1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WinCodeViewLineTables.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/JumpInstrTableInfo.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfo.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbol.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/Format.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/Timer.h" 46 #include "llvm/Target/TargetFrameLowering.h" 47 #include "llvm/Target/TargetInstrInfo.h" 48 #include "llvm/Target/TargetLowering.h" 49 #include "llvm/Target/TargetLoweringObjectFile.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include "llvm/Target/TargetRegisterInfo.h" 52 #include "llvm/Target/TargetSubtargetInfo.h" 53 #include "llvm/Transforms/Utils/GlobalStatus.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = TD.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 102 : MachineFunctionPass(ID), 103 TM(tm), MAI(tm.getMCAsmInfo()), MII(tm.getInstrInfo()), 104 OutContext(Streamer.getContext()), 105 OutStreamer(Streamer), 106 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 107 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 108 CurrentFnSym = CurrentFnSymForSize = nullptr; 109 GCMetadataPrinters = nullptr; 110 VerboseAsm = Streamer.isVerboseAsm(); 111 } 112 113 AsmPrinter::~AsmPrinter() { 114 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 115 116 if (GCMetadataPrinters) { 117 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 118 119 delete &GCMap; 120 GCMetadataPrinters = nullptr; 121 } 122 123 delete &OutStreamer; 124 } 125 126 /// getFunctionNumber - Return a unique ID for the current function. 127 /// 128 unsigned AsmPrinter::getFunctionNumber() const { 129 return MF->getFunctionNumber(); 130 } 131 132 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 133 return TM.getTargetLowering()->getObjFileLowering(); 134 } 135 136 /// getDataLayout - Return information about data layout. 137 const DataLayout &AsmPrinter::getDataLayout() const { 138 return *TM.getDataLayout(); 139 } 140 141 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 142 return TM.getSubtarget<MCSubtargetInfo>(); 143 } 144 145 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 146 S.EmitInstruction(Inst, getSubtargetInfo()); 147 } 148 149 StringRef AsmPrinter::getTargetTriple() const { 150 return TM.getTargetTriple(); 151 } 152 153 /// getCurrentSection() - Return the current section we are emitting to. 154 const MCSection *AsmPrinter::getCurrentSection() const { 155 return OutStreamer.getCurrentSection().first; 156 } 157 158 159 160 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 161 AU.setPreservesAll(); 162 MachineFunctionPass::getAnalysisUsage(AU); 163 AU.addRequired<MachineModuleInfo>(); 164 AU.addRequired<GCModuleInfo>(); 165 if (isVerbose()) 166 AU.addRequired<MachineLoopInfo>(); 167 } 168 169 bool AsmPrinter::doInitialization(Module &M) { 170 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 171 MMI->AnalyzeModule(M); 172 173 // Initialize TargetLoweringObjectFile. 174 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 175 .Initialize(OutContext, TM); 176 177 OutStreamer.InitSections(); 178 179 Mang = new Mangler(TM.getDataLayout()); 180 181 // Emit the version-min deplyment target directive if needed. 182 // 183 // FIXME: If we end up with a collection of these sorts of Darwin-specific 184 // or ELF-specific things, it may make sense to have a platform helper class 185 // that will work with the target helper class. For now keep it here, as the 186 // alternative is duplicated code in each of the target asm printers that 187 // use the directive, where it would need the same conditionalization 188 // anyway. 189 Triple TT(getTargetTriple()); 190 if (TT.isOSDarwin()) { 191 unsigned Major, Minor, Update; 192 TT.getOSVersion(Major, Minor, Update); 193 // If there is a version specified, Major will be non-zero. 194 if (Major) 195 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 196 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 197 Major, Minor, Update); 198 } 199 200 // Allow the target to emit any magic that it wants at the start of the file. 201 EmitStartOfAsmFile(M); 202 203 // Very minimal debug info. It is ignored if we emit actual debug info. If we 204 // don't, this at least helps the user find where a global came from. 205 if (MAI->hasSingleParameterDotFile()) { 206 // .file "foo.c" 207 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 208 } 209 210 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 211 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 212 for (auto &I : *MI) 213 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 214 MP->beginAssembly(*this); 215 216 // Emit module-level inline asm if it exists. 217 if (!M.getModuleInlineAsm().empty()) { 218 OutStreamer.AddComment("Start of file scope inline assembly"); 219 OutStreamer.AddBlankLine(); 220 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 221 OutStreamer.AddComment("End of file scope inline assembly"); 222 OutStreamer.AddBlankLine(); 223 } 224 225 if (MAI->doesSupportDebugInformation()) { 226 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 227 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 228 DbgTimerName, 229 CodeViewLineTablesGroupName)); 230 } else { 231 DD = new DwarfDebug(this, &M); 232 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 233 } 234 } 235 236 EHStreamer *ES = nullptr; 237 switch (MAI->getExceptionHandlingType()) { 238 case ExceptionHandling::None: 239 break; 240 case ExceptionHandling::SjLj: 241 case ExceptionHandling::DwarfCFI: 242 ES = new DwarfCFIException(this); 243 break; 244 case ExceptionHandling::ARM: 245 ES = new ARMException(this); 246 break; 247 case ExceptionHandling::Win64: 248 ES = new Win64Exception(this); 249 break; 250 } 251 if (ES) 252 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 253 return false; 254 } 255 256 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 257 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 258 if (Linkage != GlobalValue::LinkOnceODRLinkage) 259 return false; 260 261 if (!MAI.hasWeakDefCanBeHiddenDirective()) 262 return false; 263 264 if (GV->hasUnnamedAddr()) 265 return true; 266 267 // This is only used for MachO, so right now it doesn't really matter how 268 // we handle alias. Revisit this once the MachO linker implements aliases. 269 if (isa<GlobalAlias>(GV)) 270 return false; 271 272 // If it is a non constant variable, it needs to be uniqued across shared 273 // objects. 274 if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) { 275 if (!Var->isConstant()) 276 return false; 277 } 278 279 GlobalStatus GS; 280 if (!GlobalStatus::analyzeGlobal(GV, GS) && !GS.IsCompared) 281 return true; 282 283 return false; 284 } 285 286 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 287 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 288 switch (Linkage) { 289 case GlobalValue::CommonLinkage: 290 case GlobalValue::LinkOnceAnyLinkage: 291 case GlobalValue::LinkOnceODRLinkage: 292 case GlobalValue::WeakAnyLinkage: 293 case GlobalValue::WeakODRLinkage: 294 if (MAI->hasWeakDefDirective()) { 295 // .globl _foo 296 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 297 298 if (!canBeHidden(GV, *MAI)) 299 // .weak_definition _foo 300 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 301 else 302 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 303 } else if (MAI->hasLinkOnceDirective()) { 304 // .globl _foo 305 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 306 //NOTE: linkonce is handled by the section the symbol was assigned to. 307 } else { 308 // .weak _foo 309 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 310 } 311 return; 312 case GlobalValue::AppendingLinkage: 313 // FIXME: appending linkage variables should go into a section of 314 // their name or something. For now, just emit them as external. 315 case GlobalValue::ExternalLinkage: 316 // If external or appending, declare as a global symbol. 317 // .globl _foo 318 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 319 return; 320 case GlobalValue::PrivateLinkage: 321 case GlobalValue::InternalLinkage: 322 return; 323 case GlobalValue::AvailableExternallyLinkage: 324 llvm_unreachable("Should never emit this"); 325 case GlobalValue::ExternalWeakLinkage: 326 llvm_unreachable("Don't know how to emit these"); 327 } 328 llvm_unreachable("Unknown linkage type!"); 329 } 330 331 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 332 const GlobalValue *GV) const { 333 TM.getNameWithPrefix(Name, GV, *Mang); 334 } 335 336 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 337 return TM.getSymbol(GV, *Mang); 338 } 339 340 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 341 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 342 if (GV->hasInitializer()) { 343 // Check to see if this is a special global used by LLVM, if so, emit it. 344 if (EmitSpecialLLVMGlobal(GV)) 345 return; 346 347 if (isVerbose()) { 348 GV->printAsOperand(OutStreamer.GetCommentOS(), 349 /*PrintType=*/false, GV->getParent()); 350 OutStreamer.GetCommentOS() << '\n'; 351 } 352 } 353 354 MCSymbol *GVSym = getSymbol(GV); 355 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 356 357 if (!GV->hasInitializer()) // External globals require no extra code. 358 return; 359 360 if (MAI->hasDotTypeDotSizeDirective()) 361 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 362 363 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 364 365 const DataLayout *DL = TM.getDataLayout(); 366 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 367 368 // If the alignment is specified, we *must* obey it. Overaligning a global 369 // with a specified alignment is a prompt way to break globals emitted to 370 // sections and expected to be contiguous (e.g. ObjC metadata). 371 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 372 373 for (const HandlerInfo &HI : Handlers) { 374 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 375 HI.Handler->setSymbolSize(GVSym, Size); 376 } 377 378 // Handle common and BSS local symbols (.lcomm). 