1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "asm-printer" 15 #include "llvm/CodeGen/AsmPrinter.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "llvm/Module.h" 19 #include "llvm/CodeGen/GCMetadataPrinter.h" 20 #include "llvm/CodeGen/MachineConstantPool.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineJumpTableInfo.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DebugInfo.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/MC/MCInst.h" 32 #include "llvm/MC/MCSection.h" 33 #include "llvm/MC/MCStreamer.h" 34 #include "llvm/MC/MCSymbol.h" 35 #include "llvm/Target/Mangler.h" 36 #include "llvm/Target/TargetData.h" 37 #include "llvm/Target/TargetInstrInfo.h" 38 #include "llvm/Target/TargetLowering.h" 39 #include "llvm/Target/TargetLoweringObjectFile.h" 40 #include "llvm/Target/TargetOptions.h" 41 #include "llvm/Target/TargetRegisterInfo.h" 42 #include "llvm/Assembly/Writer.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/Timer.h" 49 using namespace llvm; 50 51 static const char *DWARFGroupName = "DWARF Emission"; 52 static const char *DbgTimerName = "DWARF Debug Writer"; 53 static const char *EHTimerName = "DWARF Exception Writer"; 54 55 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 56 57 char AsmPrinter::ID = 0; 58 59 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; 60 static gcp_map_type &getGCMap(void *&P) { 61 if (P == 0) 62 P = new gcp_map_type(); 63 return *(gcp_map_type*)P; 64 } 65 66 67 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 68 /// value in log2 form. This rounds up to the preferred alignment if possible 69 /// and legal. 70 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const TargetData &TD, 71 unsigned InBits = 0) { 72 unsigned NumBits = 0; 73 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 74 NumBits = TD.getPreferredAlignmentLog(GVar); 75 76 // If InBits is specified, round it to it. 77 if (InBits > NumBits) 78 NumBits = InBits; 79 80 // If the GV has a specified alignment, take it into account. 81 if (GV->getAlignment() == 0) 82 return NumBits; 83 84 unsigned GVAlign = Log2_32(GV->getAlignment()); 85 86 // If the GVAlign is larger than NumBits, or if we are required to obey 87 // NumBits because the GV has an assigned section, obey it. 88 if (GVAlign > NumBits || GV->hasSection()) 89 NumBits = GVAlign; 90 return NumBits; 91 } 92 93 94 95 96 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 97 : MachineFunctionPass(ID), 98 TM(tm), MAI(tm.getMCAsmInfo()), 99 OutContext(Streamer.getContext()), 100 OutStreamer(Streamer), 101 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { 102 DD = 0; DE = 0; MMI = 0; LI = 0; 103 GCMetadataPrinters = 0; 104 VerboseAsm = Streamer.isVerboseAsm(); 105 } 106 107 AsmPrinter::~AsmPrinter() { 108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); 109 110 if (GCMetadataPrinters != 0) { 111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 112 113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) 114 delete I->second; 115 delete &GCMap; 116 GCMetadataPrinters = 0; 117 } 118 119 delete &OutStreamer; 120 } 121 122 /// getFunctionNumber - Return a unique ID for the current function. 123 /// 124 unsigned AsmPrinter::getFunctionNumber() const { 125 return MF->getFunctionNumber(); 126 } 127 128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 129 return TM.getTargetLowering()->getObjFileLowering(); 130 } 131 132 133 /// getTargetData - Return information about data layout. 134 const TargetData &AsmPrinter::getTargetData() const { 135 return *TM.getTargetData(); 136 } 137 138 /// getCurrentSection() - Return the current section we are emitting to. 139 const MCSection *AsmPrinter::getCurrentSection() const { 140 return OutStreamer.getCurrentSection(); 141 } 142 143 144 145 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 146 AU.setPreservesAll(); 147 MachineFunctionPass::getAnalysisUsage(AU); 148 AU.addRequired<MachineModuleInfo>(); 149 AU.addRequired<GCModuleInfo>(); 150 if (isVerbose()) 151 AU.addRequired<MachineLoopInfo>(); 152 } 153 154 bool AsmPrinter::doInitialization(Module &M) { 155 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 156 MMI->AnalyzeModule(M); 157 158 // Initialize TargetLoweringObjectFile. 159 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 160 .Initialize(OutContext, TM); 161 162 Mang = new Mangler(OutContext, *TM.getTargetData()); 163 164 // Allow the target to emit any magic that it wants at the start of the file. 165 EmitStartOfAsmFile(M); 166 167 // Very minimal debug info. It is ignored if we emit actual debug info. If we 168 // don't, this at least helps the user find where a global came from. 169 if (MAI->hasSingleParameterDotFile()) { 170 // .file "foo.c" 171 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 172 } 173 174 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 175 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 176 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) 177 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 178 MP->beginAssembly(*this); 179 180 // Emit module-level inline asm if it exists. 181 if (!M.getModuleInlineAsm().empty()) { 182 OutStreamer.AddComment("Start of file scope inline assembly"); 183 OutStreamer.AddBlankLine(); 184 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 185 OutStreamer.AddComment("End of file scope inline assembly"); 186 OutStreamer.AddBlankLine(); 187 } 188 189 if (MAI->doesSupportDebugInformation()) 190 DD = new DwarfDebug(this, &M); 191 192 switch (MAI->getExceptionHandlingType()) { 193 case ExceptionHandling::None: 194 return false; 195 case ExceptionHandling::SjLj: 196 case ExceptionHandling::DwarfCFI: 197 DE = new DwarfCFIException(this); 198 return false; 199 case ExceptionHandling::ARM: 200 DE = new ARMException(this); 201 return false; 202 case ExceptionHandling::Win64: 203 DE = new Win64Exception(this); 204 return false; 205 } 206 207 llvm_unreachable("Unknown exception type."); 208 } 209 210 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { 211 switch ((GlobalValue::LinkageTypes)Linkage) { 212 case GlobalValue::CommonLinkage: 213 case GlobalValue::LinkOnceAnyLinkage: 214 case GlobalValue::LinkOnceODRLinkage: 215 case GlobalValue::WeakAnyLinkage: 216 case GlobalValue::WeakODRLinkage: 217 case GlobalValue::LinkerPrivateWeakLinkage: 218 case GlobalValue::LinkerPrivateWeakDefAutoLinkage: 219 if (MAI->getWeakDefDirective() != 0) { 220 // .globl _foo 221 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 222 223 if ((GlobalValue::LinkageTypes)Linkage != 224 GlobalValue::LinkerPrivateWeakDefAutoLinkage) 225 // .weak_definition _foo 226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 227 else 228 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 229 } else if (MAI->getLinkOnceDirective() != 0) { 230 // .globl _foo 231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 232 //NOTE: linkonce is handled by the section the symbol was assigned to. 233 } else { 234 // .weak _foo 235 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 236 } 237 break; 238 case GlobalValue::DLLExportLinkage: 239 case GlobalValue::AppendingLinkage: 240 // FIXME: appending linkage variables should go into a section of 241 // their name or something. For now, just emit them as external. 242 case GlobalValue::ExternalLinkage: 243 // If external or appending, declare as a global symbol. 244 // .globl _foo 245 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 246 break; 247 case GlobalValue::PrivateLinkage: 248 case GlobalValue::InternalLinkage: 249 case GlobalValue::LinkerPrivateLinkage: 250 break; 251 default: 252 llvm_unreachable("Unknown linkage type!"); 253 } 254 } 255 256 257 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 258 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 259 if (GV->hasInitializer()) { 260 // Check to see if this is a special global used by LLVM, if so, emit it. 261 if (EmitSpecialLLVMGlobal(GV)) 262 return; 263 264 if (isVerbose()) { 265 WriteAsOperand(OutStreamer.GetCommentOS(), GV, 266 /*PrintType=*/false, GV->getParent()); 267 OutStreamer.GetCommentOS() << '\n'; 268 } 269 } 270 271 MCSymbol *GVSym = Mang->getSymbol(GV); 272 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 273 274 if (!GV->hasInitializer()) // External globals require no extra code. 275 return; 276 277 if (MAI->hasDotTypeDotSizeDirective()) 278 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 279 280 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 281 282 const TargetData *TD = TM.getTargetData(); 283 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); 284 285 // If the alignment is specified, we *must* obey it. Overaligning a global 286 // with a specified alignment is a prompt way to break globals emitted to 287 // sections and expected to be contiguous (e.g. ObjC metadata). 288 unsigned AlignLog = getGVAlignmentLog2(GV, *TD); 289 290 // Handle common and BSS local symbols (.lcomm). 291 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 292 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 293 unsigned Align = 1 << AlignLog; 294 295 // Handle common symbols. 