1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/ObjectUtils.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineLoopInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 54 #include "llvm/CodeGen/TargetFrameLowering.h" 55 #include "llvm/CodeGen/TargetInstrInfo.h" 56 #include "llvm/CodeGen/TargetLowering.h" 57 #include "llvm/CodeGen/TargetLoweringObjectFile.h" 58 #include "llvm/CodeGen/TargetOpcodes.h" 59 #include "llvm/CodeGen/TargetRegisterInfo.h" 60 #include "llvm/CodeGen/TargetSubtargetInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCCodePadder.h" 84 #include "llvm/MC/MCContext.h" 85 #include "llvm/MC/MCDirectives.h" 86 #include "llvm/MC/MCDwarf.h" 87 #include "llvm/MC/MCExpr.h" 88 #include "llvm/MC/MCInst.h" 89 #include "llvm/MC/MCSection.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCStreamer.h" 93 #include "llvm/MC/MCSubtargetInfo.h" 94 #include "llvm/MC/MCSymbol.h" 95 #include "llvm/MC/MCSymbolELF.h" 96 #include "llvm/MC/MCTargetOptions.h" 97 #include "llvm/MC/MCValue.h" 98 #include "llvm/MC/SectionKind.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/ErrorHandling.h" 104 #include "llvm/Support/Format.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/Path.h" 107 #include "llvm/Support/TargetRegistry.h" 108 #include "llvm/Support/Timer.h" 109 #include "llvm/Support/raw_ostream.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cinttypes> 115 #include <cstdint> 116 #include <iterator> 117 #include <limits> 118 #include <memory> 119 #include <string> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-printer" 126 127 static const char *const DWARFGroupName = "dwarf"; 128 static const char *const DWARFGroupDescription = "DWARF Emission"; 129 static const char *const DbgTimerName = "emit"; 130 static const char *const DbgTimerDescription = "Debug Info Emission"; 131 static const char *const EHTimerName = "write_exception"; 132 static const char *const EHTimerDescription = "DWARF Exception Writer"; 133 static const char *const CodeViewLineTablesGroupName = "linetables"; 134 static const char *const CodeViewLineTablesGroupDescription = 135 "CodeView Line Tables"; 136 137 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 138 139 static cl::opt<bool> 140 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 141 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 142 143 char AsmPrinter::ID = 0; 144 145 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 146 147 static gcp_map_type &getGCMap(void *&P) { 148 if (!P) 149 P = new gcp_map_type(); 150 return *(gcp_map_type*)P; 151 } 152 153 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 154 /// value in log2 form. This rounds up to the preferred alignment if possible 155 /// and legal. 156 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 157 unsigned InBits = 0) { 158 unsigned NumBits = 0; 159 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 160 NumBits = DL.getPreferredAlignmentLog(GVar); 161 162 // If InBits is specified, round it to it. 163 if (InBits > NumBits) 164 NumBits = InBits; 165 166 // If the GV has a specified alignment, take it into account. 167 if (GV->getAlignment() == 0) 168 return NumBits; 169 170 unsigned GVAlign = Log2_32(GV->getAlignment()); 171 172 // If the GVAlign is larger than NumBits, or if we are required to obey 173 // NumBits because the GV has an assigned section, obey it. 174 if (GVAlign > NumBits || GV->hasSection()) 175 NumBits = GVAlign; 176 return NumBits; 177 } 178 179 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 180 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 181 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 182 VerboseAsm = OutStreamer->isVerboseAsm(); 183 } 184 185 AsmPrinter::~AsmPrinter() { 186 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 187 188 if (GCMetadataPrinters) { 189 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 190 191 delete &GCMap; 192 GCMetadataPrinters = nullptr; 193 } 194 } 195 196 bool AsmPrinter::isPositionIndependent() const { 197 return TM.isPositionIndependent(); 198 } 199 200 /// getFunctionNumber - Return a unique ID for the current function. 201 unsigned AsmPrinter::getFunctionNumber() const { 202 return MF->getFunctionNumber(); 203 } 204 205 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 206 return *TM.getObjFileLowering(); 207 } 208 209 const DataLayout &AsmPrinter::getDataLayout() const { 210 return MMI->getModule()->getDataLayout(); 211 } 212 213 // Do not use the cached DataLayout because some client use it without a Module 214 // (llvm-dsymutil, llvm-dwarfdump). 215 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 216 217 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 218 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 219 return MF->getSubtarget<MCSubtargetInfo>(); 220 } 221 222 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 223 S.EmitInstruction(Inst, getSubtargetInfo()); 224 } 225 226 /// getCurrentSection() - Return the current section we are emitting to. 227 const MCSection *AsmPrinter::getCurrentSection() const { 228 return OutStreamer->getCurrentSectionOnly(); 229 } 230 231 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 232 AU.setPreservesAll(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 AU.addRequired<MachineModuleInfo>(); 235 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 236 AU.addRequired<GCModuleInfo>(); 237 AU.addRequired<MachineLoopInfo>(); 238 } 239 240 bool AsmPrinter::doInitialization(Module &M) { 241 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 242 243 // Initialize TargetLoweringObjectFile. 244 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 245 .Initialize(OutContext, TM); 246 247 OutStreamer->InitSections(false); 248 249 // Emit the version-min deplyment target directive if needed. 250 // 251 // FIXME: If we end up with a collection of these sorts of Darwin-specific 252 // or ELF-specific things, it may make sense to have a platform helper class 253 // that will work with the target helper class. For now keep it here, as the 254 // alternative is duplicated code in each of the target asm printers that 255 // use the directive, where it would need the same conditionalization 256 // anyway. 257 const Triple &TT = TM.getTargetTriple(); 258 // If there is a version specified, Major will be non-zero. 259 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 260 unsigned Major, Minor, Update; 261 MCVersionMinType VersionType; 262 if (TT.isWatchOS()) { 263 VersionType = MCVM_WatchOSVersionMin; 264 TT.getWatchOSVersion(Major, Minor, Update); 265 } else if (TT.isTvOS()) { 266 VersionType = MCVM_TvOSVersionMin; 267 TT.getiOSVersion(Major, Minor, Update); 268 } else if (TT.isMacOSX()) { 269 VersionType = MCVM_OSXVersionMin; 270 if (!TT.getMacOSXVersion(Major, Minor, Update)) 271 Major = 0; 272 } else { 273 VersionType = MCVM_IOSVersionMin; 274 TT.getiOSVersion(Major, Minor, Update); 275 } 276 if (Major != 0) 277 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 278 } 279 280 // Allow the target to emit any magic that it wants at the start of the file. 281 EmitStartOfAsmFile(M); 282 283 // Very minimal debug info. It is ignored if we emit actual debug info. If we 284 // don't, this at least helps the user find where a global came from. 285 if (MAI->hasSingleParameterDotFile()) { 286 // .file "foo.c" 287 OutStreamer->EmitFileDirective( 288 llvm::sys::path::filename(M.getSourceFileName())); 289 } 290 291 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 292 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 293 for (auto &I : *MI) 294 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 295 MP->beginAssembly(M, *MI, *this); 296 297 // Emit module-level inline asm if it exists. 298 if (!M.getModuleInlineAsm().empty()) { 299 // We're at the module level. Construct MCSubtarget from the default CPU 300 // and target triple. 301 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 302 TM.getTargetTriple().str(), TM.getTargetCPU(), 303 TM.getTargetFeatureString())); 304 OutStreamer->AddComment("Start of file scope inline assembly"); 305 OutStreamer->AddBlankLine(); 306 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 307 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 308 OutStreamer->AddComment("End of file scope inline assembly"); 309 OutStreamer->AddBlankLine(); 310 } 311 312 if (MAI->doesSupportDebugInformation()) { 313 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 314 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 315 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 316 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 317 DbgTimerName, DbgTimerDescription, 318 CodeViewLineTablesGroupName, 319 CodeViewLineTablesGroupDescription)); 320 } 321 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 322 DD = new DwarfDebug(this, &M); 323 DD->beginModule(); 324 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 325 DWARFGroupName, DWARFGroupDescription)); 326 } 327 } 328 329 switch (MAI->getExceptionHandlingType()) { 330 case ExceptionHandling::SjLj: 331 case ExceptionHandling::DwarfCFI: 332 case ExceptionHandling::ARM: 333 isCFIMoveForDebugging = true; 334 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 335 break; 336 for (auto &F: M.getFunctionList()) { 337 // If the module contains any function with unwind data, 338 // .eh_frame has to be emitted. 339 // Ignore functions that won't get emitted. 340 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 341 isCFIMoveForDebugging = false; 342 break; 343 } 344 } 345 break; 346 default: 347 isCFIMoveForDebugging = false; 348 break; 349 } 350 351 EHStreamer *ES = nullptr; 352 switch (MAI->getExceptionHandlingType()) { 353 case ExceptionHandling::None: 354 break; 355 case ExceptionHandling::SjLj: 356 case ExceptionHandling::DwarfCFI: 357 ES = new DwarfCFIException(this); 358 break; 359 case ExceptionHandling::ARM: 360 ES = new ARMException(this); 361 break; 362 case ExceptionHandling::WinEH: 363 switch (MAI->getWinEHEncodingType()) { 364 default: llvm_unreachable("unsupported unwinding information encoding"); 365 case WinEH::EncodingType::Invalid: 366 break; 367 case WinEH::EncodingType::X86: 368 case WinEH::EncodingType::Itanium: 369 ES = new WinException(this); 370 break; 371 } 372 break; 373 } 374 if (ES) 375 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 376 DWARFGroupName, DWARFGroupDescription)); 377 return false; 378 } 379 380 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 381 if (!MAI.hasWeakDefCanBeHiddenDirective()) 382 return false; 383 384 return canBeOmittedFromSymbolTable(GV); 385 } 386 387 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 388 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 389 switch (Linkage) { 390 case GlobalValue::CommonLinkage: 391 case GlobalValue::LinkOnceAnyLinkage: 392 case GlobalValue::LinkOnceODRLinkage: 393 case GlobalValue::WeakAnyLinkage: 394 case GlobalValue::WeakODRLinkage: 395 if (MAI->hasWeakDefDirective()) { 396 // .globl _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 398 399 if (!canBeHidden(GV, *MAI)) 400 // .weak_definition _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 402 else 403 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 404 } else if (MAI->hasLinkOnceDirective()) { 405 // .globl _foo 406 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 407 //NOTE: linkonce is handled by the section the symbol was assigned to. 408 } else { 409 // .weak _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 411 } 412 return; 413 case GlobalValue::ExternalLinkage: 414 // If external, declare as a global symbol: .globl _foo 415 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 416 return; 417 case GlobalValue::PrivateLinkage: 418 case GlobalValue::InternalLinkage: 419 return; 420 case GlobalValue::AppendingLinkage: 421 case GlobalValue::AvailableExternallyLinkage: 422 case GlobalValue::ExternalWeakLinkage: 423 llvm_unreachable("Should never emit this"); 424 } 425 llvm_unreachable("Unknown linkage type!"); 426 } 427 428 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 429 const GlobalValue *GV) const { 430 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 431 } 432 433 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 434 return TM.getSymbol(GV); 435 } 436 437 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 438 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 439 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 440 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 441 "No emulated TLS variables in the common section"); 442 443 // Never emit TLS variable xyz in emulated TLS model. 