1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AsmPrinterHandler.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/DenseMap.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/ConstantFolding.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AsmPrinter.h" 33 #include "llvm/CodeGen/GCMetadata.h" 34 #include "llvm/CodeGen/GCMetadataPrinter.h" 35 #include "llvm/CodeGen/GCStrategy.h" 36 #include "llvm/CodeGen/MachineBasicBlock.h" 37 #include "llvm/CodeGen/MachineConstantPool.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBundle.h" 43 #include "llvm/CodeGen/MachineJumpTableInfo.h" 44 #include "llvm/CodeGen/MachineLoopInfo.h" 45 #include "llvm/CodeGen/MachineMemOperand.h" 46 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 47 #include "llvm/CodeGen/MachineOperand.h" 48 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 49 #include "llvm/IR/BasicBlock.h" 50 #include "llvm/IR/Constant.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DebugInfoMetadata.h" 54 #include "llvm/IR/DerivedTypes.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/GlobalAlias.h" 57 #include "llvm/IR/GlobalIFunc.h" 58 #include "llvm/IR/GlobalIndirectSymbol.h" 59 #include "llvm/IR/GlobalObject.h" 60 #include "llvm/IR/GlobalValue.h" 61 #include "llvm/IR/GlobalVariable.h" 62 #include "llvm/IR/Mangler.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/Module.h" 65 #include "llvm/IR/Operator.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/MC/MCAsmInfo.h" 68 #include "llvm/MC/MCContext.h" 69 #include "llvm/MC/MCDirectives.h" 70 #include "llvm/MC/MCExpr.h" 71 #include "llvm/MC/MCInst.h" 72 #include "llvm/MC/MCSection.h" 73 #include "llvm/MC/MCSectionELF.h" 74 #include "llvm/MC/MCSectionMachO.h" 75 #include "llvm/MC/MCStreamer.h" 76 #include "llvm/MC/MCSubtargetInfo.h" 77 #include "llvm/MC/MCSymbol.h" 78 #include "llvm/MC/MCTargetOptions.h" 79 #include "llvm/MC/MCValue.h" 80 #include "llvm/MC/SectionKind.h" 81 #include "llvm/Pass.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/Dwarf.h" 85 #include "llvm/Support/ELF.h" 86 #include "llvm/Support/ErrorHandling.h" 87 #include "llvm/Support/Format.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include "llvm/Support/TargetRegistry.h" 91 #include "llvm/Support/Timer.h" 92 #include "llvm/Target/TargetFrameLowering.h" 93 #include "llvm/Target/TargetInstrInfo.h" 94 #include "llvm/Target/TargetLowering.h" 95 #include "llvm/Target/TargetLoweringObjectFile.h" 96 #include "llvm/Target/TargetMachine.h" 97 #include "llvm/Target/TargetRegisterInfo.h" 98 #include "llvm/Target/TargetSubtargetInfo.h" 99 #include <algorithm> 100 #include <cassert> 101 #include <cinttypes> 102 #include <cstdint> 103 #include <limits> 104 #include <memory> 105 #include <string> 106 #include <utility> 107 #include <vector> 108 109 using namespace llvm; 110 111 #define DEBUG_TYPE "asm-printer" 112 113 static const char *const DWARFGroupName = "dwarf"; 114 static const char *const DWARFGroupDescription = "DWARF Emission"; 115 static const char *const DbgTimerName = "emit"; 116 static const char *const DbgTimerDescription = "Debug Info Emission"; 117 static const char *const EHTimerName = "write_exception"; 118 static const char *const EHTimerDescription = "DWARF Exception Writer"; 119 static const char *const CodeViewLineTablesGroupName = "linetables"; 120 static const char *const CodeViewLineTablesGroupDescription = 121 "CodeView Line Tables"; 122 123 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 124 125 char AsmPrinter::ID = 0; 126 127 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 128 static gcp_map_type &getGCMap(void *&P) { 129 if (!P) 130 P = new gcp_map_type(); 131 return *(gcp_map_type*)P; 132 } 133 134 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 135 /// value in log2 form. This rounds up to the preferred alignment if possible 136 /// and legal. 137 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 138 unsigned InBits = 0) { 139 unsigned NumBits = 0; 140 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 141 NumBits = DL.getPreferredAlignmentLog(GVar); 142 143 // If InBits is specified, round it to it. 144 if (InBits > NumBits) 145 NumBits = InBits; 146 147 // If the GV has a specified alignment, take it into account. 148 if (GV->getAlignment() == 0) 149 return NumBits; 150 151 unsigned GVAlign = Log2_32(GV->getAlignment()); 152 153 // If the GVAlign is larger than NumBits, or if we are required to obey 154 // NumBits because the GV has an assigned section, obey it. 155 if (GVAlign > NumBits || GV->hasSection()) 156 NumBits = GVAlign; 157 return NumBits; 158 } 159 160 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 161 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 162 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 163 VerboseAsm = OutStreamer->isVerboseAsm(); 164 } 165 166 AsmPrinter::~AsmPrinter() { 167 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 168 169 if (GCMetadataPrinters) { 170 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 171 172 delete &GCMap; 173 GCMetadataPrinters = nullptr; 174 } 175 } 176 177 bool AsmPrinter::isPositionIndependent() const { 178 return TM.isPositionIndependent(); 179 } 180 181 /// getFunctionNumber - Return a unique ID for the current function. 182 /// 183 unsigned AsmPrinter::getFunctionNumber() const { 184 return MF->getFunctionNumber(); 185 } 186 187 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 188 return *TM.getObjFileLowering(); 189 } 190 191 const DataLayout &AsmPrinter::getDataLayout() const { 192 return MMI->getModule()->getDataLayout(); 193 } 194 195 // Do not use the cached DataLayout because some client use it without a Module 196 // (llvm-dsymutil, llvm-dwarfdump). 197 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 198 199 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 200 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 201 return MF->getSubtarget<MCSubtargetInfo>(); 202 } 203 204 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 205 S.EmitInstruction(Inst, getSubtargetInfo()); 206 } 207 208 /// getCurrentSection() - Return the current section we are emitting to. 209 const MCSection *AsmPrinter::getCurrentSection() const { 210 return OutStreamer->getCurrentSectionOnly(); 211 } 212 213 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 214 AU.setPreservesAll(); 215 MachineFunctionPass::getAnalysisUsage(AU); 216 AU.addRequired<MachineModuleInfo>(); 217 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 218 AU.addRequired<GCModuleInfo>(); 219 if (isVerbose()) 220 AU.addRequired<MachineLoopInfo>(); 221 } 222 223 bool AsmPrinter::doInitialization(Module &M) { 224 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 225 226 // Initialize TargetLoweringObjectFile. 227 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 228 .Initialize(OutContext, TM); 229 230 OutStreamer->InitSections(false); 231 232 // Emit the version-min deplyment target directive if needed. 233 // 234 // FIXME: If we end up with a collection of these sorts of Darwin-specific 235 // or ELF-specific things, it may make sense to have a platform helper class 236 // that will work with the target helper class. For now keep it here, as the 237 // alternative is duplicated code in each of the target asm printers that 238 // use the directive, where it would need the same conditionalization 239 // anyway. 240 const Triple &TT = TM.getTargetTriple(); 241 // If there is a version specified, Major will be non-zero. 242 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 243 unsigned Major, Minor, Update; 244 MCVersionMinType VersionType; 245 if (TT.isWatchOS()) { 246 VersionType = MCVM_WatchOSVersionMin; 247 TT.getWatchOSVersion(Major, Minor, Update); 248 } else if (TT.isTvOS()) { 249 VersionType = MCVM_TvOSVersionMin; 250 TT.getiOSVersion(Major, Minor, Update); 251 } else if (TT.isMacOSX()) { 252 VersionType = MCVM_OSXVersionMin; 253 if (!TT.getMacOSXVersion(Major, Minor, Update)) 254 Major = 0; 255 } else { 256 VersionType = MCVM_IOSVersionMin; 257 TT.getiOSVersion(Major, Minor, Update); 258 } 259 if (Major != 0) 260 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 261 } 262 263 // Allow the target to emit any magic that it wants at the start of the file. 264 EmitStartOfAsmFile(M); 265 266 // Very minimal debug info. It is ignored if we emit actual debug info. If we 267 // don't, this at least helps the user find where a global came from. 268 if (MAI->hasSingleParameterDotFile()) { 269 // .file "foo.c" 270 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 271 } 272 273 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 274 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 275 for (auto &I : *MI) 276 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 277 MP->beginAssembly(M, *MI, *this); 278 279 // Emit module-level inline asm if it exists. 280 if (!M.getModuleInlineAsm().empty()) { 281 // We're at the module level. Construct MCSubtarget from the default CPU 282 // and target triple. 283 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 284 TM.getTargetTriple().str(), TM.getTargetCPU(), 285 TM.getTargetFeatureString())); 286 OutStreamer->AddComment("Start of file scope inline assembly"); 287 OutStreamer->AddBlankLine(); 288 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 289 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 290 OutStreamer->AddComment("End of file scope inline assembly"); 291 OutStreamer->AddBlankLine(); 292 } 293 294 if (MAI->doesSupportDebugInformation()) { 295 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 296 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 297 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 298 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 299 DbgTimerName, DbgTimerDescription, 300 CodeViewLineTablesGroupName, 301 CodeViewLineTablesGroupDescription)); 302 } 303 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 304 DD = new DwarfDebug(this, &M); 305 DD->beginModule(); 306 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 307 DWARFGroupName, DWARFGroupDescription)); 308 } 309 } 310 311 switch (MAI->getExceptionHandlingType()) { 312 case ExceptionHandling::SjLj: 313 case ExceptionHandling::DwarfCFI: 314 case ExceptionHandling::ARM: 315 isCFIMoveForDebugging = true; 316 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 317 break; 318 for (auto &F: M.getFunctionList()) { 319 // If the module contains any function with unwind data, 320 // .eh_frame has to be emitted. 321 // Ignore functions that won't get emitted. 322 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 323 isCFIMoveForDebugging = false; 324 break; 325 } 326 } 327 break; 328 default: 329 isCFIMoveForDebugging = false; 330 break; 331 } 332 333 EHStreamer *ES = nullptr; 334 switch (MAI->getExceptionHandlingType()) { 335 case ExceptionHandling::None: 336 break; 337 case ExceptionHandling::SjLj: 338 case ExceptionHandling::DwarfCFI: 339 ES = new DwarfCFIException(this); 340 break; 341 case ExceptionHandling::ARM: 342 ES = new ARMException(this); 343 break; 344 case ExceptionHandling::WinEH: 345 switch (MAI->getWinEHEncodingType()) { 346 default: llvm_unreachable("unsupported unwinding information encoding"); 347 case WinEH::EncodingType::Invalid: 348 break; 349 case WinEH::EncodingType::X86: 350 case WinEH::EncodingType::Itanium: 351 ES = new WinException(this); 352 break; 353 } 354 break; 355 } 356 if (ES) 357 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 358 DWARFGroupName, DWARFGroupDescription)); 359 return false; 360 } 361 362 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 363 if (!MAI.hasWeakDefCanBeHiddenDirective()) 364 return false; 365 366 return canBeOmittedFromSymbolTable(GV); 367 } 368 369 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 370 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 371 switch (Linkage) { 372 case GlobalValue::CommonLinkage: 373 case GlobalValue::LinkOnceAnyLinkage: 374 case GlobalValue::LinkOnceODRLinkage: 375 case GlobalValue::WeakAnyLinkage: 376 case GlobalValue::WeakODRLinkage: 377 if (MAI->hasWeakDefDirective()) { 378 // .globl _foo 379 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 380 381 if (!canBeHidden(GV, *MAI)) 382 // .weak_definition _foo 383 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 384 else 385 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 386 } else if (MAI->hasLinkOnceDirective()) { 387 // .globl _foo 388 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 389 //NOTE: linkonce is handled by the section the symbol was assigned to. 390 } else { 391 // .weak _foo 392 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 393 } 394 return; 395 case GlobalValue::ExternalLinkage: 396 // If external, declare as a global symbol: .globl _foo 397 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 398 return; 399 case GlobalValue::PrivateLinkage: 400 case GlobalValue::InternalLinkage: 401 return; 402 case GlobalValue::AppendingLinkage: 403 case GlobalValue::AvailableExternallyLinkage: 404 case GlobalValue::ExternalWeakLinkage: 405 llvm_unreachable("Should never emit this"); 406 } 407 llvm_unreachable("Unknown linkage type!"); 408 } 409 410 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 411 const GlobalValue *GV) const { 412 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 413 } 414 415 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 416 return TM.getSymbol(GV); 417 } 418 419 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 420 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 421 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 422 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 423 "No emulated TLS variables in the common section"); 424 425 // Never emit TLS variable xyz in emulated TLS model. 