1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinException.h"
20 #include "llvm/ADT/APFloat.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/ObjectUtils.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/BinaryFormat/Dwarf.h"
36 #include "llvm/BinaryFormat/ELF.h"
37 #include "llvm/CodeGen/GCMetadata.h"
38 #include "llvm/CodeGen/GCMetadataPrinter.h"
39 #include "llvm/CodeGen/GCStrategy.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineConstantPool.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineModuleInfo.h"
51 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
54 #include "llvm/CodeGen/TargetFrameLowering.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetLowering.h"
57 #include "llvm/CodeGen/TargetLoweringObjectFile.h"
58 #include "llvm/CodeGen/TargetOpcodes.h"
59 #include "llvm/CodeGen/TargetRegisterInfo.h"
60 #include "llvm/CodeGen/TargetSubtargetInfo.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/Comdat.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Function.h"
69 #include "llvm/IR/GlobalAlias.h"
70 #include "llvm/IR/GlobalIFunc.h"
71 #include "llvm/IR/GlobalIndirectSymbol.h"
72 #include "llvm/IR/GlobalObject.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Mangler.h"
77 #include "llvm/IR/Metadata.h"
78 #include "llvm/IR/Module.h"
79 #include "llvm/IR/Operator.h"
80 #include "llvm/IR/Type.h"
81 #include "llvm/IR/Value.h"
82 #include "llvm/MC/MCAsmInfo.h"
83 #include "llvm/MC/MCCodePadder.h"
84 #include "llvm/MC/MCContext.h"
85 #include "llvm/MC/MCDirectives.h"
86 #include "llvm/MC/MCDwarf.h"
87 #include "llvm/MC/MCExpr.h"
88 #include "llvm/MC/MCInst.h"
89 #include "llvm/MC/MCSection.h"
90 #include "llvm/MC/MCSectionELF.h"
91 #include "llvm/MC/MCSectionMachO.h"
92 #include "llvm/MC/MCStreamer.h"
93 #include "llvm/MC/MCSubtargetInfo.h"
94 #include "llvm/MC/MCSymbol.h"
95 #include "llvm/MC/MCSymbolELF.h"
96 #include "llvm/MC/MCTargetOptions.h"
97 #include "llvm/MC/MCValue.h"
98 #include "llvm/MC/SectionKind.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/ErrorHandling.h"
104 #include "llvm/Support/Format.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/Path.h"
107 #include "llvm/Support/TargetRegistry.h"
108 #include "llvm/Support/Timer.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cinttypes>
115 #include <cstdint>
116 #include <iterator>
117 #include <limits>
118 #include <memory>
119 #include <string>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 
125 #define DEBUG_TYPE "asm-printer"
126 
127 static const char *const DWARFGroupName = "dwarf";
128 static const char *const DWARFGroupDescription = "DWARF Emission";
129 static const char *const DbgTimerName = "emit";
130 static const char *const DbgTimerDescription = "Debug Info Emission";
131 static const char *const EHTimerName = "write_exception";
132 static const char *const EHTimerDescription = "DWARF Exception Writer";
133 static const char *const CodeViewLineTablesGroupName = "linetables";
134 static const char *const CodeViewLineTablesGroupDescription =
135   "CodeView Line Tables";
136 
137 STATISTIC(EmittedInsts, "Number of machine instrs printed");
138 
139 static cl::opt<bool>
140     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
141                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
142 
143 char AsmPrinter::ID = 0;
144 
145 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
146 
147 static gcp_map_type &getGCMap(void *&P) {
148   if (!P)
149     P = new gcp_map_type();
150   return *(gcp_map_type*)P;
151 }
152 
153 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
154 /// value in log2 form.  This rounds up to the preferred alignment if possible
155 /// and legal.
156 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
157                                    unsigned InBits = 0) {
158   unsigned NumBits = 0;
159   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
160     NumBits = DL.getPreferredAlignmentLog(GVar);
161 
162   // If InBits is specified, round it to it.
163   if (InBits > NumBits)
164     NumBits = InBits;
165 
166   // If the GV has a specified alignment, take it into account.
167   if (GV->getAlignment() == 0)
168     return NumBits;
169 
170   unsigned GVAlign = Log2_32(GV->getAlignment());
171 
172   // If the GVAlign is larger than NumBits, or if we are required to obey
173   // NumBits because the GV has an assigned section, obey it.
174   if (GVAlign > NumBits || GV->hasSection())
175     NumBits = GVAlign;
176   return NumBits;
177 }
178 
179 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
180     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
181       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
182   VerboseAsm = OutStreamer->isVerboseAsm();
183 }
184 
185 AsmPrinter::~AsmPrinter() {
186   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
187 
188   if (GCMetadataPrinters) {
189     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
190 
191     delete &GCMap;
192     GCMetadataPrinters = nullptr;
193   }
194 }
195 
196 bool AsmPrinter::isPositionIndependent() const {
197   return TM.isPositionIndependent();
198 }
199 
200 /// getFunctionNumber - Return a unique ID for the current function.
201 unsigned AsmPrinter::getFunctionNumber() const {
202   return MF->getFunctionNumber();
203 }
204 
205 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
206   return *TM.getObjFileLowering();
207 }
208 
209 const DataLayout &AsmPrinter::getDataLayout() const {
210   return MMI->getModule()->getDataLayout();
211 }
212 
213 // Do not use the cached DataLayout because some client use it without a Module
214 // (llvm-dsymutil, llvm-dwarfdump).
215 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
216 
217 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
218   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
219   return MF->getSubtarget<MCSubtargetInfo>();
220 }
221 
222 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
223   S.EmitInstruction(Inst, getSubtargetInfo());
224 }
225 
226 /// getCurrentSection() - Return the current section we are emitting to.
227 const MCSection *AsmPrinter::getCurrentSection() const {
228   return OutStreamer->getCurrentSectionOnly();
229 }
230 
231 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
232   AU.setPreservesAll();
233   MachineFunctionPass::getAnalysisUsage(AU);
234   AU.addRequired<MachineModuleInfo>();
235   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
236   AU.addRequired<GCModuleInfo>();
237   AU.addRequired<MachineLoopInfo>();
238 }
239 
240 bool AsmPrinter::doInitialization(Module &M) {
241   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
242 
243   // Initialize TargetLoweringObjectFile.
244   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
245     .Initialize(OutContext, TM);
246 
247   OutStreamer->InitSections(false);
248 
249   // Emit the version-min deplyment target directive if needed.
250   //
251   // FIXME: If we end up with a collection of these sorts of Darwin-specific
252   // or ELF-specific things, it may make sense to have a platform helper class
253   // that will work with the target helper class. For now keep it here, as the
254   // alternative is duplicated code in each of the target asm printers that
255   // use the directive, where it would need the same conditionalization
256   // anyway.
257   const Triple &TT = TM.getTargetTriple();
258   // If there is a version specified, Major will be non-zero.
259   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
260     unsigned Major, Minor, Update;
261     MCVersionMinType VersionType;
262     if (TT.isWatchOS()) {
263       VersionType = MCVM_WatchOSVersionMin;
264       TT.getWatchOSVersion(Major, Minor, Update);
265     } else if (TT.isTvOS()) {
266       VersionType = MCVM_TvOSVersionMin;
267       TT.getiOSVersion(Major, Minor, Update);
268     } else if (TT.isMacOSX()) {
269       VersionType = MCVM_OSXVersionMin;
270       if (!TT.getMacOSXVersion(Major, Minor, Update))
271         Major = 0;
272     } else {
273       VersionType = MCVM_IOSVersionMin;
274       TT.getiOSVersion(Major, Minor, Update);
275     }
276     if (Major != 0)
277       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
278   }
279 
280   // Allow the target to emit any magic that it wants at the start of the file.
281   EmitStartOfAsmFile(M);
282 
283   // Very minimal debug info. It is ignored if we emit actual debug info. If we
284   // don't, this at least helps the user find where a global came from.
285   if (MAI->hasSingleParameterDotFile()) {
286     // .file "foo.c"
287     OutStreamer->EmitFileDirective(
288         llvm::sys::path::filename(M.getSourceFileName()));
289   }
290 
291   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
292   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
293   for (auto &I : *MI)
294     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
295       MP->beginAssembly(M, *MI, *this);
296 
297   // Emit module-level inline asm if it exists.
298   if (!M.getModuleInlineAsm().empty()) {
299     // We're at the module level. Construct MCSubtarget from the default CPU
300     // and target triple.
301     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
302         TM.getTargetTriple().str(), TM.getTargetCPU(),
303         TM.getTargetFeatureString()));
304     OutStreamer->AddComment("Start of file scope inline assembly");
305     OutStreamer->AddBlankLine();
306     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
307                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
308     OutStreamer->AddComment("End of file scope inline assembly");
309     OutStreamer->AddBlankLine();
310   }
311 
312   if (MAI->doesSupportDebugInformation()) {
313     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
314     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
315                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
316       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
317                                      DbgTimerName, DbgTimerDescription,
318                                      CodeViewLineTablesGroupName,
319                                      CodeViewLineTablesGroupDescription));
320     }
321     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
322       DD = new DwarfDebug(this, &M);
323       DD->beginModule();
324       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
325                                      DWARFGroupName, DWARFGroupDescription));
326     }
327   }
328 
329   switch (MAI->getExceptionHandlingType()) {
330   case ExceptionHandling::SjLj:
331   case ExceptionHandling::DwarfCFI:
332   case ExceptionHandling::ARM:
333     isCFIMoveForDebugging = true;
334     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
335       break;
336     for (auto &F: M.getFunctionList()) {
337       // If the module contains any function with unwind data,
338       // .eh_frame has to be emitted.
339       // Ignore functions that won't get emitted.
340       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
341         isCFIMoveForDebugging = false;
342         break;
343       }
344     }
345     break;
346   default:
347     isCFIMoveForDebugging = false;
348     break;
349   }
350 
351   EHStreamer *ES = nullptr;
352   switch (MAI->getExceptionHandlingType()) {
353   case ExceptionHandling::None:
354     break;
355   case ExceptionHandling::SjLj:
356   case ExceptionHandling::DwarfCFI:
357     ES = new DwarfCFIException(this);
358     break;
359   case ExceptionHandling::ARM:
360     ES = new ARMException(this);
361     break;
362   case ExceptionHandling::WinEH:
363     switch (MAI->getWinEHEncodingType()) {
364     default: llvm_unreachable("unsupported unwinding information encoding");
365     case WinEH::EncodingType::Invalid:
366       break;
367     case WinEH::EncodingType::X86:
368     case WinEH::EncodingType::Itanium:
369       ES = new WinException(this);
370       break;
371     }
372     break;
373   }
374   if (ES)
375     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
376                                    DWARFGroupName, DWARFGroupDescription));
377   return false;
378 }
379 
380 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
381   if (!MAI.hasWeakDefCanBeHiddenDirective())
382     return false;
383 
384   return canBeOmittedFromSymbolTable(GV);
385 }
386 
387 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
388   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
389   switch (Linkage) {
390   case GlobalValue::CommonLinkage:
391   case GlobalValue::LinkOnceAnyLinkage:
392   case GlobalValue::LinkOnceODRLinkage:
393   case GlobalValue::WeakAnyLinkage:
394   case GlobalValue::WeakODRLinkage:
395     if (MAI->hasWeakDefDirective()) {
396       // .globl _foo
397       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
398 
399       if (!canBeHidden(GV, *MAI))
400         // .weak_definition _foo
401         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
402       else
403         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
404     } else if (MAI->hasLinkOnceDirective()) {
405       // .globl _foo
406       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
407       //NOTE: linkonce is handled by the section the symbol was assigned to.