379 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 380 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 381 unsigned Align = 1 << AlignLog; 382 383 // Handle common symbols. 384 if (GVKind.isCommon()) { 385 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 386 Align = 0; 387 388 // .comm _foo, 42, 4 389 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 390 return; 391 } 392 393 // Handle local BSS symbols. 394 if (MAI->hasMachoZeroFillDirective()) { 395 const MCSection *TheSection = 396 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 397 // .zerofill __DATA, __bss, _foo, 400, 5 398 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 399 return; 400 } 401 402 // Use .lcomm only if it supports user-specified alignment. 403 // Otherwise, while it would still be correct to use .lcomm in some 404 // cases (e.g. when Align == 1), the external assembler might enfore 405 // some -unknown- default alignment behavior, which could cause 406 // spurious differences between external and integrated assembler. 407 // Prefer to simply fall back to .local / .comm in this case. 408 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 409 // .lcomm _foo, 42 410 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 411 return; 412 } 413 414 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 415 Align = 0; 416 417 // .local _foo 418 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 419 // .comm _foo, 42, 4 420 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 421 return; 422 } 423 424 const MCSection *TheSection = 425 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 426 427 // Handle the zerofill directive on darwin, which is a special form of BSS 428 // emission. 429 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 430 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 431 432 // .globl _foo 433 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 434 // .zerofill __DATA, __common, _foo, 400, 5 435 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 436 return; 437 } 438 439 // Handle thread local data for mach-o which requires us to output an 440 // additional structure of data and mangle the original symbol so that we 441 // can reference it later. 442 // 443 // TODO: This should become an "emit thread local global" method on TLOF. 444 // All of this macho specific stuff should be sunk down into TLOFMachO and 445 // stuff like "TLSExtraDataSection" should no longer be part of the parent 446 // TLOF class. This will also make it more obvious that stuff like 447 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 448 // specific code. 449 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 450 // Emit the .tbss symbol 451 MCSymbol *MangSym = 452 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 453 454 if (GVKind.isThreadBSS()) { 455 TheSection = getObjFileLowering().getTLSBSSSection(); 456 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 457 } else if (GVKind.isThreadData()) { 458 OutStreamer.SwitchSection(TheSection); 459 460 EmitAlignment(AlignLog, GV); 461 OutStreamer.EmitLabel(MangSym); 462 463 EmitGlobalConstant(GV->getInitializer()); 464 } 465 466 OutStreamer.AddBlankLine(); 467 468 // Emit the variable struct for the runtime. 469 const MCSection *TLVSect 470 = getObjFileLowering().getTLSExtraDataSection(); 471 472 OutStreamer.SwitchSection(TLVSect); 473 // Emit the linkage here. 474 EmitLinkage(GV, GVSym); 475 OutStreamer.EmitLabel(GVSym); 476 477 // Three pointers in size: 478 // - __tlv_bootstrap - used to make sure support exists 479 // - spare pointer, used when mapped by the runtime 480 // - pointer to mangled symbol above with initializer 481 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 482 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 483 PtrSize); 484 OutStreamer.EmitIntValue(0, PtrSize); 485 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 486 487 OutStreamer.AddBlankLine(); 488 return; 489 } 490 491 OutStreamer.SwitchSection(TheSection); 492 493 EmitLinkage(GV, GVSym); 494 EmitAlignment(AlignLog, GV); 495 496 OutStreamer.EmitLabel(GVSym); 497 498 EmitGlobalConstant(GV->getInitializer()); 499 500 if (MAI->hasDotTypeDotSizeDirective()) 501 // .size foo, 42 502 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 503 504 OutStreamer.AddBlankLine(); 505 } 506 507 /// EmitFunctionHeader - This method emits the header for the current 508 /// function. 509 void AsmPrinter::EmitFunctionHeader() { 510 // Print out constants referenced by the function 511 EmitConstantPool(); 512 513 // Print the 'header' of function. 514 const Function *F = MF->getFunction(); 515 516 OutStreamer.SwitchSection( 517 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 518 EmitVisibility(CurrentFnSym, F->getVisibility()); 519 520 EmitLinkage(F, CurrentFnSym); 521 EmitAlignment(MF->getAlignment(), F); 522 523 if (MAI->hasDotTypeDotSizeDirective()) 524 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 525 526 if (isVerbose()) { 527 F->printAsOperand(OutStreamer.GetCommentOS(), 528 /*PrintType=*/false, F->getParent()); 529 OutStreamer.GetCommentOS() << '\n'; 530 } 531 532 // Emit the CurrentFnSym. This is a virtual function to allow targets to 533 // do their wild and crazy things as required. 534 EmitFunctionEntryLabel(); 535 536 // If the function had address-taken blocks that got deleted, then we have 537 // references to the dangling symbols. Emit them at the start of the function 538 // so that we don't get references to undefined symbols. 539 std::vector<MCSymbol*> DeadBlockSyms; 540 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 541 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 542 OutStreamer.AddComment("Address taken block that was later removed"); 543 OutStreamer.EmitLabel(DeadBlockSyms[i]); 544 } 545 546 // Emit pre-function debug and/or EH information. 547 for (const HandlerInfo &HI : Handlers) { 548 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 549 HI.Handler->beginFunction(MF); 550 } 551 552 // Emit the prefix data. 553 if (F->hasPrefixData()) 554 EmitGlobalConstant(F->getPrefixData()); 555 } 556 557 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 558 /// function. This can be overridden by targets as required to do custom stuff. 559 void AsmPrinter::EmitFunctionEntryLabel() { 560 // The function label could have already been emitted if two symbols end up 561 // conflicting due to asm renaming. Detect this and emit an error. 562 if (CurrentFnSym->isUndefined()) 563 return OutStreamer.EmitLabel(CurrentFnSym); 564 565 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 566 "' label emitted multiple times to assembly file"); 567 } 568 569 /// emitComments - Pretty-print comments for instructions. 570 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 571 const MachineFunction *MF = MI.getParent()->getParent(); 572 const TargetMachine &TM = MF->getTarget(); 573 574 // Check for spills and reloads 575 int FI; 576 577 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 578 579 // We assume a single instruction only has a spill or reload, not 580 // both. 581 const MachineMemOperand *MMO; 582 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 583 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 584 MMO = *MI.memoperands_begin(); 585 CommentOS << MMO->getSize() << "-byte Reload\n"; 586 } 587 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 588 if (FrameInfo->isSpillSlotObjectIndex(FI)) 589 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 590 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 591 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 592 MMO = *MI.memoperands_begin(); 593 CommentOS << MMO->getSize() << "-byte Spill\n"; 594 } 595 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 596 if (FrameInfo->isSpillSlotObjectIndex(FI)) 597 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 598 } 599 600 // Check for spill-induced copies 601 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 602 CommentOS << " Reload Reuse\n"; 603 } 604 605 /// emitImplicitDef - This method emits the specified machine instruction 606 /// that is an implicit def. 607 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 608 unsigned RegNo = MI->getOperand(0).getReg(); 609 OutStreamer.AddComment(Twine("implicit-def: ") + 610 TM.getRegisterInfo()->getName(RegNo)); 611 OutStreamer.AddBlankLine(); 612 } 613 614 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 615 std::string Str = "kill:"; 616 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 617 const MachineOperand &Op = MI->getOperand(i); 618 assert(Op.isReg() && "KILL instruction must have only register operands"); 619 Str += ' '; 620 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 621 Str += (Op.isDef() ? "<def>" : "<kill>"); 622 } 623 AP.OutStreamer.AddComment(Str); 624 AP.OutStreamer.AddBlankLine(); 625 } 626 627 /// emitDebugValueComment - This method handles the target-independent form 628 /// of DBG_VALUE, returning true if it was able to do so. A false return 629 /// means the target will need to handle MI in EmitInstruction. 630 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 631 // This code handles only the 3-operand target-independent form. 632 if (MI->getNumOperands() != 3) 633 return false; 634 635 SmallString<128> Str; 636 raw_svector_ostream OS(Str); 637 OS << "DEBUG_VALUE: "; 638 639 DIVariable V(MI->getOperand(2).getMetadata()); 640 if (V.getContext().isSubprogram()) { 641 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 642 if (!Name.empty()) 643 OS << Name << ":"; 644 } 645 OS << V.getName() << " <- "; 646 647 // The second operand is only an offset if it's an immediate. 648 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 649 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 650 651 // Register or immediate value. Register 0 means undef. 