1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "Win64Exception.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/JumpInstrTableInfo.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/GCMetadataPrinter.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/MC/MCValue.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetLoweringObjectFile.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 static const char *const DWARFGroupName = "DWARF Emission"; 61 static const char *const DbgTimerName = "Debug Info Emission"; 62 static const char *const EHTimerName = "DWARF Exception Writer"; 63 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 64 65 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 66 67 char AsmPrinter::ID = 0; 68 69 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 70 static gcp_map_type &getGCMap(void *&P) { 71 if (!P) 72 P = new gcp_map_type(); 73 return *(gcp_map_type*)P; 74 } 75 76 77 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 78 /// value in log2 form. This rounds up to the preferred alignment if possible 79 /// and legal. 80 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 81 unsigned InBits = 0) { 82 unsigned NumBits = 0; 83 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 84 NumBits = TD.getPreferredAlignmentLog(GVar); 85 86 // If InBits is specified, round it to it. 87 if (InBits > NumBits) 88 NumBits = InBits; 89 90 // If the GV has a specified alignment, take it into account. 91 if (GV->getAlignment() == 0) 92 return NumBits; 93 94 unsigned GVAlign = Log2_32(GV->getAlignment()); 95 96 // If the GVAlign is larger than NumBits, or if we are required to obey 97 // NumBits because the GV has an assigned section, obey it. 98 if (GVAlign > NumBits || GV->hasSection()) 99 NumBits = GVAlign; 100 return NumBits; 101 } 102 103 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 104 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 105 OutContext(Streamer->getContext()), OutStreamer(*Streamer.release()), 106 LastMI(nullptr), LastFn(0), Counter(~0U), SetCounter(0) { 107 DD = nullptr; 108 MMI = nullptr; 109 LI = nullptr; 110 MF = nullptr; 111 CurrentFnSym = CurrentFnSymForSize = nullptr; 112 CurrentFnBegin = nullptr; 113 CurrentFnEnd = nullptr; 114 GCMetadataPrinters = nullptr; 115 VerboseAsm = OutStreamer.isVerboseAsm(); 116 } 117 118 AsmPrinter::~AsmPrinter() { 119 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 120 121 if (GCMetadataPrinters) { 122 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 123 124 delete &GCMap; 125 GCMetadataPrinters = nullptr; 126 } 127 128 delete &OutStreamer; 129 } 130 131 /// getFunctionNumber - Return a unique ID for the current function. 132 /// 133 unsigned AsmPrinter::getFunctionNumber() const { 134 return MF->getFunctionNumber(); 135 } 136 137 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 138 return *TM.getObjFileLowering(); 139 } 140 141 /// getDataLayout - Return information about data layout. 142 const DataLayout &AsmPrinter::getDataLayout() const { 143 return *TM.getDataLayout(); 144 } 145 146 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 147 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 148 return MF->getSubtarget<MCSubtargetInfo>(); 149 } 150 151 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 152 S.EmitInstruction(Inst, getSubtargetInfo()); 153 } 154 155 StringRef AsmPrinter::getTargetTriple() const { 156 return TM.getTargetTriple(); 157 } 158 159 /// getCurrentSection() - Return the current section we are emitting to. 160 const MCSection *AsmPrinter::getCurrentSection() const { 161 return OutStreamer.getCurrentSection().first; 162 } 163 164 165 166 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 167 AU.setPreservesAll(); 168 MachineFunctionPass::getAnalysisUsage(AU); 169 AU.addRequired<MachineModuleInfo>(); 170 AU.addRequired<GCModuleInfo>(); 171 if (isVerbose()) 172 AU.addRequired<MachineLoopInfo>(); 173 } 174 175 bool AsmPrinter::doInitialization(Module &M) { 176 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 177 MMI->AnalyzeModule(M); 178 179 // Initialize TargetLoweringObjectFile. 180 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 181 .Initialize(OutContext, TM); 182 183 OutStreamer.InitSections(false); 184 185 Mang = new Mangler(TM.getDataLayout()); 186 187 // Emit the version-min deplyment target directive if needed. 188 // 189 // FIXME: If we end up with a collection of these sorts of Darwin-specific 190 // or ELF-specific things, it may make sense to have a platform helper class 191 // that will work with the target helper class. For now keep it here, as the 192 // alternative is duplicated code in each of the target asm printers that 193 // use the directive, where it would need the same conditionalization 194 // anyway. 195 Triple TT(getTargetTriple()); 196 if (TT.isOSDarwin()) { 197 unsigned Major, Minor, Update; 198 TT.getOSVersion(Major, Minor, Update); 199 // If there is a version specified, Major will be non-zero. 200 if (Major) 201 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 202 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 203 Major, Minor, Update); 204 } 205 206 // Allow the target to emit any magic that it wants at the start of the file. 207 EmitStartOfAsmFile(M); 208 209 // Very minimal debug info. It is ignored if we emit actual debug info. If we 210 // don't, this at least helps the user find where a global came from. 211 if (MAI->hasSingleParameterDotFile()) { 212 // .file "foo.c" 213 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 214 } 215 216 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 217 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 218 for (auto &I : *MI) 219 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 220 MP->beginAssembly(M, *MI, *this); 221 222 // Emit module-level inline asm if it exists. 223 if (!M.getModuleInlineAsm().empty()) { 224 OutStreamer.AddComment("Start of file scope inline assembly"); 225 OutStreamer.AddBlankLine(); 226 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 227 OutStreamer.AddComment("End of file scope inline assembly"); 228 OutStreamer.AddBlankLine(); 229 } 230 231 if (MAI->doesSupportDebugInformation()) { 232 bool skip_dwarf = false; 233 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 234 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 235 DbgTimerName, 236 CodeViewLineTablesGroupName)); 237 // FIXME: Don't emit DWARF debug info if there's at least one function 238 // with AddressSanitizer instrumentation. 239 // This is a band-aid fix for PR22032. 240 for (auto &F : M.functions()) { 241 if (F.hasFnAttribute(Attribute::SanitizeAddress)) { 242 skip_dwarf = true; 243 break; 244 } 245 } 246 } 247 if (!skip_dwarf) { 248 DD = new DwarfDebug(this, &M); 249 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 250 } 251 } 252 253 EHStreamer *ES = nullptr; 254 switch (MAI->getExceptionHandlingType()) { 255 case ExceptionHandling::None: 256 break; 257 case ExceptionHandling::SjLj: 258 case ExceptionHandling::DwarfCFI: 259 ES = new DwarfCFIException(this); 260 break; 261 case ExceptionHandling::ARM: 262 ES = new ARMException(this); 263 break; 264 case ExceptionHandling::WinEH: 265 switch (MAI->getWinEHEncodingType()) { 266 default: llvm_unreachable("unsupported unwinding information encoding"); 267 case WinEH::EncodingType::Itanium: 268 ES = new Win64Exception(this); 269 break; 270 } 271 break; 272 } 273 if (ES) 274 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 275 return false; 276 } 277 278 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 279 if (!MAI.hasWeakDefCanBeHiddenDirective()) 280 return false; 281 282 return canBeOmittedFromSymbolTable(GV); 283 } 284 285 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 286 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 287 switch (Linkage) { 288 case GlobalValue::CommonLinkage: 289 case GlobalValue::LinkOnceAnyLinkage: 290 case GlobalValue::LinkOnceODRLinkage: 291 case GlobalValue::WeakAnyLinkage: 292 case GlobalValue::WeakODRLinkage: 293 if (MAI->hasWeakDefDirective()) { 294 // .globl _foo 295 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 296 297 if (!canBeHidden(GV, *MAI)) 298 // .weak_definition _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 300 else 301 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 302 } else if (MAI->hasLinkOnceDirective()) { 303 // .globl _foo 304 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 305 //NOTE: linkonce is handled by the section the symbol was assigned to. 306 } else { 307 // .weak _foo 308 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 309 } 310 return; 311 case GlobalValue::AppendingLinkage: 312 // FIXME: appending linkage variables should go into a section of 313 // their name or something. For now, just emit them as external. 