426 // The initialization value is in __emutls_t.xyz instead of xyz. 427 if (IsEmuTLSVar) 428 return; 429 430 if (GV->hasInitializer()) { 431 // Check to see if this is a special global used by LLVM, if so, emit it. 432 if (EmitSpecialLLVMGlobal(GV)) 433 return; 434 435 // Skip the emission of global equivalents. The symbol can be emitted later 436 // on by emitGlobalGOTEquivs in case it turns out to be needed. 437 if (GlobalGOTEquivs.count(getSymbol(GV))) 438 return; 439 440 if (isVerbose()) { 441 // When printing the control variable __emutls_v.*, 442 // we don't need to print the original TLS variable name. 443 GV->printAsOperand(OutStreamer->GetCommentOS(), 444 /*PrintType=*/false, GV->getParent()); 445 OutStreamer->GetCommentOS() << '\n'; 446 } 447 } 448 449 MCSymbol *GVSym = getSymbol(GV); 450 MCSymbol *EmittedSym = GVSym; 451 452 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 453 // attributes. 454 // GV's or GVSym's attributes will be used for the EmittedSym. 455 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 456 457 if (!GV->hasInitializer()) // External globals require no extra code. 458 return; 459 460 GVSym->redefineIfPossible(); 461 if (GVSym->isDefined() || GVSym->isVariable()) 462 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 463 "' is already defined"); 464 465 if (MAI->hasDotTypeDotSizeDirective()) 466 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 467 468 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 469 470 const DataLayout &DL = GV->getParent()->getDataLayout(); 471 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 472 473 // If the alignment is specified, we *must* obey it. Overaligning a global 474 // with a specified alignment is a prompt way to break globals emitted to 475 // sections and expected to be contiguous (e.g. ObjC metadata). 476 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 477 478 for (const HandlerInfo &HI : Handlers) { 479 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 480 HI.TimerGroupName, HI.TimerGroupDescription, 481 TimePassesIsEnabled); 482 HI.Handler->setSymbolSize(GVSym, Size); 483 } 484 485 // Handle common symbols 486 if (GVKind.isCommon()) { 487 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 488 unsigned Align = 1 << AlignLog; 489 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 490 Align = 0; 491 492 // .comm _foo, 42, 4 493 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 494 return; 495 } 496 497 // Determine to which section this global should be emitted. 498 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 499 500 // If we have a bss global going to a section that supports the 501 // zerofill directive, do so here. 502 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 503 TheSection->isVirtualSection()) { 504 if (Size == 0) 505 Size = 1; // zerofill of 0 bytes is undefined. 506 unsigned Align = 1 << AlignLog; 507 EmitLinkage(GV, GVSym); 508 // .zerofill __DATA, __bss, _foo, 400, 5 509 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 510 return; 511 } 512 513 // If this is a BSS local symbol and we are emitting in the BSS 514 // section use .lcomm/.comm directive. 515 if (GVKind.isBSSLocal() && 516 getObjFileLowering().getBSSSection() == TheSection) { 517 if (Size == 0) 518 Size = 1; // .comm Foo, 0 is undefined, avoid it. 519 unsigned Align = 1 << AlignLog; 520 521 // Use .lcomm only if it supports user-specified alignment. 522 // Otherwise, while it would still be correct to use .lcomm in some 523 // cases (e.g. when Align == 1), the external assembler might enfore 524 // some -unknown- default alignment behavior, which could cause 525 // spurious differences between external and integrated assembler. 526 // Prefer to simply fall back to .local / .comm in this case. 527 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 528 // .lcomm _foo, 42 529 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 530 return; 531 } 532 533 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 534 Align = 0; 535 536 // .local _foo 537 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 538 // .comm _foo, 42, 4 539 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 540 return; 541 } 542 543 // Handle thread local data for mach-o which requires us to output an 544 // additional structure of data and mangle the original symbol so that we 545 // can reference it later. 546 // 547 // TODO: This should become an "emit thread local global" method on TLOF. 548 // All of this macho specific stuff should be sunk down into TLOFMachO and 549 // stuff like "TLSExtraDataSection" should no longer be part of the parent 550 // TLOF class. This will also make it more obvious that stuff like 551 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 552 // specific code. 553 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 554 // Emit the .tbss symbol 555 MCSymbol *MangSym = 556 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 557 558 if (GVKind.isThreadBSS()) { 559 TheSection = getObjFileLowering().getTLSBSSSection(); 560 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 561 } else if (GVKind.isThreadData()) { 562 OutStreamer->SwitchSection(TheSection); 563 564 EmitAlignment(AlignLog, GV); 565 OutStreamer->EmitLabel(MangSym); 566 567 EmitGlobalConstant(GV->getParent()->getDataLayout(), 568 GV->getInitializer()); 569 } 570 571 OutStreamer->AddBlankLine(); 572 573 // Emit the variable struct for the runtime. 574 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 575 576 OutStreamer->SwitchSection(TLVSect); 577 // Emit the linkage here. 578 EmitLinkage(GV, GVSym); 579 OutStreamer->EmitLabel(GVSym); 580 581 // Three pointers in size: 582 // - __tlv_bootstrap - used to make sure support exists 583 // - spare pointer, used when mapped by the runtime 584 // - pointer to mangled symbol above with initializer 585 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 586 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 587 PtrSize); 588 OutStreamer->EmitIntValue(0, PtrSize); 589 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 590 591 OutStreamer->AddBlankLine(); 592 return; 593 } 594 595 MCSymbol *EmittedInitSym = GVSym; 596 597 OutStreamer->SwitchSection(TheSection); 598 599 EmitLinkage(GV, EmittedInitSym); 600 EmitAlignment(AlignLog, GV); 601 602 OutStreamer->EmitLabel(EmittedInitSym); 603 604 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 605 606 if (MAI->hasDotTypeDotSizeDirective()) 607 // .size foo, 42 608 OutStreamer->emitELFSize(EmittedInitSym, 609 MCConstantExpr::create(Size, OutContext)); 610 611 OutStreamer->AddBlankLine(); 612 } 613 614 /// Emit the directive and value for debug thread local expression 615 /// 616 /// \p Value - The value to emit. 617 /// \p Size - The size of the integer (in bytes) to emit. 618 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 619 unsigned Size) const { 620 OutStreamer->EmitValue(Value, Size); 621 } 622 623 /// EmitFunctionHeader - This method emits the header for the current 624 /// function. 625 void AsmPrinter::EmitFunctionHeader() { 626 // Print out constants referenced by the function 627 EmitConstantPool(); 628 629 // Print the 'header' of function. 630 const Function *F = MF->getFunction(); 631 632 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 633 EmitVisibility(CurrentFnSym, F->getVisibility()); 634 635 EmitLinkage(F, CurrentFnSym); 636 if (MAI->hasFunctionAlignment()) 637 EmitAlignment(MF->getAlignment(), F); 638 639 if (MAI->hasDotTypeDotSizeDirective()) 640 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 641 642 if (isVerbose()) { 643 F->printAsOperand(OutStreamer->GetCommentOS(), 644 /*PrintType=*/false, F->getParent()); 645 OutStreamer->GetCommentOS() << '\n'; 646 } 647 648 // Emit the prefix data. 649 if (F->hasPrefixData()) 650 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 651 652 // Emit the CurrentFnSym. This is a virtual function to allow targets to 653 // do their wild and crazy things as required. 654 EmitFunctionEntryLabel(); 655 656 // If the function had address-taken blocks that got deleted, then we have 657 // references to the dangling symbols. Emit them at the start of the function 658 // so that we don't get references to undefined symbols. 659 std::vector<MCSymbol*> DeadBlockSyms; 660 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 661 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 662 OutStreamer->AddComment("Address taken block that was later removed"); 663 OutStreamer->EmitLabel(DeadBlockSyms[i]); 664 } 665 666 if (CurrentFnBegin) { 667 if (MAI->useAssignmentForEHBegin()) { 668 MCSymbol *CurPos = OutContext.createTempSymbol(); 669 OutStreamer->EmitLabel(CurPos); 670 OutStreamer->EmitAssignment(CurrentFnBegin, 671 MCSymbolRefExpr::create(CurPos, OutContext)); 672 } else { 673 OutStreamer->EmitLabel(CurrentFnBegin); 674 } 675 } 676 677 // Emit pre-function debug and/or EH information. 678 for (const HandlerInfo &HI : Handlers) { 679 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 680 HI.TimerGroupDescription, TimePassesIsEnabled); 681 HI.Handler->beginFunction(MF); 682 } 683 684 // Emit the prologue data. 685 if (F->hasPrologueData()) 686 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 687 } 688 689 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 690 /// function. This can be overridden by targets as required to do custom stuff. 691 void AsmPrinter::EmitFunctionEntryLabel() { 692 CurrentFnSym->redefineIfPossible(); 693 694 // The function label could have already been emitted if two symbols end up 695 // conflicting due to asm renaming. Detect this and emit an error. 696 if (CurrentFnSym->isVariable()) 697 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 698 "' is a protected alias"); 699 if (CurrentFnSym->isDefined()) 700 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 701 "' label emitted multiple times to assembly file"); 702 703 return OutStreamer->EmitLabel(CurrentFnSym); 704 } 705 706 /// emitComments - Pretty-print comments for instructions. 