayRef<TypeIndex> ArgTypeIndices = None; 1527 if (!ReturnAndArgTypeIndices.empty()) { 1528 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1529 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1530 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1531 } 1532 1533 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1534 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1535 1536 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1537 1538 ProcedureRecord Procedure(ReturnTypeIndex, CC, FunctionOptions::None, 1539 ArgTypeIndices.size(), ArgListIndex); 1540 return TypeTable.writeKnownType(Procedure); 1541 } 1542 1543 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty, 1544 const DIType *ClassTy, 1545 int ThisAdjustment) { 1546 // Lower the containing class type. 1547 TypeIndex ClassType = getTypeIndex(ClassTy); 1548 1549 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices; 1550 for (DITypeRef ArgTypeRef : Ty->getTypeArray()) 1551 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgTypeRef)); 1552 1553 TypeIndex ReturnTypeIndex = TypeIndex::Void(); 1554 ArrayRef<TypeIndex> ArgTypeIndices = None; 1555 if (!ReturnAndArgTypeIndices.empty()) { 1556 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices); 1557 ReturnTypeIndex = ReturnAndArgTypesRef.front(); 1558 ArgTypeIndices = ReturnAndArgTypesRef.drop_front(); 1559 } 1560 TypeIndex ThisTypeIndex = TypeIndex::Void(); 1561 if (!ArgTypeIndices.empty()) { 1562 ThisTypeIndex = ArgTypeIndices.front(); 1563 ArgTypeIndices = ArgTypeIndices.drop_front(); 1564 } 1565 1566 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices); 1567 TypeIndex ArgListIndex = TypeTable.writeKnownType(ArgListRec); 1568 1569 CallingConvention CC = dwarfCCToCodeView(Ty->getCC()); 1570 1571 // TODO: Need to use the correct values for: 1572 // FunctionOptions 1573 // ThisPointerAdjustment. 1574 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, 1575 FunctionOptions::None, ArgTypeIndices.size(), 1576 ArgListIndex, ThisAdjustment); 1577 TypeIndex TI = TypeTable.writeKnownType(MFR); 1578 1579 return TI; 1580 } 1581 1582 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) { 1583 unsigned VSlotCount = 1584 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize()); 1585 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near); 1586 1587 VFTableShapeRecord VFTSR(Slots); 1588 return TypeTable.writeKnownType(VFTSR); 1589 } 1590 1591 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) { 1592 switch (Flags & DINode::FlagAccessibility) { 1593 case DINode::FlagPrivate: return MemberAccess::Private; 1594 case DINode::FlagPublic: return MemberAccess::Public; 1595 case DINode::FlagProtected: return MemberAccess::Protected; 1596 case 0: 1597 // If there was no explicit access control, provide the default for the tag. 1598 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private 1599 : MemberAccess::Public; 1600 } 1601 llvm_unreachable("access flags are exclusive"); 1602 } 1603 1604 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) { 1605 if (SP->isArtificial()) 1606 return MethodOptions::CompilerGenerated; 1607 1608 // FIXME: Handle other MethodOptions. 1609 1610 return MethodOptions::None; 1611 } 1612 1613 static MethodKind translateMethodKindFlags(const DISubprogram *SP, 1614 bool Introduced) { 1615 switch (SP->getVirtuality()) { 1616 case dwarf::DW_VIRTUALITY_none: 1617 break; 1618 case dwarf::DW_VIRTUALITY_virtual: 1619 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual; 1620 case dwarf::DW_VIRTUALITY_pure_virtual: 1621 return Introduced ? MethodKind::PureIntroducingVirtual 1622 : MethodKind::PureVirtual; 1623 default: 1624 llvm_unreachable("unhandled virtuality case"); 1625 } 1626 1627 // FIXME: Get Clang to mark DISubprogram as static and do something with it. 1628 1629 return MethodKind::Vanilla; 1630 } 1631 1632 static TypeRecordKind getRecordKind(const DICompositeType *Ty) { 1633 switch (Ty->getTag()) { 1634 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class; 1635 