408     } else {
409       // .weak _foo
410       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
411     }
412     return;
413   case GlobalValue::ExternalLinkage:
414     // If external, declare as a global symbol: .globl _foo
415     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
416     return;
417   case GlobalValue::PrivateLinkage:
418   case GlobalValue::InternalLinkage:
419     return;
420   case GlobalValue::AppendingLinkage:
421   case GlobalValue::AvailableExternallyLinkage:
422   case GlobalValue::ExternalWeakLinkage:
423     llvm_unreachable("Should never emit this");
424   }
425   llvm_unreachable("Unknown linkage type!");
426 }
427 
428 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
429                                    const GlobalValue *GV) const {
430   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
431 }
432 
433 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
434   return TM.getSymbol(GV);
435 }
436 
437 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
438 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
439   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
440   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
441          "No emulated TLS variables in the common section");
442 
443   // Never emit TLS variable xyz in emulated TLS model.
444   // The initialization value is in __emutls_t.xyz instead of xyz.
445   if (IsEmuTLSVar)
446     return;
447 
448   if (GV->hasInitializer()) {
449     // Check to see if this is a special global used by LLVM, if so, emit it.
450     if (EmitSpecialLLVMGlobal(GV))
451       return;
452 
453     // Skip the emission of global equivalents. The symbol can be emitted later
454     // on by emitGlobalGOTEquivs in case it turns out to be needed.
455     if (GlobalGOTEquivs.count(getSymbol(GV)))
456       return;
457 
458     if (isVerbose()) {
459       // When printing the control variable __emutls_v.*,
460       // we don't need to print the original TLS variable name.
461       GV->printAsOperand(OutStreamer->GetCommentOS(),
462                      /*PrintType=*/false, GV->getParent());
463       OutStreamer->GetCommentOS() << '\n';
464     }
465   }
466 
467   MCSymbol *GVSym = getSymbol(GV);
468   MCSymbol *EmittedSym = GVSym;
469 
470   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
471   // attributes.
472   // GV's or GVSym's attributes will be used for the EmittedSym.
473   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
474 
475   if (!GV->hasInitializer())   // External globals require no extra code.
476     return;
477 
478   GVSym->redefineIfPossible();
479   if (GVSym->isDefined() || GVSym->isVariable())
480     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
481                        "' is already defined");
482 
483   if (MAI->hasDotTypeDotSizeDirective())
484     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
485 
486   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
487 
488   const DataLayout &DL = GV->getParent()->getDataLayout();
489   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
490 
491   // If the alignment is specified, we *must* obey it.  Overaligning a global
492   // with a specified alignment is a prompt way to break globals emitted to
493   // sections and expected to be contiguous (e.g. ObjC metadata).
494   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
495 
496   for (const HandlerInfo &HI : Handlers) {
497     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
498                        HI.TimerGroupName, HI.TimerGroupDescription,
499                        TimePassesIsEnabled);
500     HI.Handler->setSymbolSize(GVSym, Size);
501   }
502 
503   // Handle common symbols
504   if (GVKind.isCommon()) {
505     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
506     unsigned Align = 1 << AlignLog;
507     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
508       Align = 0;
509 
510     // .comm _foo, 42, 4
511     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
512     return;
513   }
514 
515   // Determine to which section this global should be emitted.
516   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
517 
518   // If we have a bss global going to a section that supports the
519   // zerofill directive, do so here.
520   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
521       TheSection->isVirtualSection()) {
522     if (Size == 0)
523       Size = 1; // zerofill of 0 bytes is undefined.
524     unsigned Align = 1 << AlignLog;
525     EmitLinkage(GV, GVSym);
526     // .zerofill __DATA, __bss, _foo, 400, 5
527     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
528     return;
529   }
530 
531   // If this is a BSS local symbol and we are emitting in the BSS
532   // section use .lcomm/.comm directive.
533   if (GVKind.isBSSLocal() &&
534       getObjFileLowering().getBSSSection() == TheSection) {
535     if (Size == 0)
536       Size = 1; // .comm Foo, 0 is undefined, avoid it.
537     unsigned Align = 1 << AlignLog;
538 
539     // Use .lcomm only if it supports user-specified alignment.
540     // Otherwise, while it would still be correct to use .lcomm in some
541     // cases (e.g. when Align == 1), the external assembler might enfore
542     // some -unknown- default alignment behavior, which could cause
543     // spurious differences between external and integrated assembler.
544     // Prefer to simply fall back to .local / .comm in this case.
545     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
546       // .lcomm _foo, 42
547       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
548       return;
549     }
550 
551     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
552       Align = 0;
553 
554     // .local _foo
555     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
556     // .comm _foo, 42, 4
557     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
558     return;
559   }
560 
561   // Handle thread local data for mach-o which requires us to output an
562   // additional structure of data and mangle the original symbol so that we
563   // can reference it later.
564   //
565   // TODO: This should become an "emit thread local global" method on TLOF.
566   // All of this macho specific stuff should be sunk down into TLOFMachO and
567   // stuff like "TLSExtraDataSection" should no longer be part of the parent
568   // TLOF class.  This will also make it more obvious that stuff like
569   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
570   // specific code.
571   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
572     // Emit the .tbss symbol
573     MCSymbol *MangSym =
574         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
575 
576     if (GVKind.isThreadBSS()) {
577       TheSection = getObjFileLowering().getTLSBSSSection();
578       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
579     } else if (GVKind.isThreadData()) {
580       OutStreamer->SwitchSection(TheSection);
581 
582       EmitAlignment(AlignLog, GV);
583       OutStreamer->EmitLabel(MangSym);
584 
585       EmitGlobalConstant(GV->getParent()->getDataLayout(),
586                          GV->getInitializer());
587     }
588 
589     OutStreamer->AddBlankLine();
590 
591     // Emit the variable struct for the runtime.
592     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
593 
594     OutStreamer->SwitchSection(TLVSect);
595     // Emit the linkage here.
596     EmitLinkage(GV, GVSym);
597     OutStreamer->EmitLabel(GVSym);
598 
599     // Three pointers in size:
600     //   - __tlv_bootstrap - used to make sure support exists
601     //   - spare pointer, used when mapped by the runtime
602     //   - pointer to mangled symbol above with initializer
603     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
604     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
605                                 PtrSize);
606     OutStreamer->EmitIntValue(0, PtrSize);
607     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
608 
609     OutStreamer->AddBlankLine();
610     return;
611   }
612 
613   MCSymbol *EmittedInitSym = GVSym;
614 
615   OutStreamer->SwitchSection(TheSection);
616 
617   EmitLinkage(GV, EmittedInitSym);
618   EmitAlignment(AlignLog, GV);
619 
620   OutStreamer->EmitLabel(EmittedInitSym);
621 
622   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
623 
624   if (MAI->hasDotTypeDotSizeDirective())
625     // .size foo, 42
626     OutStreamer->emitELFSize(EmittedInitSym,
627                              MCConstantExpr::create(Size, OutContext));
628 
629   OutStreamer->AddBlankLine();
630 }
631 
632 /// Emit the directive and value for debug thread local expression
633 ///
634 /// \p Value - The value to emit.
635 /// \p Size - The size of the integer (in bytes) to emit.
636 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
637                                       unsigned Size) const {
638   OutStreamer->EmitValue(Value, Size);
639 }
640 
641 /// EmitFunctionHeader - This method emits the header for the current
642 /// function.
643 void AsmPrinter::EmitFunctionHeader() {
644   const Function *F = MF->getFunction();
645 
646   if (isVerbose())
647     OutStreamer->GetCommentOS()
648         << "-- Begin function "
649         << GlobalValue::dropLLVMManglingEscape(F->getName()) << '\n';
650 
651   // Print out constants referenced by the function
652   EmitConstantPool();
653 
654   // Print the 'header' of function.
655   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
656   EmitVisibility(CurrentFnSym, F->getVisibility());
657 
658   EmitLinkage(F, CurrentFnSym);
659   if (MAI->hasFunctionAlignment())
660     EmitAlignment(MF->getAlignment(), F);
661 
662   if (MAI->hasDotTypeDotSizeDirective())
663     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
664 
665   if (isVerbose()) {
666     F->printAsOperand(OutStreamer->GetCommentOS(),
667                    /*PrintType=*/false, F->getParent());
668     OutStreamer->GetCommentOS() << '\n';
669   }
670 
671   // Emit the prefix data.
672   if (F->hasPrefixData()) {
673     if (MAI->hasSubsectionsViaSymbols()) {
674       // Preserving prefix data on platforms which use subsections-via-symbols
675       // is a bit tricky. Here we introduce a symbol for the prefix data
676       // and use the .alt_entry attribute to mark the function's real entry point
677       // as an alternative entry point to the prefix-data symbol.
678       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
679       OutStreamer->EmitLabel(PrefixSym);
680 
681       EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
682 
683       // Emit an .alt_entry directive for the actual function symbol.
684       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
685     } else {
686       EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
687     }
688   }
689 
690   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
691   // do their wild and crazy things as required.
692   EmitFunctionEntryLabel();
693 
694   // If the function had address-taken blocks that got deleted, then we have
695   // references to the dangling symbols.  Emit them at the start of the function
696   // so that we don't get references to undefined symbols.
697   std::vector<MCSymbol*> DeadBlockSyms;
698   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
699   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
700     OutStreamer->AddComment("Address taken block that was later removed");
701     OutStreamer->EmitLabel(DeadBlockSyms[i]);
702   }
703 
704   if (CurrentFnBegin) {
705     if (MAI->useAssignmentForEHBegin()) {
706       MCSymbol *CurPos = OutContext.createTempSymbol();
707       OutStreamer->EmitLabel(CurPos);
708       OutStreamer->EmitAssignment(CurrentFnBegin,
709                                  MCSymbolRefExpr::create(CurPos, OutContext));
710     } else {
711       OutStreamer->EmitLabel(CurrentFnBegin);
712     }
713   }
714 
715   // Emit pre-function debug and/or EH information.
716   for (const HandlerInfo &HI : Handlers) {
717     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
718                        HI.TimerGroupDescription, TimePassesIsEnabled);
719     HI.Handler->beginFunction(MF);
720   }
721 
722   // Emit the prologue data.
723   if (F->hasPrologueData())
724     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
725 }
726 
727 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
728 /// function.  This can be overridden by targets as required to do custom stuff.
729 void AsmPrinter::EmitFunctionEntryLabel() {
730   CurrentFnSym->redefineIfPossible();
731 
732   // The function label could have already been emitted if two symbols end up
733   // conflicting due to asm renaming.  Detect this and emit an error.
734   if (CurrentFnSym->isVariable())
735     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
736                        "' is a protected alias");
737   if (CurrentFnSym->isDefined())
738     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
739                        "' label emitted multiple times to assembly file");
740 
741   return OutStreamer->EmitLabel(CurrentFnSym);
742 }
743 
744 /// emitComments - Pretty-print comments for instructions.