314 case GlobalValue::ExternalLinkage: 315 // If external or appending, declare as a global symbol. 316 // .globl _foo 317 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 318 return; 319 case GlobalValue::PrivateLinkage: 320 case GlobalValue::InternalLinkage: 321 return; 322 case GlobalValue::AvailableExternallyLinkage: 323 llvm_unreachable("Should never emit this"); 324 case GlobalValue::ExternalWeakLinkage: 325 llvm_unreachable("Don't know how to emit these"); 326 } 327 llvm_unreachable("Unknown linkage type!"); 328 } 329 330 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 331 const GlobalValue *GV) const { 332 TM.getNameWithPrefix(Name, GV, *Mang); 333 } 334 335 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 336 return TM.getSymbol(GV, *Mang); 337 } 338 339 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 340 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 341 if (GV->hasInitializer()) { 342 // Check to see if this is a special global used by LLVM, if so, emit it. 343 if (EmitSpecialLLVMGlobal(GV)) 344 return; 345 346 // Skip the emission of global equivalents. The symbol can be emitted later 347 // on by emitGlobalGOTEquivs in case it turns out to be needed. 348 if (GlobalGOTEquivs.count(getSymbol(GV))) 349 return; 350 351 if (isVerbose()) { 352 GV->printAsOperand(OutStreamer.GetCommentOS(), 353 /*PrintType=*/false, GV->getParent()); 354 OutStreamer.GetCommentOS() << '\n'; 355 } 356 } 357 358 MCSymbol *GVSym = getSymbol(GV); 359 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 360 361 if (!GV->hasInitializer()) // External globals require no extra code. 362 return; 363 364 GVSym->redefineIfPossible(); 365 if (GVSym->isDefined() || GVSym->isVariable()) 366 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 367 "' is already defined"); 368 369 if (MAI->hasDotTypeDotSizeDirective()) 370 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 371 372 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 373 374 const DataLayout *DL = TM.getDataLayout(); 375 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 376 377 // If the alignment is specified, we *must* obey it. Overaligning a global 378 // with a specified alignment is a prompt way to break globals emitted to 379 // sections and expected to be contiguous (e.g. ObjC metadata). 380 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 381 382 for (const HandlerInfo &HI : Handlers) { 383 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 384 HI.Handler->setSymbolSize(GVSym, Size); 385 } 386 387 // Handle common and BSS local symbols (.lcomm). 388 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 389 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 390 unsigned Align = 1 << AlignLog; 391 392 // Handle common symbols. 393 if (GVKind.isCommon()) { 394 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 395 Align = 0; 396 397 // .comm _foo, 42, 4 398 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 399 return; 400 } 401 402 // Handle local BSS symbols. 403 if (MAI->hasMachoZeroFillDirective()) { 404 const MCSection *TheSection = 405 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 406 // .zerofill __DATA, __bss, _foo, 400, 5 407 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 408 return; 409 } 410 411 // Use .lcomm only if it supports user-specified alignment. 412 // Otherwise, while it would still be correct to use .lcomm in some 413 // cases (e.g. when Align == 1), the external assembler might enfore 414 // some -unknown- default alignment behavior, which could cause 415 // spurious differences between external and integrated assembler. 416 // Prefer to simply fall back to .local / .comm in this case. 417 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 418 // .lcomm _foo, 42 419 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 420 return; 421 } 422 423 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 424 Align = 0; 425 426 // .local _foo 427 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 428 // .comm _foo, 42, 4 429 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 430 return; 431 } 432 433 const MCSection *TheSection = 434 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 435 436 // Handle the zerofill directive on darwin, which is a special form of BSS 437 // emission. 438 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 439 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 440 441 // .globl _foo 442 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 443 // .zerofill __DATA, __common, _foo, 400, 5 444 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 445 return; 446 } 447 448 // Handle thread local data for mach-o which requires us to output an 449 // additional structure of data and mangle the original symbol so that we 450 // can reference it later. 451 // 452 // TODO: This should become an "emit thread local global" method on TLOF. 453 // All of this macho specific stuff should be sunk down into TLOFMachO and 454 // stuff like "TLSExtraDataSection" should no longer be part of the parent 455 // TLOF class. This will also make it more obvious that stuff like 456 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 457 // specific code. 458 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 459 // Emit the .tbss symbol 460 MCSymbol *MangSym = 461 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 462 463 if (GVKind.isThreadBSS()) { 464 TheSection = getObjFileLowering().getTLSBSSSection(); 465 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 466 } else if (GVKind.isThreadData()) { 467 OutStreamer.SwitchSection(TheSection); 468 469 EmitAlignment(AlignLog, GV); 470 OutStreamer.EmitLabel(MangSym); 471 472 EmitGlobalConstant(GV->getInitializer()); 473 } 474 475 OutStreamer.AddBlankLine(); 476 477 // Emit the variable struct for the runtime. 478 const MCSection *TLVSect 479 = getObjFileLowering().getTLSExtraDataSection(); 480 481 OutStreamer.SwitchSection(TLVSect); 482 // Emit the linkage here. 483 EmitLinkage(GV, GVSym); 484 OutStreamer.EmitLabel(GVSym); 485 486 // Three pointers in size: 487 // - __tlv_bootstrap - used to make sure support exists 488 // - spare pointer, used when mapped by the runtime 489 // - pointer to mangled symbol above with initializer 490 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 491 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 492 PtrSize); 493 OutStreamer.EmitIntValue(0, PtrSize); 494 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 495 496 OutStreamer.AddBlankLine(); 497 return; 498 } 499 500 OutStreamer.SwitchSection(TheSection); 501 502 EmitLinkage(GV, GVSym); 503 EmitAlignment(AlignLog, GV); 504 505 OutStreamer.EmitLabel(GVSym); 506 507 EmitGlobalConstant(GV->getInitializer()); 508 509 if (MAI->hasDotTypeDotSizeDirective()) 510 // .size foo, 42 511 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 512 513 OutStreamer.AddBlankLine(); 514 } 515 516 /// EmitFunctionHeader - This method emits the header for the current 517 /// function. 518 void AsmPrinter::EmitFunctionHeader() { 519 // Print out constants referenced by the function 520 EmitConstantPool(); 521 522 // Print the 'header' of function. 523 const Function *F = MF->getFunction(); 524 525 OutStreamer.SwitchSection( 526 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 527 EmitVisibility(CurrentFnSym, F->getVisibility()); 528 529 EmitLinkage(F, CurrentFnSym); 530 EmitAlignment(MF->getAlignment(), F); 531 532 if (MAI->hasDotTypeDotSizeDirective()) 533 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 534 535 if (isVerbose()) { 536 F->printAsOperand(OutStreamer.GetCommentOS(), 537 /*PrintType=*/false, F->getParent()); 538 OutStreamer.GetCommentOS() << '\n'; 539 } 540 541 // Emit the prefix data. 542 if (F->hasPrefixData()) 543 EmitGlobalConstant(F->getPrefixData()); 544 545 // Emit the CurrentFnSym. This is a virtual function to allow targets to 546 // do their wild and crazy things as required. 547 EmitFunctionEntryLabel(); 548 549 // If the function had address-taken blocks that got deleted, then we have 550 // references to the dangling symbols. Emit them at the start of the function 551 // so that we don't get references to undefined symbols. 552 std::vector<MCSymbol*> DeadBlockSyms; 553 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 554 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 555 OutStreamer.AddComment("Address taken block that was later removed"); 556 OutStreamer.EmitLabel(DeadBlockSyms[i]); 557 } 558 559 if (!MMI->getLandingPads().empty()) { 560 CurrentFnBegin = createTempSymbol("eh_func_begin", getFunctionNumber()); 561 562 if (MAI->useAssignmentForEHBegin()) { 563 MCSymbol *CurPos = OutContext.CreateTempSymbol(); 564 OutStreamer.EmitLabel(CurPos); 565 OutStreamer.EmitAssignment(CurrentFnBegin, 566 MCSymbolRefExpr::Create(CurPos, OutContext)); 567 } else { 568 OutStreamer.EmitLabel(CurrentFnBegin); 569 } 570 } 571 572 // Emit pre-function debug and/or EH information. 