707 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 708 const MachineFunction *MF = MI.getParent()->getParent(); 709 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 710 711 // Check for spills and reloads 712 int FI; 713 714 const MachineFrameInfo &MFI = MF->getFrameInfo(); 715 716 // We assume a single instruction only has a spill or reload, not 717 // both. 718 const MachineMemOperand *MMO; 719 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 720 if (MFI.isSpillSlotObjectIndex(FI)) { 721 MMO = *MI.memoperands_begin(); 722 CommentOS << MMO->getSize() << "-byte Reload\n"; 723 } 724 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 725 if (MFI.isSpillSlotObjectIndex(FI)) 726 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 727 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 728 if (MFI.isSpillSlotObjectIndex(FI)) { 729 MMO = *MI.memoperands_begin(); 730 CommentOS << MMO->getSize() << "-byte Spill\n"; 731 } 732 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 733 if (MFI.isSpillSlotObjectIndex(FI)) 734 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 735 } 736 737 // Check for spill-induced copies 738 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 739 CommentOS << " Reload Reuse\n"; 740 } 741 742 /// emitImplicitDef - This method emits the specified machine instruction 743 /// that is an implicit def. 744 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 745 unsigned RegNo = MI->getOperand(0).getReg(); 746 747 SmallString<128> Str; 748 raw_svector_ostream OS(Str); 749 OS << "implicit-def: " 750 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 751 752 OutStreamer->AddComment(OS.str()); 753 OutStreamer->AddBlankLine(); 754 } 755 756 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 757 std::string Str; 758 raw_string_ostream OS(Str); 759 OS << "kill:"; 760 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 761 const MachineOperand &Op = MI->getOperand(i); 762 assert(Op.isReg() && "KILL instruction must have only register operands"); 763 OS << ' ' 764 << PrintReg(Op.getReg(), 765 AP.MF->getSubtarget().getRegisterInfo()) 766 << (Op.isDef() ? "<def>" : "<kill>"); 767 } 768 AP.OutStreamer->AddComment(OS.str()); 769 AP.OutStreamer->AddBlankLine(); 770 } 771 772 /// emitDebugValueComment - This method handles the target-independent form 773 /// of DBG_VALUE, returning true if it was able to do so. A false return 774 /// means the target will need to handle MI in EmitInstruction. 775 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 776 // This code handles only the 4-operand target-independent form. 777 if (MI->getNumOperands() != 4) 778 return false; 779 780 SmallString<128> Str; 781 raw_svector_ostream OS(Str); 782 OS << "DEBUG_VALUE: "; 783 784 const DILocalVariable *V = MI->getDebugVariable(); 785 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 786 StringRef Name = SP->getDisplayName(); 787 if (!Name.empty()) 788 OS << Name << ":"; 789 } 790 OS << V->getName(); 791 792 const DIExpression *Expr = MI->getDebugExpression(); 793 auto Fragment = Expr->getFragmentInfo(); 794 if (Fragment) 795 OS << " [fragment offset=" << Fragment->OffsetInBits 796 << " size=" << Fragment->SizeInBits << "]"; 797 OS << " <- "; 798 799 // The second operand is only an offset if it's an immediate. 800 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 801 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 802 803 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 804 uint64_t Op = Expr->getElement(i); 805 if (Op == dwarf::DW_OP_LLVM_fragment) { 806 // There can't be any operands after this in a valid expression 807 break; 808 } else if (Deref) { 809 // We currently don't support extra Offsets or derefs after the first 810 // one. Bail out early instead of emitting an incorrect comment 811 OS << " [complex expression]"; 812 AP.OutStreamer->emitRawComment(OS.str()); 813 return true; 814 } else if (Op == dwarf::DW_OP_deref) { 815 Deref = true; 816 continue; 817 } 818 819 uint64_t ExtraOffset = Expr->getElement(i++); 820 if (Op == dwarf::DW_OP_plus) 821 Offset += ExtraOffset; 822 else { 823 assert(Op == dwarf::DW_OP_minus); 824 Offset -= ExtraOffset; 825 } 826 } 827 828 // Register or immediate value. Register 0 means undef. 829 if (MI->getOperand(0).isFPImm()) { 830 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 831 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 832 OS << (double)APF.convertToFloat(); 833 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 834 OS << APF.convertToDouble(); 835 } else { 836 // There is no good way to print long double. Convert a copy to 837 // double. Ah well, it's only a comment. 838 bool ignored; 839 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 840 &ignored); 841 OS << "(long double) " << APF.convertToDouble(); 842 } 843 } else if (MI->getOperand(0).isImm()) { 844 OS << MI->getOperand(0).getImm(); 845 } else if (MI->getOperand(0).isCImm()) { 846 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 847 } else { 848 unsigned Reg; 849 if (MI->getOperand(0).isReg()) { 850 Reg = MI->getOperand(0).getReg(); 851 } else { 852 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 853 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 854 Offset += TFI->getFrameIndexReference(*AP.MF, 855 MI->getOperand(0).getIndex(), Reg); 856 Deref = true; 857 } 858 if (Reg == 0) { 859 // Suppress offset, it is not meaningful here. 860 OS << "undef"; 861 // NOTE: Want this comment at start of line, don't emit with AddComment. 862 AP.OutStreamer->emitRawComment(OS.str()); 863 return true; 864 } 865 if (Deref) 866 OS << '['; 867 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 868 } 869 870 if (Deref) 871 OS << '+' << Offset << ']'; 872 873 // NOTE: Want this comment at start of line, don't emit with AddComment. 874 AP.OutStreamer->emitRawComment(OS.str()); 875 return true; 876 } 877 878 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 879 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 880 MF->getFunction()->needsUnwindTableEntry()) 881 return CFI_M_EH; 882 883 if (MMI->hasDebugInfo()) 884 return CFI_M_Debug; 885 886 return CFI_M_None; 887 } 888 889 bool AsmPrinter::needsSEHMoves() { 890 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 891 } 892 893 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 894 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 895 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 896 ExceptionHandlingType != ExceptionHandling::ARM) 897 return; 898 899 if (needsCFIMoves() == CFI_M_None) 900 return; 901 902 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 903 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 904 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 905 emitCFIInstruction(CFI); 906 } 907 908 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 909 // The operands are the MCSymbol and the frame offset of the allocation. 910 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 911 int FrameOffset = MI.getOperand(1).getImm(); 912 913 // Emit a symbol assignment. 914 OutStreamer->EmitAssignment(FrameAllocSym, 915 MCConstantExpr::create(FrameOffset, OutContext)); 916 } 917 918 /// EmitFunctionBody - This method emits the body and trailer for a 919 /// function. 920 void AsmPrinter::EmitFunctionBody() { 921 EmitFunctionHeader(); 922 923 // Emit target-specific gunk before the function body. 924 EmitFunctionBodyStart(); 925 926 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 927 928 // Print out code for the function. 929 bool HasAnyRealCode = false; 930 int NumInstsInFunction = 0; 931 for (auto &MBB : *MF) { 932 // Print a label for the basic block. 933 EmitBasicBlockStart(MBB); 934 for (auto &MI : MBB) { 935 936 // Print the assembly for the instruction. 937 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 938 !MI.isDebugValue()) { 939 HasAnyRealCode = true; 940 ++NumInstsInFunction; 941 } 942 943 if (ShouldPrintDebugScopes) { 944 for (const HandlerInfo &HI : Handlers) { 945 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 946 HI.TimerGroupName, HI.TimerGroupDescription, 947 TimePassesIsEnabled); 948 HI.Handler->beginInstruction(&MI); 949 } 950 } 951 952 if (isVerbose()) 953 emitComments(MI, OutStreamer->GetCommentOS()); 954 955 switch (MI.getOpcode()) { 956 case TargetOpcode::CFI_INSTRUCTION: 957 emitCFIInstruction(MI); 958 break; 959 960 case TargetOpcode::LOCAL_ESCAPE: 961 emitFrameAlloc(MI); 962 break; 963 964 case TargetOpcode::EH_LABEL: 965 case TargetOpcode::GC_LABEL: 966 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 967 break; 968 case TargetOpcode::INLINEASM: 969 EmitInlineAsm(&MI); 970 break; 971 case TargetOpcode::DBG_VALUE: 972 if (isVerbose()) { 973 if (!emitDebugValueComment(&MI, *this)) 974 EmitInstruction(&MI); 975 } 976 break; 977 case TargetOpcode::IMPLICIT_DEF: 978 if (isVerbose()) emitImplicitDef(&MI); 979 break; 980 case TargetOpcode::KILL: 981 if (isVerbose()) emitKill(&MI, *this); 982 break; 983 default: 984 EmitInstruction(&MI); 985 break; 986 } 987 988 if (ShouldPrintDebugScopes) { 989 for (const HandlerInfo &HI : Handlers) { 990 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 991 HI.TimerGroupName, HI.TimerGroupDescription, 992 TimePassesIsEnabled); 993 HI.Handler->endInstruction(); 994 } 995 } 996 } 997 998 EmitBasicBlockEnd(MBB); 999 } 1000 1001 EmittedInsts += NumInstsInFunction; 1002 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1003 MF->getFunction()->getSubprogram(), 1004 &MF->front()); 1005 R << ore::NV("NumInstructions", NumInstsInFunction) 1006 << " instructions in function"; 1007 ORE->emit(R); 1008 1009 // If the function is empty and the object file uses .subsections_via_symbols, 1010 // then we need to emit *something* to the function body to prevent the 1011 // labels from collapsing together. Just emit a noop. 1012 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 1013 MCInst Noop; 1014 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 1015 OutStreamer->AddComment("avoids zero-length function"); 1016 1017 // Targets can opt-out of emitting the noop here by leaving the opcode 1018 // unspecified. 1019 if (Noop.getOpcode()) 1020 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1021 } 1022 1023 const Function *F = MF->getFunction(); 1024 for (const auto &BB : *F) { 1025 if (!BB.hasAddressTaken()) 1026 continue; 1027 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1028 if (Sym->isDefined()) 1029 continue; 1030 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1031 OutStreamer->EmitLabel(Sym); 1032 } 1033 1034 // Emit target-specific gunk after the function body. 1035 EmitFunctionBodyEnd(); 1036 1037 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 1038 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 1039 // Create a symbol for the end of function. 1040 CurrentFnEnd = createTempSymbol("func_end"); 1041 OutStreamer->EmitLabel(CurrentFnEnd); 1042 } 1043 1044 // If the target wants a .size directive for the size of the function, emit 1045 // it. 1046 if (MAI->hasDotTypeDotSizeDirective()) { 1047 // We can get the size as difference between the function label and the 1048 // temp label. 1049 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1050 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1051 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1052 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1053 } 1054 1055 for (const HandlerInfo &HI : Handlers) { 1056 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1057 HI.TimerGroupDescription, TimePassesIsEnabled); 1058 HI.Handler->markFunctionEnd(); 1059 } 1060 1061 // Print out jump tables referenced by the function. 1062 EmitJumpTableInfo(); 1063 1064 // Emit post-function debug and/or EH information. 1065 for (const HandlerInfo &HI : Handlers) { 1066 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1067 HI.TimerGroupDescription, TimePassesIsEnabled); 1068 HI.Handler->endFunction(MF); 1069 } 1070 1071 OutStreamer->AddBlankLine(); 1072 } 1073 1074 /// \brief Compute the number of Global Variables that uses a Constant. 1075 static unsigned getNumGlobalVariableUses(const Constant *C) { 1076 if (!C) 1077 return 0; 1078 1079 if (isa<GlobalVariable>(C)) 1080 return 1; 1081 1082 unsigned NumUses = 0; 1083 for (auto *CU : C->users()) 1084 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1085 1086 return NumUses; 1087 } 1088 1089 /// \brief Only consider global GOT equivalents if at least one user is a 1090 /// cstexpr inside an initializer of another global variables. Also, don't 1091 /// handle cstexpr inside instructions. During global variable emission, 1092 /// candidates are skipped and are emitted later in case at least one cstexpr 1093 /// isn't replaced by a PC relative GOT entry access. 1094 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1095 unsigned &NumGOTEquivUsers) { 1096 // Global GOT equivalents are unnamed private globals with a constant 1097 // pointer initializer to another global symbol. They must point to a 1098 // GlobalVariable or Function, i.e., as GlobalValue. 