745 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
746                          AsmPrinter *AP) {
747   const MachineFunction *MF = MI.getMF();
748   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
749 
750   // Check for spills and reloads
751   int FI;
752 
753   const MachineFrameInfo &MFI = MF->getFrameInfo();
754   bool Commented = false;
755 
756   // We assume a single instruction only has a spill or reload, not
757   // both.
758   const MachineMemOperand *MMO;
759   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
760     if (MFI.isSpillSlotObjectIndex(FI)) {
761       MMO = *MI.memoperands_begin();
762       CommentOS << MMO->getSize() << "-byte Reload";
763       Commented = true;
764     }
765   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
766     if (MFI.isSpillSlotObjectIndex(FI)) {
767       CommentOS << MMO->getSize() << "-byte Folded Reload";
768       Commented = true;
769     }
770   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
771     if (MFI.isSpillSlotObjectIndex(FI)) {
772       MMO = *MI.memoperands_begin();
773       CommentOS << MMO->getSize() << "-byte Spill";
774       Commented = true;
775     }
776   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
777     if (MFI.isSpillSlotObjectIndex(FI)) {
778       CommentOS << MMO->getSize() << "-byte Folded Spill";
779       Commented = true;
780     }
781   }
782 
783   // Check for spill-induced copies
784   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
785     Commented = true;
786     CommentOS << " Reload Reuse";
787   }
788 
789   if (Commented && AP->EnablePrintSchedInfo)
790     // If any comment was added above and we need sched info comment then
791     // add this new comment just after the above comment w/o "\n" between them.
792     CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
793   else if (Commented)
794     CommentOS << "\n";
795 }
796 
797 /// emitImplicitDef - This method emits the specified machine instruction
798 /// that is an implicit def.
799 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
800   unsigned RegNo = MI->getOperand(0).getReg();
801 
802   SmallString<128> Str;
803   raw_svector_ostream OS(Str);
804   OS << "implicit-def: "
805      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
806 
807   OutStreamer->AddComment(OS.str());
808   OutStreamer->AddBlankLine();
809 }
810 
811 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
812   std::string Str;
813   raw_string_ostream OS(Str);
814   OS << "kill:";
815   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
816     const MachineOperand &Op = MI->getOperand(i);
817     assert(Op.isReg() && "KILL instruction must have only register operands");
818     OS << ' '
819        << printReg(Op.getReg(),
820                    AP.MF->getSubtarget().getRegisterInfo())
821        << (Op.isDef() ? "<def>" : "<kill>");
822   }
823   AP.OutStreamer->AddComment(OS.str());
824   AP.OutStreamer->AddBlankLine();
825 }
826 
827 /// emitDebugValueComment - This method handles the target-independent form
828 /// of DBG_VALUE, returning true if it was able to do so.  A false return
829 /// means the target will need to handle MI in EmitInstruction.
830 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
831   // This code handles only the 4-operand target-independent form.
832   if (MI->getNumOperands() != 4)
833     return false;
834 
835   SmallString<128> Str;
836   raw_svector_ostream OS(Str);
837   OS << "DEBUG_VALUE: ";
838 
839   const DILocalVariable *V = MI->getDebugVariable();
840   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
841     StringRef Name = SP->getName();
842     if (!Name.empty())
843       OS << Name << ":";
844   }
845   OS << V->getName();
846   OS << " <- ";
847 
848   // The second operand is only an offset if it's an immediate.
849   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
850   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
851   const DIExpression *Expr = MI->getDebugExpression();
852   if (Expr->getNumElements()) {
853     OS << '[';
854     bool NeedSep = false;
855     for (auto Op : Expr->expr_ops()) {
856       if (NeedSep)
857         OS << ", ";
858       else
859         NeedSep = true;
860       OS << dwarf::OperationEncodingString(Op.getOp());
861       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
862         OS << ' ' << Op.getArg(I);
863     }
864     OS << "] ";
865   }
866 
867   // Register or immediate value. Register 0 means undef.
868   if (MI->getOperand(0).isFPImm()) {
869     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
870     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
871       OS << (double)APF.convertToFloat();
872     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
873       OS << APF.convertToDouble();
874     } else {
875       // There is no good way to print long double.  Convert a copy to
876       // double.  Ah well, it's only a comment.
877       bool ignored;
878       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
879                   &ignored);
880       OS << "(long double) " << APF.convertToDouble();
881     }
882   } else if (MI->getOperand(0).isImm()) {
883     OS << MI->getOperand(0).getImm();
884   } else if (MI->getOperand(0).isCImm()) {
885     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
886   } else {
887     unsigned Reg;
888     if (MI->getOperand(0).isReg()) {
889       Reg = MI->getOperand(0).getReg();
890     } else {
891       assert(MI->getOperand(0).isFI() && "Unknown operand type");
892       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
893       Offset += TFI->getFrameIndexReference(*AP.MF,
894                                             MI->getOperand(0).getIndex(), Reg);
895       MemLoc = true;
896     }
897     if (Reg == 0) {
898       // Suppress offset, it is not meaningful here.
899       OS << "undef";
900       // NOTE: Want this comment at start of line, don't emit with AddComment.
901       AP.OutStreamer->emitRawComment(OS.str());
902       return true;
903     }
904     if (MemLoc)
905       OS << '[';
906     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
907   }
908 
909   if (MemLoc)
910     OS << '+' << Offset << ']';
911 
912   // NOTE: Want this comment at start of line, don't emit with AddComment.
913   AP.OutStreamer->emitRawComment(OS.str());
914   return true;
915 }
916 
917 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
918   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
919       MF->getFunction()->needsUnwindTableEntry())
920     return CFI_M_EH;
921 
922   if (MMI->hasDebugInfo())
923     return CFI_M_Debug;
924 
925   return CFI_M_None;
926 }
927 
928 bool AsmPrinter::needsSEHMoves() {
929   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
930 }
931 
932 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
933   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
934   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
935       ExceptionHandlingType != ExceptionHandling::ARM)
936     return;
937 
938   if (needsCFIMoves() == CFI_M_None)
939     return;
940 
941   // If there is no "real" instruction following this CFI instruction, skip
942   // emitting it; it would be beyond the end of the function's FDE range.
943   auto *MBB = MI.getParent();
944   auto I = std::next(MI.getIterator());
945   while (I != MBB->end() && I->isTransient())
946     ++I;
947   if (I == MBB->instr_end() &&
948       MBB->getReverseIterator() == MBB->getParent()->rbegin())
949     return;
950 
951   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
952   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
953   const MCCFIInstruction &CFI = Instrs[CFIIndex];
954   emitCFIInstruction(CFI);
955 }
956 
957 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
958   // The operands are the MCSymbol and the frame offset of the allocation.
959   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
960   int FrameOffset = MI.getOperand(1).getImm();
961 
962   // Emit a symbol assignment.
963   OutStreamer->EmitAssignment(FrameAllocSym,
964                              MCConstantExpr::create(FrameOffset, OutContext));
965 }
966 
967 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
968   if (!MF.getTarget().Options.EmitStackSizeSection)
969     return;
970 
971   MCSection *StackSizeSection = getObjFileLowering().getStackSizesSection();
972   if (!StackSizeSection)
973     return;
974 
975   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
976   // Don't emit functions with dynamic stack allocations.
977   if (FrameInfo.hasVarSizedObjects())
978     return;
979 
980   OutStreamer->PushSection();
981   OutStreamer->SwitchSection(StackSizeSection);
982 
983   const MCSymbol *FunctionSymbol = getSymbol(MF.getFunction());
984   uint64_t StackSize = FrameInfo.getStackSize();
985   OutStreamer->EmitValue(MCSymbolRefExpr::create(FunctionSymbol, OutContext),
986                          /* size = */ 8);
987   OutStreamer->EmitULEB128IntValue(StackSize);
988 
989   OutStreamer->PopSection();
990 }
991 
992 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
993                                            MachineModuleInfo *MMI) {
994   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
995     return true;
996 
997   // We might emit an EH table that uses function begin and end labels even if
998   // we don't have any landingpads.
999   if (!MF.getFunction()->hasPersonalityFn())
1000     return false;
1001   return !isNoOpWithoutInvoke(
1002       classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
1003 }
1004 
1005 /// EmitFunctionBody - This method emits the body and trailer for a
1006 /// function.
1007 void AsmPrinter::EmitFunctionBody() {
1008   EmitFunctionHeader();
1009 
1010   // Emit target-specific gunk before the function body.
1011   EmitFunctionBodyStart();
1012 
1013   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1014 
1015   // Print out code for the function.
1016   bool HasAnyRealCode = false;
1017   int NumInstsInFunction = 0;
1018   for (auto &MBB : *MF) {
1019     // Print a label for the basic block.
1020     EmitBasicBlockStart(MBB);
1021     for (auto &MI : MBB) {
1022       // Print the assembly for the instruction.
1023       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1024           !MI.isDebugValue()) {
1025         HasAnyRealCode = true;
1026         ++NumInstsInFunction;
1027       }
1028 
1029       if (ShouldPrintDebugScopes) {
1030         for (const HandlerInfo &HI : Handlers) {
1031           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1032                              HI.TimerGroupName, HI.TimerGroupDescription,
1033                              TimePassesIsEnabled);
1034           HI.Handler->beginInstruction(&MI);
1035         }
1036       }
1037 
1038       if (isVerbose())
1039         emitComments(MI, OutStreamer->GetCommentOS(), this);
1040 
1041       switch (MI.getOpcode()) {
1042       case TargetOpcode::CFI_INSTRUCTION:
1043         emitCFIInstruction(MI);
1044         break;
1045       case TargetOpcode::LOCAL_ESCAPE:
1046         emitFrameAlloc(MI);
1047         break;
1048       case TargetOpcode::EH_LABEL:
1049       case TargetOpcode::GC_LABEL:
1050         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1051         break;
1052       case TargetOpcode::INLINEASM:
1053         EmitInlineAsm(&MI);
1054         break;
1055       case TargetOpcode::DBG_VALUE:
1056         if (isVerbose()) {
1057           if (!emitDebugValueComment(&MI, *this))
1058             EmitInstruction(&MI);
1059         }
1060         break;
1061       case TargetOpcode::IMPLICIT_DEF:
1062         if (isVerbose()) emitImplicitDef(&MI);
1063         break;
1064       case TargetOpcode::KILL:
1065         if (isVerbose()) emitKill(&MI, *this);
1066         break;
1067       default:
1068         EmitInstruction(&MI);
1069         break;
1070       }
1071 
1072       if (ShouldPrintDebugScopes) {
1073         for (const HandlerInfo &HI : Handlers) {
1074           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1075                              HI.TimerGroupName, HI.TimerGroupDescription,
1076                              TimePassesIsEnabled);
1077           HI.Handler->endInstruction();
1078         }
1079       }
1080     }
1081 
1082     EmitBasicBlockEnd(MBB);
1083   }
1084 
1085   EmittedInsts += NumInstsInFunction;
1086   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1087                                       MF->getFunction()->getSubprogram(),
1088                                       &MF->front());
1089   R << ore::NV("NumInstructions", NumInstsInFunction)
1090     << " instructions in function";
1091   ORE->emit(R);
1092 
1093   // If the function is empty and the object file uses .subsections_via_symbols,
1094   // then we need to emit *something* to the function body to prevent the
1095   // labels from collapsing together.  Just emit a noop.