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct; 1636 } 1637 llvm_unreachable("unexpected tag"); 1638 } 1639 1640 /// Return ClassOptions that should be present on both the forward declaration 1641 /// and the defintion of a tag type. 1642 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) { 1643 ClassOptions CO = ClassOptions::None; 1644 1645 // MSVC always sets this flag, even for local types. Clang doesn't always 1646 // appear to give every type a linkage name, which may be problematic for us. 1647 // FIXME: Investigate the consequences of not following them here. 1648 if (!Ty->getIdentifier().empty()) 1649 CO |= ClassOptions::HasUniqueName; 1650 1651 // Put the Nested flag on a type if it appears immediately inside a tag type. 1652 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass 1653 // here. That flag is only set on definitions, and not forward declarations. 1654 const DIScope *ImmediateScope = Ty->getScope().resolve(); 1655 if (ImmediateScope && isa<DICompositeType>(ImmediateScope)) 1656 CO |= ClassOptions::Nested; 1657 1658 // Put the Scoped flag on function-local types. 1659 for (const DIScope *Scope = ImmediateScope; Scope != nullptr; 1660 Scope = Scope->getScope().resolve()) { 1661 if (isa<DISubprogram>(Scope)) { 1662 CO |= ClassOptions::Scoped; 1663 break; 1664 } 1665 } 1666 1667 return CO; 1668 } 1669 1670 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) { 1671 ClassOptions CO = getCommonClassOptions(Ty); 1672 TypeIndex FTI; 1673 unsigned EnumeratorCount = 0; 1674 1675 if (Ty->isForwardDecl()) { 1676 CO |= ClassOptions::ForwardReference; 1677 } else { 1678 FieldListRecordBuilder FLRB(TypeTable); 1679 1680 FLRB.begin(); 1681 for (const DINode *Element : Ty->getElements()) { 1682 // We assume that the frontend provides all members in source declaration 1683 // order, which is what MSVC does. 1684 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) { 1685 EnumeratorRecord ER(MemberAccess::Public, 1686 APSInt::getUnsigned(Enumerator->getValue()), 1687 Enumerator->getName()); 1688 FLRB.writeMemberType(ER); 1689 EnumeratorCount++; 1690 } 1691 } 1692 FTI = FLRB.end(true); 1693 } 1694 1695 std::string FullName = getFullyQualifiedName(Ty); 1696 1697 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(), 1698 getTypeIndex(Ty->getBaseType())); 1699 return TypeTable.writeKnownType(ER); 1700 } 1701 1702 //===----------------------------------------------------------------------===// 1703 // ClassInfo 1704 //===----------------------------------------------------------------------===// 1705 1706 struct llvm::ClassInfo { 1707 struct MemberInfo { 1708 const DIDerivedType *MemberTypeNode; 1709 uint64_t BaseOffset; 1710 }; 1711 // [MemberInfo] 1712 using MemberList = std::vector<MemberInfo>; 1713 1714 using MethodsList = TinyPtrVector<const DISubprogram *>; 1715 // MethodName -> MethodsList 1716 using MethodsMap = MapVector<MDString *, MethodsList>; 1717 1718 /// Base classes. 1719 std::vector<const DIDerivedType *> Inheritance; 1720 1721 /// Direct members. 1722 MemberList Members; 1723 // Direct overloaded methods gathered by name. 1724 MethodsMap Methods; 1725 1726 TypeIndex VShapeTI; 1727 1728 std::vector<const DIType *> NestedTypes; 1729 }; 1730 1731 void CodeViewDebug::clear() { 1732 assert(CurFn == nullptr); 1733 FileIdMap.clear(); 1734 FnDebugInfo.clear(); 1735 FileToFilepathMap.clear(); 1736 LocalUDTs.clear(); 1737 GlobalUDTs.clear(); 1738 TypeIndices.clear(); 1739 CompleteTypeIndices.clear(); 1740 } 1741 1742 void CodeViewDebug::collectMemberInfo(ClassInfo &Info, 1743 const DIDerivedType *DDTy) { 1744 if (!DDTy->getName().empty()) { 1745 Info.Members.push_back({DDTy, 0}); 1746 return; 1747 } 1748 // An unnamed member must represent a nested struct or union. Add all the 1749 // indirect fields to the current record. 