296 if (GVKind.isCommon()) { 297 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 298 Align = 0; 299 300 // .comm _foo, 42, 4 301 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 302 return; 303 } 304 305 // Handle local BSS symbols. 306 if (MAI->hasMachoZeroFillDirective()) { 307 const MCSection *TheSection = 308 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 309 // .zerofill __DATA, __bss, _foo, 400, 5 310 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 311 return; 312 } 313 314 if (MAI->getLCOMMDirectiveType() != LCOMM::None && 315 (MAI->getLCOMMDirectiveType() != LCOMM::NoAlignment || Align == 1)) { 316 // .lcomm _foo, 42 317 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 318 return; 319 } 320 321 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 322 Align = 0; 323 324 // .local _foo 325 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 326 // .comm _foo, 42, 4 327 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 328 return; 329 } 330 331 const MCSection *TheSection = 332 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); 333 334 // Handle the zerofill directive on darwin, which is a special form of BSS 335 // emission. 336 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 337 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 338 339 // .globl _foo 340 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 341 // .zerofill __DATA, __common, _foo, 400, 5 342 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 343 return; 344 } 345 346 // Handle thread local data for mach-o which requires us to output an 347 // additional structure of data and mangle the original symbol so that we 348 // can reference it later. 349 // 350 // TODO: This should become an "emit thread local global" method on TLOF. 351 // All of this macho specific stuff should be sunk down into TLOFMachO and 352 // stuff like "TLSExtraDataSection" should no longer be part of the parent 353 // TLOF class. This will also make it more obvious that stuff like 354 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 355 // specific code. 356 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 357 // Emit the .tbss symbol 358 MCSymbol *MangSym = 359 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 360 361 if (GVKind.isThreadBSS()) 362 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 363 else if (GVKind.isThreadData()) { 364 OutStreamer.SwitchSection(TheSection); 365 366 EmitAlignment(AlignLog, GV); 367 OutStreamer.EmitLabel(MangSym); 368 369 EmitGlobalConstant(GV->getInitializer()); 370 } 371 372 OutStreamer.AddBlankLine(); 373 374 // Emit the variable struct for the runtime. 375 const MCSection *TLVSect 376 = getObjFileLowering().getTLSExtraDataSection(); 377 378 OutStreamer.SwitchSection(TLVSect); 379 // Emit the linkage here. 380 EmitLinkage(GV->getLinkage(), GVSym); 381 OutStreamer.EmitLabel(GVSym); 382 383 // Three pointers in size: 384 // - __tlv_bootstrap - used to make sure support exists 385 // - spare pointer, used when mapped by the runtime 386 // - pointer to mangled symbol above with initializer 387 unsigned PtrSize = TD->getPointerSizeInBits()/8; 388 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 389 PtrSize, 0); 390 OutStreamer.EmitIntValue(0, PtrSize, 0); 391 OutStreamer.EmitSymbolValue(MangSym, PtrSize, 0); 392 393 OutStreamer.AddBlankLine(); 394 return; 395 } 396 397 OutStreamer.SwitchSection(TheSection); 398 399 EmitLinkage(GV->getLinkage(), GVSym); 400 EmitAlignment(AlignLog, GV); 401 402 OutStreamer.EmitLabel(GVSym); 403 404 EmitGlobalConstant(GV->getInitializer()); 405 406 if (MAI->hasDotTypeDotSizeDirective()) 407 // .size foo, 42 408 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 409 410 OutStreamer.AddBlankLine(); 411 } 412 413 /// EmitFunctionHeader - This method emits the header for the current 414 /// function. 415 void AsmPrinter::EmitFunctionHeader() { 416 // Print out constants referenced by the function 417 EmitConstantPool(); 418 419 // Print the 'header' of function. 420 const Function *F = MF->getFunction(); 421 422 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); 423 EmitVisibility(CurrentFnSym, F->getVisibility()); 424 425 EmitLinkage(F->getLinkage(), CurrentFnSym); 426 EmitAlignment(MF->getAlignment(), F); 427 428 if (MAI->hasDotTypeDotSizeDirective()) 429 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 430 431 if (isVerbose()) { 432 WriteAsOperand(OutStreamer.GetCommentOS(), F, 433 /*PrintType=*/false, F->getParent()); 434 OutStreamer.GetCommentOS() << '\n'; 435 } 436 437 // Emit the CurrentFnSym. This is a virtual function to allow targets to 438 // do their wild and crazy things as required. 439 EmitFunctionEntryLabel(); 440 441 // If the function had address-taken blocks that got deleted, then we have 442 // references to the dangling symbols. Emit them at the start of the function 443 // so that we don't get references to undefined symbols. 444 std::vector<MCSymbol*> DeadBlockSyms; 445 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 446 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 447 OutStreamer.AddComment("Address taken block that was later removed"); 448 OutStreamer.EmitLabel(DeadBlockSyms[i]); 449 } 450 451 // Add some workaround for linkonce linkage on Cygwin\MinGW. 452 if (MAI->getLinkOnceDirective() != 0 && 453 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { 454 // FIXME: What is this? 455 MCSymbol *FakeStub = 456 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ 457 CurrentFnSym->getName()); 458 OutStreamer.EmitLabel(FakeStub); 459 } 460 461 // Emit pre-function debug and/or EH information. 462 if (DE) { 463 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 464 DE->BeginFunction(MF); 465 } 466 if (DD) { 467 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 468 DD->beginFunction(MF); 469 } 470 } 471 472 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 473 /// function. This can be overridden by targets as required to do custom stuff. 474 void AsmPrinter::EmitFunctionEntryLabel() { 475 // The function label could have already been emitted if two symbols end up 476 // conflicting due to asm renaming. Detect this and emit an error. 477 if (CurrentFnSym->isUndefined()) 478 return OutStreamer.EmitLabel(CurrentFnSym); 479 480 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 481 "' label emitted multiple times to assembly file"); 482 } 483 484 485 /// EmitComments - Pretty-print comments for instructions. 486 static void EmitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 487 const MachineFunction *MF = MI.getParent()->getParent(); 488 const TargetMachine &TM = MF->getTarget(); 489 490 // Check for spills and reloads 491 int FI; 492 493 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 494 495 // We assume a single instruction only has a spill or reload, not 496 // both. 497 const MachineMemOperand *MMO; 498 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { 499 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 500 MMO = *MI.memoperands_begin(); 501 CommentOS << MMO->getSize() << "-byte Reload\n"; 502 } 503 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { 504 if (FrameInfo->isSpillSlotObjectIndex(FI)) 505 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 506 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { 507 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 508 MMO = *MI.memoperands_begin(); 509 CommentOS << MMO->getSize() << "-byte Spill\n"; 510 } 511 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { 512 if (FrameInfo->isSpillSlotObjectIndex(FI)) 513 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 514 } 515 516 // Check for spill-induced copies 517 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 518 CommentOS << " Reload Reuse\n"; 519 } 520 521 /// EmitImplicitDef - This method emits the specified machine instruction 522 /// that is an implicit def. 523 static void EmitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { 524 unsigned RegNo = MI->getOperand(0).getReg(); 525 AP.OutStreamer.AddComment(Twine("implicit-def: ") + 526 AP.TM.getRegisterInfo()->getName(RegNo)); 527 AP.OutStreamer.AddBlankLine(); 528 } 529 530 static void EmitKill(const MachineInstr *MI, AsmPrinter &AP) { 531 std::string Str = "kill:"; 532 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 533 const MachineOperand &Op = MI->getOperand(i); 534 assert(Op.isReg() && "KILL instruction must have only register operands"); 535 Str += ' '; 536 Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); 537 Str += (Op.isDef() ? "<def>" : "<kill>"); 538 } 539 AP.OutStreamer.AddComment(Str); 540 AP.OutStreamer.AddBlankLine(); 541 } 542 543 /// EmitDebugValueComment - This method handles the target-independent form 544 /// of DBG_VALUE, returning true if it was able to do so. A false return 545 /// means the target will need to handle MI in EmitInstruction. 546 static bool EmitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 547 // This code handles only the 3-operand target-independent form. 548 if (MI->getNumOperands() != 3) 549 return false; 550 551 SmallString<128> Str; 552 raw_svector_ostream OS(Str); 553 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; 554 555 // cast away const; DIetc do not take const operands for some reason. 