652 if (MI->getOperand(0).isFPImm()) { 653 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 654 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 655 OS << (double)APF.convertToFloat(); 656 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 657 OS << APF.convertToDouble(); 658 } else { 659 // There is no good way to print long double. Convert a copy to 660 // double. Ah well, it's only a comment. 661 bool ignored; 662 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 663 &ignored); 664 OS << "(long double) " << APF.convertToDouble(); 665 } 666 } else if (MI->getOperand(0).isImm()) { 667 OS << MI->getOperand(0).getImm(); 668 } else if (MI->getOperand(0).isCImm()) { 669 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 670 } else { 671 unsigned Reg; 672 if (MI->getOperand(0).isReg()) { 673 Reg = MI->getOperand(0).getReg(); 674 } else { 675 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 676 const TargetFrameLowering *TFI = AP.TM.getFrameLowering(); 677 Offset += TFI->getFrameIndexReference(*AP.MF, 678 MI->getOperand(0).getIndex(), Reg); 679 Deref = true; 680 } 681 if (Reg == 0) { 682 // Suppress offset, it is not meaningful here. 683 OS << "undef"; 684 // NOTE: Want this comment at start of line, don't emit with AddComment. 685 AP.OutStreamer.emitRawComment(OS.str()); 686 return true; 687 } 688 if (Deref) 689 OS << '['; 690 OS << AP.TM.getRegisterInfo()->getName(Reg); 691 } 692 693 if (Deref) 694 OS << '+' << Offset << ']'; 695 696 // NOTE: Want this comment at start of line, don't emit with AddComment. 697 AP.OutStreamer.emitRawComment(OS.str()); 698 return true; 699 } 700 701 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 702 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 703 MF->getFunction()->needsUnwindTableEntry()) 704 return CFI_M_EH; 705 706 if (MMI->hasDebugInfo()) 707 return CFI_M_Debug; 708 709 return CFI_M_None; 710 } 711 712 bool AsmPrinter::needsSEHMoves() { 713 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 714 MF->getFunction()->needsUnwindTableEntry(); 715 } 716 717 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 718 ExceptionHandling::ExceptionsType ExceptionHandlingType = 719 MAI->getExceptionHandlingType(); 720 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 721 ExceptionHandlingType != ExceptionHandling::ARM) 722 return; 723 724 if (needsCFIMoves() == CFI_M_None) 725 return; 726 727 if (MMI->getCompactUnwindEncoding() != 0) 728 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 729 730 const MachineModuleInfo &MMI = MF->getMMI(); 731 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 732 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 733 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 734 emitCFIInstruction(CFI); 735 } 736 737 /// EmitFunctionBody - This method emits the body and trailer for a 738 /// function. 739 void AsmPrinter::EmitFunctionBody() { 740 // Emit target-specific gunk before the function body. 741 EmitFunctionBodyStart(); 742 743 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 744 745 // Print out code for the function. 746 bool HasAnyRealCode = false; 747 const MachineInstr *LastMI = nullptr; 748 for (auto &MBB : *MF) { 749 // Print a label for the basic block. 750 EmitBasicBlockStart(MBB); 751 for (auto &MI : MBB) { 752 LastMI = &MI; 753 754 // Print the assembly for the instruction. 755 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 756 !MI.isDebugValue()) { 757 HasAnyRealCode = true; 758 ++EmittedInsts; 759 } 760 761 if (ShouldPrintDebugScopes) { 762 for (const HandlerInfo &HI : Handlers) { 763 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 764 TimePassesIsEnabled); 765 HI.Handler->beginInstruction(&MI); 766 } 767 } 768 769 if (isVerbose()) 770 emitComments(MI, OutStreamer.GetCommentOS()); 771 772 switch (MI.getOpcode()) { 773 case TargetOpcode::CFI_INSTRUCTION: 774 emitCFIInstruction(MI); 775 break; 776 777 case TargetOpcode::EH_LABEL: 778 case TargetOpcode::GC_LABEL: 779 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 780 break; 781 case TargetOpcode::INLINEASM: 782 EmitInlineAsm(&MI); 783 break; 784 case TargetOpcode::DBG_VALUE: 785 if (isVerbose()) { 786 if (!emitDebugValueComment(&MI, *this)) 787 EmitInstruction(&MI); 788 } 789 break; 790 case TargetOpcode::IMPLICIT_DEF: 791 if (isVerbose()) emitImplicitDef(&MI); 792 break; 793 case TargetOpcode::KILL: 794 if (isVerbose()) emitKill(&MI, *this); 795 break; 796 default: 797 EmitInstruction(&MI); 798 break; 799 } 800 801 if (ShouldPrintDebugScopes) { 802 for (const HandlerInfo &HI : Handlers) { 803 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 804 TimePassesIsEnabled); 805 HI.Handler->endInstruction(); 806 } 807 } 808 } 809 } 810 811 // If the last instruction was a prolog label, then we have a situation where 812 // we emitted a prolog but no function body. This results in the ending prolog 813 // label equaling the end of function label and an invalid "row" in the 814 // FDE. We need to emit a noop in this situation so that the FDE's rows are 815 // valid. 816 bool RequiresNoop = LastMI && LastMI->isCFIInstruction(); 817 818 // If the function is empty and the object file uses .subsections_via_symbols, 819 // then we need to emit *something* to the function body to prevent the 820 // labels from collapsing together. Just emit a noop. 821 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 822 MCInst Noop; 823 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 824 if (Noop.getOpcode()) { 825 OutStreamer.AddComment("avoids zero-length function"); 826 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 827 } else // Target not mc-ized yet. 828 OutStreamer.EmitRawText(StringRef("\tnop\n")); 829 } 830 831 const Function *F = MF->getFunction(); 832 for (const auto &BB : *F) { 833 if (!BB.hasAddressTaken()) 834 continue; 835 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 836 if (Sym->isDefined()) 837 continue; 838 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 839 OutStreamer.EmitLabel(Sym); 840 } 841 842 // Emit target-specific gunk after the function body. 843 EmitFunctionBodyEnd(); 844 845 // If the target wants a .size directive for the size of the function, emit 846 // it. 847 if (MAI->hasDotTypeDotSizeDirective()) { 848 // Create a symbol for the end of function, so we can get the size as 849 // difference between the function label and the temp label. 850 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 851 OutStreamer.EmitLabel(FnEndLabel); 852 853 const MCExpr *SizeExp = 854 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 855 MCSymbolRefExpr::Create(CurrentFnSymForSize, 856 OutContext), 857 OutContext); 858 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 859 } 860 861 // Emit post-function debug and/or EH information. 862 for (const HandlerInfo &HI : Handlers) { 863 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 864 HI.Handler->endFunction(MF); 865 } 866 MMI->EndFunction(); 867 868 // Print out jump tables referenced by the function. 869 EmitJumpTableInfo(); 870 871 OutStreamer.AddBlankLine(); 872 } 873 874 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP); 875 876 bool AsmPrinter::doFinalization(Module &M) { 877 // Emit global variables. 878 for (const auto &G : M.globals()) 879 EmitGlobalVariable(&G); 880 881 // Emit visibility info for declarations 882 for (const Function &F : M) { 883 if (!F.isDeclaration()) 884 continue; 885 GlobalValue::VisibilityTypes V = F.getVisibility(); 886 if (V == GlobalValue::DefaultVisibility) 887 continue; 888 889 MCSymbol *Name = getSymbol(&F); 890 EmitVisibility(Name, V, false); 891 } 892 893 // Get information about jump-instruction tables to print. 894 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>(); 895 896 if (JITI && !JITI->getTables().empty()) { 897 unsigned Arch = Triple(getTargetTriple()).getArch(); 898 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb); 899 MCInst TrapInst; 900 TM.getInstrInfo()->getTrap(TrapInst); 901 for (const auto &KV : JITI->getTables()) { 902 uint64_t Count = 0; 903 for (const auto &FunPair : KV.second) { 904 // Emit the function labels to make this be a function entry point. 905 MCSymbol *FunSym = 906 OutContext.GetOrCreateSymbol(FunPair.second->getName()); 907 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global); 908 // FIXME: JumpTableInstrInfo should store information about the required 909 // alignment of table entries and the size of the padding instruction. 910 EmitAlignment(3); 911 if (IsThumb) 912 OutStreamer.EmitThumbFunc(FunSym); 913 if (MAI->hasDotTypeDotSizeDirective()) 914 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction); 915 OutStreamer.EmitLabel(FunSym); 916 917 // Emit the jump instruction to transfer control to the original 918 // function. 919 MCInst JumpToFun; 920 MCSymbol *TargetSymbol = 921 OutContext.GetOrCreateSymbol(FunPair.first->getName()); 922 const MCSymbolRefExpr *TargetSymRef = 923 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT, 924 OutContext); 925 TM.getInstrInfo()->getUnconditionalBranch(JumpToFun, TargetSymRef); 926 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo()); 927 ++Count; 928 } 929 930 // Emit enough padding instructions to fill up to the next power of two. 931 // This assumes that the trap instruction takes 8 bytes or fewer. 932 uint64_t Remaining = NextPowerOf2(Count) - Count; 933 for (uint64_t C = 0; C < Remaining; ++C) { 934 EmitAlignment(3); 935 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo()); 936 } 937 938 } 939 } 940 941 // Emit module flags. 942 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 943 M.getModuleFlagsMetadata(ModuleFlags); 944 if (!ModuleFlags.empty()) 945 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 946 947 // Make sure we wrote out everything we need. 948 OutStreamer.Flush(); 949 950 // Finalize debug and EH information. 