1750 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!"); 1751 uint64_t Offset = DDTy->getOffsetInBits(); 1752 const DIType *Ty = DDTy->getBaseType().resolve(); 1753 const DICompositeType *DCTy = cast<DICompositeType>(Ty); 1754 ClassInfo NestedInfo = collectClassInfo(DCTy); 1755 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members) 1756 Info.Members.push_back( 1757 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset}); 1758 } 1759 1760 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) { 1761 ClassInfo Info; 1762 // Add elements to structure type. 1763 DINodeArray Elements = Ty->getElements(); 1764 for (auto *Element : Elements) { 1765 // We assume that the frontend provides all members in source declaration 1766 // order, which is what MSVC does. 1767 if (!Element) 1768 continue; 1769 if (auto *SP = dyn_cast<DISubprogram>(Element)) { 1770 Info.Methods[SP->getRawName()].push_back(SP); 1771 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) { 1772 if (DDTy->getTag() == dwarf::DW_TAG_member) { 1773 collectMemberInfo(Info, DDTy); 1774 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) { 1775 Info.Inheritance.push_back(DDTy); 1776 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type && 1777 DDTy->getName() == "__vtbl_ptr_type") { 1778 Info.VShapeTI = getTypeIndex(DDTy); 1779 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) { 1780 Info.NestedTypes.push_back(DDTy); 1781 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) { 1782 // Ignore friend members. It appears that MSVC emitted info about 1783 // friends in the past, but modern versions do not. 1784 } 1785 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) { 1786 Info.NestedTypes.push_back(Composite); 1787 } 1788 // Skip other unrecognized kinds of elements. 1789 } 1790 return Info; 1791 } 1792 1793 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) { 1794 // First, construct the forward decl. Don't look into Ty to compute the 1795 // forward decl options, since it might not be available in all TUs. 1796 TypeRecordKind Kind = getRecordKind(Ty); 1797 ClassOptions CO = 1798 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1799 std::string FullName = getFullyQualifiedName(Ty); 1800 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0, 1801 FullName, Ty->getIdentifier()); 1802 TypeIndex FwdDeclTI = TypeTable.writeKnownType(CR); 1803 if (!Ty->isForwardDecl()) 1804 DeferredCompleteTypes.push_back(Ty); 1805 return FwdDeclTI; 1806 } 1807 1808 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) { 1809 // Construct the field list and complete type record. 1810 TypeRecordKind Kind = getRecordKind(Ty); 1811 ClassOptions CO = getCommonClassOptions(Ty); 1812 TypeIndex FieldTI; 1813 TypeIndex VShapeTI; 1814 unsigned FieldCount; 1815 bool ContainsNestedClass; 1816 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) = 1817 lowerRecordFieldList(Ty); 1818 1819 if (ContainsNestedClass) 1820 CO |= ClassOptions::ContainsNestedClass; 1821 1822 std::string FullName = getFullyQualifiedName(Ty); 1823 1824 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1825 1826 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI, 1827 SizeInBytes, FullName, Ty->getIdentifier()); 1828 TypeIndex ClassTI = TypeTable.writeKnownType(CR); 1829 1830 if (const auto *File = Ty->getFile()) { 1831 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File)); 1832 TypeIndex SIDI = TypeTable.writeKnownType(SIDR); 1833 UdtSourceLineRecord USLR(ClassTI, SIDI, Ty->getLine()); 1834 TypeTable.writeKnownType(USLR); 1835 } 1836 1837 addToUDTs(Ty); 1838 1839 return ClassTI; 1840 } 1841 1842 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) { 1843 ClassOptions CO = 1844 ClassOptions::ForwardReference | getCommonClassOptions(Ty); 1845 std::string FullName = getFullyQualifiedName(Ty); 1846 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier()); 1847 TypeIndex FwdDeclTI = TypeTable.writeKnownType(UR); 1848 if (!Ty->isForwardDecl()) 1849 DeferredCompleteTypes.push_back(Ty); 1850 return FwdDeclTI; 1851 } 1852 1853 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) { 1854 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty); 1855 TypeIndex FieldTI; 1856 unsigned FieldCount; 1857 bool ContainsNestedClass; 1858 