1096   // Similarly, don't emit empty functions on Windows either. It can lead to
1097   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1098   // after linking, causing the kernel not to load the binary:
1099   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1100   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1101   const Triple &TT = TM.getTargetTriple();
1102   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1103                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1104     MCInst Noop;
1105     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1106 
1107     // Targets can opt-out of emitting the noop here by leaving the opcode
1108     // unspecified.
1109     if (Noop.getOpcode()) {
1110       OutStreamer->AddComment("avoids zero-length function");
1111       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1112     }
1113   }
1114 
1115   const Function *F = MF->getFunction();
1116   for (const auto &BB : *F) {
1117     if (!BB.hasAddressTaken())
1118       continue;
1119     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1120     if (Sym->isDefined())
1121       continue;
1122     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1123     OutStreamer->EmitLabel(Sym);
1124   }
1125 
1126   // Emit target-specific gunk after the function body.
1127   EmitFunctionBodyEnd();
1128 
1129   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1130       MAI->hasDotTypeDotSizeDirective()) {
1131     // Create a symbol for the end of function.
1132     CurrentFnEnd = createTempSymbol("func_end");
1133     OutStreamer->EmitLabel(CurrentFnEnd);
1134   }
1135 
1136   // If the target wants a .size directive for the size of the function, emit
1137   // it.
1138   if (MAI->hasDotTypeDotSizeDirective()) {
1139     // We can get the size as difference between the function label and the
1140     // temp label.
1141     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1142         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1143         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1144     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1145   }
1146 
1147   for (const HandlerInfo &HI : Handlers) {
1148     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1149                        HI.TimerGroupDescription, TimePassesIsEnabled);
1150     HI.Handler->markFunctionEnd();
1151   }
1152 
1153   // Print out jump tables referenced by the function.
1154   EmitJumpTableInfo();
1155 
1156   // Emit post-function debug and/or EH information.
1157   for (const HandlerInfo &HI : Handlers) {
1158     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1159                        HI.TimerGroupDescription, TimePassesIsEnabled);
1160     HI.Handler->endFunction(MF);
1161   }
1162 
1163   // Emit section containing stack size metadata.
1164   emitStackSizeSection(*MF);
1165 
1166   if (isVerbose())
1167     OutStreamer->GetCommentOS() << "-- End function\n";
1168 
1169   OutStreamer->AddBlankLine();
1170 }
1171 
1172 /// \brief Compute the number of Global Variables that uses a Constant.
1173 static unsigned getNumGlobalVariableUses(const Constant *C) {
1174   if (!C)
1175     return 0;
1176 
1177   if (isa<GlobalVariable>(C))
1178     return 1;
1179 
1180   unsigned NumUses = 0;
1181   for (auto *CU : C->users())
1182     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1183 
1184   return NumUses;
1185 }
1186 
1187 /// \brief Only consider global GOT equivalents if at least one user is a
1188 /// cstexpr inside an initializer of another global variables. Also, don't
1189 /// handle cstexpr inside instructions. During global variable emission,
1190 /// candidates are skipped and are emitted later in case at least one cstexpr
1191 /// isn't replaced by a PC relative GOT entry access.
1192 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1193                                      unsigned &NumGOTEquivUsers) {
1194   // Global GOT equivalents are unnamed private globals with a constant
1195   // pointer initializer to another global symbol. They must point to a
1196   // GlobalVariable or Function, i.e., as GlobalValue.
1197   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1198       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1199       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1200     return false;
1201 
1202   // To be a got equivalent, at least one of its users need to be a constant
1203   // expression used by another global variable.
1204   for (auto *U : GV->users())
1205     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1206 
1207   return NumGOTEquivUsers > 0;
1208 }
1209 
1210 /// \brief Unnamed constant global variables solely contaning a pointer to
1211 /// another globals variable is equivalent to a GOT table entry; it contains the
1212 /// the address of another symbol. Optimize it and replace accesses to these
1213 /// "GOT equivalents" by using the GOT entry for the final global instead.
1214 /// Compute GOT equivalent candidates among all global variables to avoid
1215 /// emitting them if possible later on, after it use is replaced by a GOT entry
1216 /// access.
1217 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1218   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1219     return;
1220 
1221   for (const auto &G : M.globals()) {
1222     unsigned NumGOTEquivUsers = 0;
1223     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1224       continue;
1225 
1226     const MCSymbol *GOTEquivSym = getSymbol(&G);
1227     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1228   }
1229 }
1230 
1231 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1232 /// for PC relative GOT entry conversion, in such cases we need to emit such
1233 /// globals we previously omitted in EmitGlobalVariable.
1234 void AsmPrinter::emitGlobalGOTEquivs() {
1235   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1236     return;
1237 
1238   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1239   for (auto &I : GlobalGOTEquivs) {
1240     const GlobalVariable *GV = I.second.first;
1241     unsigned Cnt = I.second.second;
1242     if (Cnt)
1243       FailedCandidates.push_back(GV);
1244   }
1245   GlobalGOTEquivs.clear();
1246 
1247   for (auto *GV : FailedCandidates)
1248     EmitGlobalVariable(GV);
1249 }
1250 
1251 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1252                                           const GlobalIndirectSymbol& GIS) {
1253   MCSymbol *Name = getSymbol(&GIS);
1254 
1255   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1256     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1257   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1258     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1259   else
1260     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1261 
1262   // Set the symbol type to function if the alias has a function type.
1263   // This affects codegen when the aliasee is not a function.
1264   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1265     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1266     if (isa<GlobalIFunc>(GIS))
1267       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1268   }
1269 
1270   EmitVisibility(Name, GIS.getVisibility());
1271 
1272   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1273 
1274   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1275     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1276 
1277   // Emit the directives as assignments aka .set:
1278   OutStreamer->EmitAssignment(Name, Expr);
1279 
1280   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1281     // If the aliasee does not correspond to a symbol in the output, i.e. the
1282     // alias is not of an object or the aliased object is private, then set the
1283     // size of the alias symbol from the type of the alias. We don't do this in
1284     // other situations as the alias and aliasee having differing types but same
1285     // size may be intentional.
1286     const GlobalObject *BaseObject = GA->getBaseObject();
1287     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1288         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1289       const DataLayout &DL = M.getDataLayout();
1290       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1291       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1292     }
1293   }
1294 }
1295 
1296 bool AsmPrinter::doFinalization(Module &M) {
1297   // Set the MachineFunction to nullptr so that we can catch attempted
1298   // accesses to MF specific features at the module level and so that
1299   // we can conditionalize accesses based on whether or not it is nullptr.
1300   MF = nullptr;
1301 
1302   // Gather all GOT equivalent globals in the module. We really need two
1303   // passes over the globals: one to compute and another to avoid its emission
1304   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1305   // where the got equivalent shows up before its use.
1306   computeGlobalGOTEquivs(M);
1307 
1308   // Emit global variables.
1309   for (const auto &G : M.globals())
1310     EmitGlobalVariable(&G);
1311 
1312   // Emit remaining GOT equivalent globals.
1313   emitGlobalGOTEquivs();
1314 
1315   // Emit visibility info for declarations
1316   for (const Function &F : M) {
1317     if (!F.isDeclarationForLinker())
1318       continue;
1319     GlobalValue::VisibilityTypes V = F.getVisibility();
1320     if (V == GlobalValue::DefaultVisibility)
1321       continue;
1322 
1323     MCSymbol *Name = getSymbol(&F);
1324     EmitVisibility(Name, V, false);
1325   }
1326 
1327   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1328 
1329   TLOF.emitModuleMetadata(*OutStreamer, M, TM);
1330 
1331   if (TM.getTargetTriple().isOSBinFormatELF()) {
1332     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1333 
1334     // Output stubs for external and common global variables.
1335     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1336     if (!Stubs.empty()) {
1337       OutStreamer->SwitchSection(TLOF.getDataSection());
1338       const DataLayout &DL = M.getDataLayout();
1339 
1340       for (const auto &Stub : Stubs) {
1341         OutStreamer->EmitLabel(Stub.first);
1342         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1343                                      DL.getPointerSize());
1344       }
1345     }
1346   }
1347 
1348   // Finalize debug and EH information.
1349   for (const HandlerInfo &HI : Handlers) {
1350     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1351                        HI.TimerGroupDescription, TimePassesIsEnabled);
1352     HI.Handler->endModule();
1353     delete HI.Handler;
1354   }
1355   Handlers.clear();
1356   DD = nullptr;
1357 
1358   // If the target wants to know about weak references, print them all.
1359   if (MAI->getWeakRefDirective()) {
1360     // FIXME: This is not lazy, it would be nice to only print weak references
1361     // to stuff that is actually used.  Note that doing so would require targets
1362     // to notice uses in operands (due to constant exprs etc).  This should
1363     // happen with the MC stuff eventually.
1364 
1365     // Print out module-level global objects here.
1366     for (const auto &GO : M.global_objects()) {
1367       if (!GO.hasExternalWeakLinkage())
1368         continue;
1369       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1370     }
1371   }
1372 
1373   OutStreamer->AddBlankLine();
1374 
1375   // Print aliases in topological order, that is, for each alias a = b,
1376   // b must be printed before a.
1377   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1378   // such an order to generate correct TOC information.
1379   SmallVector<const GlobalAlias *, 16> AliasStack;
1380   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1381   for (const auto &Alias : M.aliases()) {
1382     for (const GlobalAlias *Cur = &Alias; Cur;
1383          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1384       if (!AliasVisited.insert(Cur).second)
1385         break;
1386       AliasStack.push_back(Cur);
1387     }
1388     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1389       emitGlobalIndirectSymbol(M, *AncestorAlias);
1390     AliasStack.clear();
1391   }
1392   for (const auto &IFunc : M.ifuncs())
1393     emitGlobalIndirectSymbol(M, IFunc);
1394 
1395   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1396   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1397   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1398     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1399       MP->finishAssembly(M, *MI, *this);
1400 
1401   // Emit llvm.ident metadata in an '.ident' directive.
1402   EmitModuleIdents(M);
1403 
1404   // Emit __morestack address if needed for indirect calls.
1405   if (MMI->usesMorestackAddr()) {
1406     unsigned Align = 1;
1407     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1408         getDataLayout(), SectionKind::getReadOnly(),
1409         /*C=*/nullptr, Align);
1410     OutStreamer->SwitchSection(ReadOnlySection);
1411 
1412     MCSymbol *AddrSymbol =
1413         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1414     OutStreamer->EmitLabel(AddrSymbol);
1415 
1416     unsigned PtrSize = MAI->getCodePointerSize();
1417     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1418                                  PtrSize);
1419   }
1420 
1421   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1422   // split-stack is used.
1423   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1424     OutStreamer->SwitchSection(
1425         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1426     if (MMI->hasNosplitStack())
1427       OutStreamer->SwitchSection(
1428           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1429   }
1430 
1431   // If we don't have any trampolines, then we don't require stack memory
1432   // to be executable. Some targets have a directive to declare this.
1433   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1434   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1435     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1436       OutStreamer->SwitchSection(S);
1437 
1438   // Allow the target to emit any magic that it wants at the end of the file,
1439   // after everything else has gone out.