1099 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1100 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1101 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1102 return false; 1103 1104 // To be a got equivalent, at least one of its users need to be a constant 1105 // expression used by another global variable. 1106 for (auto *U : GV->users()) 1107 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1108 1109 return NumGOTEquivUsers > 0; 1110 } 1111 1112 /// \brief Unnamed constant global variables solely contaning a pointer to 1113 /// another globals variable is equivalent to a GOT table entry; it contains the 1114 /// the address of another symbol. Optimize it and replace accesses to these 1115 /// "GOT equivalents" by using the GOT entry for the final global instead. 1116 /// Compute GOT equivalent candidates among all global variables to avoid 1117 /// emitting them if possible later on, after it use is replaced by a GOT entry 1118 /// access. 1119 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1120 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1121 return; 1122 1123 for (const auto &G : M.globals()) { 1124 unsigned NumGOTEquivUsers = 0; 1125 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1126 continue; 1127 1128 const MCSymbol *GOTEquivSym = getSymbol(&G); 1129 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1130 } 1131 } 1132 1133 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1134 /// for PC relative GOT entry conversion, in such cases we need to emit such 1135 /// globals we previously omitted in EmitGlobalVariable. 1136 void AsmPrinter::emitGlobalGOTEquivs() { 1137 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1138 return; 1139 1140 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1141 for (auto &I : GlobalGOTEquivs) { 1142 const GlobalVariable *GV = I.second.first; 1143 unsigned Cnt = I.second.second; 1144 if (Cnt) 1145 FailedCandidates.push_back(GV); 1146 } 1147 GlobalGOTEquivs.clear(); 1148 1149 for (auto *GV : FailedCandidates) 1150 EmitGlobalVariable(GV); 1151 } 1152 1153 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1154 const GlobalIndirectSymbol& GIS) { 1155 MCSymbol *Name = getSymbol(&GIS); 1156 1157 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1158 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1159 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1160 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1161 else 1162 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1163 1164 // Set the symbol type to function if the alias has a function type. 1165 // This affects codegen when the aliasee is not a function. 1166 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1167 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1168 if (isa<GlobalIFunc>(GIS)) 1169 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1170 } 1171 1172 EmitVisibility(Name, GIS.getVisibility()); 1173 1174 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1175 1176 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1177 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1178 1179 // Emit the directives as assignments aka .set: 1180 OutStreamer->EmitAssignment(Name, Expr); 1181 1182 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1183 // If the aliasee does not correspond to a symbol in the output, i.e. the 1184 // alias is not of an object or the aliased object is private, then set the 1185 // size of the alias symbol from the type of the alias. We don't do this in 1186 // other situations as the alias and aliasee having differing types but same 1187 // size may be intentional. 1188 const GlobalObject *BaseObject = GA->getBaseObject(); 1189 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1190 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1191 const DataLayout &DL = M.getDataLayout(); 1192 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1193 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1194 } 1195 } 1196 } 1197 1198 bool AsmPrinter::doFinalization(Module &M) { 1199 // Set the MachineFunction to nullptr so that we can catch attempted 1200 // accesses to MF specific features at the module level and so that 1201 // we can conditionalize accesses based on whether or not it is nullptr. 1202 MF = nullptr; 1203 1204 // Gather all GOT equivalent globals in the module. We really need two 1205 // passes over the globals: one to compute and another to avoid its emission 1206 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1207 // where the got equivalent shows up before its use. 1208 computeGlobalGOTEquivs(M); 1209 1210 // Emit global variables. 1211 for (const auto &G : M.globals()) 1212 EmitGlobalVariable(&G); 1213 1214 // Emit remaining GOT equivalent globals. 1215 emitGlobalGOTEquivs(); 1216 1217 // Emit visibility info for declarations 1218 for (const Function &F : M) { 1219 if (!F.isDeclarationForLinker()) 1220 continue; 1221 GlobalValue::VisibilityTypes V = F.getVisibility(); 1222 if (V == GlobalValue::DefaultVisibility) 1223 continue; 1224 1225 MCSymbol *Name = getSymbol(&F); 1226 EmitVisibility(Name, V, false); 1227 } 1228 1229 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1230 1231 // Emit module flags. 1232 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1233 M.getModuleFlagsMetadata(ModuleFlags); 1234 if (!ModuleFlags.empty()) 1235 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1236 1237 if (TM.getTargetTriple().isOSBinFormatELF()) { 1238 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1239 1240 // Output stubs for external and common global variables. 1241 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1242 if (!Stubs.empty()) { 1243 OutStreamer->SwitchSection(TLOF.getDataSection()); 1244 const DataLayout &DL = M.getDataLayout(); 1245 1246 for (const auto &Stub : Stubs) { 1247 OutStreamer->EmitLabel(Stub.first); 1248 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1249 DL.getPointerSize()); 1250 } 1251 } 1252 } 1253 1254 // Finalize debug and EH information. 1255 for (const HandlerInfo &HI : Handlers) { 1256 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1257 HI.TimerGroupDescription, TimePassesIsEnabled); 1258 HI.Handler->endModule(); 1259 delete HI.Handler; 1260 } 1261 Handlers.clear(); 1262 DD = nullptr; 1263 1264 // If the target wants to know about weak references, print them all. 1265 if (MAI->getWeakRefDirective()) { 1266 // FIXME: This is not lazy, it would be nice to only print weak references 1267 // to stuff that is actually used. Note that doing so would require targets 1268 // to notice uses in operands (due to constant exprs etc). This should 1269 // happen with the MC stuff eventually. 1270 1271 // Print out module-level global objects here. 1272 for (const auto &GO : M.global_objects()) { 1273 if (!GO.hasExternalWeakLinkage()) 1274 continue; 1275 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1276 } 1277 } 1278 1279 OutStreamer->AddBlankLine(); 1280 1281 // Print aliases in topological order, that is, for each alias a = b, 1282 // b must be printed before a. 1283 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1284 // such an order to generate correct TOC information. 1285 SmallVector<const GlobalAlias *, 16> AliasStack; 1286 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1287 for (const auto &Alias : M.aliases()) { 1288 for (const GlobalAlias *Cur = &Alias; Cur; 1289 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1290 if (!AliasVisited.insert(Cur).second) 1291 break; 1292 AliasStack.push_back(Cur); 1293 } 1294 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1295 emitGlobalIndirectSymbol(M, *AncestorAlias); 1296 AliasStack.clear(); 1297 } 1298 for (const auto &IFunc : M.ifuncs()) 1299 emitGlobalIndirectSymbol(M, IFunc); 1300 1301 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1302 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1303 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1304 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1305 MP->finishAssembly(M, *MI, *this); 1306 1307 // Emit llvm.ident metadata in an '.ident' directive. 1308 EmitModuleIdents(M); 1309 1310 // Emit __morestack address if needed for indirect calls. 1311 if (MMI->usesMorestackAddr()) { 1312 unsigned Align = 1; 1313 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1314 getDataLayout(), SectionKind::getReadOnly(), 1315 /*C=*/nullptr, Align); 1316 OutStreamer->SwitchSection(ReadOnlySection); 1317 1318 MCSymbol *AddrSymbol = 1319 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1320 OutStreamer->EmitLabel(AddrSymbol); 1321 1322 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1323 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1324 PtrSize); 1325 } 1326 1327 // If we don't have any trampolines, then we don't require stack memory 1328 // to be executable. Some targets have a directive to declare this. 1329 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1330 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1331 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1332 OutStreamer->SwitchSection(S); 1333 1334 // Allow the target to emit any magic that it wants at the end of the file, 1335 // after everything else has gone out. 1336 EmitEndOfAsmFile(M); 1337 1338 MMI = nullptr; 1339 1340 OutStreamer->Finish(); 1341 OutStreamer->reset(); 1342 1343 return false; 1344 } 1345 1346 MCSymbol *AsmPrinter::getCurExceptionSym() { 1347 if (!CurExceptionSym) 1348 CurExceptionSym = createTempSymbol("exception"); 1349 return CurExceptionSym; 1350 } 1351 1352 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1353 this->MF = &MF; 1354 // Get the function symbol. 1355 CurrentFnSym = getSymbol(MF.getFunction()); 1356 CurrentFnSymForSize = CurrentFnSym; 1357 CurrentFnBegin = nullptr; 1358 CurExceptionSym = nullptr; 1359 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1360 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1361 MF.hasEHFunclets() || NeedsLocalForSize) { 1362 CurrentFnBegin = createTempSymbol("func_begin"); 1363 if (NeedsLocalForSize) 1364 CurrentFnSymForSize = CurrentFnBegin; 1365 } 1366 1367 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1368 if (isVerbose()) 1369 LI = &getAnalysis<MachineLoopInfo>(); 1370 } 1371 1372 namespace { 1373 1374 // Keep track the alignment, constpool entries per Section. 1375 struct SectionCPs { 1376 MCSection *S; 1377 unsigned Alignment; 1378 SmallVector<unsigned, 4> CPEs; 1379 1380 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1381 }; 1382 1383 } // end anonymous namespace 1384 1385 /// EmitConstantPool - Print to the current output stream assembly 1386 /// representations of the constants in the constant pool MCP. This is 1387 /// used to print out constants which have been "spilled to memory" by 1388 /// the code generator. 1389 /// 1390 void AsmPrinter::EmitConstantPool() { 1391 const MachineConstantPool *MCP = MF->getConstantPool(); 1392 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1393 if (CP.empty()) return; 1394 1395 // Calculate sections for constant pool entries. We collect entries to go into 1396 // the same section together to reduce amount of section switch statements. 1397 SmallVector<SectionCPs, 4> CPSections; 1398 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1399 const MachineConstantPoolEntry &CPE = CP[i]; 1400 unsigned Align = CPE.getAlignment(); 1401 1402 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1403 1404 const Constant *C = nullptr; 1405 if (!CPE.isMachineConstantPoolEntry()) 1406 C = CPE.Val.ConstVal; 1407 1408 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1409 Kind, C, Align); 1410 1411 // The number of sections are small, just do a linear search from the 1412 // last section to the first. 1413 bool Found = false; 1414 unsigned SecIdx = CPSections.size(); 1415 while (SecIdx != 0) { 1416 if (CPSections[--SecIdx].S == S) { 1417 Found = true; 1418 break; 1419 } 1420 } 1421 if (!Found) { 1422 SecIdx = CPSections.size(); 1423 CPSections.push_back(SectionCPs(S, Align)); 1424 } 1425 1426 if (Align > CPSections[SecIdx].Alignment) 1427 CPSections[SecIdx].Alignment = Align; 1428 CPSections[SecIdx].CPEs.push_back(i); 1429 } 1430 1431 // Now print stuff into the calculated sections. 