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) = 1859 lowerRecordFieldList(Ty); 1860 1861 if (ContainsNestedClass) 1862 CO |= ClassOptions::ContainsNestedClass; 1863 1864 uint64_t SizeInBytes = Ty->getSizeInBits() / 8; 1865 std::string FullName = getFullyQualifiedName(Ty); 1866 1867 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName, 1868 Ty->getIdentifier()); 1869 TypeIndex UnionTI = TypeTable.writeKnownType(UR); 1870 1871 StringIdRecord SIR(TypeIndex(0x0), getFullFilepath(Ty->getFile())); 1872 TypeIndex SIRI = TypeTable.writeKnownType(SIR); 1873 UdtSourceLineRecord USLR(UnionTI, SIRI, Ty->getLine()); 1874 TypeTable.writeKnownType(USLR); 1875 1876 addToUDTs(Ty); 1877 1878 return UnionTI; 1879 } 1880 1881 std::tuple<TypeIndex, TypeIndex, unsigned, bool> 1882 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) { 1883 // Manually count members. MSVC appears to count everything that generates a 1884 // field list record. Each individual overload in a method overload group 1885 // contributes to this count, even though the overload group is a single field 1886 // list record. 1887 unsigned MemberCount = 0; 1888 ClassInfo Info = collectClassInfo(Ty); 1889 FieldListRecordBuilder FLBR(TypeTable); 1890 FLBR.begin(); 1891 1892 // Create base classes. 1893 for (const DIDerivedType *I : Info.Inheritance) { 1894 if (I->getFlags() & DINode::FlagVirtual) { 1895 // Virtual base. 1896 // FIXME: Emit VBPtrOffset when the frontend provides it. 1897 unsigned VBPtrOffset = 0; 1898 // FIXME: Despite the accessor name, the offset is really in bytes. 1899 unsigned VBTableIndex = I->getOffsetInBits() / 4; 1900 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase 1901 ? TypeRecordKind::IndirectVirtualBaseClass 1902 : TypeRecordKind::VirtualBaseClass; 1903 VirtualBaseClassRecord VBCR( 1904 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()), 1905 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset, 1906 VBTableIndex); 1907 1908 FLBR.writeMemberType(VBCR); 1909 } else { 1910 assert(I->getOffsetInBits() % 8 == 0 && 1911 "bases must be on byte boundaries"); 1912 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()), 1913 getTypeIndex(I->getBaseType()), 1914 I->getOffsetInBits() / 8); 1915 FLBR.writeMemberType(BCR); 1916 } 1917 } 1918 1919 // Create members. 1920 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) { 1921 const DIDerivedType *Member = MemberInfo.MemberTypeNode; 1922 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType()); 1923 StringRef MemberName = Member->getName(); 1924 MemberAccess Access = 1925 translateAccessFlags(Ty->getTag(), Member->getFlags()); 1926 1927 if (Member->isStaticMember()) { 1928 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName); 1929 FLBR.writeMemberType(SDMR); 1930 MemberCount++; 1931 continue; 1932 } 1933 1934 // Virtual function pointer member. 1935 if ((Member->getFlags() & DINode::FlagArtificial) && 1936 Member->getName().startswith("_vptr$")) { 1937 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType())); 1938 FLBR.writeMemberType(VFPR); 1939 MemberCount++; 1940 continue; 1941 } 1942 1943 // Data member. 1944 uint64_t MemberOffsetInBits = 1945 Member->getOffsetInBits() + MemberInfo.BaseOffset; 1946 if (Member->isBitField()) { 1947 uint64_t StartBitOffset = MemberOffsetInBits; 1948 if (const auto *CI = 1949 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) { 1950 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset; 1951 } 1952 StartBitOffset -= MemberOffsetInBits; 1953 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(), 1954 StartBitOffset); 1955 MemberBaseType = TypeTable.writeKnownType(BFR); 1956 } 1957 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8; 1958 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes, 1959 MemberName); 1960 FLBR.writeMemberType(DMR); 1961 MemberCount++; 1962 } 1963 1964 // Create methods 1965 for (auto &MethodItr : Info.Methods) { 1966 StringRef Name = MethodItr.first->getString(); 1967 1968 std::vector<OneMethodRecord> Methods; 1969 for (const DISubprogram *SP : MethodItr.second) { 1970 TypeIndex MethodType = getMemberFunctionType(SP, Ty); 1971 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual; 1972 1973 unsigned VFTableOffset = -1; 1974 if (Introduced) 1975 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes(); 1976 1977 Methods.push_back(OneMethodRecord( 1978 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()), 1979 translateMethodKindFlags(SP, Introduced), 1980 translateMethodOptionFlags(SP), VFTableOffset, Name)); 1981 MemberCount++; 1982 } 1983 assert(!Methods.empty() && "Empty methods map entry"); 1984 if (Methods.size() == 1) 1985 FLBR.writeMemberType(Methods[0]); 1986 else { 1987 MethodOverloadListRecord MOLR(Methods); 1988 TypeIndex MethodList = TypeTable.writeKnownType(MOLR); 1989 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name); 1990 FLBR.writeMemberType(OMR); 1991 } 1992 } 1993 1994 // Create nested classes. 1995 for (const DIType *Nested : Info.NestedTypes) { 1996 NestedTypeRecord R(getTypeIndex(DITypeRef(Nested)), Nested->getName()); 1997 FLBR.writeMemberType(R); 1998 MemberCount++; 1999 } 2000 2001 TypeIndex FieldTI = FLBR.end(true); 2002 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount, 2003 !Info.NestedTypes.empty()); 2004 } 2005 2006 TypeIndex CodeViewDebug::getVBPTypeIndex() { 2007 if (!VBPType.getIndex()) { 2008 // Make a 'const int *' type. 2009 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const); 2010 TypeIndex ModifiedTI = TypeTable.writeKnownType(MR); 2011 2012 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64 2013 : PointerKind::Near32; 2014 PointerMode PM = PointerMode::Pointer; 2015 PointerOptions PO = PointerOptions::None; 2016 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes()); 2017 2018 VBPType = TypeTable.writeKnownType(PR); 2019 } 2020 2021 return VBPType; 2022 } 2023 2024 TypeIndex CodeViewDebug::getTypeIndex(DITypeRef TypeRef, DITypeRef ClassTyRef) { 2025 const DIType *Ty = TypeRef.resolve(); 2026 const DIType *ClassTy = ClassTyRef.resolve(); 2027 2028 // The null DIType is the void type. Don't try to hash it. 2029 if (!Ty) 2030 return TypeIndex::Void(); 2031 2032 // Check if we've already translated this type. Don't try to do a 2033 // get-or-create style insertion that caches the hash lookup across the 2034 // lowerType call. It will update the TypeIndices map. 2035 auto I = TypeIndices.find({Ty, ClassTy}); 2036 if (I != TypeIndices.end()) 2037 return I->second; 2038 2039 TypeLoweringScope S(*this); 2040 TypeIndex TI = lowerType(Ty, ClassTy); 2041 return recordTypeIndexForDINode(Ty, TI, ClassTy); 2042 } 2043 2044 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(DITypeRef TypeRef) { 2045 DIType *Ty = TypeRef.resolve(); 2046 PointerRecord PR(getTypeIndex(Ty), 2047 getPointerSizeInBytes() == 8 ? PointerKind::Near64 2048 : PointerKind::Near32, 2049 PointerMode::LValueReference, PointerOptions::None, 2050 Ty->getSizeInBits() / 8); 2051 return TypeTable.writeKnownType(PR); 2052 } 2053 2054 TypeIndex CodeViewDebug::getCompleteTypeIndex(DITypeRef TypeRef) { 2055 const DIType *Ty = TypeRef.resolve(); 2056 2057 // The null DIType is the void type. Don't try to hash it. 2058 if (!Ty) 2059 return TypeIndex::Void(); 2060 2061 // If this is a non-record type, the complete type index is the same as the 2062 // normal type index. Just call getTypeIndex. 2063 switch (Ty->getTag()) { 2064 case dwarf::DW_TAG_class_type: 2065 case dwarf::DW_TAG_structure_type: 2066 case dwarf::DW_TAG_union_type: 2067 break; 2068 default: 2069 return getTypeIndex(Ty); 2070 } 2071 2072 // Check if we've already translated the complete record type. Lowering a 2073 // complete type should never trigger lowering another complete type, so we 2074 // can reuse the hash table lookup result. 2075 const auto *CTy = cast<DICompositeType>(Ty); 2076 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()}); 2077 if (!InsertResult.second) 2078 return InsertResult.first->second; 2079 2080 TypeLoweringScope S(*this); 2081 2082 // Make sure the forward declaration is emitted first. It's unclear if this 2083 // is necessary, but MSVC does it, and we should follow suit until we can show 2084 // otherwise. 