573 for (const HandlerInfo &HI : Handlers) { 574 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 575 HI.Handler->beginFunction(MF); 576 } 577 578 // Emit the prologue data. 579 if (F->hasPrologueData()) 580 EmitGlobalConstant(F->getPrologueData()); 581 } 582 583 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 584 /// function. This can be overridden by targets as required to do custom stuff. 585 void AsmPrinter::EmitFunctionEntryLabel() { 586 CurrentFnSym->redefineIfPossible(); 587 588 // The function label could have already been emitted if two symbols end up 589 // conflicting due to asm renaming. Detect this and emit an error. 590 if (CurrentFnSym->isVariable()) 591 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 592 "' is a protected alias"); 593 if (CurrentFnSym->isDefined()) 594 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 595 "' label emitted multiple times to assembly file"); 596 597 return OutStreamer.EmitLabel(CurrentFnSym); 598 } 599 600 /// emitComments - Pretty-print comments for instructions. 601 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 602 const MachineFunction *MF = MI.getParent()->getParent(); 603 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 604 605 // Check for spills and reloads 606 int FI; 607 608 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 609 610 // We assume a single instruction only has a spill or reload, not 611 // both. 612 const MachineMemOperand *MMO; 613 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 614 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 615 MMO = *MI.memoperands_begin(); 616 CommentOS << MMO->getSize() << "-byte Reload\n"; 617 } 618 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 619 if (FrameInfo->isSpillSlotObjectIndex(FI)) 620 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 621 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 622 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 623 MMO = *MI.memoperands_begin(); 624 CommentOS << MMO->getSize() << "-byte Spill\n"; 625 } 626 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 627 if (FrameInfo->isSpillSlotObjectIndex(FI)) 628 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 629 } 630 631 // Check for spill-induced copies 632 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 633 CommentOS << " Reload Reuse\n"; 634 } 635 636 /// emitImplicitDef - This method emits the specified machine instruction 637 /// that is an implicit def. 638 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 639 unsigned RegNo = MI->getOperand(0).getReg(); 640 OutStreamer.AddComment(Twine("implicit-def: ") + 641 MMI->getContext().getRegisterInfo()->getName(RegNo)); 642 OutStreamer.AddBlankLine(); 643 } 644 645 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 646 std::string Str = "kill:"; 647 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 648 const MachineOperand &Op = MI->getOperand(i); 649 assert(Op.isReg() && "KILL instruction must have only register operands"); 650 Str += ' '; 651 Str += AP.MMI->getContext().getRegisterInfo()->getName(Op.getReg()); 652 Str += (Op.isDef() ? "<def>" : "<kill>"); 653 } 654 AP.OutStreamer.AddComment(Str); 655 AP.OutStreamer.AddBlankLine(); 656 } 657 658 /// emitDebugValueComment - This method handles the target-independent form 659 /// of DBG_VALUE, returning true if it was able to do so. A false return 660 /// means the target will need to handle MI in EmitInstruction. 661 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 662 // This code handles only the 4-operand target-independent form. 663 if (MI->getNumOperands() != 4) 664 return false; 665 666 SmallString<128> Str; 667 raw_svector_ostream OS(Str); 668 OS << "DEBUG_VALUE: "; 669 670 DIVariable V = MI->getDebugVariable(); 671 if (V.getContext().isSubprogram()) { 672 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 673 if (!Name.empty()) 674 OS << Name << ":"; 675 } 676 OS << V.getName(); 677 678 DIExpression Expr = MI->getDebugExpression(); 679 if (Expr.isBitPiece()) 680 OS << " [bit_piece offset=" << Expr.getBitPieceOffset() 681 << " size=" << Expr.getBitPieceSize() << "]"; 682 OS << " <- "; 683 684 // The second operand is only an offset if it's an immediate. 685 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 686 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 687 688 // Register or immediate value. Register 0 means undef. 689 if (MI->getOperand(0).isFPImm()) { 690 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 691 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 692 OS << (double)APF.convertToFloat(); 693 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 694 OS << APF.convertToDouble(); 695 } else { 696 // There is no good way to print long double. Convert a copy to 697 // double. Ah well, it's only a comment. 698 bool ignored; 699 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 700 &ignored); 701 OS << "(long double) " << APF.convertToDouble(); 702 } 703 } else if (MI->getOperand(0).isImm()) { 704 OS << MI->getOperand(0).getImm(); 705 } else if (MI->getOperand(0).isCImm()) { 706 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 707 } else { 708 unsigned Reg; 709 if (MI->getOperand(0).isReg()) { 710 Reg = MI->getOperand(0).getReg(); 711 } else { 712 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 713 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 714 Offset += TFI->getFrameIndexReference(*AP.MF, 715 MI->getOperand(0).getIndex(), Reg); 716 Deref = true; 717 } 718 if (Reg == 0) { 719 // Suppress offset, it is not meaningful here. 720 OS << "undef"; 721 // NOTE: Want this comment at start of line, don't emit with AddComment. 722 AP.OutStreamer.emitRawComment(OS.str()); 723 return true; 724 } 725 if (Deref) 726 OS << '['; 727 OS << AP.MMI->getContext().getRegisterInfo()->getName(Reg); 728 } 729 730 if (Deref) 731 OS << '+' << Offset << ']'; 732 733 // NOTE: Want this comment at start of line, don't emit with AddComment. 734 AP.OutStreamer.emitRawComment(OS.str()); 735 return true; 736 } 737 738 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 739 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 740 MF->getFunction()->needsUnwindTableEntry()) 741 return CFI_M_EH; 742 743 if (MMI->hasDebugInfo()) 744 return CFI_M_Debug; 745 746 return CFI_M_None; 747 } 748 749 bool AsmPrinter::needsSEHMoves() { 750 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 751 } 752 753 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 754 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 755 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 756 ExceptionHandlingType != ExceptionHandling::ARM) 757 return; 758 759 if (needsCFIMoves() == CFI_M_None) 760 return; 761 762 const MachineModuleInfo &MMI = MF->getMMI(); 763 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 764 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 765 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 766 emitCFIInstruction(CFI); 767 } 768 769 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 770 // The operands are the MCSymbol and the frame offset of the allocation. 771 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 772 int FrameOffset = MI.getOperand(1).getImm(); 773 774 // Emit a symbol assignment. 775 OutStreamer.EmitAssignment(FrameAllocSym, 776 MCConstantExpr::Create(FrameOffset, OutContext)); 777 } 778 779 /// EmitFunctionBody - This method emits the body and trailer for a 780 /// function. 781 void AsmPrinter::EmitFunctionBody() { 782 // Emit target-specific gunk before the function body. 783 EmitFunctionBodyStart(); 784 785 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 786 787 // Print out code for the function. 788 bool HasAnyRealCode = false; 789 for (auto &MBB : *MF) { 790 // Print a label for the basic block. 791 EmitBasicBlockStart(MBB); 792 for (auto &MI : MBB) { 793 794 // Print the assembly for the instruction. 