444 // The initialization value is in __emutls_t.xyz instead of xyz. 445 if (IsEmuTLSVar) 446 return; 447 448 if (GV->hasInitializer()) { 449 // Check to see if this is a special global used by LLVM, if so, emit it. 450 if (EmitSpecialLLVMGlobal(GV)) 451 return; 452 453 // Skip the emission of global equivalents. The symbol can be emitted later 454 // on by emitGlobalGOTEquivs in case it turns out to be needed. 455 if (GlobalGOTEquivs.count(getSymbol(GV))) 456 return; 457 458 if (isVerbose()) { 459 // When printing the control variable __emutls_v.*, 460 // we don't need to print the original TLS variable name. 461 GV->printAsOperand(OutStreamer->GetCommentOS(), 462 /*PrintType=*/false, GV->getParent()); 463 OutStreamer->GetCommentOS() << '\n'; 464 } 465 } 466 467 MCSymbol *GVSym = getSymbol(GV); 468 MCSymbol *EmittedSym = GVSym; 469 470 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 471 // attributes. 472 // GV's or GVSym's attributes will be used for the EmittedSym. 473 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 474 475 if (!GV->hasInitializer()) // External globals require no extra code. 476 return; 477 478 GVSym->redefineIfPossible(); 479 if (GVSym->isDefined() || GVSym->isVariable()) 480 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 481 "' is already defined"); 482 483 if (MAI->hasDotTypeDotSizeDirective()) 484 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 485 486 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 487 488 const DataLayout &DL = GV->getParent()->getDataLayout(); 489 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 490 491 // If the alignment is specified, we *must* obey it. Overaligning a global 492 // with a specified alignment is a prompt way to break globals emitted to 493 // sections and expected to be contiguous (e.g. ObjC metadata). 494 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 495 496 for (const HandlerInfo &HI : Handlers) { 497 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 498 HI.TimerGroupName, HI.TimerGroupDescription, 499 TimePassesIsEnabled); 500 HI.Handler->setSymbolSize(GVSym, Size); 501 } 502 503 // Handle common symbols 504 if (GVKind.isCommon()) { 505 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 506 unsigned Align = 1 << AlignLog; 507 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 508 Align = 0; 509 510 // .comm _foo, 42, 4 511 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 512 return; 513 } 514 515 // Determine to which section this global should be emitted. 516 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 517 518 // If we have a bss global going to a section that supports the 519 // zerofill directive, do so here. 520 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 521 TheSection->isVirtualSection()) { 522 if (Size == 0) 523 Size = 1; // zerofill of 0 bytes is undefined. 524 unsigned Align = 1 << AlignLog; 525 EmitLinkage(GV, GVSym); 526 // .zerofill __DATA, __bss, _foo, 400, 5 527 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 528 return; 529 } 530 531 // If this is a BSS local symbol and we are emitting in the BSS 532 // section use .lcomm/.comm directive. 533 if (GVKind.isBSSLocal() && 534 getObjFileLowering().getBSSSection() == TheSection) { 535 if (Size == 0) 536 Size = 1; // .comm Foo, 0 is undefined, avoid it. 537 unsigned Align = 1 << AlignLog; 538 539 // Use .lcomm only if it supports user-specified alignment. 540 // Otherwise, while it would still be correct to use .lcomm in some 541 // cases (e.g. when Align == 1), the external assembler might enfore 542 // some -unknown- default alignment behavior, which could cause 543 // spurious differences between external and integrated assembler. 544 // Prefer to simply fall back to .local / .comm in this case. 545 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 546 // .lcomm _foo, 42 547 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 548 return; 549 } 550 551 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 552 Align = 0; 553 554 // .local _foo 555 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 556 // .comm _foo, 42, 4 557 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 558 return; 559 } 560 561 // Handle thread local data for mach-o which requires us to output an 562 // additional structure of data and mangle the original symbol so that we 563 // can reference it later. 564 // 565 // TODO: This should become an "emit thread local global" method on TLOF. 566 // All of this macho specific stuff should be sunk down into TLOFMachO and 567 // stuff like "TLSExtraDataSection" should no longer be part of the parent 568 // TLOF class. This will also make it more obvious that stuff like 569 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 570 // specific code. 571 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 572 // Emit the .tbss symbol 573 MCSymbol *MangSym = 574 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 575 576 if (GVKind.isThreadBSS()) { 577 TheSection = getObjFileLowering().getTLSBSSSection(); 578 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 579 } else if (GVKind.isThreadData()) { 580 OutStreamer->SwitchSection(TheSection); 581 582 EmitAlignment(AlignLog, GV); 583 OutStreamer->EmitLabel(MangSym); 584 585 EmitGlobalConstant(GV->getParent()->getDataLayout(), 586 GV->getInitializer()); 587 } 588 589 OutStreamer->AddBlankLine(); 590 591 // Emit the variable struct for the runtime. 592 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 593 594 OutStreamer->SwitchSection(TLVSect); 595 // Emit the linkage here. 596 EmitLinkage(GV, GVSym); 597 OutStreamer->EmitLabel(GVSym); 598 599 // Three pointers in size: 600 // - __tlv_bootstrap - used to make sure support exists 601 // - spare pointer, used when mapped by the runtime 602 // - pointer to mangled symbol above with initializer 603 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 604 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 605 PtrSize); 606 OutStreamer->EmitIntValue(0, PtrSize); 607 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 608 609 OutStreamer->AddBlankLine(); 610 return; 611 } 612 613 MCSymbol *EmittedInitSym = GVSym; 614 615 OutStreamer->SwitchSection(TheSection); 616 617 EmitLinkage(GV, EmittedInitSym); 618 EmitAlignment(AlignLog, GV); 619 620 OutStreamer->EmitLabel(EmittedInitSym); 621 622 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 623 624 if (MAI->hasDotTypeDotSizeDirective()) 625 // .size foo, 42 626 OutStreamer->emitELFSize(EmittedInitSym, 627 MCConstantExpr::create(Size, OutContext)); 628 629 OutStreamer->AddBlankLine(); 630 } 631 632 /// Emit the directive and value for debug thread local expression 633 /// 634 /// \p Value - The value to emit. 635 /// \p Size - The size of the integer (in bytes) to emit. 636 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 637 unsigned Size) const { 638 OutStreamer->EmitValue(Value, Size); 639 } 640 641 /// EmitFunctionHeader - This method emits the header for the current 642 /// function. 643 void AsmPrinter::EmitFunctionHeader() { 644 const Function *F = MF->getFunction(); 645 646 if (isVerbose()) 647 OutStreamer->GetCommentOS() 648 << "-- Begin function " 649 << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n'; 650 651 // Print out constants referenced by the function 652 EmitConstantPool(); 653 654 // Print the 'header' of function. 655 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 656 EmitVisibility(CurrentFnSym, F->getVisibility()); 657 658 EmitLinkage(F, CurrentFnSym); 659 if (MAI->hasFunctionAlignment()) 660 EmitAlignment(MF->getAlignment(), F); 661 662 if (MAI->hasDotTypeDotSizeDirective()) 663 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 664 665 if (isVerbose()) { 666 F->printAsOperand(OutStreamer->GetCommentOS(), 667 /*PrintType=*/false, F->getParent()); 668 OutStreamer->GetCommentOS() << '\n'; 669 } 670 671 // Emit the prefix data. 672 if (F->hasPrefixData()) { 673 if (MAI->hasSubsectionsViaSymbols()) { 674 // Preserving prefix data on platforms which use subsections-via-symbols 675 // is a bit tricky. Here we introduce a symbol for the prefix data 676 // and use the .alt_entry attribute to mark the function's real entry point 677 // as an alternative entry point to the prefix-data symbol. 678 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 679 OutStreamer->EmitLabel(PrefixSym); 680 681 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 682 683 // Emit an .alt_entry directive for the actual function symbol. 684 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 685 } else { 686 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 687 } 688 } 689 690 // Emit the CurrentFnSym. This is a virtual function to allow targets to 691 // do their wild and crazy things as required. 692 EmitFunctionEntryLabel(); 693 694 // If the function had address-taken blocks that got deleted, then we have 695 // references to the dangling symbols. Emit them at the start of the function 696 // so that we don't get references to undefined symbols. 697 std::vector<MCSymbol*> DeadBlockSyms; 698 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 699 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 700 OutStreamer->AddComment("Address taken block that was later removed"); 701 OutStreamer->EmitLabel(DeadBlockSyms[i]); 702 } 703 704 if (CurrentFnBegin) { 705 if (MAI->useAssignmentForEHBegin()) { 706 MCSymbol *CurPos = OutContext.createTempSymbol(); 707 OutStreamer->EmitLabel(CurPos); 708 OutStreamer->EmitAssignment(CurrentFnBegin, 709 MCSymbolRefExpr::create(CurPos, OutContext)); 710 } else { 711 OutStreamer->EmitLabel(CurrentFnBegin); 712 } 713 } 714 715 // Emit pre-function debug and/or EH information. 716 for (const HandlerInfo &HI : Handlers) { 717 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 718 HI.TimerGroupDescription, TimePassesIsEnabled); 719 HI.Handler->beginFunction(MF); 720 } 721 722 // Emit the prologue data. 723 if (F->hasPrologueData()) 724 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 725 } 726 727 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 728 /// function. This can be overridden by targets as required to do custom stuff. 729 void AsmPrinter::EmitFunctionEntryLabel() { 730 CurrentFnSym->redefineIfPossible(); 731 732 // The function label could have already been emitted if two symbols end up 733 // conflicting due to asm renaming. Detect this and emit an error. 734 if (CurrentFnSym->isVariable()) 735 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 736 "' is a protected alias"); 737 if (CurrentFnSym->isDefined()) 738 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 739 "' label emitted multiple times to assembly file"); 740 741 return OutStreamer->EmitLabel(CurrentFnSym); 742 } 743 744 /// emitComments - Pretty-print comments for instructions. 745 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 746 AsmPrinter *AP) { 747 const MachineFunction *MF = MI.getMF(); 748 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 749 750 // Check for spills and reloads 751 int FI; 752 753 const MachineFrameInfo &MFI = MF->getFrameInfo(); 754 bool Commented = false; 755 756 // We assume a single instruction only has a spill or reload, not 757 // both. 758 const MachineMemOperand *MMO; 759 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 760 if (MFI.isSpillSlotObjectIndex(FI)) { 761 MMO = *MI.memoperands_begin(); 762 CommentOS << MMO->getSize() << "-byte Reload"; 763 Commented = true; 764 } 765 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 766 if (MFI.isSpillSlotObjectIndex(FI)) { 767 CommentOS << MMO->getSize() << "-byte Folded Reload"; 768 Commented = true; 769 } 770 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 771 if (MFI.isSpillSlotObjectIndex(FI)) { 772 MMO = *MI.memoperands_begin(); 773 CommentOS << MMO->getSize() << "-byte Spill"; 774 Commented = true; 775 } 776 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 777 if (MFI.isSpillSlotObjectIndex(FI)) { 778 CommentOS << MMO->getSize() << "-byte Folded Spill"; 779 Commented = true; 780 } 781 } 782 783 // Check for spill-induced copies 784 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 785 Commented = true; 786 CommentOS << " Reload Reuse"; 787 } 788 789 if (Commented && AP->EnablePrintSchedInfo) 790 // If any comment was added above and we need sched info comment then 791 // add this new comment just after the above comment w/o "\n" between them. 792 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 793 else if (Commented) 794 CommentOS << "\n"; 795 } 796 797 /// emitImplicitDef - This method emits the specified machine instruction 798 /// that is an implicit def. 799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 800 unsigned RegNo = MI->getOperand(0).getReg(); 801 802 SmallString<128> Str; 803 raw_svector_ostream OS(Str); 804 OS << "implicit-def: " 805 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 806 807 OutStreamer->AddComment(OS.str()); 808 OutStreamer->AddBlankLine(); 809 } 810 811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 812 std::string Str; 813 raw_string_ostream OS(Str); 814 OS << "kill:"; 815 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 816 const MachineOperand &Op = MI->getOperand(i); 817 assert(Op.isReg() && "KILL instruction must have only register operands"); 818 OS << ' ' 819 << printReg(Op.getReg(), 820 AP.MF->getSubtarget().getRegisterInfo()) 821 << (Op.isDef() ? "<def>" : "<kill>"); 822 } 823 AP.OutStreamer->AddComment(OS.str()); 824 AP.OutStreamer->AddBlankLine(); 825 } 826 827 /// emitDebugValueComment - This method handles the target-independent form 828 /// of DBG_VALUE, returning true if it was able to do so. A false return 829 /// means the target will need to handle MI in EmitInstruction. 