1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AsmPrinterHandler.h"
15 #include "CodeViewDebug.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "WinException.h"
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/APInt.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Triple.h"
29 #include "llvm/ADT/Twine.h"
30 #include "llvm/Analysis/ConstantFolding.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AsmPrinter.h"
33 #include "llvm/CodeGen/GCMetadata.h"
34 #include "llvm/CodeGen/GCMetadataPrinter.h"
35 #include "llvm/CodeGen/GCStrategy.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineConstantPool.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBundle.h"
43 #include "llvm/CodeGen/MachineJumpTableInfo.h"
44 #include "llvm/CodeGen/MachineLoopInfo.h"
45 #include "llvm/CodeGen/MachineMemOperand.h"
46 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
47 #include "llvm/CodeGen/MachineOperand.h"
48 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
49 #include "llvm/IR/BasicBlock.h"
50 #include "llvm/IR/Constant.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/GlobalAlias.h"
57 #include "llvm/IR/GlobalIFunc.h"
58 #include "llvm/IR/GlobalIndirectSymbol.h"
59 #include "llvm/IR/GlobalObject.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Mangler.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/Operator.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/MC/MCAsmInfo.h"
68 #include "llvm/MC/MCContext.h"
69 #include "llvm/MC/MCDirectives.h"
70 #include "llvm/MC/MCExpr.h"
71 #include "llvm/MC/MCInst.h"
72 #include "llvm/MC/MCSection.h"
73 #include "llvm/MC/MCSectionELF.h"
74 #include "llvm/MC/MCSectionMachO.h"
75 #include "llvm/MC/MCStreamer.h"
76 #include "llvm/MC/MCSubtargetInfo.h"
77 #include "llvm/MC/MCSymbol.h"
78 #include "llvm/MC/MCTargetOptions.h"
79 #include "llvm/MC/MCValue.h"
80 #include "llvm/MC/SectionKind.h"
81 #include "llvm/Pass.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/Dwarf.h"
85 #include "llvm/Support/ELF.h"
86 #include "llvm/Support/ErrorHandling.h"
87 #include "llvm/Support/Format.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/raw_ostream.h"
90 #include "llvm/Support/TargetRegistry.h"
91 #include "llvm/Support/Timer.h"
92 #include "llvm/Target/TargetFrameLowering.h"
93 #include "llvm/Target/TargetInstrInfo.h"
94 #include "llvm/Target/TargetLowering.h"
95 #include "llvm/Target/TargetLoweringObjectFile.h"
96 #include "llvm/Target/TargetMachine.h"
97 #include "llvm/Target/TargetRegisterInfo.h"
98 #include "llvm/Target/TargetSubtargetInfo.h"
99 #include <algorithm>
100 #include <cassert>
101 #include <cinttypes>
102 #include <cstdint>
103 #include <limits>
104 #include <memory>
105 #include <string>
106 #include <utility>
107 #include <vector>
108 
109 using namespace llvm;
110 
111 #define DEBUG_TYPE "asm-printer"
112 
113 static const char *const DWARFGroupName = "dwarf";
114 static const char *const DWARFGroupDescription = "DWARF Emission";
115 static const char *const DbgTimerName = "emit";
116 static const char *const DbgTimerDescription = "Debug Info Emission";
117 static const char *const EHTimerName = "write_exception";
118 static const char *const EHTimerDescription = "DWARF Exception Writer";
119 static const char *const CodeViewLineTablesGroupName = "linetables";
120 static const char *const CodeViewLineTablesGroupDescription =
121   "CodeView Line Tables";
122 
123 STATISTIC(EmittedInsts, "Number of machine instrs printed");
124 
125 char AsmPrinter::ID = 0;
126 
127 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type;
128 static gcp_map_type &getGCMap(void *&P) {
129   if (!P)
130     P = new gcp_map_type();
131   return *(gcp_map_type*)P;
132 }
133 
134 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
135 /// value in log2 form.  This rounds up to the preferred alignment if possible
136 /// and legal.
137 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
138                                    unsigned InBits = 0) {
139   unsigned NumBits = 0;
140   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
141     NumBits = DL.getPreferredAlignmentLog(GVar);
142 
143   // If InBits is specified, round it to it.
144   if (InBits > NumBits)
145     NumBits = InBits;
146 
147   // If the GV has a specified alignment, take it into account.
148   if (GV->getAlignment() == 0)
149     return NumBits;
150 
151   unsigned GVAlign = Log2_32(GV->getAlignment());
152 
153   // If the GVAlign is larger than NumBits, or if we are required to obey
154   // NumBits because the GV has an assigned section, obey it.
155   if (GVAlign > NumBits || GV->hasSection())
156     NumBits = GVAlign;
157   return NumBits;
158 }
159 
160 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
161     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
162       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
163   VerboseAsm = OutStreamer->isVerboseAsm();
164 }
165 
166 AsmPrinter::~AsmPrinter() {
167   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
168 
169   if (GCMetadataPrinters) {
170     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
171 
172     delete &GCMap;
173     GCMetadataPrinters = nullptr;
174   }
175 }
176 
177 bool AsmPrinter::isPositionIndependent() const {
178   return TM.isPositionIndependent();
179 }
180 
181 /// getFunctionNumber - Return a unique ID for the current function.
182 ///
183 unsigned AsmPrinter::getFunctionNumber() const {
184   return MF->getFunctionNumber();
185 }
186 
187 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
188   return *TM.getObjFileLowering();
189 }
190 
191 const DataLayout &AsmPrinter::getDataLayout() const {
192   return MMI->getModule()->getDataLayout();
193 }
194 
195 // Do not use the cached DataLayout because some client use it without a Module
196 // (llvm-dsymutil, llvm-dwarfdump).
197 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); }
198 
199 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
200   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
201   return MF->getSubtarget<MCSubtargetInfo>();
202 }
203 
204 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
205   S.EmitInstruction(Inst, getSubtargetInfo());
206 }
207 
208 /// getCurrentSection() - Return the current section we are emitting to.
209 const MCSection *AsmPrinter::getCurrentSection() const {
210   return OutStreamer->getCurrentSectionOnly();
211 }
212 
213 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
214   AU.setPreservesAll();
215   MachineFunctionPass::getAnalysisUsage(AU);
216   AU.addRequired<MachineModuleInfo>();
217   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
218   AU.addRequired<GCModuleInfo>();
219   if (isVerbose())
220     AU.addRequired<MachineLoopInfo>();
221 }
222 
223 bool AsmPrinter::doInitialization(Module &M) {
224   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
225 
226   // Initialize TargetLoweringObjectFile.
227   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
228     .Initialize(OutContext, TM);
229 
230   OutStreamer->InitSections(false);
231 
232   // Emit the version-min deplyment target directive if needed.
233   //
234   // FIXME: If we end up with a collection of these sorts of Darwin-specific
235   // or ELF-specific things, it may make sense to have a platform helper class
236   // that will work with the target helper class. For now keep it here, as the
237   // alternative is duplicated code in each of the target asm printers that
238   // use the directive, where it would need the same conditionalization
239   // anyway.
240   const Triple &TT = TM.getTargetTriple();
241   // If there is a version specified, Major will be non-zero.
242   if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) {
243     unsigned Major, Minor, Update;
244     MCVersionMinType VersionType;
245     if (TT.isWatchOS()) {
246       VersionType = MCVM_WatchOSVersionMin;
247       TT.getWatchOSVersion(Major, Minor, Update);
248     } else if (TT.isTvOS()) {
249       VersionType = MCVM_TvOSVersionMin;
250       TT.getiOSVersion(Major, Minor, Update);
251     } else if (TT.isMacOSX()) {
252       VersionType = MCVM_OSXVersionMin;
253       if (!TT.getMacOSXVersion(Major, Minor, Update))
254         Major = 0;
255     } else {
256       VersionType = MCVM_IOSVersionMin;
257       TT.getiOSVersion(Major, Minor, Update);
258     }
259     if (Major != 0)
260       OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update);
261   }
262 
263   // Allow the target to emit any magic that it wants at the start of the file.
264   EmitStartOfAsmFile(M);
265 
266   // Very minimal debug info. It is ignored if we emit actual debug info. If we
267   // don't, this at least helps the user find where a global came from.
268   if (MAI->hasSingleParameterDotFile()) {
269     // .file "foo.c"
270     OutStreamer->EmitFileDirective(M.getModuleIdentifier());
271   }
272 
273   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
274   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
275   for (auto &I : *MI)
276     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
277       MP->beginAssembly(M, *MI, *this);
278 
279   // Emit module-level inline asm if it exists.
280   if (!M.getModuleInlineAsm().empty()) {
281     // We're at the module level. Construct MCSubtarget from the default CPU
282     // and target triple.
283     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
284         TM.getTargetTriple().str(), TM.getTargetCPU(),
285         TM.getTargetFeatureString()));
286     OutStreamer->AddComment("Start of file scope inline assembly");
287     OutStreamer->AddBlankLine();
288     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
289                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
290     OutStreamer->AddComment("End of file scope inline assembly");
291     OutStreamer->AddBlankLine();
292   }
293 
294   if (MAI->doesSupportDebugInformation()) {
295     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
296     if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() ||
297                          TM.getTargetTriple().isWindowsItaniumEnvironment())) {
298       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
299                                      DbgTimerName, DbgTimerDescription,
300                                      CodeViewLineTablesGroupName,
301                                      CodeViewLineTablesGroupDescription));
302     }
303     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
304       DD = new DwarfDebug(this, &M);
305       DD->beginModule();
306       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
307                                      DWARFGroupName, DWARFGroupDescription));
308     }
309   }
310 
311   switch (MAI->getExceptionHandlingType()) {
312   case ExceptionHandling::SjLj:
313   case ExceptionHandling::DwarfCFI:
314   case ExceptionHandling::ARM:
315     isCFIMoveForDebugging = true;
316     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
317       break;
318     for (auto &F: M.getFunctionList()) {
319       // If the module contains any function with unwind data,
320       // .eh_frame has to be emitted.
321       // Ignore functions that won't get emitted.