556 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); 557 if (V.getContext().isSubprogram()) 558 OS << DISubprogram(V.getContext()).getDisplayName() << ":"; 559 OS << V.getName() << " <- "; 560 561 // Register or immediate value. Register 0 means undef. 562 if (MI->getOperand(0).isFPImm()) { 563 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 564 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 565 OS << (double)APF.convertToFloat(); 566 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 567 OS << APF.convertToDouble(); 568 } else { 569 // There is no good way to print long double. Convert a copy to 570 // double. Ah well, it's only a comment. 571 bool ignored; 572 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 573 &ignored); 574 OS << "(long double) " << APF.convertToDouble(); 575 } 576 } else if (MI->getOperand(0).isImm()) { 577 OS << MI->getOperand(0).getImm(); 578 } else if (MI->getOperand(0).isCImm()) { 579 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 580 } else { 581 assert(MI->getOperand(0).isReg() && "Unknown operand type"); 582 if (MI->getOperand(0).getReg() == 0) { 583 // Suppress offset, it is not meaningful here. 584 OS << "undef"; 585 // NOTE: Want this comment at start of line, don't emit with AddComment. 586 AP.OutStreamer.EmitRawText(OS.str()); 587 return true; 588 } 589 OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); 590 } 591 592 OS << '+' << MI->getOperand(1).getImm(); 593 // NOTE: Want this comment at start of line, don't emit with AddComment. 594 AP.OutStreamer.EmitRawText(OS.str()); 595 return true; 596 } 597 598 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 599 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 600 MF->getFunction()->needsUnwindTableEntry()) 601 return CFI_M_EH; 602 603 if (MMI->hasDebugInfo()) 604 return CFI_M_Debug; 605 606 return CFI_M_None; 607 } 608 609 bool AsmPrinter::needsSEHMoves() { 610 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && 611 MF->getFunction()->needsUnwindTableEntry(); 612 } 613 614 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { 615 MCSymbol *Label = MI.getOperand(0).getMCSymbol(); 616 617 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 618 return; 619 620 if (needsCFIMoves() == CFI_M_None) 621 return; 622 623 if (MMI->getCompactUnwindEncoding() != 0) 624 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); 625 626 MachineModuleInfo &MMI = MF->getMMI(); 627 std::vector<MachineMove> &Moves = MMI.getFrameMoves(); 628 bool FoundOne = false; 629 (void)FoundOne; 630 for (std::vector<MachineMove>::iterator I = Moves.begin(), 631 E = Moves.end(); I != E; ++I) { 632 if (I->getLabel() == Label) { 633 EmitCFIFrameMove(*I); 634 FoundOne = true; 635 } 636 } 637 assert(FoundOne); 638 } 639 640 /// EmitFunctionBody - This method emits the body and trailer for a 641 /// function. 642 void AsmPrinter::EmitFunctionBody() { 643 // Emit target-specific gunk before the function body. 644 EmitFunctionBodyStart(); 645 646 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); 647 648 // Print out code for the function. 649 bool HasAnyRealCode = false; 650 const MachineInstr *LastMI = 0; 651 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); 652 I != E; ++I) { 653 // Print a label for the basic block. 654 EmitBasicBlockStart(I); 655 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); 656 II != IE; ++II) { 657 LastMI = II; 658 659 // Print the assembly for the instruction. 660 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && 661 !II->isDebugValue()) { 662 HasAnyRealCode = true; 663 ++EmittedInsts; 664 } 665 666 if (ShouldPrintDebugScopes) { 667 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 668 DD->beginInstruction(II); 669 } 670 671 if (isVerbose()) 672 EmitComments(*II, OutStreamer.GetCommentOS()); 673 674 switch (II->getOpcode()) { 675 case TargetOpcode::PROLOG_LABEL: 676 emitPrologLabel(*II); 677 break; 678 679 case TargetOpcode::EH_LABEL: 680 case TargetOpcode::GC_LABEL: 681 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); 682 break; 683 case TargetOpcode::INLINEASM: 684 EmitInlineAsm(II); 685 break; 686 case TargetOpcode::DBG_VALUE: 687 if (isVerbose()) { 688 if (!EmitDebugValueComment(II, *this)) 689 EmitInstruction(II); 690 } 691 break; 692 case TargetOpcode::IMPLICIT_DEF: 693 if (isVerbose()) EmitImplicitDef(II, *this); 694 break; 695 case TargetOpcode::KILL: 696 if (isVerbose()) EmitKill(II, *this); 697 break; 698 default: 699 if (!TM.hasMCUseLoc()) 700 MCLineEntry::Make(&OutStreamer, getCurrentSection()); 701 702 EmitInstruction(II); 703 break; 704 } 705 706 if (ShouldPrintDebugScopes) { 707 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 708 DD->endInstruction(II); 709 } 710 } 711 } 712 713 // If the last instruction was a prolog label, then we have a situation where 714 // we emitted a prolog but no function body. This results in the ending prolog 715 // label equaling the end of function label and an invalid "row" in the 716 // FDE. We need to emit a noop in this situation so that the FDE's rows are 717 // valid. 718 bool RequiresNoop = LastMI && LastMI->isPrologLabel(); 719 720 // If the function is empty and the object file uses .subsections_via_symbols, 721 // then we need to emit *something* to the function body to prevent the 722 // labels from collapsing together. Just emit a noop. 723 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { 724 MCInst Noop; 725 TM.getInstrInfo()->getNoopForMachoTarget(Noop); 726 if (Noop.getOpcode()) { 727 OutStreamer.AddComment("avoids zero-length function"); 728 OutStreamer.EmitInstruction(Noop); 729 } else // Target not mc-ized yet. 730 OutStreamer.EmitRawText(StringRef("\tnop\n")); 731 } 732 733 // Emit target-specific gunk after the function body. 734 EmitFunctionBodyEnd(); 735 736 // If the target wants a .size directive for the size of the function, emit 737 // it. 738 if (MAI->hasDotTypeDotSizeDirective()) { 739 // Create a symbol for the end of function, so we can get the size as 740 // difference between the function label and the temp label. 741 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 742 OutStreamer.EmitLabel(FnEndLabel); 743 744 const MCExpr *SizeExp = 745 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 746 MCSymbolRefExpr::Create(CurrentFnSym, OutContext), 747 OutContext); 748 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 749 } 750 751 // Emit post-function debug information. 752 if (DD) { 753 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 754 DD->endFunction(MF); 755 } 756 if (DE) { 757 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 758 DE->EndFunction(); 759 } 760 MMI->EndFunction(); 761 762 // Print out jump tables referenced by the function. 763 EmitJumpTableInfo(); 764 765 OutStreamer.AddBlankLine(); 766 } 767 768 /// getDebugValueLocation - Get location information encoded by DBG_VALUE 769 /// operands. 770 MachineLocation AsmPrinter:: 771 getDebugValueLocation(const MachineInstr *MI) const { 772 // Target specific DBG_VALUE instructions are handled by each target. 773 return MachineLocation(); 774 } 775 776 /// EmitDwarfRegOp - Emit dwarf register operation. 777 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { 778 const TargetRegisterInfo *TRI = TM.getRegisterInfo(); 779 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); 780 781 for (const unsigned *SR = TRI->getSuperRegisters(MLoc.getReg()); 782 *SR && Reg < 0; ++SR) { 783 Reg = TRI->getDwarfRegNum(*SR, false); 784 // FIXME: Get the bit range this register uses of the superregister 785 // so that we can produce a DW_OP_bit_piece 786 } 787 788 // FIXME: Handle cases like a super register being encoded as 789 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 790 791 // FIXME: We have no reasonable way of handling errors in here. The 792 // caller might be in the middle of an dwarf expression. We should 793 // probably assert that Reg >= 0 once debug info generation is more mature. 794 795 if (int Offset = MLoc.getOffset()) { 796 if (Reg < 32) { 797 OutStreamer.AddComment( 798 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); 799 EmitInt8(dwarf::DW_OP_breg0 + Reg); 800 } else { 801 OutStreamer.AddComment("DW_OP_bregx"); 802 EmitInt8(dwarf::DW_OP_bregx); 803 OutStreamer.AddComment(Twine(Reg)); 804 EmitULEB128(Reg); 805 } 806 EmitSLEB128(Offset); 807 } else { 808 if (Reg < 32) { 809 OutStreamer.AddComment( 810 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); 811 EmitInt8(dwarf::DW_OP_reg0 + Reg); 812 } else { 813 OutStreamer.AddComment("DW_OP_regx"); 814 EmitInt8(dwarf::DW_OP_regx); 815 OutStreamer.AddComment(Twine(Reg)); 816 EmitULEB128(Reg); 817 } 818 } 819 820 // FIXME: Produce a DW_OP_bit_piece if we used a superregister 821 } 822 823 bool AsmPrinter::doFinalization(Module &M) { 824 // Emit global variables. 825 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 826 I != E; ++I) 827 EmitGlobalVariable(I); 828 829 // Emit visibility info for declarations 830 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 831 const Function &F = *I; 832 if (!F.isDeclaration()) 833 continue; 834 GlobalValue::VisibilityTypes V = F.getVisibility(); 835 if (V == GlobalValue::DefaultVisibility) 836 continue; 837 838 MCSymbol *Name = Mang->getSymbol(&F); 839 EmitVisibility(Name, V, false); 840 } 841 842 // Finalize debug and EH information. 