951 for (const HandlerInfo &HI : Handlers) { 952 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 953 TimePassesIsEnabled); 954 HI.Handler->endModule(); 955 delete HI.Handler; 956 } 957 Handlers.clear(); 958 DD = nullptr; 959 960 // If the target wants to know about weak references, print them all. 961 if (MAI->getWeakRefDirective()) { 962 // FIXME: This is not lazy, it would be nice to only print weak references 963 // to stuff that is actually used. Note that doing so would require targets 964 // to notice uses in operands (due to constant exprs etc). This should 965 // happen with the MC stuff eventually. 966 967 // Print out module-level global variables here. 968 for (const auto &G : M.globals()) { 969 if (!G.hasExternalWeakLinkage()) 970 continue; 971 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 972 } 973 974 for (const auto &F : M) { 975 if (!F.hasExternalWeakLinkage()) 976 continue; 977 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 978 } 979 } 980 981 if (MAI->hasSetDirective()) { 982 OutStreamer.AddBlankLine(); 983 for (const auto &Alias : M.aliases()) { 984 MCSymbol *Name = getSymbol(&Alias); 985 986 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 987 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 988 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 989 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 990 else 991 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 992 993 EmitVisibility(Name, Alias.getVisibility()); 994 995 // Emit the directives as assignments aka .set: 996 OutStreamer.EmitAssignment(Name, 997 lowerConstant(Alias.getAliasee(), *this)); 998 } 999 } 1000 1001 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1002 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1003 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1004 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1005 MP->finishAssembly(*this); 1006 1007 // Emit llvm.ident metadata in an '.ident' directive. 1008 EmitModuleIdents(M); 1009 1010 // If we don't have any trampolines, then we don't require stack memory 1011 // to be executable. Some targets have a directive to declare this. 1012 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1013 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1014 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1015 OutStreamer.SwitchSection(S); 1016 1017 // Allow the target to emit any magic that it wants at the end of the file, 1018 // after everything else has gone out. 1019 EmitEndOfAsmFile(M); 1020 1021 delete Mang; Mang = nullptr; 1022 MMI = nullptr; 1023 1024 OutStreamer.Finish(); 1025 OutStreamer.reset(); 1026 1027 return false; 1028 } 1029 1030 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1031 this->MF = &MF; 1032 // Get the function symbol. 1033 CurrentFnSym = getSymbol(MF.getFunction()); 1034 CurrentFnSymForSize = CurrentFnSym; 1035 1036 if (isVerbose()) 1037 LI = &getAnalysis<MachineLoopInfo>(); 1038 } 1039 1040 namespace { 1041 // SectionCPs - Keep track the alignment, constpool entries per Section. 1042 struct SectionCPs { 1043 const MCSection *S; 1044 unsigned Alignment; 1045 SmallVector<unsigned, 4> CPEs; 1046 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1047 }; 1048 } 1049 1050 /// EmitConstantPool - Print to the current output stream assembly 1051 /// representations of the constants in the constant pool MCP. This is 1052 /// used to print out constants which have been "spilled to memory" by 1053 /// the code generator. 1054 /// 1055 void AsmPrinter::EmitConstantPool() { 1056 const MachineConstantPool *MCP = MF->getConstantPool(); 1057 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1058 if (CP.empty()) return; 1059 1060 // Calculate sections for constant pool entries. We collect entries to go into 1061 // the same section together to reduce amount of section switch statements. 1062 SmallVector<SectionCPs, 4> CPSections; 1063 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1064 const MachineConstantPoolEntry &CPE = CP[i]; 1065 unsigned Align = CPE.getAlignment(); 1066 1067 SectionKind Kind; 1068 switch (CPE.getRelocationInfo()) { 1069 default: llvm_unreachable("Unknown section kind"); 1070 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 1071 case 1: 1072 Kind = SectionKind::getReadOnlyWithRelLocal(); 1073 break; 1074 case 0: 1075 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { 1076 case 4: Kind = SectionKind::getMergeableConst4(); break; 1077 case 8: Kind = SectionKind::getMergeableConst8(); break; 1078 case 16: Kind = SectionKind::getMergeableConst16();break; 1079 default: Kind = SectionKind::getMergeableConst(); break; 1080 } 1081 } 1082 1083 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 1084 1085 // The number of sections are small, just do a linear search from the 1086 // last section to the first. 1087 bool Found = false; 1088 unsigned SecIdx = CPSections.size(); 1089 while (SecIdx != 0) { 1090 if (CPSections[--SecIdx].S == S) { 1091 Found = true; 1092 break; 1093 } 1094 } 1095 if (!Found) { 1096 SecIdx = CPSections.size(); 1097 CPSections.push_back(SectionCPs(S, Align)); 1098 } 1099 1100 if (Align > CPSections[SecIdx].Alignment) 1101 CPSections[SecIdx].Alignment = Align; 1102 CPSections[SecIdx].CPEs.push_back(i); 1103 } 1104 1105 // Now print stuff into the calculated sections. 1106 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1107 OutStreamer.SwitchSection(CPSections[i].S); 1108 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1109 1110 unsigned Offset = 0; 1111 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1112 unsigned CPI = CPSections[i].CPEs[j]; 1113 MachineConstantPoolEntry CPE = CP[CPI]; 1114 1115 // Emit inter-object padding for alignment. 1116 unsigned AlignMask = CPE.getAlignment() - 1; 1117 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1118 OutStreamer.EmitZeros(NewOffset - Offset); 1119 1120 Type *Ty = CPE.getType(); 1121 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); 1122 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1123 1124 if (CPE.isMachineConstantPoolEntry()) 1125 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1126 else 1127 EmitGlobalConstant(CPE.Val.ConstVal); 1128 } 1129 } 1130 } 1131 1132 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1133 /// by the current function to the current output stream. 1134 /// 1135 void AsmPrinter::EmitJumpTableInfo() { 1136 const DataLayout *DL = MF->getTarget().getDataLayout(); 1137 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1138 if (!MJTI) return; 1139 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1140 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1141 if (JT.empty()) return; 1142 1143 // Pick the directive to use to print the jump table entries, and switch to 1144 // the appropriate section. 1145 const Function *F = MF->getFunction(); 1146 bool JTInDiffSection = false; 1147 if (// In PIC mode, we need to emit the jump table to the same section as the 1148 // function body itself, otherwise the label differences won't make sense. 1149 // FIXME: Need a better predicate for this: what about custom entries? 1150 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1151 // We should also do if the section name is NULL or function is declared 1152 // in discardable section 1153 // FIXME: this isn't the right predicate, should be based on the MCSection 1154 // for the function. 1155 F->isWeakForLinker()) { 1156 OutStreamer.SwitchSection( 1157 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1158 } else { 1159 // Otherwise, drop it in the readonly section. 1160 const MCSection *ReadOnlySection = 1161 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1162 OutStreamer.SwitchSection(ReadOnlySection); 1163 JTInDiffSection = true; 1164 } 1165 1166 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); 1167 1168 // Jump tables in code sections are marked with a data_region directive 1169 // where that's supported. 1170 if (!JTInDiffSection) 1171 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1172 1173 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1174 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1175 1176 // If this jump table was deleted, ignore it. 1177 if (JTBBs.empty()) continue; 1178 1179 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1180 // .set directive for each unique entry. This reduces the number of 1181 // relocations the assembler will generate for the jump table. 1182 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1183 MAI->hasSetDirective()) { 1184 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1185 const TargetLowering *TLI = TM.getTargetLowering(); 1186 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1187 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1188 const MachineBasicBlock *MBB = JTBBs[ii]; 1189 if (!EmittedSets.insert(MBB)) continue; 1190 1191 // .set LJTSet, LBB32-base 1192 const MCExpr *LHS = 1193 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1194 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1195 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1196 } 1197 } 1198 1199 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1200 // before each jump table. The first label is never referenced, but tells 1201 // the assembler and linker the extents of the jump table object. The 1202 // second label is actually referenced by the code. 1203 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1204 // FIXME: This doesn't have to have any specific name, just any randomly 1205 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1206 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1207 1208 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1209 1210 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1211 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1212 } 1213 if (!JTInDiffSection) 1214 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1215 } 1216 1217 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1218 /// current stream. 