1440   EmitEndOfAsmFile(M);
1441 
1442   MMI = nullptr;
1443 
1444   OutStreamer->Finish();
1445   OutStreamer->reset();
1446 
1447   return false;
1448 }
1449 
1450 MCSymbol *AsmPrinter::getCurExceptionSym() {
1451   if (!CurExceptionSym)
1452     CurExceptionSym = createTempSymbol("exception");
1453   return CurExceptionSym;
1454 }
1455 
1456 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1457   this->MF = &MF;
1458   // Get the function symbol.
1459   CurrentFnSym = getSymbol(MF.getFunction());
1460   CurrentFnSymForSize = CurrentFnSym;
1461   CurrentFnBegin = nullptr;
1462   CurExceptionSym = nullptr;
1463   bool NeedsLocalForSize = MAI->needsLocalForSize();
1464   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize) {
1465     CurrentFnBegin = createTempSymbol("func_begin");
1466     if (NeedsLocalForSize)
1467       CurrentFnSymForSize = CurrentFnBegin;
1468   }
1469 
1470   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1471   LI = &getAnalysis<MachineLoopInfo>();
1472 
1473   const TargetSubtargetInfo &STI = MF.getSubtarget();
1474   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1475                              ? PrintSchedule
1476                              : STI.supportPrintSchedInfo();
1477 }
1478 
1479 namespace {
1480 
1481 // Keep track the alignment, constpool entries per Section.
1482   struct SectionCPs {
1483     MCSection *S;
1484     unsigned Alignment;
1485     SmallVector<unsigned, 4> CPEs;
1486 
1487     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1488   };
1489 
1490 } // end anonymous namespace
1491 
1492 /// EmitConstantPool - Print to the current output stream assembly
1493 /// representations of the constants in the constant pool MCP. This is
1494 /// used to print out constants which have been "spilled to memory" by
1495 /// the code generator.
1496 void AsmPrinter::EmitConstantPool() {
1497   const MachineConstantPool *MCP = MF->getConstantPool();
1498   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1499   if (CP.empty()) return;
1500 
1501   // Calculate sections for constant pool entries. We collect entries to go into
1502   // the same section together to reduce amount of section switch statements.
1503   SmallVector<SectionCPs, 4> CPSections;
1504   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1505     const MachineConstantPoolEntry &CPE = CP[i];
1506     unsigned Align = CPE.getAlignment();
1507 
1508     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1509 
1510     const Constant *C = nullptr;
1511     if (!CPE.isMachineConstantPoolEntry())
1512       C = CPE.Val.ConstVal;
1513 
1514     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1515                                                               Kind, C, Align);
1516 
1517     // The number of sections are small, just do a linear search from the
1518     // last section to the first.
1519     bool Found = false;
1520     unsigned SecIdx = CPSections.size();
1521     while (SecIdx != 0) {
1522       if (CPSections[--SecIdx].S == S) {
1523         Found = true;
1524         break;
1525       }
1526     }
1527     if (!Found) {
1528       SecIdx = CPSections.size();
1529       CPSections.push_back(SectionCPs(S, Align));
1530     }
1531 
1532     if (Align > CPSections[SecIdx].Alignment)
1533       CPSections[SecIdx].Alignment = Align;
1534     CPSections[SecIdx].CPEs.push_back(i);
1535   }
1536 
1537   // Now print stuff into the calculated sections.
1538   const MCSection *CurSection = nullptr;
1539   unsigned Offset = 0;
1540   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1541     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1542       unsigned CPI = CPSections[i].CPEs[j];
1543       MCSymbol *Sym = GetCPISymbol(CPI);
1544       if (!Sym->isUndefined())
1545         continue;
1546 
1547       if (CurSection != CPSections[i].S) {
1548         OutStreamer->SwitchSection(CPSections[i].S);
1549         EmitAlignment(Log2_32(CPSections[i].Alignment));
1550         CurSection = CPSections[i].S;
1551         Offset = 0;
1552       }
1553 
1554       MachineConstantPoolEntry CPE = CP[CPI];
1555 
1556       // Emit inter-object padding for alignment.
1557       unsigned AlignMask = CPE.getAlignment() - 1;
1558       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1559       OutStreamer->EmitZeros(NewOffset - Offset);
1560 
1561       Type *Ty = CPE.getType();
1562       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1563 
1564       OutStreamer->EmitLabel(Sym);
1565       if (CPE.isMachineConstantPoolEntry())
1566         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1567       else
1568         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1569     }
1570   }
1571 }
1572 
1573 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1574 /// by the current function to the current output stream.
1575 void AsmPrinter::EmitJumpTableInfo() {
1576   const DataLayout &DL = MF->getDataLayout();
1577   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1578   if (!MJTI) return;
1579   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1580   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1581   if (JT.empty()) return;
1582 
1583   // Pick the directive to use to print the jump table entries, and switch to
1584   // the appropriate section.
1585   const Function *F = MF->getFunction();
1586   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1587   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1588       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1589       *F);
1590   if (JTInDiffSection) {
1591     // Drop it in the readonly section.
1592     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1593     OutStreamer->SwitchSection(ReadOnlySection);
1594   }
1595 
1596   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1597 
1598   // Jump tables in code sections are marked with a data_region directive
1599   // where that's supported.
1600   if (!JTInDiffSection)
1601     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1602 
1603   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1604     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1605 
1606     // If this jump table was deleted, ignore it.
1607     if (JTBBs.empty()) continue;
1608 
1609     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1610     /// emit a .set directive for each unique entry.
1611     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1612         MAI->doesSetDirectiveSuppressReloc()) {
1613       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1614       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1615       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1616       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1617         const MachineBasicBlock *MBB = JTBBs[ii];
1618         if (!EmittedSets.insert(MBB).second)
1619           continue;
1620 
1621         // .set LJTSet, LBB32-base
1622         const MCExpr *LHS =
1623           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1624         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1625                                     MCBinaryExpr::createSub(LHS, Base,
1626                                                             OutContext));
1627       }
1628     }
1629 
1630     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1631     // before each jump table.  The first label is never referenced, but tells
1632     // the assembler and linker the extents of the jump table object.  The
1633     // second label is actually referenced by the code.
1634     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1635       // FIXME: This doesn't have to have any specific name, just any randomly
1636       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1637       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1638 
1639     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1640 
1641     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1642       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1643   }
1644   if (!JTInDiffSection)
1645     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1646 }
1647 
1648 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1649 /// current stream.
1650 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1651                                     const MachineBasicBlock *MBB,
1652                                     unsigned UID) const {
1653   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1654   const MCExpr *Value = nullptr;
1655   switch (MJTI->getEntryKind()) {
1656   case MachineJumpTableInfo::EK_Inline:
1657     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1658   case MachineJumpTableInfo::EK_Custom32:
1659     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1660         MJTI, MBB, UID, OutContext);
1661     break;
1662   case MachineJumpTableInfo::EK_BlockAddress:
1663     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1664     //     .word LBB123
1665     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1666     break;
1667   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1668     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1669     // with a relocation as gp-relative, e.g.:
1670     //     .gprel32 LBB123
1671     MCSymbol *MBBSym = MBB->getSymbol();
1672     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1673     return;
1674   }
1675 
1676   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1677     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1678     // with a relocation as gp-relative, e.g.:
1679     //     .gpdword LBB123
1680     MCSymbol *MBBSym = MBB->getSymbol();
1681     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1682     return;
1683   }
1684 
1685   case MachineJumpTableInfo::EK_LabelDifference32: {
1686     // Each entry is the address of the block minus the address of the jump
1687     // table. This is used for PIC jump tables where gprel32 is not supported.
1688     // e.g.:
1689     //      .word LBB123 - LJTI1_2
1690     // If the .set directive avoids relocations, this is emitted as:
1691     //      .set L4_5_set_123, LBB123 - LJTI1_2
1692     //      .word L4_5_set_123
1693     if (MAI->doesSetDirectiveSuppressReloc()) {
1694       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1695                                       OutContext);
1696       break;
1697     }
1698     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1699     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1700     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1701     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1702     break;
1703   }
1704   }
1705 
1706   assert(Value && "Unknown entry kind!");
1707 
1708   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1709   OutStreamer->EmitValue(Value, EntrySize);
1710 }
1711 
1712 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1713 /// special global used by LLVM.  If so, emit it and return true, otherwise
1714 /// do nothing and return false.
1715 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1716   if (GV->getName() == "llvm.used") {
1717     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1718       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1719     return true;
1720   }
1721 
1722   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1723   if (GV->getSection() == "llvm.metadata" ||
1724       GV->hasAvailableExternallyLinkage())
1725     return true;
1726 
1727   if (!GV->hasAppendingLinkage()) return false;
1728 
1729   assert(GV->hasInitializer() && "Not a special LLVM global!");
1730 
1731   if (GV->getName() == "llvm.global_ctors") {
1732     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1733                        /* isCtor */ true);
1734 
1735     return true;
1736   }
1737 
1738   if (GV->getName() == "llvm.global_dtors") {
1739     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1740                        /* isCtor */ false);
1741 
1742     return true;
1743   }
1744 
1745   report_fatal_error("unknown special variable");
1746 }
1747 
1748 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1749 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1750 /// is true, as being used with this directive.
1751 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1752   // Should be an array of 'i8*'.
1753   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1754     const GlobalValue *GV =
1755       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1756     if (GV)
1757       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1758   }
1759 }
1760 
1761 namespace {
1762 
1763 struct Structor {
1764   int Priority = 0;
1765   Constant *Func = nullptr;
1766   GlobalValue *ComdatKey = nullptr;
1767 
1768   Structor() = default;
1769 };
1770 
1771 } // end anonymous namespace
1772 
1773 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1774 /// priority.
1775 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1776                                     bool isCtor) {
1777   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1778   // init priority.
1779   if (!isa<ConstantArray>(List)) return;
1780 
1781   // Sanity check the structors list.
1782   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1783   if (!InitList) return; // Not an array!
1784   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1785   // FIXME: Only allow the 3-field form in LLVM 4.0.
1786   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1787     return; // Not an array of two or three elements!
1788   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1789       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1790   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1791     return; // Not (int, ptr, ptr).
1792 
1793   // Gather the structors in a form that's convenient for sorting by priority.
1794   SmallVector<Structor, 8> Structors;
1795   for (Value *O : InitList->operands()) {
1796     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1797     if (!CS) continue; // Malformed.
1798     if (CS->getOperand(1)->isNullValue())
1799       break;  // Found a null terminator, skip the rest.
1800     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1801     if (!Priority) continue; // Malformed.
1802     Structors.push_back(Structor());
1803     Structor &S = Structors.back();
1804     S.Priority = Priority->getLimitedValue(65535);
1805     S.Func = CS->getOperand(1);
1806     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1807       S.ComdatKey =
1808           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1809   }
1810 
1811   // Emit the function pointers in the target-specific order
1812   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1813   std::stable_sort(Structors.begin(), Structors.end(),
1814                    [](const Structor &L,
1815                       const Structor &R) { return L.Priority < R.Priority; });
1816   for (Structor &S : Structors) {
1817     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1818     const MCSymbol *KeySym = nullptr;
1819     if (GlobalValue *GV = S.ComdatKey) {
1820       if (GV->isDeclarationForLinker())
1821         // If the associated variable is not defined in this module
1822         // (it might be available_externally, or have been an
1823         // available_externally definition that was dropped by the
1824         // EliminateAvailableExternally pass), some other TU
1825         // will provide its dynamic initializer.