843 if (DE) { 844 { 845 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); 846 DE->EndModule(); 847 } 848 delete DE; DE = 0; 849 } 850 if (DD) { 851 { 852 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); 853 DD->endModule(); 854 } 855 delete DD; DD = 0; 856 } 857 858 // If the target wants to know about weak references, print them all. 859 if (MAI->getWeakRefDirective()) { 860 // FIXME: This is not lazy, it would be nice to only print weak references 861 // to stuff that is actually used. Note that doing so would require targets 862 // to notice uses in operands (due to constant exprs etc). This should 863 // happen with the MC stuff eventually. 864 865 // Print out module-level global variables here. 866 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 867 I != E; ++I) { 868 if (!I->hasExternalWeakLinkage()) continue; 869 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 870 } 871 872 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { 873 if (!I->hasExternalWeakLinkage()) continue; 874 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); 875 } 876 } 877 878 if (MAI->hasSetDirective()) { 879 OutStreamer.AddBlankLine(); 880 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); 881 I != E; ++I) { 882 MCSymbol *Name = Mang->getSymbol(I); 883 884 const GlobalValue *GV = I->getAliasedGlobal(); 885 MCSymbol *Target = Mang->getSymbol(GV); 886 887 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) 888 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 889 else if (I->hasWeakLinkage()) 890 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 891 else 892 assert(I->hasLocalLinkage() && "Invalid alias linkage"); 893 894 EmitVisibility(Name, I->getVisibility()); 895 896 // Emit the directives as assignments aka .set: 897 OutStreamer.EmitAssignment(Name, 898 MCSymbolRefExpr::Create(Target, OutContext)); 899 } 900 } 901 902 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 903 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 904 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 905 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) 906 MP->finishAssembly(*this); 907 908 // If we don't have any trampolines, then we don't require stack memory 909 // to be executable. Some targets have a directive to declare this. 910 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 911 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 912 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 913 OutStreamer.SwitchSection(S); 914 915 // Allow the target to emit any magic that it wants at the end of the file, 916 // after everything else has gone out. 917 EmitEndOfAsmFile(M); 918 919 delete Mang; Mang = 0; 920 MMI = 0; 921 922 OutStreamer.Finish(); 923 return false; 924 } 925 926 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 927 this->MF = &MF; 928 // Get the function symbol. 929 CurrentFnSym = Mang->getSymbol(MF.getFunction()); 930 931 if (isVerbose()) 932 LI = &getAnalysis<MachineLoopInfo>(); 933 } 934 935 namespace { 936 // SectionCPs - Keep track the alignment, constpool entries per Section. 937 struct SectionCPs { 938 const MCSection *S; 939 unsigned Alignment; 940 SmallVector<unsigned, 4> CPEs; 941 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 942 }; 943 } 944 945 /// EmitConstantPool - Print to the current output stream assembly 946 /// representations of the constants in the constant pool MCP. This is 947 /// used to print out constants which have been "spilled to memory" by 948 /// the code generator. 949 /// 950 void AsmPrinter::EmitConstantPool() { 951 const MachineConstantPool *MCP = MF->getConstantPool(); 952 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 953 if (CP.empty()) return; 954 955 // Calculate sections for constant pool entries. We collect entries to go into 956 // the same section together to reduce amount of section switch statements. 957 SmallVector<SectionCPs, 4> CPSections; 958 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 959 const MachineConstantPoolEntry &CPE = CP[i]; 960 unsigned Align = CPE.getAlignment(); 961 962 SectionKind Kind; 963 switch (CPE.getRelocationInfo()) { 964 default: llvm_unreachable("Unknown section kind"); 965 case 2: Kind = SectionKind::getReadOnlyWithRel(); break; 966 case 1: 967 Kind = SectionKind::getReadOnlyWithRelLocal(); 968 break; 969 case 0: 970 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) { 971 case 4: Kind = SectionKind::getMergeableConst4(); break; 972 case 8: Kind = SectionKind::getMergeableConst8(); break; 973 case 16: Kind = SectionKind::getMergeableConst16();break; 974 default: Kind = SectionKind::getMergeableConst(); break; 975 } 976 } 977 978 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); 979 980 // The number of sections are small, just do a linear search from the 981 // last section to the first. 982 bool Found = false; 983 unsigned SecIdx = CPSections.size(); 984 while (SecIdx != 0) { 985 if (CPSections[--SecIdx].S == S) { 986 Found = true; 987 break; 988 } 989 } 990 if (!Found) { 991 SecIdx = CPSections.size(); 992 CPSections.push_back(SectionCPs(S, Align)); 993 } 994 995 if (Align > CPSections[SecIdx].Alignment) 996 CPSections[SecIdx].Alignment = Align; 997 CPSections[SecIdx].CPEs.push_back(i); 998 } 999 1000 // Now print stuff into the calculated sections. 1001 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1002 OutStreamer.SwitchSection(CPSections[i].S); 1003 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1004 1005 unsigned Offset = 0; 1006 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1007 unsigned CPI = CPSections[i].CPEs[j]; 1008 MachineConstantPoolEntry CPE = CP[CPI]; 1009 1010 // Emit inter-object padding for alignment. 1011 unsigned AlignMask = CPE.getAlignment() - 1; 1012 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1013 OutStreamer.EmitFill(NewOffset - Offset, 0/*fillval*/, 0/*addrspace*/); 1014 1015 Type *Ty = CPE.getType(); 1016 Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty); 1017 OutStreamer.EmitLabel(GetCPISymbol(CPI)); 1018 1019 if (CPE.isMachineConstantPoolEntry()) 1020 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1021 else 1022 EmitGlobalConstant(CPE.Val.ConstVal); 1023 } 1024 } 1025 } 1026 1027 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1028 /// by the current function to the current output stream. 1029 /// 1030 void AsmPrinter::EmitJumpTableInfo() { 1031 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1032 if (MJTI == 0) return; 1033 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1034 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1035 if (JT.empty()) return; 1036 1037 // Pick the directive to use to print the jump table entries, and switch to 1038 // the appropriate section. 1039 const Function *F = MF->getFunction(); 1040 bool JTInDiffSection = false; 1041 if (// In PIC mode, we need to emit the jump table to the same section as the 1042 // function body itself, otherwise the label differences won't make sense. 1043 // FIXME: Need a better predicate for this: what about custom entries? 1044 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1045 // We should also do if the section name is NULL or function is declared 1046 // in discardable section 1047 // FIXME: this isn't the right predicate, should be based on the MCSection 1048 // for the function. 1049 F->isWeakForLinker()) { 1050 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); 1051 } else { 1052 // Otherwise, drop it in the readonly section. 1053 const MCSection *ReadOnlySection = 1054 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); 1055 OutStreamer.SwitchSection(ReadOnlySection); 1056 JTInDiffSection = true; 1057 } 1058 1059 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getTargetData()))); 1060 1061 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1062 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1063 1064 // If this jump table was deleted, ignore it. 1065 if (JTBBs.empty()) continue; 1066 1067 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1068 // .set directive for each unique entry. This reduces the number of 1069 // relocations the assembler will generate for the jump table. 1070 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1071 MAI->hasSetDirective()) { 1072 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1073 const TargetLowering *TLI = TM.getTargetLowering(); 1074 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1075 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1076 const MachineBasicBlock *MBB = JTBBs[ii]; 1077 if (!EmittedSets.insert(MBB)) continue; 1078 1079 // .set LJTSet, LBB32-base 1080 const MCExpr *LHS = 1081 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1082 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1083 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1084 } 1085 } 1086 1087 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1088 // before each jump table. The first label is never referenced, but tells 1089 // the assembler and linker the extents of the jump table object. The 1090 // second label is actually referenced by the code. 1091 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) 1092 // FIXME: This doesn't have to have any specific name, just any randomly 1093 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1094 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1095 1096 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1097 1098 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1099 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1100 } 1101 } 1102 1103 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1104 /// current stream. 