322       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
323         isCFIMoveForDebugging = false;
324         break;
325       }
326     }
327     break;
328   default:
329     isCFIMoveForDebugging = false;
330     break;
331   }
332 
333   EHStreamer *ES = nullptr;
334   switch (MAI->getExceptionHandlingType()) {
335   case ExceptionHandling::None:
336     break;
337   case ExceptionHandling::SjLj:
338   case ExceptionHandling::DwarfCFI:
339     ES = new DwarfCFIException(this);
340     break;
341   case ExceptionHandling::ARM:
342     ES = new ARMException(this);
343     break;
344   case ExceptionHandling::WinEH:
345     switch (MAI->getWinEHEncodingType()) {
346     default: llvm_unreachable("unsupported unwinding information encoding");
347     case WinEH::EncodingType::Invalid:
348       break;
349     case WinEH::EncodingType::X86:
350     case WinEH::EncodingType::Itanium:
351       ES = new WinException(this);
352       break;
353     }
354     break;
355   }
356   if (ES)
357     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
358                                    DWARFGroupName, DWARFGroupDescription));
359   return false;
360 }
361 
362 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
363   if (!MAI.hasWeakDefCanBeHiddenDirective())
364     return false;
365 
366   return canBeOmittedFromSymbolTable(GV);
367 }
368 
369 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
370   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
371   switch (Linkage) {
372   case GlobalValue::CommonLinkage:
373   case GlobalValue::LinkOnceAnyLinkage:
374   case GlobalValue::LinkOnceODRLinkage:
375   case GlobalValue::WeakAnyLinkage:
376   case GlobalValue::WeakODRLinkage:
377     if (MAI->hasWeakDefDirective()) {
378       // .globl _foo
379       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
380 
381       if (!canBeHidden(GV, *MAI))
382         // .weak_definition _foo
383         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
384       else
385         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
386     } else if (MAI->hasLinkOnceDirective()) {
387       // .globl _foo
388       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
389       //NOTE: linkonce is handled by the section the symbol was assigned to.
390     } else {
391       // .weak _foo
392       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
393     }
394     return;
395   case GlobalValue::ExternalLinkage:
396     // If external, declare as a global symbol: .globl _foo
397     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
398     return;
399   case GlobalValue::PrivateLinkage:
400   case GlobalValue::InternalLinkage:
401     return;
402   case GlobalValue::AppendingLinkage:
403   case GlobalValue::AvailableExternallyLinkage:
404   case GlobalValue::ExternalWeakLinkage:
405     llvm_unreachable("Should never emit this");
406   }
407   llvm_unreachable("Unknown linkage type!");
408 }
409 
410 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
411                                    const GlobalValue *GV) const {
412   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
413 }
414 
415 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
416   return TM.getSymbol(GV);
417 }
418 
419 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
420 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
421   bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal();
422   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
423          "No emulated TLS variables in the common section");
424 
425   // Never emit TLS variable xyz in emulated TLS model.
426   // The initialization value is in __emutls_t.xyz instead of xyz.
427   if (IsEmuTLSVar)
428     return;
429 
430   if (GV->hasInitializer()) {
431     // Check to see if this is a special global used by LLVM, if so, emit it.
432     if (EmitSpecialLLVMGlobal(GV))
433       return;
434 
435     // Skip the emission of global equivalents. The symbol can be emitted later
436     // on by emitGlobalGOTEquivs in case it turns out to be needed.
437     if (GlobalGOTEquivs.count(getSymbol(GV)))
438       return;
439 
440     if (isVerbose()) {
441       // When printing the control variable __emutls_v.*,
442       // we don't need to print the original TLS variable name.
443       GV->printAsOperand(OutStreamer->GetCommentOS(),
444                      /*PrintType=*/false, GV->getParent());
445       OutStreamer->GetCommentOS() << '\n';
446     }
447   }
448 
449   MCSymbol *GVSym = getSymbol(GV);
450   MCSymbol *EmittedSym = GVSym;
451 
452   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
453   // attributes.
454   // GV's or GVSym's attributes will be used for the EmittedSym.
455   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
456 
457   if (!GV->hasInitializer())   // External globals require no extra code.
458     return;
459 
460   GVSym->redefineIfPossible();
461   if (GVSym->isDefined() || GVSym->isVariable())
462     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
463                        "' is already defined");
464 
465   if (MAI->hasDotTypeDotSizeDirective())
466     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
467 
468   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
469 
470   const DataLayout &DL = GV->getParent()->getDataLayout();
471   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
472 
473   // If the alignment is specified, we *must* obey it.  Overaligning a global
474   // with a specified alignment is a prompt way to break globals emitted to
475   // sections and expected to be contiguous (e.g. ObjC metadata).
476   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
477 
478   for (const HandlerInfo &HI : Handlers) {
479     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
480                        HI.TimerGroupName, HI.TimerGroupDescription,
481                        TimePassesIsEnabled);
482     HI.Handler->setSymbolSize(GVSym, Size);
483   }
484 
485   // Handle common symbols
486   if (GVKind.isCommon()) {
487     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
488     unsigned Align = 1 << AlignLog;
489     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
490       Align = 0;
491 
492     // .comm _foo, 42, 4
493     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
494     return;
495   }
496 
497   // Determine to which section this global should be emitted.
498   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
499 
500   // If we have a bss global going to a section that supports the
501   // zerofill directive, do so here.
502   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
503       TheSection->isVirtualSection()) {
504     if (Size == 0)
505       Size = 1; // zerofill of 0 bytes is undefined.
506     unsigned Align = 1 << AlignLog;
507     EmitLinkage(GV, GVSym);
508     // .zerofill __DATA, __bss, _foo, 400, 5
509     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
510     return;
511   }
512 
513   // If this is a BSS local symbol and we are emitting in the BSS
514   // section use .lcomm/.comm directive.
515   if (GVKind.isBSSLocal() &&
516       getObjFileLowering().getBSSSection() == TheSection) {
517     if (Size == 0)
518       Size = 1; // .comm Foo, 0 is undefined, avoid it.
519     unsigned Align = 1 << AlignLog;
520 
521     // Use .lcomm only if it supports user-specified alignment.
522     // Otherwise, while it would still be correct to use .lcomm in some
523     // cases (e.g. when Align == 1), the external assembler might enfore
524     // some -unknown- default alignment behavior, which could cause
525     // spurious differences between external and integrated assembler.
526     // Prefer to simply fall back to .local / .comm in this case.
527     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
528       // .lcomm _foo, 42
529       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
530       return;
531     }
532 
533     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
534       Align = 0;
535 
536     // .local _foo
537     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
538     // .comm _foo, 42, 4
539     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
540     return;
541   }
542 
543   // Handle thread local data for mach-o which requires us to output an
544   // additional structure of data and mangle the original symbol so that we
545   // can reference it later.
546   //
547   // TODO: This should become an "emit thread local global" method on TLOF.
548   // All of this macho specific stuff should be sunk down into TLOFMachO and
549   // stuff like "TLSExtraDataSection" should no longer be part of the parent
550   // TLOF class.  This will also make it more obvious that stuff like
551   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
552   // specific code.
553   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
554     // Emit the .tbss symbol
555     MCSymbol *MangSym =
556         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
557 
558     if (GVKind.isThreadBSS()) {
559       TheSection = getObjFileLowering().getTLSBSSSection();
560       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
561     } else if (GVKind.isThreadData()) {
562       OutStreamer->SwitchSection(TheSection);
563 
564       EmitAlignment(AlignLog, GV);
565       OutStreamer->EmitLabel(MangSym);
566 
567       EmitGlobalConstant(GV->getParent()->getDataLayout(),
568                          GV->getInitializer());
569     }
570 
571     OutStreamer->AddBlankLine();
572 
573     // Emit the variable struct for the runtime.
574     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
575 
576     OutStreamer->SwitchSection(TLVSect);
577     // Emit the linkage here.
578     EmitLinkage(GV, GVSym);
579     OutStreamer->EmitLabel(GVSym);
580 
581     // Three pointers in size:
582     //   - __tlv_bootstrap - used to make sure support exists
583     //   - spare pointer, used when mapped by the runtime
584     //   - pointer to mangled symbol above with initializer
585     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
586     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
587                                 PtrSize);
588     OutStreamer->EmitIntValue(0, PtrSize);
589     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
590 
591     OutStreamer->AddBlankLine();
592     return;
593   }
594 
595   MCSymbol *EmittedInitSym = GVSym;
596 
597   OutStreamer->SwitchSection(TheSection);
598 
599   EmitLinkage(GV, EmittedInitSym);
600   EmitAlignment(AlignLog, GV);
601 
602   OutStreamer->EmitLabel(EmittedInitSym);
603 
604   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
605 
606   if (MAI->hasDotTypeDotSizeDirective())
607     // .size foo, 42
608     OutStreamer->emitELFSize(EmittedInitSym,
609                              MCConstantExpr::create(Size, OutContext));
610 
611   OutStreamer->AddBlankLine();
612 }
613 
614 /// Emit the directive and value for debug thread local expression
615 ///
616 /// \p Value - The value to emit.
617 /// \p Size - The size of the integer (in bytes) to emit.
618 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
619                                       unsigned Size) const {
620   OutStreamer->EmitValue(Value, Size);
621 }
622 
623 /// EmitFunctionHeader - This method emits the header for the current
624 /// function.
625 void AsmPrinter::EmitFunctionHeader() {
626   // Print out constants referenced by the function
627   EmitConstantPool();
628 
629   // Print the 'header' of function.
630   const Function *F = MF->getFunction();
631 
632   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM));
633   EmitVisibility(CurrentFnSym, F->getVisibility());
634 
635   EmitLinkage(F, CurrentFnSym);
636   if (MAI->hasFunctionAlignment())
637     EmitAlignment(MF->getAlignment(), F);
638 
639   if (MAI->hasDotTypeDotSizeDirective())
640     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
641 
642   if (isVerbose()) {
643     F->printAsOperand(OutStreamer->GetCommentOS(),
644                    /*PrintType=*/false, F->getParent());
645     OutStreamer->GetCommentOS() << '\n';
646   }
647 
648   // Emit the prefix data.
649   if (F->hasPrefixData())
650     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData());
651 
652   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
653   // do their wild and crazy things as required.
654   EmitFunctionEntryLabel();
655 
656   // If the function had address-taken blocks that got deleted, then we have
657   // references to the dangling symbols.  Emit them at the start of the function
658   // so that we don't get references to undefined symbols.
659   std::vector<MCSymbol*> DeadBlockSyms;
660   MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
661   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
662     OutStreamer->AddComment("Address taken block that was later removed");
663     OutStreamer->EmitLabel(DeadBlockSyms[i]);
664   }
665 
666   if (CurrentFnBegin) {
667     if (MAI->useAssignmentForEHBegin()) {
668       MCSymbol *CurPos = OutContext.createTempSymbol();
669       OutStreamer->EmitLabel(CurPos);
670       OutStreamer->EmitAssignment(CurrentFnBegin,
671                                  MCSymbolRefExpr::create(CurPos, OutContext));
672     } else {
673       OutStreamer->EmitLabel(CurrentFnBegin);
674     }
675   }
676 
677   // Emit pre-function debug and/or EH information.
678   for (const HandlerInfo &HI : Handlers) {
679     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
680                        HI.TimerGroupDescription, TimePassesIsEnabled);
681     HI.Handler->beginFunction(MF);
682   }
683 
684   // Emit the prologue data.
685   if (F->hasPrologueData())
686     EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData());
687 }
688 
689 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
690 /// function.  This can be overridden by targets as required to do custom stuff.
691 void AsmPrinter::EmitFunctionEntryLabel() {
692   CurrentFnSym->redefineIfPossible();
693 
694   // The function label could have already been emitted if two symbols end up
695   // conflicting due to asm renaming.  Detect this and emit an error.