1432 const MCSection *CurSection = nullptr; 1433 unsigned Offset = 0; 1434 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1435 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1436 unsigned CPI = CPSections[i].CPEs[j]; 1437 MCSymbol *Sym = GetCPISymbol(CPI); 1438 if (!Sym->isUndefined()) 1439 continue; 1440 1441 if (CurSection != CPSections[i].S) { 1442 OutStreamer->SwitchSection(CPSections[i].S); 1443 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1444 CurSection = CPSections[i].S; 1445 Offset = 0; 1446 } 1447 1448 MachineConstantPoolEntry CPE = CP[CPI]; 1449 1450 // Emit inter-object padding for alignment. 1451 unsigned AlignMask = CPE.getAlignment() - 1; 1452 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1453 OutStreamer->EmitZeros(NewOffset - Offset); 1454 1455 Type *Ty = CPE.getType(); 1456 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1457 1458 OutStreamer->EmitLabel(Sym); 1459 if (CPE.isMachineConstantPoolEntry()) 1460 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1461 else 1462 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1463 } 1464 } 1465 } 1466 1467 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1468 /// by the current function to the current output stream. 1469 /// 1470 void AsmPrinter::EmitJumpTableInfo() { 1471 const DataLayout &DL = MF->getDataLayout(); 1472 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1473 if (!MJTI) return; 1474 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1475 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1476 if (JT.empty()) return; 1477 1478 // Pick the directive to use to print the jump table entries, and switch to 1479 // the appropriate section. 1480 const Function *F = MF->getFunction(); 1481 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1482 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1483 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1484 *F); 1485 if (JTInDiffSection) { 1486 // Drop it in the readonly section. 1487 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1488 OutStreamer->SwitchSection(ReadOnlySection); 1489 } 1490 1491 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1492 1493 // Jump tables in code sections are marked with a data_region directive 1494 // where that's supported. 1495 if (!JTInDiffSection) 1496 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1497 1498 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1499 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1500 1501 // If this jump table was deleted, ignore it. 1502 if (JTBBs.empty()) continue; 1503 1504 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1505 /// emit a .set directive for each unique entry. 1506 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1507 MAI->doesSetDirectiveSuppressReloc()) { 1508 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1509 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1510 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1511 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1512 const MachineBasicBlock *MBB = JTBBs[ii]; 1513 if (!EmittedSets.insert(MBB).second) 1514 continue; 1515 1516 // .set LJTSet, LBB32-base 1517 const MCExpr *LHS = 1518 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1519 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1520 MCBinaryExpr::createSub(LHS, Base, 1521 OutContext)); 1522 } 1523 } 1524 1525 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1526 // before each jump table. The first label is never referenced, but tells 1527 // the assembler and linker the extents of the jump table object. The 1528 // second label is actually referenced by the code. 1529 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1530 // FIXME: This doesn't have to have any specific name, just any randomly 1531 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1532 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1533 1534 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1535 1536 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1537 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1538 } 1539 if (!JTInDiffSection) 1540 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1541 } 1542 1543 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1544 /// current stream. 1545 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1546 const MachineBasicBlock *MBB, 1547 unsigned UID) const { 1548 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1549 const MCExpr *Value = nullptr; 1550 switch (MJTI->getEntryKind()) { 1551 case MachineJumpTableInfo::EK_Inline: 1552 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1553 case MachineJumpTableInfo::EK_Custom32: 1554 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1555 MJTI, MBB, UID, OutContext); 1556 break; 1557 case MachineJumpTableInfo::EK_BlockAddress: 1558 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1559 // .word LBB123 1560 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1561 break; 1562 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1563 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1564 // with a relocation as gp-relative, e.g.: 1565 // .gprel32 LBB123 1566 MCSymbol *MBBSym = MBB->getSymbol(); 1567 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1568 return; 1569 } 1570 1571 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1572 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1573 // with a relocation as gp-relative, e.g.: 1574 // .gpdword LBB123 1575 MCSymbol *MBBSym = MBB->getSymbol(); 1576 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1577 return; 1578 } 1579 1580 case MachineJumpTableInfo::EK_LabelDifference32: { 1581 // Each entry is the address of the block minus the address of the jump 1582 // table. This is used for PIC jump tables where gprel32 is not supported. 1583 // e.g.: 1584 // .word LBB123 - LJTI1_2 1585 // If the .set directive avoids relocations, this is emitted as: 1586 // .set L4_5_set_123, LBB123 - LJTI1_2 1587 // .word L4_5_set_123 1588 if (MAI->doesSetDirectiveSuppressReloc()) { 1589 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1590 OutContext); 1591 break; 1592 } 1593 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1594 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1595 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1596 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1597 break; 1598 } 1599 } 1600 1601 assert(Value && "Unknown entry kind!"); 1602 1603 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1604 OutStreamer->EmitValue(Value, EntrySize); 1605 } 1606 1607 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1608 /// special global used by LLVM. If so, emit it and return true, otherwise 1609 /// do nothing and return false. 1610 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1611 if (GV->getName() == "llvm.used") { 1612 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1613 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1614 return true; 1615 } 1616 1617 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1618 if (GV->getSection() == "llvm.metadata" || 1619 GV->hasAvailableExternallyLinkage()) 1620 return true; 1621 1622 if (!GV->hasAppendingLinkage()) return false; 1623 1624 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1625 1626 if (GV->getName() == "llvm.global_ctors") { 1627 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1628 /* isCtor */ true); 1629 1630 return true; 1631 } 1632 1633 if (GV->getName() == "llvm.global_dtors") { 1634 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1635 /* isCtor */ false); 1636 1637 return true; 1638 } 1639 1640 report_fatal_error("unknown special variable"); 1641 } 1642 1643 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1644 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1645 /// is true, as being used with this directive. 1646 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1647 // Should be an array of 'i8*'. 1648 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1649 const GlobalValue *GV = 1650 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1651 if (GV) 1652 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1653 } 1654 } 1655 1656 namespace { 1657 1658 struct Structor { 1659 int Priority = 0; 1660 Constant *Func = nullptr; 1661 GlobalValue *ComdatKey = nullptr; 1662 1663 Structor() = default; 1664 }; 1665 1666 } // end anonymous namespace 1667 1668 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1669 /// priority. 1670 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1671 bool isCtor) { 1672 // Should be an array of '{ int, void ()* }' structs. The first value is the 1673 // init priority. 1674 if (!isa<ConstantArray>(List)) return; 1675 1676 // Sanity check the structors list. 1677 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1678 if (!InitList) return; // Not an array! 1679 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1680 // FIXME: Only allow the 3-field form in LLVM 4.0. 1681 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1682 return; // Not an array of two or three elements! 1683 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1684 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1685 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1686 return; // Not (int, ptr, ptr). 1687 1688 // Gather the structors in a form that's convenient for sorting by priority. 1689 SmallVector<Structor, 8> Structors; 1690 for (Value *O : InitList->operands()) { 1691 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1692 if (!CS) continue; // Malformed. 1693 if (CS->getOperand(1)->isNullValue()) 1694 break; // Found a null terminator, skip the rest. 1695 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1696 if (!Priority) continue; // Malformed. 1697 Structors.push_back(Structor()); 1698 Structor &S = Structors.back(); 1699 S.Priority = Priority->getLimitedValue(65535); 1700 S.Func = CS->getOperand(1); 1701 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1702 S.ComdatKey = 1703 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1704 } 1705 1706 // Emit the function pointers in the target-specific order 1707 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1708 std::stable_sort(Structors.begin(), Structors.end(), 1709 [](const Structor &L, 1710 const Structor &R) { return L.Priority < R.Priority; }); 1711 for (Structor &S : Structors) { 1712 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1713 const MCSymbol *KeySym = nullptr; 1714 if (GlobalValue *GV = S.ComdatKey) { 1715 if (GV->isDeclarationForLinker()) 1716 // If the associated variable is not defined in this module 1717 // (it might be available_externally, or have been an 1718 // available_externally definition that was dropped by the 1719 // EliminateAvailableExternally pass), some other TU 1720 // will provide its dynamic initializer. 1721 continue; 1722 1723 KeySym = getSymbol(GV); 1724 } 1725 MCSection *OutputSection = 1726 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1727 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1728 OutStreamer->SwitchSection(OutputSection); 1729 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1730 EmitAlignment(Align); 1731 EmitXXStructor(DL, S.Func); 1732 } 1733 } 1734 1735 void AsmPrinter::EmitModuleIdents(Module &M) { 1736 if (!MAI->hasIdentDirective()) 1737 return; 1738 1739 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1740 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1741 const MDNode *N = NMD->getOperand(i); 1742 assert(N->getNumOperands() == 1 && 1743 "llvm.ident metadata entry can have only one operand"); 1744 const MDString *S = cast<MDString>(N->getOperand(0)); 1745 OutStreamer->EmitIdent(S->getString()); 1746 } 1747 } 1748 } 1749 1750 //===--------------------------------------------------------------------===// 1751 // Emission and print routines 1752 // 1753 1754 /// EmitInt8 - Emit a byte directive and value. 1755 /// 1756 void AsmPrinter::EmitInt8(int Value) const { 1757 OutStreamer->EmitIntValue(Value, 1); 1758 } 1759 1760 /// EmitInt16 - Emit a short directive and value. 1761 /// 1762 void AsmPrinter::EmitInt16(int Value) const { 1763 OutStreamer->EmitIntValue(Value, 2); 1764 } 1765 1766 /// EmitInt32 - Emit a long directive and value. 