2085 TypeIndex FwdDeclTI = getTypeIndex(CTy); 2086 2087 // Just use the forward decl if we don't have complete type info. This might 2088 // happen if the frontend is using modules and expects the complete definition 2089 // to be emitted elsewhere. 2090 if (CTy->isForwardDecl()) 2091 return FwdDeclTI; 2092 2093 TypeIndex TI; 2094 switch (CTy->getTag()) { 2095 case dwarf::DW_TAG_class_type: 2096 case dwarf::DW_TAG_structure_type: 2097 TI = lowerCompleteTypeClass(CTy); 2098 break; 2099 case dwarf::DW_TAG_union_type: 2100 TI = lowerCompleteTypeUnion(CTy); 2101 break; 2102 default: 2103 llvm_unreachable("not a record"); 2104 } 2105 2106 InsertResult.first->second = TI; 2107 return TI; 2108 } 2109 2110 /// Emit all the deferred complete record types. Try to do this in FIFO order, 2111 /// and do this until fixpoint, as each complete record type typically 2112 /// references 2113 /// many other record types. 2114 void CodeViewDebug::emitDeferredCompleteTypes() { 2115 SmallVector<const DICompositeType *, 4> TypesToEmit; 2116 while (!DeferredCompleteTypes.empty()) { 2117 std::swap(DeferredCompleteTypes, TypesToEmit); 2118 for (const DICompositeType *RecordTy : TypesToEmit) 2119 getCompleteTypeIndex(RecordTy); 2120 TypesToEmit.clear(); 2121 } 2122 } 2123 2124 void CodeViewDebug::emitLocalVariableList(ArrayRef<LocalVariable> Locals) { 2125 // Get the sorted list of parameters and emit them first. 2126 SmallVector<const LocalVariable *, 6> Params; 2127 for (const LocalVariable &L : Locals) 2128 if (L.DIVar->isParameter()) 2129 Params.push_back(&L); 2130 std::sort(Params.begin(), Params.end(), 2131 [](const LocalVariable *L, const LocalVariable *R) { 2132 return L->DIVar->getArg() < R->DIVar->getArg(); 2133 }); 2134 for (const LocalVariable *L : Params) 2135 emitLocalVariable(*L); 2136 2137 // Next emit all non-parameters in the order that we found them. 2138 for (const LocalVariable &L : Locals) 2139 if (!L.DIVar->isParameter()) 2140 emitLocalVariable(L); 2141 } 2142 2143 void CodeViewDebug::emitLocalVariable(const LocalVariable &Var) { 2144 // LocalSym record, see SymbolRecord.h for more info. 2145 MCSymbol *LocalBegin = MMI->getContext().createTempSymbol(), 2146 *LocalEnd = MMI->getContext().createTempSymbol(); 2147 OS.AddComment("Record length"); 2148 OS.emitAbsoluteSymbolDiff(LocalEnd, LocalBegin, 2); 2149 OS.EmitLabel(LocalBegin); 2150 2151 OS.AddComment("Record kind: S_LOCAL"); 2152 OS.EmitIntValue(unsigned(SymbolKind::S_LOCAL), 2); 2153 2154 LocalSymFlags Flags = LocalSymFlags::None; 2155 if (Var.DIVar->isParameter()) 2156 Flags |= LocalSymFlags::IsParameter; 2157 if (Var.DefRanges.empty()) 2158 Flags |= LocalSymFlags::IsOptimizedOut; 2159 2160 OS.AddComment("TypeIndex"); 2161 TypeIndex TI = Var.UseReferenceType 2162 ? getTypeIndexForReferenceTo(Var.DIVar->getType()) 2163 : getCompleteTypeIndex(Var.DIVar->getType()); 2164 OS.EmitIntValue(TI.getIndex(), 4); 2165 OS.AddComment("Flags"); 2166 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2); 2167 // Truncate the name so we won't overflow the record length field. 2168 emitNullTerminatedSymbolName(OS, Var.DIVar->getName()); 2169 OS.EmitLabel(LocalEnd); 2170 2171 // Calculate the on disk prefix of the appropriate def range record. The 2172 // records and on disk formats are described in SymbolRecords.h. BytePrefix 2173 // should be big enough to hold all forms without memory allocation. 