795 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 796 !MI.isDebugValue()) { 797 HasAnyRealCode = true; 798 ++EmittedInsts; 799 } 800 801 if (ShouldPrintDebugScopes) { 802 for (const HandlerInfo &HI : Handlers) { 803 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 804 TimePassesIsEnabled); 805 HI.Handler->beginInstruction(&MI); 806 } 807 } 808 809 if (isVerbose()) 810 emitComments(MI, OutStreamer.GetCommentOS()); 811 812 switch (MI.getOpcode()) { 813 case TargetOpcode::CFI_INSTRUCTION: 814 emitCFIInstruction(MI); 815 break; 816 817 case TargetOpcode::FRAME_ALLOC: 818 emitFrameAlloc(MI); 819 break; 820 821 case TargetOpcode::EH_LABEL: 822 case TargetOpcode::GC_LABEL: 823 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 824 break; 825 case TargetOpcode::INLINEASM: 826 EmitInlineAsm(&MI); 827 break; 828 case TargetOpcode::DBG_VALUE: 829 if (isVerbose()) { 830 if (!emitDebugValueComment(&MI, *this)) 831 EmitInstruction(&MI); 832 } 833 break; 834 case TargetOpcode::IMPLICIT_DEF: 835 if (isVerbose()) emitImplicitDef(&MI); 836 break; 837 case TargetOpcode::KILL: 838 if (isVerbose()) emitKill(&MI, *this); 839 break; 840 default: 841 EmitInstruction(&MI); 842 break; 843 } 844 845 if (ShouldPrintDebugScopes) { 846 for (const HandlerInfo &HI : Handlers) { 847 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 848 TimePassesIsEnabled); 849 HI.Handler->endInstruction(); 850 } 851 } 852 } 853 854 EmitBasicBlockEnd(MBB); 855 } 856 857 // If the function is empty and the object file uses .subsections_via_symbols, 858 // then we need to emit *something* to the function body to prevent the 859 // labels from collapsing together. Just emit a noop. 860 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 861 MCInst Noop; 862 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 863 OutStreamer.AddComment("avoids zero-length function"); 864 865 // Targets can opt-out of emitting the noop here by leaving the opcode 866 // unspecified. 867 if (Noop.getOpcode()) 868 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 869 } 870 871 const Function *F = MF->getFunction(); 872 for (const auto &BB : *F) { 873 if (!BB.hasAddressTaken()) 874 continue; 875 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 876 if (Sym->isDefined()) 877 continue; 878 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 879 OutStreamer.EmitLabel(Sym); 880 } 881 882 // Emit target-specific gunk after the function body. 883 EmitFunctionBodyEnd(); 884 885 if (!MMI->getLandingPads().empty()) { 886 // Create a symbol for the end of function. 887 CurrentFnEnd = createTempSymbol("eh_func_end", getFunctionNumber()); 888 OutStreamer.EmitLabel(CurrentFnEnd); 889 } 890 891 // If the target wants a .size directive for the size of the function, emit 892 // it. 893 if (MAI->hasDotTypeDotSizeDirective()) { 894 // Create a symbol for the end of function, so we can get the size as 895 // difference between the function label and the temp label. 896 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 897 OutStreamer.EmitLabel(FnEndLabel); 898 899 const MCExpr *SizeExp = 900 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 901 MCSymbolRefExpr::Create(CurrentFnSymForSize, 902 OutContext), 903 OutContext); 904 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 905 } 906 907 // Emit post-function debug and/or EH information. 908 for (const HandlerInfo &HI : Handlers) { 909 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 910 HI.Handler->endFunction(MF); 911 } 912 MMI->EndFunction(); 913 914 // Print out jump tables referenced by the function. 915 EmitJumpTableInfo(); 916 917 OutStreamer.AddBlankLine(); 918 } 919 920 /// \brief Compute the number of Global Variables that uses a Constant. 921 static unsigned getNumGlobalVariableUses(const Constant *C) { 922 if (!C) 923 return 0; 924 925 if (isa<GlobalVariable>(C)) 926 return 1; 927 928 unsigned NumUses = 0; 929 for (auto *CU : C->users()) 930 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 931 932 return NumUses; 933 } 934 935 /// \brief Only consider global GOT equivalents if at least one user is a 936 /// cstexpr inside an initializer of another global variables. Also, don't 937 /// handle cstexpr inside instructions. During global variable emission, 938 /// candidates are skipped and are emitted later in case at least one cstexpr 939 /// isn't replaced by a PC relative GOT entry access. 940 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 941 unsigned &NumGOTEquivUsers) { 942 // Global GOT equivalents are unnamed private globals with a constant 943 // pointer initializer to another global symbol. They must point to a 944 // GlobalVariable or Function, i.e., as GlobalValue. 945 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 946 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 947 return false; 948 949 // To be a got equivalent, at least one of its users need to be a constant 950 // expression used by another global variable. 951 for (auto *U : GV->users()) 952 NumGOTEquivUsers += getNumGlobalVariableUses(cast<Constant>(U)); 953 954 return NumGOTEquivUsers > 0; 955 } 956 957 /// \brief Unnamed constant global variables solely contaning a pointer to 958 /// another globals variable is equivalent to a GOT table entry; it contains the 959 /// the address of another symbol. Optimize it and replace accesses to these 960 /// "GOT equivalents" by using the GOT entry for the final global instead. 961 /// Compute GOT equivalent candidates among all global variables to avoid 962 /// emitting them if possible later on, after it use is replaced by a GOT entry 963 /// access. 964 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 965 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 966 return; 967 968 for (const auto &G : M.globals()) { 969 unsigned NumGOTEquivUsers = 0; 970 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 971 continue; 972 973 const MCSymbol *GOTEquivSym = getSymbol(&G); 974 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 975 } 976 } 977 978 /// \brief Constant expressions using GOT equivalent globals may not be eligible 979 /// for PC relative GOT entry conversion, in such cases we need to emit such 980 /// globals we previously omitted in EmitGlobalVariable. 981 void AsmPrinter::emitGlobalGOTEquivs() { 982 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 983 return; 984 985 while (!GlobalGOTEquivs.empty()) { 986 DenseMap<const MCSymbol *, GOTEquivUsePair>::iterator I = 987 GlobalGOTEquivs.begin(); 988 const MCSymbol *S = I->first; 989 const GlobalVariable *GV = I->second.first; 990 GlobalGOTEquivs.erase(S); 991 EmitGlobalVariable(GV); 992 } 993 } 994 995 bool AsmPrinter::doFinalization(Module &M) { 996 // Gather all GOT equivalent globals in the module. We really need two 997 // passes over the globals: one to compute and another to avoid its emission 998 // in EmitGlobalVariable, otherwise we would not be able to handle cases 999 // where the got equivalent shows up before its use. 1000 computeGlobalGOTEquivs(M); 1001 1002 // Emit global variables. 1003 for (const auto &G : M.globals()) 1004 EmitGlobalVariable(&G); 1005 1006 // Emit remaining GOT equivalent globals. 1007 emitGlobalGOTEquivs(); 1008 1009 // Emit visibility info for declarations 1010 for (const Function &F : M) { 1011 if (!F.isDeclaration()) 1012 continue; 1013 GlobalValue::VisibilityTypes V = F.getVisibility(); 1014 if (V == GlobalValue::DefaultVisibility) 1015 continue; 1016 1017 MCSymbol *Name = getSymbol(&F); 1018 EmitVisibility(Name, V, false); 1019 } 1020 1021 // Emit module flags. 1022 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1023 M.getModuleFlagsMetadata(ModuleFlags); 1024 if (!ModuleFlags.empty()) 1025 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 1026 1027 // Make sure we wrote out everything we need. 1028 OutStreamer.Flush(); 1029 1030 // Finalize debug and EH information. 1031 for (const HandlerInfo &HI : Handlers) { 1032 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1033 TimePassesIsEnabled); 1034 HI.Handler->endModule(); 1035 delete HI.Handler; 1036 } 1037 Handlers.clear(); 1038 DD = nullptr; 1039 1040 // If the target wants to know about weak references, print them all. 1041 if (MAI->getWeakRefDirective()) { 1042 // FIXME: This is not lazy, it would be nice to only print weak references 1043 // to stuff that is actually used. Note that doing so would require targets 1044 // to notice uses in operands (due to constant exprs etc). This should 1045 // happen with the MC stuff eventually. 1046 1047 // Print out module-level global variables here. 1048 for (const auto &G : M.globals()) { 1049 if (!G.hasExternalWeakLinkage()) 1050 continue; 1051 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1052 } 1053 1054 for (const auto &F : M) { 1055 if (!F.hasExternalWeakLinkage()) 1056 continue; 1057 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1058 } 1059 } 1060 1061 OutStreamer.AddBlankLine(); 1062 for (const auto &Alias : M.aliases()) { 1063 MCSymbol *Name = getSymbol(&Alias); 1064 1065 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1066 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 1067 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 1068 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 1069 else 1070 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 1071 1072 EmitVisibility(Name, Alias.getVisibility()); 1073 1074 // Emit the directives as assignments aka .set: 1075 OutStreamer.EmitAssignment(Name, lowerConstant(Alias.getAliasee())); 1076 } 1077 1078 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1079 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1080 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1081 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1082 MP->finishAssembly(M, *MI, *this); 1083 1084 // Emit llvm.ident metadata in an '.ident' directive. 