1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/BinaryFormat/COFF.h" 35 #include "llvm/BinaryFormat/Dwarf.h" 36 #include "llvm/BinaryFormat/ELF.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/GCMetadataPrinter.h" 39 #include "llvm/CodeGen/GCStrategy.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineConstantPool.h" 42 #include "llvm/CodeGen/MachineDominators.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 53 #include "llvm/CodeGen/MachineOperand.h" 54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 55 #include "llvm/CodeGen/StackMaps.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Comdat.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfoMetadata.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/GlobalAlias.h" 70 #include "llvm/IR/GlobalIFunc.h" 71 #include "llvm/IR/GlobalIndirectSymbol.h" 72 #include "llvm/IR/GlobalObject.h" 73 #include "llvm/IR/GlobalValue.h" 74 #include "llvm/IR/GlobalVariable.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Mangler.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Module.h" 79 #include "llvm/IR/Operator.h" 80 #include "llvm/IR/Type.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/MC/MCAsmInfo.h" 83 #include "llvm/MC/MCContext.h" 84 #include "llvm/MC/MCDirectives.h" 85 #include "llvm/MC/MCDwarf.h" 86 #include "llvm/MC/MCExpr.h" 87 #include "llvm/MC/MCInst.h" 88 #include "llvm/MC/MCSection.h" 89 #include "llvm/MC/MCSectionCOFF.h" 90 #include "llvm/MC/MCSectionELF.h" 91 #include "llvm/MC/MCSectionMachO.h" 92 #include "llvm/MC/MCSectionXCOFF.h" 93 #include "llvm/MC/MCStreamer.h" 94 #include "llvm/MC/MCSubtargetInfo.h" 95 #include "llvm/MC/MCSymbol.h" 96 #include "llvm/MC/MCSymbolELF.h" 97 #include "llvm/MC/MCSymbolXCOFF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Remarks/Remark.h" 103 #include "llvm/Remarks/RemarkFormat.h" 104 #include "llvm/Remarks/RemarkStreamer.h" 105 #include "llvm/Remarks/RemarkStringTable.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/Format.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/Path.h" 113 #include "llvm/Support/TargetRegistry.h" 114 #include "llvm/Support/Timer.h" 115 #include "llvm/Support/raw_ostream.h" 116 #include "llvm/Target/TargetLoweringObjectFile.h" 117 #include "llvm/Target/TargetMachine.h" 118 #include "llvm/Target/TargetOptions.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cinttypes> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <memory> 126 #include <string> 127 #include <utility> 128 #include <vector> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "asm-printer" 133 134 static const char *const DWARFGroupName = "dwarf"; 135 static const char *const DWARFGroupDescription = "DWARF Emission"; 136 static const char *const DbgTimerName = "emit"; 137 static const char *const DbgTimerDescription = "Debug Info Emission"; 138 static const char *const EHTimerName = "write_exception"; 139 static const char *const EHTimerDescription = "DWARF Exception Writer"; 140 static const char *const CFGuardName = "Control Flow Guard"; 141 static const char *const CFGuardDescription = "Control Flow Guard"; 142 static const char *const CodeViewLineTablesGroupName = "linetables"; 143 static const char *const CodeViewLineTablesGroupDescription = 144 "CodeView Line Tables"; 145 146 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignment - Return the alignment to use for the specified global 159 /// value. This rounds up to the preferred alignment if possible and legal. 160 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 161 Align InAlign) { 162 Align Alignment; 163 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 164 Alignment = Align(DL.getPreferredAlignment(GVar)); 165 166 // If InAlign is specified, round it to it. 167 if (InAlign > Alignment) 168 Alignment = InAlign; 169 170 // If the GV has a specified alignment, take it into account. 171 const MaybeAlign GVAlign(GV->getAlignment()); 172 if (!GVAlign) 173 return Alignment; 174 175 assert(GVAlign && "GVAlign must be set"); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (*GVAlign > Alignment || GV->hasSection()) 180 Alignment = *GVAlign; 181 return Alignment; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.emitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 234 assert(DD && "Dwarf debug file is not defined."); 235 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 236 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 237 } 238 239 /// getCurrentSection() - Return the current section we are emitting to. 240 const MCSection *AsmPrinter::getCurrentSection() const { 241 return OutStreamer->getCurrentSectionOnly(); 242 } 243 244 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 245 AU.setPreservesAll(); 246 MachineFunctionPass::getAnalysisUsage(AU); 247 AU.addRequired<MachineModuleInfoWrapperPass>(); 248 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 249 AU.addRequired<GCModuleInfo>(); 250 } 251 252 bool AsmPrinter::doInitialization(Module &M) { 253 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 254 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 255 256 // Initialize TargetLoweringObjectFile. 257 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 258 .Initialize(OutContext, TM); 259 260 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 261 .getModuleMetadata(M); 262 263 OutStreamer->InitSections(false); 264 265 // Emit the version-min deployment target directive if needed. 266 // 267 // FIXME: If we end up with a collection of these sorts of Darwin-specific 268 // or ELF-specific things, it may make sense to have a platform helper class 269 // that will work with the target helper class. For now keep it here, as the 270 // alternative is duplicated code in each of the target asm printers that 271 // use the directive, where it would need the same conditionalization 272 // anyway. 273 const Triple &Target = TM.getTargetTriple(); 274 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 275 276 // Allow the target to emit any magic that it wants at the start of the file. 277 emitStartOfAsmFile(M); 278 279 // Very minimal debug info. It is ignored if we emit actual debug info. If we 280 // don't, this at least helps the user find where a global came from. 281 if (MAI->hasSingleParameterDotFile()) { 282 // .file "foo.c" 283 OutStreamer->emitFileDirective( 284 llvm::sys::path::filename(M.getSourceFileName())); 285 } 286 287 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 288 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 289 for (auto &I : *MI) 290 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 291 MP->beginAssembly(M, *MI, *this); 292 293 // Emit module-level inline asm if it exists. 294 if (!M.getModuleInlineAsm().empty()) { 295 // We're at the module level. Construct MCSubtarget from the default CPU 296 // and target triple. 297 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 298 TM.getTargetTriple().str(), TM.getTargetCPU(), 299 TM.getTargetFeatureString())); 300 OutStreamer->AddComment("Start of file scope inline assembly"); 301 OutStreamer->AddBlankLine(); 302 emitInlineAsm(M.getModuleInlineAsm() + "\n", 303 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 304 OutStreamer->AddComment("End of file scope inline assembly"); 305 OutStreamer->AddBlankLine(); 306 } 307 308 if (MAI->doesSupportDebugInformation()) { 309 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 310 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 311 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 312 DbgTimerName, DbgTimerDescription, 313 CodeViewLineTablesGroupName, 314 CodeViewLineTablesGroupDescription); 315 } 316 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 317 DD = new DwarfDebug(this, &M); 318 DD->beginModule(); 319 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 320 DbgTimerDescription, DWARFGroupName, 321 DWARFGroupDescription); 322 } 323 } 324 325 switch (MAI->getExceptionHandlingType()) { 326 case ExceptionHandling::SjLj: 327 case ExceptionHandling::DwarfCFI: 328 case ExceptionHandling::ARM: 329 isCFIMoveForDebugging = true; 330 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 331 break; 332 for (auto &F: M.getFunctionList()) { 333 // If the module contains any function with unwind data, 334 // .eh_frame has to be emitted. 335 // Ignore functions that won't get emitted. 336 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 337 isCFIMoveForDebugging = false; 338 break; 339 } 340 } 341 break; 342 default: 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 347 EHStreamer *ES = nullptr; 348 switch (MAI->getExceptionHandlingType()) { 349 case ExceptionHandling::None: 350 break; 351 case ExceptionHandling::SjLj: 352 case ExceptionHandling::DwarfCFI: 353 ES = new DwarfCFIException(this); 354 break; 355 case ExceptionHandling::ARM: 356 ES = new ARMException(this); 357 break; 358 case ExceptionHandling::WinEH: 359 switch (MAI->getWinEHEncodingType()) { 360 default: llvm_unreachable("unsupported unwinding information encoding"); 361 case WinEH::EncodingType::Invalid: 362 break; 363 case WinEH::EncodingType::X86: 364 case WinEH::EncodingType::Itanium: 365 ES = new WinException(this); 366 break; 367 } 368 break; 369 case ExceptionHandling::Wasm: 370 ES = new WasmException(this); 371 break; 372 } 373 if (ES) 374 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 375 EHTimerDescription, DWARFGroupName, 376 DWARFGroupDescription); 377 378 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 379 if (mdconst::extract_or_null<ConstantInt>( 380 MMI->getModule()->getModuleFlag("cfguard"))) 381 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 382 CFGuardDescription, DWARFGroupName, 383 DWARFGroupDescription); 384 return false; 385 } 386 387 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 388 if (!MAI.hasWeakDefCanBeHiddenDirective()) 389 return false; 390 391 return GV->canBeOmittedFromSymbolTable(); 392 } 393 394 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 395 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 396 switch (Linkage) { 397 case GlobalValue::CommonLinkage: 398 assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && 399 "CommonLinkage of XCOFF should not come to this path."); 400 LLVM_FALLTHROUGH; 401 case GlobalValue::LinkOnceAnyLinkage: 402 case GlobalValue::LinkOnceODRLinkage: 403 case GlobalValue::WeakAnyLinkage: 404 case GlobalValue::WeakODRLinkage: 405 if (MAI->hasWeakDefDirective()) { 406 // .globl _foo 407 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 408 409 if (!canBeHidden(GV, *MAI)) 410 // .weak_definition _foo 411 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 412 else 413 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 414 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 415 // .globl _foo 416 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 417 //NOTE: linkonce is handled by the section the symbol was assigned to. 418 } else { 419 // .weak _foo 420 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 421 } 422 return; 423 case GlobalValue::ExternalLinkage: 424 if (MAI->hasDotExternDirective() && GV->isDeclaration()) 425 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Extern); 426 else 427 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 428 return; 429 case GlobalValue::PrivateLinkage: 430 return; 431 case GlobalValue::InternalLinkage: 432 if (MAI->hasDotLGloblDirective()) 433 OutStreamer->emitSymbolAttribute(GVSym, MCSA_LGlobal); 434 return; 435 case GlobalValue::ExternalWeakLinkage: 436 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 438 return; 439 } 440 LLVM_FALLTHROUGH; 441 case GlobalValue::AvailableExternallyLinkage: 442 if (MAI->hasDotExternDirective()) { 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Extern); 444 return; 445 } 446 LLVM_FALLTHROUGH; 447 case GlobalValue::AppendingLinkage: 448 llvm_unreachable("Should never emit this"); 449 } 450 llvm_unreachable("Unknown linkage type!"); 451 } 452 453 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 454 const GlobalValue *GV) const { 455 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 456 } 457 458 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 459 return TM.getSymbol(GV); 460 } 461 462 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 463 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 464 // exact definion (intersection of GlobalValue::hasExactDefinition() and 465 // !isInterposable()). These linkages include: external, appending, internal, 466 // private. It may be profitable to use a local alias for external. The 467 // assembler would otherwise be conservative and assume a global default 468 // visibility symbol can be interposable, even if the code generator already 469 // assumed it. 470 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 471 const Module &M = *GV.getParent(); 472 if (TM.getRelocationModel() != Reloc::Static && 473 M.getPIELevel() == PIELevel::Default) 474 if (GV.isDSOLocal() || (TM.getTargetTriple().isX86() && 475 GV.getParent()->noSemanticInterposition())) 476 return getSymbolWithGlobalValueBase(&GV, "$local"); 477 } 478 return TM.getSymbol(&GV); 479 } 480 481 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 482 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 483 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 484 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 485 "No emulated TLS variables in the common section"); 486 487 // Never emit TLS variable xyz in emulated TLS model. 488 // The initialization value is in __emutls_t.xyz instead of xyz. 489 if (IsEmuTLSVar) 490 return; 491 492 if (GV->hasInitializer()) { 493 // Check to see if this is a special global used by LLVM, if so, emit it. 494 if (emitSpecialLLVMGlobal(GV)) 495 return; 496 497 // Skip the emission of global equivalents. The symbol can be emitted later 498 // on by emitGlobalGOTEquivs in case it turns out to be needed. 499 if (GlobalGOTEquivs.count(getSymbol(GV))) 500 return; 501 502 if (isVerbose()) { 503 // When printing the control variable __emutls_v.*, 504 // we don't need to print the original TLS variable name. 505 GV->printAsOperand(OutStreamer->GetCommentOS(), 506 /*PrintType=*/false, GV->getParent()); 507 OutStreamer->GetCommentOS() << '\n'; 508 } 509 } 510 511 MCSymbol *GVSym = getSymbol(GV); 512 MCSymbol *EmittedSym = GVSym; 513 514 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 515 // attributes. 516 // GV's or GVSym's attributes will be used for the EmittedSym. 