696   if (CurrentFnSym->isVariable())
697     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
698                        "' is a protected alias");
699   if (CurrentFnSym->isDefined())
700     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
701                        "' label emitted multiple times to assembly file");
702 
703   return OutStreamer->EmitLabel(CurrentFnSym);
704 }
705 
706 /// emitComments - Pretty-print comments for instructions.
707 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
708   const MachineFunction *MF = MI.getParent()->getParent();
709   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
710 
711   // Check for spills and reloads
712   int FI;
713 
714   const MachineFrameInfo &MFI = MF->getFrameInfo();
715 
716   // We assume a single instruction only has a spill or reload, not
717   // both.
718   const MachineMemOperand *MMO;
719   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
720     if (MFI.isSpillSlotObjectIndex(FI)) {
721       MMO = *MI.memoperands_begin();
722       CommentOS << MMO->getSize() << "-byte Reload\n";
723     }
724   } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) {
725     if (MFI.isSpillSlotObjectIndex(FI))
726       CommentOS << MMO->getSize() << "-byte Folded Reload\n";
727   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
728     if (MFI.isSpillSlotObjectIndex(FI)) {
729       MMO = *MI.memoperands_begin();
730       CommentOS << MMO->getSize() << "-byte Spill\n";
731     }
732   } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) {
733     if (MFI.isSpillSlotObjectIndex(FI))
734       CommentOS << MMO->getSize() << "-byte Folded Spill\n";
735   }
736 
737   // Check for spill-induced copies
738   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
739     CommentOS << " Reload Reuse\n";
740 }
741 
742 /// emitImplicitDef - This method emits the specified machine instruction
743 /// that is an implicit def.
744 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
745   unsigned RegNo = MI->getOperand(0).getReg();
746 
747   SmallString<128> Str;
748   raw_svector_ostream OS(Str);
749   OS << "implicit-def: "
750      << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo());
751 
752   OutStreamer->AddComment(OS.str());
753   OutStreamer->AddBlankLine();
754 }
755 
756 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
757   std::string Str;
758   raw_string_ostream OS(Str);
759   OS << "kill:";
760   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
761     const MachineOperand &Op = MI->getOperand(i);
762     assert(Op.isReg() && "KILL instruction must have only register operands");
763     OS << ' '
764        << PrintReg(Op.getReg(),
765                    AP.MF->getSubtarget().getRegisterInfo())
766        << (Op.isDef() ? "<def>" : "<kill>");
767   }
768   AP.OutStreamer->AddComment(OS.str());
769   AP.OutStreamer->AddBlankLine();
770 }
771 
772 /// emitDebugValueComment - This method handles the target-independent form
773 /// of DBG_VALUE, returning true if it was able to do so.  A false return
774 /// means the target will need to handle MI in EmitInstruction.
775 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
776   // This code handles only the 4-operand target-independent form.
777   if (MI->getNumOperands() != 4)
778     return false;
779 
780   SmallString<128> Str;
781   raw_svector_ostream OS(Str);
782   OS << "DEBUG_VALUE: ";
783 
784   const DILocalVariable *V = MI->getDebugVariable();
785   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
786     StringRef Name = SP->getDisplayName();
787     if (!Name.empty())
788       OS << Name << ":";
789   }
790   OS << V->getName();
791 
792   const DIExpression *Expr = MI->getDebugExpression();
793   auto Fragment = Expr->getFragmentInfo();
794   if (Fragment)
795     OS << " [fragment offset=" << Fragment->OffsetInBits
796        << " size=" << Fragment->SizeInBits << "]";
797   OS << " <- ";
798 
799   // The second operand is only an offset if it's an immediate.
800   bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
801   int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
802 
803   for (unsigned i = 0; i < Expr->getNumElements(); ++i) {
804     uint64_t Op = Expr->getElement(i);
805     if (Op == dwarf::DW_OP_LLVM_fragment) {
806       // There can't be any operands after this in a valid expression
807       break;
808     } else if (Deref) {
809       // We currently don't support extra Offsets or derefs after the first
810       // one. Bail out early instead of emitting an incorrect comment
811       OS << " [complex expression]";
812       AP.OutStreamer->emitRawComment(OS.str());
813       return true;
814     } else if (Op == dwarf::DW_OP_deref) {
815       Deref = true;
816       continue;
817     }
818 
819     uint64_t ExtraOffset = Expr->getElement(i++);
820     if (Op == dwarf::DW_OP_plus)
821       Offset += ExtraOffset;
822     else {
823       assert(Op == dwarf::DW_OP_minus);
824       Offset -= ExtraOffset;
825     }
826   }
827 
828   // Register or immediate value. Register 0 means undef.
829   if (MI->getOperand(0).isFPImm()) {
830     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
831     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
832       OS << (double)APF.convertToFloat();
833     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
834       OS << APF.convertToDouble();
835     } else {
836       // There is no good way to print long double.  Convert a copy to
837       // double.  Ah well, it's only a comment.
838       bool ignored;
839       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
840                   &ignored);
841       OS << "(long double) " << APF.convertToDouble();
842     }
843   } else if (MI->getOperand(0).isImm()) {
844     OS << MI->getOperand(0).getImm();
845   } else if (MI->getOperand(0).isCImm()) {
846     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
847   } else {
848     unsigned Reg;
849     if (MI->getOperand(0).isReg()) {
850       Reg = MI->getOperand(0).getReg();
851     } else {
852       assert(MI->getOperand(0).isFI() && "Unknown operand type");
853       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
854       Offset += TFI->getFrameIndexReference(*AP.MF,
855                                             MI->getOperand(0).getIndex(), Reg);
856       Deref = true;
857     }
858     if (Reg == 0) {
859       // Suppress offset, it is not meaningful here.
860       OS << "undef";
861       // NOTE: Want this comment at start of line, don't emit with AddComment.
862       AP.OutStreamer->emitRawComment(OS.str());
863       return true;
864     }
865     if (Deref)
866       OS << '[';
867     OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
868   }
869 
870   if (Deref)
871     OS << '+' << Offset << ']';
872 
873   // NOTE: Want this comment at start of line, don't emit with AddComment.
874   AP.OutStreamer->emitRawComment(OS.str());
875   return true;
876 }
877 
878 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
879   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
880       MF->getFunction()->needsUnwindTableEntry())
881     return CFI_M_EH;
882 
883   if (MMI->hasDebugInfo())
884     return CFI_M_Debug;
885 
886   return CFI_M_None;
887 }
888 
889 bool AsmPrinter::needsSEHMoves() {
890   return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry();
891 }
892 
893 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
894   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
895   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
896       ExceptionHandlingType != ExceptionHandling::ARM)
897     return;
898 
899   if (needsCFIMoves() == CFI_M_None)
900     return;
901 
902   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
903   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
904   const MCCFIInstruction &CFI = Instrs[CFIIndex];
905   emitCFIInstruction(CFI);
906 }
907 
908 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
909   // The operands are the MCSymbol and the frame offset of the allocation.
910   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
911   int FrameOffset = MI.getOperand(1).getImm();
912 
913   // Emit a symbol assignment.
914   OutStreamer->EmitAssignment(FrameAllocSym,
915                              MCConstantExpr::create(FrameOffset, OutContext));
916 }
917 
918 /// EmitFunctionBody - This method emits the body and trailer for a
919 /// function.
920 void AsmPrinter::EmitFunctionBody() {
921   EmitFunctionHeader();
922 
923   // Emit target-specific gunk before the function body.
924   EmitFunctionBodyStart();
925 
926   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
927 
928   // Print out code for the function.
929   bool HasAnyRealCode = false;
930   int NumInstsInFunction = 0;
931   for (auto &MBB : *MF) {
932     // Print a label for the basic block.
933     EmitBasicBlockStart(MBB);
934     for (auto &MI : MBB) {
935 
936       // Print the assembly for the instruction.
937       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
938           !MI.isDebugValue()) {
939         HasAnyRealCode = true;
940         ++NumInstsInFunction;
941       }
942 
943       if (ShouldPrintDebugScopes) {
944         for (const HandlerInfo &HI : Handlers) {
945           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
946                              HI.TimerGroupName, HI.TimerGroupDescription,
947                              TimePassesIsEnabled);
948           HI.Handler->beginInstruction(&MI);
949         }
950       }
951 
952       if (isVerbose())
953         emitComments(MI, OutStreamer->GetCommentOS());
954 
955       switch (MI.getOpcode()) {
956       case TargetOpcode::CFI_INSTRUCTION:
957         emitCFIInstruction(MI);
958         break;
959 
960       case TargetOpcode::LOCAL_ESCAPE:
961         emitFrameAlloc(MI);
962         break;
963 
964       case TargetOpcode::EH_LABEL:
965       case TargetOpcode::GC_LABEL:
966         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
967         break;
968       case TargetOpcode::INLINEASM:
969         EmitInlineAsm(&MI);
970         break;
971       case TargetOpcode::DBG_VALUE:
972         if (isVerbose()) {
973           if (!emitDebugValueComment(&MI, *this))
974             EmitInstruction(&MI);
975         }
976         break;
977       case TargetOpcode::IMPLICIT_DEF:
978         if (isVerbose()) emitImplicitDef(&MI);
979         break;
980       case TargetOpcode::KILL:
981         if (isVerbose()) emitKill(&MI, *this);
982         break;
983       default:
984         EmitInstruction(&MI);
985         break;
986       }
987 
988       if (ShouldPrintDebugScopes) {
989         for (const HandlerInfo &HI : Handlers) {
990           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
991                              HI.TimerGroupName, HI.TimerGroupDescription,
992                              TimePassesIsEnabled);
993           HI.Handler->endInstruction();
994         }
995       }
996     }
997 
998     EmitBasicBlockEnd(MBB);
999   }
1000 
1001   EmittedInsts += NumInstsInFunction;
1002   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1003                                       MF->getFunction()->getSubprogram(),
1004                                       &MF->front());
1005   R << ore::NV("NumInstructions", NumInstsInFunction)
1006     << " instructions in function";
1007   ORE->emit(R);
1008 
1009   // If the function is empty and the object file uses .subsections_via_symbols,
1010   // then we need to emit *something* to the function body to prevent the
1011   // labels from collapsing together.  Just emit a noop.
1012   if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) {
1013     MCInst Noop;
1014     MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop);
1015     OutStreamer->AddComment("avoids zero-length function");
1016 
1017     // Targets can opt-out of emitting the noop here by leaving the opcode
1018     // unspecified.
1019     if (Noop.getOpcode())
1020       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1021   }
1022 
1023   const Function *F = MF->getFunction();
1024   for (const auto &BB : *F) {
1025     if (!BB.hasAddressTaken())
1026       continue;
1027     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1028     if (Sym->isDefined())
1029       continue;
1030     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1031     OutStreamer->EmitLabel(Sym);
1032   }
1033 
1034   // Emit target-specific gunk after the function body.