2174 SmallString<20> BytePrefix; 2175 for (const LocalVarDefRange &DefRange : Var.DefRanges) { 2176 BytePrefix.clear(); 2177 if (DefRange.InMemory) { 2178 uint16_t RegRelFlags = 0; 2179 if (DefRange.IsSubfield) { 2180 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag | 2181 (DefRange.StructOffset 2182 << DefRangeRegisterRelSym::OffsetInParentShift); 2183 } 2184 DefRangeRegisterRelSym Sym(S_DEFRANGE_REGISTER_REL); 2185 Sym.Hdr.Register = DefRange.CVRegister; 2186 Sym.Hdr.Flags = RegRelFlags; 2187 Sym.Hdr.BasePointerOffset = DefRange.DataOffset; 2188 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER_REL); 2189 BytePrefix += 2190 StringRef(reinterpret_cast<const char *>(&SymKind), sizeof(SymKind)); 2191 BytePrefix += 2192 StringRef(reinterpret_cast<const char *>(&Sym.Hdr), sizeof(Sym.Hdr)); 2193 } else { 2194 assert(DefRange.DataOffset == 0 && "unexpected offset into register"); 2195 if (DefRange.IsSubfield) { 2196 // Unclear what matters here. 2197 DefRangeSubfieldRegisterSym Sym(S_DEFRANGE_SUBFIELD_REGISTER); 2198 Sym.Hdr.Register = DefRange.CVRegister; 2199 Sym.Hdr.MayHaveNoName = 0; 2200 Sym.Hdr.OffsetInParent = DefRange.StructOffset; 2201 2202 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_SUBFIELD_REGISTER); 2203 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2204 sizeof(SymKind)); 2205 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2206 sizeof(Sym.Hdr)); 2207 } else { 2208 // Unclear what matters here. 2209 DefRangeRegisterSym Sym(S_DEFRANGE_REGISTER); 2210 Sym.Hdr.Register = DefRange.CVRegister; 2211 Sym.Hdr.MayHaveNoName = 0; 2212 ulittle16_t SymKind = ulittle16_t(S_DEFRANGE_REGISTER); 2213 BytePrefix += StringRef(reinterpret_cast<const char *>(&SymKind), 2214 sizeof(SymKind)); 2215 BytePrefix += StringRef(reinterpret_cast<const char *>(&Sym.Hdr), 2216 sizeof(Sym.Hdr)); 2217 } 2218 } 2219 OS.EmitCVDefRangeDirective(DefRange.Ranges, BytePrefix); 2220 } 2221 } 2222 2223 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) { 2224 const Function *GV = MF->getFunction(); 2225 assert(FnDebugInfo.count(GV)); 2226 assert(CurFn == &FnDebugInfo[GV]); 2227 2228 collectVariableInfo(GV->getSubprogram()); 2229 2230 // Don't emit anything if we don't have any line tables. 2231 if (!CurFn->HaveLineInfo) { 2232 FnDebugInfo.erase(GV); 2233 CurFn = nullptr; 2234 return; 2235 } 2236 2237 CurFn->Annotations = MF->getCodeViewAnnotations(); 2238 2239 CurFn->End = Asm->getFunctionEnd(); 2240 2241 CurFn = nullptr; 2242 } 2243 2244 void CodeViewDebug::beginInstruction(const MachineInstr *MI) { 2245 DebugHandlerBase::beginInstruction(MI); 2246 2247 // Ignore DBG_VALUE locations and function prologue. 2248 if (!Asm || !CurFn || MI->isDebugValue() || 2249 MI->getFlag(MachineInstr::FrameSetup)) 2250 return; 2251 2252 // If the first instruction of a new MBB has no location, find the first 2253 // instruction with a location and use that. 2254 DebugLoc DL = MI->getDebugLoc(); 2255 if (!DL && MI->getParent() != PrevInstBB) { 2256 for (const auto &NextMI : *MI->getParent()) { 2257 if (NextMI.isDebugValue()) 2258 continue; 2259 DL = NextMI.getDebugLoc(); 2260 if (DL) 2261 break; 2262 } 2263 } 2264 PrevInstBB = MI->getParent(); 2265 2266 // If we still don't have a debug location, don't record a location. 2267 if (!DL) 2268 return; 2269 2270 maybeRecordLocation(DL, Asm->MF); 2271 } 2272 2273 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) { 2274 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(), 2275 *EndLabel = MMI->getContext().createTempSymbol(); 2276 OS.EmitIntValue(unsigned(Kind), 4); 2277 OS.AddComment("Subsection size"); 2278 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4); 2279 OS.EmitLabel(BeginLabel); 2280 return EndLabel; 2281 } 2282 2283 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) { 2284 OS.EmitLabel(EndLabel); 2285 // Every subsection must be aligned to a 4-byte boundary. 2286 OS.EmitValueToAlignment(4); 2287 } 2288 2289 void CodeViewDebug::emitDebugInfoForUDTs( 2290 ArrayRef<std::pair<std::string, const DIType *>> UDTs) { 2291 for (const auto &UDT : UDTs) { 2292 const DIType *T = UDT.second; 2293 assert(shouldEmitUdt(T)); 2294 2295 MCSymbol *UDTRecordBegin = MMI->getContext().createTempSymbol(), 2296 *UDTRecordEnd = MMI->getContext().createTempSymbol(); 2297 OS.AddComment("Record length"); 2298 OS.emitAbsoluteSymbolDiff(UDTRecordEnd, UDTRecordBegin, 2); 2299 OS.EmitLabel(UDTRecordBegin); 2300 2301 OS.AddComment("Record kind: S_UDT"); 2302 OS.EmitIntValue(unsigned(SymbolKind::S_UDT), 2); 2303 2304 