1085 EmitModuleIdents(M); 1086 1087 // Emit __morestack address if needed for indirect calls. 1088 if (MMI->usesMorestackAddr()) { 1089 const MCSection *ReadOnlySection = 1090 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1091 /*C=*/nullptr); 1092 OutStreamer.SwitchSection(ReadOnlySection); 1093 1094 MCSymbol *AddrSymbol = 1095 OutContext.GetOrCreateSymbol(StringRef("__morestack_addr")); 1096 OutStreamer.EmitLabel(AddrSymbol); 1097 1098 unsigned PtrSize = TM.getDataLayout()->getPointerSize(0); 1099 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1100 PtrSize); 1101 } 1102 1103 // If we don't have any trampolines, then we don't require stack memory 1104 // to be executable. Some targets have a directive to declare this. 1105 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1106 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1107 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1108 OutStreamer.SwitchSection(S); 1109 1110 // Allow the target to emit any magic that it wants at the end of the file, 1111 // after everything else has gone out. 1112 EmitEndOfAsmFile(M); 1113 1114 delete Mang; Mang = nullptr; 1115 MMI = nullptr; 1116 1117 OutStreamer.Finish(); 1118 OutStreamer.reset(); 1119 1120 return false; 1121 } 1122 1123 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1124 this->MF = &MF; 1125 // Get the function symbol. 1126 CurrentFnSym = getSymbol(MF.getFunction()); 1127 CurrentFnSymForSize = CurrentFnSym; 1128 1129 if (isVerbose()) 1130 LI = &getAnalysis<MachineLoopInfo>(); 1131 } 1132 1133 namespace { 1134 // SectionCPs - Keep track the alignment, constpool entries per Section. 1135 struct SectionCPs { 1136 const MCSection *S; 1137 unsigned Alignment; 1138 SmallVector<unsigned, 4> CPEs; 1139 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1140 }; 1141 } 1142 1143 /// EmitConstantPool - Print to the current output stream assembly 1144 /// representations of the constants in the constant pool MCP. This is 1145 /// used to print out constants which have been "spilled to memory" by 1146 /// the code generator. 1147 /// 1148 void AsmPrinter::EmitConstantPool() { 1149 const MachineConstantPool *MCP = MF->getConstantPool(); 1150 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1151 if (CP.empty()) return; 1152 1153 // Calculate sections for constant pool entries. We collect entries to go into 1154 // the same section together to reduce amount of section switch statements. 1155 SmallVector<SectionCPs, 4> CPSections; 1156 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1157 const MachineConstantPoolEntry &CPE = CP[i]; 1158 unsigned Align = CPE.getAlignment(); 1159 1160 SectionKind Kind = 1161 CPE.getSectionKind(TM.getDataLayout()); 1162 1163 const Constant *C = nullptr; 1164 if (!CPE.isMachineConstantPoolEntry()) 1165 C = CPE.Val.ConstVal; 1166 1167 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1168 1169 // The number of sections are small, just do a linear search from the 1170 // last section to the first. 1171 bool Found = false; 1172 unsigned SecIdx = CPSections.size(); 1173 while (SecIdx != 0) { 1174 if (CPSections[--SecIdx].S == S) { 1175 Found = true; 1176 break; 1177 } 1178 } 1179 if (!Found) { 1180 SecIdx = CPSections.size(); 1181 CPSections.push_back(SectionCPs(S, Align)); 1182 } 1183 1184 if (Align > CPSections[SecIdx].Alignment) 1185 CPSections[SecIdx].Alignment = Align; 1186 CPSections[SecIdx].CPEs.push_back(i); 1187 } 1188 1189 // Now print stuff into the calculated sections. 1190 const MCSection *CurSection = nullptr; 1191 unsigned Offset = 0; 1192 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1193 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1194 unsigned CPI = CPSections[i].CPEs[j]; 1195 MCSymbol *Sym = GetCPISymbol(CPI); 1196 if (!Sym->isUndefined()) 1197 continue; 1198 1199 if (CurSection != CPSections[i].S) { 1200 OutStreamer.SwitchSection(CPSections[i].S); 1201 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1202 CurSection = CPSections[i].S; 1203 Offset = 0; 1204 } 1205 1206 MachineConstantPoolEntry CPE = CP[CPI]; 1207 1208 // Emit inter-object padding for alignment. 1209 unsigned AlignMask = CPE.getAlignment() - 1; 1210 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1211 OutStreamer.EmitZeros(NewOffset - Offset); 1212 1213 Type *Ty = CPE.getType(); 1214 Offset = NewOffset + 1215 TM.getDataLayout()->getTypeAllocSize(Ty); 1216 1217 OutStreamer.EmitLabel(Sym); 1218 if (CPE.isMachineConstantPoolEntry()) 1219 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1220 else 1221 EmitGlobalConstant(CPE.Val.ConstVal); 1222 } 1223 } 1224 } 1225 1226 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1227 /// by the current function to the current output stream. 1228 /// 1229 void AsmPrinter::EmitJumpTableInfo() { 1230 const DataLayout *DL = MF->getTarget().getDataLayout(); 1231 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1232 if (!MJTI) return; 1233 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1234 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1235 if (JT.empty()) return; 1236 1237 // Pick the directive to use to print the jump table entries, and switch to 1238 // the appropriate section. 1239 const Function *F = MF->getFunction(); 1240 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1241 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1242 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1243 *F); 1244 if (!JTInDiffSection) { 1245 OutStreamer.SwitchSection(TLOF.SectionForGlobal(F, *Mang, TM)); 1246 } else { 1247 // Otherwise, drop it in the readonly section. 1248 const MCSection *ReadOnlySection = 1249 TLOF.getSectionForJumpTable(*F, *Mang, TM); 1250 OutStreamer.SwitchSection(ReadOnlySection); 1251 } 1252 1253 EmitAlignment(Log2_32( 1254 MJTI->getEntryAlignment(*TM.getDataLayout()))); 1255 1256 // Jump tables in code sections are marked with a data_region directive 1257 // where that's supported. 1258 if (!JTInDiffSection) 1259 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1260 1261 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1262 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1263 1264 // If this jump table was deleted, ignore it. 1265 if (JTBBs.empty()) continue; 1266 1267 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1268 /// emit a .set directive for each unique entry. 1269 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1270 MAI->doesSetDirectiveSuppressesReloc()) { 1271 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1272 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1273 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1274 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1275 const MachineBasicBlock *MBB = JTBBs[ii]; 1276 if (!EmittedSets.insert(MBB).second) 1277 continue; 1278 1279 // .set LJTSet, LBB32-base 1280 const MCExpr *LHS = 1281 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1282 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1283 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1284 } 1285 } 1286 1287 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1288 // before each jump table. The first label is never referenced, but tells 1289 // the assembler and linker the extents of the jump table object. The 1290 // second label is actually referenced by the code. 1291 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1292 // FIXME: This doesn't have to have any specific name, just any randomly 1293 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1294 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1295 1296 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1297 1298 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1299 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1300 } 1301 if (!JTInDiffSection) 1302 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1303 } 1304 1305 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1306 /// current stream. 1307 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1308 const MachineBasicBlock *MBB, 1309 unsigned UID) const { 1310 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1311 const MCExpr *Value = nullptr; 1312 switch (MJTI->getEntryKind()) { 1313 case MachineJumpTableInfo::EK_Inline: 1314 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1315 case MachineJumpTableInfo::EK_Custom32: 1316 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1317 MJTI, MBB, UID, OutContext); 1318 break; 1319 case MachineJumpTableInfo::EK_BlockAddress: 1320 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1321 // .word LBB123 1322 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1323 break; 1324 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1325 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1326 // with a relocation as gp-relative, e.g.: 1327 // .gprel32 LBB123 1328 MCSymbol *MBBSym = MBB->getSymbol(); 1329 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1330 return; 1331 } 1332 1333 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1334 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1335 // with a relocation as gp-relative, e.g.: 1336 // .gpdword LBB123 1337 MCSymbol *MBBSym = MBB->getSymbol(); 1338 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1339 return; 1340 } 1341 1342 case MachineJumpTableInfo::EK_LabelDifference32: { 1343 // Each entry is the address of the block minus the address of the jump 1344 // table. This is used for PIC jump tables where gprel32 is not supported. 