1105 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1106 const MachineBasicBlock *MBB, 1107 unsigned UID) const { 1108 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1109 const MCExpr *Value = 0; 1110 switch (MJTI->getEntryKind()) { 1111 case MachineJumpTableInfo::EK_Inline: 1112 llvm_unreachable("Cannot emit EK_Inline jump table entry"); break; 1113 case MachineJumpTableInfo::EK_Custom32: 1114 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, 1115 OutContext); 1116 break; 1117 case MachineJumpTableInfo::EK_BlockAddress: 1118 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1119 // .word LBB123 1120 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1121 break; 1122 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1123 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1124 // with a relocation as gp-relative, e.g.: 1125 // .gprel32 LBB123 1126 MCSymbol *MBBSym = MBB->getSymbol(); 1127 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1128 return; 1129 } 1130 1131 case MachineJumpTableInfo::EK_LabelDifference32: { 1132 // EK_LabelDifference32 - Each entry is the address of the block minus 1133 // the address of the jump table. This is used for PIC jump tables where 1134 // gprel32 is not supported. e.g.: 1135 // .word LBB123 - LJTI1_2 1136 // If the .set directive is supported, this is emitted as: 1137 // .set L4_5_set_123, LBB123 - LJTI1_2 1138 // .word L4_5_set_123 1139 1140 // If we have emitted set directives for the jump table entries, print 1141 // them rather than the entries themselves. If we're emitting PIC, then 1142 // emit the table entries as differences between two text section labels. 1143 if (MAI->hasSetDirective()) { 1144 // If we used .set, reference the .set's symbol. 1145 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1146 OutContext); 1147 break; 1148 } 1149 // Otherwise, use the difference as the jump table entry. 1150 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1151 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1152 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1153 break; 1154 } 1155 } 1156 1157 assert(Value && "Unknown entry kind!"); 1158 1159 unsigned EntrySize = MJTI->getEntrySize(*TM.getTargetData()); 1160 OutStreamer.EmitValue(Value, EntrySize, /*addrspace*/0); 1161 } 1162 1163 1164 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1165 /// special global used by LLVM. If so, emit it and return true, otherwise 1166 /// do nothing and return false. 1167 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1168 if (GV->getName() == "llvm.used") { 1169 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1170 EmitLLVMUsedList(GV->getInitializer()); 1171 return true; 1172 } 1173 1174 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1175 if (GV->getSection() == "llvm.metadata" || 1176 GV->hasAvailableExternallyLinkage()) 1177 return true; 1178 1179 if (!GV->hasAppendingLinkage()) return false; 1180 1181 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1182 1183 const TargetData *TD = TM.getTargetData(); 1184 unsigned Align = Log2_32(TD->getPointerPrefAlignment()); 1185 if (GV->getName() == "llvm.global_ctors") { 1186 OutStreamer.SwitchSection(getObjFileLowering().getStaticCtorSection()); 1187 EmitAlignment(Align); 1188 EmitXXStructorList(GV->getInitializer()); 1189 1190 if (TM.getRelocationModel() == Reloc::Static && 1191 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1192 StringRef Sym(".constructors_used"); 1193 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1194 MCSA_Reference); 1195 } 1196 return true; 1197 } 1198 1199 if (GV->getName() == "llvm.global_dtors") { 1200 OutStreamer.SwitchSection(getObjFileLowering().getStaticDtorSection()); 1201 EmitAlignment(Align); 1202 EmitXXStructorList(GV->getInitializer()); 1203 1204 if (TM.getRelocationModel() == Reloc::Static && 1205 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1206 StringRef Sym(".destructors_used"); 1207 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1208 MCSA_Reference); 1209 } 1210 return true; 1211 } 1212 1213 return false; 1214 } 1215 1216 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1217 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1218 /// is true, as being used with this directive. 1219 void AsmPrinter::EmitLLVMUsedList(const Constant *List) { 1220 // Should be an array of 'i8*'. 1221 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1222 if (InitList == 0) return; 1223 1224 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1225 const GlobalValue *GV = 1226 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1227 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) 1228 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); 1229 } 1230 } 1231 1232 typedef std::pair<int, Constant*> Structor; 1233 1234 static bool priority_order(const Structor& lhs, const Structor& rhs) 1235 { 1236 return lhs.first < rhs.first; 1237 } 1238 1239 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1240 /// priority. 1241 void AsmPrinter::EmitXXStructorList(const Constant *List) { 1242 // Should be an array of '{ int, void ()* }' structs. The first value is the 1243 // init priority. 1244 if (!isa<ConstantArray>(List)) return; 1245 1246 // Sanity check the structors list. 1247 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1248 if (!InitList) return; // Not an array! 1249 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1250 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! 1251 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1252 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1253 1254 // Gather the structors in a form that's convenient for sorting by priority. 1255 SmallVector<Structor, 8> Structors; 1256 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1257 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 1258 if (!CS) continue; // Malformed. 1259 if (CS->getOperand(1)->isNullValue()) 1260 break; // Found a null terminator, skip the rest. 1261 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1262 if (!Priority) continue; // Malformed. 1263 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), 1264 CS->getOperand(1))); 1265 } 1266 1267 // Emit the function pointers in reverse priority order. 1268 switch (MAI->getStructorOutputOrder()) { 1269 case Structors::None: 1270 break; 1271 case Structors::PriorityOrder: 1272 std::sort(Structors.begin(), Structors.end(), priority_order); 1273 break; 1274 case Structors::ReversePriorityOrder: 1275 std::sort(Structors.rbegin(), Structors.rend(), priority_order); 1276 break; 1277 } 1278 for (unsigned i = 0, e = Structors.size(); i != e; ++i) 1279 EmitGlobalConstant(Structors[i].second); 1280 } 1281 1282 //===--------------------------------------------------------------------===// 1283 // Emission and print routines 1284 // 1285 1286 /// EmitInt8 - Emit a byte directive and value. 1287 /// 1288 void AsmPrinter::EmitInt8(int Value) const { 1289 OutStreamer.EmitIntValue(Value, 1, 0/*addrspace*/); 1290 } 1291 1292 /// EmitInt16 - Emit a short directive and value. 1293 /// 1294 void AsmPrinter::EmitInt16(int Value) const { 1295 OutStreamer.EmitIntValue(Value, 2, 0/*addrspace*/); 1296 } 1297 1298 /// EmitInt32 - Emit a long directive and value. 1299 /// 1300 void AsmPrinter::EmitInt32(int Value) const { 1301 OutStreamer.EmitIntValue(Value, 4, 0/*addrspace*/); 1302 } 1303 1304 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1305 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1306 /// labels. This implicitly uses .set if it is available. 1307 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1308 unsigned Size) const { 1309 // Get the Hi-Lo expression. 1310 const MCExpr *Diff = 1311 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1312 MCSymbolRefExpr::Create(Lo, OutContext), 1313 OutContext); 1314 1315 if (!MAI->hasSetDirective()) { 1316 OutStreamer.EmitValue(Diff, Size, 0/*AddrSpace*/); 1317 return; 1318 } 1319 1320 // Otherwise, emit with .set (aka assignment). 1321 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1322 OutStreamer.EmitAssignment(SetLabel, Diff); 1323 OutStreamer.EmitSymbolValue(SetLabel, Size, 0/*AddrSpace*/); 1324 } 1325 1326 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1327 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1328 /// specify the labels. This implicitly uses .set if it is available. 1329 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1330 const MCSymbol *Lo, unsigned Size) 1331 const { 1332 1333 // Emit Hi+Offset - Lo 1334 // Get the Hi+Offset expression. 