1219 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1220 const MachineBasicBlock *MBB, 1221 unsigned UID) const { 1222 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1223 const MCExpr *Value = nullptr; 1224 switch (MJTI->getEntryKind()) { 1225 case MachineJumpTableInfo::EK_Inline: 1226 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1227 case MachineJumpTableInfo::EK_Custom32: 1228 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1229 OutContext); 1230 break; 1231 case MachineJumpTableInfo::EK_BlockAddress: 1232 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1233 // .word LBB123 1234 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1235 break; 1236 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1237 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1238 // with a relocation as gp-relative, e.g.: 1239 // .gprel32 LBB123 1240 MCSymbol *MBBSym = MBB->getSymbol(); 1241 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1242 return; 1243 } 1244 1245 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1246 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1247 // with a relocation as gp-relative, e.g.: 1248 // .gpdword LBB123 1249 MCSymbol *MBBSym = MBB->getSymbol(); 1250 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1251 return; 1252 } 1253 1254 case MachineJumpTableInfo::EK_LabelDifference32: { 1255 // EK_LabelDifference32 - Each entry is the address of the block minus 1256 // the address of the jump table. This is used for PIC jump tables where 1257 // gprel32 is not supported. e.g.: 1258 // .word LBB123 - LJTI1_2 1259 // If the .set directive is supported, this is emitted as: 1260 // .set L4_5_set_123, LBB123 - LJTI1_2 1261 // .word L4_5_set_123 1262 1263 // If we have emitted set directives for the jump table entries, print 1264 // them rather than the entries themselves. If we're emitting PIC, then 1265 // emit the table entries as differences between two text section labels. 1266 if (MAI->hasSetDirective()) { 1267 // If we used .set, reference the .set's symbol. 1268 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1269 OutContext); 1270 break; 1271 } 1272 // Otherwise, use the difference as the jump table entry. 1273 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1274 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1275 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1276 break; 1277 } 1278 } 1279 1280 assert(Value && "Unknown entry kind!"); 1281 1282 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); 1283 OutStreamer.EmitValue(Value, EntrySize); 1284 } 1285 1286 1287 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1288 /// special global used by LLVM. If so, emit it and return true, otherwise 1289 /// do nothing and return false. 1290 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1291 if (GV->getName() == "llvm.used") { 1292 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1293 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1294 return true; 1295 } 1296 1297 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1298 if (StringRef(GV->getSection()) == "llvm.metadata" || 1299 GV->hasAvailableExternallyLinkage()) 1300 return true; 1301 1302 if (!GV->hasAppendingLinkage()) return false; 1303 1304 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1305 1306 if (GV->getName() == "llvm.global_ctors") { 1307 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1308 1309 if (TM.getRelocationModel() == Reloc::Static && 1310 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1311 StringRef Sym(".constructors_used"); 1312 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1313 MCSA_Reference); 1314 } 1315 return true; 1316 } 1317 1318 if (GV->getName() == "llvm.global_dtors") { 1319 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1320 1321 if (TM.getRelocationModel() == Reloc::Static && 1322 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1323 StringRef Sym(".destructors_used"); 1324 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1325 MCSA_Reference); 1326 } 1327 return true; 1328 } 1329 1330 return false; 1331 } 1332 1333 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1334 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1335 /// is true, as being used with this directive. 1336 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1337 // Should be an array of 'i8*'. 1338 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1339 const GlobalValue *GV = 1340 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1341 if (GV) 1342 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1343 } 1344 } 1345 1346 namespace { 1347 struct Structor { 1348 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1349 int Priority; 1350 llvm::Constant *Func; 1351 llvm::GlobalValue *ComdatKey; 1352 }; 1353 } // end namespace 1354 1355 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1356 /// priority. 1357 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1358 // Should be an array of '{ int, void ()* }' structs. The first value is the 1359 // init priority. 1360 if (!isa<ConstantArray>(List)) return; 1361 1362 // Sanity check the structors list. 1363 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1364 if (!InitList) return; // Not an array! 1365 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1366 // FIXME: Only allow the 3-field form in LLVM 4.0. 1367 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1368 return; // Not an array of two or three elements! 1369 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1370 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1371 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1372 return; // Not (int, ptr, ptr). 1373 1374 // Gather the structors in a form that's convenient for sorting by priority. 1375 SmallVector<Structor, 8> Structors; 1376 for (Value *O : InitList->operands()) { 1377 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1378 if (!CS) continue; // Malformed. 1379 if (CS->getOperand(1)->isNullValue()) 1380 break; // Found a null terminator, skip the rest. 1381 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1382 if (!Priority) continue; // Malformed. 1383 Structors.push_back(Structor()); 1384 Structor &S = Structors.back(); 1385 S.Priority = Priority->getLimitedValue(65535); 1386 S.Func = CS->getOperand(1); 1387 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1388 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1389 } 1390 1391 // Emit the function pointers in the target-specific order 1392 const DataLayout *DL = TM.getDataLayout(); 1393 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1394 std::stable_sort(Structors.begin(), Structors.end(), 1395 [](const Structor &L, 1396 const Structor &R) { return L.Priority < R.Priority; }); 1397 for (Structor &S : Structors) { 1398 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1399 const MCSymbol *KeySym = nullptr; 1400 if (GlobalValue *GV = S.ComdatKey) { 1401 if (GV->hasAvailableExternallyLinkage()) 1402 // If the associated variable is available_externally, some other TU 1403 // will provide its dynamic initializer. 1404 continue; 1405 1406 KeySym = getSymbol(GV); 1407 } 1408 const MCSection *OutputSection = 1409 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1410 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1411 OutStreamer.SwitchSection(OutputSection); 1412 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1413 EmitAlignment(Align); 1414 EmitXXStructor(S.Func); 1415 } 1416 } 1417 1418 void AsmPrinter::EmitModuleIdents(Module &M) { 1419 if (!MAI->hasIdentDirective()) 1420 return; 1421 1422 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1423 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1424 const MDNode *N = NMD->getOperand(i); 1425 assert(N->getNumOperands() == 1 && 1426 "llvm.ident metadata entry can have only one operand"); 1427 const MDString *S = cast<MDString>(N->getOperand(0)); 1428 OutStreamer.EmitIdent(S->getString()); 1429 } 1430 } 1431 } 1432 1433 //===--------------------------------------------------------------------===// 1434 // Emission and print routines 1435 // 1436 1437 /// EmitInt8 - Emit a byte directive and value. 1438 /// 1439 void AsmPrinter::EmitInt8(int Value) const { 1440 OutStreamer.EmitIntValue(Value, 1); 1441 } 1442 1443 /// EmitInt16 - Emit a short directive and value. 1444 /// 1445 void AsmPrinter::EmitInt16(int Value) const { 1446 OutStreamer.EmitIntValue(Value, 2); 1447 } 1448 1449 /// EmitInt32 - Emit a long directive and value. 1450 /// 1451 void AsmPrinter::EmitInt32(int Value) const { 1452 OutStreamer.EmitIntValue(Value, 4); 1453 } 1454 1455 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1456 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1457 /// labels. This implicitly uses .set if it is available. 1458 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1459 unsigned Size) const { 1460 // Get the Hi-Lo expression. 1461 const MCExpr *Diff = 1462 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1463 MCSymbolRefExpr::Create(Lo, OutContext), 1464 OutContext); 1465 1466 if (!MAI->hasSetDirective()) { 1467 OutStreamer.EmitValue(Diff, Size); 1468 return; 1469 } 1470 1471 // Otherwise, emit with .set (aka assignment). 1472 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1473 OutStreamer.EmitAssignment(SetLabel, Diff); 1474 OutStreamer.EmitSymbolValue(SetLabel, Size); 1475 } 1476 1477 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1478 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1479 /// specify the labels. This implicitly uses .set if it is available. 1480 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1481 const MCSymbol *Lo, 1482 unsigned Size) const { 1483 1484 // Emit Hi+Offset - Lo 1485 // Get the Hi+Offset expression. 1486 const MCExpr *Plus = 1487 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1488 MCConstantExpr::Create(Offset, OutContext), 1489 OutContext); 1490 1491 // Get the Hi+Offset-Lo expression. 