517 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 518 519 if (!GV->hasInitializer()) // External globals require no extra code. 520 return; 521 522 GVSym->redefineIfPossible(); 523 if (GVSym->isDefined() || GVSym->isVariable()) 524 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 525 "' is already defined"); 526 527 if (MAI->hasDotTypeDotSizeDirective()) 528 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 529 530 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 531 532 const DataLayout &DL = GV->getParent()->getDataLayout(); 533 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 534 535 // If the alignment is specified, we *must* obey it. Overaligning a global 536 // with a specified alignment is a prompt way to break globals emitted to 537 // sections and expected to be contiguous (e.g. ObjC metadata). 538 const Align Alignment = getGVAlignment(GV, DL); 539 540 for (const HandlerInfo &HI : Handlers) { 541 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 542 HI.TimerGroupName, HI.TimerGroupDescription, 543 TimePassesIsEnabled); 544 HI.Handler->setSymbolSize(GVSym, Size); 545 } 546 547 // Handle common symbols 548 if (GVKind.isCommon()) { 549 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 550 // .comm _foo, 42, 4 551 const bool SupportsAlignment = 552 getObjFileLowering().getCommDirectiveSupportsAlignment(); 553 OutStreamer->emitCommonSymbol(GVSym, Size, 554 SupportsAlignment ? Alignment.value() : 0); 555 return; 556 } 557 558 // Determine to which section this global should be emitted. 559 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 560 561 // If we have a bss global going to a section that supports the 562 // zerofill directive, do so here. 563 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 564 TheSection->isVirtualSection()) { 565 if (Size == 0) 566 Size = 1; // zerofill of 0 bytes is undefined. 567 emitLinkage(GV, GVSym); 568 // .zerofill __DATA, __bss, _foo, 400, 5 569 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 570 return; 571 } 572 573 // If this is a BSS local symbol and we are emitting in the BSS 574 // section use .lcomm/.comm directive. 575 if (GVKind.isBSSLocal() && 576 getObjFileLowering().getBSSSection() == TheSection) { 577 if (Size == 0) 578 Size = 1; // .comm Foo, 0 is undefined, avoid it. 579 580 // Use .lcomm only if it supports user-specified alignment. 581 // Otherwise, while it would still be correct to use .lcomm in some 582 // cases (e.g. when Align == 1), the external assembler might enfore 583 // some -unknown- default alignment behavior, which could cause 584 // spurious differences between external and integrated assembler. 585 // Prefer to simply fall back to .local / .comm in this case. 586 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 587 // .lcomm _foo, 42 588 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 589 return; 590 } 591 592 // .local _foo 593 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 594 // .comm _foo, 42, 4 595 const bool SupportsAlignment = 596 getObjFileLowering().getCommDirectiveSupportsAlignment(); 597 OutStreamer->emitCommonSymbol(GVSym, Size, 598 SupportsAlignment ? Alignment.value() : 0); 599 return; 600 } 601 602 // Handle thread local data for mach-o which requires us to output an 603 // additional structure of data and mangle the original symbol so that we 604 // can reference it later. 605 // 606 // TODO: This should become an "emit thread local global" method on TLOF. 607 // All of this macho specific stuff should be sunk down into TLOFMachO and 608 // stuff like "TLSExtraDataSection" should no longer be part of the parent 609 // TLOF class. This will also make it more obvious that stuff like 610 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 611 // specific code. 612 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 613 // Emit the .tbss symbol 614 MCSymbol *MangSym = 615 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 616 617 if (GVKind.isThreadBSS()) { 618 TheSection = getObjFileLowering().getTLSBSSSection(); 619 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 620 } else if (GVKind.isThreadData()) { 621 OutStreamer->SwitchSection(TheSection); 622 623 emitAlignment(Alignment, GV); 624 OutStreamer->emitLabel(MangSym); 625 626 emitGlobalConstant(GV->getParent()->getDataLayout(), 627 GV->getInitializer()); 628 } 629 630 OutStreamer->AddBlankLine(); 631 632 // Emit the variable struct for the runtime. 633 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 634 635 OutStreamer->SwitchSection(TLVSect); 636 // Emit the linkage here. 637 emitLinkage(GV, GVSym); 638 OutStreamer->emitLabel(GVSym); 639 640 // Three pointers in size: 641 // - __tlv_bootstrap - used to make sure support exists 642 // - spare pointer, used when mapped by the runtime 643 // - pointer to mangled symbol above with initializer 644 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 645 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 646 PtrSize); 647 OutStreamer->emitIntValue(0, PtrSize); 648 OutStreamer->emitSymbolValue(MangSym, PtrSize); 649 650 OutStreamer->AddBlankLine(); 651 return; 652 } 653 654 MCSymbol *EmittedInitSym = GVSym; 655 656 OutStreamer->SwitchSection(TheSection); 657 658 emitLinkage(GV, EmittedInitSym); 659 emitAlignment(Alignment, GV); 660 661 OutStreamer->emitLabel(EmittedInitSym); 662 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 663 if (LocalAlias != EmittedInitSym) 664 OutStreamer->emitLabel(LocalAlias); 665 666 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 667 668 if (MAI->hasDotTypeDotSizeDirective()) 669 // .size foo, 42 670 OutStreamer->emitELFSize(EmittedInitSym, 671 MCConstantExpr::create(Size, OutContext)); 672 673 OutStreamer->AddBlankLine(); 674 } 675 676 /// Emit the directive and value for debug thread local expression 677 /// 678 /// \p Value - The value to emit. 679 /// \p Size - The size of the integer (in bytes) to emit. 680 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 681 OutStreamer->emitValue(Value, Size); 682 } 683 684 void AsmPrinter::emitFunctionHeaderComment() {} 685 686 /// EmitFunctionHeader - This method emits the header for the current 687 /// function. 688 void AsmPrinter::emitFunctionHeader() { 689 const Function &F = MF->getFunction(); 690 691 if (isVerbose()) 692 OutStreamer->GetCommentOS() 693 << "-- Begin function " 694 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 695 696 // Print out constants referenced by the function 697 emitConstantPool(); 698 699 // Print the 'header' of function. 700 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 701 OutStreamer->SwitchSection(MF->getSection()); 702 703 if (!MAI->hasVisibilityOnlyWithLinkage()) 704 emitVisibility(CurrentFnSym, F.getVisibility()); 705 706 if (MAI->needsFunctionDescriptors() && 707 F.getLinkage() != GlobalValue::InternalLinkage) 708 emitLinkage(&F, CurrentFnDescSym); 709 710 emitLinkage(&F, CurrentFnSym); 711 if (MAI->hasFunctionAlignment()) 712 emitAlignment(MF->getAlignment(), &F); 713 714 if (MAI->hasDotTypeDotSizeDirective()) 715 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 716 717 if (F.hasFnAttribute(Attribute::Cold)) 718 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 719 720 if (isVerbose()) { 721 F.printAsOperand(OutStreamer->GetCommentOS(), 722 /*PrintType=*/false, F.getParent()); 723 emitFunctionHeaderComment(); 724 OutStreamer->GetCommentOS() << '\n'; 725 } 726 727 // Emit the prefix data. 728 if (F.hasPrefixData()) { 729 if (MAI->hasSubsectionsViaSymbols()) { 730 // Preserving prefix data on platforms which use subsections-via-symbols 731 // is a bit tricky. Here we introduce a symbol for the prefix data 732 // and use the .alt_entry attribute to mark the function's real entry point 733 // as an alternative entry point to the prefix-data symbol. 734 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 735 OutStreamer->emitLabel(PrefixSym); 736 737 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 738 739 // Emit an .alt_entry directive for the actual function symbol. 740 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 741 } else { 742 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 743 } 744 } 745 746 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 747 // place prefix data before NOPs. 748 unsigned PatchableFunctionPrefix = 0; 749 unsigned PatchableFunctionEntry = 0; 750 (void)F.getFnAttribute("patchable-function-prefix") 751 .getValueAsString() 752 .getAsInteger(10, PatchableFunctionPrefix); 753 (void)F.getFnAttribute("patchable-function-entry") 754 .getValueAsString() 755 .getAsInteger(10, PatchableFunctionEntry); 756 if (PatchableFunctionPrefix) { 757 CurrentPatchableFunctionEntrySym = 758 OutContext.createLinkerPrivateTempSymbol(); 759 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 760 emitNops(PatchableFunctionPrefix); 761 } else if (PatchableFunctionEntry) { 762 // May be reassigned when emitting the body, to reference the label after 763 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 764 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 765 } 766 767 // Emit the function descriptor. This is a virtual function to allow targets 768 // to emit their specific function descriptor. Right now it is only used by 769 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 770 // descriptors and should be converted to use this hook as well. 771 if (MAI->needsFunctionDescriptors()) 772 emitFunctionDescriptor(); 773 774 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 775 // their wild and crazy things as required. 776 emitFunctionEntryLabel(); 777 778 if (CurrentFnBegin) { 779 if (MAI->useAssignmentForEHBegin()) { 780 MCSymbol *CurPos = OutContext.createTempSymbol(); 781 OutStreamer->emitLabel(CurPos); 782 OutStreamer->emitAssignment(CurrentFnBegin, 783 MCSymbolRefExpr::create(CurPos, OutContext)); 784 } else { 785 OutStreamer->emitLabel(CurrentFnBegin); 786 } 787 } 788 789 // Emit pre-function debug and/or EH information. 790 for (const HandlerInfo &HI : Handlers) { 791 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 792 HI.TimerGroupDescription, TimePassesIsEnabled); 793 HI.Handler->beginFunction(MF); 794 } 795 796 // Emit the prologue data. 797 if (F.hasPrologueData()) 798 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 799 } 800 801 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 802 /// function. This can be overridden by targets as required to do custom stuff. 803 void AsmPrinter::emitFunctionEntryLabel() { 804 CurrentFnSym->redefineIfPossible(); 805 806 // The function label could have already been emitted if two symbols end up 807 // conflicting due to asm renaming. Detect this and emit an error. 808 if (CurrentFnSym->isVariable()) 809 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 810 "' is a protected alias"); 811 if (CurrentFnSym->isDefined()) 812 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 813 "' label emitted multiple times to assembly file"); 814 815 OutStreamer->emitLabel(CurrentFnSym); 816 817 if (TM.getTargetTriple().isOSBinFormatELF()) { 818 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 819 if (Sym != CurrentFnSym) 820 OutStreamer->emitLabel(Sym); 821 } 822 } 823 824 /// emitComments - Pretty-print comments for instructions. 825 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 826 const MachineFunction *MF = MI.getMF(); 827 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 828 829 // Check for spills and reloads 830 831 // We assume a single instruction only has a spill or reload, not 832 // both. 833 Optional<unsigned> Size; 834 if ((Size = MI.getRestoreSize(TII))) { 835 CommentOS << *Size << "-byte Reload\n"; 836 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 837 if (*Size) 838 CommentOS << *Size << "-byte Folded Reload\n"; 839 } else if ((Size = MI.getSpillSize(TII))) { 840 CommentOS << *Size << "-byte Spill\n"; 841 } else if ((Size = MI.getFoldedSpillSize(TII))) { 842 if (*Size) 843 CommentOS << *Size << "-byte Folded Spill\n"; 844 } 845 846 // Check for spill-induced copies 847 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 848 CommentOS << " Reload Reuse\n"; 849 } 850 851 /// emitImplicitDef - This method emits the specified machine instruction 852 /// that is an implicit def. 853 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 854 Register RegNo = MI->getOperand(0).getReg(); 855 856 SmallString<128> Str; 857 raw_svector_ostream OS(Str); 858 OS << "implicit-def: " 859 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 860 861 OutStreamer->AddComment(OS.str()); 862 OutStreamer->AddBlankLine(); 863 } 864 865 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 866 std::string Str; 867 raw_string_ostream OS(Str); 868 OS << "kill:"; 869 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 870 const MachineOperand &Op = MI->getOperand(i); 871 assert(Op.isReg() && "KILL instruction must have only register operands"); 872 OS << ' ' << (Op.isDef() ? "def " : "killed ") 873 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 874 } 875 AP.OutStreamer->AddComment(OS.str()); 876 AP.OutStreamer->AddBlankLine(); 877 } 878 879 /// emitDebugValueComment - This method handles the target-independent form 880 /// of DBG_VALUE, returning true if it was able to do so. A false return 881 /// means the target will need to handle MI in EmitInstruction. 882 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 883 // This code handles only the 4-operand target-independent form. 884 if (MI->getNumOperands() != 4) 885 return false; 886 887 SmallString<128> Str; 888 raw_svector_ostream OS(Str); 889 OS << "DEBUG_VALUE: "; 890 891 const DILocalVariable *V = MI->getDebugVariable(); 892 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 893 StringRef Name = SP->getName(); 894 if (!Name.empty()) 895 OS << Name << ":"; 896 } 897 OS << V->getName(); 898 OS << " <- "; 899 900 // The second operand is only an offset if it's an immediate. 901 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 902 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 903 const DIExpression *Expr = MI->getDebugExpression(); 904 if (Expr->getNumElements()) { 905 OS << '['; 906 bool NeedSep = false; 907 for (auto Op : Expr->expr_ops()) { 908 if (NeedSep) 909 OS << ", "; 910 else 911 NeedSep = true; 912 OS << dwarf::OperationEncodingString(Op.getOp()); 913 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 914 OS << ' ' << Op.getArg(I); 915 } 916 OS << "] "; 917 } 918 919 // Register or immediate value. Register 0 means undef. 920 if (MI->getOperand(0).isFPImm()) { 921 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 922 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 923 OS << (double)APF.convertToFloat(); 924 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 925 OS << APF.convertToDouble(); 926 } else { 927 // There is no good way to print long double. Convert a copy to 928 // double. Ah well, it's only a comment. 