1035   EmitFunctionBodyEnd();
1036 
1037   if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() ||
1038       MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) {
1039     // Create a symbol for the end of function.
1040     CurrentFnEnd = createTempSymbol("func_end");
1041     OutStreamer->EmitLabel(CurrentFnEnd);
1042   }
1043 
1044   // If the target wants a .size directive for the size of the function, emit
1045   // it.
1046   if (MAI->hasDotTypeDotSizeDirective()) {
1047     // We can get the size as difference between the function label and the
1048     // temp label.
1049     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1050         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1051         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1052     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1053   }
1054 
1055   for (const HandlerInfo &HI : Handlers) {
1056     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1057                        HI.TimerGroupDescription, TimePassesIsEnabled);
1058     HI.Handler->markFunctionEnd();
1059   }
1060 
1061   // Print out jump tables referenced by the function.
1062   EmitJumpTableInfo();
1063 
1064   // Emit post-function debug and/or EH information.
1065   for (const HandlerInfo &HI : Handlers) {
1066     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1067                        HI.TimerGroupDescription, TimePassesIsEnabled);
1068     HI.Handler->endFunction(MF);
1069   }
1070 
1071   OutStreamer->AddBlankLine();
1072 }
1073 
1074 /// \brief Compute the number of Global Variables that uses a Constant.
1075 static unsigned getNumGlobalVariableUses(const Constant *C) {
1076   if (!C)
1077     return 0;
1078 
1079   if (isa<GlobalVariable>(C))
1080     return 1;
1081 
1082   unsigned NumUses = 0;
1083   for (auto *CU : C->users())
1084     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1085 
1086   return NumUses;
1087 }
1088 
1089 /// \brief Only consider global GOT equivalents if at least one user is a
1090 /// cstexpr inside an initializer of another global variables. Also, don't
1091 /// handle cstexpr inside instructions. During global variable emission,
1092 /// candidates are skipped and are emitted later in case at least one cstexpr
1093 /// isn't replaced by a PC relative GOT entry access.
1094 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1095                                      unsigned &NumGOTEquivUsers) {
1096   // Global GOT equivalents are unnamed private globals with a constant
1097   // pointer initializer to another global symbol. They must point to a
1098   // GlobalVariable or Function, i.e., as GlobalValue.
1099   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1100       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1101       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1102     return false;
1103 
1104   // To be a got equivalent, at least one of its users need to be a constant
1105   // expression used by another global variable.
1106   for (auto *U : GV->users())
1107     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1108 
1109   return NumGOTEquivUsers > 0;
1110 }
1111 
1112 /// \brief Unnamed constant global variables solely contaning a pointer to
1113 /// another globals variable is equivalent to a GOT table entry; it contains the
1114 /// the address of another symbol. Optimize it and replace accesses to these
1115 /// "GOT equivalents" by using the GOT entry for the final global instead.
1116 /// Compute GOT equivalent candidates among all global variables to avoid
1117 /// emitting them if possible later on, after it use is replaced by a GOT entry
1118 /// access.
1119 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1120   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1121     return;
1122 
1123   for (const auto &G : M.globals()) {
1124     unsigned NumGOTEquivUsers = 0;
1125     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1126       continue;
1127 
1128     const MCSymbol *GOTEquivSym = getSymbol(&G);
1129     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1130   }
1131 }
1132 
1133 /// \brief Constant expressions using GOT equivalent globals may not be eligible
1134 /// for PC relative GOT entry conversion, in such cases we need to emit such
1135 /// globals we previously omitted in EmitGlobalVariable.
1136 void AsmPrinter::emitGlobalGOTEquivs() {
1137   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1138     return;
1139 
1140   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1141   for (auto &I : GlobalGOTEquivs) {
1142     const GlobalVariable *GV = I.second.first;
1143     unsigned Cnt = I.second.second;
1144     if (Cnt)
1145       FailedCandidates.push_back(GV);
1146   }
1147   GlobalGOTEquivs.clear();
1148 
1149   for (auto *GV : FailedCandidates)
1150     EmitGlobalVariable(GV);
1151 }
1152 
1153 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1154                                           const GlobalIndirectSymbol& GIS) {
1155   MCSymbol *Name = getSymbol(&GIS);
1156 
1157   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1158     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1159   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1160     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1161   else
1162     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1163 
1164   // Set the symbol type to function if the alias has a function type.
1165   // This affects codegen when the aliasee is not a function.
1166   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1167     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1168     if (isa<GlobalIFunc>(GIS))
1169       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1170   }
1171 
1172   EmitVisibility(Name, GIS.getVisibility());
1173 
1174   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1175 
1176   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1177     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1178 
1179   // Emit the directives as assignments aka .set:
1180   OutStreamer->EmitAssignment(Name, Expr);
1181 
1182   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1183     // If the aliasee does not correspond to a symbol in the output, i.e. the
1184     // alias is not of an object or the aliased object is private, then set the
1185     // size of the alias symbol from the type of the alias. We don't do this in
1186     // other situations as the alias and aliasee having differing types but same
1187     // size may be intentional.
1188     const GlobalObject *BaseObject = GA->getBaseObject();
1189     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1190         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1191       const DataLayout &DL = M.getDataLayout();
1192       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1193       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1194     }
1195   }
1196 }
1197 
1198 bool AsmPrinter::doFinalization(Module &M) {
1199   // Set the MachineFunction to nullptr so that we can catch attempted
1200   // accesses to MF specific features at the module level and so that
1201   // we can conditionalize accesses based on whether or not it is nullptr.
1202   MF = nullptr;
1203 
1204   // Gather all GOT equivalent globals in the module. We really need two
1205   // passes over the globals: one to compute and another to avoid its emission
1206   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1207   // where the got equivalent shows up before its use.
1208   computeGlobalGOTEquivs(M);
1209 
1210   // Emit global variables.
1211   for (const auto &G : M.globals())
1212     EmitGlobalVariable(&G);
1213 
1214   // Emit remaining GOT equivalent globals.
1215   emitGlobalGOTEquivs();
1216 
1217   // Emit visibility info for declarations
1218   for (const Function &F : M) {
1219     if (!F.isDeclarationForLinker())
1220       continue;
1221     GlobalValue::VisibilityTypes V = F.getVisibility();
1222     if (V == GlobalValue::DefaultVisibility)
1223       continue;
1224 
1225     MCSymbol *Name = getSymbol(&F);
1226     EmitVisibility(Name, V, false);
1227   }
1228 
1229   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1230 
1231   // Emit module flags.
1232   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1233   M.getModuleFlagsMetadata(ModuleFlags);
1234   if (!ModuleFlags.empty())
1235     TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM);
1236 
1237   if (TM.getTargetTriple().isOSBinFormatELF()) {
1238     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1239 
1240     // Output stubs for external and common global variables.
1241     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1242     if (!Stubs.empty()) {
1243       OutStreamer->SwitchSection(TLOF.getDataSection());
1244       const DataLayout &DL = M.getDataLayout();
1245 
1246       for (const auto &Stub : Stubs) {
1247         OutStreamer->EmitLabel(Stub.first);
1248         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1249                                      DL.getPointerSize());
1250       }
1251     }
1252   }
1253 
1254   // Finalize debug and EH information.
1255   for (const HandlerInfo &HI : Handlers) {
1256     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1257                        HI.TimerGroupDescription, TimePassesIsEnabled);
1258     HI.Handler->endModule();
1259     delete HI.Handler;
1260   }
1261   Handlers.clear();
1262   DD = nullptr;
1263 
1264   // If the target wants to know about weak references, print them all.
1265   if (MAI->getWeakRefDirective()) {
1266     // FIXME: This is not lazy, it would be nice to only print weak references
1267     // to stuff that is actually used.  Note that doing so would require targets
1268     // to notice uses in operands (due to constant exprs etc).  This should
1269     // happen with the MC stuff eventually.
1270 
1271     // Print out module-level global objects here.
1272     for (const auto &GO : M.global_objects()) {
1273       if (!GO.hasExternalWeakLinkage())
1274         continue;
1275       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1276     }
1277   }
1278 
1279   OutStreamer->AddBlankLine();
1280 
1281   // Print aliases in topological order, that is, for each alias a = b,
1282   // b must be printed before a.
1283   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1284   // such an order to generate correct TOC information.
1285   SmallVector<const GlobalAlias *, 16> AliasStack;
1286   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1287   for (const auto &Alias : M.aliases()) {
1288     for (const GlobalAlias *Cur = &Alias; Cur;
1289          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1290       if (!AliasVisited.insert(Cur).second)
1291         break;
1292       AliasStack.push_back(Cur);
1293     }
1294     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1295       emitGlobalIndirectSymbol(M, *AncestorAlias);
1296     AliasStack.clear();
1297   }
1298   for (const auto &IFunc : M.ifuncs())
1299     emitGlobalIndirectSymbol(M, IFunc);
1300 
1301   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1302   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1303   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1304     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1305       MP->finishAssembly(M, *MI, *this);
1306 
1307   // Emit llvm.ident metadata in an '.ident' directive.
1308   EmitModuleIdents(M);
1309 
1310   // Emit __morestack address if needed for indirect calls.
1311   if (MMI->usesMorestackAddr()) {
1312     unsigned Align = 1;
1313     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1314         getDataLayout(), SectionKind::getReadOnly(),
1315         /*C=*/nullptr, Align);
1316     OutStreamer->SwitchSection(ReadOnlySection);
1317 
1318     MCSymbol *AddrSymbol =
1319         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1320     OutStreamer->EmitLabel(AddrSymbol);
1321 
1322     unsigned PtrSize = M.getDataLayout().getPointerSize(0);
1323     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1324                                  PtrSize);
1325   }
1326 
1327   // If we don't have any trampolines, then we don't require stack memory
1328   // to be executable. Some targets have a directive to declare this.
1329   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1330   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1331     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1332       OutStreamer->SwitchSection(S);
1333 
1334   // Allow the target to emit any magic that it wants at the end of the file,
1335   // after everything else has gone out.
1336   EmitEndOfAsmFile(M);
1337 
1338   MMI = nullptr;
1339 
1340   OutStreamer->Finish();
1341   OutStreamer->reset();
1342 
1343   return false;
1344 }
1345 
1346 MCSymbol *AsmPrinter::getCurExceptionSym() {
1347   if (!CurExceptionSym)
1348     CurExceptionSym = createTempSymbol("exception");
1349   return CurExceptionSym;
1350 }
1351 
1352 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1353   this->MF = &MF;
1354   // Get the function symbol.