1335 const MCExpr *Plus = 1336 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1337 MCConstantExpr::Create(Offset, OutContext), 1338 OutContext); 1339 1340 // Get the Hi+Offset-Lo expression. 1341 const MCExpr *Diff = 1342 MCBinaryExpr::CreateSub(Plus, 1343 MCSymbolRefExpr::Create(Lo, OutContext), 1344 OutContext); 1345 1346 if (!MAI->hasSetDirective()) 1347 OutStreamer.EmitValue(Diff, 4, 0/*AddrSpace*/); 1348 else { 1349 // Otherwise, emit with .set (aka assignment). 1350 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1351 OutStreamer.EmitAssignment(SetLabel, Diff); 1352 OutStreamer.EmitSymbolValue(SetLabel, 4, 0/*AddrSpace*/); 1353 } 1354 } 1355 1356 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1357 /// where the size in bytes of the directive is specified by Size and Label 1358 /// specifies the label. This implicitly uses .set if it is available. 1359 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1360 unsigned Size) 1361 const { 1362 1363 // Emit Label+Offset 1364 const MCExpr *Plus = 1365 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Label, OutContext), 1366 MCConstantExpr::Create(Offset, OutContext), 1367 OutContext); 1368 1369 OutStreamer.EmitValue(Plus, 4, 0/*AddrSpace*/); 1370 } 1371 1372 1373 //===----------------------------------------------------------------------===// 1374 1375 // EmitAlignment - Emit an alignment directive to the specified power of 1376 // two boundary. For example, if you pass in 3 here, you will get an 8 1377 // byte alignment. If a global value is specified, and if that global has 1378 // an explicit alignment requested, it will override the alignment request 1379 // if required for correctness. 1380 // 1381 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { 1382 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getTargetData(), NumBits); 1383 1384 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1385 1386 if (getCurrentSection()->getKind().isText()) 1387 OutStreamer.EmitCodeAlignment(1 << NumBits); 1388 else 1389 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // Constant emission. 1394 //===----------------------------------------------------------------------===// 1395 1396 /// LowerConstant - Lower the specified LLVM Constant to an MCExpr. 1397 /// 1398 static const MCExpr *LowerConstant(const Constant *CV, AsmPrinter &AP) { 1399 MCContext &Ctx = AP.OutContext; 1400 1401 if (CV->isNullValue() || isa<UndefValue>(CV)) 1402 return MCConstantExpr::Create(0, Ctx); 1403 1404 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1405 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1406 1407 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1408 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); 1409 1410 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1411 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1412 1413 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1414 if (CE == 0) { 1415 llvm_unreachable("Unknown constant value to lower!"); 1416 return MCConstantExpr::Create(0, Ctx); 1417 } 1418 1419 switch (CE->getOpcode()) { 1420 default: 1421 // If the code isn't optimized, there may be outstanding folding 1422 // opportunities. Attempt to fold the expression using TargetData as a 1423 // last resort before giving up. 1424 if (Constant *C = 1425 ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) 1426 if (C != CE) 1427 return LowerConstant(C, AP); 1428 1429 // Otherwise report the problem to the user. 1430 { 1431 std::string S; 1432 raw_string_ostream OS(S); 1433 OS << "Unsupported expression in static initializer: "; 1434 WriteAsOperand(OS, CE, /*PrintType=*/false, 1435 !AP.MF ? 0 : AP.MF->getFunction()->getParent()); 1436 report_fatal_error(OS.str()); 1437 } 1438 return MCConstantExpr::Create(0, Ctx); 1439 case Instruction::GetElementPtr: { 1440 const TargetData &TD = *AP.TM.getTargetData(); 1441 // Generate a symbolic expression for the byte address 1442 const Constant *PtrVal = CE->getOperand(0); 1443 SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); 1444 int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); 1445 1446 const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); 1447 if (Offset == 0) 1448 return Base; 1449 1450 // Truncate/sext the offset to the pointer size. 1451 if (TD.getPointerSizeInBits() != 64) { 1452 int SExtAmount = 64-TD.getPointerSizeInBits(); 1453 Offset = (Offset << SExtAmount) >> SExtAmount; 1454 } 1455 1456 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1457 Ctx); 1458 } 1459 1460 case Instruction::Trunc: 1461 // We emit the value and depend on the assembler to truncate the generated 1462 // expression properly. This is important for differences between 1463 // blockaddress labels. Since the two labels are in the same function, it 1464 // is reasonable to treat their delta as a 32-bit value. 1465 // FALL THROUGH. 1466 case Instruction::BitCast: 1467 return LowerConstant(CE->getOperand(0), AP); 1468 1469 case Instruction::IntToPtr: { 1470 const TargetData &TD = *AP.TM.getTargetData(); 1471 // Handle casts to pointers by changing them into casts to the appropriate 1472 // integer type. This promotes constant folding and simplifies this code. 1473 Constant *Op = CE->getOperand(0); 1474 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), 1475 false/*ZExt*/); 1476 return LowerConstant(Op, AP); 1477 } 1478 1479 case Instruction::PtrToInt: { 1480 const TargetData &TD = *AP.TM.getTargetData(); 1481 // Support only foldable casts to/from pointers that can be eliminated by 1482 // changing the pointer to the appropriately sized integer type. 1483 Constant *Op = CE->getOperand(0); 1484 Type *Ty = CE->getType(); 1485 1486 const MCExpr *OpExpr = LowerConstant(Op, AP); 1487 1488 // We can emit the pointer value into this slot if the slot is an 1489 // integer slot equal to the size of the pointer. 1490 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) 1491 return OpExpr; 1492 1493 // Otherwise the pointer is smaller than the resultant integer, mask off 1494 // the high bits so we are sure to get a proper truncation if the input is 1495 // a constant expr. 1496 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); 1497 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1498 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1499 } 1500 1501 // The MC library also has a right-shift operator, but it isn't consistently 1502 // signed or unsigned between different targets. 1503 case Instruction::Add: 1504 case Instruction::Sub: 1505 case Instruction::Mul: 1506 case Instruction::SDiv: 1507 case Instruction::SRem: 1508 case Instruction::Shl: 1509 case Instruction::And: 1510 case Instruction::Or: 1511 case Instruction::Xor: { 1512 const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); 1513 const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); 1514 switch (CE->getOpcode()) { 1515 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1516 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1517 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1518 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1519 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1520 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1521 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1522 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1523 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1524 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1525 } 1526 } 1527 } 1528 } 1529 1530 static void EmitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, 1531 AsmPrinter &AP); 1532 1533 /// isRepeatedByteSequence - Determine whether the given value is 1534 /// composed of a repeated sequence of identical bytes and return the 1535 /// byte value. If it is not a repeated sequence, return -1. 1536 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1537 1538 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1539 if (CI->getBitWidth() > 64) return -1; 1540 1541 uint64_t Size = TM.getTargetData()->getTypeAllocSize(V->getType()); 1542 uint64_t Value = CI->getZExtValue(); 1543 1544 // Make sure the constant is at least 8 bits long and has a power 1545 // of 2 bit width. This guarantees the constant bit width is 1546 // always a multiple of 8 bits, avoiding issues with padding out 1547 // to Size and other such corner cases. 1548 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1549 1550 uint8_t Byte = static_cast<uint8_t>(Value); 1551 1552 for (unsigned i = 1; i < Size; ++i) { 1553 Value >>= 8; 1554 if (static_cast<uint8_t>(Value) != Byte) return -1; 1555 } 1556 return Byte; 1557 } 1558 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1559 // Make sure all array elements are sequences of the same repeated 1560 // byte. 1561 if (CA->getNumOperands() == 0) return -1; 1562 1563 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1564 if (Byte == -1) return -1; 1565 1566 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1567 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1568 if (ThisByte == -1) return -1; 1569 if (Byte != ThisByte) return -1; 1570 } 1571 return Byte; 1572 } 1573 1574 return -1; 1575 } 1576 1577 static void EmitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, 1578 AsmPrinter &AP) { 1579 if (AddrSpace != 0 || !CA->isString()) { 1580 // Not a string. Print the values in successive locations. 