1826         continue;
1827 
1828       KeySym = getSymbol(GV);
1829     }
1830     MCSection *OutputSection =
1831         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1832                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1833     OutStreamer->SwitchSection(OutputSection);
1834     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1835       EmitAlignment(Align);
1836     EmitXXStructor(DL, S.Func);
1837   }
1838 }
1839 
1840 void AsmPrinter::EmitModuleIdents(Module &M) {
1841   if (!MAI->hasIdentDirective())
1842     return;
1843 
1844   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1845     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1846       const MDNode *N = NMD->getOperand(i);
1847       assert(N->getNumOperands() == 1 &&
1848              "llvm.ident metadata entry can have only one operand");
1849       const MDString *S = cast<MDString>(N->getOperand(0));
1850       OutStreamer->EmitIdent(S->getString());
1851     }
1852   }
1853 }
1854 
1855 //===--------------------------------------------------------------------===//
1856 // Emission and print routines
1857 //
1858 
1859 /// EmitInt8 - Emit a byte directive and value.
1860 ///
1861 void AsmPrinter::EmitInt8(int Value) const {
1862   OutStreamer->EmitIntValue(Value, 1);
1863 }
1864 
1865 /// EmitInt16 - Emit a short directive and value.
1866 void AsmPrinter::EmitInt16(int Value) const {
1867   OutStreamer->EmitIntValue(Value, 2);
1868 }
1869 
1870 /// EmitInt32 - Emit a long directive and value.
1871 void AsmPrinter::EmitInt32(int Value) const {
1872   OutStreamer->EmitIntValue(Value, 4);
1873 }
1874 
1875 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1876 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1877 /// .set if it avoids relocations.
1878 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1879                                      unsigned Size) const {
1880   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1881 }
1882 
1883 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1884 /// where the size in bytes of the directive is specified by Size and Label
1885 /// specifies the label.  This implicitly uses .set if it is available.
1886 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1887                                      unsigned Size,
1888                                      bool IsSectionRelative) const {
1889   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1890     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1891     if (Size > 4)
1892       OutStreamer->EmitZeros(Size - 4);
1893     return;
1894   }
1895 
1896   // Emit Label+Offset (or just Label if Offset is zero)
1897   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1898   if (Offset)
1899     Expr = MCBinaryExpr::createAdd(
1900         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1901 
1902   OutStreamer->EmitValue(Expr, Size);
1903 }
1904 
1905 //===----------------------------------------------------------------------===//
1906 
1907 // EmitAlignment - Emit an alignment directive to the specified power of
1908 // two boundary.  For example, if you pass in 3 here, you will get an 8
1909 // byte alignment.  If a global value is specified, and if that global has
1910 // an explicit alignment requested, it will override the alignment request
1911 // if required for correctness.
1912 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1913   if (GV)
1914     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1915 
1916   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1917 
1918   assert(NumBits <
1919              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1920          "undefined behavior");
1921   if (getCurrentSection()->getKind().isText())
1922     OutStreamer->EmitCodeAlignment(1u << NumBits);
1923   else
1924     OutStreamer->EmitValueToAlignment(1u << NumBits);
1925 }
1926 
1927 //===----------------------------------------------------------------------===//
1928 // Constant emission.
1929 //===----------------------------------------------------------------------===//
1930 
1931 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1932   MCContext &Ctx = OutContext;
1933 
1934   if (CV->isNullValue() || isa<UndefValue>(CV))
1935     return MCConstantExpr::create(0, Ctx);
1936 
1937   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1938     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1939 
1940   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1941     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1942 
1943   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1944     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1945 
1946   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1947   if (!CE) {
1948     llvm_unreachable("Unknown constant value to lower!");
1949   }
1950 
1951   switch (CE->getOpcode()) {
1952   default:
1953     // If the code isn't optimized, there may be outstanding folding
1954     // opportunities. Attempt to fold the expression using DataLayout as a
1955     // last resort before giving up.
1956     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1957       if (C != CE)
1958         return lowerConstant(C);
1959 
1960     // Otherwise report the problem to the user.
1961     {
1962       std::string S;
1963       raw_string_ostream OS(S);
1964       OS << "Unsupported expression in static initializer: ";
1965       CE->printAsOperand(OS, /*PrintType=*/false,
1966                      !MF ? nullptr : MF->getFunction()->getParent());
1967       report_fatal_error(OS.str());
1968     }
1969   case Instruction::GetElementPtr: {
1970     // Generate a symbolic expression for the byte address
1971     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1972     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1973 
1974     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1975     if (!OffsetAI)
1976       return Base;
1977 
1978     int64_t Offset = OffsetAI.getSExtValue();
1979     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1980                                    Ctx);
1981   }
1982 
1983   case Instruction::Trunc:
1984     // We emit the value and depend on the assembler to truncate the generated
1985     // expression properly.  This is important for differences between
1986     // blockaddress labels.  Since the two labels are in the same function, it
1987     // is reasonable to treat their delta as a 32-bit value.
1988     LLVM_FALLTHROUGH;
1989   case Instruction::BitCast:
1990     return lowerConstant(CE->getOperand(0));
1991 
1992   case Instruction::IntToPtr: {
1993     const DataLayout &DL = getDataLayout();
1994 
1995     // Handle casts to pointers by changing them into casts to the appropriate
1996     // integer type.  This promotes constant folding and simplifies this code.
1997     Constant *Op = CE->getOperand(0);
1998     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1999                                       false/*ZExt*/);
2000     return lowerConstant(Op);
2001   }
2002 
2003   case Instruction::PtrToInt: {
2004     const DataLayout &DL = getDataLayout();
2005 
2006     // Support only foldable casts to/from pointers that can be eliminated by
2007     // changing the pointer to the appropriately sized integer type.
2008     Constant *Op = CE->getOperand(0);
2009     Type *Ty = CE->getType();
2010 
2011     const MCExpr *OpExpr = lowerConstant(Op);
2012 
2013     // We can emit the pointer value into this slot if the slot is an
2014     // integer slot equal to the size of the pointer.
2015     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2016       return OpExpr;
2017 
2018     // Otherwise the pointer is smaller than the resultant integer, mask off
2019     // the high bits so we are sure to get a proper truncation if the input is
2020     // a constant expr.
2021     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2022     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2023     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2024   }
2025 
2026   case Instruction::Sub: {
2027     GlobalValue *LHSGV;
2028     APInt LHSOffset;
2029     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2030                                    getDataLayout())) {
2031       GlobalValue *RHSGV;
2032       APInt RHSOffset;
2033       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2034                                      getDataLayout())) {
2035         const MCExpr *RelocExpr =
2036             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2037         if (!RelocExpr)
2038           RelocExpr = MCBinaryExpr::createSub(
2039               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2040               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2041         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2042         if (Addend != 0)
2043           RelocExpr = MCBinaryExpr::createAdd(
2044               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2045         return RelocExpr;
2046       }
2047     }
2048   }
2049   // else fallthrough
2050 
2051   // The MC library also has a right-shift operator, but it isn't consistently
2052   // signed or unsigned between different targets.
2053   case Instruction::Add:
2054   case Instruction::Mul:
2055   case Instruction::SDiv:
2056   case Instruction::SRem:
2057   case Instruction::Shl:
2058   case Instruction::And:
2059   case Instruction::Or:
2060   case Instruction::Xor: {
2061     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2062     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2063     switch (CE->getOpcode()) {
2064     default: llvm_unreachable("Unknown binary operator constant cast expr");
2065     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2066     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2067     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2068     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2069     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2070     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2071     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2072     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2073     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2074     }
2075   }
2076   }
2077 }
2078 
2079 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2080                                    AsmPrinter &AP,
2081                                    const Constant *BaseCV = nullptr,
2082                                    uint64_t Offset = 0);
2083 
2084 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2085 
2086 /// isRepeatedByteSequence - Determine whether the given value is
2087 /// composed of a repeated sequence of identical bytes and return the
2088 /// byte value.  If it is not a repeated sequence, return -1.
2089 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2090   StringRef Data = V->getRawDataValues();
2091   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2092   char C = Data[0];
2093   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2094     if (Data[i] != C) return -1;
2095   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2096 }
2097 
2098 /// isRepeatedByteSequence - Determine whether the given value is
2099 /// composed of a repeated sequence of identical bytes and return the
2100 /// byte value.  If it is not a repeated sequence, return -1.
2101 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2102   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2103     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2104     assert(Size % 8 == 0);
2105 
2106     // Extend the element to take zero padding into account.
2107     APInt Value = CI->getValue().zextOrSelf(Size);
2108     if (!Value.isSplat(8))
2109       return -1;
2110 
2111     return Value.zextOrTrunc(8).getZExtValue();
2112   }
2113   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2114     // Make sure all array elements are sequences of the same repeated
2115     // byte.
2116     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2117     Constant *Op0 = CA->getOperand(0);
2118     int Byte = isRepeatedByteSequence(Op0, DL);
2119     if (Byte == -1)
2120       return -1;
2121 
2122     // All array elements must be equal.
2123     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2124       if (CA->getOperand(i) != Op0)
2125         return -1;
2126     return Byte;
2127   }
2128 
2129   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2130     return isRepeatedByteSequence(CDS);
2131 
2132   return -1;
2133 }
2134 
2135 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2136                                              const ConstantDataSequential *CDS,
2137                                              AsmPrinter &AP) {
2138   // See if we can aggregate this into a .fill, if so, emit it as such.
2139   int Value = isRepeatedByteSequence(CDS, DL);
2140   if (Value != -1) {
2141     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2142     // Don't emit a 1-byte object as a .fill.
2143     if (Bytes > 1)
2144       return AP.OutStreamer->emitFill(Bytes, Value);
2145   }
2146 
2147   // If this can be emitted with .ascii/.asciz, emit it as such.
2148   if (CDS->isString())
2149     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2150 
2151   // Otherwise, emit the values in successive locations.
2152   unsigned ElementByteSize = CDS->getElementByteSize();
2153   if (isa<IntegerType>(CDS->getElementType())) {
2154     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2155       if (AP.isVerbose())
2156         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2157                                                  CDS->getElementAsInteger(i));
2158       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2159                                    ElementByteSize);
2160     }
2161   } else {
2162     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2163       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2164   }
2165 
2166   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2167   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2168                         CDS->getNumElements();
2169   if (unsigned Padding = Size - EmittedSize)
2170     AP.OutStreamer->EmitZeros(Padding);
2171 }
2172 
2173 static void emitGlobalConstantArray(const DataLayout &DL,
2174                                     const ConstantArray *CA, AsmPrinter &AP,
2175                                     const Constant *BaseCV, uint64_t Offset) {
2176   // See if we can aggregate some values.  Make sure it can be
2177   // represented as a series of bytes of the constant value.
2178   int Value = isRepeatedByteSequence(CA, DL);
2179 
2180   if (Value != -1) {
2181     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2182     AP.OutStreamer->emitFill(Bytes, Value);
2183   }
2184   else {
2185     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2186       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2187       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2188     }
2189   }
2190 }
2191 
2192 static void emitGlobalConstantVector(const DataLayout &DL,
2193                                      const ConstantVector *CV, AsmPrinter &AP) {
2194   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2195     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2196 
2197   unsigned Size = DL.getTypeAllocSize(CV->getType());
2198   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2199                          CV->getType()->getNumElements();
2200   if (unsigned Padding = Size - EmittedSize)
2201     AP.OutStreamer->EmitZeros(Padding);
2202 }
2203 
2204 static void emitGlobalConstantStruct(const DataLayout &DL,
2205                                      const ConstantStruct *CS, AsmPrinter &AP,
2206                                      const Constant *BaseCV, uint64_t Offset) {
2207   // Print the fields in successive locations. Pad to align if needed!