1355   CurrentFnSym = getSymbol(MF.getFunction());
1356   CurrentFnSymForSize = CurrentFnSym;
1357   CurrentFnBegin = nullptr;
1358   CurExceptionSym = nullptr;
1359   bool NeedsLocalForSize = MAI->needsLocalForSize();
1360   if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() ||
1361       MF.hasEHFunclets() || NeedsLocalForSize) {
1362     CurrentFnBegin = createTempSymbol("func_begin");
1363     if (NeedsLocalForSize)
1364       CurrentFnSymForSize = CurrentFnBegin;
1365   }
1366 
1367   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1368   if (isVerbose())
1369     LI = &getAnalysis<MachineLoopInfo>();
1370 }
1371 
1372 namespace {
1373 
1374 // Keep track the alignment, constpool entries per Section.
1375   struct SectionCPs {
1376     MCSection *S;
1377     unsigned Alignment;
1378     SmallVector<unsigned, 4> CPEs;
1379 
1380     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1381   };
1382 
1383 } // end anonymous namespace
1384 
1385 /// EmitConstantPool - Print to the current output stream assembly
1386 /// representations of the constants in the constant pool MCP. This is
1387 /// used to print out constants which have been "spilled to memory" by
1388 /// the code generator.
1389 ///
1390 void AsmPrinter::EmitConstantPool() {
1391   const MachineConstantPool *MCP = MF->getConstantPool();
1392   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1393   if (CP.empty()) return;
1394 
1395   // Calculate sections for constant pool entries. We collect entries to go into
1396   // the same section together to reduce amount of section switch statements.
1397   SmallVector<SectionCPs, 4> CPSections;
1398   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1399     const MachineConstantPoolEntry &CPE = CP[i];
1400     unsigned Align = CPE.getAlignment();
1401 
1402     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1403 
1404     const Constant *C = nullptr;
1405     if (!CPE.isMachineConstantPoolEntry())
1406       C = CPE.Val.ConstVal;
1407 
1408     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1409                                                               Kind, C, Align);
1410 
1411     // The number of sections are small, just do a linear search from the
1412     // last section to the first.
1413     bool Found = false;
1414     unsigned SecIdx = CPSections.size();
1415     while (SecIdx != 0) {
1416       if (CPSections[--SecIdx].S == S) {
1417         Found = true;
1418         break;
1419       }
1420     }
1421     if (!Found) {
1422       SecIdx = CPSections.size();
1423       CPSections.push_back(SectionCPs(S, Align));
1424     }
1425 
1426     if (Align > CPSections[SecIdx].Alignment)
1427       CPSections[SecIdx].Alignment = Align;
1428     CPSections[SecIdx].CPEs.push_back(i);
1429   }
1430 
1431   // Now print stuff into the calculated sections.
1432   const MCSection *CurSection = nullptr;
1433   unsigned Offset = 0;
1434   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1435     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1436       unsigned CPI = CPSections[i].CPEs[j];
1437       MCSymbol *Sym = GetCPISymbol(CPI);
1438       if (!Sym->isUndefined())
1439         continue;
1440 
1441       if (CurSection != CPSections[i].S) {
1442         OutStreamer->SwitchSection(CPSections[i].S);
1443         EmitAlignment(Log2_32(CPSections[i].Alignment));
1444         CurSection = CPSections[i].S;
1445         Offset = 0;
1446       }
1447 
1448       MachineConstantPoolEntry CPE = CP[CPI];
1449 
1450       // Emit inter-object padding for alignment.
1451       unsigned AlignMask = CPE.getAlignment() - 1;
1452       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1453       OutStreamer->EmitZeros(NewOffset - Offset);
1454 
1455       Type *Ty = CPE.getType();
1456       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1457 
1458       OutStreamer->EmitLabel(Sym);
1459       if (CPE.isMachineConstantPoolEntry())
1460         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1461       else
1462         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1463     }
1464   }
1465 }
1466 
1467 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1468 /// by the current function to the current output stream.
1469 ///
1470 void AsmPrinter::EmitJumpTableInfo() {
1471   const DataLayout &DL = MF->getDataLayout();
1472   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1473   if (!MJTI) return;
1474   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1475   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1476   if (JT.empty()) return;
1477 
1478   // Pick the directive to use to print the jump table entries, and switch to
1479   // the appropriate section.
1480   const Function *F = MF->getFunction();
1481   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1482   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1483       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1484       *F);
1485   if (JTInDiffSection) {
1486     // Drop it in the readonly section.
1487     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM);
1488     OutStreamer->SwitchSection(ReadOnlySection);
1489   }
1490 
1491   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1492 
1493   // Jump tables in code sections are marked with a data_region directive
1494   // where that's supported.
1495   if (!JTInDiffSection)
1496     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1497 
1498   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1499     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1500 
1501     // If this jump table was deleted, ignore it.
1502     if (JTBBs.empty()) continue;
1503 
1504     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1505     /// emit a .set directive for each unique entry.
1506     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1507         MAI->doesSetDirectiveSuppressReloc()) {
1508       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1509       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1510       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1511       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1512         const MachineBasicBlock *MBB = JTBBs[ii];
1513         if (!EmittedSets.insert(MBB).second)
1514           continue;
1515 
1516         // .set LJTSet, LBB32-base
1517         const MCExpr *LHS =
1518           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1519         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1520                                     MCBinaryExpr::createSub(LHS, Base,
1521                                                             OutContext));
1522       }
1523     }
1524 
1525     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1526     // before each jump table.  The first label is never referenced, but tells
1527     // the assembler and linker the extents of the jump table object.  The
1528     // second label is actually referenced by the code.
1529     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1530       // FIXME: This doesn't have to have any specific name, just any randomly
1531       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1532       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1533 
1534     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1535 
1536     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1537       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1538   }
1539   if (!JTInDiffSection)
1540     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1541 }
1542 
1543 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1544 /// current stream.
1545 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1546                                     const MachineBasicBlock *MBB,
1547                                     unsigned UID) const {
1548   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1549   const MCExpr *Value = nullptr;
1550   switch (MJTI->getEntryKind()) {
1551   case MachineJumpTableInfo::EK_Inline:
1552     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1553   case MachineJumpTableInfo::EK_Custom32:
1554     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1555         MJTI, MBB, UID, OutContext);
1556     break;
1557   case MachineJumpTableInfo::EK_BlockAddress:
1558     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1559     //     .word LBB123
1560     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1561     break;
1562   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1563     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1564     // with a relocation as gp-relative, e.g.:
1565     //     .gprel32 LBB123
1566     MCSymbol *MBBSym = MBB->getSymbol();
1567     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1568     return;
1569   }
1570 
1571   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1572     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1573     // with a relocation as gp-relative, e.g.:
1574     //     .gpdword LBB123
1575     MCSymbol *MBBSym = MBB->getSymbol();
1576     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1577     return;
1578   }
1579 
1580   case MachineJumpTableInfo::EK_LabelDifference32: {
1581     // Each entry is the address of the block minus the address of the jump
1582     // table. This is used for PIC jump tables where gprel32 is not supported.
1583     // e.g.:
1584     //      .word LBB123 - LJTI1_2
1585     // If the .set directive avoids relocations, this is emitted as:
1586     //      .set L4_5_set_123, LBB123 - LJTI1_2
1587     //      .word L4_5_set_123
1588     if (MAI->doesSetDirectiveSuppressReloc()) {
1589       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1590                                       OutContext);
1591       break;
1592     }
1593     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1594     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1595     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1596     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1597     break;
1598   }
1599   }
1600 
1601   assert(Value && "Unknown entry kind!");
1602 
1603   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1604   OutStreamer->EmitValue(Value, EntrySize);
1605 }
1606 
1607 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1608 /// special global used by LLVM.  If so, emit it and return true, otherwise
1609 /// do nothing and return false.
1610 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1611   if (GV->getName() == "llvm.used") {
1612     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1613       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1614     return true;
1615   }
1616 
1617   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1618   if (GV->getSection() == "llvm.metadata" ||
1619       GV->hasAvailableExternallyLinkage())
1620     return true;
1621 
1622   if (!GV->hasAppendingLinkage()) return false;
1623 
1624   assert(GV->hasInitializer() && "Not a special LLVM global!");
1625 
1626   if (GV->getName() == "llvm.global_ctors") {
1627     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1628                        /* isCtor */ true);
1629 
1630     return true;
1631   }
1632 
1633   if (GV->getName() == "llvm.global_dtors") {
1634     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1635                        /* isCtor */ false);
1636 
1637     return true;
1638   }
1639 
1640   report_fatal_error("unknown special variable");
1641 }
1642 
1643 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1644 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1645 /// is true, as being used with this directive.
1646 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1647   // Should be an array of 'i8*'.
1648   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1649     const GlobalValue *GV =
1650       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1651     if (GV)
1652       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1653   }
1654 }
1655 
1656 namespace {
1657 
1658 struct Structor {
1659   int Priority = 0;
1660   Constant *Func = nullptr;
1661   GlobalValue *ComdatKey = nullptr;
1662 
1663   Structor() = default;
1664 };
1665 
1666 }  // end anonymous namespace
1667 
1668 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1669 /// priority.
1670 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1671                                     bool isCtor) {
1672   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1673   // init priority.
1674   if (!isa<ConstantArray>(List)) return;
1675 
1676   // Sanity check the structors list.
1677   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1678   if (!InitList) return; // Not an array!
1679   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1680   // FIXME: Only allow the 3-field form in LLVM 4.0.
1681   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1682     return; // Not an array of two or three elements!
1683   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1684       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1685   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1686     return; // Not (int, ptr, ptr).
1687 
1688   // Gather the structors in a form that's convenient for sorting by priority.
1689   SmallVector<Structor, 8> Structors;
1690   for (Value *O : InitList->operands()) {
1691     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1692     if (!CS) continue; // Malformed.
1693     if (CS->getOperand(1)->isNullValue())
1694       break;  // Found a null terminator, skip the rest.
1695     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1696     if (!Priority) continue; // Malformed.
1697     Structors.push_back(Structor());
1698     Structor &S = Structors.back();
1699     S.Priority = Priority->getLimitedValue(65535);
1700     S.Func = CS->getOperand(1);
1701     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1702       S.ComdatKey =
1703           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1704   }
1705 
1706   // Emit the function pointers in the target-specific order
1707   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1708   std::stable_sort(Structors.begin(), Structors.end(),
1709                    [](const Structor &L,
1710                       const Structor &R) { return L.Priority < R.Priority; });
1711   for (Structor &S : Structors) {
1712     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1713     const MCSymbol *KeySym = nullptr;
1714     if (GlobalValue *GV = S.ComdatKey) {
1715       if (GV->isDeclarationForLinker())
1716         // If the associated variable is not defined in this module
1717         // (it might be available_externally, or have been an
1718         // available_externally definition that was dropped by the
1719         // EliminateAvailableExternally pass), some other TU
1720         // will provide its dynamic initializer.