1767 /// 1768 void AsmPrinter::EmitInt32(int Value) const { 1769 OutStreamer->EmitIntValue(Value, 4); 1770 } 1771 1772 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1773 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1774 /// .set if it avoids relocations. 1775 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1776 unsigned Size) const { 1777 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1778 } 1779 1780 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1781 /// where the size in bytes of the directive is specified by Size and Label 1782 /// specifies the label. This implicitly uses .set if it is available. 1783 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1784 unsigned Size, 1785 bool IsSectionRelative) const { 1786 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1787 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1788 if (Size > 4) 1789 OutStreamer->EmitZeros(Size - 4); 1790 return; 1791 } 1792 1793 // Emit Label+Offset (or just Label if Offset is zero) 1794 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1795 if (Offset) 1796 Expr = MCBinaryExpr::createAdd( 1797 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1798 1799 OutStreamer->EmitValue(Expr, Size); 1800 } 1801 1802 //===----------------------------------------------------------------------===// 1803 1804 // EmitAlignment - Emit an alignment directive to the specified power of 1805 // two boundary. For example, if you pass in 3 here, you will get an 8 1806 // byte alignment. If a global value is specified, and if that global has 1807 // an explicit alignment requested, it will override the alignment request 1808 // if required for correctness. 1809 // 1810 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1811 if (GV) 1812 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1813 1814 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1815 1816 assert(NumBits < 1817 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1818 "undefined behavior"); 1819 if (getCurrentSection()->getKind().isText()) 1820 OutStreamer->EmitCodeAlignment(1u << NumBits); 1821 else 1822 OutStreamer->EmitValueToAlignment(1u << NumBits); 1823 } 1824 1825 //===----------------------------------------------------------------------===// 1826 // Constant emission. 1827 //===----------------------------------------------------------------------===// 1828 1829 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1830 MCContext &Ctx = OutContext; 1831 1832 if (CV->isNullValue() || isa<UndefValue>(CV)) 1833 return MCConstantExpr::create(0, Ctx); 1834 1835 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1836 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1837 1838 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1839 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1840 1841 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1842 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1843 1844 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1845 if (!CE) { 1846 llvm_unreachable("Unknown constant value to lower!"); 1847 } 1848 1849 switch (CE->getOpcode()) { 1850 default: 1851 // If the code isn't optimized, there may be outstanding folding 1852 // opportunities. Attempt to fold the expression using DataLayout as a 1853 // last resort before giving up. 1854 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1855 if (C != CE) 1856 return lowerConstant(C); 1857 1858 // Otherwise report the problem to the user. 1859 { 1860 std::string S; 1861 raw_string_ostream OS(S); 1862 OS << "Unsupported expression in static initializer: "; 1863 CE->printAsOperand(OS, /*PrintType=*/false, 1864 !MF ? nullptr : MF->getFunction()->getParent()); 1865 report_fatal_error(OS.str()); 1866 } 1867 case Instruction::GetElementPtr: { 1868 // Generate a symbolic expression for the byte address 1869 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1870 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1871 1872 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1873 if (!OffsetAI) 1874 return Base; 1875 1876 int64_t Offset = OffsetAI.getSExtValue(); 1877 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1878 Ctx); 1879 } 1880 1881 case Instruction::Trunc: 1882 // We emit the value and depend on the assembler to truncate the generated 1883 // expression properly. This is important for differences between 1884 // blockaddress labels. Since the two labels are in the same function, it 1885 // is reasonable to treat their delta as a 32-bit value. 1886 LLVM_FALLTHROUGH; 1887 case Instruction::BitCast: 1888 return lowerConstant(CE->getOperand(0)); 1889 1890 case Instruction::IntToPtr: { 1891 const DataLayout &DL = getDataLayout(); 1892 1893 // Handle casts to pointers by changing them into casts to the appropriate 1894 // integer type. This promotes constant folding and simplifies this code. 1895 Constant *Op = CE->getOperand(0); 1896 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1897 false/*ZExt*/); 1898 return lowerConstant(Op); 1899 } 1900 1901 case Instruction::PtrToInt: { 1902 const DataLayout &DL = getDataLayout(); 1903 1904 // Support only foldable casts to/from pointers that can be eliminated by 1905 // changing the pointer to the appropriately sized integer type. 1906 Constant *Op = CE->getOperand(0); 1907 Type *Ty = CE->getType(); 1908 1909 const MCExpr *OpExpr = lowerConstant(Op); 1910 1911 // We can emit the pointer value into this slot if the slot is an 1912 // integer slot equal to the size of the pointer. 1913 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1914 return OpExpr; 1915 1916 // Otherwise the pointer is smaller than the resultant integer, mask off 1917 // the high bits so we are sure to get a proper truncation if the input is 1918 // a constant expr. 1919 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1920 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1921 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1922 } 1923 1924 case Instruction::Sub: { 1925 GlobalValue *LHSGV; 1926 APInt LHSOffset; 1927 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1928 getDataLayout())) { 1929 GlobalValue *RHSGV; 1930 APInt RHSOffset; 1931 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1932 getDataLayout())) { 1933 const MCExpr *RelocExpr = 1934 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1935 if (!RelocExpr) 1936 RelocExpr = MCBinaryExpr::createSub( 1937 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1938 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1939 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1940 if (Addend != 0) 1941 RelocExpr = MCBinaryExpr::createAdd( 1942 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1943 return RelocExpr; 1944 } 1945 } 1946 } 1947 // else fallthrough 1948 1949 // The MC library also has a right-shift operator, but it isn't consistently 1950 // signed or unsigned between different targets. 1951 case Instruction::Add: 1952 case Instruction::Mul: 1953 case Instruction::SDiv: 1954 case Instruction::SRem: 1955 case Instruction::Shl: 1956 case Instruction::And: 1957 case Instruction::Or: 1958 case Instruction::Xor: { 1959 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1960 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1961 switch (CE->getOpcode()) { 1962 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1963 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1964 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1965 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1966 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1967 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1968 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1969 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1970 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1971 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1972 } 1973 } 1974 } 1975 } 1976 1977 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1978 AsmPrinter &AP, 1979 const Constant *BaseCV = nullptr, 1980 uint64_t Offset = 0); 1981 1982 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1983 1984 /// isRepeatedByteSequence - Determine whether the given value is 1985 /// composed of a repeated sequence of identical bytes and return the 1986 /// byte value. If it is not a repeated sequence, return -1. 1987 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1988 StringRef Data = V->getRawDataValues(); 1989 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1990 char C = Data[0]; 1991 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1992 if (Data[i] != C) return -1; 1993 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1994 } 1995 1996 /// isRepeatedByteSequence - Determine whether the given value is 1997 /// composed of a repeated sequence of identical bytes and return the 1998 /// byte value. If it is not a repeated sequence, return -1. 1999 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2000 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2001 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2002 assert(Size % 8 == 0); 2003 2004 // Extend the element to take zero padding into account. 2005 APInt Value = CI->getValue().zextOrSelf(Size); 2006 if (!Value.isSplat(8)) 2007 return -1; 2008 2009 return Value.zextOrTrunc(8).getZExtValue(); 2010 } 2011 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2012 // Make sure all array elements are sequences of the same repeated 2013 // byte. 2014 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2015 Constant *Op0 = CA->getOperand(0); 2016 int Byte = isRepeatedByteSequence(Op0, DL); 2017 if (Byte == -1) 2018 return -1; 2019 2020 // All array elements must be equal. 2021 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2022 if (CA->getOperand(i) != Op0) 2023 return -1; 2024 return Byte; 2025 } 2026 2027 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2028 return isRepeatedByteSequence(CDS); 2029 2030 return -1; 2031 } 2032 2033 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2034 const ConstantDataSequential *CDS, 2035 AsmPrinter &AP) { 2036 // See if we can aggregate this into a .fill, if so, emit it as such. 2037 int Value = isRepeatedByteSequence(CDS, DL); 2038 if (Value != -1) { 2039 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2040 // Don't emit a 1-byte object as a .fill. 2041 if (Bytes > 1) 2042 return AP.OutStreamer->emitFill(Bytes, Value); 2043 } 2044 2045 // If this can be emitted with .ascii/.asciz, emit it as such. 2046 if (CDS->isString()) 2047 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2048 2049 // Otherwise, emit the values in successive locations. 2050 unsigned ElementByteSize = CDS->getElementByteSize(); 2051 if (isa<IntegerType>(CDS->getElementType())) { 2052 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2053 if (AP.isVerbose()) 2054 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2055 CDS->getElementAsInteger(i)); 2056 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2057 ElementByteSize); 2058 } 2059 } else { 2060 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2061 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2062 } 2063 2064 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2065 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2066 CDS->getNumElements(); 2067 if (unsigned Padding = Size - EmittedSize) 2068 AP.OutStreamer->EmitZeros(Padding); 2069 } 2070 2071 static void emitGlobalConstantArray(const DataLayout &DL, 2072 const ConstantArray *CA, AsmPrinter &AP, 2073 const Constant *BaseCV, uint64_t Offset) { 2074 // See if we can aggregate some values. Make sure it can be 2075 // represented as a series of bytes of the constant value. 2076 int Value = isRepeatedByteSequence(CA, DL); 2077 2078 if (Value != -1) { 2079 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2080 AP.OutStreamer->emitFill(Bytes, Value); 2081 } 2082 else { 2083 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2084 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2085 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2086 } 2087 } 2088 } 2089 2090 static void emitGlobalConstantVector(const DataLayout &DL, 2091 const ConstantVector *CV, AsmPrinter &AP) { 2092 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2093 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2094 2095 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2096 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2097 CV->getType()->getNumElements(); 2098 if (unsigned Padding = Size - EmittedSize) 2099 AP.OutStreamer->EmitZeros(Padding); 2100 } 2101 2102 static void emitGlobalConstantStruct(const DataLayout &DL, 2103 const ConstantStruct *CS, AsmPrinter &AP, 2104 const Constant *BaseCV, uint64_t Offset) { 2105 // Print the fields in successive locations. Pad to align if needed! 