1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/Config/config.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GCStrategy.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PseudoProbe.h"
82 #include "llvm/IR/Type.h"
83 #include "llvm/IR/Value.h"
84 #include "llvm/MC/MCAsmInfo.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCExpr.h"
88 #include "llvm/MC/MCInst.h"
89 #include "llvm/MC/MCSection.h"
90 #include "llvm/MC/MCSectionCOFF.h"
91 #include "llvm/MC/MCSectionELF.h"
92 #include "llvm/MC/MCSectionMachO.h"
93 #include "llvm/MC/MCStreamer.h"
94 #include "llvm/MC/MCSubtargetInfo.h"
95 #include "llvm/MC/MCSymbol.h"
96 #include "llvm/MC/MCSymbolELF.h"
97 #include "llvm/MC/MCTargetOptions.h"
98 #include "llvm/MC/MCValue.h"
99 #include "llvm/MC/SectionKind.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Remarks/RemarkStreamer.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/FileSystem.h"
107 #include "llvm/Support/Format.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/Path.h"
110 #include "llvm/Support/Timer.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetLoweringObjectFile.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cinttypes>
118 #include <cstdint>
119 #include <iterator>
120 #include <memory>
121 #include <string>
122 #include <utility>
123 #include <vector>
124 
125 using namespace llvm;
126 
127 #define DEBUG_TYPE "asm-printer"
128 
129 const char DWARFGroupName[] = "dwarf";
130 const char DWARFGroupDescription[] = "DWARF Emission";
131 const char DbgTimerName[] = "emit";
132 const char DbgTimerDescription[] = "Debug Info Emission";
133 const char EHTimerName[] = "write_exception";
134 const char EHTimerDescription[] = "DWARF Exception Writer";
135 const char CFGuardName[] = "Control Flow Guard";
136 const char CFGuardDescription[] = "Control Flow Guard";
137 const char CodeViewLineTablesGroupName[] = "linetables";
138 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
139 const char PPTimerName[] = "emit";
140 const char PPTimerDescription[] = "Pseudo Probe Emission";
141 const char PPGroupName[] = "pseudo probe";
142 const char PPGroupDescription[] = "Pseudo Probe Emission";
143 
144 STATISTIC(EmittedInsts, "Number of machine instrs printed");
145 
146 char AsmPrinter::ID = 0;
147 
148 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
149 
150 static gcp_map_type &getGCMap(void *&P) {
151   if (!P)
152     P = new gcp_map_type();
153   return *(gcp_map_type*)P;
154 }
155 
156 namespace {
157 class AddrLabelMapCallbackPtr final : CallbackVH {
158   AddrLabelMap *Map = nullptr;
159 
160 public:
161   AddrLabelMapCallbackPtr() = default;
162   AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
163 
164   void setPtr(BasicBlock *BB) {
165     ValueHandleBase::operator=(BB);
166   }
167 
168   void setMap(AddrLabelMap *map) { Map = map; }
169 
170   void deleted() override;
171   void allUsesReplacedWith(Value *V2) override;
172 };
173 } // namespace
174 
175 class llvm::AddrLabelMap {
176   MCContext &Context;
177   struct AddrLabelSymEntry {
178     /// The symbols for the label.
179     TinyPtrVector<MCSymbol *> Symbols;
180 
181     Function *Fn;   // The containing function of the BasicBlock.
182     unsigned Index; // The index in BBCallbacks for the BasicBlock.
183   };
184 
185   DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
186 
187   /// Callbacks for the BasicBlock's that we have entries for.  We use this so
188   /// we get notified if a block is deleted or RAUWd.
189   std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
190 
191   /// This is a per-function list of symbols whose corresponding BasicBlock got
192   /// deleted.  These symbols need to be emitted at some point in the file, so
193   /// AsmPrinter emits them after the function body.
194   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
195       DeletedAddrLabelsNeedingEmission;
196 
197 public:
198   AddrLabelMap(MCContext &context) : Context(context) {}
199 
200   ~AddrLabelMap() {
201     assert(DeletedAddrLabelsNeedingEmission.empty() &&
202            "Some labels for deleted blocks never got emitted");
203   }
204 
205   ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
206 
207   void takeDeletedSymbolsForFunction(Function *F,
208                                      std::vector<MCSymbol *> &Result);
209 
210   void UpdateForDeletedBlock(BasicBlock *BB);
211   void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
212 };
213 
214 ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
215   assert(BB->hasAddressTaken() &&
216          "Shouldn't get label for block without address taken");
217   AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
218 
219   // If we already had an entry for this block, just return it.
220   if (!Entry.Symbols.empty()) {
221     assert(BB->getParent() == Entry.Fn && "Parent changed");
222     return Entry.Symbols;
223   }
224 
225   // Otherwise, this is a new entry, create a new symbol for it and add an
226   // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
227   BBCallbacks.emplace_back(BB);
228   BBCallbacks.back().setMap(this);
229   Entry.Index = BBCallbacks.size() - 1;
230   Entry.Fn = BB->getParent();
231   MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
232                                         : Context.createTempSymbol();
233   Entry.Symbols.push_back(Sym);
234   return Entry.Symbols;
235 }
236 
237 /// If we have any deleted symbols for F, return them.
238 void AddrLabelMap::takeDeletedSymbolsForFunction(
239     Function *F, std::vector<MCSymbol *> &Result) {
240   DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
241       DeletedAddrLabelsNeedingEmission.find(F);
242 
243   // If there are no entries for the function, just return.
244   if (I == DeletedAddrLabelsNeedingEmission.end())
245     return;
246 
247   // Otherwise, take the list.
248   std::swap(Result, I->second);
249   DeletedAddrLabelsNeedingEmission.erase(I);
250 }
251 
252 //===- Address of Block Management ----------------------------------------===//
253 
254 ArrayRef<MCSymbol *>
255 AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
256   // Lazily create AddrLabelSymbols.
257   if (!AddrLabelSymbols)
258     AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
259   return AddrLabelSymbols->getAddrLabelSymbolToEmit(
260       const_cast<BasicBlock *>(BB));
261 }
262 
263 void AsmPrinter::takeDeletedSymbolsForFunction(
264     const Function *F, std::vector<MCSymbol *> &Result) {
265   // If no blocks have had their addresses taken, we're done.
266   if (!AddrLabelSymbols)
267     return;
268   return AddrLabelSymbols->takeDeletedSymbolsForFunction(
269       const_cast<Function *>(F), Result);
270 }
271 
272 void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
273   // If the block got deleted, there is no need for the symbol.  If the symbol
274   // was already emitted, we can just forget about it, otherwise we need to
275   // queue it up for later emission when the function is output.
276   AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
277   AddrLabelSymbols.erase(BB);
278   assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
279   BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
280 
281 #if !LLVM_MEMORY_SANITIZER_BUILD
282   // BasicBlock is destroyed already, so this access is UB detectable by msan.
283   assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
284          "Block/parent mismatch");
285 #endif
286 
287   for (MCSymbol *Sym : Entry.Symbols) {
288     if (Sym->isDefined())
289       return;
290 
291     // If the block is not yet defined, we need to emit it at the end of the
292     // function.  Add the symbol to the DeletedAddrLabelsNeedingEmission list
293     // for the containing Function.  Since the block is being deleted, its
294     // parent may already be removed, we have to get the function from 'Entry'.
295     DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
296   }
297 }
298 
299 void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
300   // Get the entry for the RAUW'd block and remove it from our map.
301   AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
302   AddrLabelSymbols.erase(Old);
303   assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
304 
305   AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
306 
307   // If New is not address taken, just move our symbol over to it.
308   if (NewEntry.Symbols.empty()) {
309     BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
310     NewEntry = std::move(OldEntry);          // Set New's entry.
311     return;
312   }
313 
314   BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
315 
316   // Otherwise, we need to add the old symbols to the new block's set.
317   llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
318 }
319 
320 void AddrLabelMapCallbackPtr::deleted() {
321   Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
322 }
323 
324 void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
325   Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
326 }
327 
328 /// getGVAlignment - Return the alignment to use for the specified global
329 /// value.  This rounds up to the preferred alignment if possible and legal.
330 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
331                                  Align InAlign) {
332   Align Alignment;
333   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
334     Alignment = DL.getPreferredAlign(GVar);
335 
336   // If InAlign is specified, round it to it.
337   if (InAlign > Alignment)
338     Alignment = InAlign;
339 
340   // If the GV has a specified alignment, take it into account.
341   const MaybeAlign GVAlign(GV->getAlign());
342   if (!GVAlign)
343     return Alignment;
344 
345   assert(GVAlign && "GVAlign must be set");
346 
347   // If the GVAlign is larger than NumBits, or if we are required to obey
348   // NumBits because the GV has an assigned section, obey it.
349   if (*GVAlign > Alignment || GV->hasSection())
350     Alignment = *GVAlign;
351   return Alignment;
352 }
353 
354 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
355     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
356       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
357   VerboseAsm = OutStreamer->isVerboseAsm();
358 }
359 
360 AsmPrinter::~AsmPrinter() {
361   assert(!DD && Handlers.size() == NumUserHandlers &&
362          "Debug/EH info didn't get finalized");
363 
364   if (GCMetadataPrinters) {
365     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
366 
367     delete &GCMap;
368     GCMetadataPrinters = nullptr;
369   }
370 }
371 
372 bool AsmPrinter::isPositionIndependent() const {
373   return TM.isPositionIndependent();
374 }
375 
376 /// getFunctionNumber - Return a unique ID for the current function.
377 unsigned AsmPrinter::getFunctionNumber() const {
378   return MF->getFunctionNumber();
379 }
380 
381 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
382   return *TM.getObjFileLowering();
383 }
384 
385 const DataLayout &AsmPrinter::getDataLayout() const {
386   return MMI->getModule()->getDataLayout();
387 }
388 
389 // Do not use the cached DataLayout because some client use it without a Module
390 // (dsymutil, llvm-dwarfdump).
391 unsigned AsmPrinter::getPointerSize() const {
392   return TM.getPointerSize(0); // FIXME: Default address space
393 }
394 
395 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
396   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
397   return MF->getSubtarget<MCSubtargetInfo>();
398 }
399 
400 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
401   S.emitInstruction(Inst, getSubtargetInfo());
402 }
403 
404 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
405   if (DD) {
406     assert(OutStreamer->hasRawTextSupport() &&
407            "Expected assembly output mode.");
408     // This is NVPTX specific and it's unclear why.
409     // PR51079: If we have code without debug information we need to give up.
410     DISubprogram *MFSP = MF.getFunction().getSubprogram();
411     if (!MFSP)
412       return;
413     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
414   }
415 }
416 
417 /// getCurrentSection() - Return the current section we are emitting to.
418 const MCSection *AsmPrinter::getCurrentSection() const {
419   return OutStreamer->getCurrentSectionOnly();
420 }
421 
422 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
423   AU.setPreservesAll();
424   MachineFunctionPass::getAnalysisUsage(AU);
425   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
426   AU.addRequired<GCModuleInfo>();
427 }
428 
429 bool AsmPrinter::doInitialization(Module &M) {
430   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
431   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
432   HasSplitStack = false;
433   HasNoSplitStack = false;
434 
435   AddrLabelSymbols = nullptr;
436 
437   // Initialize TargetLoweringObjectFile.
438   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
439     .Initialize(OutContext, TM);
440 
441   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
442       .getModuleMetadata(M);
443 
444   OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
445 
446   // Emit the version-min deployment target directive if needed.
447   //
448   // FIXME: If we end up with a collection of these sorts of Darwin-specific
449   // or ELF-specific things, it may make sense to have a platform helper class
450   // that will work with the target helper class. For now keep it here, as the
451   // alternative is duplicated code in each of the target asm printers that
452   // use the directive, where it would need the same conditionalization
453   // anyway.
454   const Triple &Target = TM.getTargetTriple();
455   Triple TVT(M.getDarwinTargetVariantTriple());
456   OutStreamer->emitVersionForTarget(
457       Target, M.getSDKVersion(),
458       M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
459       M.getDarwinTargetVariantSDKVersion());
460 
461   // Allow the target to emit any magic that it wants at the start of the file.
462   emitStartOfAsmFile(M);
463 
464   // Very minimal debug info. It is ignored if we emit actual debug info. If we
465   // don't, this at least helps the user find where a global came from.
466   if (MAI->hasSingleParameterDotFile()) {
467     // .file "foo.c"
468 
469     SmallString<128> FileName;
470     if (MAI->hasBasenameOnlyForFileDirective())
471       FileName = llvm::sys::path::filename(M.getSourceFileName());
472     else
473       FileName = M.getSourceFileName();
474     if (MAI->hasFourStringsDotFile()) {
475 #ifdef PACKAGE_VENDOR
476       const char VerStr[] =
477           PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
478 #else
479       const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
480 #endif
481       // TODO: Add timestamp and description.
482       OutStreamer->emitFileDirective(FileName, VerStr, "", "");
483     } else {
484       OutStreamer->emitFileDirective(FileName);
485     }
486   }
487 
488   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
489   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
490   for (auto &I : *MI)
491     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
492       MP->beginAssembly(M, *MI, *this);
493 
494   // Emit module-level inline asm if it exists.
495   if (!M.getModuleInlineAsm().empty()) {
496     OutStreamer->AddComment("Start of file scope inline assembly");
497     OutStreamer->AddBlankLine();
498     emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
499                   TM.Options.MCOptions);
500     OutStreamer->AddComment("End of file scope inline assembly");
501     OutStreamer->AddBlankLine();
502   }
503 
504   if (MAI->doesSupportDebugInformation()) {
505     bool EmitCodeView = M.getCodeViewFlag();
506     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
507       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
508                             DbgTimerName, DbgTimerDescription,
509                             CodeViewLineTablesGroupName,
510                             CodeViewLineTablesGroupDescription);
511     }
512     if (!EmitCodeView || M.getDwarfVersion()) {
513       if (MMI->hasDebugInfo()) {
514         DD = new DwarfDebug(this);
515         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
516                               DbgTimerDescription, DWARFGroupName,
517                               DWARFGroupDescription);
518       }
519     }
520   }
521 
522   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
523     PP = new PseudoProbeHandler(this);
524     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
525                           PPTimerDescription, PPGroupName, PPGroupDescription);
526   }
527 
528   switch (MAI->getExceptionHandlingType()) {
529   case ExceptionHandling::None:
530     // We may want to emit CFI for debug.
531     LLVM_FALLTHROUGH;
532   case ExceptionHandling::SjLj:
533   case ExceptionHandling::DwarfCFI:
534   case ExceptionHandling::ARM:
535     for (auto &F : M.getFunctionList()) {
536       if (getFunctionCFISectionType(F) != CFISection::None)
537         ModuleCFISection = getFunctionCFISectionType(F);
538       // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
539       // the module needs .eh_frame. If we have found that case, we are done.