1721         continue;
1722 
1723       KeySym = getSymbol(GV);
1724     }
1725     MCSection *OutputSection =
1726         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1727                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1728     OutStreamer->SwitchSection(OutputSection);
1729     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1730       EmitAlignment(Align);
1731     EmitXXStructor(DL, S.Func);
1732   }
1733 }
1734 
1735 void AsmPrinter::EmitModuleIdents(Module &M) {
1736   if (!MAI->hasIdentDirective())
1737     return;
1738 
1739   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
1740     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1741       const MDNode *N = NMD->getOperand(i);
1742       assert(N->getNumOperands() == 1 &&
1743              "llvm.ident metadata entry can have only one operand");
1744       const MDString *S = cast<MDString>(N->getOperand(0));
1745       OutStreamer->EmitIdent(S->getString());
1746     }
1747   }
1748 }
1749 
1750 //===--------------------------------------------------------------------===//
1751 // Emission and print routines
1752 //
1753 
1754 /// EmitInt8 - Emit a byte directive and value.
1755 ///
1756 void AsmPrinter::EmitInt8(int Value) const {
1757   OutStreamer->EmitIntValue(Value, 1);
1758 }
1759 
1760 /// EmitInt16 - Emit a short directive and value.
1761 ///
1762 void AsmPrinter::EmitInt16(int Value) const {
1763   OutStreamer->EmitIntValue(Value, 2);
1764 }
1765 
1766 /// EmitInt32 - Emit a long directive and value.
1767 ///
1768 void AsmPrinter::EmitInt32(int Value) const {
1769   OutStreamer->EmitIntValue(Value, 4);
1770 }
1771 
1772 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
1773 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
1774 /// .set if it avoids relocations.
1775 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1776                                      unsigned Size) const {
1777   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
1778 }
1779 
1780 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1781 /// where the size in bytes of the directive is specified by Size and Label
1782 /// specifies the label.  This implicitly uses .set if it is available.
1783 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1784                                      unsigned Size,
1785                                      bool IsSectionRelative) const {
1786   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
1787     OutStreamer->EmitCOFFSecRel32(Label, Offset);
1788     if (Size > 4)
1789       OutStreamer->EmitZeros(Size - 4);
1790     return;
1791   }
1792 
1793   // Emit Label+Offset (or just Label if Offset is zero)
1794   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
1795   if (Offset)
1796     Expr = MCBinaryExpr::createAdd(
1797         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1798 
1799   OutStreamer->EmitValue(Expr, Size);
1800 }
1801 
1802 //===----------------------------------------------------------------------===//
1803 
1804 // EmitAlignment - Emit an alignment directive to the specified power of
1805 // two boundary.  For example, if you pass in 3 here, you will get an 8
1806 // byte alignment.  If a global value is specified, and if that global has
1807 // an explicit alignment requested, it will override the alignment request
1808 // if required for correctness.
1809 //
1810 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
1811   if (GV)
1812     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
1813 
1814   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
1815 
1816   assert(NumBits <
1817              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
1818          "undefined behavior");
1819   if (getCurrentSection()->getKind().isText())
1820     OutStreamer->EmitCodeAlignment(1u << NumBits);
1821   else
1822     OutStreamer->EmitValueToAlignment(1u << NumBits);
1823 }
1824 
1825 //===----------------------------------------------------------------------===//
1826 // Constant emission.
1827 //===----------------------------------------------------------------------===//
1828 
1829 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
1830   MCContext &Ctx = OutContext;
1831 
1832   if (CV->isNullValue() || isa<UndefValue>(CV))
1833     return MCConstantExpr::create(0, Ctx);
1834 
1835   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1836     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
1837 
1838   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1839     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
1840 
1841   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1842     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
1843 
1844   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1845   if (!CE) {
1846     llvm_unreachable("Unknown constant value to lower!");
1847   }
1848 
1849   switch (CE->getOpcode()) {
1850   default:
1851     // If the code isn't optimized, there may be outstanding folding
1852     // opportunities. Attempt to fold the expression using DataLayout as a
1853     // last resort before giving up.
1854     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
1855       if (C != CE)
1856         return lowerConstant(C);
1857 
1858     // Otherwise report the problem to the user.
1859     {
1860       std::string S;
1861       raw_string_ostream OS(S);
1862       OS << "Unsupported expression in static initializer: ";
1863       CE->printAsOperand(OS, /*PrintType=*/false,
1864                      !MF ? nullptr : MF->getFunction()->getParent());
1865       report_fatal_error(OS.str());
1866     }
1867   case Instruction::GetElementPtr: {
1868     // Generate a symbolic expression for the byte address
1869     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
1870     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
1871 
1872     const MCExpr *Base = lowerConstant(CE->getOperand(0));
1873     if (!OffsetAI)
1874       return Base;
1875 
1876     int64_t Offset = OffsetAI.getSExtValue();
1877     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
1878                                    Ctx);
1879   }
1880 
1881   case Instruction::Trunc:
1882     // We emit the value and depend on the assembler to truncate the generated
1883     // expression properly.  This is important for differences between
1884     // blockaddress labels.  Since the two labels are in the same function, it
1885     // is reasonable to treat their delta as a 32-bit value.
1886     LLVM_FALLTHROUGH;
1887   case Instruction::BitCast:
1888     return lowerConstant(CE->getOperand(0));
1889 
1890   case Instruction::IntToPtr: {
1891     const DataLayout &DL = getDataLayout();
1892 
1893     // Handle casts to pointers by changing them into casts to the appropriate
1894     // integer type.  This promotes constant folding and simplifies this code.
1895     Constant *Op = CE->getOperand(0);
1896     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
1897                                       false/*ZExt*/);
1898     return lowerConstant(Op);
1899   }
1900 
1901   case Instruction::PtrToInt: {
1902     const DataLayout &DL = getDataLayout();
1903 
1904     // Support only foldable casts to/from pointers that can be eliminated by
1905     // changing the pointer to the appropriately sized integer type.
1906     Constant *Op = CE->getOperand(0);
1907     Type *Ty = CE->getType();
1908 
1909     const MCExpr *OpExpr = lowerConstant(Op);
1910 
1911     // We can emit the pointer value into this slot if the slot is an
1912     // integer slot equal to the size of the pointer.
1913     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
1914       return OpExpr;
1915 
1916     // Otherwise the pointer is smaller than the resultant integer, mask off
1917     // the high bits so we are sure to get a proper truncation if the input is
1918     // a constant expr.
1919     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
1920     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
1921     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
1922   }
1923 
1924   case Instruction::Sub: {
1925     GlobalValue *LHSGV;
1926     APInt LHSOffset;
1927     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
1928                                    getDataLayout())) {
1929       GlobalValue *RHSGV;
1930       APInt RHSOffset;
1931       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
1932                                      getDataLayout())) {
1933         const MCExpr *RelocExpr =
1934             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
1935         if (!RelocExpr)
1936           RelocExpr = MCBinaryExpr::createSub(
1937               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
1938               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
1939         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
1940         if (Addend != 0)
1941           RelocExpr = MCBinaryExpr::createAdd(
1942               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
1943         return RelocExpr;
1944       }
1945     }
1946   }
1947   // else fallthrough
1948 
1949   // The MC library also has a right-shift operator, but it isn't consistently
1950   // signed or unsigned between different targets.
1951   case Instruction::Add:
1952   case Instruction::Mul:
1953   case Instruction::SDiv:
1954   case Instruction::SRem:
1955   case Instruction::Shl:
1956   case Instruction::And:
1957   case Instruction::Or:
1958   case Instruction::Xor: {
1959     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
1960     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
1961     switch (CE->getOpcode()) {
1962     default: llvm_unreachable("Unknown binary operator constant cast expr");
1963     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
1964     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1965     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
1966     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
1967     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
1968     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
1969     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
1970     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
1971     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
1972     }
1973   }
1974   }
1975 }
1976 
1977 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
1978                                    AsmPrinter &AP,
1979                                    const Constant *BaseCV = nullptr,
1980                                    uint64_t Offset = 0);
1981 
1982 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
1983 
1984 /// isRepeatedByteSequence - Determine whether the given value is
1985 /// composed of a repeated sequence of identical bytes and return the
1986 /// byte value.  If it is not a repeated sequence, return -1.
1987 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1988   StringRef Data = V->getRawDataValues();
1989   assert(!Data.empty() && "Empty aggregates should be CAZ node");
1990   char C = Data[0];
1991   for (unsigned i = 1, e = Data.size(); i != e; ++i)
1992     if (Data[i] != C) return -1;
1993   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1994 }
1995 
1996 /// isRepeatedByteSequence - Determine whether the given value is
1997 /// composed of a repeated sequence of identical bytes and return the
1998 /// byte value.  If it is not a repeated sequence, return -1.
1999 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2000   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2001     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2002     assert(Size % 8 == 0);
2003 
2004     // Extend the element to take zero padding into account.
2005     APInt Value = CI->getValue().zextOrSelf(Size);
2006     if (!Value.isSplat(8))
2007       return -1;
2008 
2009     return Value.zextOrTrunc(8).getZExtValue();
2010   }
2011   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2012     // Make sure all array elements are sequences of the same repeated
2013     // byte.
2014     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2015     Constant *Op0 = CA->getOperand(0);
2016     int Byte = isRepeatedByteSequence(Op0, DL);
2017     if (Byte == -1)
2018       return -1;
2019 
2020     // All array elements must be equal.
2021     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2022       if (CA->getOperand(i) != Op0)
2023         return -1;
2024     return Byte;
2025   }
2026 
2027   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2028     return isRepeatedByteSequence(CDS);
2029 
2030   return -1;
2031 }
2032 
2033 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2034                                              const ConstantDataSequential *CDS,
2035                                              AsmPrinter &AP) {
2036   // See if we can aggregate this into a .fill, if so, emit it as such.
2037   int Value = isRepeatedByteSequence(CDS, DL);
2038   if (Value != -1) {
2039     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2040     // Don't emit a 1-byte object as a .fill.
2041     if (Bytes > 1)
2042       return AP.OutStreamer->emitFill(Bytes, Value);
2043   }
2044 
2045   // If this can be emitted with .ascii/.asciz, emit it as such.
2046   if (CDS->isString())
2047     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2048 
2049   // Otherwise, emit the values in successive locations.
2050   unsigned ElementByteSize = CDS->getElementByteSize();
2051   if (isa<IntegerType>(CDS->getElementType())) {
2052     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2053       if (AP.isVerbose())
2054         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2055                                                  CDS->getElementAsInteger(i));
2056       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2057                                    ElementByteSize);
2058     }
2059   } else {
2060     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2061       emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP);
2062   }
2063 
2064   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2065   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2066                         CDS->getNumElements();
2067   if (unsigned Padding = Size - EmittedSize)
2068     AP.OutStreamer->EmitZeros(Padding);
2069 }
2070 
2071 static void emitGlobalConstantArray(const DataLayout &DL,
2072                                     const ConstantArray *CA, AsmPrinter &AP,
2073                                     const Constant *BaseCV, uint64_t Offset) {
2074   // See if we can aggregate some values.  Make sure it can be
2075   // represented as a series of bytes of the constant value.