830 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 831 // This code handles only the 4-operand target-independent form. 832 if (MI->getNumOperands() != 4) 833 return false; 834 835 SmallString<128> Str; 836 raw_svector_ostream OS(Str); 837 OS << "DEBUG_VALUE: "; 838 839 const DILocalVariable *V = MI->getDebugVariable(); 840 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 841 StringRef Name = SP->getName(); 842 if (!Name.empty()) 843 OS << Name << ":"; 844 } 845 OS << V->getName(); 846 OS << " <- "; 847 848 // The second operand is only an offset if it's an immediate. 849 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 850 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 851 const DIExpression *Expr = MI->getDebugExpression(); 852 if (Expr->getNumElements()) { 853 OS << '['; 854 bool NeedSep = false; 855 for (auto Op : Expr->expr_ops()) { 856 if (NeedSep) 857 OS << ", "; 858 else 859 NeedSep = true; 860 OS << dwarf::OperationEncodingString(Op.getOp()); 861 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 862 OS << ' ' << Op.getArg(I); 863 } 864 OS << "] "; 865 } 866 867 // Register or immediate value. Register 0 means undef. 868 if (MI->getOperand(0).isFPImm()) { 869 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 870 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 871 OS << (double)APF.convertToFloat(); 872 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 873 OS << APF.convertToDouble(); 874 } else { 875 // There is no good way to print long double. Convert a copy to 876 // double. Ah well, it's only a comment. 877 bool ignored; 878 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 879 &ignored); 880 OS << "(long double) " << APF.convertToDouble(); 881 } 882 } else if (MI->getOperand(0).isImm()) { 883 OS << MI->getOperand(0).getImm(); 884 } else if (MI->getOperand(0).isCImm()) { 885 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 886 } else { 887 unsigned Reg; 888 if (MI->getOperand(0).isReg()) { 889 Reg = MI->getOperand(0).getReg(); 890 } else { 891 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 892 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 893 Offset += TFI->getFrameIndexReference(*AP.MF, 894 MI->getOperand(0).getIndex(), Reg); 895 MemLoc = true; 896 } 897 if (Reg == 0) { 898 // Suppress offset, it is not meaningful here. 899 OS << "undef"; 900 // NOTE: Want this comment at start of line, don't emit with AddComment. 901 AP.OutStreamer->emitRawComment(OS.str()); 902 return true; 903 } 904 if (MemLoc) 905 OS << '['; 906 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 907 } 908 909 if (MemLoc) 910 OS << '+' << Offset << ']'; 911 912 // NOTE: Want this comment at start of line, don't emit with AddComment. 913 AP.OutStreamer->emitRawComment(OS.str()); 914 return true; 915 } 916 917 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 918 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 919 MF->getFunction()->needsUnwindTableEntry()) 920 return CFI_M_EH; 921 922 if (MMI->hasDebugInfo()) 923 return CFI_M_Debug; 924 925 return CFI_M_None; 926 } 927 928 bool AsmPrinter::needsSEHMoves() { 929 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 930 } 931 932 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 933 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 934 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 935 ExceptionHandlingType != ExceptionHandling::ARM) 936 return; 937 938 if (needsCFIMoves() == CFI_M_None) 939 return; 940 941 // If there is no "real" instruction following this CFI instruction, skip 942 // emitting it; it would be beyond the end of the function's FDE range. 943 auto *MBB = MI.getParent(); 944 auto I = std::next(MI.getIterator()); 945 while (I != MBB->end() && I->isTransient()) 946 ++I; 947 if (I == MBB->instr_end() && 948 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 949 return; 950 951 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 952 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 953 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 954 emitCFIInstruction(CFI); 955 } 956 957 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 958 // The operands are the MCSymbol and the frame offset of the allocation. 959 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 960 int FrameOffset = MI.getOperand(1).getImm(); 961 962 // Emit a symbol assignment. 963 OutStreamer->EmitAssignment(FrameAllocSym, 964 MCConstantExpr::create(FrameOffset, OutContext)); 965 } 966 967 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 968 if (!MF.getTarget().Options.EmitStackSizeSection) 969 return; 970 971 MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection(); 972 if (!StackSizeSection) 973 return; 974 975 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 976 // Don't emit functions with dynamic stack allocations. 977 if (FrameInfo.hasVarSizedObjects()) 978 return; 979 980 OutStreamer->PushSection(); 981 OutStreamer->SwitchSection(StackSizeSection); 982 983 const MCSymbol *FunctionSymbol = getSymbol(MF.getFunction()); 984 uint64_t StackSize = FrameInfo.getStackSize(); 985 OutStreamer->EmitValue(MCSymbolRefExpr::create(FunctionSymbol, OutContext), 986 /* size = */ 8); 987 OutStreamer->EmitULEB128IntValue(StackSize); 988 989 OutStreamer->PopSection(); 990 } 991 992 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 993 MachineModuleInfo *MMI) { 994 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 995 return true; 996 997 // We might emit an EH table that uses function begin and end labels even if 998 // we don't have any landingpads. 999 if (!MF.getFunction()->hasPersonalityFn()) 1000 return false; 1001 return !isNoOpWithoutInvoke( 1002 classifyEHPersonality(MF.getFunction()->getPersonalityFn())); 1003 } 1004 1005 /// EmitFunctionBody - This method emits the body and trailer for a 1006 /// function. 1007 void AsmPrinter::EmitFunctionBody() { 1008 EmitFunctionHeader(); 1009 1010 // Emit target-specific gunk before the function body. 1011 EmitFunctionBodyStart(); 1012 1013 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1014 1015 // Print out code for the function. 1016 bool HasAnyRealCode = false; 1017 int NumInstsInFunction = 0; 1018 for (auto &MBB : *MF) { 1019 // Print a label for the basic block. 1020 EmitBasicBlockStart(MBB); 1021 for (auto &MI : MBB) { 1022 // Print the assembly for the instruction. 1023 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1024 !MI.isDebugValue()) { 1025 HasAnyRealCode = true; 1026 ++NumInstsInFunction; 1027 } 1028 1029 if (ShouldPrintDebugScopes) { 1030 for (const HandlerInfo &HI : Handlers) { 1031 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1032 HI.TimerGroupName, HI.TimerGroupDescription, 1033 TimePassesIsEnabled); 1034 HI.Handler->beginInstruction(&MI); 1035 } 1036 } 1037 1038 if (isVerbose()) 1039 emitComments(MI, OutStreamer->GetCommentOS(), this); 1040 1041 switch (MI.getOpcode()) { 1042 case TargetOpcode::CFI_INSTRUCTION: 1043 emitCFIInstruction(MI); 1044 break; 1045 case TargetOpcode::LOCAL_ESCAPE: 1046 emitFrameAlloc(MI); 1047 break; 1048 case TargetOpcode::EH_LABEL: 1049 case TargetOpcode::GC_LABEL: 1050 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1051 break; 1052 case TargetOpcode::INLINEASM: 1053 EmitInlineAsm(&MI); 1054 break; 1055 case TargetOpcode::DBG_VALUE: 1056 if (isVerbose()) { 1057 if (!emitDebugValueComment(&MI, *this)) 1058 EmitInstruction(&MI); 1059 } 1060 break; 1061 case TargetOpcode::IMPLICIT_DEF: 1062 if (isVerbose()) emitImplicitDef(&MI); 1063 break; 1064 case TargetOpcode::KILL: 1065 if (isVerbose()) emitKill(&MI, *this); 1066 break; 1067 default: 1068 EmitInstruction(&MI); 1069 break; 1070 } 1071 1072 if (ShouldPrintDebugScopes) { 1073 for (const HandlerInfo &HI : Handlers) { 1074 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1075 HI.TimerGroupName, HI.TimerGroupDescription, 1076 TimePassesIsEnabled); 1077 HI.Handler->endInstruction(); 1078 } 1079 } 1080 } 1081 1082 EmitBasicBlockEnd(MBB); 1083 } 1084 1085 EmittedInsts += NumInstsInFunction; 1086 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1087 MF->getFunction()->getSubprogram(), 1088 &MF->front()); 1089 R << ore::NV("NumInstructions", NumInstsInFunction) 1090 << " instructions in function"; 1091 ORE->emit(R); 1092 1093 // If the function is empty and the object file uses .subsections_via_symbols, 1094 // then we need to emit *something* to the function body to prevent the 1095 // labels from collapsing together. Just emit a noop. 1096 // Similarly, don't emit empty functions on Windows either. It can lead to 1097 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1098 // after linking, causing the kernel not to load the binary: 1099 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1100 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1101 const Triple &TT = TM.getTargetTriple(); 1102 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1103 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1104 MCInst Noop; 1105 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1106 1107 // Targets can opt-out of emitting the noop here by leaving the opcode 1108 // unspecified. 1109 if (Noop.getOpcode()) { 1110 OutStreamer->AddComment("avoids zero-length function"); 1111 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1112 } 1113 } 1114 1115 const Function *F = MF->getFunction(); 1116 for (const auto &BB : *F) { 1117 if (!BB.hasAddressTaken()) 1118 continue; 1119 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1120 if (Sym->isDefined()) 1121 continue; 1122 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1123 OutStreamer->EmitLabel(Sym); 1124 } 1125 1126 // Emit target-specific gunk after the function body. 1127 EmitFunctionBodyEnd(); 1128 1129 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1130 MAI->hasDotTypeDotSizeDirective()) { 1131 // Create a symbol for the end of function. 1132 CurrentFnEnd = createTempSymbol("func_end"); 1133 OutStreamer->EmitLabel(CurrentFnEnd); 1134 } 1135 1136 // If the target wants a .size directive for the size of the function, emit 1137 // it. 1138 if (MAI->hasDotTypeDotSizeDirective()) { 1139 // We can get the size as difference between the function label and the 1140 // temp label. 1141 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1142 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1143 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1144 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1145 } 1146 1147 for (const HandlerInfo &HI : Handlers) { 1148 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1149 HI.TimerGroupDescription, TimePassesIsEnabled); 1150 HI.Handler->markFunctionEnd(); 1151 } 1152 1153 // Print out jump tables referenced by the function. 1154 EmitJumpTableInfo(); 1155 1156 // Emit post-function debug and/or EH information. 1157 for (const HandlerInfo &HI : Handlers) { 1158 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1159 HI.TimerGroupDescription, TimePassesIsEnabled); 1160 HI.Handler->endFunction(MF); 1161 } 1162 1163 // Emit section containing stack size metadata. 1164 emitStackSizeSection(*MF); 1165 1166 if (isVerbose()) 1167 OutStreamer->GetCommentOS() << "-- End function\n"; 1168 1169 OutStreamer->AddBlankLine(); 1170 } 1171 1172 /// \brief Compute the number of Global Variables that uses a Constant. 1173 static unsigned getNumGlobalVariableUses(const Constant *C) { 1174 if (!C) 1175 return 0; 1176 1177 if (isa<GlobalVariable>(C)) 1178 return 1; 1179 1180 unsigned NumUses = 0; 1181 for (auto *CU : C->users()) 1182 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1183 1184 return NumUses; 1185 } 1186 1187 /// \brief Only consider global GOT equivalents if at least one user is a 1188 /// cstexpr inside an initializer of another global variables. Also, don't 1189 /// handle cstexpr inside instructions. During global variable emission, 1190 /// candidates are skipped and are emitted later in case at least one cstexpr 1191 /// isn't replaced by a PC relative GOT entry access. 