540       if (ModuleCFISection == CFISection::EH)
541         break;
542     }
543     assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
544            ModuleCFISection != CFISection::EH);
545     break;
546   default:
547     break;
548   }
549 
550   EHStreamer *ES = nullptr;
551   switch (MAI->getExceptionHandlingType()) {
552   case ExceptionHandling::None:
553     if (!needsCFIForDebug())
554       break;
555     LLVM_FALLTHROUGH;
556   case ExceptionHandling::SjLj:
557   case ExceptionHandling::DwarfCFI:
558     ES = new DwarfCFIException(this);
559     break;
560   case ExceptionHandling::ARM:
561     ES = new ARMException(this);
562     break;
563   case ExceptionHandling::WinEH:
564     switch (MAI->getWinEHEncodingType()) {
565     default: llvm_unreachable("unsupported unwinding information encoding");
566     case WinEH::EncodingType::Invalid:
567       break;
568     case WinEH::EncodingType::X86:
569     case WinEH::EncodingType::Itanium:
570       ES = new WinException(this);
571       break;
572     }
573     break;
574   case ExceptionHandling::Wasm:
575     ES = new WasmException(this);
576     break;
577   case ExceptionHandling::AIX:
578     ES = new AIXException(this);
579     break;
580   }
581   if (ES)
582     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
583                           EHTimerDescription, DWARFGroupName,
584                           DWARFGroupDescription);
585 
586   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
587   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
588     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
589                           CFGuardDescription, DWARFGroupName,
590                           DWARFGroupDescription);
591 
592   for (const HandlerInfo &HI : Handlers) {
593     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
594                        HI.TimerGroupDescription, TimePassesIsEnabled);
595     HI.Handler->beginModule(&M);
596   }
597 
598   return false;
599 }
600 
601 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
602   if (!MAI.hasWeakDefCanBeHiddenDirective())
603     return false;
604 
605   return GV->canBeOmittedFromSymbolTable();
606 }
607 
608 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
609   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
610   switch (Linkage) {
611   case GlobalValue::CommonLinkage:
612   case GlobalValue::LinkOnceAnyLinkage:
613   case GlobalValue::LinkOnceODRLinkage:
614   case GlobalValue::WeakAnyLinkage:
615   case GlobalValue::WeakODRLinkage:
616     if (MAI->hasWeakDefDirective()) {
617       // .globl _foo
618       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
619 
620       if (!canBeHidden(GV, *MAI))
621         // .weak_definition _foo
622         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
623       else
624         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
625     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
626       // .globl _foo
627       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
628       //NOTE: linkonce is handled by the section the symbol was assigned to.
629     } else {
630       // .weak _foo
631       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
632     }
633     return;
634   case GlobalValue::ExternalLinkage:
635     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
636     return;
637   case GlobalValue::PrivateLinkage:
638   case GlobalValue::InternalLinkage:
639     return;
640   case GlobalValue::ExternalWeakLinkage:
641   case GlobalValue::AvailableExternallyLinkage:
642   case GlobalValue::AppendingLinkage:
643     llvm_unreachable("Should never emit this");
644   }
645   llvm_unreachable("Unknown linkage type!");
646 }
647 
648 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
649                                    const GlobalValue *GV) const {
650   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
651 }
652 
653 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
654   return TM.getSymbol(GV);
655 }
656 
657 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
658   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
659   // exact definion (intersection of GlobalValue::hasExactDefinition() and
660   // !isInterposable()). These linkages include: external, appending, internal,
661   // private. It may be profitable to use a local alias for external. The
662   // assembler would otherwise be conservative and assume a global default
663   // visibility symbol can be interposable, even if the code generator already
664   // assumed it.
665   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
666     const Module &M = *GV.getParent();
667     if (TM.getRelocationModel() != Reloc::Static &&
668         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
669       return getSymbolWithGlobalValueBase(&GV, "$local");
670   }
671   return TM.getSymbol(&GV);
672 }
673 
674 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
675 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
676   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
677   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
678          "No emulated TLS variables in the common section");
679 
680   // Never emit TLS variable xyz in emulated TLS model.
681   // The initialization value is in __emutls_t.xyz instead of xyz.
682   if (IsEmuTLSVar)
683     return;
684 
685   if (GV->hasInitializer()) {
686     // Check to see if this is a special global used by LLVM, if so, emit it.
687     if (emitSpecialLLVMGlobal(GV))
688       return;
689 
690     // Skip the emission of global equivalents. The symbol can be emitted later
691     // on by emitGlobalGOTEquivs in case it turns out to be needed.
692     if (GlobalGOTEquivs.count(getSymbol(GV)))
693       return;
694 
695     if (isVerbose()) {
696       // When printing the control variable __emutls_v.*,
697       // we don't need to print the original TLS variable name.
698       GV->printAsOperand(OutStreamer->GetCommentOS(),
699                      /*PrintType=*/false, GV->getParent());
700       OutStreamer->GetCommentOS() << '\n';
701     }
702   }
703 
704   MCSymbol *GVSym = getSymbol(GV);
705   MCSymbol *EmittedSym = GVSym;
706 
707   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
708   // attributes.
709   // GV's or GVSym's attributes will be used for the EmittedSym.
710   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
711 
712   if (!GV->hasInitializer())   // External globals require no extra code.
713     return;
714 
715   GVSym->redefineIfPossible();
716   if (GVSym->isDefined() || GVSym->isVariable())
717     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
718                                         "' is already defined");
719 
720   if (MAI->hasDotTypeDotSizeDirective())
721     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
722 
723   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
724 
725   const DataLayout &DL = GV->getParent()->getDataLayout();
726   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
727 
728   // If the alignment is specified, we *must* obey it.  Overaligning a global
729   // with a specified alignment is a prompt way to break globals emitted to
730   // sections and expected to be contiguous (e.g. ObjC metadata).
731   const Align Alignment = getGVAlignment(GV, DL);
732 
733   for (const HandlerInfo &HI : Handlers) {
734     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
735                        HI.TimerGroupName, HI.TimerGroupDescription,
736                        TimePassesIsEnabled);
737     HI.Handler->setSymbolSize(GVSym, Size);
738   }
739 
740   // Handle common symbols
741   if (GVKind.isCommon()) {
742     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
743     // .comm _foo, 42, 4
744     const bool SupportsAlignment =
745         getObjFileLowering().getCommDirectiveSupportsAlignment();
746     OutStreamer->emitCommonSymbol(GVSym, Size,
747                                   SupportsAlignment ? Alignment.value() : 0);
748     return;
749   }
750 
751   // Determine to which section this global should be emitted.
752   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
753 
754   // If we have a bss global going to a section that supports the
755   // zerofill directive, do so here.
756   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
757       TheSection->isVirtualSection()) {
758     if (Size == 0)
759       Size = 1; // zerofill of 0 bytes is undefined.
760     emitLinkage(GV, GVSym);
761     // .zerofill __DATA, __bss, _foo, 400, 5
762     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
763     return;
764   }
765 
766   // If this is a BSS local symbol and we are emitting in the BSS
767   // section use .lcomm/.comm directive.
768   if (GVKind.isBSSLocal() &&
769       getObjFileLowering().getBSSSection() == TheSection) {
770     if (Size == 0)
771       Size = 1; // .comm Foo, 0 is undefined, avoid it.
772 
773     // Use .lcomm only if it supports user-specified alignment.
774     // Otherwise, while it would still be correct to use .lcomm in some
775     // cases (e.g. when Align == 1), the external assembler might enfore
776     // some -unknown- default alignment behavior, which could cause
777     // spurious differences between external and integrated assembler.
778     // Prefer to simply fall back to .local / .comm in this case.
779     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
780       // .lcomm _foo, 42
781       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
782       return;
783     }
784 
785     // .local _foo
786     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
787     // .comm _foo, 42, 4
788     const bool SupportsAlignment =
789         getObjFileLowering().getCommDirectiveSupportsAlignment();
790     OutStreamer->emitCommonSymbol(GVSym, Size,
791                                   SupportsAlignment ? Alignment.value() : 0);
792     return;
793   }
794 
795   // Handle thread local data for mach-o which requires us to output an
796   // additional structure of data and mangle the original symbol so that we
797   // can reference it later.
798   //
799   // TODO: This should become an "emit thread local global" method on TLOF.
800   // All of this macho specific stuff should be sunk down into TLOFMachO and
801   // stuff like "TLSExtraDataSection" should no longer be part of the parent
802   // TLOF class.  This will also make it more obvious that stuff like
803   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
804   // specific code.
805   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
806     // Emit the .tbss symbol
807     MCSymbol *MangSym =
808         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
809 
810     if (GVKind.isThreadBSS()) {
811       TheSection = getObjFileLowering().getTLSBSSSection();
812       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
813     } else if (GVKind.isThreadData()) {
814       OutStreamer->SwitchSection(TheSection);
815 
816       emitAlignment(Alignment, GV);
817       OutStreamer->emitLabel(MangSym);
818 
819       emitGlobalConstant(GV->getParent()->getDataLayout(),
820                          GV->getInitializer());
821     }
822 
823     OutStreamer->AddBlankLine();
824 
825     // Emit the variable struct for the runtime.
826     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
827 
828     OutStreamer->SwitchSection(TLVSect);
829     // Emit the linkage here.
830     emitLinkage(GV, GVSym);
831     OutStreamer->emitLabel(GVSym);
832 
833     // Three pointers in size:
834     //   - __tlv_bootstrap - used to make sure support exists
835     //   - spare pointer, used when mapped by the runtime
836     //   - pointer to mangled symbol above with initializer
837     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
838     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
839                                 PtrSize);
840     OutStreamer->emitIntValue(0, PtrSize);
841     OutStreamer->emitSymbolValue(MangSym, PtrSize);
842 
843     OutStreamer->AddBlankLine();
844     return;
845   }
846 
847   MCSymbol *EmittedInitSym = GVSym;
848 
849   OutStreamer->SwitchSection(TheSection);
850 
851   emitLinkage(GV, EmittedInitSym);
852   emitAlignment(Alignment, GV);
853 
854   OutStreamer->emitLabel(EmittedInitSym);
855   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
856   if (LocalAlias != EmittedInitSym)
857     OutStreamer->emitLabel(LocalAlias);
858 
859   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
860 
861   if (MAI->hasDotTypeDotSizeDirective())
862     // .size foo, 42
863     OutStreamer->emitELFSize(EmittedInitSym,
864                              MCConstantExpr::create(Size, OutContext));
865 
866   OutStreamer->AddBlankLine();
867 }
868 
869 /// Emit the directive and value for debug thread local expression
870 ///
871 /// \p Value - The value to emit.
872 /// \p Size - The size of the integer (in bytes) to emit.
873 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
874   OutStreamer->emitValue(Value, Size);
875 }
876 
877 void AsmPrinter::emitFunctionHeaderComment() {}
878 
879 /// EmitFunctionHeader - This method emits the header for the current
880 /// function.
881 void AsmPrinter::emitFunctionHeader() {
882   const Function &F = MF->getFunction();
883 
884   if (isVerbose())
885     OutStreamer->GetCommentOS()
886         << "-- Begin function "
887         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
888 
889   // Print out constants referenced by the function
890   emitConstantPool();
891 
892   // Print the 'header' of function.
893   // If basic block sections are desired, explicitly request a unique section
894   // for this function's entry block.
895   if (MF->front().isBeginSection())
896     MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
897   else
898     MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
899   OutStreamer->SwitchSection(MF->getSection());
900 
901   if (!MAI->hasVisibilityOnlyWithLinkage())
902     emitVisibility(CurrentFnSym, F.getVisibility());
903 
904   if (MAI->needsFunctionDescriptors())
905     emitLinkage(&F, CurrentFnDescSym);
906 
907   emitLinkage(&F, CurrentFnSym);
908   if (MAI->hasFunctionAlignment())
909     emitAlignment(MF->getAlignment(), &F);
910 
911   if (MAI->hasDotTypeDotSizeDirective())
912     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
913 
914   if (F.hasFnAttribute(Attribute::Cold))
915     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
916 
917   if (isVerbose()) {
918     F.printAsOperand(OutStreamer->GetCommentOS(),
919                    /*PrintType=*/false, F.getParent());
920     emitFunctionHeaderComment();
921     OutStreamer->GetCommentOS() << '\n';
922   }
923 
924   // Emit the prefix data.
925   if (F.hasPrefixData()) {
926     if (MAI->hasSubsectionsViaSymbols()) {
927       // Preserving prefix data on platforms which use subsections-via-symbols
928       // is a bit tricky. Here we introduce a symbol for the prefix data
929       // and use the .alt_entry attribute to mark the function's real entry point
930       // as an alternative entry point to the prefix-data symbol.
931       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
932       OutStreamer->emitLabel(PrefixSym);
933 
934       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
935 
936       // Emit an .alt_entry directive for the actual function symbol.
937       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
938     } else {
939       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
940     }
941   }
942 
943   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
944   // place prefix data before NOPs.
945   unsigned PatchableFunctionPrefix = 0;
946   unsigned PatchableFunctionEntry = 0;
947   (void)F.getFnAttribute("patchable-function-prefix")
948       .getValueAsString()
949       .getAsInteger(10, PatchableFunctionPrefix);
950   (void)F.getFnAttribute("patchable-function-entry")
951       .getValueAsString()
952       .getAsInteger(10, PatchableFunctionEntry);
953   if (PatchableFunctionPrefix) {
954     CurrentPatchableFunctionEntrySym =
955         OutContext.createLinkerPrivateTempSymbol();
956     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
957     emitNops(PatchableFunctionPrefix);
958   } else if (PatchableFunctionEntry) {
959     // May be reassigned when emitting the body, to reference the label after
960     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
961     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
962   }
963 
964   // Emit the function descriptor. This is a virtual function to allow targets
965   // to emit their specific function descriptor. Right now it is only used by
966   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
967   // descriptors and should be converted to use this hook as well.
968   if (MAI->needsFunctionDescriptors())
969     emitFunctionDescriptor();
970 
971   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
972   // their wild and crazy things as required.
973   emitFunctionEntryLabel();
974 
975   // If the function had address-taken blocks that got deleted, then we have
976   // references to the dangling symbols.  Emit them at the start of the function
977   // so that we don't get references to undefined symbols.
978   std::vector<MCSymbol*> DeadBlockSyms;
979   takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
980   for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
981     OutStreamer->AddComment("Address taken block that was later removed");
982     OutStreamer->emitLabel(DeadBlockSym);
983   }
984 
985   if (CurrentFnBegin) {
986     if (MAI->useAssignmentForEHBegin()) {
987       MCSymbol *CurPos = OutContext.createTempSymbol();
988       OutStreamer->emitLabel(CurPos);
989       OutStreamer->emitAssignment(CurrentFnBegin,
990                                  MCSymbolRefExpr::create(CurPos, OutContext));
991     } else {
992       OutStreamer->emitLabel(CurrentFnBegin);
993     }
994   }
995 
996   // Emit pre-function debug and/or EH information.
997   for (const HandlerInfo &HI : Handlers) {
998     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
999                        HI.TimerGroupDescription, TimePassesIsEnabled);
1000     HI.Handler->beginFunction(MF);
1001   }
1002 
1003   // Emit the prologue data.
1004   if (F.hasPrologueData())
1005     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
1006 }
1007 
1008 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1009 /// function.  This can be overridden by targets as required to do custom stuff.