1345 // e.g.: 1346 // .word LBB123 - LJTI1_2 1347 // If the .set directive avoids relocations, this is emitted as: 1348 // .set L4_5_set_123, LBB123 - LJTI1_2 1349 // .word L4_5_set_123 1350 if (MAI->doesSetDirectiveSuppressesReloc()) { 1351 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1352 OutContext); 1353 break; 1354 } 1355 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1356 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1357 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1358 Value = MCBinaryExpr::CreateSub(Value, Base, OutContext); 1359 break; 1360 } 1361 } 1362 1363 assert(Value && "Unknown entry kind!"); 1364 1365 unsigned EntrySize = 1366 MJTI->getEntrySize(*TM.getDataLayout()); 1367 OutStreamer.EmitValue(Value, EntrySize); 1368 } 1369 1370 1371 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1372 /// special global used by LLVM. If so, emit it and return true, otherwise 1373 /// do nothing and return false. 1374 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1375 if (GV->getName() == "llvm.used") { 1376 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1377 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1378 return true; 1379 } 1380 1381 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1382 if (StringRef(GV->getSection()) == "llvm.metadata" || 1383 GV->hasAvailableExternallyLinkage()) 1384 return true; 1385 1386 if (!GV->hasAppendingLinkage()) return false; 1387 1388 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1389 1390 if (GV->getName() == "llvm.global_ctors") { 1391 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1392 1393 if (TM.getRelocationModel() == Reloc::Static && 1394 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1395 StringRef Sym(".constructors_used"); 1396 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1397 MCSA_Reference); 1398 } 1399 return true; 1400 } 1401 1402 if (GV->getName() == "llvm.global_dtors") { 1403 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1404 1405 if (TM.getRelocationModel() == Reloc::Static && 1406 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1407 StringRef Sym(".destructors_used"); 1408 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1409 MCSA_Reference); 1410 } 1411 return true; 1412 } 1413 1414 return false; 1415 } 1416 1417 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1418 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1419 /// is true, as being used with this directive. 1420 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1421 // Should be an array of 'i8*'. 1422 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1423 const GlobalValue *GV = 1424 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1425 if (GV) 1426 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1427 } 1428 } 1429 1430 namespace { 1431 struct Structor { 1432 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1433 int Priority; 1434 llvm::Constant *Func; 1435 llvm::GlobalValue *ComdatKey; 1436 }; 1437 } // end namespace 1438 1439 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1440 /// priority. 1441 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1442 // Should be an array of '{ int, void ()* }' structs. The first value is the 1443 // init priority. 1444 if (!isa<ConstantArray>(List)) return; 1445 1446 // Sanity check the structors list. 1447 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1448 if (!InitList) return; // Not an array! 1449 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1450 // FIXME: Only allow the 3-field form in LLVM 4.0. 1451 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1452 return; // Not an array of two or three elements! 1453 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1454 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1455 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1456 return; // Not (int, ptr, ptr). 1457 1458 // Gather the structors in a form that's convenient for sorting by priority. 1459 SmallVector<Structor, 8> Structors; 1460 for (Value *O : InitList->operands()) { 1461 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1462 if (!CS) continue; // Malformed. 1463 if (CS->getOperand(1)->isNullValue()) 1464 break; // Found a null terminator, skip the rest. 1465 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1466 if (!Priority) continue; // Malformed. 1467 Structors.push_back(Structor()); 1468 Structor &S = Structors.back(); 1469 S.Priority = Priority->getLimitedValue(65535); 1470 S.Func = CS->getOperand(1); 1471 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1472 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1473 } 1474 1475 // Emit the function pointers in the target-specific order 1476 const DataLayout *DL = TM.getDataLayout(); 1477 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1478 std::stable_sort(Structors.begin(), Structors.end(), 1479 [](const Structor &L, 1480 const Structor &R) { return L.Priority < R.Priority; }); 1481 for (Structor &S : Structors) { 1482 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1483 const MCSymbol *KeySym = nullptr; 1484 if (GlobalValue *GV = S.ComdatKey) { 1485 if (GV->hasAvailableExternallyLinkage()) 1486 // If the associated variable is available_externally, some other TU 1487 // will provide its dynamic initializer. 1488 continue; 1489 1490 KeySym = getSymbol(GV); 1491 } 1492 const MCSection *OutputSection = 1493 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1494 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1495 OutStreamer.SwitchSection(OutputSection); 1496 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1497 EmitAlignment(Align); 1498 EmitXXStructor(S.Func); 1499 } 1500 } 1501 1502 void AsmPrinter::EmitModuleIdents(Module &M) { 1503 if (!MAI->hasIdentDirective()) 1504 return; 1505 1506 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1507 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1508 const MDNode *N = NMD->getOperand(i); 1509 assert(N->getNumOperands() == 1 && 1510 "llvm.ident metadata entry can have only one operand"); 1511 const MDString *S = cast<MDString>(N->getOperand(0)); 1512 OutStreamer.EmitIdent(S->getString()); 1513 } 1514 } 1515 } 1516 1517 //===--------------------------------------------------------------------===// 1518 // Emission and print routines 1519 // 1520 1521 /// EmitInt8 - Emit a byte directive and value. 1522 /// 1523 void AsmPrinter::EmitInt8(int Value) const { 1524 OutStreamer.EmitIntValue(Value, 1); 1525 } 1526 1527 /// EmitInt16 - Emit a short directive and value. 1528 /// 1529 void AsmPrinter::EmitInt16(int Value) const { 1530 OutStreamer.EmitIntValue(Value, 2); 1531 } 1532 1533 /// EmitInt32 - Emit a long directive and value. 1534 /// 1535 void AsmPrinter::EmitInt32(int Value) const { 1536 OutStreamer.EmitIntValue(Value, 4); 1537 } 1538 1539 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1540 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1541 /// .set if it avoids relocations. 1542 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1543 unsigned Size) const { 1544 // Get the Hi-Lo expression. 1545 const MCExpr *Diff = 1546 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1547 MCSymbolRefExpr::Create(Lo, OutContext), 1548 OutContext); 1549 1550 if (!MAI->doesSetDirectiveSuppressesReloc()) { 1551 OutStreamer.EmitValue(Diff, Size); 1552 return; 1553 } 1554 1555 // Otherwise, emit with .set (aka assignment). 1556 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1557 OutStreamer.EmitAssignment(SetLabel, Diff); 1558 OutStreamer.EmitSymbolValue(SetLabel, Size); 1559 } 1560 1561 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1562 /// where the size in bytes of the directive is specified by Size and Label 1563 /// specifies the label. This implicitly uses .set if it is available. 