1192 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1193 unsigned &NumGOTEquivUsers) { 1194 // Global GOT equivalents are unnamed private globals with a constant 1195 // pointer initializer to another global symbol. They must point to a 1196 // GlobalVariable or Function, i.e., as GlobalValue. 1197 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1198 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1199 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1200 return false; 1201 1202 // To be a got equivalent, at least one of its users need to be a constant 1203 // expression used by another global variable. 1204 for (auto *U : GV->users()) 1205 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1206 1207 return NumGOTEquivUsers > 0; 1208 } 1209 1210 /// \brief Unnamed constant global variables solely contaning a pointer to 1211 /// another globals variable is equivalent to a GOT table entry; it contains the 1212 /// the address of another symbol. Optimize it and replace accesses to these 1213 /// "GOT equivalents" by using the GOT entry for the final global instead. 1214 /// Compute GOT equivalent candidates among all global variables to avoid 1215 /// emitting them if possible later on, after it use is replaced by a GOT entry 1216 /// access. 1217 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1218 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1219 return; 1220 1221 for (const auto &G : M.globals()) { 1222 unsigned NumGOTEquivUsers = 0; 1223 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1224 continue; 1225 1226 const MCSymbol *GOTEquivSym = getSymbol(&G); 1227 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1228 } 1229 } 1230 1231 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1232 /// for PC relative GOT entry conversion, in such cases we need to emit such 1233 /// globals we previously omitted in EmitGlobalVariable. 1234 void AsmPrinter::emitGlobalGOTEquivs() { 1235 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1236 return; 1237 1238 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1239 for (auto &I : GlobalGOTEquivs) { 1240 const GlobalVariable *GV = I.second.first; 1241 unsigned Cnt = I.second.second; 1242 if (Cnt) 1243 FailedCandidates.push_back(GV); 1244 } 1245 GlobalGOTEquivs.clear(); 1246 1247 for (auto *GV : FailedCandidates) 1248 EmitGlobalVariable(GV); 1249 } 1250 1251 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1252 const GlobalIndirectSymbol& GIS) { 1253 MCSymbol *Name = getSymbol(&GIS); 1254 1255 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1256 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1257 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1258 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1259 else 1260 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1261 1262 // Set the symbol type to function if the alias has a function type. 1263 // This affects codegen when the aliasee is not a function. 1264 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1265 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1266 if (isa<GlobalIFunc>(GIS)) 1267 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1268 } 1269 1270 EmitVisibility(Name, GIS.getVisibility()); 1271 1272 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1273 1274 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1275 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1276 1277 // Emit the directives as assignments aka .set: 1278 OutStreamer->EmitAssignment(Name, Expr); 1279 1280 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1281 // If the aliasee does not correspond to a symbol in the output, i.e. the 1282 // alias is not of an object or the aliased object is private, then set the 1283 // size of the alias symbol from the type of the alias. We don't do this in 1284 // other situations as the alias and aliasee having differing types but same 1285 // size may be intentional. 1286 const GlobalObject *BaseObject = GA->getBaseObject(); 1287 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1288 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1289 const DataLayout &DL = M.getDataLayout(); 1290 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1291 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1292 } 1293 } 1294 } 1295 1296 bool AsmPrinter::doFinalization(Module &M) { 1297 // Set the MachineFunction to nullptr so that we can catch attempted 1298 // accesses to MF specific features at the module level and so that 1299 // we can conditionalize accesses based on whether or not it is nullptr. 1300 MF = nullptr; 1301 1302 // Gather all GOT equivalent globals in the module. We really need two 1303 // passes over the globals: one to compute and another to avoid its emission 1304 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1305 // where the got equivalent shows up before its use. 1306 computeGlobalGOTEquivs(M); 1307 1308 // Emit global variables. 1309 for (const auto &G : M.globals()) 1310 EmitGlobalVariable(&G); 1311 1312 // Emit remaining GOT equivalent globals. 1313 emitGlobalGOTEquivs(); 1314 1315 // Emit visibility info for declarations 1316 for (const Function &F : M) { 1317 if (!F.isDeclarationForLinker()) 1318 continue; 1319 GlobalValue::VisibilityTypes V = F.getVisibility(); 1320 if (V == GlobalValue::DefaultVisibility) 1321 continue; 1322 1323 MCSymbol *Name = getSymbol(&F); 1324 EmitVisibility(Name, V, false); 1325 } 1326 1327 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1328 1329 TLOF.emitModuleMetadata(*OutStreamer, M, TM); 1330 1331 if (TM.getTargetTriple().isOSBinFormatELF()) { 1332 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1333 1334 // Output stubs for external and common global variables. 1335 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1336 if (!Stubs.empty()) { 1337 OutStreamer->SwitchSection(TLOF.getDataSection()); 1338 const DataLayout &DL = M.getDataLayout(); 1339 1340 for (const auto &Stub : Stubs) { 1341 OutStreamer->EmitLabel(Stub.first); 1342 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1343 DL.getPointerSize()); 1344 } 1345 } 1346 } 1347 1348 // Finalize debug and EH information. 1349 for (const HandlerInfo &HI : Handlers) { 1350 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1351 HI.TimerGroupDescription, TimePassesIsEnabled); 1352 HI.Handler->endModule(); 1353 delete HI.Handler; 1354 } 1355 Handlers.clear(); 1356 DD = nullptr; 1357 1358 // If the target wants to know about weak references, print them all. 1359 if (MAI->getWeakRefDirective()) { 1360 // FIXME: This is not lazy, it would be nice to only print weak references 1361 // to stuff that is actually used. Note that doing so would require targets 1362 // to notice uses in operands (due to constant exprs etc). This should 1363 // happen with the MC stuff eventually. 1364 1365 // Print out module-level global objects here. 1366 for (const auto &GO : M.global_objects()) { 1367 if (!GO.hasExternalWeakLinkage()) 1368 continue; 1369 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1370 } 1371 } 1372 1373 OutStreamer->AddBlankLine(); 1374 1375 // Print aliases in topological order, that is, for each alias a = b, 1376 // b must be printed before a. 1377 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1378 // such an order to generate correct TOC information. 1379 SmallVector<const GlobalAlias *, 16> AliasStack; 1380 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1381 for (const auto &Alias : M.aliases()) { 1382 for (const GlobalAlias *Cur = &Alias; Cur; 1383 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1384 if (!AliasVisited.insert(Cur).second) 1385 break; 1386 AliasStack.push_back(Cur); 1387 } 1388 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1389 emitGlobalIndirectSymbol(M, *AncestorAlias); 1390 AliasStack.clear(); 1391 } 1392 for (const auto &IFunc : M.ifuncs()) 1393 emitGlobalIndirectSymbol(M, IFunc); 1394 1395 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1396 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1397 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1398 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1399 MP->finishAssembly(M, *MI, *this); 1400 1401 // Emit llvm.ident metadata in an '.ident' directive. 1402 EmitModuleIdents(M); 1403 1404 // Emit __morestack address if needed for indirect calls. 1405 if (MMI->usesMorestackAddr()) { 1406 unsigned Align = 1; 1407 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1408 getDataLayout(), SectionKind::getReadOnly(), 1409 /*C=*/nullptr, Align); 1410 OutStreamer->SwitchSection(ReadOnlySection); 1411 1412 MCSymbol *AddrSymbol = 1413 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1414 OutStreamer->EmitLabel(AddrSymbol); 1415 1416 unsigned PtrSize = MAI->getCodePointerSize(); 1417 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1418 PtrSize); 1419 } 1420 1421 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1422 // split-stack is used. 1423 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1424 OutStreamer->SwitchSection( 1425 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1426 if (MMI->hasNosplitStack()) 1427 OutStreamer->SwitchSection( 1428 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1429 } 1430 1431 // If we don't have any trampolines, then we don't require stack memory 1432 // to be executable. Some targets have a directive to declare this. 1433 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1434 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1435 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1436 OutStreamer->SwitchSection(S); 1437 1438 // Allow the target to emit any magic that it wants at the end of the file, 1439 // after everything else has gone out. 1440 EmitEndOfAsmFile(M); 1441 1442 MMI = nullptr; 1443 1444 OutStreamer->Finish(); 1445 OutStreamer->reset(); 1446 1447 return false; 1448 } 1449 1450 MCSymbol *AsmPrinter::getCurExceptionSym() { 1451 if (!CurExceptionSym) 1452 CurExceptionSym = createTempSymbol("exception"); 1453 return CurExceptionSym; 1454 } 1455 1456 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1457 this->MF = &MF; 1458 // Get the function symbol. 1459 CurrentFnSym = getSymbol(MF.getFunction()); 1460 CurrentFnSymForSize = CurrentFnSym; 1461 CurrentFnBegin = nullptr; 1462 CurExceptionSym = nullptr; 1463 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1464 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) { 1465 CurrentFnBegin = createTempSymbol("func_begin"); 1466 if (NeedsLocalForSize) 1467 CurrentFnSymForSize = CurrentFnBegin; 1468 } 1469 1470 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1471 LI = &getAnalysis<MachineLoopInfo>(); 1472 1473 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1474 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1475 ? PrintSchedule 1476 : STI.supportPrintSchedInfo(); 1477 } 1478 1479 namespace { 1480 1481 // Keep track the alignment, constpool entries per Section. 1482 struct SectionCPs { 1483 MCSection *S; 1484 unsigned Alignment; 1485 SmallVector<unsigned, 4> CPEs; 1486 1487 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1488 }; 1489 1490 } // end anonymous namespace 1491 1492 /// EmitConstantPool - Print to the current output stream assembly 1493 /// representations of the constants in the constant pool MCP. This is 1494 /// used to print out constants which have been "spilled to memory" by 1495 /// the code generator. 1496 void AsmPrinter::EmitConstantPool() { 1497 const MachineConstantPool *MCP = MF->getConstantPool(); 1498 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1499 if (CP.empty()) return; 1500 1501 // Calculate sections for constant pool entries. We collect entries to go into 1502 // the same section together to reduce amount of section switch statements. 1503 SmallVector<SectionCPs, 4> CPSections; 1504 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1505 const MachineConstantPoolEntry &CPE = CP[i]; 1506 unsigned Align = CPE.getAlignment(); 1507 1508 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1509 1510 const Constant *C = nullptr; 1511 if (!CPE.isMachineConstantPoolEntry()) 1512 C = CPE.Val.ConstVal; 1513 1514 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1515 Kind, C, Align); 1516 1517 // The number of sections are small, just do a linear search from the 1518 // last section to the first. 1519 bool Found = false; 1520 unsigned SecIdx = CPSections.size(); 1521 while (SecIdx != 0) { 1522 if (CPSections[--SecIdx].S == S) { 1523 Found = true; 1524 break; 1525 } 1526 } 1527 if (!Found) { 1528 SecIdx = CPSections.size(); 1529 CPSections.push_back(SectionCPs(S, Align)); 1530 } 1531 1532 if (Align > CPSections[SecIdx].Alignment) 1533 CPSections[SecIdx].Alignment = Align; 1534 CPSections[SecIdx].CPEs.push_back(i); 1535 } 1536 1537 // Now print stuff into the calculated sections. 