1010 void AsmPrinter::emitFunctionEntryLabel() {
1011   CurrentFnSym->redefineIfPossible();
1012 
1013   // The function label could have already been emitted if two symbols end up
1014   // conflicting due to asm renaming.  Detect this and emit an error.
1015   if (CurrentFnSym->isVariable())
1016     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
1017                        "' is a protected alias");
1018 
1019   OutStreamer->emitLabel(CurrentFnSym);
1020 
1021   if (TM.getTargetTriple().isOSBinFormatELF()) {
1022     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1023     if (Sym != CurrentFnSym)
1024       OutStreamer->emitLabel(Sym);
1025   }
1026 }
1027 
1028 /// emitComments - Pretty-print comments for instructions.
1029 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
1030   const MachineFunction *MF = MI.getMF();
1031   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1032 
1033   // Check for spills and reloads
1034 
1035   // We assume a single instruction only has a spill or reload, not
1036   // both.
1037   Optional<unsigned> Size;
1038   if ((Size = MI.getRestoreSize(TII))) {
1039     CommentOS << *Size << "-byte Reload\n";
1040   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1041     if (*Size) {
1042       if (*Size == unsigned(MemoryLocation::UnknownSize))
1043         CommentOS << "Unknown-size Folded Reload\n";
1044       else
1045         CommentOS << *Size << "-byte Folded Reload\n";
1046     }
1047   } else if ((Size = MI.getSpillSize(TII))) {
1048     CommentOS << *Size << "-byte Spill\n";
1049   } else if ((Size = MI.getFoldedSpillSize(TII))) {
1050     if (*Size) {
1051       if (*Size == unsigned(MemoryLocation::UnknownSize))
1052         CommentOS << "Unknown-size Folded Spill\n";
1053       else
1054         CommentOS << *Size << "-byte Folded Spill\n";
1055     }
1056   }
1057 
1058   // Check for spill-induced copies
1059   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1060     CommentOS << " Reload Reuse\n";
1061 }
1062 
1063 /// emitImplicitDef - This method emits the specified machine instruction
1064 /// that is an implicit def.
1065 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
1066   Register RegNo = MI->getOperand(0).getReg();
1067 
1068   SmallString<128> Str;
1069   raw_svector_ostream OS(Str);
1070   OS << "implicit-def: "
1071      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1072 
1073   OutStreamer->AddComment(OS.str());
1074   OutStreamer->AddBlankLine();
1075 }
1076 
1077 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1078   std::string Str;
1079   raw_string_ostream OS(Str);
1080   OS << "kill:";
1081   for (const MachineOperand &Op : MI->operands()) {
1082     assert(Op.isReg() && "KILL instruction must have only register operands");
1083     OS << ' ' << (Op.isDef() ? "def " : "killed ")
1084        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1085   }
1086   AP.OutStreamer->AddComment(OS.str());
1087   AP.OutStreamer->AddBlankLine();
1088 }
1089 
1090 /// emitDebugValueComment - This method handles the target-independent form
1091 /// of DBG_VALUE, returning true if it was able to do so.  A false return
1092 /// means the target will need to handle MI in EmitInstruction.
1093 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
1094   // This code handles only the 4-operand target-independent form.
1095   if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1096     return false;
1097 
1098   SmallString<128> Str;
1099   raw_svector_ostream OS(Str);
1100   OS << "DEBUG_VALUE: ";
1101 
1102   const DILocalVariable *V = MI->getDebugVariable();
1103   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1104     StringRef Name = SP->getName();
1105     if (!Name.empty())
1106       OS << Name << ":";
1107   }
1108   OS << V->getName();
1109   OS << " <- ";
1110 
1111   const DIExpression *Expr = MI->getDebugExpression();
1112   if (Expr->getNumElements()) {
1113     OS << '[';
1114     ListSeparator LS;
1115     for (auto Op : Expr->expr_ops()) {
1116       OS << LS << dwarf::OperationEncodingString(Op.getOp());
1117       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1118         OS << ' ' << Op.getArg(I);
1119     }
1120     OS << "] ";
1121   }
1122 
1123   // Register or immediate value. Register 0 means undef.
1124   for (const MachineOperand &Op : MI->debug_operands()) {
1125     if (&Op != MI->debug_operands().begin())
1126       OS << ", ";
1127     switch (Op.getType()) {
1128     case MachineOperand::MO_FPImmediate: {
1129       APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1130       Type *ImmTy = Op.getFPImm()->getType();
1131       if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1132           ImmTy->isDoubleTy()) {
1133         OS << APF.convertToDouble();
1134       } else {
1135         // There is no good way to print long double.  Convert a copy to
1136         // double.  Ah well, it's only a comment.
1137         bool ignored;
1138         APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1139                     &ignored);
1140         OS << "(long double) " << APF.convertToDouble();
1141       }
1142       break;
1143     }
1144     case MachineOperand::MO_Immediate: {
1145       OS << Op.getImm();
1146       break;
1147     }
1148     case MachineOperand::MO_CImmediate: {
1149       Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1150       break;
1151     }
1152     case MachineOperand::MO_TargetIndex: {
1153       OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1154       // NOTE: Want this comment at start of line, don't emit with AddComment.
1155       AP.OutStreamer->emitRawComment(OS.str());
1156       break;
1157     }
1158     case MachineOperand::MO_Register:
1159     case MachineOperand::MO_FrameIndex: {
1160       Register Reg;
1161       Optional<StackOffset> Offset;
1162       if (Op.isReg()) {
1163         Reg = Op.getReg();
1164       } else {
1165         const TargetFrameLowering *TFI =
1166             AP.MF->getSubtarget().getFrameLowering();
1167         Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1168       }
1169       if (!Reg) {
1170         // Suppress offset, it is not meaningful here.
1171         OS << "undef";
1172         break;
1173       }
1174       // The second operand is only an offset if it's an immediate.
1175       if (MI->isIndirectDebugValue())
1176         Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1177       if (Offset)
1178         OS << '[';
1179       OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1180       if (Offset)
1181         OS << '+' << Offset->getFixed() << ']';
1182       break;
1183     }
1184     default:
1185       llvm_unreachable("Unknown operand type");
1186     }
1187   }
1188 
1189   // NOTE: Want this comment at start of line, don't emit with AddComment.
1190   AP.OutStreamer->emitRawComment(OS.str());
1191   return true;
1192 }
1193 
1194 /// This method handles the target-independent form of DBG_LABEL, returning
1195 /// true if it was able to do so.  A false return means the target will need
1196 /// to handle MI in EmitInstruction.
1197 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
1198   if (MI->getNumOperands() != 1)
1199     return false;
1200 
1201   SmallString<128> Str;
1202   raw_svector_ostream OS(Str);
1203   OS << "DEBUG_LABEL: ";
1204 
1205   const DILabel *V = MI->getDebugLabel();
1206   if (auto *SP = dyn_cast<DISubprogram>(
1207           V->getScope()->getNonLexicalBlockFileScope())) {
1208     StringRef Name = SP->getName();
1209     if (!Name.empty())
1210       OS << Name << ":";
1211   }
1212   OS << V->getName();
1213 
1214   // NOTE: Want this comment at start of line, don't emit with AddComment.
1215   AP.OutStreamer->emitRawComment(OS.str());
1216   return true;
1217 }
1218 
1219 AsmPrinter::CFISection
1220 AsmPrinter::getFunctionCFISectionType(const Function &F) const {
1221   // Ignore functions that won't get emitted.
1222   if (F.isDeclarationForLinker())
1223     return CFISection::None;
1224 
1225   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1226       F.needsUnwindTableEntry())
1227     return CFISection::EH;
1228 
1229   if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1230     return CFISection::Debug;
1231 
1232   return CFISection::None;
1233 }
1234 
1235 AsmPrinter::CFISection
1236 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
1237   return getFunctionCFISectionType(MF.getFunction());
1238 }
1239 
1240 bool AsmPrinter::needsSEHMoves() {
1241   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1242 }
1243 
1244 bool AsmPrinter::needsCFIForDebug() const {
1245   return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
1246          MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
1247 }
1248 
1249 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1250   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1251   if (!needsCFIForDebug() &&
1252       ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1253       ExceptionHandlingType != ExceptionHandling::ARM)
1254     return;
1255 
1256   if (getFunctionCFISectionType(*MF) == CFISection::None)
1257     return;
1258 
1259   // If there is no "real" instruction following this CFI instruction, skip
1260   // emitting it; it would be beyond the end of the function's FDE range.
1261   auto *MBB = MI.getParent();
1262   auto I = std::next(MI.getIterator());
1263   while (I != MBB->end() && I->isTransient())
1264     ++I;
1265   if (I == MBB->instr_end() &&
1266       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1267     return;
1268 
1269   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1270   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1271   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1272   emitCFIInstruction(CFI);
1273 }
1274 
1275 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1276   // The operands are the MCSymbol and the frame offset of the allocation.
1277   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1278   int FrameOffset = MI.getOperand(1).getImm();
1279 
1280   // Emit a symbol assignment.
1281   OutStreamer->emitAssignment(FrameAllocSym,
1282                              MCConstantExpr::create(FrameOffset, OutContext));
1283 }
1284 
1285 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1286 /// given basic block. This can be used to capture more precise profile
1287 /// information. We use the last 4 bits (LSBs) to encode the following
1288 /// information:
1289 ///  * (1): set if return block (ret or tail call).
1290 ///  * (2): set if ends with a tail call.
1291 ///  * (3): set if exception handling (EH) landing pad.
1292 ///  * (4): set if the block can fall through to its next.
1293 /// The remaining bits are zero.
1294 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1295   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1296   return ((unsigned)MBB.isReturnBlock()) |
1297          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1298          (MBB.isEHPad() << 2) |
1299          (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3);
1300 }
1301 
1302 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1303   MCSection *BBAddrMapSection =
1304       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1305   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1306 
1307   const MCSymbol *FunctionSymbol = getFunctionBegin();
1308 
1309   OutStreamer->PushSection();
1310   OutStreamer->SwitchSection(BBAddrMapSection);
1311   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1312   // Emit the total number of basic blocks in this function.
1313   OutStreamer->emitULEB128IntValue(MF.size());
1314   // Emit BB Information for each basic block in the funciton.
1315   for (const MachineBasicBlock &MBB : MF) {
1316     const MCSymbol *MBBSymbol =
1317         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1318     // Emit the basic block offset.
1319     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1320     // Emit the basic block size. When BBs have alignments, their size cannot
1321     // always be computed from their offsets.
1322     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1323     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1324   }
1325   OutStreamer->PopSection();
1326 }
1327 
1328 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1329   if (PP) {
1330     auto GUID = MI.getOperand(0).getImm();
1331     auto Index = MI.getOperand(1).getImm();
1332     auto Type = MI.getOperand(2).getImm();
1333     auto Attr = MI.getOperand(3).getImm();
1334     DILocation *DebugLoc = MI.getDebugLoc();
1335     PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1336   }
1337 }
1338 
1339 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1340   if (!MF.getTarget().Options.EmitStackSizeSection)
1341     return;
1342 
1343   MCSection *StackSizeSection =
1344       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1345   if (!StackSizeSection)
1346     return;
1347 
1348   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1349   // Don't emit functions with dynamic stack allocations.
1350   if (FrameInfo.hasVarSizedObjects())
1351     return;
1352 
1353   OutStreamer->PushSection();
1354   OutStreamer->SwitchSection(StackSizeSection);
1355 
1356   const MCSymbol *FunctionSymbol = getFunctionBegin();
1357   uint64_t StackSize =
1358       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1359   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1360   OutStreamer->emitULEB128IntValue(StackSize);
1361 
1362   OutStreamer->PopSection();
1363 }
1364 
1365 void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
1366   const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1367 
1368   // OutputFilename empty implies -fstack-usage is not passed.
1369   if (OutputFilename.empty())
1370     return;
1371 
1372   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1373   uint64_t StackSize =
1374       FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1375 
1376   if (StackUsageStream == nullptr) {
1377     std::error_code EC;
1378     StackUsageStream =
1379         std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1380     if (EC) {
1381       errs() << "Could not open file: " << EC.message();
1382       return;
1383     }
1384   }
1385 
1386   *StackUsageStream << MF.getFunction().getParent()->getName();
1387   if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1388     *StackUsageStream << ':' << DSP->getLine();
1389 
1390   *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1391   if (FrameInfo.hasVarSizedObjects())
1392     *StackUsageStream << "dynamic\n";
1393   else
1394     *StackUsageStream << "static\n";
1395 }
1396 
1397 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1398   MachineModuleInfo &MMI = MF.getMMI();
1399   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1400     return true;
1401 
1402   // We might emit an EH table that uses function begin and end labels even if
1403   // we don't have any landingpads.
1404   if (!MF.getFunction().hasPersonalityFn())
1405     return false;
1406   return !isNoOpWithoutInvoke(
1407       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1408 }
1409 
1410 /// EmitFunctionBody - This method emits the body and trailer for a
1411 /// function.
1412 void AsmPrinter::emitFunctionBody() {
1413   emitFunctionHeader();
1414 
1415   // Emit target-specific gunk before the function body.
1416   emitFunctionBodyStart();
1417 
1418   if (isVerbose()) {
1419     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1420     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1421     if (!MDT) {
1422       OwnedMDT = std::make_unique<MachineDominatorTree>();
1423       OwnedMDT->getBase().recalculate(*MF);
1424       MDT = OwnedMDT.get();
1425     }
1426 
1427     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1428     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1429     if (!MLI) {
1430       OwnedMLI = std::make_unique<MachineLoopInfo>();
1431       OwnedMLI->getBase().analyze(MDT->getBase());
1432       MLI = OwnedMLI.get();
1433     }
1434   }
1435 
1436   // Print out code for the function.
1437   bool HasAnyRealCode = false;
1438   int NumInstsInFunction = 0;
1439 
1440   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1441   for (auto &MBB : *MF) {
1442     // Print a label for the basic block.
1443     emitBasicBlockStart(MBB);
1444     DenseMap<StringRef, unsigned> MnemonicCounts;
1445     for (auto &MI : MBB) {
1446       // Print the assembly for the instruction.
1447       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1448           !MI.isDebugInstr()) {
1449         HasAnyRealCode = true;
1450         ++NumInstsInFunction;
1451       }
1452 
1453       // If there is a pre-instruction symbol, emit a label for it here.
1454       if (MCSymbol *S = MI.getPreInstrSymbol())
1455         OutStreamer->emitLabel(S);
1456 
1457       for (const HandlerInfo &HI : Handlers) {
1458         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1459                            HI.TimerGroupDescription, TimePassesIsEnabled);
1460         HI.Handler->beginInstruction(&MI);
1461       }
1462 
1463       if (isVerbose())
1464         emitComments(MI, OutStreamer->GetCommentOS());
1465 
1466       switch (MI.getOpcode()) {
1467       case TargetOpcode::CFI_INSTRUCTION:
1468         emitCFIInstruction(MI);
1469         break;
1470       case TargetOpcode::LOCAL_ESCAPE:
1471         emitFrameAlloc(MI);
1472         break;
1473       case TargetOpcode::ANNOTATION_LABEL:
1474       case TargetOpcode::EH_LABEL:
1475       case TargetOpcode::GC_LABEL:
1476         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1477         break;
1478       case TargetOpcode::INLINEASM:
1479       case TargetOpcode::INLINEASM_BR:
1480         emitInlineAsm(&MI);
1481         break;
1482       case TargetOpcode::DBG_VALUE:
1483       case TargetOpcode::DBG_VALUE_LIST:
1484         if (isVerbose()) {
1485           if (!emitDebugValueComment(&MI, *this))
1486             emitInstruction(&MI);
1487         }
1488         break;
1489       case TargetOpcode::DBG_INSTR_REF:
1490         // This instruction reference will have been resolved to a machine
1491         // location, and a nearby DBG_VALUE created. We can safely ignore
1492         // the instruction reference.