929 bool ignored; 930 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 931 &ignored); 932 OS << "(long double) " << APF.convertToDouble(); 933 } 934 } else if (MI->getOperand(0).isImm()) { 935 OS << MI->getOperand(0).getImm(); 936 } else if (MI->getOperand(0).isCImm()) { 937 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 938 } else if (MI->getOperand(0).isTargetIndex()) { 939 auto Op = MI->getOperand(0); 940 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 941 return true; 942 } else { 943 Register Reg; 944 if (MI->getOperand(0).isReg()) { 945 Reg = MI->getOperand(0).getReg(); 946 } else { 947 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 948 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 949 Offset += TFI->getFrameIndexReference(*AP.MF, 950 MI->getOperand(0).getIndex(), Reg); 951 MemLoc = true; 952 } 953 if (Reg == 0) { 954 // Suppress offset, it is not meaningful here. 955 OS << "undef"; 956 // NOTE: Want this comment at start of line, don't emit with AddComment. 957 AP.OutStreamer->emitRawComment(OS.str()); 958 return true; 959 } 960 if (MemLoc) 961 OS << '['; 962 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 963 } 964 965 if (MemLoc) 966 OS << '+' << Offset << ']'; 967 968 // NOTE: Want this comment at start of line, don't emit with AddComment. 969 AP.OutStreamer->emitRawComment(OS.str()); 970 return true; 971 } 972 973 /// This method handles the target-independent form of DBG_LABEL, returning 974 /// true if it was able to do so. A false return means the target will need 975 /// to handle MI in EmitInstruction. 976 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 977 if (MI->getNumOperands() != 1) 978 return false; 979 980 SmallString<128> Str; 981 raw_svector_ostream OS(Str); 982 OS << "DEBUG_LABEL: "; 983 984 const DILabel *V = MI->getDebugLabel(); 985 if (auto *SP = dyn_cast<DISubprogram>( 986 V->getScope()->getNonLexicalBlockFileScope())) { 987 StringRef Name = SP->getName(); 988 if (!Name.empty()) 989 OS << Name << ":"; 990 } 991 OS << V->getName(); 992 993 // NOTE: Want this comment at start of line, don't emit with AddComment. 994 AP.OutStreamer->emitRawComment(OS.str()); 995 return true; 996 } 997 998 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 999 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1000 MF->getFunction().needsUnwindTableEntry()) 1001 return CFI_M_EH; 1002 1003 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1004 return CFI_M_Debug; 1005 1006 return CFI_M_None; 1007 } 1008 1009 bool AsmPrinter::needsSEHMoves() { 1010 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1011 } 1012 1013 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1014 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1015 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1016 ExceptionHandlingType != ExceptionHandling::ARM) 1017 return; 1018 1019 if (needsCFIMoves() == CFI_M_None) 1020 return; 1021 1022 // If there is no "real" instruction following this CFI instruction, skip 1023 // emitting it; it would be beyond the end of the function's FDE range. 1024 auto *MBB = MI.getParent(); 1025 auto I = std::next(MI.getIterator()); 1026 while (I != MBB->end() && I->isTransient()) 1027 ++I; 1028 if (I == MBB->instr_end() && 1029 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1030 return; 1031 1032 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1033 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1034 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1035 emitCFIInstruction(CFI); 1036 } 1037 1038 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1039 // The operands are the MCSymbol and the frame offset of the allocation. 1040 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1041 int FrameOffset = MI.getOperand(1).getImm(); 1042 1043 // Emit a symbol assignment. 1044 OutStreamer->emitAssignment(FrameAllocSym, 1045 MCConstantExpr::create(FrameOffset, OutContext)); 1046 } 1047 1048 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1049 if (!MF.getTarget().Options.EmitStackSizeSection) 1050 return; 1051 1052 MCSection *StackSizeSection = 1053 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1054 if (!StackSizeSection) 1055 return; 1056 1057 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1058 // Don't emit functions with dynamic stack allocations. 1059 if (FrameInfo.hasVarSizedObjects()) 1060 return; 1061 1062 OutStreamer->PushSection(); 1063 OutStreamer->SwitchSection(StackSizeSection); 1064 1065 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1066 uint64_t StackSize = FrameInfo.getStackSize(); 1067 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1068 OutStreamer->emitULEB128IntValue(StackSize); 1069 1070 OutStreamer->PopSection(); 1071 } 1072 1073 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1074 MachineModuleInfo *MMI) { 1075 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1076 return true; 1077 1078 // We might emit an EH table that uses function begin and end labels even if 1079 // we don't have any landingpads. 1080 if (!MF.getFunction().hasPersonalityFn()) 1081 return false; 1082 return !isNoOpWithoutInvoke( 1083 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1084 } 1085 1086 /// EmitFunctionBody - This method emits the body and trailer for a 1087 /// function. 1088 void AsmPrinter::emitFunctionBody() { 1089 emitFunctionHeader(); 1090 1091 // Emit target-specific gunk before the function body. 1092 emitFunctionBodyStart(); 1093 1094 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1095 1096 if (isVerbose()) { 1097 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1098 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1099 if (!MDT) { 1100 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1101 OwnedMDT->getBase().recalculate(*MF); 1102 MDT = OwnedMDT.get(); 1103 } 1104 1105 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1106 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1107 if (!MLI) { 1108 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1109 OwnedMLI->getBase().analyze(MDT->getBase()); 1110 MLI = OwnedMLI.get(); 1111 } 1112 } 1113 1114 // Print out code for the function. 1115 bool HasAnyRealCode = false; 1116 int NumInstsInFunction = 0; 1117 1118 for (auto &MBB : *MF) { 1119 // Print a label for the basic block. 1120 emitBasicBlockStart(MBB); 1121 for (auto &MI : MBB) { 1122 // Print the assembly for the instruction. 1123 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1124 !MI.isDebugInstr()) { 1125 HasAnyRealCode = true; 1126 ++NumInstsInFunction; 1127 } 1128 1129 // If there is a pre-instruction symbol, emit a label for it here. 1130 if (MCSymbol *S = MI.getPreInstrSymbol()) 1131 OutStreamer->emitLabel(S); 1132 1133 if (ShouldPrintDebugScopes) { 1134 for (const HandlerInfo &HI : Handlers) { 1135 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1136 HI.TimerGroupName, HI.TimerGroupDescription, 1137 TimePassesIsEnabled); 1138 HI.Handler->beginInstruction(&MI); 1139 } 1140 } 1141 1142 if (isVerbose()) 1143 emitComments(MI, OutStreamer->GetCommentOS()); 1144 1145 switch (MI.getOpcode()) { 1146 case TargetOpcode::CFI_INSTRUCTION: 1147 emitCFIInstruction(MI); 1148 break; 1149 case TargetOpcode::LOCAL_ESCAPE: 1150 emitFrameAlloc(MI); 1151 break; 1152 case TargetOpcode::ANNOTATION_LABEL: 1153 case TargetOpcode::EH_LABEL: 1154 case TargetOpcode::GC_LABEL: 1155 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1156 break; 1157 case TargetOpcode::INLINEASM: 1158 case TargetOpcode::INLINEASM_BR: 1159 emitInlineAsm(&MI); 1160 break; 1161 case TargetOpcode::DBG_VALUE: 1162 if (isVerbose()) { 1163 if (!emitDebugValueComment(&MI, *this)) 1164 emitInstruction(&MI); 1165 } 1166 break; 1167 case TargetOpcode::DBG_LABEL: 1168 if (isVerbose()) { 1169 if (!emitDebugLabelComment(&MI, *this)) 1170 emitInstruction(&MI); 1171 } 1172 break; 1173 case TargetOpcode::IMPLICIT_DEF: 1174 if (isVerbose()) emitImplicitDef(&MI); 1175 break; 1176 case TargetOpcode::KILL: 1177 if (isVerbose()) emitKill(&MI, *this); 1178 break; 1179 default: 1180 emitInstruction(&MI); 1181 break; 1182 } 1183 1184 // If there is a post-instruction symbol, emit a label for it here. 1185 if (MCSymbol *S = MI.getPostInstrSymbol()) 1186 OutStreamer->emitLabel(S); 1187 1188 if (ShouldPrintDebugScopes) { 1189 for (const HandlerInfo &HI : Handlers) { 1190 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1191 HI.TimerGroupName, HI.TimerGroupDescription, 1192 TimePassesIsEnabled); 1193 HI.Handler->endInstruction(); 1194 } 1195 } 1196 } 1197 1198 // We need a temporary symbol for the end of this basic block, if either we 1199 // have BBLabels enabled and we want to emit size directive for the BBs, or 1200 // if this basic blocks marks the end of a section (except the section 1201 // containing the entry basic block as the end symbol for that section is 1202 // CurrentFnEnd). 1203 MCSymbol *CurrentBBEnd = nullptr; 1204 if ((MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) || 1205 (MBB.isEndSection() && !MBB.sameSection(&MF->front()))) { 1206 CurrentBBEnd = OutContext.createTempSymbol(); 1207 OutStreamer->emitLabel(CurrentBBEnd); 1208 } 1209 1210 // Helper for emitting the size directive associated with a basic block 1211 // symbol. 1212 auto emitELFSizeDirective = [&](MCSymbol *SymForSize) { 1213 assert(CurrentBBEnd && "Basicblock end symbol not set!"); 1214 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1215 MCSymbolRefExpr::create(CurrentBBEnd, OutContext), 1216 MCSymbolRefExpr::create(SymForSize, OutContext), OutContext); 1217 OutStreamer->emitELFSize(SymForSize, SizeExp); 1218 }; 1219 1220 // Emit size directive for the size of each basic block, if BBLabels is 1221 // enabled. 1222 if (MAI->hasDotTypeDotSizeDirective() && MF->hasBBLabels()) 1223 emitELFSizeDirective(MBB.getSymbol()); 1224 1225 // Emit size directive for the size of each basic block section once we 1226 // get to the end of that section. 1227 if (MBB.isEndSection()) { 1228 if (!MBB.sameSection(&MF->front())) { 1229 if (MAI->hasDotTypeDotSizeDirective()) 1230 emitELFSizeDirective(CurrentSectionBeginSym); 1231 } 1232 } 1233 emitBasicBlockEnd(MBB); 1234 } 1235 1236 EmittedInsts += NumInstsInFunction; 1237 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1238 MF->getFunction().getSubprogram(), 1239 &MF->front()); 1240 R << ore::NV("NumInstructions", NumInstsInFunction) 1241 << " instructions in function"; 1242 ORE->emit(R); 1243 1244 // If the function is empty and the object file uses .subsections_via_symbols, 1245 // then we need to emit *something* to the function body to prevent the 1246 // labels from collapsing together. Just emit a noop. 1247 // Similarly, don't emit empty functions on Windows either. It can lead to 1248 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1249 // after linking, causing the kernel not to load the binary: 1250 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1251 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1252 const Triple &TT = TM.getTargetTriple(); 1253 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1254 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1255 MCInst Noop; 1256 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1257 1258 // Targets can opt-out of emitting the noop here by leaving the opcode 1259 // unspecified. 1260 if (Noop.getOpcode()) { 1261 OutStreamer->AddComment("avoids zero-length function"); 1262 emitNops(1); 1263 } 1264 } 1265 1266 // Switch to the original section in case basic block sections was used. 1267 OutStreamer->SwitchSection(MF->getSection()); 1268 1269 const Function &F = MF->getFunction(); 1270 for (const auto &BB : F) { 1271 if (!BB.hasAddressTaken()) 1272 continue; 1273 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1274 if (Sym->isDefined()) 1275 continue; 1276 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1277 OutStreamer->emitLabel(Sym); 1278 } 1279 1280 // Emit target-specific gunk after the function body. 1281 emitFunctionBodyEnd(); 1282 1283 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1284 MAI->hasDotTypeDotSizeDirective()) { 1285 // Create a symbol for the end of function. 1286 CurrentFnEnd = createTempSymbol("func_end"); 1287 OutStreamer->emitLabel(CurrentFnEnd); 1288 } 1289 1290 // If the target wants a .size directive for the size of the function, emit 1291 // it. 1292 if (MAI->hasDotTypeDotSizeDirective()) { 1293 // We can get the size as difference between the function label and the 1294 // temp label. 1295 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1296 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1297 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1298 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1299 } 1300 1301 for (const HandlerInfo &HI : Handlers) { 1302 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1303 HI.TimerGroupDescription, TimePassesIsEnabled); 1304 HI.Handler->markFunctionEnd(); 1305 } 1306 1307 1308 // Print out jump tables referenced by the function. 1309 emitJumpTableInfo(); 1310 1311 // Emit post-function debug and/or EH information. 1312 for (const HandlerInfo &HI : Handlers) { 1313 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1314 HI.TimerGroupDescription, TimePassesIsEnabled); 1315 HI.Handler->endFunction(MF); 1316 } 1317 1318 // Emit section containing stack size metadata. 1319 emitStackSizeSection(*MF); 1320 1321 emitPatchableFunctionEntries(); 1322 1323 if (isVerbose()) 1324 OutStreamer->GetCommentOS() << "-- End function\n"; 1325 1326 OutStreamer->AddBlankLine(); 1327 } 1328 1329 /// Compute the number of Global Variables that uses a Constant. 1330 static unsigned getNumGlobalVariableUses(const Constant *C) { 1331 if (!C) 1332 return 0; 1333 1334 if (isa<GlobalVariable>(C)) 1335 return 1; 1336 1337 unsigned NumUses = 0; 1338 for (auto *CU : C->users()) 1339 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1340 1341 return NumUses; 1342 } 1343 1344 /// Only consider global GOT equivalents if at least one user is a 1345 /// cstexpr inside an initializer of another global variables. Also, don't 1346 /// handle cstexpr inside instructions. During global variable emission, 1347 /// candidates are skipped and are emitted later in case at least one cstexpr 1348 /// isn't replaced by a PC relative GOT entry access. 1349 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1350 unsigned &NumGOTEquivUsers) { 1351 // Global GOT equivalents are unnamed private globals with a constant 1352 // pointer initializer to another global symbol. They must point to a 1353 // GlobalVariable or Function, i.e., as GlobalValue. 1354 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1355 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1356 !isa<GlobalValue>(GV->getOperand(0))) 1357 return false; 1358 1359 // To be a got equivalent, at least one of its users need to be a constant 1360 // expression used by another global variable. 