1538 const MCSection *CurSection = nullptr; 1539 unsigned Offset = 0; 1540 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1541 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1542 unsigned CPI = CPSections[i].CPEs[j]; 1543 MCSymbol *Sym = GetCPISymbol(CPI); 1544 if (!Sym->isUndefined()) 1545 continue; 1546 1547 if (CurSection != CPSections[i].S) { 1548 OutStreamer->SwitchSection(CPSections[i].S); 1549 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1550 CurSection = CPSections[i].S; 1551 Offset = 0; 1552 } 1553 1554 MachineConstantPoolEntry CPE = CP[CPI]; 1555 1556 // Emit inter-object padding for alignment. 1557 unsigned AlignMask = CPE.getAlignment() - 1; 1558 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1559 OutStreamer->EmitZeros(NewOffset - Offset); 1560 1561 Type *Ty = CPE.getType(); 1562 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1563 1564 OutStreamer->EmitLabel(Sym); 1565 if (CPE.isMachineConstantPoolEntry()) 1566 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1567 else 1568 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1569 } 1570 } 1571 } 1572 1573 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1574 /// by the current function to the current output stream. 1575 void AsmPrinter::EmitJumpTableInfo() { 1576 const DataLayout &DL = MF->getDataLayout(); 1577 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1578 if (!MJTI) return; 1579 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1580 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1581 if (JT.empty()) return; 1582 1583 // Pick the directive to use to print the jump table entries, and switch to 1584 // the appropriate section. 1585 const Function *F = MF->getFunction(); 1586 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1587 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1588 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1589 *F); 1590 if (JTInDiffSection) { 1591 // Drop it in the readonly section. 1592 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1593 OutStreamer->SwitchSection(ReadOnlySection); 1594 } 1595 1596 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1597 1598 // Jump tables in code sections are marked with a data_region directive 1599 // where that's supported. 1600 if (!JTInDiffSection) 1601 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1602 1603 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1604 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1605 1606 // If this jump table was deleted, ignore it. 1607 if (JTBBs.empty()) continue; 1608 1609 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1610 /// emit a .set directive for each unique entry. 1611 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1612 MAI->doesSetDirectiveSuppressReloc()) { 1613 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1614 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1615 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1616 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1617 const MachineBasicBlock *MBB = JTBBs[ii]; 1618 if (!EmittedSets.insert(MBB).second) 1619 continue; 1620 1621 // .set LJTSet, LBB32-base 1622 const MCExpr *LHS = 1623 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1624 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1625 MCBinaryExpr::createSub(LHS, Base, 1626 OutContext)); 1627 } 1628 } 1629 1630 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1631 // before each jump table. The first label is never referenced, but tells 1632 // the assembler and linker the extents of the jump table object. The 1633 // second label is actually referenced by the code. 1634 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1635 // FIXME: This doesn't have to have any specific name, just any randomly 1636 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1637 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1638 1639 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1640 1641 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1642 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1643 } 1644 if (!JTInDiffSection) 1645 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1646 } 1647 1648 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1649 /// current stream. 1650 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1651 const MachineBasicBlock *MBB, 1652 unsigned UID) const { 1653 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1654 const MCExpr *Value = nullptr; 1655 switch (MJTI->getEntryKind()) { 1656 case MachineJumpTableInfo::EK_Inline: 1657 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1658 case MachineJumpTableInfo::EK_Custom32: 1659 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1660 MJTI, MBB, UID, OutContext); 1661 break; 1662 case MachineJumpTableInfo::EK_BlockAddress: 1663 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1664 // .word LBB123 1665 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1666 break; 1667 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1668 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1669 // with a relocation as gp-relative, e.g.: 1670 // .gprel32 LBB123 1671 MCSymbol *MBBSym = MBB->getSymbol(); 1672 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1673 return; 1674 } 1675 1676 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1677 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1678 // with a relocation as gp-relative, e.g.: 1679 // .gpdword LBB123 1680 MCSymbol *MBBSym = MBB->getSymbol(); 1681 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1682 return; 1683 } 1684 1685 case MachineJumpTableInfo::EK_LabelDifference32: { 1686 // Each entry is the address of the block minus the address of the jump 1687 // table. This is used for PIC jump tables where gprel32 is not supported. 1688 // e.g.: 1689 // .word LBB123 - LJTI1_2 1690 // If the .set directive avoids relocations, this is emitted as: 1691 // .set L4_5_set_123, LBB123 - LJTI1_2 1692 // .word L4_5_set_123 1693 if (MAI->doesSetDirectiveSuppressReloc()) { 1694 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1695 OutContext); 1696 break; 1697 } 1698 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1699 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1700 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1701 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1702 break; 1703 } 1704 } 1705 1706 assert(Value && "Unknown entry kind!"); 1707 1708 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1709 OutStreamer->EmitValue(Value, EntrySize); 1710 } 1711 1712 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1713 /// special global used by LLVM. If so, emit it and return true, otherwise 1714 /// do nothing and return false. 1715 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1716 if (GV->getName() == "llvm.used") { 1717 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1718 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1719 return true; 1720 } 1721 1722 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1723 if (GV->getSection() == "llvm.metadata" || 1724 GV->hasAvailableExternallyLinkage()) 1725 return true; 1726 1727 if (!GV->hasAppendingLinkage()) return false; 1728 1729 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1730 1731 if (GV->getName() == "llvm.global_ctors") { 1732 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1733 /* isCtor */ true); 1734 1735 return true; 1736 } 1737 1738 if (GV->getName() == "llvm.global_dtors") { 1739 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1740 /* isCtor */ false); 1741 1742 return true; 1743 } 1744 1745 report_fatal_error("unknown special variable"); 1746 } 1747 1748 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1749 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1750 /// is true, as being used with this directive. 1751 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1752 // Should be an array of 'i8*'. 1753 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1754 const GlobalValue *GV = 1755 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1756 if (GV) 1757 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1758 } 1759 } 1760 1761 namespace { 1762 1763 struct Structor { 1764 int Priority = 0; 1765 Constant *Func = nullptr; 1766 GlobalValue *ComdatKey = nullptr; 1767 1768 Structor() = default; 1769 }; 1770 1771 } // end anonymous namespace 1772 1773 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1774 /// priority. 1775 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1776 bool isCtor) { 1777 // Should be an array of '{ int, void ()* }' structs. The first value is the 1778 // init priority. 1779 if (!isa<ConstantArray>(List)) return; 1780 1781 // Sanity check the structors list. 1782 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1783 if (!InitList) return; // Not an array! 1784 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1785 // FIXME: Only allow the 3-field form in LLVM 4.0. 1786 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1787 return; // Not an array of two or three elements! 1788 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1789 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1790 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1791 return; // Not (int, ptr, ptr). 1792 1793 // Gather the structors in a form that's convenient for sorting by priority. 1794 SmallVector<Structor, 8> Structors; 1795 for (Value *O : InitList->operands()) { 1796 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1797 if (!CS) continue; // Malformed. 1798 if (CS->getOperand(1)->isNullValue()) 1799 break; // Found a null terminator, skip the rest. 1800 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1801 if (!Priority) continue; // Malformed. 1802 Structors.push_back(Structor()); 1803 Structor &S = Structors.back(); 1804 S.Priority = Priority->getLimitedValue(65535); 1805 S.Func = CS->getOperand(1); 1806 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1807 S.ComdatKey = 1808 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1809 } 1810 1811 // Emit the function pointers in the target-specific order 1812 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1813 std::stable_sort(Structors.begin(), Structors.end(), 1814 [](const Structor &L, 1815 const Structor &R) { return L.Priority < R.Priority; }); 1816 for (Structor &S : Structors) { 1817 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1818 const MCSymbol *KeySym = nullptr; 1819 if (GlobalValue *GV = S.ComdatKey) { 1820 if (GV->isDeclarationForLinker()) 1821 // If the associated variable is not defined in this module 1822 // (it might be available_externally, or have been an 1823 // available_externally definition that was dropped by the 1824 // EliminateAvailableExternally pass), some other TU 1825 // will provide its dynamic initializer. 1826 continue; 1827 1828 KeySym = getSymbol(GV); 1829 } 1830 MCSection *OutputSection = 1831 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1832 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1833 OutStreamer->SwitchSection(OutputSection); 1834 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1835 EmitAlignment(Align); 1836 EmitXXStructor(DL, S.Func); 1837 } 1838 } 1839 1840 void AsmPrinter::EmitModuleIdents(Module &M) { 1841 if (!MAI->hasIdentDirective()) 1842 return; 1843 1844 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1845 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1846 const MDNode *N = NMD->getOperand(i); 1847 assert(N->getNumOperands() == 1 && 1848 "llvm.ident metadata entry can have only one operand"); 1849 const MDString *S = cast<MDString>(N->getOperand(0)); 1850 OutStreamer->EmitIdent(S->getString()); 1851 } 1852 } 1853 } 1854 1855 //===--------------------------------------------------------------------===// 1856 // Emission and print routines 1857 // 1858 1859 /// EmitInt8 - Emit a byte directive and value. 1860 /// 1861 void AsmPrinter::EmitInt8(int Value) const { 1862 OutStreamer->EmitIntValue(Value, 1); 1863 } 1864 1865 /// EmitInt16 - Emit a short directive and value. 1866 void AsmPrinter::EmitInt16(int Value) const { 1867 OutStreamer->EmitIntValue(Value, 2); 1868 } 1869 1870 /// EmitInt32 - Emit a long directive and value. 1871 void AsmPrinter::EmitInt32(int Value) const { 1872 OutStreamer->EmitIntValue(Value, 4); 1873 } 1874 1875 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1876 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1877 /// .set if it avoids relocations. 1878 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1879 unsigned Size) const { 1880 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1881 } 1882 1883 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1884 /// where the size in bytes of the directive is specified by Size and Label 1885 /// specifies the label. This implicitly uses .set if it is available. 