1493         break;
1494       case TargetOpcode::DBG_PHI:
1495         // This instruction is only used to label a program point, it's purely
1496         // meta information.
1497         break;
1498       case TargetOpcode::DBG_LABEL:
1499         if (isVerbose()) {
1500           if (!emitDebugLabelComment(&MI, *this))
1501             emitInstruction(&MI);
1502         }
1503         break;
1504       case TargetOpcode::IMPLICIT_DEF:
1505         if (isVerbose()) emitImplicitDef(&MI);
1506         break;
1507       case TargetOpcode::KILL:
1508         if (isVerbose()) emitKill(&MI, *this);
1509         break;
1510       case TargetOpcode::PSEUDO_PROBE:
1511         emitPseudoProbe(MI);
1512         break;
1513       case TargetOpcode::ARITH_FENCE:
1514         if (isVerbose())
1515           OutStreamer->emitRawComment("ARITH_FENCE");
1516         break;
1517       default:
1518         emitInstruction(&MI);
1519         if (CanDoExtraAnalysis) {
1520           MCInst MCI;
1521           MCI.setOpcode(MI.getOpcode());
1522           auto Name = OutStreamer->getMnemonic(MCI);
1523           auto I = MnemonicCounts.insert({Name, 0u});
1524           I.first->second++;
1525         }
1526         break;
1527       }
1528 
1529       // If there is a post-instruction symbol, emit a label for it here.
1530       if (MCSymbol *S = MI.getPostInstrSymbol())
1531         OutStreamer->emitLabel(S);
1532 
1533       for (const HandlerInfo &HI : Handlers) {
1534         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1535                            HI.TimerGroupDescription, TimePassesIsEnabled);
1536         HI.Handler->endInstruction();
1537       }
1538     }
1539 
1540     // We must emit temporary symbol for the end of this basic block, if either
1541     // we have BBLabels enabled or if this basic blocks marks the end of a
1542     // section.
1543     if (MF->hasBBLabels() ||
1544         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
1545       OutStreamer->emitLabel(MBB.getEndSymbol());
1546 
1547     if (MBB.isEndSection()) {
1548       // The size directive for the section containing the entry block is
1549       // handled separately by the function section.
1550       if (!MBB.sameSection(&MF->front())) {
1551         if (MAI->hasDotTypeDotSizeDirective()) {
1552           // Emit the size directive for the basic block section.
1553           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1554               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1555               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1556               OutContext);
1557           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1558         }
1559         MBBSectionRanges[MBB.getSectionIDNum()] =
1560             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1561       }
1562     }
1563     emitBasicBlockEnd(MBB);
1564 
1565     if (CanDoExtraAnalysis) {
1566       // Skip empty blocks.
1567       if (MBB.empty())
1568         continue;
1569 
1570       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1571                                           MBB.begin()->getDebugLoc(), &MBB);
1572 
1573       // Generate instruction mix remark. First, sort counts in descending order
1574       // by count and name.
1575       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1576       for (auto &KV : MnemonicCounts)
1577         MnemonicVec.emplace_back(KV.first, KV.second);
1578 
1579       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1580                            const std::pair<StringRef, unsigned> &B) {
1581         if (A.second > B.second)
1582           return true;
1583         if (A.second == B.second)
1584           return StringRef(A.first) < StringRef(B.first);
1585         return false;
1586       });
1587       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1588       for (auto &KV : MnemonicVec) {
1589         auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
1590         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1591       }
1592       ORE->emit(R);
1593     }
1594   }
1595 
1596   EmittedInsts += NumInstsInFunction;
1597   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1598                                       MF->getFunction().getSubprogram(),
1599                                       &MF->front());
1600   R << ore::NV("NumInstructions", NumInstsInFunction)
1601     << " instructions in function";
1602   ORE->emit(R);
1603 
1604   // If the function is empty and the object file uses .subsections_via_symbols,
1605   // then we need to emit *something* to the function body to prevent the
1606   // labels from collapsing together.  Just emit a noop.
1607   // Similarly, don't emit empty functions on Windows either. It can lead to
1608   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1609   // after linking, causing the kernel not to load the binary:
1610   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1611   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1612   const Triple &TT = TM.getTargetTriple();
1613   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1614                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1615     MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
1616 
1617     // Targets can opt-out of emitting the noop here by leaving the opcode
1618     // unspecified.
1619     if (Noop.getOpcode()) {
1620       OutStreamer->AddComment("avoids zero-length function");
1621       emitNops(1);
1622     }
1623   }
1624 
1625   // Switch to the original section in case basic block sections was used.
1626   OutStreamer->SwitchSection(MF->getSection());
1627 
1628   const Function &F = MF->getFunction();
1629   for (const auto &BB : F) {
1630     if (!BB.hasAddressTaken())
1631       continue;
1632     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1633     if (Sym->isDefined())
1634       continue;
1635     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1636     OutStreamer->emitLabel(Sym);
1637   }
1638 
1639   // Emit target-specific gunk after the function body.
1640   emitFunctionBodyEnd();
1641 
1642   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1643       MAI->hasDotTypeDotSizeDirective()) {
1644     // Create a symbol for the end of function.
1645     CurrentFnEnd = createTempSymbol("func_end");
1646     OutStreamer->emitLabel(CurrentFnEnd);
1647   }
1648 
1649   // If the target wants a .size directive for the size of the function, emit
1650   // it.
1651   if (MAI->hasDotTypeDotSizeDirective()) {
1652     // We can get the size as difference between the function label and the
1653     // temp label.
1654     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1655         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1656         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1657     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1658   }
1659 
1660   for (const HandlerInfo &HI : Handlers) {
1661     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1662                        HI.TimerGroupDescription, TimePassesIsEnabled);
1663     HI.Handler->markFunctionEnd();
1664   }
1665 
1666   MBBSectionRanges[MF->front().getSectionIDNum()] =
1667       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1668 
1669   // Print out jump tables referenced by the function.
1670   emitJumpTableInfo();
1671 
1672   // Emit post-function debug and/or EH information.
1673   for (const HandlerInfo &HI : Handlers) {
1674     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1675                        HI.TimerGroupDescription, TimePassesIsEnabled);
1676     HI.Handler->endFunction(MF);
1677   }
1678 
1679   // Emit section containing BB address offsets and their metadata, when
1680   // BB labels are requested for this function. Skip empty functions.
1681   if (MF->hasBBLabels() && HasAnyRealCode)
1682     emitBBAddrMapSection(*MF);
1683 
1684   // Emit section containing stack size metadata.
1685   emitStackSizeSection(*MF);
1686 
1687   // Emit .su file containing function stack size information.
1688   emitStackUsage(*MF);
1689 
1690   emitPatchableFunctionEntries();
1691 
1692   if (isVerbose())
1693     OutStreamer->GetCommentOS() << "-- End function\n";
1694 
1695   OutStreamer->AddBlankLine();
1696 }
1697 
1698 /// Compute the number of Global Variables that uses a Constant.
1699 static unsigned getNumGlobalVariableUses(const Constant *C) {
1700   if (!C)
1701     return 0;
1702 
1703   if (isa<GlobalVariable>(C))
1704     return 1;
1705 
1706   unsigned NumUses = 0;
1707   for (auto *CU : C->users())
1708     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1709 
1710   return NumUses;
1711 }
1712 
1713 /// Only consider global GOT equivalents if at least one user is a
1714 /// cstexpr inside an initializer of another global variables. Also, don't
1715 /// handle cstexpr inside instructions. During global variable emission,
1716 /// candidates are skipped and are emitted later in case at least one cstexpr
1717 /// isn't replaced by a PC relative GOT entry access.
1718 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1719                                      unsigned &NumGOTEquivUsers) {
1720   // Global GOT equivalents are unnamed private globals with a constant
1721   // pointer initializer to another global symbol. They must point to a
1722   // GlobalVariable or Function, i.e., as GlobalValue.
1723   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1724       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1725       !isa<GlobalValue>(GV->getOperand(0)))
1726     return false;
1727 
1728   // To be a got equivalent, at least one of its users need to be a constant
1729   // expression used by another global variable.
1730   for (auto *U : GV->users())
1731     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1732 
1733   return NumGOTEquivUsers > 0;
1734 }
1735 
1736 /// Unnamed constant global variables solely contaning a pointer to
1737 /// another globals variable is equivalent to a GOT table entry; it contains the
1738 /// the address of another symbol. Optimize it and replace accesses to these
1739 /// "GOT equivalents" by using the GOT entry for the final global instead.
1740 /// Compute GOT equivalent candidates among all global variables to avoid
1741 /// emitting them if possible later on, after it use is replaced by a GOT entry
1742 /// access.
1743 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1744   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1745     return;
1746 
1747   for (const auto &G : M.globals()) {
1748     unsigned NumGOTEquivUsers = 0;
1749     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1750       continue;
1751 
1752     const MCSymbol *GOTEquivSym = getSymbol(&G);
1753     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1754   }
1755 }
1756 
1757 /// Constant expressions using GOT equivalent globals may not be eligible
1758 /// for PC relative GOT entry conversion, in such cases we need to emit such
1759 /// globals we previously omitted in EmitGlobalVariable.
1760 void AsmPrinter::emitGlobalGOTEquivs() {
1761   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1762     return;
1763 
1764   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1765   for (auto &I : GlobalGOTEquivs) {
1766     const GlobalVariable *GV = I.second.first;
1767     unsigned Cnt = I.second.second;
1768     if (Cnt)
1769       FailedCandidates.push_back(GV);
1770   }
1771   GlobalGOTEquivs.clear();
1772 
1773   for (auto *GV : FailedCandidates)
1774     emitGlobalVariable(GV);
1775 }
1776 
1777 void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) {
1778   MCSymbol *Name = getSymbol(&GA);
1779   bool IsFunction = GA.getValueType()->isFunctionTy();
1780   // Treat bitcasts of functions as functions also. This is important at least
1781   // on WebAssembly where object and function addresses can't alias each other.
1782   if (!IsFunction)
1783     IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
1784 
1785   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1786   // so AIX has to use the extra-label-at-definition strategy. At this
1787   // point, all the extra label is emitted, we just have to emit linkage for
1788   // those labels.
1789   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1790     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1791            "Visibility should be handled with emitLinkage() on AIX.");
1792     emitLinkage(&GA, Name);
1793     // If it's a function, also emit linkage for aliases of function entry
1794     // point.
1795     if (IsFunction)
1796       emitLinkage(&GA,
1797                   getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
1798     return;
1799   }
1800 
1801   if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
1802     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1803   else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
1804     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1805   else
1806     assert(GA.hasLocalLinkage() && "Invalid alias linkage");
1807 
1808   // Set the symbol type to function if the alias has a function type.
1809   // This affects codegen when the aliasee is not a function.
1810   if (IsFunction) {
1811     OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1812     if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1813       OutStreamer->BeginCOFFSymbolDef(Name);
1814       OutStreamer->EmitCOFFSymbolStorageClass(
1815           GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
1816                                : COFF::IMAGE_SYM_CLASS_EXTERNAL);
1817       OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
1818                                       << COFF::SCT_COMPLEX_TYPE_SHIFT);
1819       OutStreamer->EndCOFFSymbolDef();
1820     }
1821   }
1822 
1823   emitVisibility(Name, GA.getVisibility());
1824 
1825   const MCExpr *Expr = lowerConstant(GA.getAliasee());
1826 
1827   if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1828     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1829 
1830   // Emit the directives as assignments aka .set:
1831   OutStreamer->emitAssignment(Name, Expr);
1832   MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
1833   if (LocalAlias != Name)
1834     OutStreamer->emitAssignment(LocalAlias, Expr);
1835 
1836   // If the aliasee does not correspond to a symbol in the output, i.e. the
1837   // alias is not of an object or the aliased object is private, then set the
1838   // size of the alias symbol from the type of the alias. We don't do this in
1839   // other situations as the alias and aliasee having differing types but same
1840   // size may be intentional.
1841   const GlobalObject *BaseObject = GA.getAliaseeObject();
1842   if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
1843       (!BaseObject || BaseObject->hasPrivateLinkage())) {
1844     const DataLayout &DL = M.getDataLayout();
1845     uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
1846     OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1847   }
1848 }
1849 
1850 void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
1851   assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
1852          "IFunc is not supported on AIX.");
1853 
1854   MCSymbol *Name = getSymbol(&GI);
1855 
1856   if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
1857     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1858   else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
1859     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1860   else
1861     assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
1862 
1863   OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1864   emitVisibility(Name, GI.getVisibility());
1865 
1866   // Emit the directives as assignments aka .set:
1867   const MCExpr *Expr = lowerConstant(GI.getResolver());
1868   OutStreamer->emitAssignment(Name, Expr);
1869   MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
1870   if (LocalAlias != Name)
1871     OutStreamer->emitAssignment(LocalAlias, Expr);
1872 }
1873 
1874 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1875   if (!RS.needsSection())
1876     return;
1877 
1878   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1879 
1880   Optional<SmallString<128>> Filename;
1881   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1882     Filename = *FilenameRef;
1883     sys::fs::make_absolute(*Filename);
1884     assert(!Filename->empty() && "The filename can't be empty.");
1885   }
1886 
1887   std::string Buf;
1888   raw_string_ostream OS(Buf);
1889   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1890       Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
1891                : RemarkSerializer.metaSerializer(OS);
1892   MetaSerializer->emit();
1893 
1894   // Switch to the remarks section.
1895   MCSection *RemarksSection =
1896       OutContext.getObjectFileInfo()->getRemarksSection();
1897   OutStreamer->SwitchSection(RemarksSection);
1898 
1899   OutStreamer->emitBinaryData(OS.str());
1900 }
1901 
1902 bool AsmPrinter::doFinalization(Module &M) {
1903   // Set the MachineFunction to nullptr so that we can catch attempted
1904   // accesses to MF specific features at the module level and so that
1905   // we can conditionalize accesses based on whether or not it is nullptr.
1906   MF = nullptr;
1907 
1908   // Gather all GOT equivalent globals in the module. We really need two
1909   // passes over the globals: one to compute and another to avoid its emission
1910   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1911   // where the got equivalent shows up before its use.
1912   computeGlobalGOTEquivs(M);
1913 
1914   // Emit global variables.
1915   for (const auto &G : M.globals())
1916     emitGlobalVariable(&G);
1917 
1918   // Emit remaining GOT equivalent globals.