1361 for (auto *U : GV->users()) 1362 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1363 1364 return NumGOTEquivUsers > 0; 1365 } 1366 1367 /// Unnamed constant global variables solely contaning a pointer to 1368 /// another globals variable is equivalent to a GOT table entry; it contains the 1369 /// the address of another symbol. Optimize it and replace accesses to these 1370 /// "GOT equivalents" by using the GOT entry for the final global instead. 1371 /// Compute GOT equivalent candidates among all global variables to avoid 1372 /// emitting them if possible later on, after it use is replaced by a GOT entry 1373 /// access. 1374 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1375 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1376 return; 1377 1378 for (const auto &G : M.globals()) { 1379 unsigned NumGOTEquivUsers = 0; 1380 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1381 continue; 1382 1383 const MCSymbol *GOTEquivSym = getSymbol(&G); 1384 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1385 } 1386 } 1387 1388 /// Constant expressions using GOT equivalent globals may not be eligible 1389 /// for PC relative GOT entry conversion, in such cases we need to emit such 1390 /// globals we previously omitted in EmitGlobalVariable. 1391 void AsmPrinter::emitGlobalGOTEquivs() { 1392 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1393 return; 1394 1395 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1396 for (auto &I : GlobalGOTEquivs) { 1397 const GlobalVariable *GV = I.second.first; 1398 unsigned Cnt = I.second.second; 1399 if (Cnt) 1400 FailedCandidates.push_back(GV); 1401 } 1402 GlobalGOTEquivs.clear(); 1403 1404 for (auto *GV : FailedCandidates) 1405 emitGlobalVariable(GV); 1406 } 1407 1408 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1409 const GlobalIndirectSymbol& GIS) { 1410 MCSymbol *Name = getSymbol(&GIS); 1411 1412 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1413 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1414 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1415 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1416 else 1417 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1418 1419 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1420 1421 // Treat bitcasts of functions as functions also. This is important at least 1422 // on WebAssembly where object and function addresses can't alias each other. 1423 if (!IsFunction) 1424 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1425 if (CE->getOpcode() == Instruction::BitCast) 1426 IsFunction = 1427 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1428 1429 // Set the symbol type to function if the alias has a function type. 1430 // This affects codegen when the aliasee is not a function. 1431 if (IsFunction) 1432 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1433 ? MCSA_ELF_TypeIndFunction 1434 : MCSA_ELF_TypeFunction); 1435 1436 emitVisibility(Name, GIS.getVisibility()); 1437 1438 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1439 1440 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1441 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1442 1443 // Emit the directives as assignments aka .set: 1444 OutStreamer->emitAssignment(Name, Expr); 1445 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1446 if (LocalAlias != Name) 1447 OutStreamer->emitAssignment(LocalAlias, Expr); 1448 1449 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1450 // If the aliasee does not correspond to a symbol in the output, i.e. the 1451 // alias is not of an object or the aliased object is private, then set the 1452 // size of the alias symbol from the type of the alias. We don't do this in 1453 // other situations as the alias and aliasee having differing types but same 1454 // size may be intentional. 1455 const GlobalObject *BaseObject = GA->getBaseObject(); 1456 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1457 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1458 const DataLayout &DL = M.getDataLayout(); 1459 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1460 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1461 } 1462 } 1463 } 1464 1465 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1466 if (!RS.needsSection()) 1467 return; 1468 1469 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1470 1471 Optional<SmallString<128>> Filename; 1472 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1473 Filename = *FilenameRef; 1474 sys::fs::make_absolute(*Filename); 1475 assert(!Filename->empty() && "The filename can't be empty."); 1476 } 1477 1478 std::string Buf; 1479 raw_string_ostream OS(Buf); 1480 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1481 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1482 : RemarkSerializer.metaSerializer(OS); 1483 MetaSerializer->emit(); 1484 1485 // Switch to the remarks section. 1486 MCSection *RemarksSection = 1487 OutContext.getObjectFileInfo()->getRemarksSection(); 1488 OutStreamer->SwitchSection(RemarksSection); 1489 1490 OutStreamer->emitBinaryData(OS.str()); 1491 } 1492 1493 bool AsmPrinter::doFinalization(Module &M) { 1494 // Set the MachineFunction to nullptr so that we can catch attempted 1495 // accesses to MF specific features at the module level and so that 1496 // we can conditionalize accesses based on whether or not it is nullptr. 1497 MF = nullptr; 1498 1499 // Gather all GOT equivalent globals in the module. We really need two 1500 // passes over the globals: one to compute and another to avoid its emission 1501 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1502 // where the got equivalent shows up before its use. 1503 computeGlobalGOTEquivs(M); 1504 1505 // Emit global variables. 1506 for (const auto &G : M.globals()) 1507 emitGlobalVariable(&G); 1508 1509 // Emit remaining GOT equivalent globals. 1510 emitGlobalGOTEquivs(); 1511 1512 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1513 1514 // Emit linkage(XCOFF) and visibility info for declarations 1515 for (const Function &F : M) { 1516 if (!F.isDeclarationForLinker()) 1517 continue; 1518 1519 MCSymbol *Name = getSymbol(&F); 1520 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1521 1522 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1523 GlobalValue::VisibilityTypes V = F.getVisibility(); 1524 if (V == GlobalValue::DefaultVisibility) 1525 continue; 1526 1527 emitVisibility(Name, V, false); 1528 continue; 1529 } 1530 1531 if (F.isIntrinsic()) 1532 continue; 1533 1534 // Handle the XCOFF case. 1535 // Variable `Name` is the function descriptor symbol (see above). Get the 1536 // function entry point symbol. 1537 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1538 if (cast<MCSymbolXCOFF>(FnEntryPointSym)->hasRepresentedCsectSet()) 1539 // Emit linkage for the function entry point. 1540 emitLinkage(&F, FnEntryPointSym); 1541 1542 // Emit linkage for the function descriptor. 1543 emitLinkage(&F, Name); 1544 } 1545 1546 // Emit the remarks section contents. 1547 // FIXME: Figure out when is the safest time to emit this section. It should 1548 // not come after debug info. 1549 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1550 emitRemarksSection(*RS); 1551 1552 TLOF.emitModuleMetadata(*OutStreamer, M); 1553 1554 if (TM.getTargetTriple().isOSBinFormatELF()) { 1555 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1556 1557 // Output stubs for external and common global variables. 1558 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1559 if (!Stubs.empty()) { 1560 OutStreamer->SwitchSection(TLOF.getDataSection()); 1561 const DataLayout &DL = M.getDataLayout(); 1562 1563 emitAlignment(Align(DL.getPointerSize())); 1564 for (const auto &Stub : Stubs) { 1565 OutStreamer->emitLabel(Stub.first); 1566 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1567 DL.getPointerSize()); 1568 } 1569 } 1570 } 1571 1572 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1573 MachineModuleInfoCOFF &MMICOFF = 1574 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1575 1576 // Output stubs for external and common global variables. 1577 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1578 if (!Stubs.empty()) { 1579 const DataLayout &DL = M.getDataLayout(); 1580 1581 for (const auto &Stub : Stubs) { 1582 SmallString<256> SectionName = StringRef(".rdata$"); 1583 SectionName += Stub.first->getName(); 1584 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1585 SectionName, 1586 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1587 COFF::IMAGE_SCN_LNK_COMDAT, 1588 SectionKind::getReadOnly(), Stub.first->getName(), 1589 COFF::IMAGE_COMDAT_SELECT_ANY)); 1590 emitAlignment(Align(DL.getPointerSize())); 1591 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1592 OutStreamer->emitLabel(Stub.first); 1593 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1594 DL.getPointerSize()); 1595 } 1596 } 1597 } 1598 1599 // Finalize debug and EH information. 1600 for (const HandlerInfo &HI : Handlers) { 1601 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1602 HI.TimerGroupDescription, TimePassesIsEnabled); 1603 HI.Handler->endModule(); 1604 } 1605 Handlers.clear(); 1606 DD = nullptr; 1607 1608 // If the target wants to know about weak references, print them all. 1609 if (MAI->getWeakRefDirective()) { 1610 // FIXME: This is not lazy, it would be nice to only print weak references 1611 // to stuff that is actually used. Note that doing so would require targets 1612 // to notice uses in operands (due to constant exprs etc). This should 1613 // happen with the MC stuff eventually. 1614 1615 // Print out module-level global objects here. 1616 for (const auto &GO : M.global_objects()) { 1617 if (!GO.hasExternalWeakLinkage()) 1618 continue; 1619 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1620 } 1621 } 1622 1623 // Print aliases in topological order, that is, for each alias a = b, 1624 // b must be printed before a. 1625 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1626 // such an order to generate correct TOC information. 1627 SmallVector<const GlobalAlias *, 16> AliasStack; 1628 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1629 for (const auto &Alias : M.aliases()) { 1630 for (const GlobalAlias *Cur = &Alias; Cur; 1631 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1632 if (!AliasVisited.insert(Cur).second) 1633 break; 1634 AliasStack.push_back(Cur); 1635 } 1636 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1637 emitGlobalIndirectSymbol(M, *AncestorAlias); 1638 AliasStack.clear(); 1639 } 1640 for (const auto &IFunc : M.ifuncs()) 1641 emitGlobalIndirectSymbol(M, IFunc); 1642 1643 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1644 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1645 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1646 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1647 MP->finishAssembly(M, *MI, *this); 1648 1649 // Emit llvm.ident metadata in an '.ident' directive. 1650 emitModuleIdents(M); 1651 1652 // Emit bytes for llvm.commandline metadata. 1653 emitModuleCommandLines(M); 1654 1655 // Emit __morestack address if needed for indirect calls. 1656 if (MMI->usesMorestackAddr()) { 1657 Align Alignment(1); 1658 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1659 getDataLayout(), SectionKind::getReadOnly(), 1660 /*C=*/nullptr, Alignment); 1661 OutStreamer->SwitchSection(ReadOnlySection); 1662 1663 MCSymbol *AddrSymbol = 1664 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1665 OutStreamer->emitLabel(AddrSymbol); 1666 1667 unsigned PtrSize = MAI->getCodePointerSize(); 1668 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1669 PtrSize); 1670 } 1671 1672 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1673 // split-stack is used. 1674 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1675 OutStreamer->SwitchSection( 1676 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1677 if (MMI->hasNosplitStack()) 1678 OutStreamer->SwitchSection( 1679 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1680 } 1681 1682 // If we don't have any trampolines, then we don't require stack memory 1683 // to be executable. Some targets have a directive to declare this. 1684 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1685 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1686 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1687 OutStreamer->SwitchSection(S); 1688 1689 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1690 // Emit /EXPORT: flags for each exported global as necessary. 1691 const auto &TLOF = getObjFileLowering(); 1692 std::string Flags; 1693 1694 for (const GlobalValue &GV : M.global_values()) { 1695 raw_string_ostream OS(Flags); 1696 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1697 OS.flush(); 1698 if (!Flags.empty()) { 1699 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1700 OutStreamer->emitBytes(Flags); 1701 } 1702 Flags.clear(); 1703 } 1704 1705 // Emit /INCLUDE: flags for each used global as necessary. 1706 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1707 assert(LU->hasInitializer() && 1708 "expected llvm.used to have an initializer"); 1709 assert(isa<ArrayType>(LU->getValueType()) && 1710 "expected llvm.used to be an array type"); 1711 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1712 for (const Value *Op : A->operands()) { 1713 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1714 // Global symbols with internal or private linkage are not visible to 1715 // the linker, and thus would cause an error when the linker tried to 1716 // preserve the symbol due to the `/include:` directive. 1717 if (GV->hasLocalLinkage()) 1718 continue; 1719 1720 raw_string_ostream OS(Flags); 1721 TLOF.emitLinkerFlagsForUsed(OS, GV); 1722 OS.flush(); 1723 1724 if (!Flags.empty()) { 1725 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1726 OutStreamer->emitBytes(Flags); 1727 } 1728 Flags.clear(); 1729 } 1730 } 1731 } 1732 } 1733 1734 if (TM.Options.EmitAddrsig) { 1735 // Emit address-significance attributes for all globals. 1736 OutStreamer->emitAddrsig(); 1737 for (const GlobalValue &GV : M.global_values()) 1738 if (!GV.use_empty() && !GV.isThreadLocal() && 1739 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1740 !GV.hasAtLeastLocalUnnamedAddr()) 1741 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1742 } 1743 1744 // Emit symbol partition specifications (ELF only). 