OS.AddComment("Type"); 2305 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4); 2306 2307 emitNullTerminatedSymbolName(OS, UDT.first); 2308 OS.EmitLabel(UDTRecordEnd); 2309 } 2310 } 2311 2312 void CodeViewDebug::emitDebugInfoForGlobals() { 2313 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *> 2314 GlobalMap; 2315 for (const GlobalVariable &GV : MMI->getModule()->globals()) { 2316 SmallVector<DIGlobalVariableExpression *, 1> GVEs; 2317 GV.getDebugInfo(GVEs); 2318 for (const auto *GVE : GVEs) 2319 GlobalMap[GVE] = &GV; 2320 } 2321 2322 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2323 for (const MDNode *Node : CUs->operands()) { 2324 const auto *CU = cast<DICompileUnit>(Node); 2325 2326 // First, emit all globals that are not in a comdat in a single symbol 2327 // substream. MSVC doesn't like it if the substream is empty, so only open 2328 // it if we have at least one global to emit. 2329 switchToDebugSectionForSymbol(nullptr); 2330 MCSymbol *EndLabel = nullptr; 2331 for (const auto *GVE : CU->getGlobalVariables()) { 2332 if (const auto *GV = GlobalMap.lookup(GVE)) 2333 if (!GV->hasComdat() && !GV->isDeclarationForLinker()) { 2334 if (!EndLabel) { 2335 OS.AddComment("Symbol subsection for globals"); 2336 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2337 } 2338 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2339 emitDebugInfoForGlobal(GVE->getVariable(), GV, Asm->getSymbol(GV)); 2340 } 2341 } 2342 if (EndLabel) 2343 endCVSubsection(EndLabel); 2344 2345 // Second, emit each global that is in a comdat into its own .debug$S 2346 // section along with its own symbol substream. 2347 for (const auto *GVE : CU->getGlobalVariables()) { 2348 if (const auto *GV = GlobalMap.lookup(GVE)) { 2349 if (GV->hasComdat()) { 2350 MCSymbol *GVSym = Asm->getSymbol(GV); 2351 OS.AddComment("Symbol subsection for " + 2352 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName()))); 2353 switchToDebugSectionForSymbol(GVSym); 2354 EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols); 2355 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions. 2356 emitDebugInfoForGlobal(GVE->getVariable(), GV, GVSym); 2357 endCVSubsection(EndLabel); 2358 } 2359 } 2360 } 2361 } 2362 } 2363 2364 void CodeViewDebug::emitDebugInfoForRetainedTypes() { 2365 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu"); 2366 for (const MDNode *Node : CUs->operands()) { 2367 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) { 2368 if (DIType *RT = dyn_cast<DIType>(Ty)) { 2369 getTypeIndex(RT); 2370 // FIXME: Add to global/local DTU list. 2371 } 2372 } 2373 } 2374 } 2375 2376 void CodeViewDebug::emitDebugInfoForGlobal(const DIGlobalVariable *DIGV, 2377 const GlobalVariable *GV, 2378 MCSymbol *GVSym) { 2379 // DataSym record, see SymbolRecord.h for more info. 2380 // FIXME: Thread local data, etc 2381 MCSymbol *DataBegin = MMI->getContext().createTempSymbol(), 2382 *DataEnd = MMI->getContext().createTempSymbol(); 2383 OS.AddComment("Record length"); 2384 OS.emitAbsoluteSymbolDiff(DataEnd, DataBegin, 2); 2385 OS.EmitLabel(DataBegin); 2386 if (DIGV->isLocalToUnit()) { 2387 if (GV->isThreadLocal()) { 2388 OS.AddComment("Record kind: S_LTHREAD32"); 2389 OS.EmitIntValue(unsigned(SymbolKind::S_LTHREAD32), 2); 2390 } else { 2391 OS.AddComment("Record kind: S_LDATA32"); 2392 OS.EmitIntValue(unsigned(SymbolKind::S_LDATA32), 2); 2393 } 2394 } else { 2395 if (GV->isThreadLocal()) { 2396 OS.AddComment("Record kind: S_GTHREAD32"); 2397 OS.EmitIntValue(unsigned(SymbolKind::S_GTHREAD32), 2); 2398 } else { 2399 OS.AddComment("Record kind: S_GDATA32"); 2400 OS.EmitIntValue(unsigned(SymbolKind::S_GDATA32), 2); 2401 } 2402 } 2403 OS.AddComment("Type"); 2404 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4); 2405 OS.AddComment("DataOffset"); 2406 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0); 2407 OS.AddComment("Segment"); 2408 OS.EmitCOFFSectionIndex(GVSym); 2409 OS.AddComment("Name"); 2410 emitNullTerminatedSymbolName(OS, DIGV->getName()); 2411 OS.EmitLabel(DataEnd); 2412 } 2413