1564 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1565 unsigned Size, 1566 bool IsSectionRelative) const { 1567 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1568 OutStreamer.EmitCOFFSecRel32(Label); 1569 return; 1570 } 1571 1572 // Emit Label+Offset (or just Label if Offset is zero) 1573 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1574 if (Offset) 1575 Expr = MCBinaryExpr::CreateAdd( 1576 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1577 1578 OutStreamer.EmitValue(Expr, Size); 1579 } 1580 1581 //===----------------------------------------------------------------------===// 1582 1583 // EmitAlignment - Emit an alignment directive to the specified power of 1584 // two boundary. For example, if you pass in 3 here, you will get an 8 1585 // byte alignment. If a global value is specified, and if that global has 1586 // an explicit alignment requested, it will override the alignment request 1587 // if required for correctness. 1588 // 1589 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1590 if (GV) 1591 NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), 1592 NumBits); 1593 1594 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1595 1596 assert(NumBits < 1597 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1598 "undefined behavior"); 1599 if (getCurrentSection()->getKind().isText()) 1600 OutStreamer.EmitCodeAlignment(1u << NumBits); 1601 else 1602 OutStreamer.EmitValueToAlignment(1u << NumBits); 1603 } 1604 1605 //===----------------------------------------------------------------------===// 1606 // Constant emission. 1607 //===----------------------------------------------------------------------===// 1608 1609 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1610 MCContext &Ctx = OutContext; 1611 1612 if (CV->isNullValue() || isa<UndefValue>(CV)) 1613 return MCConstantExpr::Create(0, Ctx); 1614 1615 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1616 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1617 1618 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1619 return MCSymbolRefExpr::Create(getSymbol(GV), Ctx); 1620 1621 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1622 return MCSymbolRefExpr::Create(GetBlockAddressSymbol(BA), Ctx); 1623 1624 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1625 if (!CE) { 1626 llvm_unreachable("Unknown constant value to lower!"); 1627 } 1628 1629 if (const MCExpr *RelocExpr 1630 = getObjFileLowering().getExecutableRelativeSymbol(CE, *Mang, TM)) 1631 return RelocExpr; 1632 1633 switch (CE->getOpcode()) { 1634 default: 1635 // If the code isn't optimized, there may be outstanding folding 1636 // opportunities. Attempt to fold the expression using DataLayout as a 1637 // last resort before giving up. 1638 if (Constant *C = ConstantFoldConstantExpression( 1639 CE, TM.getDataLayout())) 1640 if (C != CE) 1641 return lowerConstant(C); 1642 1643 // Otherwise report the problem to the user. 1644 { 1645 std::string S; 1646 raw_string_ostream OS(S); 1647 OS << "Unsupported expression in static initializer: "; 1648 CE->printAsOperand(OS, /*PrintType=*/false, 1649 !MF ? nullptr : MF->getFunction()->getParent()); 1650 report_fatal_error(OS.str()); 1651 } 1652 case Instruction::GetElementPtr: { 1653 const DataLayout &DL = *TM.getDataLayout(); 1654 1655 // Generate a symbolic expression for the byte address 1656 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1657 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1658 1659 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1660 if (!OffsetAI) 1661 return Base; 1662 1663 int64_t Offset = OffsetAI.getSExtValue(); 1664 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1665 Ctx); 1666 } 1667 1668 case Instruction::Trunc: 1669 // We emit the value and depend on the assembler to truncate the generated 1670 // expression properly. This is important for differences between 1671 // blockaddress labels. Since the two labels are in the same function, it 1672 // is reasonable to treat their delta as a 32-bit value. 1673 // FALL THROUGH. 1674 case Instruction::BitCast: 1675 return lowerConstant(CE->getOperand(0)); 1676 1677 case Instruction::IntToPtr: { 1678 const DataLayout &DL = *TM.getDataLayout(); 1679 1680 // Handle casts to pointers by changing them into casts to the appropriate 1681 // integer type. This promotes constant folding and simplifies this code. 1682 Constant *Op = CE->getOperand(0); 1683 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1684 false/*ZExt*/); 1685 return lowerConstant(Op); 1686 } 1687 1688 case Instruction::PtrToInt: { 1689 const DataLayout &DL = *TM.getDataLayout(); 1690 1691 // Support only foldable casts to/from pointers that can be eliminated by 1692 // changing the pointer to the appropriately sized integer type. 1693 Constant *Op = CE->getOperand(0); 1694 Type *Ty = CE->getType(); 1695 1696 const MCExpr *OpExpr = lowerConstant(Op); 1697 1698 // We can emit the pointer value into this slot if the slot is an 1699 // integer slot equal to the size of the pointer. 1700 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1701 return OpExpr; 1702 1703 // Otherwise the pointer is smaller than the resultant integer, mask off 1704 // the high bits so we are sure to get a proper truncation if the input is 1705 // a constant expr. 1706 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1707 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1708 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1709 } 1710 1711 // The MC library also has a right-shift operator, but it isn't consistently 1712 // signed or unsigned between different targets. 1713 case Instruction::Add: 1714 case Instruction::Sub: 1715 case Instruction::Mul: 1716 case Instruction::SDiv: 1717 case Instruction::SRem: 1718 case Instruction::Shl: 1719 case Instruction::And: 1720 case Instruction::Or: 1721 case Instruction::Xor: { 1722 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1723 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1724 switch (CE->getOpcode()) { 1725 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1726 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1727 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1728 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1729 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1730 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1731 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1732 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1733 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1734 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1735 } 1736 } 1737 } 1738 } 1739 1740 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP, 1741 const Constant *BaseCV = nullptr, 1742 uint64_t Offset = 0); 1743 1744 /// isRepeatedByteSequence - Determine whether the given value is 1745 /// composed of a repeated sequence of identical bytes and return the 1746 /// byte value. If it is not a repeated sequence, return -1. 1747 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1748 StringRef Data = V->getRawDataValues(); 1749 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1750 char C = Data[0]; 1751 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1752 if (Data[i] != C) return -1; 1753 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1754 } 1755 1756 1757 /// isRepeatedByteSequence - Determine whether the given value is 1758 /// composed of a repeated sequence of identical bytes and return the 1759 /// byte value. If it is not a repeated sequence, return -1. 1760 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1761 1762 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1763 if (CI->getBitWidth() > 64) return -1; 1764 1765 uint64_t Size = 1766 TM.getDataLayout()->getTypeAllocSize(V->getType()); 1767 uint64_t Value = CI->getZExtValue(); 1768 1769 // Make sure the constant is at least 8 bits long and has a power 1770 // of 2 bit width. This guarantees the constant bit width is 1771 // always a multiple of 8 bits, avoiding issues with padding out 1772 // to Size and other such corner cases. 1773 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1774 1775 uint8_t Byte = static_cast<uint8_t>(Value); 1776 1777 for (unsigned i = 1; i < Size; ++i) { 1778 Value >>= 8; 1779 if (static_cast<uint8_t>(Value) != Byte) return -1; 1780 } 1781 return Byte; 1782 } 1783 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1784 // Make sure all array elements are sequences of the same repeated 1785 // byte. 1786 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1787 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1788 if (Byte == -1) return -1; 1789 1790 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1791 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1792 if (ThisByte == -1) return -1; 1793 if (Byte != ThisByte) return -1; 1794 } 1795 return Byte; 1796 } 1797 1798 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1799 return isRepeatedByteSequence(CDS); 1800 1801 return -1; 1802 } 1803 1804 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1805 AsmPrinter &AP){ 1806 1807 // See if we can aggregate this into a .fill, if so, emit it as such. 1808 int Value = isRepeatedByteSequence(CDS, AP.TM); 1809 if (Value != -1) { 1810 uint64_t Bytes = 1811 AP.TM.getDataLayout()->getTypeAllocSize( 1812 CDS->getType()); 1813 // Don't emit a 1-byte object as a .fill. 1814 if (Bytes > 1) 1815 return AP.OutStreamer.EmitFill(Bytes, Value); 1816 } 1817 1818 // If this can be emitted with .ascii/.asciz, emit it as such. 1819 if (CDS->isString()) 1820 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1821 1822 // Otherwise, emit the values in successive locations. 