1886 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1887 unsigned Size, 1888 bool IsSectionRelative) const { 1889 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1890 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1891 if (Size > 4) 1892 OutStreamer->EmitZeros(Size - 4); 1893 return; 1894 } 1895 1896 // Emit Label+Offset (or just Label if Offset is zero) 1897 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1898 if (Offset) 1899 Expr = MCBinaryExpr::createAdd( 1900 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1901 1902 OutStreamer->EmitValue(Expr, Size); 1903 } 1904 1905 //===----------------------------------------------------------------------===// 1906 1907 // EmitAlignment - Emit an alignment directive to the specified power of 1908 // two boundary. For example, if you pass in 3 here, you will get an 8 1909 // byte alignment. If a global value is specified, and if that global has 1910 // an explicit alignment requested, it will override the alignment request 1911 // if required for correctness. 1912 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1913 if (GV) 1914 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1915 1916 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1917 1918 assert(NumBits < 1919 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1920 "undefined behavior"); 1921 if (getCurrentSection()->getKind().isText()) 1922 OutStreamer->EmitCodeAlignment(1u << NumBits); 1923 else 1924 OutStreamer->EmitValueToAlignment(1u << NumBits); 1925 } 1926 1927 //===----------------------------------------------------------------------===// 1928 // Constant emission. 1929 //===----------------------------------------------------------------------===// 1930 1931 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1932 MCContext &Ctx = OutContext; 1933 1934 if (CV->isNullValue() || isa<UndefValue>(CV)) 1935 return MCConstantExpr::create(0, Ctx); 1936 1937 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1938 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1939 1940 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1941 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1942 1943 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1944 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1945 1946 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1947 if (!CE) { 1948 llvm_unreachable("Unknown constant value to lower!"); 1949 } 1950 1951 switch (CE->getOpcode()) { 1952 default: 1953 // If the code isn't optimized, there may be outstanding folding 1954 // opportunities. Attempt to fold the expression using DataLayout as a 1955 // last resort before giving up. 1956 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1957 if (C != CE) 1958 return lowerConstant(C); 1959 1960 // Otherwise report the problem to the user. 1961 { 1962 std::string S; 1963 raw_string_ostream OS(S); 1964 OS << "Unsupported expression in static initializer: "; 1965 CE->printAsOperand(OS, /*PrintType=*/false, 1966 !MF ? nullptr : MF->getFunction()->getParent()); 1967 report_fatal_error(OS.str()); 1968 } 1969 case Instruction::GetElementPtr: { 1970 // Generate a symbolic expression for the byte address 1971 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1972 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1973 1974 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1975 if (!OffsetAI) 1976 return Base; 1977 1978 int64_t Offset = OffsetAI.getSExtValue(); 1979 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1980 Ctx); 1981 } 1982 1983 case Instruction::Trunc: 1984 // We emit the value and depend on the assembler to truncate the generated 1985 // expression properly. This is important for differences between 1986 // blockaddress labels. Since the two labels are in the same function, it 1987 // is reasonable to treat their delta as a 32-bit value. 1988 LLVM_FALLTHROUGH; 1989 case Instruction::BitCast: 1990 return lowerConstant(CE->getOperand(0)); 1991 1992 case Instruction::IntToPtr: { 1993 const DataLayout &DL = getDataLayout(); 1994 1995 // Handle casts to pointers by changing them into casts to the appropriate 1996 // integer type. This promotes constant folding and simplifies this code. 1997 Constant *Op = CE->getOperand(0); 1998 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1999 false/*ZExt*/); 2000 return lowerConstant(Op); 2001 } 2002 2003 case Instruction::PtrToInt: { 2004 const DataLayout &DL = getDataLayout(); 2005 2006 // Support only foldable casts to/from pointers that can be eliminated by 2007 // changing the pointer to the appropriately sized integer type. 2008 Constant *Op = CE->getOperand(0); 2009 Type *Ty = CE->getType(); 2010 2011 const MCExpr *OpExpr = lowerConstant(Op); 2012 2013 // We can emit the pointer value into this slot if the slot is an 2014 // integer slot equal to the size of the pointer. 2015 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2016 return OpExpr; 2017 2018 // Otherwise the pointer is smaller than the resultant integer, mask off 2019 // the high bits so we are sure to get a proper truncation if the input is 2020 // a constant expr. 2021 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2022 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2023 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2024 } 2025 2026 case Instruction::Sub: { 2027 GlobalValue *LHSGV; 2028 APInt LHSOffset; 2029 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2030 getDataLayout())) { 2031 GlobalValue *RHSGV; 2032 APInt RHSOffset; 2033 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2034 getDataLayout())) { 2035 const MCExpr *RelocExpr = 2036 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2037 if (!RelocExpr) 2038 RelocExpr = MCBinaryExpr::createSub( 2039 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2040 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2041 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2042 if (Addend != 0) 2043 RelocExpr = MCBinaryExpr::createAdd( 2044 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2045 return RelocExpr; 2046 } 2047 } 2048 } 2049 // else fallthrough 2050 2051 // The MC library also has a right-shift operator, but it isn't consistently 2052 // signed or unsigned between different targets. 2053 case Instruction::Add: 2054 case Instruction::Mul: 2055 case Instruction::SDiv: 2056 case Instruction::SRem: 2057 case Instruction::Shl: 2058 case Instruction::And: 2059 case Instruction::Or: 2060 case Instruction::Xor: { 2061 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2062 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2063 switch (CE->getOpcode()) { 2064 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2065 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2066 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2067 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2068 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2069 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2070 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2071 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2072 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2073 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2074 } 2075 } 2076 } 2077 } 2078 2079 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2080 AsmPrinter &AP, 2081 const Constant *BaseCV = nullptr, 2082 uint64_t Offset = 0); 2083 2084 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2085 2086 /// isRepeatedByteSequence - Determine whether the given value is 2087 /// composed of a repeated sequence of identical bytes and return the 2088 /// byte value. If it is not a repeated sequence, return -1. 2089 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2090 StringRef Data = V->getRawDataValues(); 2091 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2092 char C = Data[0]; 2093 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2094 if (Data[i] != C) return -1; 2095 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2096 } 2097 2098 /// isRepeatedByteSequence - Determine whether the given value is 2099 /// composed of a repeated sequence of identical bytes and return the 2100 /// byte value. If it is not a repeated sequence, return -1. 2101 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2102 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2103 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2104 assert(Size % 8 == 0); 2105 2106 // Extend the element to take zero padding into account. 2107 APInt Value = CI->getValue().zextOrSelf(Size); 2108 if (!Value.isSplat(8)) 2109 return -1; 2110 2111 return Value.zextOrTrunc(8).getZExtValue(); 2112 } 2113 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2114 // Make sure all array elements are sequences of the same repeated 2115 // byte. 2116 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2117 Constant *Op0 = CA->getOperand(0); 2118 int Byte = isRepeatedByteSequence(Op0, DL); 2119 if (Byte == -1) 2120 return -1; 2121 2122 // All array elements must be equal. 2123 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2124 if (CA->getOperand(i) != Op0) 2125 return -1; 2126 return Byte; 2127 } 2128 2129 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2130 return isRepeatedByteSequence(CDS); 2131 2132 return -1; 2133 } 2134 2135 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2136 const ConstantDataSequential *CDS, 2137 AsmPrinter &AP) { 2138 // See if we can aggregate this into a .fill, if so, emit it as such. 2139 int Value = isRepeatedByteSequence(CDS, DL); 2140 if (Value != -1) { 2141 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2142 // Don't emit a 1-byte object as a .fill. 2143 if (Bytes > 1) 2144 return AP.OutStreamer->emitFill(Bytes, Value); 2145 } 2146 2147 // If this can be emitted with .ascii/.asciz, emit it as such. 2148 if (CDS->isString()) 2149 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2150 2151 // Otherwise, emit the values in successive locations. 2152 unsigned ElementByteSize = CDS->getElementByteSize(); 2153 if (isa<IntegerType>(CDS->getElementType())) { 2154 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2155 if (AP.isVerbose()) 2156 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2157 CDS->getElementAsInteger(i)); 2158 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2159 ElementByteSize); 2160 } 2161 } else { 2162 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2163 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2164 } 2165 2166 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2167 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2168 CDS->getNumElements(); 2169 if (unsigned Padding = Size - EmittedSize) 2170 AP.OutStreamer->EmitZeros(Padding); 2171 } 2172 2173 static void emitGlobalConstantArray(const DataLayout &DL, 2174 const ConstantArray *CA, AsmPrinter &AP, 2175 const Constant *BaseCV, uint64_t Offset) { 2176 // See if we can aggregate some values. Make sure it can be 2177 // represented as a series of bytes of the constant value. 2178 int Value = isRepeatedByteSequence(CA, DL); 2179 2180 if (Value != -1) { 2181 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2182 AP.OutStreamer->emitFill(Bytes, Value); 2183 } 2184 else { 2185 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2186 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2187 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2188 } 2189 } 2190 } 2191 2192 static void emitGlobalConstantVector(const DataLayout &DL, 2193 const ConstantVector *CV, AsmPrinter &AP) { 2194 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2195 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2196 2197 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2198 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2199 CV->getType()->getNumElements(); 2200 if (unsigned Padding = Size - EmittedSize) 2201 AP.OutStreamer->EmitZeros(Padding); 2202 } 2203 2204 static void emitGlobalConstantStruct(const DataLayout &DL, 2205 const ConstantStruct *CS, AsmPrinter &AP, 2206 const Constant *BaseCV, uint64_t Offset) { 2207 // Print the fields in successive locations. Pad to align if needed! 2208 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2209 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2210 uint64_t SizeSoFar = 0; 2211 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2212 const Constant *Field = CS->getOperand(i); 2213 2214 // Print the actual field value. 2215 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2216 2217 // Check if padding is needed and insert one or more 0s. 2218 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2219 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2220 - Layout->getElementOffset(i)) - FieldSize; 2221 SizeSoFar += FieldSize + PadSize; 2222 2223 // Insert padding - this may include padding to increase the size of the 2224 // current field up to the ABI size (if the struct is not packed) as well 2225 // as padding to ensure that the next field starts at the right offset. 