1919   emitGlobalGOTEquivs();
1920 
1921   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1922 
1923   // Emit linkage(XCOFF) and visibility info for declarations
1924   for (const Function &F : M) {
1925     if (!F.isDeclarationForLinker())
1926       continue;
1927 
1928     MCSymbol *Name = getSymbol(&F);
1929     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1930 
1931     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1932       GlobalValue::VisibilityTypes V = F.getVisibility();
1933       if (V == GlobalValue::DefaultVisibility)
1934         continue;
1935 
1936       emitVisibility(Name, V, false);
1937       continue;
1938     }
1939 
1940     if (F.isIntrinsic())
1941       continue;
1942 
1943     // Handle the XCOFF case.
1944     // Variable `Name` is the function descriptor symbol (see above). Get the
1945     // function entry point symbol.
1946     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1947     // Emit linkage for the function entry point.
1948     emitLinkage(&F, FnEntryPointSym);
1949 
1950     // Emit linkage for the function descriptor.
1951     emitLinkage(&F, Name);
1952   }
1953 
1954   // Emit the remarks section contents.
1955   // FIXME: Figure out when is the safest time to emit this section. It should
1956   // not come after debug info.
1957   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1958     emitRemarksSection(*RS);
1959 
1960   TLOF.emitModuleMetadata(*OutStreamer, M);
1961 
1962   if (TM.getTargetTriple().isOSBinFormatELF()) {
1963     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1964 
1965     // Output stubs for external and common global variables.
1966     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1967     if (!Stubs.empty()) {
1968       OutStreamer->SwitchSection(TLOF.getDataSection());
1969       const DataLayout &DL = M.getDataLayout();
1970 
1971       emitAlignment(Align(DL.getPointerSize()));
1972       for (const auto &Stub : Stubs) {
1973         OutStreamer->emitLabel(Stub.first);
1974         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1975                                      DL.getPointerSize());
1976       }
1977     }
1978   }
1979 
1980   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1981     MachineModuleInfoCOFF &MMICOFF =
1982         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1983 
1984     // Output stubs for external and common global variables.
1985     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1986     if (!Stubs.empty()) {
1987       const DataLayout &DL = M.getDataLayout();
1988 
1989       for (const auto &Stub : Stubs) {
1990         SmallString<256> SectionName = StringRef(".rdata$");
1991         SectionName += Stub.first->getName();
1992         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1993             SectionName,
1994             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1995                 COFF::IMAGE_SCN_LNK_COMDAT,
1996             SectionKind::getReadOnly(), Stub.first->getName(),
1997             COFF::IMAGE_COMDAT_SELECT_ANY));
1998         emitAlignment(Align(DL.getPointerSize()));
1999         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2000         OutStreamer->emitLabel(Stub.first);
2001         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2002                                      DL.getPointerSize());
2003       }
2004     }
2005   }
2006 
2007   // This needs to happen before emitting debug information since that can end
2008   // arbitrary sections.
2009   if (auto *TS = OutStreamer->getTargetStreamer())
2010     TS->emitConstantPools();
2011 
2012   // Finalize debug and EH information.
2013   for (const HandlerInfo &HI : Handlers) {
2014     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
2015                        HI.TimerGroupDescription, TimePassesIsEnabled);
2016     HI.Handler->endModule();
2017   }
2018 
2019   // This deletes all the ephemeral handlers that AsmPrinter added, while
2020   // keeping all the user-added handlers alive until the AsmPrinter is
2021   // destroyed.
2022   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2023   DD = nullptr;
2024 
2025   // If the target wants to know about weak references, print them all.
2026   if (MAI->getWeakRefDirective()) {
2027     // FIXME: This is not lazy, it would be nice to only print weak references
2028     // to stuff that is actually used.  Note that doing so would require targets
2029     // to notice uses in operands (due to constant exprs etc).  This should
2030     // happen with the MC stuff eventually.
2031 
2032     // Print out module-level global objects here.
2033     for (const auto &GO : M.global_objects()) {
2034       if (!GO.hasExternalWeakLinkage())
2035         continue;
2036       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2037     }
2038     if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
2039       auto SymbolName = "swift_async_extendedFramePointerFlags";
2040       auto Global = M.getGlobalVariable(SymbolName);
2041       if (!Global) {
2042         auto Int8PtrTy = Type::getInt8PtrTy(M.getContext());
2043         Global = new GlobalVariable(M, Int8PtrTy, false,
2044                                     GlobalValue::ExternalWeakLinkage, nullptr,
2045                                     SymbolName);
2046         OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2047       }
2048     }
2049   }
2050 
2051   // Print aliases in topological order, that is, for each alias a = b,
2052   // b must be printed before a.
2053   // This is because on some targets (e.g. PowerPC) linker expects aliases in
2054   // such an order to generate correct TOC information.
2055   SmallVector<const GlobalAlias *, 16> AliasStack;
2056   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
2057   for (const auto &Alias : M.aliases()) {
2058     for (const GlobalAlias *Cur = &Alias; Cur;
2059          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2060       if (!AliasVisited.insert(Cur).second)
2061         break;
2062       AliasStack.push_back(Cur);
2063     }
2064     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2065       emitGlobalAlias(M, *AncestorAlias);
2066     AliasStack.clear();
2067   }
2068   for (const auto &IFunc : M.ifuncs())
2069     emitGlobalIFunc(M, IFunc);
2070 
2071   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
2072   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2073   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2074     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
2075       MP->finishAssembly(M, *MI, *this);
2076 
2077   // Emit llvm.ident metadata in an '.ident' directive.
2078   emitModuleIdents(M);
2079 
2080   // Emit bytes for llvm.commandline metadata.
2081   emitModuleCommandLines(M);
2082 
2083   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2084   // split-stack is used.
2085   if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2086     OutStreamer->SwitchSection(
2087         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
2088     if (HasNoSplitStack)
2089       OutStreamer->SwitchSection(
2090           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2091   }
2092 
2093   // If we don't have any trampolines, then we don't require stack memory
2094   // to be executable. Some targets have a directive to declare this.
2095   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2096   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
2097     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
2098       OutStreamer->SwitchSection(S);
2099 
2100   if (TM.Options.EmitAddrsig) {
2101     // Emit address-significance attributes for all globals.
2102     OutStreamer->emitAddrsig();
2103     for (const GlobalValue &GV : M.global_values()) {
2104       if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() &&
2105           !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() &&
2106           !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr())
2107         OutStreamer->emitAddrsigSym(getSymbol(&GV));
2108     }
2109   }
2110 
2111   // Emit symbol partition specifications (ELF only).
2112   if (TM.getTargetTriple().isOSBinFormatELF()) {
2113     unsigned UniqueID = 0;
2114     for (const GlobalValue &GV : M.global_values()) {
2115       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2116           GV.getVisibility() != GlobalValue::DefaultVisibility)
2117         continue;
2118 
2119       OutStreamer->SwitchSection(
2120           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2121                                    "", false, ++UniqueID, nullptr));
2122       OutStreamer->emitBytes(GV.getPartition());
2123       OutStreamer->emitZeros(1);
2124       OutStreamer->emitValue(
2125           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
2126           MAI->getCodePointerSize());
2127     }
2128   }
2129 
2130   // Allow the target to emit any magic that it wants at the end of the file,
2131   // after everything else has gone out.
2132   emitEndOfAsmFile(M);
2133 
2134   MMI = nullptr;
2135   AddrLabelSymbols = nullptr;
2136 
2137   OutStreamer->Finish();
2138   OutStreamer->reset();
2139   OwnedMLI.reset();
2140   OwnedMDT.reset();
2141 
2142   return false;
2143 }
2144 
2145 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
2146   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
2147   if (Res.second)
2148     Res.first->second = createTempSymbol("exception");
2149   return Res.first->second;
2150 }
2151 
2152 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2153   this->MF = &MF;
2154   const Function &F = MF.getFunction();
2155 
2156   // Record that there are split-stack functions, so we will emit a special
2157   // section to tell the linker.
2158   if (MF.shouldSplitStack()) {
2159     HasSplitStack = true;
2160 
2161     if (!MF.getFrameInfo().needsSplitStackProlog())
2162       HasNoSplitStack = true;
2163   } else
2164     HasNoSplitStack = true;
2165 
2166   // Get the function symbol.
2167   if (!MAI->needsFunctionDescriptors()) {
2168     CurrentFnSym = getSymbol(&MF.getFunction());
2169   } else {
2170     assert(TM.getTargetTriple().isOSAIX() &&
2171            "Only AIX uses the function descriptor hooks.");
2172     // AIX is unique here in that the name of the symbol emitted for the
2173     // function body does not have the same name as the source function's
2174     // C-linkage name.
2175     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
2176                                " initalized first.");
2177 
2178     // Get the function entry point symbol.
2179     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
2180   }
2181 
2182   CurrentFnSymForSize = CurrentFnSym;
2183   CurrentFnBegin = nullptr;
2184   CurrentSectionBeginSym = nullptr;
2185   MBBSectionRanges.clear();
2186   MBBSectionExceptionSyms.clear();
2187   bool NeedsLocalForSize = MAI->needsLocalForSize();
2188   if (F.hasFnAttribute("patchable-function-entry") ||
2189       F.hasFnAttribute("function-instrument") ||
2190       F.hasFnAttribute("xray-instruction-threshold") ||
2191       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
2192       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
2193     CurrentFnBegin = createTempSymbol("func_begin");
2194     if (NeedsLocalForSize)
2195       CurrentFnSymForSize = CurrentFnBegin;
2196   }
2197 
2198   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2199 }
2200 
2201 namespace {
2202 
2203 // Keep track the alignment, constpool entries per Section.
2204   struct SectionCPs {
2205     MCSection *S;
2206     Align Alignment;
2207     SmallVector<unsigned, 4> CPEs;
2208 
2209     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
2210   };
2211 
2212 } // end anonymous namespace
2213 
2214 /// EmitConstantPool - Print to the current output stream assembly
2215 /// representations of the constants in the constant pool MCP. This is
2216 /// used to print out constants which have been "spilled to memory" by
2217 /// the code generator.
2218 void AsmPrinter::emitConstantPool() {
2219   const MachineConstantPool *MCP = MF->getConstantPool();
2220   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
2221   if (CP.empty()) return;
2222 
2223   // Calculate sections for constant pool entries. We collect entries to go into
2224   // the same section together to reduce amount of section switch statements.
2225   SmallVector<SectionCPs, 4> CPSections;
2226   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
2227     const MachineConstantPoolEntry &CPE = CP[i];
2228     Align Alignment = CPE.getAlign();
2229 
2230     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
2231 
2232     const Constant *C = nullptr;
2233     if (!CPE.isMachineConstantPoolEntry())
2234       C = CPE.Val.ConstVal;
2235 
2236     MCSection *S = getObjFileLowering().getSectionForConstant(
2237         getDataLayout(), Kind, C, Alignment);
2238 
2239     // The number of sections are small, just do a linear search from the
2240     // last section to the first.
2241     bool Found = false;
2242     unsigned SecIdx = CPSections.size();
2243     while (SecIdx != 0) {
2244       if (CPSections[--SecIdx].S == S) {
2245         Found = true;
2246         break;
2247       }
2248     }
2249     if (!Found) {
2250       SecIdx = CPSections.size();
2251       CPSections.push_back(SectionCPs(S, Alignment));
2252     }
2253 
2254     if (Alignment > CPSections[SecIdx].Alignment)
2255       CPSections[SecIdx].Alignment = Alignment;
2256     CPSections[SecIdx].CPEs.push_back(i);
2257   }
2258 
2259   // Now print stuff into the calculated sections.
2260   const MCSection *CurSection = nullptr;
2261   unsigned Offset = 0;
2262   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
2263     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
2264       unsigned CPI = CPSections[i].CPEs[j];
2265       MCSymbol *Sym = GetCPISymbol(CPI);
2266       if (!Sym->isUndefined())
2267         continue;
2268 
2269       if (CurSection != CPSections[i].S) {
2270         OutStreamer->SwitchSection(CPSections[i].S);
2271         emitAlignment(Align(CPSections[i].Alignment));
2272         CurSection = CPSections[i].S;
2273         Offset = 0;
2274       }
2275 
2276       MachineConstantPoolEntry CPE = CP[CPI];
2277 
2278       // Emit inter-object padding for alignment.
2279       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
2280       OutStreamer->emitZeros(NewOffset - Offset);
2281 
2282       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
2283 
2284       OutStreamer->emitLabel(Sym);
2285       if (CPE.isMachineConstantPoolEntry())
2286         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
2287       else
2288         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
2289     }
2290   }
2291 }
2292 
2293 // Print assembly representations of the jump tables used by the current
2294 // function.
2295 void AsmPrinter::emitJumpTableInfo() {
2296   const DataLayout &DL = MF->getDataLayout();
2297   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2298   if (!MJTI) return;
2299   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
2300   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2301   if (JT.empty()) return;
2302 
2303   // Pick the directive to use to print the jump table entries, and switch to
2304   // the appropriate section.
2305   const Function &F = MF->getFunction();
2306   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2307   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2308       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2309       F);
2310   if (JTInDiffSection) {
2311     // Drop it in the readonly section.
2312     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2313     OutStreamer->SwitchSection(ReadOnlySection);
2314   }
2315 
2316   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2317 
2318   // Jump tables in code sections are marked with a data_region directive
2319   // where that's supported.
2320   if (!JTInDiffSection)
2321     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2322 
2323   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2324     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2325 
2326     // If this jump table was deleted, ignore it.
2327     if (JTBBs.empty()) continue;
2328 
2329     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2330     /// emit a .set directive for each unique entry.
2331     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2332         MAI->doesSetDirectiveSuppressReloc()) {
2333       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2334       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2335       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2336       for (const MachineBasicBlock *MBB : JTBBs) {
2337         if (!EmittedSets.insert(MBB).second)
2338           continue;
2339 
2340         // .set LJTSet, LBB32-base
2341         const MCExpr *LHS =
2342           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2343         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2344                                     MCBinaryExpr::createSub(LHS, Base,
2345                                                             OutContext));
2346       }
2347     }
2348 
2349     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2350     // before each jump table.  The first label is never referenced, but tells
2351     // the assembler and linker the extents of the jump table object.  The
2352     // second label is actually referenced by the code.
2353     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2354       // FIXME: This doesn't have to have any specific name, just any randomly
2355       // named and numbered local label started with 'l' would work.  Simplify
2356       // GetJTISymbol.
2357       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2358 
2359     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2360     OutStreamer->emitLabel(JTISymbol);
2361 
2362     for (const MachineBasicBlock *MBB : JTBBs)
2363       emitJumpTableEntry(MJTI, MBB, JTI);
2364   }
2365   if (!JTInDiffSection)
2366     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2367 }
2368 
2369 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2370 /// current stream.