1492 const MCExpr *Diff = 1493 MCBinaryExpr::CreateSub(Plus, 1494 MCSymbolRefExpr::Create(Lo, OutContext), 1495 OutContext); 1496 1497 if (!MAI->hasSetDirective()) 1498 OutStreamer.EmitValue(Diff, Size); 1499 else { 1500 // Otherwise, emit with .set (aka assignment). 1501 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1502 OutStreamer.EmitAssignment(SetLabel, Diff); 1503 OutStreamer.EmitSymbolValue(SetLabel, Size); 1504 } 1505 } 1506 1507 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1508 /// where the size in bytes of the directive is specified by Size and Label 1509 /// specifies the label. This implicitly uses .set if it is available. 1510 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1511 unsigned Size, 1512 bool IsSectionRelative) const { 1513 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1514 OutStreamer.EmitCOFFSecRel32(Label); 1515 return; 1516 } 1517 1518 // Emit Label+Offset (or just Label if Offset is zero) 1519 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1520 if (Offset) 1521 Expr = MCBinaryExpr::CreateAdd( 1522 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1523 1524 OutStreamer.EmitValue(Expr, Size); 1525 } 1526 1527 //===----------------------------------------------------------------------===// 1528 1529 // EmitAlignment - Emit an alignment directive to the specified power of 1530 // two boundary. For example, if you pass in 3 here, you will get an 8 1531 // byte alignment. If a global value is specified, and if that global has 1532 // an explicit alignment requested, it will override the alignment request 1533 // if required for correctness. 1534 // 1535 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1536 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); 1537 1538 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1539 1540 if (getCurrentSection()->getKind().isText()) 1541 OutStreamer.EmitCodeAlignment(1 << NumBits); 1542 else 1543 OutStreamer.EmitValueToAlignment(1 << NumBits); 1544 } 1545 1546 //===----------------------------------------------------------------------===// 1547 // Constant emission. 1548 //===----------------------------------------------------------------------===// 1549 1550 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1551 /// 1552 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1553 MCContext &Ctx = AP.OutContext; 1554 1555 if (CV->isNullValue() || isa<UndefValue>(CV)) 1556 return MCConstantExpr::Create(0, Ctx); 1557 1558 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1559 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1560 1561 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1562 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1563 1564 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1565 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1566 1567 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1568 if (!CE) { 1569 llvm_unreachable("Unknown constant value to lower!"); 1570 } 1571 1572 if (const MCExpr *RelocExpr = 1573 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang, 1574 AP.TM)) 1575 return RelocExpr; 1576 1577 switch (CE->getOpcode()) { 1578 default: 1579 // If the code isn't optimized, there may be outstanding folding 1580 // opportunities. Attempt to fold the expression using DataLayout as a 1581 // last resort before giving up. 1582 if (Constant *C = 1583 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) 1584 if (C != CE) 1585 return lowerConstant(C, AP); 1586 1587 // Otherwise report the problem to the user. 1588 { 1589 std::string S; 1590 raw_string_ostream OS(S); 1591 OS << "Unsupported expression in static initializer: "; 1592 CE->printAsOperand(OS, /*PrintType=*/false, 1593 !AP.MF ? nullptr : AP.MF->getFunction()->getParent()); 1594 report_fatal_error(OS.str()); 1595 } 1596 case Instruction::GetElementPtr: { 1597 const DataLayout &DL = *AP.TM.getDataLayout(); 1598 // Generate a symbolic expression for the byte address 1599 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1600 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1601 1602 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1603 if (!OffsetAI) 1604 return Base; 1605 1606 int64_t Offset = OffsetAI.getSExtValue(); 1607 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1608 Ctx); 1609 } 1610 1611 case Instruction::Trunc: 1612 // We emit the value and depend on the assembler to truncate the generated 1613 // expression properly. This is important for differences between 1614 // blockaddress labels. Since the two labels are in the same function, it 1615 // is reasonable to treat their delta as a 32-bit value. 1616 // FALL THROUGH. 1617 case Instruction::BitCast: 1618 return lowerConstant(CE->getOperand(0), AP); 1619 1620 case Instruction::IntToPtr: { 1621 const DataLayout &DL = *AP.TM.getDataLayout(); 1622 // Handle casts to pointers by changing them into casts to the appropriate 1623 // integer type. This promotes constant folding and simplifies this code. 1624 Constant *Op = CE->getOperand(0); 1625 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1626 false/*ZExt*/); 1627 return lowerConstant(Op, AP); 1628 } 1629 1630 case Instruction::PtrToInt: { 1631 const DataLayout &DL = *AP.TM.getDataLayout(); 1632 // Support only foldable casts to/from pointers that can be eliminated by 1633 // changing the pointer to the appropriately sized integer type. 1634 Constant *Op = CE->getOperand(0); 1635 Type *Ty = CE->getType(); 1636 1637 const MCExpr *OpExpr = lowerConstant(Op, AP); 1638 1639 // We can emit the pointer value into this slot if the slot is an 1640 // integer slot equal to the size of the pointer. 1641 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1642 return OpExpr; 1643 1644 // Otherwise the pointer is smaller than the resultant integer, mask off 1645 // the high bits so we are sure to get a proper truncation if the input is 1646 // a constant expr. 1647 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1648 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1649 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1650 } 1651 1652 // The MC library also has a right-shift operator, but it isn't consistently 1653 // signed or unsigned between different targets. 1654 case Instruction::Add: 1655 case Instruction::Sub: 1656 case Instruction::Mul: 1657 case Instruction::SDiv: 1658 case Instruction::SRem: 1659 case Instruction::Shl: 1660 case Instruction::And: 1661 case Instruction::Or: 1662 case Instruction::Xor: { 1663 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1664 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1665 switch (CE->getOpcode()) { 1666 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1667 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1668 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1669 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1670 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1671 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1672 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1673 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1674 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1675 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1676 } 1677 } 1678 } 1679 } 1680 1681 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1682 1683 /// isRepeatedByteSequence - Determine whether the given value is 1684 /// composed of a repeated sequence of identical bytes and return the 1685 /// byte value. If it is not a repeated sequence, return -1. 1686 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1687 StringRef Data = V->getRawDataValues(); 1688 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1689 char C = Data[0]; 1690 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1691 if (Data[i] != C) return -1; 1692 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1693 } 1694 1695 1696 /// isRepeatedByteSequence - Determine whether the given value is 1697 /// composed of a repeated sequence of identical bytes and return the 1698 /// byte value. If it is not a repeated sequence, return -1. 1699 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1700 1701 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1702 if (CI->getBitWidth() > 64) return -1; 1703 1704 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); 1705 uint64_t Value = CI->getZExtValue(); 1706 1707 // Make sure the constant is at least 8 bits long and has a power 1708 // of 2 bit width. This guarantees the constant bit width is 1709 // always a multiple of 8 bits, avoiding issues with padding out 1710 // to Size and other such corner cases. 1711 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1712 1713 uint8_t Byte = static_cast<uint8_t>(Value); 1714 1715 for (unsigned i = 1; i < Size; ++i) { 1716 Value >>= 8; 1717 if (static_cast<uint8_t>(Value) != Byte) return -1; 1718 } 1719 return Byte; 1720 } 1721 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1722 // Make sure all array elements are sequences of the same repeated 1723 // byte. 1724 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1725 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1726 if (Byte == -1) return -1; 1727 1728 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1729 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1730 if (ThisByte == -1) return -1; 1731 if (Byte != ThisByte) return -1; 1732 } 1733 return Byte; 1734 } 1735 1736 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1737 return isRepeatedByteSequence(CDS); 1738 1739 return -1; 1740 } 1741 1742 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1743 AsmPrinter &AP){ 1744 1745 // See if we can aggregate this into a .fill, if so, emit it as such. 1746 int Value = isRepeatedByteSequence(CDS, AP.TM); 1747 if (Value != -1) { 1748 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); 1749 // Don't emit a 1-byte object as a .fill. 1750 if (Bytes > 1) 1751 return AP.OutStreamer.EmitFill(Bytes, Value); 1752 } 1753 1754 // If this can be emitted with .ascii/.asciz, emit it as such. 1755 if (CDS->isString()) 1756 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1757 1758 // Otherwise, emit the values in successive locations. 