2226 AP.OutStreamer->EmitZeros(PadSize); 2227 } 2228 assert(SizeSoFar == Layout->getSizeInBytes() && 2229 "Layout of constant struct may be incorrect!"); 2230 } 2231 2232 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2233 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2234 2235 // First print a comment with what we think the original floating-point value 2236 // should have been. 2237 if (AP.isVerbose()) { 2238 SmallString<8> StrVal; 2239 CFP->getValueAPF().toString(StrVal); 2240 2241 if (CFP->getType()) 2242 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2243 else 2244 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2245 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2246 } 2247 2248 // Now iterate through the APInt chunks, emitting them in endian-correct 2249 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2250 // floats). 2251 unsigned NumBytes = API.getBitWidth() / 8; 2252 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2253 const uint64_t *p = API.getRawData(); 2254 2255 // PPC's long double has odd notions of endianness compared to how LLVM 2256 // handles it: p[0] goes first for *big* endian on PPC. 2257 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2258 int Chunk = API.getNumWords() - 1; 2259 2260 if (TrailingBytes) 2261 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2262 2263 for (; Chunk >= 0; --Chunk) 2264 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2265 } else { 2266 unsigned Chunk; 2267 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2268 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2269 2270 if (TrailingBytes) 2271 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2272 } 2273 2274 // Emit the tail padding for the long double. 2275 const DataLayout &DL = AP.getDataLayout(); 2276 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2277 DL.getTypeStoreSize(CFP->getType())); 2278 } 2279 2280 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2281 const DataLayout &DL = AP.getDataLayout(); 2282 unsigned BitWidth = CI->getBitWidth(); 2283 2284 // Copy the value as we may massage the layout for constants whose bit width 2285 // is not a multiple of 64-bits. 2286 APInt Realigned(CI->getValue()); 2287 uint64_t ExtraBits = 0; 2288 unsigned ExtraBitsSize = BitWidth & 63; 2289 2290 if (ExtraBitsSize) { 2291 // The bit width of the data is not a multiple of 64-bits. 2292 // The extra bits are expected to be at the end of the chunk of the memory. 2293 // Little endian: 2294 // * Nothing to be done, just record the extra bits to emit. 2295 // Big endian: 2296 // * Record the extra bits to emit. 2297 // * Realign the raw data to emit the chunks of 64-bits. 2298 if (DL.isBigEndian()) { 2299 // Basically the structure of the raw data is a chunk of 64-bits cells: 2300 // 0 1 BitWidth / 64 2301 // [chunk1][chunk2] ... [chunkN]. 2302 // The most significant chunk is chunkN and it should be emitted first. 2303 // However, due to the alignment issue chunkN contains useless bits. 2304 // Realign the chunks so that they contain only useless information: 2305 // ExtraBits 0 1 (BitWidth / 64) - 1 2306 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2307 ExtraBits = Realigned.getRawData()[0] & 2308 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2309 Realigned.lshrInPlace(ExtraBitsSize); 2310 } else 2311 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2312 } 2313 2314 // We don't expect assemblers to support integer data directives 2315 // for more than 64 bits, so we emit the data in at most 64-bit 2316 // quantities at a time. 2317 const uint64_t *RawData = Realigned.getRawData(); 2318 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2319 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2320 AP.OutStreamer->EmitIntValue(Val, 8); 2321 } 2322 2323 if (ExtraBitsSize) { 2324 // Emit the extra bits after the 64-bits chunks. 2325 2326 // Emit a directive that fills the expected size. 2327 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2328 Size -= (BitWidth / 64) * 8; 2329 assert(Size && Size * 8 >= ExtraBitsSize && 2330 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2331 == ExtraBits && "Directive too small for extra bits."); 2332 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2333 } 2334 } 2335 2336 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2337 /// equivalent global, by a target specific GOT pc relative access to the 2338 /// final symbol. 2339 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2340 const Constant *BaseCst, 2341 uint64_t Offset) { 2342 // The global @foo below illustrates a global that uses a got equivalent. 2343 // 2344 // @bar = global i32 42 2345 // @gotequiv = private unnamed_addr constant i32* @bar 2346 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2347 // i64 ptrtoint (i32* @foo to i64)) 2348 // to i32) 2349 // 2350 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2351 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2352 // form: 2353 // 2354 // foo = cstexpr, where 2355 // cstexpr := <gotequiv> - "." + <cst> 2356 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2357 // 2358 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2359 // 2360 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2361 // gotpcrelcst := <offset from @foo base> + <cst> 2362 MCValue MV; 2363 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2364 return; 2365 const MCSymbolRefExpr *SymA = MV.getSymA(); 2366 if (!SymA) 2367 return; 2368 2369 // Check that GOT equivalent symbol is cached. 2370 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2371 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2372 return; 2373 2374 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2375 if (!BaseGV) 2376 return; 2377 2378 // Check for a valid base symbol 2379 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2380 const MCSymbolRefExpr *SymB = MV.getSymB(); 2381 2382 if (!SymB || BaseSym != &SymB->getSymbol()) 2383 return; 2384 2385 // Make sure to match: 2386 // 2387 // gotpcrelcst := <offset from @foo base> + <cst> 2388 // 2389 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2390 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2391 // if the target knows how to encode it. 2392 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2393 if (GOTPCRelCst < 0) 2394 return; 2395 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2396 return; 2397 2398 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2399 // 2400 // bar: 2401 // .long 42 2402 // gotequiv: 2403 // .quad bar 2404 // foo: 2405 // .long gotequiv - "." + <cst> 2406 // 2407 // is replaced by the target specific equivalent to: 2408 // 2409 // bar: 2410 // .long 42 2411 // foo: 2412 // .long bar@GOTPCREL+<gotpcrelcst> 2413 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2414 const GlobalVariable *GV = Result.first; 2415 int NumUses = (int)Result.second; 2416 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2417 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2418 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2419 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2420 2421 // Update GOT equivalent usage information 2422 --NumUses; 2423 if (NumUses >= 0) 2424 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2425 } 2426 2427 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2428 AsmPrinter &AP, const Constant *BaseCV, 2429 uint64_t Offset) { 2430 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2431 2432 // Globals with sub-elements such as combinations of arrays and structs 2433 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2434 // constant symbol base and the current position with BaseCV and Offset. 2435 if (!BaseCV && CV->hasOneUse()) 2436 BaseCV = dyn_cast<Constant>(CV->user_back()); 2437 2438 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2439 return AP.OutStreamer->EmitZeros(Size); 2440 2441 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2442 switch (Size) { 2443 case 1: 2444 case 2: 2445 case 4: 2446 case 8: 2447 if (AP.isVerbose()) 2448 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2449 CI->getZExtValue()); 2450 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2451 return; 2452 default: 2453 emitGlobalConstantLargeInt(CI, AP); 2454 return; 2455 } 2456 } 2457 2458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2459 return emitGlobalConstantFP(CFP, AP); 2460 2461 if (isa<ConstantPointerNull>(CV)) { 2462 AP.OutStreamer->EmitIntValue(0, Size); 2463 return; 2464 } 2465 2466 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2467 return emitGlobalConstantDataSequential(DL, CDS, AP); 2468 2469 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2470 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2471 2472 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2473 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2474 2475 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2476 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2477 // vectors). 2478 if (CE->getOpcode() == Instruction::BitCast) 2479 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2480 2481 if (Size > 8) { 2482 // If the constant expression's size is greater than 64-bits, then we have 2483 // to emit the value in chunks. Try to constant fold the value and emit it 2484 // that way. 2485 Constant *New = ConstantFoldConstant(CE, DL); 2486 if (New && New != CE) 2487 return emitGlobalConstantImpl(DL, New, AP); 2488 } 2489 } 2490 2491 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2492 return emitGlobalConstantVector(DL, V, AP); 2493 2494 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2495 // thread the streamer with EmitValue. 2496 const MCExpr *ME = AP.lowerConstant(CV); 2497 2498 // Since lowerConstant already folded and got rid of all IR pointer and 2499 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2500 // directly. 2501 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2502 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2503 2504 AP.OutStreamer->EmitValue(ME, Size); 2505 } 2506 2507 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2508 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2509 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2510 if (Size) 2511 emitGlobalConstantImpl(DL, CV, *this); 2512 else if (MAI->hasSubsectionsViaSymbols()) { 2513 // If the global has zero size, emit a single byte so that two labels don't 2514 // look like they are at the same location. 2515 OutStreamer->EmitIntValue(0, 1); 2516 } 2517 } 2518 2519 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2520 // Target doesn't support this yet! 2521 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2522 } 2523 2524 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2525 if (Offset > 0) 2526 OS << '+' << Offset; 2527 else if (Offset < 0) 2528 OS << Offset; 2529 } 2530 2531 //===----------------------------------------------------------------------===// 2532 // Symbol Lowering Routines. 2533 //===----------------------------------------------------------------------===// 2534 2535 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2536 return OutContext.createTempSymbol(Name, true); 2537 } 2538 2539 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2540 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2541 } 2542 2543 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2544 return MMI->getAddrLabelSymbol(BB); 2545 } 2546 2547 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2548 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2549 const DataLayout &DL = getDataLayout(); 2550 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2551 "CPI" + Twine(getFunctionNumber()) + "_" + 2552 Twine(CPID)); 2553 } 2554 2555 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2556 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2557 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2558 } 2559 2560 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2561 /// FIXME: privatize to AsmPrinter. 2562 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2563 const DataLayout &DL = getDataLayout(); 2564 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2565 Twine(getFunctionNumber()) + "_" + 2566 Twine(UID) + "_set_" + Twine(MBBID)); 2567 } 2568 2569 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2570 StringRef Suffix) const { 2571 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2572 } 2573 2574 /// Return the MCSymbol for the specified ExternalSymbol. 