2076   int Value = isRepeatedByteSequence(CA, DL);
2077 
2078   if (Value != -1) {
2079     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2080     AP.OutStreamer->emitFill(Bytes, Value);
2081   }
2082   else {
2083     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2084       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2085       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2086     }
2087   }
2088 }
2089 
2090 static void emitGlobalConstantVector(const DataLayout &DL,
2091                                      const ConstantVector *CV, AsmPrinter &AP) {
2092   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2093     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2094 
2095   unsigned Size = DL.getTypeAllocSize(CV->getType());
2096   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2097                          CV->getType()->getNumElements();
2098   if (unsigned Padding = Size - EmittedSize)
2099     AP.OutStreamer->EmitZeros(Padding);
2100 }
2101 
2102 static void emitGlobalConstantStruct(const DataLayout &DL,
2103                                      const ConstantStruct *CS, AsmPrinter &AP,
2104                                      const Constant *BaseCV, uint64_t Offset) {
2105   // Print the fields in successive locations. Pad to align if needed!
2106   unsigned Size = DL.getTypeAllocSize(CS->getType());
2107   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2108   uint64_t SizeSoFar = 0;
2109   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2110     const Constant *Field = CS->getOperand(i);
2111 
2112     // Print the actual field value.
2113     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2114 
2115     // Check if padding is needed and insert one or more 0s.
2116     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2117     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2118                         - Layout->getElementOffset(i)) - FieldSize;
2119     SizeSoFar += FieldSize + PadSize;
2120 
2121     // Insert padding - this may include padding to increase the size of the
2122     // current field up to the ABI size (if the struct is not packed) as well
2123     // as padding to ensure that the next field starts at the right offset.
2124     AP.OutStreamer->EmitZeros(PadSize);
2125   }
2126   assert(SizeSoFar == Layout->getSizeInBytes() &&
2127          "Layout of constant struct may be incorrect!");
2128 }
2129 
2130 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2131   APInt API = CFP->getValueAPF().bitcastToAPInt();
2132 
2133   // First print a comment with what we think the original floating-point value
2134   // should have been.
2135   if (AP.isVerbose()) {
2136     SmallString<8> StrVal;
2137     CFP->getValueAPF().toString(StrVal);
2138 
2139     if (CFP->getType())
2140       CFP->getType()->print(AP.OutStreamer->GetCommentOS());
2141     else
2142       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2143     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2144   }
2145 
2146   // Now iterate through the APInt chunks, emitting them in endian-correct
2147   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2148   // floats).
2149   unsigned NumBytes = API.getBitWidth() / 8;
2150   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2151   const uint64_t *p = API.getRawData();
2152 
2153   // PPC's long double has odd notions of endianness compared to how LLVM
2154   // handles it: p[0] goes first for *big* endian on PPC.
2155   if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) {
2156     int Chunk = API.getNumWords() - 1;
2157 
2158     if (TrailingBytes)
2159       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2160 
2161     for (; Chunk >= 0; --Chunk)
2162       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2163   } else {
2164     unsigned Chunk;
2165     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2166       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2167 
2168     if (TrailingBytes)
2169       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2170   }
2171 
2172   // Emit the tail padding for the long double.
2173   const DataLayout &DL = AP.getDataLayout();
2174   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) -
2175                             DL.getTypeStoreSize(CFP->getType()));
2176 }
2177 
2178 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2179   const DataLayout &DL = AP.getDataLayout();
2180   unsigned BitWidth = CI->getBitWidth();
2181 
2182   // Copy the value as we may massage the layout for constants whose bit width
2183   // is not a multiple of 64-bits.
2184   APInt Realigned(CI->getValue());
2185   uint64_t ExtraBits = 0;
2186   unsigned ExtraBitsSize = BitWidth & 63;
2187 
2188   if (ExtraBitsSize) {
2189     // The bit width of the data is not a multiple of 64-bits.
2190     // The extra bits are expected to be at the end of the chunk of the memory.
2191     // Little endian:
2192     // * Nothing to be done, just record the extra bits to emit.
2193     // Big endian:
2194     // * Record the extra bits to emit.
2195     // * Realign the raw data to emit the chunks of 64-bits.
2196     if (DL.isBigEndian()) {
2197       // Basically the structure of the raw data is a chunk of 64-bits cells:
2198       //    0        1         BitWidth / 64
2199       // [chunk1][chunk2] ... [chunkN].
2200       // The most significant chunk is chunkN and it should be emitted first.
2201       // However, due to the alignment issue chunkN contains useless bits.
2202       // Realign the chunks so that they contain only useless information:
2203       // ExtraBits     0       1       (BitWidth / 64) - 1
2204       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2205       ExtraBits = Realigned.getRawData()[0] &
2206         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2207       Realigned = Realigned.lshr(ExtraBitsSize);
2208     } else
2209       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2210   }
2211 
2212   // We don't expect assemblers to support integer data directives
2213   // for more than 64 bits, so we emit the data in at most 64-bit
2214   // quantities at a time.
2215   const uint64_t *RawData = Realigned.getRawData();
2216   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2217     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2218     AP.OutStreamer->EmitIntValue(Val, 8);
2219   }
2220 
2221   if (ExtraBitsSize) {
2222     // Emit the extra bits after the 64-bits chunks.
2223 
2224     // Emit a directive that fills the expected size.
2225     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2226     Size -= (BitWidth / 64) * 8;
2227     assert(Size && Size * 8 >= ExtraBitsSize &&
2228            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2229            == ExtraBits && "Directive too small for extra bits.");
2230     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2231   }
2232 }
2233 
2234 /// \brief Transform a not absolute MCExpr containing a reference to a GOT
2235 /// equivalent global, by a target specific GOT pc relative access to the
2236 /// final symbol.
2237 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2238                                          const Constant *BaseCst,
2239                                          uint64_t Offset) {
2240   // The global @foo below illustrates a global that uses a got equivalent.
2241   //
2242   //  @bar = global i32 42
2243   //  @gotequiv = private unnamed_addr constant i32* @bar
2244   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2245   //                             i64 ptrtoint (i32* @foo to i64))
2246   //                        to i32)
2247   //
2248   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2249   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2250   // form:
2251   //
2252   //  foo = cstexpr, where
2253   //    cstexpr := <gotequiv> - "." + <cst>
2254   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2255   //
2256   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2257   //
2258   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2259   //    gotpcrelcst := <offset from @foo base> + <cst>
2260   //
2261   MCValue MV;
2262   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2263     return;
2264   const MCSymbolRefExpr *SymA = MV.getSymA();
2265   if (!SymA)
2266     return;
2267 
2268   // Check that GOT equivalent symbol is cached.
2269   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2270   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2271     return;
2272 
2273   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2274   if (!BaseGV)
2275     return;
2276 
2277   // Check for a valid base symbol
2278   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2279   const MCSymbolRefExpr *SymB = MV.getSymB();
2280 
2281   if (!SymB || BaseSym != &SymB->getSymbol())
2282     return;
2283 
2284   // Make sure to match:
2285   //
2286   //    gotpcrelcst := <offset from @foo base> + <cst>
2287   //
2288   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2289   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2290   // if the target knows how to encode it.
2291   //
2292   int64_t GOTPCRelCst = Offset + MV.getConstant();
2293   if (GOTPCRelCst < 0)
2294     return;
2295   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2296     return;
2297 
2298   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2299   //
2300   //  bar:
2301   //    .long 42
2302   //  gotequiv:
2303   //    .quad bar
2304   //  foo:
2305   //    .long gotequiv - "." + <cst>
2306   //
2307   // is replaced by the target specific equivalent to:
2308   //
2309   //  bar:
2310   //    .long 42
2311   //  foo:
2312   //    .long bar@GOTPCREL+<gotpcrelcst>
2313   //
2314   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2315   const GlobalVariable *GV = Result.first;
2316   int NumUses = (int)Result.second;
2317   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2318   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2319   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2320       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2321 
2322   // Update GOT equivalent usage information
2323   --NumUses;
2324   if (NumUses >= 0)
2325     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2326 }
2327 
2328 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2329                                    AsmPrinter &AP, const Constant *BaseCV,
2330                                    uint64_t Offset) {
2331   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2332 
2333   // Globals with sub-elements such as combinations of arrays and structs
2334   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2335   // constant symbol base and the current position with BaseCV and Offset.
2336   if (!BaseCV && CV->hasOneUse())
2337     BaseCV = dyn_cast<Constant>(CV->user_back());
2338 
2339   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2340     return AP.OutStreamer->EmitZeros(Size);
2341 
2342   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2343     switch (Size) {
2344     case 1:
2345     case 2:
2346     case 4:
2347     case 8:
2348       if (AP.isVerbose())
2349         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2350                                                  CI->getZExtValue());
2351       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2352       return;
2353     default:
2354       emitGlobalConstantLargeInt(CI, AP);
2355       return;
2356     }
2357   }
2358 
2359   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2360     return emitGlobalConstantFP(CFP, AP);
2361 
2362   if (isa<ConstantPointerNull>(CV)) {
2363     AP.OutStreamer->EmitIntValue(0, Size);
2364     return;
2365   }
2366 
2367   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2368     return emitGlobalConstantDataSequential(DL, CDS, AP);
2369 
2370   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2371     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2372 
2373   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2374     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2375 
2376   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2377     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2378     // vectors).
2379     if (CE->getOpcode() == Instruction::BitCast)
2380       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2381 
2382     if (Size > 8) {
2383       // If the constant expression's size is greater than 64-bits, then we have
2384       // to emit the value in chunks. Try to constant fold the value and emit it
2385       // that way.
2386       Constant *New = ConstantFoldConstant(CE, DL);
2387       if (New && New != CE)
2388         return emitGlobalConstantImpl(DL, New, AP);
2389     }
2390   }
2391 
2392   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2393     return emitGlobalConstantVector(DL, V, AP);
2394 
2395   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2396   // thread the streamer with EmitValue.
2397   const MCExpr *ME = AP.lowerConstant(CV);
2398 
2399   // Since lowerConstant already folded and got rid of all IR pointer and
2400   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2401   // directly.
2402   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2403     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2404 
2405   AP.OutStreamer->EmitValue(ME, Size);
2406 }
2407 
2408 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2409 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2410   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2411   if (Size)
2412     emitGlobalConstantImpl(DL, CV, *this);
2413   else if (MAI->hasSubsectionsViaSymbols()) {
2414     // If the global has zero size, emit a single byte so that two labels don't
2415     // look like they are at the same location.
2416     OutStreamer->EmitIntValue(0, 1);
2417   }
2418 }
2419 
2420 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2421   // Target doesn't support this yet!
2422   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2423 }
2424 
2425 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2426   if (Offset > 0)
2427     OS << '+' << Offset;
2428   else if (Offset < 0)
2429     OS << Offset;
2430 }
2431 
2432 //===----------------------------------------------------------------------===//
2433 // Symbol Lowering Routines.