1759 unsigned ElementByteSize = CDS->getElementByteSize(); 1760 if (isa<IntegerType>(CDS->getElementType())) { 1761 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1762 if (AP.isVerbose()) 1763 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1764 CDS->getElementAsInteger(i)); 1765 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1766 ElementByteSize); 1767 } 1768 } else if (ElementByteSize == 4) { 1769 // FP Constants are printed as integer constants to avoid losing 1770 // precision. 1771 assert(CDS->getElementType()->isFloatTy()); 1772 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1773 union { 1774 float F; 1775 uint32_t I; 1776 }; 1777 1778 F = CDS->getElementAsFloat(i); 1779 if (AP.isVerbose()) 1780 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1781 AP.OutStreamer.EmitIntValue(I, 4); 1782 } 1783 } else { 1784 assert(CDS->getElementType()->isDoubleTy()); 1785 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1786 union { 1787 double F; 1788 uint64_t I; 1789 }; 1790 1791 F = CDS->getElementAsDouble(i); 1792 if (AP.isVerbose()) 1793 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1794 AP.OutStreamer.EmitIntValue(I, 8); 1795 } 1796 } 1797 1798 const DataLayout &DL = *AP.TM.getDataLayout(); 1799 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1800 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1801 CDS->getNumElements(); 1802 if (unsigned Padding = Size - EmittedSize) 1803 AP.OutStreamer.EmitZeros(Padding); 1804 1805 } 1806 1807 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1808 // See if we can aggregate some values. Make sure it can be 1809 // represented as a series of bytes of the constant value. 1810 int Value = isRepeatedByteSequence(CA, AP.TM); 1811 1812 if (Value != -1) { 1813 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); 1814 AP.OutStreamer.EmitFill(Bytes, Value); 1815 } 1816 else { 1817 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1818 emitGlobalConstantImpl(CA->getOperand(i), AP); 1819 } 1820 } 1821 1822 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1823 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1824 emitGlobalConstantImpl(CV->getOperand(i), AP); 1825 1826 const DataLayout &DL = *AP.TM.getDataLayout(); 1827 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1828 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1829 CV->getType()->getNumElements(); 1830 if (unsigned Padding = Size - EmittedSize) 1831 AP.OutStreamer.EmitZeros(Padding); 1832 } 1833 1834 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1835 // Print the fields in successive locations. Pad to align if needed! 1836 const DataLayout *DL = AP.TM.getDataLayout(); 1837 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1838 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1839 uint64_t SizeSoFar = 0; 1840 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1841 const Constant *Field = CS->getOperand(i); 1842 1843 // Check if padding is needed and insert one or more 0s. 1844 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1845 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1846 - Layout->getElementOffset(i)) - FieldSize; 1847 SizeSoFar += FieldSize + PadSize; 1848 1849 // Now print the actual field value. 1850 emitGlobalConstantImpl(Field, AP); 1851 1852 // Insert padding - this may include padding to increase the size of the 1853 // current field up to the ABI size (if the struct is not packed) as well 1854 // as padding to ensure that the next field starts at the right offset. 1855 AP.OutStreamer.EmitZeros(PadSize); 1856 } 1857 assert(SizeSoFar == Layout->getSizeInBytes() && 1858 "Layout of constant struct may be incorrect!"); 1859 } 1860 1861 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1862 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1863 1864 // First print a comment with what we think the original floating-point value 1865 // should have been. 1866 if (AP.isVerbose()) { 1867 SmallString<8> StrVal; 1868 CFP->getValueAPF().toString(StrVal); 1869 1870 assert(CFP->getType() != nullptr && "Expecting non-null Type"); 1871 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1872 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1873 } 1874 1875 // Now iterate through the APInt chunks, emitting them in endian-correct 1876 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1877 // floats). 1878 unsigned NumBytes = API.getBitWidth() / 8; 1879 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1880 const uint64_t *p = API.getRawData(); 1881 1882 // PPC's long double has odd notions of endianness compared to how LLVM 1883 // handles it: p[0] goes first for *big* endian on PPC. 1884 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { 1885 int Chunk = API.getNumWords() - 1; 1886 1887 if (TrailingBytes) 1888 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1889 1890 for (; Chunk >= 0; --Chunk) 1891 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1892 } else { 1893 unsigned Chunk; 1894 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1895 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1896 1897 if (TrailingBytes) 1898 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1899 } 1900 1901 // Emit the tail padding for the long double. 1902 const DataLayout &DL = *AP.TM.getDataLayout(); 1903 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1904 DL.getTypeStoreSize(CFP->getType())); 1905 } 1906 1907 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1908 const DataLayout *DL = AP.TM.getDataLayout(); 1909 unsigned BitWidth = CI->getBitWidth(); 1910 1911 // Copy the value as we may massage the layout for constants whose bit width 1912 // is not a multiple of 64-bits. 1913 APInt Realigned(CI->getValue()); 1914 uint64_t ExtraBits = 0; 1915 unsigned ExtraBitsSize = BitWidth & 63; 1916 1917 if (ExtraBitsSize) { 1918 // The bit width of the data is not a multiple of 64-bits. 1919 // The extra bits are expected to be at the end of the chunk of the memory. 1920 // Little endian: 1921 // * Nothing to be done, just record the extra bits to emit. 1922 // Big endian: 1923 // * Record the extra bits to emit. 1924 // * Realign the raw data to emit the chunks of 64-bits. 1925 if (DL->isBigEndian()) { 1926 // Basically the structure of the raw data is a chunk of 64-bits cells: 1927 // 0 1 BitWidth / 64 1928 // [chunk1][chunk2] ... [chunkN]. 1929 // The most significant chunk is chunkN and it should be emitted first. 1930 // However, due to the alignment issue chunkN contains useless bits. 1931 // Realign the chunks so that they contain only useless information: 1932 // ExtraBits 0 1 (BitWidth / 64) - 1 1933 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1934 ExtraBits = Realigned.getRawData()[0] & 1935 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1936 Realigned = Realigned.lshr(ExtraBitsSize); 1937 } else 1938 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1939 } 1940 1941 // We don't expect assemblers to support integer data directives 1942 // for more than 64 bits, so we emit the data in at most 64-bit 1943 // quantities at a time. 1944 const uint64_t *RawData = Realigned.getRawData(); 1945 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1946 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1947 AP.OutStreamer.EmitIntValue(Val, 8); 1948 } 1949 1950 if (ExtraBitsSize) { 1951 // Emit the extra bits after the 64-bits chunks. 1952 1953 // Emit a directive that fills the expected size. 1954 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType()); 1955 Size -= (BitWidth / 64) * 8; 1956 assert(Size && Size * 8 >= ExtraBitsSize && 1957 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1958 == ExtraBits && "Directive too small for extra bits."); 1959 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1960 } 1961 } 1962 1963 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1964 const DataLayout *DL = AP.TM.getDataLayout(); 1965 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1966 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1967 return AP.OutStreamer.EmitZeros(Size); 1968 1969 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1970 switch (Size) { 1971 case 1: 1972 case 2: 1973 case 4: 1974 case 8: 1975 if (AP.isVerbose()) 1976 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1977 CI->getZExtValue()); 1978 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1979 return; 1980 default: 1981 emitGlobalConstantLargeInt(CI, AP); 1982 return; 1983 } 1984 } 1985 1986 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1987 return emitGlobalConstantFP(CFP, AP); 1988 1989 if (isa<ConstantPointerNull>(CV)) { 1990 AP.OutStreamer.EmitIntValue(0, Size); 1991 return; 1992 } 1993 1994 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1995 return emitGlobalConstantDataSequential(CDS, AP); 1996 1997 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1998 return emitGlobalConstantArray(CVA, AP); 1999 2000 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2001 return emitGlobalConstantStruct(CVS, AP); 2002 2003 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2004 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2005 // vectors). 2006 if (CE->getOpcode() == Instruction::BitCast) 2007 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2008 2009 if (Size > 8) { 2010 // If the constant expression's size is greater than 64-bits, then we have 2011 // to emit the value in chunks. Try to constant fold the value and emit it 2012 // that way. 2013 Constant *New = ConstantFoldConstantExpression(CE, DL); 2014 if (New && New != CE) 2015 return emitGlobalConstantImpl(New, AP); 2016 } 2017 } 2018 2019 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2020 return emitGlobalConstantVector(V, AP); 2021 2022 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2023 // thread the streamer with EmitValue. 