2208   unsigned Size = DL.getTypeAllocSize(CS->getType());
2209   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2210   uint64_t SizeSoFar = 0;
2211   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2212     const Constant *Field = CS->getOperand(i);
2213 
2214     // Print the actual field value.
2215     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2216 
2217     // Check if padding is needed and insert one or more 0s.
2218     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2219     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2220                         - Layout->getElementOffset(i)) - FieldSize;
2221     SizeSoFar += FieldSize + PadSize;
2222 
2223     // Insert padding - this may include padding to increase the size of the
2224     // current field up to the ABI size (if the struct is not packed) as well
2225     // as padding to ensure that the next field starts at the right offset.
2226     AP.OutStreamer->EmitZeros(PadSize);
2227   }
2228   assert(SizeSoFar == Layout->getSizeInBytes() &&
2229          "Layout of constant struct may be incorrect!");
2230 }
2231 
2232 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2233   APInt API = CFP->getValueAPF().bitcastToAPInt();
2234 
2235   // First print a comment with what we think the original floating-point value
2236   // should have been.
2237   if (AP.isVerbose()) {
2238     SmallString<8> StrVal;
2239     CFP->getValueAPF().toString(StrVal);
2240 
2241     if (CFP->getType())
2242       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2243     else
2244       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2245     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2246   }
2247 
2248   // Now iterate through the APInt chunks, emitting them in endian-correct
2249   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2250   // floats).
2251   unsigned NumBytes = API.getBitWidth() / 8;
2252   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2253   const uint64_t *p = API.getRawData();
2254 
2255   // PPC's long double has odd notions of endianness compared to how LLVM
2256   // handles it: p[0] goes first for *big* endian on PPC.
2257   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2258     int Chunk = API.getNumWords() - 1;
2259 
2260     if (TrailingBytes)
2261       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2262 
2263     for (; Chunk >= 0; --Chunk)
2264       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2265   } else {
2266     unsigned Chunk;
2267     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2268       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2269 
2270     if (TrailingBytes)
2271       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2272   }
2273 
2274   // Emit the tail padding for the long double.
2275   const DataLayout &DL = AP.getDataLayout();
2276   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2277                             DL.getTypeStoreSize(CFP->getType()));
2278 }
2279 
2280 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2281   const DataLayout &DL = AP.getDataLayout();
2282   unsigned BitWidth = CI->getBitWidth();
2283 
2284   // Copy the value as we may massage the layout for constants whose bit width
2285   // is not a multiple of 64-bits.
2286   APInt Realigned(CI->getValue());
2287   uint64_t ExtraBits = 0;
2288   unsigned ExtraBitsSize = BitWidth & 63;
2289 
2290   if (ExtraBitsSize) {
2291     // The bit width of the data is not a multiple of 64-bits.
2292     // The extra bits are expected to be at the end of the chunk of the memory.
2293     // Little endian:
2294     // * Nothing to be done, just record the extra bits to emit.
2295     // Big endian:
2296     // * Record the extra bits to emit.
2297     // * Realign the raw data to emit the chunks of 64-bits.
2298     if (DL.isBigEndian()) {
2299       // Basically the structure of the raw data is a chunk of 64-bits cells:
2300       //    0        1         BitWidth / 64
2301       // [chunk1][chunk2] ... [chunkN].
2302       // The most significant chunk is chunkN and it should be emitted first.
2303       // However, due to the alignment issue chunkN contains useless bits.
2304       // Realign the chunks so that they contain only useless information:
2305       // ExtraBits     0       1       (BitWidth / 64) - 1
2306       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2307       ExtraBits = Realigned.getRawData()[0] &
2308         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2309       Realigned.lshrInPlace(ExtraBitsSize);
2310     } else
2311       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2312   }
2313 
2314   // We don't expect assemblers to support integer data directives
2315   // for more than 64 bits, so we emit the data in at most 64-bit
2316   // quantities at a time.
2317   const uint64_t *RawData = Realigned.getRawData();
2318   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2319     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2320     AP.OutStreamer->EmitIntValue(Val, 8);
2321   }
2322 
2323   if (ExtraBitsSize) {
2324     // Emit the extra bits after the 64-bits chunks.
2325 
2326     // Emit a directive that fills the expected size.
2327     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2328     Size -= (BitWidth / 64) * 8;
2329     assert(Size && Size * 8 >= ExtraBitsSize &&
2330            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2331            == ExtraBits && "Directive too small for extra bits.");
2332     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2333   }
2334 }
2335 
2336 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2337 /// equivalent global, by a target specific GOT pc relative access to the
2338 /// final symbol.
2339 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2340                                          const Constant *BaseCst,
2341                                          uint64_t Offset) {
2342   // The global @foo below illustrates a global that uses a got equivalent.
2343   //
2344   //  @bar = global i32 42
2345   //  @gotequiv = private unnamed_addr constant i32* @bar
2346   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2347   //                             i64 ptrtoint (i32* @foo to i64))
2348   //                        to i32)
2349   //
2350   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2351   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2352   // form:
2353   //
2354   //  foo = cstexpr, where
2355   //    cstexpr := <gotequiv> - "." + <cst>
2356   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2357   //
2358   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2359   //
2360   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2361   //    gotpcrelcst := <offset from @foo base> + <cst>
2362   MCValue MV;
2363   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2364     return;
2365   const MCSymbolRefExpr *SymA = MV.getSymA();
2366   if (!SymA)
2367     return;
2368 
2369   // Check that GOT equivalent symbol is cached.
2370   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2371   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2372     return;
2373 
2374   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2375   if (!BaseGV)
2376     return;
2377 
2378   // Check for a valid base symbol
2379   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2380   const MCSymbolRefExpr *SymB = MV.getSymB();
2381 
2382   if (!SymB || BaseSym != &SymB->getSymbol())
2383     return;
2384 
2385   // Make sure to match:
2386   //
2387   //    gotpcrelcst := <offset from @foo base> + <cst>
2388   //
2389   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2390   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2391   // if the target knows how to encode it.
2392   int64_t GOTPCRelCst = Offset + MV.getConstant();
2393   if (GOTPCRelCst < 0)
2394     return;
2395   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2396     return;
2397 
2398   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2399   //
2400   //  bar:
2401   //    .long 42
2402   //  gotequiv:
2403   //    .quad bar
2404   //  foo:
2405   //    .long gotequiv - "." + <cst>
2406   //
2407   // is replaced by the target specific equivalent to:
2408   //
2409   //  bar:
2410   //    .long 42
2411   //  foo:
2412   //    .long bar@GOTPCREL+<gotpcrelcst>
2413   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2414   const GlobalVariable *GV = Result.first;
2415   int NumUses = (int)Result.second;
2416   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2417   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2418   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2419       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2420 
2421   // Update GOT equivalent usage information
2422   --NumUses;
2423   if (NumUses >= 0)
2424     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2425 }
2426 
2427 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2428                                    AsmPrinter &AP, const Constant *BaseCV,
2429                                    uint64_t Offset) {
2430   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2431 
2432   // Globals with sub-elements such as combinations of arrays and structs
2433   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2434   // constant symbol base and the current position with BaseCV and Offset.
2435   if (!BaseCV && CV->hasOneUse())
2436     BaseCV = dyn_cast<Constant>(CV->user_back());
2437 
2438   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2439     return AP.OutStreamer->EmitZeros(Size);
2440 
2441   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2442     switch (Size) {
2443     case 1:
2444     case 2:
2445     case 4:
2446     case 8:
2447       if (AP.isVerbose())
2448         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2449                                                  CI->getZExtValue());
2450       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2451       return;
2452     default:
2453       emitGlobalConstantLargeInt(CI, AP);
2454       return;
2455     }
2456   }
2457 
2458   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2459     return emitGlobalConstantFP(CFP, AP);
2460 
2461   if (isa<ConstantPointerNull>(CV)) {
2462     AP.OutStreamer->EmitIntValue(0, Size);
2463     return;
2464   }
2465 
2466   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2467     return emitGlobalConstantDataSequential(DL, CDS, AP);
2468 
2469   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2470     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2471 
2472   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2473     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2474 
2475   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2476     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2477     // vectors).
2478     if (CE->getOpcode() == Instruction::BitCast)
2479       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2480 
2481     if (Size > 8) {
2482       // If the constant expression's size is greater than 64-bits, then we have
2483       // to emit the value in chunks. Try to constant fold the value and emit it
2484       // that way.
2485       Constant *New = ConstantFoldConstant(CE, DL);
2486       if (New && New != CE)
2487         return emitGlobalConstantImpl(DL, New, AP);
2488     }
2489   }
2490 
2491   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2492     return emitGlobalConstantVector(DL, V, AP);
2493 
2494   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2495   // thread the streamer with EmitValue.
2496   const MCExpr *ME = AP.lowerConstant(CV);
2497 
2498   // Since lowerConstant already folded and got rid of all IR pointer and
2499   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2500   // directly.
2501   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2502     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2503 
2504   AP.OutStreamer->EmitValue(ME, Size);
2505 }
2506 
2507 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2508 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2509   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2510   if (Size)
2511     emitGlobalConstantImpl(DL, CV, *this);
2512   else if (MAI->hasSubsectionsViaSymbols()) {
2513     // If the global has zero size, emit a single byte so that two labels don't
2514     // look like they are at the same location.
2515     OutStreamer->EmitIntValue(0, 1);
2516   }
2517 }
2518 
2519 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2520   // Target doesn't support this yet!
2521   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2522 }
2523 
2524 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2525   if (Offset > 0)
2526     OS << '+' << Offset;
2527   else if (Offset < 0)
2528     OS << Offset;
2529 }
2530 
2531 //===----------------------------------------------------------------------===//
2532 // Symbol Lowering Routines.
2533 //===----------------------------------------------------------------------===//
2534 
2535 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2536   return OutContext.createTempSymbol(Name, true);
2537 }
2538 
2539 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2540   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2541 }
2542 
2543 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2544   return MMI->getAddrLabelSymbol(BB);
2545 }
2546 
2547 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2548 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2549   const DataLayout &DL = getDataLayout();
2550   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2551                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2552                                       Twine(CPID));
2553 }
2554 
2555 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2556 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2557   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2558 }
2559 
2560 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2561 /// FIXME: privatize to AsmPrinter.
2562 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2563   const DataLayout &DL = getDataLayout();
2564   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2565                                       Twine(getFunctionNumber()) + "_" +
2566                                       Twine(UID) + "_set_" + Twine(MBBID));
2567 }
2568 
2569 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2570                                                    StringRef Suffix) const {
2571   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2572 }
2573 
2574 /// Return the MCSymbol for the specified ExternalSymbol.
2575 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2576   SmallString<60> NameStr;
2577   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2578   return OutContext.getOrCreateSymbol(NameStr);
2579 }
2580 
2581 /// PrintParentLoopComment - Print comments about parent loops of this one.