2371 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2372                                     const MachineBasicBlock *MBB,
2373                                     unsigned UID) const {
2374   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2375   const MCExpr *Value = nullptr;
2376   switch (MJTI->getEntryKind()) {
2377   case MachineJumpTableInfo::EK_Inline:
2378     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2379   case MachineJumpTableInfo::EK_Custom32:
2380     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2381         MJTI, MBB, UID, OutContext);
2382     break;
2383   case MachineJumpTableInfo::EK_BlockAddress:
2384     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2385     //     .word LBB123
2386     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2387     break;
2388   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2389     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2390     // with a relocation as gp-relative, e.g.:
2391     //     .gprel32 LBB123
2392     MCSymbol *MBBSym = MBB->getSymbol();
2393     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2394     return;
2395   }
2396 
2397   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2398     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2399     // with a relocation as gp-relative, e.g.:
2400     //     .gpdword LBB123
2401     MCSymbol *MBBSym = MBB->getSymbol();
2402     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2403     return;
2404   }
2405 
2406   case MachineJumpTableInfo::EK_LabelDifference32: {
2407     // Each entry is the address of the block minus the address of the jump
2408     // table. This is used for PIC jump tables where gprel32 is not supported.
2409     // e.g.:
2410     //      .word LBB123 - LJTI1_2
2411     // If the .set directive avoids relocations, this is emitted as:
2412     //      .set L4_5_set_123, LBB123 - LJTI1_2
2413     //      .word L4_5_set_123
2414     if (MAI->doesSetDirectiveSuppressReloc()) {
2415       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2416                                       OutContext);
2417       break;
2418     }
2419     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2420     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2421     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2422     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2423     break;
2424   }
2425   }
2426 
2427   assert(Value && "Unknown entry kind!");
2428 
2429   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2430   OutStreamer->emitValue(Value, EntrySize);
2431 }
2432 
2433 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2434 /// special global used by LLVM.  If so, emit it and return true, otherwise
2435 /// do nothing and return false.
2436 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2437   if (GV->getName() == "llvm.used") {
2438     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2439       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2440     return true;
2441   }
2442 
2443   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2444   if (GV->getSection() == "llvm.metadata" ||
2445       GV->hasAvailableExternallyLinkage())
2446     return true;
2447 
2448   if (!GV->hasAppendingLinkage()) return false;
2449 
2450   assert(GV->hasInitializer() && "Not a special LLVM global!");
2451 
2452   if (GV->getName() == "llvm.global_ctors") {
2453     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2454                        /* isCtor */ true);
2455 
2456     return true;
2457   }
2458 
2459   if (GV->getName() == "llvm.global_dtors") {
2460     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2461                        /* isCtor */ false);
2462 
2463     return true;
2464   }
2465 
2466   report_fatal_error("unknown special variable");
2467 }
2468 
2469 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2470 /// global in the specified llvm.used list.
2471 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2472   // Should be an array of 'i8*'.
2473   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2474     const GlobalValue *GV =
2475       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2476     if (GV)
2477       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2478   }
2479 }
2480 
2481 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2482                                           const Constant *List,
2483                                           SmallVector<Structor, 8> &Structors) {
2484   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2485   // the init priority.
2486   if (!isa<ConstantArray>(List))
2487     return;
2488 
2489   // Gather the structors in a form that's convenient for sorting by priority.
2490   for (Value *O : cast<ConstantArray>(List)->operands()) {
2491     auto *CS = cast<ConstantStruct>(O);
2492     if (CS->getOperand(1)->isNullValue())
2493       break; // Found a null terminator, skip the rest.
2494     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2495     if (!Priority)
2496       continue; // Malformed.
2497     Structors.push_back(Structor());
2498     Structor &S = Structors.back();
2499     S.Priority = Priority->getLimitedValue(65535);
2500     S.Func = CS->getOperand(1);
2501     if (!CS->getOperand(2)->isNullValue()) {
2502       if (TM.getTargetTriple().isOSAIX())
2503         llvm::report_fatal_error(
2504             "associated data of XXStructor list is not yet supported on AIX");
2505       S.ComdatKey =
2506           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2507     }
2508   }
2509 
2510   // Emit the function pointers in the target-specific order
2511   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2512     return L.Priority < R.Priority;
2513   });
2514 }
2515 
2516 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2517 /// priority.
2518 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2519                                     bool IsCtor) {
2520   SmallVector<Structor, 8> Structors;
2521   preprocessXXStructorList(DL, List, Structors);
2522   if (Structors.empty())
2523     return;
2524 
2525   // Emit the structors in reverse order if we are using the .ctor/.dtor
2526   // initialization scheme.
2527   if (!TM.Options.UseInitArray)
2528     std::reverse(Structors.begin(), Structors.end());
2529 
2530   const Align Align = DL.getPointerPrefAlignment();
2531   for (Structor &S : Structors) {
2532     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2533     const MCSymbol *KeySym = nullptr;
2534     if (GlobalValue *GV = S.ComdatKey) {
2535       if (GV->isDeclarationForLinker())
2536         // If the associated variable is not defined in this module
2537         // (it might be available_externally, or have been an
2538         // available_externally definition that was dropped by the
2539         // EliminateAvailableExternally pass), some other TU
2540         // will provide its dynamic initializer.
2541         continue;
2542 
2543       KeySym = getSymbol(GV);
2544     }
2545 
2546     MCSection *OutputSection =
2547         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2548                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2549     OutStreamer->SwitchSection(OutputSection);
2550     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2551       emitAlignment(Align);
2552     emitXXStructor(DL, S.Func);
2553   }
2554 }
2555 
2556 void AsmPrinter::emitModuleIdents(Module &M) {
2557   if (!MAI->hasIdentDirective())
2558     return;
2559 
2560   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2561     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2562       const MDNode *N = NMD->getOperand(i);
2563       assert(N->getNumOperands() == 1 &&
2564              "llvm.ident metadata entry can have only one operand");
2565       const MDString *S = cast<MDString>(N->getOperand(0));
2566       OutStreamer->emitIdent(S->getString());
2567     }
2568   }
2569 }
2570 
2571 void AsmPrinter::emitModuleCommandLines(Module &M) {
2572   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2573   if (!CommandLine)
2574     return;
2575 
2576   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2577   if (!NMD || !NMD->getNumOperands())
2578     return;
2579 
2580   OutStreamer->PushSection();
2581   OutStreamer->SwitchSection(CommandLine);
2582   OutStreamer->emitZeros(1);
2583   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2584     const MDNode *N = NMD->getOperand(i);
2585     assert(N->getNumOperands() == 1 &&
2586            "llvm.commandline metadata entry can have only one operand");
2587     const MDString *S = cast<MDString>(N->getOperand(0));
2588     OutStreamer->emitBytes(S->getString());
2589     OutStreamer->emitZeros(1);
2590   }
2591   OutStreamer->PopSection();
2592 }
2593 
2594 //===--------------------------------------------------------------------===//
2595 // Emission and print routines
2596 //
2597 
2598 /// Emit a byte directive and value.
2599 ///
2600 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2601 
2602 /// Emit a short directive and value.
2603 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2604 
2605 /// Emit a long directive and value.
2606 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2607 
2608 /// Emit a long long directive and value.
2609 void AsmPrinter::emitInt64(uint64_t Value) const {
2610   OutStreamer->emitInt64(Value);
2611 }
2612 
2613 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2614 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2615 /// .set if it avoids relocations.
2616 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2617                                      unsigned Size) const {
2618   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2619 }
2620 
2621 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2622 /// where the size in bytes of the directive is specified by Size and Label
2623 /// specifies the label.  This implicitly uses .set if it is available.
2624 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2625                                      unsigned Size,
2626                                      bool IsSectionRelative) const {
2627   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2628     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2629     if (Size > 4)
2630       OutStreamer->emitZeros(Size - 4);
2631     return;
2632   }
2633 
2634   // Emit Label+Offset (or just Label if Offset is zero)
2635   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2636   if (Offset)
2637     Expr = MCBinaryExpr::createAdd(
2638         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2639 
2640   OutStreamer->emitValue(Expr, Size);
2641 }
2642 
2643 //===----------------------------------------------------------------------===//
2644 
2645 // EmitAlignment - Emit an alignment directive to the specified power of
2646 // two boundary.  If a global value is specified, and if that global has
2647 // an explicit alignment requested, it will override the alignment request
2648 // if required for correctness.
2649 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV,
2650                                unsigned MaxBytesToEmit) const {
2651   if (GV)
2652     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2653 
2654   if (Alignment == Align(1))
2655     return; // 1-byte aligned: no need to emit alignment.
2656 
2657   if (getCurrentSection()->getKind().isText()) {
2658     const MCSubtargetInfo *STI = nullptr;
2659     if (this->MF)
2660       STI = &getSubtargetInfo();
2661     else
2662       STI = TM.getMCSubtargetInfo();
2663     OutStreamer->emitCodeAlignment(Alignment.value(), STI, MaxBytesToEmit);
2664   } else
2665     OutStreamer->emitValueToAlignment(Alignment.value(), 0, 1, MaxBytesToEmit);
2666 }
2667 
2668 //===----------------------------------------------------------------------===//
2669 // Constant emission.
2670 //===----------------------------------------------------------------------===//
2671 
2672 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2673   MCContext &Ctx = OutContext;
2674 
2675   if (CV->isNullValue() || isa<UndefValue>(CV))
2676     return MCConstantExpr::create(0, Ctx);
2677 
2678   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2679     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2680 
2681   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2682     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2683 
2684   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2685     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2686 
2687   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2688     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2689 
2690   if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
2691     return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
2692 
2693   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2694   if (!CE) {
2695     llvm_unreachable("Unknown constant value to lower!");
2696   }
2697 
2698   switch (CE->getOpcode()) {
2699   case Instruction::AddrSpaceCast: {
2700     const Constant *Op = CE->getOperand(0);
2701     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2702     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2703     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2704       return lowerConstant(Op);
2705 
2706     // Fallthrough to error.
2707     LLVM_FALLTHROUGH;
2708   }
2709   default: {
2710     // If the code isn't optimized, there may be outstanding folding
2711     // opportunities. Attempt to fold the expression using DataLayout as a
2712     // last resort before giving up.
2713     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2714     if (C != CE)
2715       return lowerConstant(C);
2716 
2717     // Otherwise report the problem to the user.
2718     std::string S;
2719     raw_string_ostream OS(S);
2720     OS << "Unsupported expression in static initializer: ";
2721     CE->printAsOperand(OS, /*PrintType=*/false,
2722                    !MF ? nullptr : MF->getFunction().getParent());
2723     report_fatal_error(Twine(OS.str()));
2724   }
2725   case Instruction::GetElementPtr: {
2726     // Generate a symbolic expression for the byte address
2727     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2728     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2729 
2730     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2731     if (!OffsetAI)
2732       return Base;
2733 
2734     int64_t Offset = OffsetAI.getSExtValue();
2735     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2736                                    Ctx);
2737   }
2738 
2739   case Instruction::Trunc:
2740     // We emit the value and depend on the assembler to truncate the generated
2741     // expression properly.  This is important for differences between
2742     // blockaddress labels.  Since the two labels are in the same function, it
2743     // is reasonable to treat their delta as a 32-bit value.
2744     LLVM_FALLTHROUGH;
2745   case Instruction::BitCast:
2746     return lowerConstant(CE->getOperand(0));
2747 
2748   case Instruction::IntToPtr: {
2749     const DataLayout &DL = getDataLayout();
2750 
2751     // Handle casts to pointers by changing them into casts to the appropriate
2752     // integer type.  This promotes constant folding and simplifies this code.
2753     Constant *Op = CE->getOperand(0);
2754     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2755                                       false/*ZExt*/);
2756     return lowerConstant(Op);
2757   }
2758 
2759   case Instruction::PtrToInt: {
2760     const DataLayout &DL = getDataLayout();
2761 
2762     // Support only foldable casts to/from pointers that can be eliminated by
2763     // changing the pointer to the appropriately sized integer type.
2764     Constant *Op = CE->getOperand(0);
2765     Type *Ty = CE->getType();
2766 
2767     const MCExpr *OpExpr = lowerConstant(Op);
2768 
2769     // We can emit the pointer value into this slot if the slot is an
2770     // integer slot equal to the size of the pointer.
2771     //
2772     // If the pointer is larger than the resultant integer, then
2773     // as with Trunc just depend on the assembler to truncate it.
2774     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2775         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2776       return OpExpr;
2777 
2778     // Otherwise the pointer is smaller than the resultant integer, mask off
2779     // the high bits so we are sure to get a proper truncation if the input is
2780     // a constant expr.
2781     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2782     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2783     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2784   }
2785 
2786   case Instruction::Sub: {
2787     GlobalValue *LHSGV;
2788     APInt LHSOffset;
2789     DSOLocalEquivalent *DSOEquiv;
2790     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2791                                    getDataLayout(), &DSOEquiv)) {
2792       GlobalValue *RHSGV;
2793       APInt RHSOffset;
2794       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2795                                      getDataLayout())) {
2796         const MCExpr *RelocExpr =
2797             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2798         if (!RelocExpr) {
2799           const MCExpr *LHSExpr =
2800               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2801           if (DSOEquiv &&
2802               getObjFileLowering().supportDSOLocalEquivalentLowering())
2803             LHSExpr =
2804                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2805           RelocExpr = MCBinaryExpr::createSub(
2806               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2807         }
2808         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2809         if (Addend != 0)
2810           RelocExpr = MCBinaryExpr::createAdd(
2811               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2812         return RelocExpr;
2813       }
2814     }
2815   }
2816   // else fallthrough
2817   LLVM_FALLTHROUGH;
2818 
2819   // The MC library also has a right-shift operator, but it isn't consistently
2820   // signed or unsigned between different targets.
2821   case Instruction::Add:
2822   case Instruction::Mul:
2823   case Instruction::SDiv:
2824   case Instruction::SRem:
2825   case Instruction::Shl:
2826   case Instruction::And:
2827   case Instruction::Or:
2828   case Instruction::Xor: {
2829     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2830     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2831     switch (CE->getOpcode()) {
2832     default: llvm_unreachable("Unknown binary operator constant cast expr");
2833     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2834     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2835     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2836     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2837     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2838     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2839     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2840     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2841     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2842     }
2843   }
2844   }
2845 }
2846 
2847 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2848                                    AsmPrinter &AP,
2849                                    const Constant *BaseCV = nullptr,
2850                                    uint64_t Offset = 0);
2851 
2852 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2853 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2854 
2855 /// isRepeatedByteSequence - Determine whether the given value is
2856 /// composed of a repeated sequence of identical bytes and return the
2857 /// byte value.  If it is not a repeated sequence, return -1.
2858 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2859   StringRef Data = V->getRawDataValues();
2860   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2861   char C = Data[0];
2862   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2863     if (Data[i] != C) return -1;
2864   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2865 }
2866 
2867 /// isRepeatedByteSequence - Determine whether the given value is
2868 /// composed of a repeated sequence of identical bytes and return the
2869 /// byte value.  If it is not a repeated sequence, return -1.
2870 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2871   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2872     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2873     assert(Size % 8 == 0);
2874 
2875     // Extend the element to take zero padding into account.
2876     APInt Value = CI->getValue().zextOrSelf(Size);
2877     if (!Value.isSplat(8))
2878       return -1;
2879 
2880     return Value.zextOrTrunc(8).getZExtValue();
2881   }
2882   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2883     // Make sure all array elements are sequences of the same repeated
2884     // byte.