2106 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2107 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2108 uint64_t SizeSoFar = 0; 2109 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2110 const Constant *Field = CS->getOperand(i); 2111 2112 // Print the actual field value. 2113 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2114 2115 // Check if padding is needed and insert one or more 0s. 2116 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2117 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2118 - Layout->getElementOffset(i)) - FieldSize; 2119 SizeSoFar += FieldSize + PadSize; 2120 2121 // Insert padding - this may include padding to increase the size of the 2122 // current field up to the ABI size (if the struct is not packed) as well 2123 // as padding to ensure that the next field starts at the right offset. 2124 AP.OutStreamer->EmitZeros(PadSize); 2125 } 2126 assert(SizeSoFar == Layout->getSizeInBytes() && 2127 "Layout of constant struct may be incorrect!"); 2128 } 2129 2130 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2131 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2132 2133 // First print a comment with what we think the original floating-point value 2134 // should have been. 2135 if (AP.isVerbose()) { 2136 SmallString<8> StrVal; 2137 CFP->getValueAPF().toString(StrVal); 2138 2139 if (CFP->getType()) 2140 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2141 else 2142 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2143 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2144 } 2145 2146 // Now iterate through the APInt chunks, emitting them in endian-correct 2147 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2148 // floats). 2149 unsigned NumBytes = API.getBitWidth() / 8; 2150 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2151 const uint64_t *p = API.getRawData(); 2152 2153 // PPC's long double has odd notions of endianness compared to how LLVM 2154 // handles it: p[0] goes first for *big* endian on PPC. 2155 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2156 int Chunk = API.getNumWords() - 1; 2157 2158 if (TrailingBytes) 2159 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2160 2161 for (; Chunk >= 0; --Chunk) 2162 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2163 } else { 2164 unsigned Chunk; 2165 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2166 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2167 2168 if (TrailingBytes) 2169 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2170 } 2171 2172 // Emit the tail padding for the long double. 2173 const DataLayout &DL = AP.getDataLayout(); 2174 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2175 DL.getTypeStoreSize(CFP->getType())); 2176 } 2177 2178 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2179 const DataLayout &DL = AP.getDataLayout(); 2180 unsigned BitWidth = CI->getBitWidth(); 2181 2182 // Copy the value as we may massage the layout for constants whose bit width 2183 // is not a multiple of 64-bits. 2184 APInt Realigned(CI->getValue()); 2185 uint64_t ExtraBits = 0; 2186 unsigned ExtraBitsSize = BitWidth & 63; 2187 2188 if (ExtraBitsSize) { 2189 // The bit width of the data is not a multiple of 64-bits. 2190 // The extra bits are expected to be at the end of the chunk of the memory. 2191 // Little endian: 2192 // * Nothing to be done, just record the extra bits to emit. 2193 // Big endian: 2194 // * Record the extra bits to emit. 2195 // * Realign the raw data to emit the chunks of 64-bits. 2196 if (DL.isBigEndian()) { 2197 // Basically the structure of the raw data is a chunk of 64-bits cells: 2198 // 0 1 BitWidth / 64 2199 // [chunk1][chunk2] ... [chunkN]. 2200 // The most significant chunk is chunkN and it should be emitted first. 2201 // However, due to the alignment issue chunkN contains useless bits. 2202 // Realign the chunks so that they contain only useless information: 2203 // ExtraBits 0 1 (BitWidth / 64) - 1 2204 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2205 ExtraBits = Realigned.getRawData()[0] & 2206 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2207 Realigned = Realigned.lshr(ExtraBitsSize); 2208 } else 2209 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2210 } 2211 2212 // We don't expect assemblers to support integer data directives 2213 // for more than 64 bits, so we emit the data in at most 64-bit 2214 // quantities at a time. 2215 const uint64_t *RawData = Realigned.getRawData(); 2216 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2217 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2218 AP.OutStreamer->EmitIntValue(Val, 8); 2219 } 2220 2221 if (ExtraBitsSize) { 2222 // Emit the extra bits after the 64-bits chunks. 2223 2224 // Emit a directive that fills the expected size. 2225 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2226 Size -= (BitWidth / 64) * 8; 2227 assert(Size && Size * 8 >= ExtraBitsSize && 2228 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2229 == ExtraBits && "Directive too small for extra bits."); 2230 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2231 } 2232 } 2233 2234 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2235 /// equivalent global, by a target specific GOT pc relative access to the 2236 /// final symbol. 2237 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2238 const Constant *BaseCst, 2239 uint64_t Offset) { 2240 // The global @foo below illustrates a global that uses a got equivalent. 2241 // 2242 // @bar = global i32 42 2243 // @gotequiv = private unnamed_addr constant i32* @bar 2244 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2245 // i64 ptrtoint (i32* @foo to i64)) 2246 // to i32) 2247 // 2248 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2249 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2250 // form: 2251 // 2252 // foo = cstexpr, where 2253 // cstexpr := <gotequiv> - "." + <cst> 2254 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2255 // 2256 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2257 // 2258 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2259 // gotpcrelcst := <offset from @foo base> + <cst> 2260 // 2261 MCValue MV; 2262 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2263 return; 2264 const MCSymbolRefExpr *SymA = MV.getSymA(); 2265 if (!SymA) 2266 return; 2267 2268 // Check that GOT equivalent symbol is cached. 2269 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2270 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2271 return; 2272 2273 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2274 if (!BaseGV) 2275 return; 2276 2277 // Check for a valid base symbol 2278 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2279 const MCSymbolRefExpr *SymB = MV.getSymB(); 2280 2281 if (!SymB || BaseSym != &SymB->getSymbol()) 2282 return; 2283 2284 // Make sure to match: 2285 // 2286 // gotpcrelcst := <offset from @foo base> + <cst> 2287 // 2288 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2289 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2290 // if the target knows how to encode it. 2291 // 2292 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2293 if (GOTPCRelCst < 0) 2294 return; 2295 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2296 return; 2297 2298 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2299 // 2300 // bar: 2301 // .long 42 2302 // gotequiv: 2303 // .quad bar 2304 // foo: 2305 // .long gotequiv - "." + <cst> 2306 // 2307 // is replaced by the target specific equivalent to: 2308 // 2309 // bar: 2310 // .long 42 2311 // foo: 2312 // .long bar@GOTPCREL+<gotpcrelcst> 2313 // 2314 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2315 const GlobalVariable *GV = Result.first; 2316 int NumUses = (int)Result.second; 2317 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2318 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2319 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2320 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2321 2322 // Update GOT equivalent usage information 2323 --NumUses; 2324 if (NumUses >= 0) 2325 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2326 } 2327 2328 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2329 AsmPrinter &AP, const Constant *BaseCV, 2330 uint64_t Offset) { 2331 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2332 2333 // Globals with sub-elements such as combinations of arrays and structs 2334 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2335 // constant symbol base and the current position with BaseCV and Offset. 2336 if (!BaseCV && CV->hasOneUse()) 2337 BaseCV = dyn_cast<Constant>(CV->user_back()); 2338 2339 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2340 return AP.OutStreamer->EmitZeros(Size); 2341 2342 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2343 switch (Size) { 2344 case 1: 2345 case 2: 2346 case 4: 2347 case 8: 2348 if (AP.isVerbose()) 2349 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2350 CI->getZExtValue()); 2351 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2352 return; 2353 default: 2354 emitGlobalConstantLargeInt(CI, AP); 2355 return; 2356 } 2357 } 2358 2359 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2360 return emitGlobalConstantFP(CFP, AP); 2361 2362 if (isa<ConstantPointerNull>(CV)) { 2363 AP.OutStreamer->EmitIntValue(0, Size); 2364 return; 2365 } 2366 2367 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2368 return emitGlobalConstantDataSequential(DL, CDS, AP); 2369 2370 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2371 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2372 2373 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2374 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2375 2376 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2377 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2378 // vectors). 2379 if (CE->getOpcode() == Instruction::BitCast) 2380 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2381 2382 if (Size > 8) { 2383 // If the constant expression's size is greater than 64-bits, then we have 2384 // to emit the value in chunks. Try to constant fold the value and emit it 2385 // that way. 2386 Constant *New = ConstantFoldConstant(CE, DL); 2387 if (New && New != CE) 2388 return emitGlobalConstantImpl(DL, New, AP); 2389 } 2390 } 2391 2392 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2393 return emitGlobalConstantVector(DL, V, AP); 2394 2395 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2396 // thread the streamer with EmitValue. 2397 const MCExpr *ME = AP.lowerConstant(CV); 2398 2399 // Since lowerConstant already folded and got rid of all IR pointer and 2400 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2401 // directly. 2402 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2403 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2404 2405 AP.OutStreamer->EmitValue(ME, Size); 2406 } 2407 2408 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2409 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2410 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2411 if (Size) 2412 emitGlobalConstantImpl(DL, CV, *this); 2413 else if (MAI->hasSubsectionsViaSymbols()) { 2414 // If the global has zero size, emit a single byte so that two labels don't 2415 // look like they are at the same location. 2416 OutStreamer->EmitIntValue(0, 1); 2417 } 2418 } 2419 2420 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2421 // Target doesn't support this yet! 2422 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2423 } 2424 2425 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2426 if (Offset > 0) 2427 OS << '+' << Offset; 2428 else if (Offset < 0) 2429 OS << Offset; 2430 } 2431 2432 //===----------------------------------------------------------------------===// 2433 // Symbol Lowering Routines. 