1581 1582 // See if we can aggregate some values. Make sure it can be 1583 // represented as a series of bytes of the constant value. 1584 int Value = isRepeatedByteSequence(CA, AP.TM); 1585 1586 if (Value != -1) { 1587 uint64_t Bytes = AP.TM.getTargetData()->getTypeAllocSize(CA->getType()); 1588 AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); 1589 } 1590 else { 1591 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1592 EmitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); 1593 } 1594 return; 1595 } 1596 1597 // Otherwise, it can be emitted as .ascii. 1598 SmallVector<char, 128> TmpVec; 1599 TmpVec.reserve(CA->getNumOperands()); 1600 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1601 TmpVec.push_back(cast<ConstantInt>(CA->getOperand(i))->getZExtValue()); 1602 1603 AP.OutStreamer.EmitBytes(StringRef(TmpVec.data(), TmpVec.size()), AddrSpace); 1604 } 1605 1606 static void EmitGlobalConstantVector(const ConstantVector *CV, 1607 unsigned AddrSpace, AsmPrinter &AP) { 1608 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1609 EmitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); 1610 1611 const TargetData &TD = *AP.TM.getTargetData(); 1612 unsigned Size = TD.getTypeAllocSize(CV->getType()); 1613 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * 1614 CV->getType()->getNumElements(); 1615 if (unsigned Padding = Size - EmittedSize) 1616 AP.OutStreamer.EmitZeros(Padding, AddrSpace); 1617 } 1618 1619 static void EmitGlobalConstantStruct(const ConstantStruct *CS, 1620 unsigned AddrSpace, AsmPrinter &AP) { 1621 // Print the fields in successive locations. Pad to align if needed! 1622 const TargetData *TD = AP.TM.getTargetData(); 1623 unsigned Size = TD->getTypeAllocSize(CS->getType()); 1624 const StructLayout *Layout = TD->getStructLayout(CS->getType()); 1625 uint64_t SizeSoFar = 0; 1626 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1627 const Constant *Field = CS->getOperand(i); 1628 1629 // Check if padding is needed and insert one or more 0s. 1630 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); 1631 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1632 - Layout->getElementOffset(i)) - FieldSize; 1633 SizeSoFar += FieldSize + PadSize; 1634 1635 // Now print the actual field value. 1636 EmitGlobalConstantImpl(Field, AddrSpace, AP); 1637 1638 // Insert padding - this may include padding to increase the size of the 1639 // current field up to the ABI size (if the struct is not packed) as well 1640 // as padding to ensure that the next field starts at the right offset. 1641 AP.OutStreamer.EmitZeros(PadSize, AddrSpace); 1642 } 1643 assert(SizeSoFar == Layout->getSizeInBytes() && 1644 "Layout of constant struct may be incorrect!"); 1645 } 1646 1647 static void EmitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, 1648 AsmPrinter &AP) { 1649 // FP Constants are printed as integer constants to avoid losing 1650 // precision. 1651 if (CFP->getType()->isDoubleTy()) { 1652 if (AP.isVerbose()) { 1653 double Val = CFP->getValueAPF().convertToDouble(); 1654 AP.OutStreamer.GetCommentOS() << "double " << Val << '\n'; 1655 } 1656 1657 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1658 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1659 return; 1660 } 1661 1662 if (CFP->getType()->isFloatTy()) { 1663 if (AP.isVerbose()) { 1664 float Val = CFP->getValueAPF().convertToFloat(); 1665 AP.OutStreamer.GetCommentOS() << "float " << Val << '\n'; 1666 } 1667 uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); 1668 AP.OutStreamer.EmitIntValue(Val, 4, AddrSpace); 1669 return; 1670 } 1671 1672 if (CFP->getType()->isX86_FP80Ty()) { 1673 // all long double variants are printed as hex 1674 // API needed to prevent premature destruction 1675 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1676 const uint64_t *p = API.getRawData(); 1677 if (AP.isVerbose()) { 1678 // Convert to double so we can print the approximate val as a comment. 1679 APFloat DoubleVal = CFP->getValueAPF(); 1680 bool ignored; 1681 DoubleVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 1682 &ignored); 1683 AP.OutStreamer.GetCommentOS() << "x86_fp80 ~= " 1684 << DoubleVal.convertToDouble() << '\n'; 1685 } 1686 1687 if (AP.TM.getTargetData()->isBigEndian()) { 1688 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1689 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1690 } else { 1691 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1692 AP.OutStreamer.EmitIntValue(p[1], 2, AddrSpace); 1693 } 1694 1695 // Emit the tail padding for the long double. 1696 const TargetData &TD = *AP.TM.getTargetData(); 1697 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - 1698 TD.getTypeStoreSize(CFP->getType()), AddrSpace); 1699 return; 1700 } 1701 1702 assert(CFP->getType()->isPPC_FP128Ty() && 1703 "Floating point constant type not handled"); 1704 // All long double variants are printed as hex 1705 // API needed to prevent premature destruction. 1706 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1707 const uint64_t *p = API.getRawData(); 1708 if (AP.TM.getTargetData()->isBigEndian()) { 1709 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1710 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1711 } else { 1712 AP.OutStreamer.EmitIntValue(p[1], 8, AddrSpace); 1713 AP.OutStreamer.EmitIntValue(p[0], 8, AddrSpace); 1714 } 1715 } 1716 1717 static void EmitGlobalConstantLargeInt(const ConstantInt *CI, 1718 unsigned AddrSpace, AsmPrinter &AP) { 1719 const TargetData *TD = AP.TM.getTargetData(); 1720 unsigned BitWidth = CI->getBitWidth(); 1721 assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); 1722 1723 // We don't expect assemblers to support integer data directives 1724 // for more than 64 bits, so we emit the data in at most 64-bit 1725 // quantities at a time. 1726 const uint64_t *RawData = CI->getValue().getRawData(); 1727 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1728 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1729 AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); 1730 } 1731 } 1732 1733 static void EmitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, 1734 AsmPrinter &AP) { 1735 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) { 1736 uint64_t Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1737 return AP.OutStreamer.EmitZeros(Size, AddrSpace); 1738 } 1739 1740 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1741 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1742 switch (Size) { 1743 case 1: 1744 case 2: 1745 case 4: 1746 case 8: 1747 if (AP.isVerbose()) 1748 AP.OutStreamer.GetCommentOS() << format("0x%llx\n", CI->getZExtValue()); 1749 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); 1750 return; 1751 default: 1752 EmitGlobalConstantLargeInt(CI, AddrSpace, AP); 1753 return; 1754 } 1755 } 1756 1757 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1758 return EmitGlobalConstantArray(CVA, AddrSpace, AP); 1759 1760 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 1761 return EmitGlobalConstantStruct(CVS, AddrSpace, AP); 1762 1763 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1764 return EmitGlobalConstantFP(CFP, AddrSpace, AP); 1765 1766 if (isa<ConstantPointerNull>(CV)) { 1767 unsigned Size = AP.TM.getTargetData()->getTypeAllocSize(CV->getType()); 1768 AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); 1769 return; 1770 } 1771 1772 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 1773 return EmitGlobalConstantVector(V, AddrSpace, AP); 1774 1775 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 1776 // thread the streamer with EmitValue. 1777 AP.OutStreamer.EmitValue(LowerConstant(CV, AP), 1778 AP.TM.getTargetData()->getTypeAllocSize(CV->getType()), 1779 AddrSpace); 1780 } 1781 1782 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 1783 void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { 1784 uint64_t Size = TM.getTargetData()->getTypeAllocSize(CV->getType()); 1785 if (Size) 1786 EmitGlobalConstantImpl(CV, AddrSpace, *this); 1787 else if (MAI->hasSubsectionsViaSymbols()) { 1788 // If the global has zero size, emit a single byte so that two labels don't 1789 // look like they are at the same location. 1790 OutStreamer.EmitIntValue(0, 1, AddrSpace); 1791 } 1792 } 1793 1794 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 1795 // Target doesn't support this yet! 1796 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 1797 } 1798 1799 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 1800 if (Offset > 0) 1801 OS << '+' << Offset; 1802 else if (Offset < 0) 1803 OS << Offset; 1804 } 1805 1806 //===----------------------------------------------------------------------===// 1807 // Symbol Lowering Routines. 