2885     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2886     Constant *Op0 = CA->getOperand(0);
2887     int Byte = isRepeatedByteSequence(Op0, DL);
2888     if (Byte == -1)
2889       return -1;
2890 
2891     // All array elements must be equal.
2892     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2893       if (CA->getOperand(i) != Op0)
2894         return -1;
2895     return Byte;
2896   }
2897 
2898   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2899     return isRepeatedByteSequence(CDS);
2900 
2901   return -1;
2902 }
2903 
2904 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2905                                              const ConstantDataSequential *CDS,
2906                                              AsmPrinter &AP) {
2907   // See if we can aggregate this into a .fill, if so, emit it as such.
2908   int Value = isRepeatedByteSequence(CDS, DL);
2909   if (Value != -1) {
2910     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2911     // Don't emit a 1-byte object as a .fill.
2912     if (Bytes > 1)
2913       return AP.OutStreamer->emitFill(Bytes, Value);
2914   }
2915 
2916   // If this can be emitted with .ascii/.asciz, emit it as such.
2917   if (CDS->isString())
2918     return AP.OutStreamer->emitBytes(CDS->getAsString());
2919 
2920   // Otherwise, emit the values in successive locations.
2921   unsigned ElementByteSize = CDS->getElementByteSize();
2922   if (isa<IntegerType>(CDS->getElementType())) {
2923     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2924       if (AP.isVerbose())
2925         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2926                                                  CDS->getElementAsInteger(i));
2927       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2928                                    ElementByteSize);
2929     }
2930   } else {
2931     Type *ET = CDS->getElementType();
2932     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2933       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2934   }
2935 
2936   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2937   unsigned EmittedSize =
2938       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2939   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2940   if (unsigned Padding = Size - EmittedSize)
2941     AP.OutStreamer->emitZeros(Padding);
2942 }
2943 
2944 static void emitGlobalConstantArray(const DataLayout &DL,
2945                                     const ConstantArray *CA, AsmPrinter &AP,
2946                                     const Constant *BaseCV, uint64_t Offset) {
2947   // See if we can aggregate some values.  Make sure it can be
2948   // represented as a series of bytes of the constant value.
2949   int Value = isRepeatedByteSequence(CA, DL);
2950 
2951   if (Value != -1) {
2952     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2953     AP.OutStreamer->emitFill(Bytes, Value);
2954   }
2955   else {
2956     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2957       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2958       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2959     }
2960   }
2961 }
2962 
2963 static void emitGlobalConstantVector(const DataLayout &DL,
2964                                      const ConstantVector *CV, AsmPrinter &AP) {
2965   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2966     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2967 
2968   unsigned Size = DL.getTypeAllocSize(CV->getType());
2969   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2970                          CV->getType()->getNumElements();
2971   if (unsigned Padding = Size - EmittedSize)
2972     AP.OutStreamer->emitZeros(Padding);
2973 }
2974 
2975 static void emitGlobalConstantStruct(const DataLayout &DL,
2976                                      const ConstantStruct *CS, AsmPrinter &AP,
2977                                      const Constant *BaseCV, uint64_t Offset) {
2978   // Print the fields in successive locations. Pad to align if needed!
2979   unsigned Size = DL.getTypeAllocSize(CS->getType());
2980   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2981   uint64_t SizeSoFar = 0;
2982   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2983     const Constant *Field = CS->getOperand(i);
2984 
2985     // Print the actual field value.
2986     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2987 
2988     // Check if padding is needed and insert one or more 0s.
2989     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2990     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2991                         - Layout->getElementOffset(i)) - FieldSize;
2992     SizeSoFar += FieldSize + PadSize;
2993 
2994     // Insert padding - this may include padding to increase the size of the
2995     // current field up to the ABI size (if the struct is not packed) as well
2996     // as padding to ensure that the next field starts at the right offset.
2997     AP.OutStreamer->emitZeros(PadSize);
2998   }
2999   assert(SizeSoFar == Layout->getSizeInBytes() &&
3000          "Layout of constant struct may be incorrect!");
3001 }
3002 
3003 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
3004   assert(ET && "Unknown float type");
3005   APInt API = APF.bitcastToAPInt();
3006 
3007   // First print a comment with what we think the original floating-point value
3008   // should have been.
3009   if (AP.isVerbose()) {
3010     SmallString<8> StrVal;
3011     APF.toString(StrVal);
3012     ET->print(AP.OutStreamer->GetCommentOS());
3013     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
3014   }
3015 
3016   // Now iterate through the APInt chunks, emitting them in endian-correct
3017   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
3018   // floats).
3019   unsigned NumBytes = API.getBitWidth() / 8;
3020   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
3021   const uint64_t *p = API.getRawData();
3022 
3023   // PPC's long double has odd notions of endianness compared to how LLVM
3024   // handles it: p[0] goes first for *big* endian on PPC.
3025   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
3026     int Chunk = API.getNumWords() - 1;
3027 
3028     if (TrailingBytes)
3029       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
3030 
3031     for (; Chunk >= 0; --Chunk)
3032       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3033   } else {
3034     unsigned Chunk;
3035     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
3036       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
3037 
3038     if (TrailingBytes)
3039       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
3040   }
3041 
3042   // Emit the tail padding for the long double.
3043   const DataLayout &DL = AP.getDataLayout();
3044   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
3045 }
3046 
3047 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
3048   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
3049 }
3050 
3051 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
3052   const DataLayout &DL = AP.getDataLayout();
3053   unsigned BitWidth = CI->getBitWidth();
3054 
3055   // Copy the value as we may massage the layout for constants whose bit width
3056   // is not a multiple of 64-bits.
3057   APInt Realigned(CI->getValue());
3058   uint64_t ExtraBits = 0;
3059   unsigned ExtraBitsSize = BitWidth & 63;
3060 
3061   if (ExtraBitsSize) {
3062     // The bit width of the data is not a multiple of 64-bits.
3063     // The extra bits are expected to be at the end of the chunk of the memory.
3064     // Little endian:
3065     // * Nothing to be done, just record the extra bits to emit.
3066     // Big endian:
3067     // * Record the extra bits to emit.
3068     // * Realign the raw data to emit the chunks of 64-bits.
3069     if (DL.isBigEndian()) {
3070       // Basically the structure of the raw data is a chunk of 64-bits cells:
3071       //    0        1         BitWidth / 64
3072       // [chunk1][chunk2] ... [chunkN].
3073       // The most significant chunk is chunkN and it should be emitted first.
3074       // However, due to the alignment issue chunkN contains useless bits.
3075       // Realign the chunks so that they contain only useful information:
3076       // ExtraBits     0       1       (BitWidth / 64) - 1
3077       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
3078       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
3079       ExtraBits = Realigned.getRawData()[0] &
3080         (((uint64_t)-1) >> (64 - ExtraBitsSize));
3081       Realigned.lshrInPlace(ExtraBitsSize);
3082     } else
3083       ExtraBits = Realigned.getRawData()[BitWidth / 64];
3084   }
3085 
3086   // We don't expect assemblers to support integer data directives
3087   // for more than 64 bits, so we emit the data in at most 64-bit
3088   // quantities at a time.
3089   const uint64_t *RawData = Realigned.getRawData();
3090   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
3091     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
3092     AP.OutStreamer->emitIntValue(Val, 8);
3093   }
3094 
3095   if (ExtraBitsSize) {
3096     // Emit the extra bits after the 64-bits chunks.
3097 
3098     // Emit a directive that fills the expected size.
3099     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
3100     Size -= (BitWidth / 64) * 8;
3101     assert(Size && Size * 8 >= ExtraBitsSize &&
3102            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
3103            == ExtraBits && "Directive too small for extra bits.");
3104     AP.OutStreamer->emitIntValue(ExtraBits, Size);
3105   }
3106 }
3107 
3108 /// Transform a not absolute MCExpr containing a reference to a GOT
3109 /// equivalent global, by a target specific GOT pc relative access to the
3110 /// final symbol.
3111 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
3112                                          const Constant *BaseCst,
3113                                          uint64_t Offset) {
3114   // The global @foo below illustrates a global that uses a got equivalent.
3115   //
3116   //  @bar = global i32 42
3117   //  @gotequiv = private unnamed_addr constant i32* @bar
3118   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
3119   //                             i64 ptrtoint (i32* @foo to i64))
3120   //                        to i32)
3121   //
3122   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
3123   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
3124   // form:
3125   //
3126   //  foo = cstexpr, where
3127   //    cstexpr := <gotequiv> - "." + <cst>
3128   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
3129   //
3130   // After canonicalization by evaluateAsRelocatable `ME` turns into:
3131   //
3132   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
3133   //    gotpcrelcst := <offset from @foo base> + <cst>
3134   MCValue MV;
3135   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
3136     return;
3137   const MCSymbolRefExpr *SymA = MV.getSymA();
3138   if (!SymA)
3139     return;
3140 
3141   // Check that GOT equivalent symbol is cached.
3142   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
3143   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
3144     return;
3145 
3146   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
3147   if (!BaseGV)
3148     return;
3149 
3150   // Check for a valid base symbol
3151   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
3152   const MCSymbolRefExpr *SymB = MV.getSymB();
3153 
3154   if (!SymB || BaseSym != &SymB->getSymbol())
3155     return;
3156 
3157   // Make sure to match:
3158   //
3159   //    gotpcrelcst := <offset from @foo base> + <cst>
3160   //
3161   // If gotpcrelcst is positive it means that we can safely fold the pc rel
3162   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
3163   // if the target knows how to encode it.
3164   int64_t GOTPCRelCst = Offset + MV.getConstant();
3165   if (GOTPCRelCst < 0)
3166     return;
3167   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
3168     return;
3169 
3170   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
3171   //
3172   //  bar:
3173   //    .long 42
3174   //  gotequiv:
3175   //    .quad bar
3176   //  foo:
3177   //    .long gotequiv - "." + <cst>
3178   //
3179   // is replaced by the target specific equivalent to:
3180   //
3181   //  bar:
3182   //    .long 42
3183   //  foo:
3184   //    .long bar@GOTPCREL+<gotpcrelcst>
3185   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
3186   const GlobalVariable *GV = Result.first;
3187   int NumUses = (int)Result.second;
3188   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
3189   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
3190   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
3191       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
3192 
3193   // Update GOT equivalent usage information
3194   --NumUses;
3195   if (NumUses >= 0)
3196     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
3197 }
3198 
3199 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
3200                                    AsmPrinter &AP, const Constant *BaseCV,
3201                                    uint64_t Offset) {
3202   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3203 
3204   // Globals with sub-elements such as combinations of arrays and structs
3205   // are handled recursively by emitGlobalConstantImpl. Keep track of the
3206   // constant symbol base and the current position with BaseCV and Offset.
3207   if (!BaseCV && CV->hasOneUse())
3208     BaseCV = dyn_cast<Constant>(CV->user_back());
3209 
3210   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
3211     return AP.OutStreamer->emitZeros(Size);
3212 
3213   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
3214     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
3215 
3216     if (StoreSize <= 8) {
3217       if (AP.isVerbose())
3218         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
3219                                                  CI->getZExtValue());
3220       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
3221     } else {
3222       emitGlobalConstantLargeInt(CI, AP);
3223     }
3224 
3225     // Emit tail padding if needed
3226     if (Size != StoreSize)
3227       AP.OutStreamer->emitZeros(Size - StoreSize);
3228 
3229     return;
3230   }
3231 
3232   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
3233     return emitGlobalConstantFP(CFP, AP);
3234 
3235   if (isa<ConstantPointerNull>(CV)) {
3236     AP.OutStreamer->emitIntValue(0, Size);
3237     return;
3238   }
3239 
3240   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
3241     return emitGlobalConstantDataSequential(DL, CDS, AP);
3242 
3243   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
3244     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
3245 
3246   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
3247     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
3248 
3249   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
3250     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
3251     // vectors).
3252     if (CE->getOpcode() == Instruction::BitCast)
3253       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
3254 
3255     if (Size > 8) {
3256       // If the constant expression's size is greater than 64-bits, then we have
3257       // to emit the value in chunks. Try to constant fold the value and emit it
3258       // that way.
3259       Constant *New = ConstantFoldConstant(CE, DL);
3260       if (New != CE)
3261         return emitGlobalConstantImpl(DL, New, AP);
3262     }
3263   }
3264 
3265   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
3266     return emitGlobalConstantVector(DL, V, AP);
3267 
3268   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
3269   // thread the streamer with EmitValue.
3270   const MCExpr *ME = AP.lowerConstant(CV);
3271 
3272   // Since lowerConstant already folded and got rid of all IR pointer and
3273   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
3274   // directly.
3275   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
3276     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
3277 
3278   AP.OutStreamer->emitValue(ME, Size);
3279 }
3280 
3281 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
3282 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
3283   uint64_t Size = DL.getTypeAllocSize(CV->getType());
3284   if (Size)
3285     emitGlobalConstantImpl(DL, CV, *this);
3286   else if (MAI->hasSubsectionsViaSymbols()) {
3287     // If the global has zero size, emit a single byte so that two labels don't
3288     // look like they are at the same location.
3289     OutStreamer->emitIntValue(0, 1);
3290   }
3291 }
3292 
3293 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
3294   // Target doesn't support this yet!
3295   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
3296 }
3297 
3298 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
3299   if (Offset > 0)
3300     OS << '+' << Offset;
3301   else if (Offset < 0)
3302     OS << Offset;
3303 }
3304 
3305 void AsmPrinter::emitNops(unsigned N) {
3306   MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
3307   for (; N; --N)
3308     EmitToStreamer(*OutStreamer, Nop);
3309 }
3310 
3311 //===----------------------------------------------------------------------===//
3312 // Symbol Lowering Routines.
3313 //===----------------------------------------------------------------------===//
3314 
3315 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3316   return OutContext.createTempSymbol(Name, true);
3317 }
3318 
3319 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3320   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
3321       BA->getBasicBlock());
3322 }
3323 
3324 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3325   return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
3326 }
3327 
3328 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3329 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3330   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3331     const MachineConstantPoolEntry &CPE =
3332         MF->getConstantPool()->getConstants()[CPID];
3333     if (!CPE.isMachineConstantPoolEntry()) {
3334       const DataLayout &DL = MF->getDataLayout();
3335       SectionKind Kind = CPE.getSectionKind(&DL);
3336       const Constant *C = CPE.Val.ConstVal;
3337       Align Alignment = CPE.Alignment;
3338       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3339               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3340                                                          Alignment))) {
3341         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3342           if (Sym->isUndefined())
3343             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3344           return Sym;
3345         }
3346       }
3347     }
3348   }
3349 
3350   const DataLayout &DL = getDataLayout();
3351   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3352                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3353                                       Twine(CPID));
3354 }
3355 
3356 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3357 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3358   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3359 }
3360 
3361 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3362 /// FIXME: privatize to AsmPrinter.
3363 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3364   const DataLayout &DL = getDataLayout();
3365   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3366                                       Twine(getFunctionNumber()) + "_" +
3367                                       Twine(UID) + "_set_" + Twine(MBBID));
3368 }
3369 
3370 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3371                                                    StringRef Suffix) const {
3372   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3373 }
3374 
3375 /// Return the MCSymbol for the specified ExternalSymbol.