2434 //===----------------------------------------------------------------------===//
2435 
2436 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2437   return OutContext.createTempSymbol(Name, true);
2438 }
2439 
2440 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2441   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2442 }
2443 
2444 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2445   return MMI->getAddrLabelSymbol(BB);
2446 }
2447 
2448 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2449 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2450   const DataLayout &DL = getDataLayout();
2451   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2452                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2453                                       Twine(CPID));
2454 }
2455 
2456 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2457 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2458   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2459 }
2460 
2461 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2462 /// FIXME: privatize to AsmPrinter.
2463 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2464   const DataLayout &DL = getDataLayout();
2465   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2466                                       Twine(getFunctionNumber()) + "_" +
2467                                       Twine(UID) + "_set_" + Twine(MBBID));
2468 }
2469 
2470 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2471                                                    StringRef Suffix) const {
2472   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2473 }
2474 
2475 /// Return the MCSymbol for the specified ExternalSymbol.
2476 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2477   SmallString<60> NameStr;
2478   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2479   return OutContext.getOrCreateSymbol(NameStr);
2480 }
2481 
2482 /// PrintParentLoopComment - Print comments about parent loops of this one.
2483 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2484                                    unsigned FunctionNumber) {
2485   if (!Loop) return;
2486   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2487   OS.indent(Loop->getLoopDepth()*2)
2488     << "Parent Loop BB" << FunctionNumber << "_"
2489     << Loop->getHeader()->getNumber()
2490     << " Depth=" << Loop->getLoopDepth() << '\n';
2491 }
2492 
2493 
2494 /// PrintChildLoopComment - Print comments about child loops within
2495 /// the loop for this basic block, with nesting.
2496 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2497                                   unsigned FunctionNumber) {
2498   // Add child loop information
2499   for (const MachineLoop *CL : *Loop) {
2500     OS.indent(CL->getLoopDepth()*2)
2501       << "Child Loop BB" << FunctionNumber << "_"
2502       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2503       << '\n';
2504     PrintChildLoopComment(OS, CL, FunctionNumber);
2505   }
2506 }
2507 
2508 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2509 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2510                                        const MachineLoopInfo *LI,
2511                                        const AsmPrinter &AP) {
2512   // Add loop depth information
2513   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2514   if (!Loop) return;
2515 
2516   MachineBasicBlock *Header = Loop->getHeader();
2517   assert(Header && "No header for loop");
2518 
2519   // If this block is not a loop header, just print out what is the loop header
2520   // and return.
2521   if (Header != &MBB) {
2522     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2523                                Twine(AP.getFunctionNumber())+"_" +
2524                                Twine(Loop->getHeader()->getNumber())+
2525                                " Depth="+Twine(Loop->getLoopDepth()));
2526     return;
2527   }
2528 
2529   // Otherwise, it is a loop header.  Print out information about child and
2530   // parent loops.
2531   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2532 
2533   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2534 
2535   OS << "=>";
2536   OS.indent(Loop->getLoopDepth()*2-2);
2537 
2538   OS << "This ";
2539   if (Loop->empty())
2540     OS << "Inner ";
2541   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2542 
2543   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2544 }
2545 
2546 /// EmitBasicBlockStart - This method prints the label for the specified
2547 /// MachineBasicBlock, an alignment (if present) and a comment describing
2548 /// it if appropriate.
2549 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2550   // End the previous funclet and start a new one.
2551   if (MBB.isEHFuncletEntry()) {
2552     for (const HandlerInfo &HI : Handlers) {
2553       HI.Handler->endFunclet();
2554       HI.Handler->beginFunclet(MBB);
2555     }
2556   }
2557 
2558   // Emit an alignment directive for this block, if needed.
2559   if (unsigned Align = MBB.getAlignment())
2560     EmitAlignment(Align);
2561 
2562   // If the block has its address taken, emit any labels that were used to
2563   // reference the block.  It is possible that there is more than one label
2564   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2565   // the references were generated.
2566   if (MBB.hasAddressTaken()) {
2567     const BasicBlock *BB = MBB.getBasicBlock();
2568     if (isVerbose())
2569       OutStreamer->AddComment("Block address taken");
2570 
2571     // MBBs can have their address taken as part of CodeGen without having
2572     // their corresponding BB's address taken in IR
2573     if (BB->hasAddressTaken())
2574       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2575         OutStreamer->EmitLabel(Sym);
2576   }
2577 
2578   // Print some verbose block comments.
2579   if (isVerbose()) {
2580     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2581       if (BB->hasName()) {
2582         BB->printAsOperand(OutStreamer->GetCommentOS(),
2583                            /*PrintType=*/false, BB->getModule());
2584         OutStreamer->GetCommentOS() << '\n';
2585       }
2586     }
2587     emitBasicBlockLoopComments(MBB, LI, *this);
2588   }
2589 
2590   // Print the main label for the block.
2591   if (MBB.pred_empty() ||
2592       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2593     if (isVerbose()) {
2594       // NOTE: Want this comment at start of line, don't emit with AddComment.
2595       OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false);
2596     }
2597   } else {
2598     OutStreamer->EmitLabel(MBB.getSymbol());
2599   }
2600 }
2601 
2602 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2603                                 bool IsDefinition) const {
2604   MCSymbolAttr Attr = MCSA_Invalid;
2605 
2606   switch (Visibility) {
2607   default: break;
2608   case GlobalValue::HiddenVisibility:
2609     if (IsDefinition)
2610       Attr = MAI->getHiddenVisibilityAttr();
2611     else
2612       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2613     break;
2614   case GlobalValue::ProtectedVisibility:
2615     Attr = MAI->getProtectedVisibilityAttr();
2616     break;
2617   }
2618 
2619   if (Attr != MCSA_Invalid)
2620     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2621 }
2622 
2623 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2624 /// exactly one predecessor and the control transfer mechanism between
2625 /// the predecessor and this block is a fall-through.
2626 bool AsmPrinter::
2627 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2628   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2629   // then nothing falls through to it.
2630   if (MBB->isEHPad() || MBB->pred_empty())
2631     return false;
2632 
2633   // If there isn't exactly one predecessor, it can't be a fall through.
2634   if (MBB->pred_size() > 1)
2635     return false;
2636 
2637   // The predecessor has to be immediately before this block.
2638   MachineBasicBlock *Pred = *MBB->pred_begin();
2639   if (!Pred->isLayoutSuccessor(MBB))
2640     return false;
2641 
2642   // If the block is completely empty, then it definitely does fall through.
2643   if (Pred->empty())
2644     return true;
2645 
2646   // Check the terminators in the previous blocks
2647   for (const auto &MI : Pred->terminators()) {
2648     // If it is not a simple branch, we are in a table somewhere.
2649     if (!MI.isBranch() || MI.isIndirectBranch())
2650       return false;
2651 
2652     // If we are the operands of one of the branches, this is not a fall
2653     // through. Note that targets with delay slots will usually bundle
2654     // terminators with the delay slot instruction.
2655     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2656       if (OP->isJTI())
2657         return false;
2658       if (OP->isMBB() && OP->getMBB() == MBB)
2659         return false;
2660     }
2661   }
2662 
2663   return true;
2664 }
2665 
2666 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2667   if (!S.usesMetadata())
2668     return nullptr;
2669 
2670   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2671          " stackmap formats, please see the documentation for a description of"
2672          " the default format.  If you really need a custom serialized format,"
2673          " please file a bug");
2674 
2675   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2676   gcp_map_type::iterator GCPI = GCMap.find(&S);
2677   if (GCPI != GCMap.end())
2678     return GCPI->second.get();
2679 
2680   auto Name = S.getName();
2681 
2682   for (GCMetadataPrinterRegistry::iterator
2683          I = GCMetadataPrinterRegistry::begin(),
2684          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2685     if (Name == I->getName()) {
2686       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2687       GMP->S = &S;
2688       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2689       return IterBool.first->second.get();
2690     }
2691 
2692   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2693 }
2694 
2695 /// Pin vtable to this file.
2696 AsmPrinterHandler::~AsmPrinterHandler() = default;
2697 
2698 void AsmPrinterHandler::markFunctionEnd() {}
2699 
2700 // In the binary's "xray_instr_map" section, an array of these function entries
2701 // describes each instrumentation point.  When XRay patches your code, the index
2702 // into this table will be given to your handler as a patch point identifier.
2703 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
2704                                          const MCSymbol *CurrentFnSym) const {
2705   Out->EmitSymbolValue(Sled, Bytes);
2706   Out->EmitSymbolValue(CurrentFnSym, Bytes);
2707   auto Kind8 = static_cast<uint8_t>(Kind);
2708   Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
2709   Out->EmitBytes(
2710       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
2711   Out->EmitZeros(2 * Bytes - 2);  // Pad the previous two entries
2712 }
2713 
2714 void AsmPrinter::emitXRayTable() {
2715   if (Sleds.empty())
2716     return;
2717 
2718   auto PrevSection = OutStreamer->getCurrentSectionOnly();
2719   auto Fn = MF->getFunction();
2720   MCSection *Section = nullptr;
2721   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
2722     if (Fn->hasComdat()) {
2723       Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
2724                                          ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
2725                                          Fn->getComdat()->getName());
2726     } else {
2727       Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
2728                                          ELF::SHF_ALLOC);
2729     }
2730   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
2731     Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
2732                                          SectionKind::getReadOnlyWithRel());
2733   } else {
2734     llvm_unreachable("Unsupported target");
2735   }
2736 
2737   // Before we switch over, we force a reference to a label inside the
2738   // xray_instr_map section. Since this function is always called just
2739   // before the function's end, we assume that this is happening after
2740   // the last return instruction.
2741 
2742   auto WordSizeBytes = TM.getPointerSize();
2743   MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true);
2744   OutStreamer->EmitCodeAlignment(16);
2745   OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false);
2746   OutStreamer->SwitchSection(Section);
2747   OutStreamer->EmitLabel(Tmp);
2748   for (const auto &Sled : Sleds)
2749     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
2750 
2751   OutStreamer->SwitchSection(PrevSection);
2752   Sleds.clear();
2753 }
2754 
2755 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
2756   SledKind Kind) {
2757   auto Fn = MI.getParent()->getParent()->getFunction();
2758   auto Attr = Fn->getFnAttribute("function-instrument");
2759   bool LogArgs = Fn->hasFnAttribute("xray-log-args");
2760   bool AlwaysInstrument =
2761     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
2762   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
2763     Kind = SledKind::LOG_ARGS_ENTER;
2764   Sleds.emplace_back(
2765     XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn });
2766 }
2767 
2768 uint16_t AsmPrinter::getDwarfVersion() const {
2769   return OutStreamer->getContext().getDwarfVersion();
2770 }
2771 
2772 void AsmPrinter::setDwarfVersion(uint16_t Version) {
2773   OutStreamer->getContext().setDwarfVersion(Version);
2774 }
2775