1745 if (TM.getTargetTriple().isOSBinFormatELF()) { 1746 unsigned UniqueID = 0; 1747 for (const GlobalValue &GV : M.global_values()) { 1748 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1749 GV.getVisibility() != GlobalValue::DefaultVisibility) 1750 continue; 1751 1752 OutStreamer->SwitchSection( 1753 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1754 "", ++UniqueID, nullptr)); 1755 OutStreamer->emitBytes(GV.getPartition()); 1756 OutStreamer->emitZeros(1); 1757 OutStreamer->emitValue( 1758 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1759 MAI->getCodePointerSize()); 1760 } 1761 } 1762 1763 // Allow the target to emit any magic that it wants at the end of the file, 1764 // after everything else has gone out. 1765 emitEndOfAsmFile(M); 1766 1767 MMI = nullptr; 1768 1769 OutStreamer->Finish(); 1770 OutStreamer->reset(); 1771 OwnedMLI.reset(); 1772 OwnedMDT.reset(); 1773 1774 return false; 1775 } 1776 1777 MCSymbol *AsmPrinter::getCurExceptionSym() { 1778 if (!CurExceptionSym) 1779 CurExceptionSym = createTempSymbol("exception"); 1780 return CurExceptionSym; 1781 } 1782 1783 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1784 this->MF = &MF; 1785 const Function &F = MF.getFunction(); 1786 1787 // Get the function symbol. 1788 if (!MAI->needsFunctionDescriptors()) { 1789 CurrentFnSym = getSymbol(&MF.getFunction()); 1790 } else { 1791 assert(TM.getTargetTriple().isOSAIX() && 1792 "Only AIX uses the function descriptor hooks."); 1793 // AIX is unique here in that the name of the symbol emitted for the 1794 // function body does not have the same name as the source function's 1795 // C-linkage name. 1796 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1797 " initalized first."); 1798 1799 // Get the function entry point symbol. 1800 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1801 } 1802 1803 CurrentFnSymForSize = CurrentFnSym; 1804 CurrentFnBegin = nullptr; 1805 CurrentSectionBeginSym = nullptr; 1806 CurExceptionSym = nullptr; 1807 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1808 if (F.hasFnAttribute("patchable-function-entry") || 1809 F.hasFnAttribute("function-instrument") || 1810 F.hasFnAttribute("xray-instruction-threshold") || 1811 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1812 MF.getTarget().Options.EmitStackSizeSection) { 1813 CurrentFnBegin = createTempSymbol("func_begin"); 1814 if (NeedsLocalForSize) 1815 CurrentFnSymForSize = CurrentFnBegin; 1816 } 1817 1818 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1819 } 1820 1821 namespace { 1822 1823 // Keep track the alignment, constpool entries per Section. 1824 struct SectionCPs { 1825 MCSection *S; 1826 Align Alignment; 1827 SmallVector<unsigned, 4> CPEs; 1828 1829 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1830 }; 1831 1832 } // end anonymous namespace 1833 1834 /// EmitConstantPool - Print to the current output stream assembly 1835 /// representations of the constants in the constant pool MCP. This is 1836 /// used to print out constants which have been "spilled to memory" by 1837 /// the code generator. 1838 void AsmPrinter::emitConstantPool() { 1839 const MachineConstantPool *MCP = MF->getConstantPool(); 1840 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1841 if (CP.empty()) return; 1842 1843 // Calculate sections for constant pool entries. We collect entries to go into 1844 // the same section together to reduce amount of section switch statements. 1845 SmallVector<SectionCPs, 4> CPSections; 1846 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1847 const MachineConstantPoolEntry &CPE = CP[i]; 1848 Align Alignment = CPE.getAlign(); 1849 1850 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1851 1852 const Constant *C = nullptr; 1853 if (!CPE.isMachineConstantPoolEntry()) 1854 C = CPE.Val.ConstVal; 1855 1856 MCSection *S = getObjFileLowering().getSectionForConstant( 1857 getDataLayout(), Kind, C, Alignment); 1858 1859 // The number of sections are small, just do a linear search from the 1860 // last section to the first. 1861 bool Found = false; 1862 unsigned SecIdx = CPSections.size(); 1863 while (SecIdx != 0) { 1864 if (CPSections[--SecIdx].S == S) { 1865 Found = true; 1866 break; 1867 } 1868 } 1869 if (!Found) { 1870 SecIdx = CPSections.size(); 1871 CPSections.push_back(SectionCPs(S, Alignment)); 1872 } 1873 1874 if (Alignment > CPSections[SecIdx].Alignment) 1875 CPSections[SecIdx].Alignment = Alignment; 1876 CPSections[SecIdx].CPEs.push_back(i); 1877 } 1878 1879 // Now print stuff into the calculated sections. 1880 const MCSection *CurSection = nullptr; 1881 unsigned Offset = 0; 1882 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1883 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1884 unsigned CPI = CPSections[i].CPEs[j]; 1885 MCSymbol *Sym = GetCPISymbol(CPI); 1886 if (!Sym->isUndefined()) 1887 continue; 1888 1889 if (CurSection != CPSections[i].S) { 1890 OutStreamer->SwitchSection(CPSections[i].S); 1891 emitAlignment(Align(CPSections[i].Alignment)); 1892 CurSection = CPSections[i].S; 1893 Offset = 0; 1894 } 1895 1896 MachineConstantPoolEntry CPE = CP[CPI]; 1897 1898 // Emit inter-object padding for alignment. 1899 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1900 OutStreamer->emitZeros(NewOffset - Offset); 1901 1902 Type *Ty = CPE.getType(); 1903 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1904 1905 OutStreamer->emitLabel(Sym); 1906 if (CPE.isMachineConstantPoolEntry()) 1907 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1908 else 1909 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1910 } 1911 } 1912 } 1913 1914 // Print assembly representations of the jump tables used by the current 1915 // function. 1916 void AsmPrinter::emitJumpTableInfo() { 1917 const DataLayout &DL = MF->getDataLayout(); 1918 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1919 if (!MJTI) return; 1920 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1921 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1922 if (JT.empty()) return; 1923 1924 // Pick the directive to use to print the jump table entries, and switch to 1925 // the appropriate section. 1926 const Function &F = MF->getFunction(); 1927 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1928 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1929 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1930 F); 1931 if (JTInDiffSection) { 1932 // Drop it in the readonly section. 1933 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1934 OutStreamer->SwitchSection(ReadOnlySection); 1935 } 1936 1937 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 1938 1939 // Jump tables in code sections are marked with a data_region directive 1940 // where that's supported. 1941 if (!JTInDiffSection) 1942 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 1943 1944 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1945 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1946 1947 // If this jump table was deleted, ignore it. 1948 if (JTBBs.empty()) continue; 1949 1950 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1951 /// emit a .set directive for each unique entry. 1952 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1953 MAI->doesSetDirectiveSuppressReloc()) { 1954 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1955 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1956 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1957 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1958 const MachineBasicBlock *MBB = JTBBs[ii]; 1959 if (!EmittedSets.insert(MBB).second) 1960 continue; 1961 1962 // .set LJTSet, LBB32-base 1963 const MCExpr *LHS = 1964 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1965 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1966 MCBinaryExpr::createSub(LHS, Base, 1967 OutContext)); 1968 } 1969 } 1970 1971 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1972 // before each jump table. The first label is never referenced, but tells 1973 // the assembler and linker the extents of the jump table object. The 1974 // second label is actually referenced by the code. 1975 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1976 // FIXME: This doesn't have to have any specific name, just any randomly 1977 // named and numbered local label started with 'l' would work. Simplify 1978 // GetJTISymbol. 1979 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 1980 1981 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1982 OutStreamer->emitLabel(JTISymbol); 1983 1984 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1985 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1986 } 1987 if (!JTInDiffSection) 1988 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1989 } 1990 1991 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1992 /// current stream. 1993 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1994 const MachineBasicBlock *MBB, 1995 unsigned UID) const { 1996 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1997 const MCExpr *Value = nullptr; 1998 switch (MJTI->getEntryKind()) { 1999 case MachineJumpTableInfo::EK_Inline: 2000 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2001 case MachineJumpTableInfo::EK_Custom32: 2002 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2003 MJTI, MBB, UID, OutContext); 2004 break; 2005 case MachineJumpTableInfo::EK_BlockAddress: 2006 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2007 // .word LBB123 2008 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2009 break; 2010 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2011 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2012 // with a relocation as gp-relative, e.g.: 2013 // .gprel32 LBB123 2014 MCSymbol *MBBSym = MBB->getSymbol(); 2015 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2016 return; 2017 } 2018 2019 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2020 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2021 // with a relocation as gp-relative, e.g.: 2022 // .gpdword LBB123 2023 MCSymbol *MBBSym = MBB->getSymbol(); 2024 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2025 return; 2026 } 2027 2028 case MachineJumpTableInfo::EK_LabelDifference32: { 2029 // Each entry is the address of the block minus the address of the jump 2030 // table. This is used for PIC jump tables where gprel32 is not supported. 2031 // e.g.: 2032 // .word LBB123 - LJTI1_2 2033 // If the .set directive avoids relocations, this is emitted as: 2034 // .set L4_5_set_123, LBB123 - LJTI1_2 2035 // .word L4_5_set_123 2036 if (MAI->doesSetDirectiveSuppressReloc()) { 2037 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2038 OutContext); 2039 break; 2040 } 2041 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2042 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2043 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2044 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2045 break; 2046 } 2047 } 2048 2049 assert(Value && "Unknown entry kind!"); 2050 2051 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2052 OutStreamer->emitValue(Value, EntrySize); 2053 } 2054 2055 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2056 /// special global used by LLVM. If so, emit it and return true, otherwise 2057 /// do nothing and return false. 2058 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2059 if (GV->getName() == "llvm.used") { 2060 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2061 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2062 return true; 2063 } 2064 2065 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2066 if (GV->getSection() == "llvm.metadata" || 2067 GV->hasAvailableExternallyLinkage()) 2068 return true; 2069 2070 if (!GV->hasAppendingLinkage()) return false; 2071 2072 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2073 2074 if (GV->getName() == "llvm.global_ctors") { 2075 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2076 /* isCtor */ true); 2077 2078 return true; 2079 } 2080 2081 if (GV->getName() == "llvm.global_dtors") { 2082 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2083 /* isCtor */ false); 2084 2085 return true; 2086 } 2087 2088 report_fatal_error("unknown special variable"); 2089 } 2090 2091 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2092 /// global in the specified llvm.used list. 2093 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2094 // Should be an array of 'i8*'. 2095 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2096 const GlobalValue *GV = 2097 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2098 if (GV) 2099 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2100 } 2101 } 2102 2103 namespace { 2104 2105 struct Structor { 2106 int Priority = 0; 2107 Constant *Func = nullptr; 2108 GlobalValue *ComdatKey = nullptr; 2109 2110 Structor() = default; 2111 }; 2112 2113 } // end anonymous namespace 2114 2115 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2116 /// priority. 2117 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2118 bool isCtor) { 2119 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2120 // init priority. 2121 if (!isa<ConstantArray>(List)) return; 2122 2123 // Gather the structors in a form that's convenient for sorting by priority. 2124 SmallVector<Structor, 8> Structors; 2125 for (Value *O : cast<ConstantArray>(List)->operands()) { 2126 auto *CS = cast<ConstantStruct>(O); 2127 if (CS->getOperand(1)->isNullValue()) 2128 break; // Found a null terminator, skip the rest. 2129 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2130 if (!Priority) continue; // Malformed. 2131 Structors.push_back(Structor()); 2132 Structor &S = Structors.back(); 2133 S.Priority = Priority->getLimitedValue(65535); 2134 S.Func = CS->getOperand(1); 2135 if (!CS->getOperand(2)->isNullValue()) 2136 S.ComdatKey = 2137 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2138 } 2139 2140 // Emit the function pointers in the target-specific order 2141 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2142 return L.Priority < R.Priority; 2143 }); 2144 const Align Align = DL.getPointerPrefAlignment(); 2145 for (Structor &S : Structors) { 2146 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2147 const MCSymbol *KeySym = nullptr; 2148 if (GlobalValue *GV = S.ComdatKey) { 2149 if (GV->isDeclarationForLinker()) 2150 // If the associated variable is not defined in this module 2151 // (it might be available_externally, or have been an 2152 // available_externally definition that was dropped by the 2153 // EliminateAvailableExternally pass), some other TU 2154 // will provide its dynamic initializer. 