3376 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3377   SmallString<60> NameStr;
3378   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3379   return OutContext.getOrCreateSymbol(NameStr);
3380 }
3381 
3382 /// PrintParentLoopComment - Print comments about parent loops of this one.
3383 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3384                                    unsigned FunctionNumber) {
3385   if (!Loop) return;
3386   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3387   OS.indent(Loop->getLoopDepth()*2)
3388     << "Parent Loop BB" << FunctionNumber << "_"
3389     << Loop->getHeader()->getNumber()
3390     << " Depth=" << Loop->getLoopDepth() << '\n';
3391 }
3392 
3393 /// PrintChildLoopComment - Print comments about child loops within
3394 /// the loop for this basic block, with nesting.
3395 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3396                                   unsigned FunctionNumber) {
3397   // Add child loop information
3398   for (const MachineLoop *CL : *Loop) {
3399     OS.indent(CL->getLoopDepth()*2)
3400       << "Child Loop BB" << FunctionNumber << "_"
3401       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3402       << '\n';
3403     PrintChildLoopComment(OS, CL, FunctionNumber);
3404   }
3405 }
3406 
3407 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3408 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3409                                        const MachineLoopInfo *LI,
3410                                        const AsmPrinter &AP) {
3411   // Add loop depth information
3412   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3413   if (!Loop) return;
3414 
3415   MachineBasicBlock *Header = Loop->getHeader();
3416   assert(Header && "No header for loop");
3417 
3418   // If this block is not a loop header, just print out what is the loop header
3419   // and return.
3420   if (Header != &MBB) {
3421     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3422                                Twine(AP.getFunctionNumber())+"_" +
3423                                Twine(Loop->getHeader()->getNumber())+
3424                                " Depth="+Twine(Loop->getLoopDepth()));
3425     return;
3426   }
3427 
3428   // Otherwise, it is a loop header.  Print out information about child and
3429   // parent loops.
3430   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3431 
3432   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3433 
3434   OS << "=>";
3435   OS.indent(Loop->getLoopDepth()*2-2);
3436 
3437   OS << "This ";
3438   if (Loop->isInnermost())
3439     OS << "Inner ";
3440   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3441 
3442   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3443 }
3444 
3445 /// emitBasicBlockStart - This method prints the label for the specified
3446 /// MachineBasicBlock, an alignment (if present) and a comment describing
3447 /// it if appropriate.
3448 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3449   // End the previous funclet and start a new one.
3450   if (MBB.isEHFuncletEntry()) {
3451     for (const HandlerInfo &HI : Handlers) {
3452       HI.Handler->endFunclet();
3453       HI.Handler->beginFunclet(MBB);
3454     }
3455   }
3456 
3457   // Emit an alignment directive for this block, if needed.
3458   const Align Alignment = MBB.getAlignment();
3459   if (Alignment != Align(1))
3460     emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
3461 
3462   // Switch to a new section if this basic block must begin a section. The
3463   // entry block is always placed in the function section and is handled
3464   // separately.
3465   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3466     OutStreamer->SwitchSection(
3467         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3468                                                             MBB, TM));
3469     CurrentSectionBeginSym = MBB.getSymbol();
3470   }
3471 
3472   // If the block has its address taken, emit any labels that were used to
3473   // reference the block.  It is possible that there is more than one label
3474   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3475   // the references were generated.
3476   const BasicBlock *BB = MBB.getBasicBlock();
3477   if (MBB.hasAddressTaken()) {
3478     if (isVerbose())
3479       OutStreamer->AddComment("Block address taken");
3480 
3481     // MBBs can have their address taken as part of CodeGen without having
3482     // their corresponding BB's address taken in IR
3483     if (BB && BB->hasAddressTaken())
3484       for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
3485         OutStreamer->emitLabel(Sym);
3486   }
3487 
3488   // Print some verbose block comments.
3489   if (isVerbose()) {
3490     if (BB) {
3491       if (BB->hasName()) {
3492         BB->printAsOperand(OutStreamer->GetCommentOS(),
3493                            /*PrintType=*/false, BB->getModule());
3494         OutStreamer->GetCommentOS() << '\n';
3495       }
3496     }
3497 
3498     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3499     emitBasicBlockLoopComments(MBB, MLI, *this);
3500   }
3501 
3502   // Print the main label for the block.
3503   if (shouldEmitLabelForBasicBlock(MBB)) {
3504     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3505       OutStreamer->AddComment("Label of block must be emitted");
3506     OutStreamer->emitLabel(MBB.getSymbol());
3507   } else {
3508     if (isVerbose()) {
3509       // NOTE: Want this comment at start of line, don't emit with AddComment.
3510       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3511                                   false);
3512     }
3513   }
3514 
3515   if (MBB.isEHCatchretTarget() &&
3516       MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
3517     OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
3518   }
3519 
3520   // With BB sections, each basic block must handle CFI information on its own
3521   // if it begins a section (Entry block is handled separately by
3522   // AsmPrinterHandler::beginFunction).
3523   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3524     for (const HandlerInfo &HI : Handlers)
3525       HI.Handler->beginBasicBlock(MBB);
3526 }
3527 
3528 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3529   // Check if CFI information needs to be updated for this MBB with basic block
3530   // sections.
3531   if (MBB.isEndSection())
3532     for (const HandlerInfo &HI : Handlers)
3533       HI.Handler->endBasicBlock(MBB);
3534 }
3535 
3536 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3537                                 bool IsDefinition) const {
3538   MCSymbolAttr Attr = MCSA_Invalid;
3539 
3540   switch (Visibility) {
3541   default: break;
3542   case GlobalValue::HiddenVisibility:
3543     if (IsDefinition)
3544       Attr = MAI->getHiddenVisibilityAttr();
3545     else
3546       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3547     break;
3548   case GlobalValue::ProtectedVisibility:
3549     Attr = MAI->getProtectedVisibilityAttr();
3550     break;
3551   }
3552 
3553   if (Attr != MCSA_Invalid)
3554     OutStreamer->emitSymbolAttribute(Sym, Attr);
3555 }
3556 
3557 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3558     const MachineBasicBlock &MBB) const {
3559   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3560   // in the labels mode (option `=labels`) and every section beginning in the
3561   // sections mode (`=all` and `=list=`).
3562   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3563     return true;
3564   // A label is needed for any block with at least one predecessor (when that
3565   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3566   // entry, or if a label is forced).
3567   return !MBB.pred_empty() &&
3568          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3569           MBB.hasLabelMustBeEmitted());
3570 }
3571 
3572 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3573 /// exactly one predecessor and the control transfer mechanism between
3574 /// the predecessor and this block is a fall-through.
3575 bool AsmPrinter::
3576 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3577   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3578   // then nothing falls through to it.
3579   if (MBB->isEHPad() || MBB->pred_empty())
3580     return false;
3581 
3582   // If there isn't exactly one predecessor, it can't be a fall through.
3583   if (MBB->pred_size() > 1)
3584     return false;
3585 
3586   // The predecessor has to be immediately before this block.
3587   MachineBasicBlock *Pred = *MBB->pred_begin();
3588   if (!Pred->isLayoutSuccessor(MBB))
3589     return false;
3590 
3591   // If the block is completely empty, then it definitely does fall through.
3592   if (Pred->empty())
3593     return true;
3594 
3595   // Check the terminators in the previous blocks
3596   for (const auto &MI : Pred->terminators()) {
3597     // If it is not a simple branch, we are in a table somewhere.
3598     if (!MI.isBranch() || MI.isIndirectBranch())
3599       return false;
3600 
3601     // If we are the operands of one of the branches, this is not a fall
3602     // through. Note that targets with delay slots will usually bundle
3603     // terminators with the delay slot instruction.
3604     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3605       if (OP->isJTI())
3606         return false;
3607       if (OP->isMBB() && OP->getMBB() == MBB)
3608         return false;
3609     }
3610   }
3611 
3612   return true;
3613 }
3614 
3615 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3616   if (!S.usesMetadata())
3617     return nullptr;
3618 
3619   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3620   gcp_map_type::iterator GCPI = GCMap.find(&S);
3621   if (GCPI != GCMap.end())
3622     return GCPI->second.get();
3623 
3624   auto Name = S.getName();
3625 
3626   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3627        GCMetadataPrinterRegistry::entries())
3628     if (Name == GCMetaPrinter.getName()) {
3629       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3630       GMP->S = &S;
3631       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3632       return IterBool.first->second.get();
3633     }
3634 
3635   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3636 }
3637 
3638 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3639   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3640   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3641   bool NeedsDefault = false;
3642   if (MI->begin() == MI->end())
3643     // No GC strategy, use the default format.
3644     NeedsDefault = true;
3645   else
3646     for (auto &I : *MI) {
3647       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3648         if (MP->emitStackMaps(SM, *this))
3649           continue;
3650       // The strategy doesn't have printer or doesn't emit custom stack maps.
3651       // Use the default format.
3652       NeedsDefault = true;
3653     }
3654 
3655   if (NeedsDefault)
3656     SM.serializeToStackMapSection();
3657 }
3658 
3659 /// Pin vtable to this file.
3660 AsmPrinterHandler::~AsmPrinterHandler() = default;
3661 
3662 void AsmPrinterHandler::markFunctionEnd() {}
3663 
3664 // In the binary's "xray_instr_map" section, an array of these function entries
3665 // describes each instrumentation point.  When XRay patches your code, the index
3666 // into this table will be given to your handler as a patch point identifier.
3667 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3668   auto Kind8 = static_cast<uint8_t>(Kind);
3669   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3670   Out->emitBinaryData(
3671       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3672   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3673   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3674   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3675   Out->emitZeros(Padding);
3676 }
3677 
3678 void AsmPrinter::emitXRayTable() {
3679   if (Sleds.empty())
3680     return;
3681 
3682   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3683   const Function &F = MF->getFunction();
3684   MCSection *InstMap = nullptr;
3685   MCSection *FnSledIndex = nullptr;
3686   const Triple &TT = TM.getTargetTriple();
3687   // Use PC-relative addresses on all targets.
3688   if (TT.isOSBinFormatELF()) {
3689     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3690     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3691     StringRef GroupName;
3692     if (F.hasComdat()) {
3693       Flags |= ELF::SHF_GROUP;
3694       GroupName = F.getComdat()->getName();
3695     }
3696     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3697                                        Flags, 0, GroupName, F.hasComdat(),
3698                                        MCSection::NonUniqueID, LinkedToSym);
3699 
3700     if (!TM.Options.XRayOmitFunctionIndex)
3701       FnSledIndex = OutContext.getELFSection(
3702           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3703           GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
3704   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3705     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3706                                          SectionKind::getReadOnlyWithRel());
3707     if (!TM.Options.XRayOmitFunctionIndex)
3708       FnSledIndex = OutContext.getMachOSection(
3709           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3710   } else {
3711     llvm_unreachable("Unsupported target");
3712   }
3713 
3714   auto WordSizeBytes = MAI->getCodePointerSize();
3715 
3716   // Now we switch to the instrumentation map section. Because this is done
3717   // per-function, we are able to create an index entry that will represent the
3718   // range of sleds associated with a function.
3719   auto &Ctx = OutContext;
3720   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3721   OutStreamer->SwitchSection(InstMap);
3722   OutStreamer->emitLabel(SledsStart);
3723   for (const auto &Sled : Sleds) {
3724     MCSymbol *Dot = Ctx.createTempSymbol();
3725     OutStreamer->emitLabel(Dot);
3726     OutStreamer->emitValueImpl(
3727         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3728                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3729         WordSizeBytes);
3730     OutStreamer->emitValueImpl(
3731         MCBinaryExpr::createSub(
3732             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3733             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3734                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3735                                     Ctx),
3736             Ctx),
3737         WordSizeBytes);
3738     Sled.emit(WordSizeBytes, OutStreamer.get());
3739   }
3740   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3741   OutStreamer->emitLabel(SledsEnd);
3742 
3743   // We then emit a single entry in the index per function. We use the symbols
3744   // that bound the instrumentation map as the range for a specific function.
3745   // Each entry here will be 2 * word size aligned, as we're writing down two
3746   // pointers. This should work for both 32-bit and 64-bit platforms.
3747   if (FnSledIndex) {
3748     OutStreamer->SwitchSection(FnSledIndex);
3749     OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo());
3750     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3751     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3752     OutStreamer->SwitchSection(PrevSection);
3753   }
3754   Sleds.clear();
3755 }
3756 
3757 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3758                             SledKind Kind, uint8_t Version) {
3759   const Function &F = MI.getMF()->getFunction();
3760   auto Attr = F.getFnAttribute("function-instrument");
3761   bool LogArgs = F.hasFnAttribute("xray-log-args");
3762   bool AlwaysInstrument =
3763     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3764   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3765     Kind = SledKind::LOG_ARGS_ENTER;
3766   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3767                                        AlwaysInstrument, &F, Version});
3768 }
3769 
3770 void AsmPrinter::emitPatchableFunctionEntries() {
3771   const Function &F = MF->getFunction();
3772   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3773   (void)F.getFnAttribute("patchable-function-prefix")
3774       .getValueAsString()
3775       .getAsInteger(10, PatchableFunctionPrefix);
3776   (void)F.getFnAttribute("patchable-function-entry")
3777       .getValueAsString()
3778       .getAsInteger(10, PatchableFunctionEntry);
3779   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3780     return;
3781   const unsigned PointerSize = getPointerSize();
3782   if (TM.getTargetTriple().isOSBinFormatELF()) {
3783     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3784     const MCSymbolELF *LinkedToSym = nullptr;
3785     StringRef GroupName;
3786 
3787     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3788     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3789     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3790       Flags |= ELF::SHF_LINK_ORDER;
3791       if (F.hasComdat()) {
3792         Flags |= ELF::SHF_GROUP;
3793         GroupName = F.getComdat()->getName();
3794       }
3795       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3796     }
3797     OutStreamer->SwitchSection(OutContext.getELFSection(
3798         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3799         F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
3800     emitAlignment(Align(PointerSize));
3801     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3802   }
3803 }
3804 
3805 uint16_t AsmPrinter::getDwarfVersion() const {
3806   return OutStreamer->getContext().getDwarfVersion();
3807 }
3808 
3809 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3810   OutStreamer->getContext().setDwarfVersion(Version);
3811 }
3812 
3813 bool AsmPrinter::isDwarf64() const {
3814   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3815 }
3816 
3817 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3818   return dwarf::getDwarfOffsetByteSize(
3819       OutStreamer->getContext().getDwarfFormat());
3820 }
3821 
3822 dwarf::FormParams AsmPrinter::getDwarfFormParams() const {
3823   return {getDwarfVersion(), uint8_t(getPointerSize()),
3824           OutStreamer->getContext().getDwarfFormat(),
3825           MAI->doesDwarfUseRelocationsAcrossSections()};
3826 }
3827 
3828 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3829   return dwarf::getUnitLengthFieldByteSize(
3830       OutStreamer->getContext().getDwarfFormat());
3831 }
3832