2024 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 2025 } 2026 2027 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2028 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2029 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2030 if (Size) 2031 emitGlobalConstantImpl(CV, *this); 2032 else if (MAI->hasSubsectionsViaSymbols()) { 2033 // If the global has zero size, emit a single byte so that two labels don't 2034 // look like they are at the same location. 2035 OutStreamer.EmitIntValue(0, 1); 2036 } 2037 } 2038 2039 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2040 // Target doesn't support this yet! 2041 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2042 } 2043 2044 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2045 if (Offset > 0) 2046 OS << '+' << Offset; 2047 else if (Offset < 0) 2048 OS << Offset; 2049 } 2050 2051 //===----------------------------------------------------------------------===// 2052 // Symbol Lowering Routines. 2053 //===----------------------------------------------------------------------===// 2054 2055 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2056 /// temporary label with the specified stem and unique ID. 2057 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2058 const DataLayout *DL = TM.getDataLayout(); 2059 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2060 Name + Twine(ID)); 2061 } 2062 2063 /// GetTempSymbol - Return an assembler temporary label with the specified 2064 /// stem. 2065 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2066 const DataLayout *DL = TM.getDataLayout(); 2067 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2068 Name); 2069 } 2070 2071 2072 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2073 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2074 } 2075 2076 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2077 return MMI->getAddrLabelSymbol(BB); 2078 } 2079 2080 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2081 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2082 const DataLayout *DL = TM.getDataLayout(); 2083 return OutContext.GetOrCreateSymbol 2084 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2085 + "_" + Twine(CPID)); 2086 } 2087 2088 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2089 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2090 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2091 } 2092 2093 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2094 /// FIXME: privatize to AsmPrinter. 2095 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2096 const DataLayout *DL = TM.getDataLayout(); 2097 return OutContext.GetOrCreateSymbol 2098 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2099 Twine(UID) + "_set_" + Twine(MBBID)); 2100 } 2101 2102 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2103 StringRef Suffix) const { 2104 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2105 TM); 2106 } 2107 2108 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2109 /// ExternalSymbol. 2110 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2111 SmallString<60> NameStr; 2112 Mang->getNameWithPrefix(NameStr, Sym); 2113 return OutContext.GetOrCreateSymbol(NameStr.str()); 2114 } 2115 2116 2117 2118 /// PrintParentLoopComment - Print comments about parent loops of this one. 2119 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2120 unsigned FunctionNumber) { 2121 if (!Loop) return; 2122 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2123 OS.indent(Loop->getLoopDepth()*2) 2124 << "Parent Loop BB" << FunctionNumber << "_" 2125 << Loop->getHeader()->getNumber() 2126 << " Depth=" << Loop->getLoopDepth() << '\n'; 2127 } 2128 2129 2130 /// PrintChildLoopComment - Print comments about child loops within 2131 /// the loop for this basic block, with nesting. 2132 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2133 unsigned FunctionNumber) { 2134 // Add child loop information 2135 for (const MachineLoop *CL : *Loop) { 2136 OS.indent(CL->getLoopDepth()*2) 2137 << "Child Loop BB" << FunctionNumber << "_" 2138 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2139 << '\n'; 2140 PrintChildLoopComment(OS, CL, FunctionNumber); 2141 } 2142 } 2143 2144 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2145 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2146 const MachineLoopInfo *LI, 2147 const AsmPrinter &AP) { 2148 // Add loop depth information 2149 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2150 if (!Loop) return; 2151 2152 MachineBasicBlock *Header = Loop->getHeader(); 2153 assert(Header && "No header for loop"); 2154 2155 // If this block is not a loop header, just print out what is the loop header 2156 // and return. 2157 if (Header != &MBB) { 2158 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2159 Twine(AP.getFunctionNumber())+"_" + 2160 Twine(Loop->getHeader()->getNumber())+ 2161 " Depth="+Twine(Loop->getLoopDepth())); 2162 return; 2163 } 2164 2165 // Otherwise, it is a loop header. Print out information about child and 2166 // parent loops. 2167 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2168 2169 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2170 2171 OS << "=>"; 2172 OS.indent(Loop->getLoopDepth()*2-2); 2173 2174 OS << "This "; 2175 if (Loop->empty()) 2176 OS << "Inner "; 2177 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2178 2179 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2180 } 2181 2182 2183 /// EmitBasicBlockStart - This method prints the label for the specified 2184 /// MachineBasicBlock, an alignment (if present) and a comment describing 2185 /// it if appropriate. 2186 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2187 // Emit an alignment directive for this block, if needed. 2188 if (unsigned Align = MBB.getAlignment()) 2189 EmitAlignment(Align); 2190 2191 // If the block has its address taken, emit any labels that were used to 2192 // reference the block. It is possible that there is more than one label 2193 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2194 // the references were generated. 2195 if (MBB.hasAddressTaken()) { 2196 const BasicBlock *BB = MBB.getBasicBlock(); 2197 if (isVerbose()) 2198 OutStreamer.AddComment("Block address taken"); 2199 2200 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2201 for (auto *Sym : Symbols) 2202 OutStreamer.EmitLabel(Sym); 2203 } 2204 2205 // Print some verbose block comments. 2206 if (isVerbose()) { 2207 if (const BasicBlock *BB = MBB.getBasicBlock()) 2208 if (BB->hasName()) 2209 OutStreamer.AddComment("%" + BB->getName()); 2210 emitBasicBlockLoopComments(MBB, LI, *this); 2211 } 2212 2213 // Print the main label for the block. 2214 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2215 if (isVerbose()) { 2216 // NOTE: Want this comment at start of line, don't emit with AddComment. 2217 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2218 } 2219 } else { 2220 OutStreamer.EmitLabel(MBB.getSymbol()); 2221 } 2222 } 2223 2224 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2225 bool IsDefinition) const { 2226 MCSymbolAttr Attr = MCSA_Invalid; 2227 2228 switch (Visibility) { 2229 default: break; 2230 case GlobalValue::HiddenVisibility: 2231 if (IsDefinition) 2232 Attr = MAI->getHiddenVisibilityAttr(); 2233 else 2234 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2235 break; 2236 case GlobalValue::ProtectedVisibility: 2237 Attr = MAI->getProtectedVisibilityAttr(); 2238 break; 2239 } 2240 2241 if (Attr != MCSA_Invalid) 2242 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2243 } 2244 2245 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2246 /// exactly one predecessor and the control transfer mechanism between 2247 /// the predecessor and this block is a fall-through. 2248 bool AsmPrinter:: 2249 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2250 // If this is a landing pad, it isn't a fall through. If it has no preds, 2251 // then nothing falls through to it. 2252 if (MBB->isLandingPad() || MBB->pred_empty()) 2253 return false; 2254 2255 // If there isn't exactly one predecessor, it can't be a fall through. 2256 if (MBB->pred_size() > 1) 2257 return false; 2258 2259 // The predecessor has to be immediately before this block. 2260 MachineBasicBlock *Pred = *MBB->pred_begin(); 2261 if (!Pred->isLayoutSuccessor(MBB)) 2262 return false; 2263 2264 // If the block is completely empty, then it definitely does fall through. 2265 if (Pred->empty()) 2266 return true; 2267 2268 // Check the terminators in the previous blocks 2269 for (const auto &MI : Pred->terminators()) { 2270 // If it is not a simple branch, we are in a table somewhere. 2271 if (!MI.isBranch() || MI.isIndirectBranch()) 2272 return false; 2273 2274 // If we are the operands of one of the branches, this is not a fall 2275 // through. Note that targets with delay slots will usually bundle 2276 // terminators with the delay slot instruction. 2277 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2278 if (OP->isJTI()) 2279 return false; 2280 if (OP->isMBB() && OP->getMBB() == MBB) 2281 return false; 2282 } 2283 } 2284 2285 return true; 2286 } 2287 2288 2289 2290 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2291 if (!S.usesMetadata()) 2292 return nullptr; 2293 2294 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2295 gcp_map_type::iterator GCPI = GCMap.find(&S); 2296 if (GCPI != GCMap.end()) 2297 return GCPI->second.get(); 2298 2299 const char *Name = S.getName().c_str(); 2300 2301 for (GCMetadataPrinterRegistry::iterator 2302 I = GCMetadataPrinterRegistry::begin(), 2303 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2304 if (strcmp(Name, I->getName()) == 0) { 2305 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2306 GMP->S = &S; 2307 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2308 return IterBool.first->second.get(); 2309 } 2310 2311 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2312 } 2313 2314 /// Pin vtable to this file. 2315 AsmPrinterHandler::~AsmPrinterHandler() {} 2316