2155 continue; 2156 2157 KeySym = getSymbol(GV); 2158 } 2159 MCSection *OutputSection = 2160 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2161 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2162 OutStreamer->SwitchSection(OutputSection); 2163 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2164 emitAlignment(Align); 2165 emitXXStructor(DL, S.Func); 2166 } 2167 } 2168 2169 void AsmPrinter::emitModuleIdents(Module &M) { 2170 if (!MAI->hasIdentDirective()) 2171 return; 2172 2173 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2174 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2175 const MDNode *N = NMD->getOperand(i); 2176 assert(N->getNumOperands() == 1 && 2177 "llvm.ident metadata entry can have only one operand"); 2178 const MDString *S = cast<MDString>(N->getOperand(0)); 2179 OutStreamer->emitIdent(S->getString()); 2180 } 2181 } 2182 } 2183 2184 void AsmPrinter::emitModuleCommandLines(Module &M) { 2185 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2186 if (!CommandLine) 2187 return; 2188 2189 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2190 if (!NMD || !NMD->getNumOperands()) 2191 return; 2192 2193 OutStreamer->PushSection(); 2194 OutStreamer->SwitchSection(CommandLine); 2195 OutStreamer->emitZeros(1); 2196 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2197 const MDNode *N = NMD->getOperand(i); 2198 assert(N->getNumOperands() == 1 && 2199 "llvm.commandline metadata entry can have only one operand"); 2200 const MDString *S = cast<MDString>(N->getOperand(0)); 2201 OutStreamer->emitBytes(S->getString()); 2202 OutStreamer->emitZeros(1); 2203 } 2204 OutStreamer->PopSection(); 2205 } 2206 2207 //===--------------------------------------------------------------------===// 2208 // Emission and print routines 2209 // 2210 2211 /// Emit a byte directive and value. 2212 /// 2213 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2214 2215 /// Emit a short directive and value. 2216 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2217 2218 /// Emit a long directive and value. 2219 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2220 2221 /// Emit a long long directive and value. 2222 void AsmPrinter::emitInt64(uint64_t Value) const { 2223 OutStreamer->emitInt64(Value); 2224 } 2225 2226 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2227 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2228 /// .set if it avoids relocations. 2229 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2230 unsigned Size) const { 2231 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2232 } 2233 2234 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2235 /// where the size in bytes of the directive is specified by Size and Label 2236 /// specifies the label. This implicitly uses .set if it is available. 2237 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2238 unsigned Size, 2239 bool IsSectionRelative) const { 2240 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2241 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2242 if (Size > 4) 2243 OutStreamer->emitZeros(Size - 4); 2244 return; 2245 } 2246 2247 // Emit Label+Offset (or just Label if Offset is zero) 2248 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2249 if (Offset) 2250 Expr = MCBinaryExpr::createAdd( 2251 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2252 2253 OutStreamer->emitValue(Expr, Size); 2254 } 2255 2256 //===----------------------------------------------------------------------===// 2257 2258 // EmitAlignment - Emit an alignment directive to the specified power of 2259 // two boundary. If a global value is specified, and if that global has 2260 // an explicit alignment requested, it will override the alignment request 2261 // if required for correctness. 2262 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2263 if (GV) 2264 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2265 2266 if (Alignment == Align(1)) 2267 return; // 1-byte aligned: no need to emit alignment. 2268 2269 if (getCurrentSection()->getKind().isText()) 2270 OutStreamer->emitCodeAlignment(Alignment.value()); 2271 else 2272 OutStreamer->emitValueToAlignment(Alignment.value()); 2273 } 2274 2275 //===----------------------------------------------------------------------===// 2276 // Constant emission. 2277 //===----------------------------------------------------------------------===// 2278 2279 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2280 MCContext &Ctx = OutContext; 2281 2282 if (CV->isNullValue() || isa<UndefValue>(CV)) 2283 return MCConstantExpr::create(0, Ctx); 2284 2285 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2286 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2287 2288 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2289 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2290 2291 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2292 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2293 2294 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2295 if (!CE) { 2296 llvm_unreachable("Unknown constant value to lower!"); 2297 } 2298 2299 switch (CE->getOpcode()) { 2300 default: { 2301 // If the code isn't optimized, there may be outstanding folding 2302 // opportunities. Attempt to fold the expression using DataLayout as a 2303 // last resort before giving up. 2304 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2305 if (C != CE) 2306 return lowerConstant(C); 2307 2308 // Otherwise report the problem to the user. 2309 std::string S; 2310 raw_string_ostream OS(S); 2311 OS << "Unsupported expression in static initializer: "; 2312 CE->printAsOperand(OS, /*PrintType=*/false, 2313 !MF ? nullptr : MF->getFunction().getParent()); 2314 report_fatal_error(OS.str()); 2315 } 2316 case Instruction::GetElementPtr: { 2317 // Generate a symbolic expression for the byte address 2318 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2319 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2320 2321 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2322 if (!OffsetAI) 2323 return Base; 2324 2325 int64_t Offset = OffsetAI.getSExtValue(); 2326 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2327 Ctx); 2328 } 2329 2330 case Instruction::Trunc: 2331 // We emit the value and depend on the assembler to truncate the generated 2332 // expression properly. This is important for differences between 2333 // blockaddress labels. Since the two labels are in the same function, it 2334 // is reasonable to treat their delta as a 32-bit value. 2335 LLVM_FALLTHROUGH; 2336 case Instruction::BitCast: 2337 return lowerConstant(CE->getOperand(0)); 2338 2339 case Instruction::IntToPtr: { 2340 const DataLayout &DL = getDataLayout(); 2341 2342 // Handle casts to pointers by changing them into casts to the appropriate 2343 // integer type. This promotes constant folding and simplifies this code. 2344 Constant *Op = CE->getOperand(0); 2345 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2346 false/*ZExt*/); 2347 return lowerConstant(Op); 2348 } 2349 2350 case Instruction::PtrToInt: { 2351 const DataLayout &DL = getDataLayout(); 2352 2353 // Support only foldable casts to/from pointers that can be eliminated by 2354 // changing the pointer to the appropriately sized integer type. 2355 Constant *Op = CE->getOperand(0); 2356 Type *Ty = CE->getType(); 2357 2358 const MCExpr *OpExpr = lowerConstant(Op); 2359 2360 // We can emit the pointer value into this slot if the slot is an 2361 // integer slot equal to the size of the pointer. 2362 // 2363 // If the pointer is larger than the resultant integer, then 2364 // as with Trunc just depend on the assembler to truncate it. 2365 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2366 return OpExpr; 2367 2368 // Otherwise the pointer is smaller than the resultant integer, mask off 2369 // the high bits so we are sure to get a proper truncation if the input is 2370 // a constant expr. 2371 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2372 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2373 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2374 } 2375 2376 case Instruction::Sub: { 2377 GlobalValue *LHSGV; 2378 APInt LHSOffset; 2379 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2380 getDataLayout())) { 2381 GlobalValue *RHSGV; 2382 APInt RHSOffset; 2383 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2384 getDataLayout())) { 2385 const MCExpr *RelocExpr = 2386 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2387 if (!RelocExpr) 2388 RelocExpr = MCBinaryExpr::createSub( 2389 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2390 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2391 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2392 if (Addend != 0) 2393 RelocExpr = MCBinaryExpr::createAdd( 2394 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2395 return RelocExpr; 2396 } 2397 } 2398 } 2399 // else fallthrough 2400 LLVM_FALLTHROUGH; 2401 2402 // The MC library also has a right-shift operator, but it isn't consistently 2403 // signed or unsigned between different targets. 2404 case Instruction::Add: 2405 case Instruction::Mul: 2406 case Instruction::SDiv: 2407 case Instruction::SRem: 2408 case Instruction::Shl: 2409 case Instruction::And: 2410 case Instruction::Or: 2411 case Instruction::Xor: { 2412 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2413 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2414 switch (CE->getOpcode()) { 2415 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2416 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2417 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2418 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2419 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2420 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2421 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2422 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2423 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2424 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2425 } 2426 } 2427 } 2428 } 2429 2430 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2431 AsmPrinter &AP, 2432 const Constant *BaseCV = nullptr, 2433 uint64_t Offset = 0); 2434 2435 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2436 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2437 2438 /// isRepeatedByteSequence - Determine whether the given value is 2439 /// composed of a repeated sequence of identical bytes and return the 2440 /// byte value. If it is not a repeated sequence, return -1. 2441 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2442 StringRef Data = V->getRawDataValues(); 2443 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2444 char C = Data[0]; 2445 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2446 if (Data[i] != C) return -1; 2447 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2448 } 2449 2450 /// isRepeatedByteSequence - Determine whether the given value is 2451 /// composed of a repeated sequence of identical bytes and return the 2452 /// byte value. If it is not a repeated sequence, return -1. 2453 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2454 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2455 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2456 assert(Size % 8 == 0); 2457 2458 // Extend the element to take zero padding into account. 2459 APInt Value = CI->getValue().zextOrSelf(Size); 2460 if (!Value.isSplat(8)) 2461 return -1; 2462 2463 return Value.zextOrTrunc(8).getZExtValue(); 2464 } 2465 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2466 // Make sure all array elements are sequences of the same repeated 2467 // byte. 2468 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2469 Constant *Op0 = CA->getOperand(0); 2470 int Byte = isRepeatedByteSequence(Op0, DL); 2471 if (Byte == -1) 2472 return -1; 2473 2474 // All array elements must be equal. 2475 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2476 if (CA->getOperand(i) != Op0) 2477 return -1; 2478 return Byte; 2479 } 2480 2481 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2482 return isRepeatedByteSequence(CDS); 2483 2484 return -1; 2485 } 2486 2487 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2488 const ConstantDataSequential *CDS, 2489 AsmPrinter &AP) { 2490 // See if we can aggregate this into a .fill, if so, emit it as such. 2491 int Value = isRepeatedByteSequence(CDS, DL); 2492 if (Value != -1) { 2493 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2494 // Don't emit a 1-byte object as a .fill. 2495 if (Bytes > 1) 2496 return AP.OutStreamer->emitFill(Bytes, Value); 2497 } 2498 2499 // If this can be emitted with .ascii/.asciz, emit it as such. 2500 if (CDS->isString()) 2501 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2502 2503 // Otherwise, emit the values in successive locations. 2504 unsigned ElementByteSize = CDS->getElementByteSize(); 2505 if (isa<IntegerType>(CDS->getElementType())) { 2506 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2507 if (AP.isVerbose()) 2508 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2509 CDS->getElementAsInteger(i)); 2510 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2511 ElementByteSize); 2512 } 2513 } else { 2514 Type *ET = CDS->getElementType(); 2515 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2516 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2517 } 2518 2519 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2520 unsigned EmittedSize = 2521 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2522 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2523 if (unsigned Padding = Size - EmittedSize) 2524 AP.OutStreamer->emitZeros(Padding); 2525 } 2526 2527 static void emitGlobalConstantArray(const DataLayout &DL, 2528 const ConstantArray *CA, AsmPrinter &AP, 2529 const Constant *BaseCV, uint64_t Offset) { 2530 // See if we can aggregate some values. Make sure it can be 2531 // represented as a series of bytes of the constant value. 2532 int Value = isRepeatedByteSequence(CA, DL); 2533 2534 if (Value != -1) { 2535 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2536 AP.OutStreamer->emitFill(Bytes, Value); 2537 } 2538 else { 2539 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2540 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2541 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2542 } 2543 } 2544 } 2545 2546 static void emitGlobalConstantVector(const DataLayout &DL, 2547 const ConstantVector *CV, AsmPrinter &AP) { 2548 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2549 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2550 2551 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2552 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2553 CV->getType()->getNumElements(); 2554 if (unsigned Padding = Size - EmittedSize) 2555 AP.OutStreamer->emitZeros(Padding); 2556 } 2557 2558 static void emitGlobalConstantStruct(const DataLayout &DL, 2559 const ConstantStruct *CS, AsmPrinter &AP, 2560 const Constant *BaseCV, uint64_t Offset) { 2561 // Print the fields in successive locations. Pad to align if needed! 