1808 //===----------------------------------------------------------------------===// 1809 1810 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 1811 /// temporary label with the specified stem and unique ID. 1812 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { 1813 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + 1814 Name + Twine(ID)); 1815 } 1816 1817 /// GetTempSymbol - Return an assembler temporary label with the specified 1818 /// stem. 1819 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { 1820 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ 1821 Name); 1822 } 1823 1824 1825 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 1826 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 1827 } 1828 1829 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 1830 return MMI->getAddrLabelSymbol(BB); 1831 } 1832 1833 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 1834 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 1835 return OutContext.GetOrCreateSymbol 1836 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 1837 + "_" + Twine(CPID)); 1838 } 1839 1840 /// GetJTISymbol - Return the symbol for the specified jump table entry. 1841 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 1842 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 1843 } 1844 1845 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 1846 /// FIXME: privatize to AsmPrinter. 1847 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 1848 return OutContext.GetOrCreateSymbol 1849 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 1850 Twine(UID) + "_set_" + Twine(MBBID)); 1851 } 1852 1853 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with 1854 /// global value name as its base, with the specified suffix, and where the 1855 /// symbol is forced to have private linkage if ForcePrivate is true. 1856 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, 1857 StringRef Suffix, 1858 bool ForcePrivate) const { 1859 SmallString<60> NameStr; 1860 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); 1861 NameStr.append(Suffix.begin(), Suffix.end()); 1862 return OutContext.GetOrCreateSymbol(NameStr.str()); 1863 } 1864 1865 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 1866 /// ExternalSymbol. 1867 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 1868 SmallString<60> NameStr; 1869 Mang->getNameWithPrefix(NameStr, Sym); 1870 return OutContext.GetOrCreateSymbol(NameStr.str()); 1871 } 1872 1873 1874 1875 /// PrintParentLoopComment - Print comments about parent loops of this one. 1876 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1877 unsigned FunctionNumber) { 1878 if (Loop == 0) return; 1879 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 1880 OS.indent(Loop->getLoopDepth()*2) 1881 << "Parent Loop BB" << FunctionNumber << "_" 1882 << Loop->getHeader()->getNumber() 1883 << " Depth=" << Loop->getLoopDepth() << '\n'; 1884 } 1885 1886 1887 /// PrintChildLoopComment - Print comments about child loops within 1888 /// the loop for this basic block, with nesting. 1889 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 1890 unsigned FunctionNumber) { 1891 // Add child loop information 1892 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ 1893 OS.indent((*CL)->getLoopDepth()*2) 1894 << "Child Loop BB" << FunctionNumber << "_" 1895 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() 1896 << '\n'; 1897 PrintChildLoopComment(OS, *CL, FunctionNumber); 1898 } 1899 } 1900 1901 /// EmitBasicBlockLoopComments - Pretty-print comments for basic blocks. 1902 static void EmitBasicBlockLoopComments(const MachineBasicBlock &MBB, 1903 const MachineLoopInfo *LI, 1904 const AsmPrinter &AP) { 1905 // Add loop depth information 1906 const MachineLoop *Loop = LI->getLoopFor(&MBB); 1907 if (Loop == 0) return; 1908 1909 MachineBasicBlock *Header = Loop->getHeader(); 1910 assert(Header && "No header for loop"); 1911 1912 // If this block is not a loop header, just print out what is the loop header 1913 // and return. 1914 if (Header != &MBB) { 1915 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 1916 Twine(AP.getFunctionNumber())+"_" + 1917 Twine(Loop->getHeader()->getNumber())+ 1918 " Depth="+Twine(Loop->getLoopDepth())); 1919 return; 1920 } 1921 1922 // Otherwise, it is a loop header. Print out information about child and 1923 // parent loops. 1924 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 1925 1926 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 1927 1928 OS << "=>"; 1929 OS.indent(Loop->getLoopDepth()*2-2); 1930 1931 OS << "This "; 1932 if (Loop->empty()) 1933 OS << "Inner "; 1934 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 1935 1936 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 1937 } 1938 1939 1940 /// EmitBasicBlockStart - This method prints the label for the specified 1941 /// MachineBasicBlock, an alignment (if present) and a comment describing 1942 /// it if appropriate. 1943 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { 1944 // Emit an alignment directive for this block, if needed. 1945 if (unsigned Align = MBB->getAlignment()) 1946 EmitAlignment(Log2_32(Align)); 1947 1948 // If the block has its address taken, emit any labels that were used to 1949 // reference the block. It is possible that there is more than one label 1950 // here, because multiple LLVM BB's may have been RAUW'd to this block after 1951 // the references were generated. 1952 if (MBB->hasAddressTaken()) { 1953 const BasicBlock *BB = MBB->getBasicBlock(); 1954 if (isVerbose()) 1955 OutStreamer.AddComment("Block address taken"); 1956 1957 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); 1958 1959 for (unsigned i = 0, e = Syms.size(); i != e; ++i) 1960 OutStreamer.EmitLabel(Syms[i]); 1961 } 1962 1963 // Print the main label for the block. 1964 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { 1965 if (isVerbose() && OutStreamer.hasRawTextSupport()) { 1966 if (const BasicBlock *BB = MBB->getBasicBlock()) 1967 if (BB->hasName()) 1968 OutStreamer.AddComment("%" + BB->getName()); 1969 1970 EmitBasicBlockLoopComments(*MBB, LI, *this); 1971 1972 // NOTE: Want this comment at start of line, don't emit with AddComment. 1973 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + 1974 Twine(MBB->getNumber()) + ":"); 1975 } 1976 } else { 1977 if (isVerbose()) { 1978 if (const BasicBlock *BB = MBB->getBasicBlock()) 1979 if (BB->hasName()) 1980 OutStreamer.AddComment("%" + BB->getName()); 1981 EmitBasicBlockLoopComments(*MBB, LI, *this); 1982 } 1983 1984 OutStreamer.EmitLabel(MBB->getSymbol()); 1985 } 1986 } 1987 1988 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 1989 bool IsDefinition) const { 1990 MCSymbolAttr Attr = MCSA_Invalid; 1991 1992 switch (Visibility) { 1993 default: break; 1994 case GlobalValue::HiddenVisibility: 1995 if (IsDefinition) 1996 Attr = MAI->getHiddenVisibilityAttr(); 1997 else 1998 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 1999 break; 2000 case GlobalValue::ProtectedVisibility: 2001 Attr = MAI->getProtectedVisibilityAttr(); 2002 break; 2003 } 2004 2005 if (Attr != MCSA_Invalid) 2006 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2007 } 2008 2009 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2010 /// exactly one predecessor and the control transfer mechanism between 2011 /// the predecessor and this block is a fall-through. 2012 bool AsmPrinter:: 2013 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2014 // If this is a landing pad, it isn't a fall through. If it has no preds, 2015 // then nothing falls through to it. 2016 if (MBB->isLandingPad() || MBB->pred_empty()) 2017 return false; 2018 2019 // If there isn't exactly one predecessor, it can't be a fall through. 2020 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; 2021 ++PI2; 2022 if (PI2 != MBB->pred_end()) 2023 return false; 2024 2025 // The predecessor has to be immediately before this block. 2026 MachineBasicBlock *Pred = *PI; 2027 2028 if (!Pred->isLayoutSuccessor(MBB)) 2029 return false; 2030 2031 // If the block is completely empty, then it definitely does fall through. 2032 if (Pred->empty()) 2033 return true; 2034 2035 // Check the terminators in the previous blocks 2036 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), 2037 IE = Pred->end(); II != IE; ++II) { 2038 MachineInstr &MI = *II; 2039 2040 // If it is not a simple branch, we are in a table somewhere. 2041 if (!MI.getDesc().isBranch() || MI.getDesc().isIndirectBranch()) 2042 return false; 2043 2044 // If we are the operands of one of the branches, this is not 2045 // a fall through. 2046 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 2047 OE = MI.operands_end(); OI != OE; ++OI) { 2048 const MachineOperand& OP = *OI; 2049 if (OP.isJTI()) 2050 return false; 2051 if (OP.isMBB() && OP.getMBB() == MBB) 2052 return false; 2053 } 2054 } 2055 2056 return true; 2057 } 2058 2059 2060 2061 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { 2062 if (!S->usesMetadata()) 2063 return 0; 2064 2065 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2066 gcp_map_type::iterator GCPI = GCMap.find(S); 2067 if (GCPI != GCMap.end()) 2068 return GCPI->second; 2069 2070 const char *Name = S->getName().c_str(); 2071 2072 for (GCMetadataPrinterRegistry::iterator 2073 I = GCMetadataPrinterRegistry::begin(), 2074 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2075 if (strcmp(Name, I->getName()) == 0) { 2076 GCMetadataPrinter *GMP = I->instantiate(); 2077 GMP->S = S; 2078 GCMap.insert(std::make_pair(S, GMP)); 2079 return GMP; 2080 } 2081 2082 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2083 return 0; 2084 } 2085 2086