2582 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2583                                    unsigned FunctionNumber) {
2584   if (!Loop) return;
2585   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2586   OS.indent(Loop->getLoopDepth()*2)
2587     << "Parent Loop BB" << FunctionNumber << "_"
2588     << Loop->getHeader()->getNumber()
2589     << " Depth=" << Loop->getLoopDepth() << '\n';
2590 }
2591 
2592 /// PrintChildLoopComment - Print comments about child loops within
2593 /// the loop for this basic block, with nesting.
2594 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2595                                   unsigned FunctionNumber) {
2596   // Add child loop information
2597   for (const MachineLoop *CL : *Loop) {
2598     OS.indent(CL->getLoopDepth()*2)
2599       << "Child Loop BB" << FunctionNumber << "_"
2600       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2601       << '\n';
2602     PrintChildLoopComment(OS, CL, FunctionNumber);
2603   }
2604 }
2605 
2606 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2607 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2608                                        const MachineLoopInfo *LI,
2609                                        const AsmPrinter &AP) {
2610   // Add loop depth information
2611   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2612   if (!Loop) return;
2613 
2614   MachineBasicBlock *Header = Loop->getHeader();
2615   assert(Header && "No header for loop");
2616 
2617   // If this block is not a loop header, just print out what is the loop header
2618   // and return.
2619   if (Header != &MBB) {
2620     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2621                                Twine(AP.getFunctionNumber())+"_" +
2622                                Twine(Loop->getHeader()->getNumber())+
2623                                " Depth="+Twine(Loop->getLoopDepth()));
2624     return;
2625   }
2626 
2627   // Otherwise, it is a loop header.  Print out information about child and
2628   // parent loops.
2629   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2630 
2631   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2632 
2633   OS << "=>";
2634   OS.indent(Loop->getLoopDepth()*2-2);
2635 
2636   OS << "This ";
2637   if (Loop->empty())
2638     OS << "Inner ";
2639   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2640 
2641   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2642 }
2643 
2644 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2645                                          MCCodePaddingContext &Context) const {
2646   assert(MF != nullptr && "Machine function must be valid");
2647   assert(LI != nullptr && "Loop info must be valid");
2648   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2649                             !MF->getFunction()->optForSize() &&
2650                             TM.getOptLevel() != CodeGenOpt::None;
2651   const MachineLoop *CurrentLoop = LI->getLoopFor(&MBB);
2652   Context.IsBasicBlockInsideInnermostLoop =
2653       CurrentLoop != nullptr && CurrentLoop->getSubLoops().empty();
2654   Context.IsBasicBlockReachableViaFallthrough =
2655       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2656       MBB.pred_end();
2657   Context.IsBasicBlockReachableViaBranch =
2658       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2659 }
2660 
2661 /// EmitBasicBlockStart - This method prints the label for the specified
2662 /// MachineBasicBlock, an alignment (if present) and a comment describing
2663 /// it if appropriate.
2664 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2665   // End the previous funclet and start a new one.
2666   if (MBB.isEHFuncletEntry()) {
2667     for (const HandlerInfo &HI : Handlers) {
2668       HI.Handler->endFunclet();
2669       HI.Handler->beginFunclet(MBB);
2670     }
2671   }
2672 
2673   // Emit an alignment directive for this block, if needed.
2674   if (unsigned Align = MBB.getAlignment())
2675     EmitAlignment(Align);
2676   MCCodePaddingContext Context;
2677   setupCodePaddingContext(MBB, Context);
2678   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2679 
2680   // If the block has its address taken, emit any labels that were used to
2681   // reference the block.  It is possible that there is more than one label
2682   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2683   // the references were generated.
2684   if (MBB.hasAddressTaken()) {
2685     const BasicBlock *BB = MBB.getBasicBlock();
2686     if (isVerbose())
2687       OutStreamer->AddComment("Block address taken");
2688 
2689     // MBBs can have their address taken as part of CodeGen without having
2690     // their corresponding BB's address taken in IR
2691     if (BB->hasAddressTaken())
2692       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2693         OutStreamer->EmitLabel(Sym);
2694   }
2695 
2696   // Print some verbose block comments.
2697   if (isVerbose()) {
2698     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2699       if (BB->hasName()) {
2700         BB->printAsOperand(OutStreamer->GetCommentOS(),
2701                            /*PrintType=*/false, BB->getModule());
2702         OutStreamer->GetCommentOS() << '\n';
2703       }
2704     }
2705     emitBasicBlockLoopComments(MBB, LI, *this);
2706   }
2707 
2708   // Print the main label for the block.
2709   if (MBB.pred_empty() ||
2710       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2711     if (isVerbose()) {
2712       // NOTE: Want this comment at start of line, don't emit with AddComment.
2713       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2714                                   false);
2715     }
2716   } else {
2717     OutStreamer->EmitLabel(MBB.getSymbol());
2718   }
2719 }
2720 
2721 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2722   MCCodePaddingContext Context;
2723   setupCodePaddingContext(MBB, Context);
2724   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2725 }
2726 
2727 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2728                                 bool IsDefinition) const {
2729   MCSymbolAttr Attr = MCSA_Invalid;
2730 
2731   switch (Visibility) {
2732   default: break;
2733   case GlobalValue::HiddenVisibility:
2734     if (IsDefinition)
2735       Attr = MAI->getHiddenVisibilityAttr();
2736     else
2737       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2738     break;
2739   case GlobalValue::ProtectedVisibility:
2740     Attr = MAI->getProtectedVisibilityAttr();
2741     break;
2742   }
2743 
2744   if (Attr != MCSA_Invalid)
2745     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2746 }
2747 
2748 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2749 /// exactly one predecessor and the control transfer mechanism between
2750 /// the predecessor and this block is a fall-through.
2751 bool AsmPrinter::
2752 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2753   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2754   // then nothing falls through to it.
2755   if (MBB->isEHPad() || MBB->pred_empty())
2756     return false;
2757 
2758   // If there isn't exactly one predecessor, it can't be a fall through.
2759   if (MBB->pred_size() > 1)
2760     return false;
2761 
2762   // The predecessor has to be immediately before this block.
2763   MachineBasicBlock *Pred = *MBB->pred_begin();
2764   if (!Pred->isLayoutSuccessor(MBB))
2765     return false;
2766 
2767   // If the block is completely empty, then it definitely does fall through.
2768   if (Pred->empty())
2769     return true;
2770 
2771   // Check the terminators in the previous blocks
2772   for (const auto &MI : Pred->terminators()) {
2773     // If it is not a simple branch, we are in a table somewhere.
2774     if (!MI.isBranch() || MI.isIndirectBranch())
2775       return false;
2776 
2777     // If we are the operands of one of the branches, this is not a fall
2778     // through. Note that targets with delay slots will usually bundle
2779     // terminators with the delay slot instruction.
2780     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2781       if (OP->isJTI())
2782         return false;
2783       if (OP->isMBB() && OP->getMBB() == MBB)
2784         return false;
2785     }
2786   }
2787 
2788   return true;
2789 }
2790 
2791 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2792   if (!S.usesMetadata())
2793     return nullptr;
2794 
2795   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2796          " stackmap formats, please see the documentation for a description of"
2797          " the default format.  If you really need a custom serialized format,"
2798          " please file a bug");
2799 
2800   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2801   gcp_map_type::iterator GCPI = GCMap.find(&S);
2802   if (GCPI != GCMap.end())
2803     return GCPI->second.get();
2804 
2805   auto Name = S.getName();
2806 
2807   for (GCMetadataPrinterRegistry::iterator
2808          I = GCMetadataPrinterRegistry::begin(),
2809          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2810     if (Name == I->getName()) {
2811       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2812       GMP->S = &S;
2813       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2814       return IterBool.first->second.get();
2815     }
2816 
2817   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2818 }
2819 
2820 /// Pin vtable to this file.
2821 AsmPrinterHandler::~AsmPrinterHandler() = default;
2822 
2823 void AsmPrinterHandler::markFunctionEnd() {}
2824 
2825 // In the binary's "xray_instr_map" section, an array of these function entries
2826 // describes each instrumentation point.  When XRay patches your code, the index
2827 // into this table will be given to your handler as a patch point identifier.
2828 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2829                                          const MCSymbol *CurrentFnSym) const {
2830   Out->EmitSymbolValue(Sled, Bytes);
2831   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2832   auto Kind8 = static_cast<uint8_t>(Kind);
2833   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2834   Out->EmitBinaryData(
2835       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2836   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
2837   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
2838   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
2839   Out->EmitZeros(Padding);
2840 }
2841 
2842 void AsmPrinter::emitXRayTable() {
2843   if (Sleds.empty())
2844     return;
2845 
2846   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2847   auto Fn = MF->getFunction();
2848   MCSection *InstMap = nullptr;
2849   MCSection *FnSledIndex = nullptr;
2850   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2851     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
2852     assert(Associated != nullptr);
2853     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
2854     std::string GroupName;
2855     if (Fn->hasComdat()) {
2856       Flags |= ELF::SHF_GROUP;
2857       GroupName = Fn->getComdat()->getName();
2858     }
2859 
2860     auto UniqueID = ++XRayFnUniqueID;
2861     InstMap =
2862         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
2863                                  GroupName, UniqueID, Associated);
2864     FnSledIndex =
2865         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
2866                                  GroupName, UniqueID, Associated);
2867   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2868     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2869                                          SectionKind::getReadOnlyWithRel());
2870     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
2871                                              SectionKind::getReadOnlyWithRel());
2872   } else {
2873     llvm_unreachable("Unsupported target");
2874   }
2875 
2876   auto WordSizeBytes = MAI->getCodePointerSize();
2877 
2878   // Now we switch to the instrumentation map section. Because this is done
2879   // per-function, we are able to create an index entry that will represent the
2880   // range of sleds associated with a function.
2881   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
2882   OutStreamer->SwitchSection(InstMap);
2883   OutStreamer->EmitLabel(SledsStart);
2884   for (const auto &Sled : Sleds)
2885     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2886   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
2887   OutStreamer->EmitLabel(SledsEnd);
2888 
2889   // We then emit a single entry in the index per function. We use the symbols
2890   // that bound the instrumentation map as the range for a specific function.
2891   // Each entry here will be 2 * word size aligned, as we're writing down two
2892   // pointers. This should work for both 32-bit and 64-bit platforms.
2893   OutStreamer->SwitchSection(FnSledIndex);
2894   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
2895   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
2896   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
2897   OutStreamer->SwitchSection(PrevSection);
2898   Sleds.clear();
2899 }
2900 
2901 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2902                             SledKind Kind, uint8_t Version) {
2903   auto Fn = MI.getMF()->getFunction();
2904   auto Attr = Fn->getFnAttribute("function-instrument");
2905   bool LogArgs = Fn->hasFnAttribute("xray-log-args");
2906   bool AlwaysInstrument =
2907     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2908   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2909     Kind = SledKind::LOG_ARGS_ENTER;
2910   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
2911                                        AlwaysInstrument, Fn, Version});
2912 }
2913 
2914 uint16_t AsmPrinter::getDwarfVersion() const {
2915   return OutStreamer->getContext().getDwarfVersion();
2916 }
2917 
2918 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2919   OutStreamer->getContext().setDwarfVersion(Version);
2920 }
2921