2562 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2563 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2564 uint64_t SizeSoFar = 0; 2565 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2566 const Constant *Field = CS->getOperand(i); 2567 2568 // Print the actual field value. 2569 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2570 2571 // Check if padding is needed and insert one or more 0s. 2572 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2573 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2574 - Layout->getElementOffset(i)) - FieldSize; 2575 SizeSoFar += FieldSize + PadSize; 2576 2577 // Insert padding - this may include padding to increase the size of the 2578 // current field up to the ABI size (if the struct is not packed) as well 2579 // as padding to ensure that the next field starts at the right offset. 2580 AP.OutStreamer->emitZeros(PadSize); 2581 } 2582 assert(SizeSoFar == Layout->getSizeInBytes() && 2583 "Layout of constant struct may be incorrect!"); 2584 } 2585 2586 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2587 assert(ET && "Unknown float type"); 2588 APInt API = APF.bitcastToAPInt(); 2589 2590 // First print a comment with what we think the original floating-point value 2591 // should have been. 2592 if (AP.isVerbose()) { 2593 SmallString<8> StrVal; 2594 APF.toString(StrVal); 2595 ET->print(AP.OutStreamer->GetCommentOS()); 2596 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2597 } 2598 2599 // Now iterate through the APInt chunks, emitting them in endian-correct 2600 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2601 // floats). 2602 unsigned NumBytes = API.getBitWidth() / 8; 2603 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2604 const uint64_t *p = API.getRawData(); 2605 2606 // PPC's long double has odd notions of endianness compared to how LLVM 2607 // handles it: p[0] goes first for *big* endian on PPC. 2608 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2609 int Chunk = API.getNumWords() - 1; 2610 2611 if (TrailingBytes) 2612 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2613 2614 for (; Chunk >= 0; --Chunk) 2615 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2616 } else { 2617 unsigned Chunk; 2618 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2619 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2620 2621 if (TrailingBytes) 2622 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2623 } 2624 2625 // Emit the tail padding for the long double. 2626 const DataLayout &DL = AP.getDataLayout(); 2627 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2628 } 2629 2630 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2631 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2632 } 2633 2634 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2635 const DataLayout &DL = AP.getDataLayout(); 2636 unsigned BitWidth = CI->getBitWidth(); 2637 2638 // Copy the value as we may massage the layout for constants whose bit width 2639 // is not a multiple of 64-bits. 2640 APInt Realigned(CI->getValue()); 2641 uint64_t ExtraBits = 0; 2642 unsigned ExtraBitsSize = BitWidth & 63; 2643 2644 if (ExtraBitsSize) { 2645 // The bit width of the data is not a multiple of 64-bits. 2646 // The extra bits are expected to be at the end of the chunk of the memory. 2647 // Little endian: 2648 // * Nothing to be done, just record the extra bits to emit. 2649 // Big endian: 2650 // * Record the extra bits to emit. 2651 // * Realign the raw data to emit the chunks of 64-bits. 2652 if (DL.isBigEndian()) { 2653 // Basically the structure of the raw data is a chunk of 64-bits cells: 2654 // 0 1 BitWidth / 64 2655 // [chunk1][chunk2] ... [chunkN]. 2656 // The most significant chunk is chunkN and it should be emitted first. 2657 // However, due to the alignment issue chunkN contains useless bits. 2658 // Realign the chunks so that they contain only useful information: 2659 // ExtraBits 0 1 (BitWidth / 64) - 1 2660 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2661 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2662 ExtraBits = Realigned.getRawData()[0] & 2663 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2664 Realigned.lshrInPlace(ExtraBitsSize); 2665 } else 2666 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2667 } 2668 2669 // We don't expect assemblers to support integer data directives 2670 // for more than 64 bits, so we emit the data in at most 64-bit 2671 // quantities at a time. 2672 const uint64_t *RawData = Realigned.getRawData(); 2673 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2674 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2675 AP.OutStreamer->emitIntValue(Val, 8); 2676 } 2677 2678 if (ExtraBitsSize) { 2679 // Emit the extra bits after the 64-bits chunks. 2680 2681 // Emit a directive that fills the expected size. 2682 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2683 Size -= (BitWidth / 64) * 8; 2684 assert(Size && Size * 8 >= ExtraBitsSize && 2685 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2686 == ExtraBits && "Directive too small for extra bits."); 2687 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2688 } 2689 } 2690 2691 /// Transform a not absolute MCExpr containing a reference to a GOT 2692 /// equivalent global, by a target specific GOT pc relative access to the 2693 /// final symbol. 2694 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2695 const Constant *BaseCst, 2696 uint64_t Offset) { 2697 // The global @foo below illustrates a global that uses a got equivalent. 2698 // 2699 // @bar = global i32 42 2700 // @gotequiv = private unnamed_addr constant i32* @bar 2701 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2702 // i64 ptrtoint (i32* @foo to i64)) 2703 // to i32) 2704 // 2705 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2706 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2707 // form: 2708 // 2709 // foo = cstexpr, where 2710 // cstexpr := <gotequiv> - "." + <cst> 2711 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2712 // 2713 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2714 // 2715 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2716 // gotpcrelcst := <offset from @foo base> + <cst> 2717 MCValue MV; 2718 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2719 return; 2720 const MCSymbolRefExpr *SymA = MV.getSymA(); 2721 if (!SymA) 2722 return; 2723 2724 // Check that GOT equivalent symbol is cached. 2725 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2726 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2727 return; 2728 2729 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2730 if (!BaseGV) 2731 return; 2732 2733 // Check for a valid base symbol 2734 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2735 const MCSymbolRefExpr *SymB = MV.getSymB(); 2736 2737 if (!SymB || BaseSym != &SymB->getSymbol()) 2738 return; 2739 2740 // Make sure to match: 2741 // 2742 // gotpcrelcst := <offset from @foo base> + <cst> 2743 // 2744 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2745 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2746 // if the target knows how to encode it. 2747 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2748 if (GOTPCRelCst < 0) 2749 return; 2750 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2751 return; 2752 2753 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2754 // 2755 // bar: 2756 // .long 42 2757 // gotequiv: 2758 // .quad bar 2759 // foo: 2760 // .long gotequiv - "." + <cst> 2761 // 2762 // is replaced by the target specific equivalent to: 2763 // 2764 // bar: 2765 // .long 42 2766 // foo: 2767 // .long bar@GOTPCREL+<gotpcrelcst> 2768 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2769 const GlobalVariable *GV = Result.first; 2770 int NumUses = (int)Result.second; 2771 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2772 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2773 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2774 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2775 2776 // Update GOT equivalent usage information 2777 --NumUses; 2778 if (NumUses >= 0) 2779 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2780 } 2781 2782 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2783 AsmPrinter &AP, const Constant *BaseCV, 2784 uint64_t Offset) { 2785 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2786 2787 // Globals with sub-elements such as combinations of arrays and structs 2788 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2789 // constant symbol base and the current position with BaseCV and Offset. 2790 if (!BaseCV && CV->hasOneUse()) 2791 BaseCV = dyn_cast<Constant>(CV->user_back()); 2792 2793 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2794 return AP.OutStreamer->emitZeros(Size); 2795 2796 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2797 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2798 2799 if (StoreSize < 8) { 2800 if (AP.isVerbose()) 2801 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2802 CI->getZExtValue()); 2803 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2804 } else { 2805 emitGlobalConstantLargeInt(CI, AP); 2806 } 2807 2808 // Emit tail padding if needed 2809 if (Size != StoreSize) 2810 AP.OutStreamer->emitZeros(Size - StoreSize); 2811 2812 return; 2813 } 2814 2815 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2816 return emitGlobalConstantFP(CFP, AP); 2817 2818 if (isa<ConstantPointerNull>(CV)) { 2819 AP.OutStreamer->emitIntValue(0, Size); 2820 return; 2821 } 2822 2823 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2824 return emitGlobalConstantDataSequential(DL, CDS, AP); 2825 2826 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2827 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2828 2829 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2830 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2831 2832 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2833 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2834 // vectors). 2835 if (CE->getOpcode() == Instruction::BitCast) 2836 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2837 2838 if (Size > 8) { 2839 // If the constant expression's size is greater than 64-bits, then we have 2840 // to emit the value in chunks. Try to constant fold the value and emit it 2841 // that way. 2842 Constant *New = ConstantFoldConstant(CE, DL); 2843 if (New != CE) 2844 return emitGlobalConstantImpl(DL, New, AP); 2845 } 2846 } 2847 2848 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2849 return emitGlobalConstantVector(DL, V, AP); 2850 2851 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2852 // thread the streamer with EmitValue. 2853 const MCExpr *ME = AP.lowerConstant(CV); 2854 2855 // Since lowerConstant already folded and got rid of all IR pointer and 2856 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2857 // directly. 2858 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2859 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2860 2861 AP.OutStreamer->emitValue(ME, Size); 2862 } 2863 2864 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2865 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2866 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2867 if (Size) 2868 emitGlobalConstantImpl(DL, CV, *this); 2869 else if (MAI->hasSubsectionsViaSymbols()) { 2870 // If the global has zero size, emit a single byte so that two labels don't 2871 // look like they are at the same location. 2872 OutStreamer->emitIntValue(0, 1); 2873 } 2874 } 2875 2876 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2877 // Target doesn't support this yet! 2878 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2879 } 2880 2881 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2882 if (Offset > 0) 2883 OS << '+' << Offset; 2884 else if (Offset < 0) 2885 OS << Offset; 2886 } 2887 2888 void AsmPrinter::emitNops(unsigned N) { 2889 MCInst Nop; 2890 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2891 for (; N; --N) 2892 EmitToStreamer(*OutStreamer, Nop); 2893 } 2894 2895 //===----------------------------------------------------------------------===// 2896 // Symbol Lowering Routines. 2897 //===----------------------------------------------------------------------===// 2898 2899 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2900 return OutContext.createTempSymbol(Name, true); 2901 } 2902 2903 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2904 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2905 } 2906 2907 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2908 return MMI->getAddrLabelSymbol(BB); 2909 } 2910 2911 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2912 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2913 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2914 const MachineConstantPoolEntry &CPE = 2915 MF->getConstantPool()->getConstants()[CPID]; 2916 if (!CPE.isMachineConstantPoolEntry()) { 2917 const DataLayout &DL = MF->getDataLayout(); 2918 SectionKind Kind = CPE.getSectionKind(&DL); 2919 const Constant *C = CPE.Val.ConstVal; 2920 Align Alignment = CPE.Alignment; 2921 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2922 getObjFileLowering().getSectionForConstant(DL, Kind, C, 2923 Alignment))) { 2924 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2925 if (Sym->isUndefined()) 2926 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 2927 return Sym; 2928 } 2929 } 2930 } 2931 } 2932 2933 const DataLayout &DL = getDataLayout(); 2934 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2935 "CPI" + Twine(getFunctionNumber()) + "_" + 2936 Twine(CPID)); 2937 } 2938 2939 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2940 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2941 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2942 } 2943 2944 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2945 /// FIXME: privatize to AsmPrinter. 2946 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2947 const DataLayout &DL = getDataLayout(); 2948 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2949 Twine(getFunctionNumber()) + "_" + 2950 Twine(UID) + "_set_" + Twine(MBBID)); 2951 } 2952 2953 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2954 StringRef Suffix) const { 2955 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2956 } 2957 2958 /// Return the MCSymbol for the specified ExternalSymbol. 2959 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2960 SmallString<60> NameStr; 2961 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2962 return OutContext.getOrCreateSymbol(NameStr); 2963 } 2964 2965 /// PrintParentLoopComment - Print comments about parent loops of this one. 2966 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2967 unsigned FunctionNumber) { 2968 if (!Loop) return; 2969 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2970 OS.indent(Loop->getLoopDepth()*2) 2971 << "Parent Loop BB" << FunctionNumber << "_" 2972 << Loop->getHeader()->getNumber() 2973 << " Depth=" << Loop->getLoopDepth() << '\n'; 2974 } 2975 2976 /// PrintChildLoopComment - Print comments about child loops within 2977 /// the loop for this basic block, with nesting. 