2575 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2576 SmallString<60> NameStr; 2577 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2578 return OutContext.getOrCreateSymbol(NameStr); 2579 } 2580 2581 /// PrintParentLoopComment - Print comments about parent loops of this one. 2582 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2583 unsigned FunctionNumber) { 2584 if (!Loop) return; 2585 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2586 OS.indent(Loop->getLoopDepth()*2) 2587 << "Parent Loop BB" << FunctionNumber << "_" 2588 << Loop->getHeader()->getNumber() 2589 << " Depth=" << Loop->getLoopDepth() << '\n'; 2590 } 2591 2592 /// PrintChildLoopComment - Print comments about child loops within 2593 /// the loop for this basic block, with nesting. 2594 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2595 unsigned FunctionNumber) { 2596 // Add child loop information 2597 for (const MachineLoop *CL : *Loop) { 2598 OS.indent(CL->getLoopDepth()*2) 2599 << "Child Loop BB" << FunctionNumber << "_" 2600 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2601 << '\n'; 2602 PrintChildLoopComment(OS, CL, FunctionNumber); 2603 } 2604 } 2605 2606 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2607 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2608 const MachineLoopInfo *LI, 2609 const AsmPrinter &AP) { 2610 // Add loop depth information 2611 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2612 if (!Loop) return; 2613 2614 MachineBasicBlock *Header = Loop->getHeader(); 2615 assert(Header && "No header for loop"); 2616 2617 // If this block is not a loop header, just print out what is the loop header 2618 // and return. 2619 if (Header != &MBB) { 2620 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2621 Twine(AP.getFunctionNumber())+"_" + 2622 Twine(Loop->getHeader()->getNumber())+ 2623 " Depth="+Twine(Loop->getLoopDepth())); 2624 return; 2625 } 2626 2627 // Otherwise, it is a loop header. Print out information about child and 2628 // parent loops. 2629 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2630 2631 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2632 2633 OS << "=>"; 2634 OS.indent(Loop->getLoopDepth()*2-2); 2635 2636 OS << "This "; 2637 if (Loop->empty()) 2638 OS << "Inner "; 2639 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2640 2641 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2642 } 2643 2644 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2645 MCCodePaddingContext &Context) const { 2646 assert(MF != nullptr && "Machine function must be valid"); 2647 assert(LI != nullptr && "Loop info must be valid"); 2648 Context.IsPaddingActive = !MF->hasInlineAsm() && 2649 !MF->getFunction()->optForSize() && 2650 TM.getOptLevel() != CodeGenOpt::None; 2651 const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB); 2652 Context.IsBasicBlockInsideInnermostLoop = 2653 CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty(); 2654 Context.IsBasicBlockReachableViaFallthrough = 2655 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2656 MBB.pred_end(); 2657 Context.IsBasicBlockReachableViaBranch = 2658 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2659 } 2660 2661 /// EmitBasicBlockStart - This method prints the label for the specified 2662 /// MachineBasicBlock, an alignment (if present) and a comment describing 2663 /// it if appropriate. 2664 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2665 // End the previous funclet and start a new one. 2666 if (MBB.isEHFuncletEntry()) { 2667 for (const HandlerInfo &HI : Handlers) { 2668 HI.Handler->endFunclet(); 2669 HI.Handler->beginFunclet(MBB); 2670 } 2671 } 2672 2673 // Emit an alignment directive for this block, if needed. 2674 if (unsigned Align = MBB.getAlignment()) 2675 EmitAlignment(Align); 2676 MCCodePaddingContext Context; 2677 setupCodePaddingContext(MBB, Context); 2678 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2679 2680 // If the block has its address taken, emit any labels that were used to 2681 // reference the block. It is possible that there is more than one label 2682 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2683 // the references were generated. 2684 if (MBB.hasAddressTaken()) { 2685 const BasicBlock *BB = MBB.getBasicBlock(); 2686 if (isVerbose()) 2687 OutStreamer->AddComment("Block address taken"); 2688 2689 // MBBs can have their address taken as part of CodeGen without having 2690 // their corresponding BB's address taken in IR 2691 if (BB->hasAddressTaken()) 2692 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2693 OutStreamer->EmitLabel(Sym); 2694 } 2695 2696 // Print some verbose block comments. 2697 if (isVerbose()) { 2698 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2699 if (BB->hasName()) { 2700 BB->printAsOperand(OutStreamer->GetCommentOS(), 2701 /*PrintType=*/false, BB->getModule()); 2702 OutStreamer->GetCommentOS() << '\n'; 2703 } 2704 } 2705 emitBasicBlockLoopComments(MBB, LI, *this); 2706 } 2707 2708 // Print the main label for the block. 2709 if (MBB.pred_empty() || 2710 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2711 if (isVerbose()) { 2712 // NOTE: Want this comment at start of line, don't emit with AddComment. 2713 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2714 false); 2715 } 2716 } else { 2717 OutStreamer->EmitLabel(MBB.getSymbol()); 2718 } 2719 } 2720 2721 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2722 MCCodePaddingContext Context; 2723 setupCodePaddingContext(MBB, Context); 2724 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2725 } 2726 2727 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2728 bool IsDefinition) const { 2729 MCSymbolAttr Attr = MCSA_Invalid; 2730 2731 switch (Visibility) { 2732 default: break; 2733 case GlobalValue::HiddenVisibility: 2734 if (IsDefinition) 2735 Attr = MAI->getHiddenVisibilityAttr(); 2736 else 2737 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2738 break; 2739 case GlobalValue::ProtectedVisibility: 2740 Attr = MAI->getProtectedVisibilityAttr(); 2741 break; 2742 } 2743 2744 if (Attr != MCSA_Invalid) 2745 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2746 } 2747 2748 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2749 /// exactly one predecessor and the control transfer mechanism between 2750 /// the predecessor and this block is a fall-through. 2751 bool AsmPrinter:: 2752 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2753 // If this is a landing pad, it isn't a fall through. If it has no preds, 2754 // then nothing falls through to it. 2755 if (MBB->isEHPad() || MBB->pred_empty()) 2756 return false; 2757 2758 // If there isn't exactly one predecessor, it can't be a fall through. 2759 if (MBB->pred_size() > 1) 2760 return false; 2761 2762 // The predecessor has to be immediately before this block. 2763 MachineBasicBlock *Pred = *MBB->pred_begin(); 2764 if (!Pred->isLayoutSuccessor(MBB)) 2765 return false; 2766 2767 // If the block is completely empty, then it definitely does fall through. 2768 if (Pred->empty()) 2769 return true; 2770 2771 // Check the terminators in the previous blocks 2772 for (const auto &MI : Pred->terminators()) { 2773 // If it is not a simple branch, we are in a table somewhere. 2774 if (!MI.isBranch() || MI.isIndirectBranch()) 2775 return false; 2776 2777 // If we are the operands of one of the branches, this is not a fall 2778 // through. Note that targets with delay slots will usually bundle 2779 // terminators with the delay slot instruction. 2780 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2781 if (OP->isJTI()) 2782 return false; 2783 if (OP->isMBB() && OP->getMBB() == MBB) 2784 return false; 2785 } 2786 } 2787 2788 return true; 2789 } 2790 2791 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2792 if (!S.usesMetadata()) 2793 return nullptr; 2794 2795 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2796 " stackmap formats, please see the documentation for a description of" 2797 " the default format. If you really need a custom serialized format," 2798 " please file a bug"); 2799 2800 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2801 gcp_map_type::iterator GCPI = GCMap.find(&S); 2802 if (GCPI != GCMap.end()) 2803 return GCPI->second.get(); 2804 2805 auto Name = S.getName(); 2806 2807 for (GCMetadataPrinterRegistry::iterator 2808 I = GCMetadataPrinterRegistry::begin(), 2809 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2810 if (Name == I->getName()) { 2811 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2812 GMP->S = &S; 2813 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2814 return IterBool.first->second.get(); 2815 } 2816 2817 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2818 } 2819 2820 /// Pin vtable to this file. 2821 AsmPrinterHandler::~AsmPrinterHandler() = default; 2822 2823 void AsmPrinterHandler::markFunctionEnd() {} 2824 2825 // In the binary's "xray_instr_map" section, an array of these function entries 2826 // describes each instrumentation point. When XRay patches your code, the index 2827 // into this table will be given to your handler as a patch point identifier. 2828 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2829 const MCSymbol *CurrentFnSym) const { 2830 Out->EmitSymbolValue(Sled, Bytes); 2831 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2832 auto Kind8 = static_cast<uint8_t>(Kind); 2833 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2834 Out->EmitBinaryData( 2835 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2836 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 2837 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 2838 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 2839 Out->EmitZeros(Padding); 2840 } 2841 2842 void AsmPrinter::emitXRayTable() { 2843 if (Sleds.empty()) 2844 return; 2845 2846 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2847 auto Fn = MF->getFunction(); 2848 MCSection *InstMap = nullptr; 2849 MCSection *FnSledIndex = nullptr; 2850 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2851 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 2852 assert(Associated != nullptr); 2853 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 2854 std::string GroupName; 2855 if (Fn->hasComdat()) { 2856 Flags |= ELF::SHF_GROUP; 2857 GroupName = Fn->getComdat()->getName(); 2858 } 2859 2860 auto UniqueID = ++XRayFnUniqueID; 2861 InstMap = 2862 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 2863 GroupName, UniqueID, Associated); 2864 FnSledIndex = 2865 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 2866 GroupName, UniqueID, Associated); 2867 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2868 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2869 SectionKind::getReadOnlyWithRel()); 2870 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 2871 SectionKind::getReadOnlyWithRel()); 2872 } else { 2873 llvm_unreachable("Unsupported target"); 2874 } 2875 2876 auto WordSizeBytes = MAI->getCodePointerSize(); 2877 2878 // Now we switch to the instrumentation map section. Because this is done 2879 // per-function, we are able to create an index entry that will represent the 2880 // range of sleds associated with a function. 2881 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 2882 OutStreamer->SwitchSection(InstMap); 2883 OutStreamer->EmitLabel(SledsStart); 2884 for (const auto &Sled : Sleds) 2885 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2886 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 2887 OutStreamer->EmitLabel(SledsEnd); 2888 2889 // We then emit a single entry in the index per function. We use the symbols 2890 // that bound the instrumentation map as the range for a specific function. 2891 // Each entry here will be 2 * word size aligned, as we're writing down two 2892 // pointers. This should work for both 32-bit and 64-bit platforms. 2893 OutStreamer->SwitchSection(FnSledIndex); 2894 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 2895 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 2896 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 2897 OutStreamer->SwitchSection(PrevSection); 2898 Sleds.clear(); 2899 } 2900 2901 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2902 SledKind Kind, uint8_t Version) { 2903 auto Fn = MI.getMF()->getFunction(); 2904 auto Attr = Fn->getFnAttribute("function-instrument"); 2905 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2906 bool AlwaysInstrument = 2907 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2908 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2909 Kind = SledKind::LOG_ARGS_ENTER; 2910 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 2911 AlwaysInstrument, Fn, Version}); 2912 } 2913 2914 uint16_t AsmPrinter::getDwarfVersion() const { 2915 return OutStreamer->getContext().getDwarfVersion(); 2916 } 2917 2918 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2919 OutStreamer->getContext().setDwarfVersion(Version); 2920 } 2921