2434 //===----------------------------------------------------------------------===// 2435 2436 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2437 return OutContext.createTempSymbol(Name, true); 2438 } 2439 2440 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2441 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2442 } 2443 2444 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2445 return MMI->getAddrLabelSymbol(BB); 2446 } 2447 2448 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2449 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2450 const DataLayout &DL = getDataLayout(); 2451 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2452 "CPI" + Twine(getFunctionNumber()) + "_" + 2453 Twine(CPID)); 2454 } 2455 2456 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2457 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2458 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2459 } 2460 2461 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2462 /// FIXME: privatize to AsmPrinter. 2463 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2464 const DataLayout &DL = getDataLayout(); 2465 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2466 Twine(getFunctionNumber()) + "_" + 2467 Twine(UID) + "_set_" + Twine(MBBID)); 2468 } 2469 2470 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2471 StringRef Suffix) const { 2472 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2473 } 2474 2475 /// Return the MCSymbol for the specified ExternalSymbol. 2476 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2477 SmallString<60> NameStr; 2478 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2479 return OutContext.getOrCreateSymbol(NameStr); 2480 } 2481 2482 /// PrintParentLoopComment - Print comments about parent loops of this one. 2483 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2484 unsigned FunctionNumber) { 2485 if (!Loop) return; 2486 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2487 OS.indent(Loop->getLoopDepth()*2) 2488 << "Parent Loop BB" << FunctionNumber << "_" 2489 << Loop->getHeader()->getNumber() 2490 << " Depth=" << Loop->getLoopDepth() << '\n'; 2491 } 2492 2493 2494 /// PrintChildLoopComment - Print comments about child loops within 2495 /// the loop for this basic block, with nesting. 2496 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2497 unsigned FunctionNumber) { 2498 // Add child loop information 2499 for (const MachineLoop *CL : *Loop) { 2500 OS.indent(CL->getLoopDepth()*2) 2501 << "Child Loop BB" << FunctionNumber << "_" 2502 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2503 << '\n'; 2504 PrintChildLoopComment(OS, CL, FunctionNumber); 2505 } 2506 } 2507 2508 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2509 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2510 const MachineLoopInfo *LI, 2511 const AsmPrinter &AP) { 2512 // Add loop depth information 2513 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2514 if (!Loop) return; 2515 2516 MachineBasicBlock *Header = Loop->getHeader(); 2517 assert(Header && "No header for loop"); 2518 2519 // If this block is not a loop header, just print out what is the loop header 2520 // and return. 2521 if (Header != &MBB) { 2522 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2523 Twine(AP.getFunctionNumber())+"_" + 2524 Twine(Loop->getHeader()->getNumber())+ 2525 " Depth="+Twine(Loop->getLoopDepth())); 2526 return; 2527 } 2528 2529 // Otherwise, it is a loop header. Print out information about child and 2530 // parent loops. 2531 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2532 2533 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2534 2535 OS << "=>"; 2536 OS.indent(Loop->getLoopDepth()*2-2); 2537 2538 OS << "This "; 2539 if (Loop->empty()) 2540 OS << "Inner "; 2541 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2542 2543 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2544 } 2545 2546 /// EmitBasicBlockStart - This method prints the label for the specified 2547 /// MachineBasicBlock, an alignment (if present) and a comment describing 2548 /// it if appropriate. 2549 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2550 // End the previous funclet and start a new one. 2551 if (MBB.isEHFuncletEntry()) { 2552 for (const HandlerInfo &HI : Handlers) { 2553 HI.Handler->endFunclet(); 2554 HI.Handler->beginFunclet(MBB); 2555 } 2556 } 2557 2558 // Emit an alignment directive for this block, if needed. 2559 if (unsigned Align = MBB.getAlignment()) 2560 EmitAlignment(Align); 2561 2562 // If the block has its address taken, emit any labels that were used to 2563 // reference the block. It is possible that there is more than one label 2564 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2565 // the references were generated. 2566 if (MBB.hasAddressTaken()) { 2567 const BasicBlock *BB = MBB.getBasicBlock(); 2568 if (isVerbose()) 2569 OutStreamer->AddComment("Block address taken"); 2570 2571 // MBBs can have their address taken as part of CodeGen without having 2572 // their corresponding BB's address taken in IR 2573 if (BB->hasAddressTaken()) 2574 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2575 OutStreamer->EmitLabel(Sym); 2576 } 2577 2578 // Print some verbose block comments. 2579 if (isVerbose()) { 2580 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2581 if (BB->hasName()) { 2582 BB->printAsOperand(OutStreamer->GetCommentOS(), 2583 /*PrintType=*/false, BB->getModule()); 2584 OutStreamer->GetCommentOS() << '\n'; 2585 } 2586 } 2587 emitBasicBlockLoopComments(MBB, LI, *this); 2588 } 2589 2590 // Print the main label for the block. 2591 if (MBB.pred_empty() || 2592 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2593 if (isVerbose()) { 2594 // NOTE: Want this comment at start of line, don't emit with AddComment. 2595 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2596 } 2597 } else { 2598 OutStreamer->EmitLabel(MBB.getSymbol()); 2599 } 2600 } 2601 2602 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2603 bool IsDefinition) const { 2604 MCSymbolAttr Attr = MCSA_Invalid; 2605 2606 switch (Visibility) { 2607 default: break; 2608 case GlobalValue::HiddenVisibility: 2609 if (IsDefinition) 2610 Attr = MAI->getHiddenVisibilityAttr(); 2611 else 2612 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2613 break; 2614 case GlobalValue::ProtectedVisibility: 2615 Attr = MAI->getProtectedVisibilityAttr(); 2616 break; 2617 } 2618 2619 if (Attr != MCSA_Invalid) 2620 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2621 } 2622 2623 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2624 /// exactly one predecessor and the control transfer mechanism between 2625 /// the predecessor and this block is a fall-through. 2626 bool AsmPrinter:: 2627 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2628 // If this is a landing pad, it isn't a fall through. If it has no preds, 2629 // then nothing falls through to it. 2630 if (MBB->isEHPad() || MBB->pred_empty()) 2631 return false; 2632 2633 // If there isn't exactly one predecessor, it can't be a fall through. 2634 if (MBB->pred_size() > 1) 2635 return false; 2636 2637 // The predecessor has to be immediately before this block. 2638 MachineBasicBlock *Pred = *MBB->pred_begin(); 2639 if (!Pred->isLayoutSuccessor(MBB)) 2640 return false; 2641 2642 // If the block is completely empty, then it definitely does fall through. 2643 if (Pred->empty()) 2644 return true; 2645 2646 // Check the terminators in the previous blocks 2647 for (const auto &MI : Pred->terminators()) { 2648 // If it is not a simple branch, we are in a table somewhere. 2649 if (!MI.isBranch() || MI.isIndirectBranch()) 2650 return false; 2651 2652 // If we are the operands of one of the branches, this is not a fall 2653 // through. Note that targets with delay slots will usually bundle 2654 // terminators with the delay slot instruction. 2655 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2656 if (OP->isJTI()) 2657 return false; 2658 if (OP->isMBB() && OP->getMBB() == MBB) 2659 return false; 2660 } 2661 } 2662 2663 return true; 2664 } 2665 2666 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2667 if (!S.usesMetadata()) 2668 return nullptr; 2669 2670 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2671 " stackmap formats, please see the documentation for a description of" 2672 " the default format. If you really need a custom serialized format," 2673 " please file a bug"); 2674 2675 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2676 gcp_map_type::iterator GCPI = GCMap.find(&S); 2677 if (GCPI != GCMap.end()) 2678 return GCPI->second.get(); 2679 2680 auto Name = S.getName(); 2681 2682 for (GCMetadataPrinterRegistry::iterator 2683 I = GCMetadataPrinterRegistry::begin(), 2684 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2685 if (Name == I->getName()) { 2686 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2687 GMP->S = &S; 2688 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2689 return IterBool.first->second.get(); 2690 } 2691 2692 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2693 } 2694 2695 /// Pin vtable to this file. 2696 AsmPrinterHandler::~AsmPrinterHandler() = default; 2697 2698 void AsmPrinterHandler::markFunctionEnd() {} 2699 2700 // In the binary's "xray_instr_map" section, an array of these function entries 2701 // describes each instrumentation point. When XRay patches your code, the index 2702 // into this table will be given to your handler as a patch point identifier. 2703 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2704 const MCSymbol *CurrentFnSym) const { 2705 Out->EmitSymbolValue(Sled, Bytes); 2706 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2707 auto Kind8 = static_cast<uint8_t>(Kind); 2708 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2709 Out->EmitBytes( 2710 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2711 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2712 } 2713 2714 void AsmPrinter::emitXRayTable() { 2715 if (Sleds.empty()) 2716 return; 2717 2718 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2719 auto Fn = MF->getFunction(); 2720 MCSection *Section = nullptr; 2721 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2722 if (Fn->hasComdat()) { 2723 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2724 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2725 Fn->getComdat()->getName()); 2726 } else { 2727 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2728 ELF::SHF_ALLOC); 2729 } 2730 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2731 Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2732 SectionKind::getReadOnlyWithRel()); 2733 } else { 2734 llvm_unreachable("Unsupported target"); 2735 } 2736 2737 // Before we switch over, we force a reference to a label inside the 2738 // xray_instr_map section. Since this function is always called just 2739 // before the function's end, we assume that this is happening after 2740 // the last return instruction. 2741 2742 auto WordSizeBytes = TM.getPointerSize(); 2743 MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true); 2744 OutStreamer->EmitCodeAlignment(16); 2745 OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false); 2746 OutStreamer->SwitchSection(Section); 2747 OutStreamer->EmitLabel(Tmp); 2748 for (const auto &Sled : Sleds) 2749 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2750 2751 OutStreamer->SwitchSection(PrevSection); 2752 Sleds.clear(); 2753 } 2754 2755 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2756 SledKind Kind) { 2757 auto Fn = MI.getParent()->getParent()->getFunction(); 2758 auto Attr = Fn->getFnAttribute("function-instrument"); 2759 bool LogArgs = Fn->hasFnAttribute("xray-log-args"); 2760 bool AlwaysInstrument = 2761 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2762 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 2763 Kind = SledKind::LOG_ARGS_ENTER; 2764 Sleds.emplace_back( 2765 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2766 } 2767 2768 uint16_t AsmPrinter::getDwarfVersion() const { 2769 return OutStreamer->getContext().getDwarfVersion(); 2770 } 2771 2772 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2773 OutStreamer->getContext().setDwarfVersion(Version); 2774 } 2775