2978 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2979 unsigned FunctionNumber) { 2980 // Add child loop information 2981 for (const MachineLoop *CL : *Loop) { 2982 OS.indent(CL->getLoopDepth()*2) 2983 << "Child Loop BB" << FunctionNumber << "_" 2984 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2985 << '\n'; 2986 PrintChildLoopComment(OS, CL, FunctionNumber); 2987 } 2988 } 2989 2990 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2991 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2992 const MachineLoopInfo *LI, 2993 const AsmPrinter &AP) { 2994 // Add loop depth information 2995 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2996 if (!Loop) return; 2997 2998 MachineBasicBlock *Header = Loop->getHeader(); 2999 assert(Header && "No header for loop"); 3000 3001 // If this block is not a loop header, just print out what is the loop header 3002 // and return. 3003 if (Header != &MBB) { 3004 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3005 Twine(AP.getFunctionNumber())+"_" + 3006 Twine(Loop->getHeader()->getNumber())+ 3007 " Depth="+Twine(Loop->getLoopDepth())); 3008 return; 3009 } 3010 3011 // Otherwise, it is a loop header. Print out information about child and 3012 // parent loops. 3013 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3014 3015 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3016 3017 OS << "=>"; 3018 OS.indent(Loop->getLoopDepth()*2-2); 3019 3020 OS << "This "; 3021 if (Loop->empty()) 3022 OS << "Inner "; 3023 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3024 3025 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3026 } 3027 3028 /// emitBasicBlockStart - This method prints the label for the specified 3029 /// MachineBasicBlock, an alignment (if present) and a comment describing 3030 /// it if appropriate. 3031 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3032 // End the previous funclet and start a new one. 3033 if (MBB.isEHFuncletEntry()) { 3034 for (const HandlerInfo &HI : Handlers) { 3035 HI.Handler->endFunclet(); 3036 HI.Handler->beginFunclet(MBB); 3037 } 3038 } 3039 3040 // Emit an alignment directive for this block, if needed. 3041 const Align Alignment = MBB.getAlignment(); 3042 if (Alignment != Align(1)) 3043 emitAlignment(Alignment); 3044 3045 // If the block has its address taken, emit any labels that were used to 3046 // reference the block. It is possible that there is more than one label 3047 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3048 // the references were generated. 3049 if (MBB.hasAddressTaken()) { 3050 const BasicBlock *BB = MBB.getBasicBlock(); 3051 if (isVerbose()) 3052 OutStreamer->AddComment("Block address taken"); 3053 3054 // MBBs can have their address taken as part of CodeGen without having 3055 // their corresponding BB's address taken in IR 3056 if (BB->hasAddressTaken()) 3057 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3058 OutStreamer->emitLabel(Sym); 3059 } 3060 3061 // Print some verbose block comments. 3062 if (isVerbose()) { 3063 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3064 if (BB->hasName()) { 3065 BB->printAsOperand(OutStreamer->GetCommentOS(), 3066 /*PrintType=*/false, BB->getModule()); 3067 OutStreamer->GetCommentOS() << '\n'; 3068 } 3069 } 3070 3071 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3072 emitBasicBlockLoopComments(MBB, MLI, *this); 3073 } 3074 3075 if (MBB.pred_empty() || 3076 (!MF->hasBBLabels() && isBlockOnlyReachableByFallthrough(&MBB) && 3077 !MBB.isEHFuncletEntry() && !MBB.hasLabelMustBeEmitted())) { 3078 if (isVerbose()) { 3079 // NOTE: Want this comment at start of line, don't emit with AddComment. 3080 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3081 false); 3082 } 3083 } else { 3084 if (isVerbose() && MBB.hasLabelMustBeEmitted()) { 3085 OutStreamer->AddComment("Label of block must be emitted"); 3086 } 3087 // Switch to a new section if this basic block must begin a section. 3088 if (MBB.isBeginSection()) { 3089 OutStreamer->SwitchSection( 3090 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3091 MBB, TM)); 3092 CurrentSectionBeginSym = MBB.getSymbol(); 3093 } 3094 OutStreamer->emitLabel(MBB.getSymbol()); 3095 } 3096 } 3097 3098 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {} 3099 3100 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3101 bool IsDefinition) const { 3102 MCSymbolAttr Attr = MCSA_Invalid; 3103 3104 switch (Visibility) { 3105 default: break; 3106 case GlobalValue::HiddenVisibility: 3107 if (IsDefinition) 3108 Attr = MAI->getHiddenVisibilityAttr(); 3109 else 3110 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3111 break; 3112 case GlobalValue::ProtectedVisibility: 3113 Attr = MAI->getProtectedVisibilityAttr(); 3114 break; 3115 } 3116 3117 if (Attr != MCSA_Invalid) 3118 OutStreamer->emitSymbolAttribute(Sym, Attr); 3119 } 3120 3121 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3122 /// exactly one predecessor and the control transfer mechanism between 3123 /// the predecessor and this block is a fall-through. 3124 bool AsmPrinter:: 3125 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3126 // With BasicBlock Sections, beginning of the section is not a fallthrough. 3127 if (MBB->isBeginSection()) 3128 return false; 3129 3130 // If this is a landing pad, it isn't a fall through. If it has no preds, 3131 // then nothing falls through to it. 3132 if (MBB->isEHPad() || MBB->pred_empty()) 3133 return false; 3134 3135 // If there isn't exactly one predecessor, it can't be a fall through. 3136 if (MBB->pred_size() > 1) 3137 return false; 3138 3139 // The predecessor has to be immediately before this block. 3140 MachineBasicBlock *Pred = *MBB->pred_begin(); 3141 if (!Pred->isLayoutSuccessor(MBB)) 3142 return false; 3143 3144 // If the block is completely empty, then it definitely does fall through. 3145 if (Pred->empty()) 3146 return true; 3147 3148 // Check the terminators in the previous blocks 3149 for (const auto &MI : Pred->terminators()) { 3150 // If it is not a simple branch, we are in a table somewhere. 3151 if (!MI.isBranch() || MI.isIndirectBranch()) 3152 return false; 3153 3154 // If we are the operands of one of the branches, this is not a fall 3155 // through. Note that targets with delay slots will usually bundle 3156 // terminators with the delay slot instruction. 3157 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3158 if (OP->isJTI()) 3159 return false; 3160 if (OP->isMBB() && OP->getMBB() == MBB) 3161 return false; 3162 } 3163 } 3164 3165 return true; 3166 } 3167 3168 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3169 if (!S.usesMetadata()) 3170 return nullptr; 3171 3172 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3173 gcp_map_type::iterator GCPI = GCMap.find(&S); 3174 if (GCPI != GCMap.end()) 3175 return GCPI->second.get(); 3176 3177 auto Name = S.getName(); 3178 3179 for (GCMetadataPrinterRegistry::iterator 3180 I = GCMetadataPrinterRegistry::begin(), 3181 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3182 if (Name == I->getName()) { 3183 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3184 GMP->S = &S; 3185 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3186 return IterBool.first->second.get(); 3187 } 3188 3189 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3190 } 3191 3192 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3193 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3194 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3195 bool NeedsDefault = false; 3196 if (MI->begin() == MI->end()) 3197 // No GC strategy, use the default format. 3198 NeedsDefault = true; 3199 else 3200 for (auto &I : *MI) { 3201 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3202 if (MP->emitStackMaps(SM, *this)) 3203 continue; 3204 // The strategy doesn't have printer or doesn't emit custom stack maps. 3205 // Use the default format. 3206 NeedsDefault = true; 3207 } 3208 3209 if (NeedsDefault) 3210 SM.serializeToStackMapSection(); 3211 } 3212 3213 /// Pin vtable to this file. 3214 AsmPrinterHandler::~AsmPrinterHandler() = default; 3215 3216 void AsmPrinterHandler::markFunctionEnd() {} 3217 3218 // In the binary's "xray_instr_map" section, an array of these function entries 3219 // describes each instrumentation point. When XRay patches your code, the index 3220 // into this table will be given to your handler as a patch point identifier. 3221 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3222 auto Kind8 = static_cast<uint8_t>(Kind); 3223 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3224 Out->emitBinaryData( 3225 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3226 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3227 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3228 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3229 Out->emitZeros(Padding); 3230 } 3231 3232 void AsmPrinter::emitXRayTable() { 3233 if (Sleds.empty()) 3234 return; 3235 3236 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3237 const Function &F = MF->getFunction(); 3238 MCSection *InstMap = nullptr; 3239 MCSection *FnSledIndex = nullptr; 3240 const Triple &TT = TM.getTargetTriple(); 3241 // Use PC-relative addresses on all targets except MIPS (MIPS64 cannot use 3242 // PC-relative addresses because R_MIPS_PC64 does not exist). 3243 bool PCRel = !TT.isMIPS(); 3244 if (TT.isOSBinFormatELF()) { 3245 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3246 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3247 if (!PCRel) 3248 Flags |= ELF::SHF_WRITE; 3249 StringRef GroupName; 3250 if (F.hasComdat()) { 3251 Flags |= ELF::SHF_GROUP; 3252 GroupName = F.getComdat()->getName(); 3253 } 3254 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3255 Flags, 0, GroupName, 3256 MCSection::NonUniqueID, LinkedToSym); 3257 FnSledIndex = OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, 3258 Flags | ELF::SHF_WRITE, 0, GroupName, 3259 MCSection::NonUniqueID, LinkedToSym); 3260 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3261 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3262 SectionKind::getReadOnlyWithRel()); 3263 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3264 SectionKind::getReadOnlyWithRel()); 3265 } else { 3266 llvm_unreachable("Unsupported target"); 3267 } 3268 3269 auto WordSizeBytes = MAI->getCodePointerSize(); 3270 3271 // Now we switch to the instrumentation map section. Because this is done 3272 // per-function, we are able to create an index entry that will represent the 3273 // range of sleds associated with a function. 3274 auto &Ctx = OutContext; 3275 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3276 OutStreamer->SwitchSection(InstMap); 3277 OutStreamer->emitLabel(SledsStart); 3278 for (const auto &Sled : Sleds) { 3279 if (PCRel) { 3280 MCSymbol *Dot = Ctx.createTempSymbol(); 3281 OutStreamer->emitLabel(Dot); 3282 OutStreamer->emitValueImpl( 3283 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3284 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3285 WordSizeBytes); 3286 OutStreamer->emitValueImpl( 3287 MCBinaryExpr::createSub( 3288 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3289 MCBinaryExpr::createAdd( 3290 MCSymbolRefExpr::create(Dot, Ctx), 3291 MCConstantExpr::create(WordSizeBytes, Ctx), Ctx), 3292 Ctx), 3293 WordSizeBytes); 3294 } else { 3295 OutStreamer->emitSymbolValue(Sled.Sled, WordSizeBytes); 3296 OutStreamer->emitSymbolValue(CurrentFnSym, WordSizeBytes); 3297 } 3298 Sled.emit(WordSizeBytes, OutStreamer.get()); 3299 } 3300 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3301 OutStreamer->emitLabel(SledsEnd); 3302 3303 // We then emit a single entry in the index per function. We use the symbols 3304 // that bound the instrumentation map as the range for a specific function. 3305 // Each entry here will be 2 * word size aligned, as we're writing down two 3306 // pointers. This should work for both 32-bit and 64-bit platforms. 3307 OutStreamer->SwitchSection(FnSledIndex); 3308 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3309 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3310 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3311 OutStreamer->SwitchSection(PrevSection); 3312 Sleds.clear(); 3313 } 3314 3315 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3316 SledKind Kind, uint8_t Version) { 3317 const Function &F = MI.getMF()->getFunction(); 3318 auto Attr = F.getFnAttribute("function-instrument"); 3319 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3320 bool AlwaysInstrument = 3321 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3322 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3323 Kind = SledKind::LOG_ARGS_ENTER; 3324 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3325 AlwaysInstrument, &F, Version}); 3326 } 3327 3328 void AsmPrinter::emitPatchableFunctionEntries() { 3329 const Function &F = MF->getFunction(); 3330 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3331 (void)F.getFnAttribute("patchable-function-prefix") 3332 .getValueAsString() 3333 .getAsInteger(10, PatchableFunctionPrefix); 3334 (void)F.getFnAttribute("patchable-function-entry") 3335 .getValueAsString() 3336 .getAsInteger(10, PatchableFunctionEntry); 3337 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3338 return; 3339 const unsigned PointerSize = getPointerSize(); 3340 if (TM.getTargetTriple().isOSBinFormatELF()) { 3341 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3342 const MCSymbolELF *LinkedToSym = nullptr; 3343 StringRef GroupName; 3344 3345 // GNU as < 2.35 did not support section flag 'o'. Use SHF_LINK_ORDER only 3346 // if we are using the integrated assembler. 3347 if (MAI->useIntegratedAssembler()) { 3348 Flags |= ELF::SHF_LINK_ORDER; 3349 if (F.hasComdat()) { 3350 Flags |= ELF::SHF_GROUP; 3351 GroupName = F.getComdat()->getName(); 3352 } 3353 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3354 } 3355 OutStreamer->SwitchSection(OutContext.getELFSection( 3356 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3357 MCSection::NonUniqueID, LinkedToSym)); 3358 emitAlignment(Align(PointerSize)); 3359 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3360 } 3361 } 3362 3363 uint16_t AsmPrinter::getDwarfVersion() const { 3364 return OutStreamer->getContext().getDwarfVersion(); 3365 } 3366 3367 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3368 OutStreamer->getContext().setDwarfVersion(Version); 3369 } 3370