1823 unsigned ElementByteSize = CDS->getElementByteSize(); 1824 if (isa<IntegerType>(CDS->getElementType())) { 1825 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1826 if (AP.isVerbose()) 1827 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1828 CDS->getElementAsInteger(i)); 1829 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1830 ElementByteSize); 1831 } 1832 } else if (ElementByteSize == 4) { 1833 // FP Constants are printed as integer constants to avoid losing 1834 // precision. 1835 assert(CDS->getElementType()->isFloatTy()); 1836 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1837 union { 1838 float F; 1839 uint32_t I; 1840 }; 1841 1842 F = CDS->getElementAsFloat(i); 1843 if (AP.isVerbose()) 1844 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1845 AP.OutStreamer.EmitIntValue(I, 4); 1846 } 1847 } else { 1848 assert(CDS->getElementType()->isDoubleTy()); 1849 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1850 union { 1851 double F; 1852 uint64_t I; 1853 }; 1854 1855 F = CDS->getElementAsDouble(i); 1856 if (AP.isVerbose()) 1857 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1858 AP.OutStreamer.EmitIntValue(I, 8); 1859 } 1860 } 1861 1862 const DataLayout &DL = *AP.TM.getDataLayout(); 1863 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1864 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1865 CDS->getNumElements(); 1866 if (unsigned Padding = Size - EmittedSize) 1867 AP.OutStreamer.EmitZeros(Padding); 1868 1869 } 1870 1871 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP, 1872 const Constant *BaseCV, uint64_t Offset) { 1873 // See if we can aggregate some values. Make sure it can be 1874 // represented as a series of bytes of the constant value. 1875 int Value = isRepeatedByteSequence(CA, AP.TM); 1876 const DataLayout &DL = *AP.TM.getDataLayout(); 1877 1878 if (Value != -1) { 1879 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1880 AP.OutStreamer.EmitFill(Bytes, Value); 1881 } 1882 else { 1883 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 1884 emitGlobalConstantImpl(CA->getOperand(i), AP, BaseCV, Offset); 1885 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 1886 } 1887 } 1888 } 1889 1890 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1891 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1892 emitGlobalConstantImpl(CV->getOperand(i), AP); 1893 1894 const DataLayout &DL = *AP.TM.getDataLayout(); 1895 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1896 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1897 CV->getType()->getNumElements(); 1898 if (unsigned Padding = Size - EmittedSize) 1899 AP.OutStreamer.EmitZeros(Padding); 1900 } 1901 1902 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP, 1903 const Constant *BaseCV, uint64_t Offset) { 1904 // Print the fields in successive locations. Pad to align if needed! 1905 const DataLayout *DL = AP.TM.getDataLayout(); 1906 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1907 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1908 uint64_t SizeSoFar = 0; 1909 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1910 const Constant *Field = CS->getOperand(i); 1911 1912 // Print the actual field value. 1913 emitGlobalConstantImpl(Field, AP, BaseCV, Offset+SizeSoFar); 1914 1915 // Check if padding is needed and insert one or more 0s. 1916 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1917 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1918 - Layout->getElementOffset(i)) - FieldSize; 1919 SizeSoFar += FieldSize + PadSize; 1920 1921 // Insert padding - this may include padding to increase the size of the 1922 // current field up to the ABI size (if the struct is not packed) as well 1923 // as padding to ensure that the next field starts at the right offset. 1924 AP.OutStreamer.EmitZeros(PadSize); 1925 } 1926 assert(SizeSoFar == Layout->getSizeInBytes() && 1927 "Layout of constant struct may be incorrect!"); 1928 } 1929 1930 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1931 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1932 1933 // First print a comment with what we think the original floating-point value 1934 // should have been. 1935 if (AP.isVerbose()) { 1936 SmallString<8> StrVal; 1937 CFP->getValueAPF().toString(StrVal); 1938 1939 if (CFP->getType()) 1940 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1941 else 1942 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1943 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1944 } 1945 1946 // Now iterate through the APInt chunks, emitting them in endian-correct 1947 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1948 // floats). 1949 unsigned NumBytes = API.getBitWidth() / 8; 1950 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1951 const uint64_t *p = API.getRawData(); 1952 1953 // PPC's long double has odd notions of endianness compared to how LLVM 1954 // handles it: p[0] goes first for *big* endian on PPC. 1955 if (AP.TM.getDataLayout()->isBigEndian() && 1956 !CFP->getType()->isPPC_FP128Ty()) { 1957 int Chunk = API.getNumWords() - 1; 1958 1959 if (TrailingBytes) 1960 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1961 1962 for (; Chunk >= 0; --Chunk) 1963 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1964 } else { 1965 unsigned Chunk; 1966 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1967 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1968 1969 if (TrailingBytes) 1970 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1971 } 1972 1973 // Emit the tail padding for the long double. 1974 const DataLayout &DL = *AP.TM.getDataLayout(); 1975 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1976 DL.getTypeStoreSize(CFP->getType())); 1977 } 1978 1979 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1980 const DataLayout *DL = AP.TM.getDataLayout(); 1981 unsigned BitWidth = CI->getBitWidth(); 1982 1983 // Copy the value as we may massage the layout for constants whose bit width 1984 // is not a multiple of 64-bits. 1985 APInt Realigned(CI->getValue()); 1986 uint64_t ExtraBits = 0; 1987 unsigned ExtraBitsSize = BitWidth & 63; 1988 1989 if (ExtraBitsSize) { 1990 // The bit width of the data is not a multiple of 64-bits. 1991 // The extra bits are expected to be at the end of the chunk of the memory. 1992 // Little endian: 1993 // * Nothing to be done, just record the extra bits to emit. 1994 // Big endian: 1995 // * Record the extra bits to emit. 1996 // * Realign the raw data to emit the chunks of 64-bits. 1997 if (DL->isBigEndian()) { 1998 // Basically the structure of the raw data is a chunk of 64-bits cells: 1999 // 0 1 BitWidth / 64 2000 // [chunk1][chunk2] ... [chunkN]. 2001 // The most significant chunk is chunkN and it should be emitted first. 2002 // However, due to the alignment issue chunkN contains useless bits. 2003 // Realign the chunks so that they contain only useless information: 2004 // ExtraBits 0 1 (BitWidth / 64) - 1 2005 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2006 ExtraBits = Realigned.getRawData()[0] & 2007 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2008 Realigned = Realigned.lshr(ExtraBitsSize); 2009 } else 2010 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2011 } 2012 2013 // We don't expect assemblers to support integer data directives 2014 // for more than 64 bits, so we emit the data in at most 64-bit 2015 // quantities at a time. 2016 const uint64_t *RawData = Realigned.getRawData(); 2017 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2018 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2019 AP.OutStreamer.EmitIntValue(Val, 8); 2020 } 2021 2022 if (ExtraBitsSize) { 2023 // Emit the extra bits after the 64-bits chunks. 2024 2025 // Emit a directive that fills the expected size. 2026 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize( 2027 CI->getType()); 2028 Size -= (BitWidth / 64) * 8; 2029 assert(Size && Size * 8 >= ExtraBitsSize && 2030 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2031 == ExtraBits && "Directive too small for extra bits."); 2032 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 2033 } 2034 } 2035 2036 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2037 /// equivalent global, by a target specific GOT pc relative access to the 2038 /// final symbol. 2039 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2040 const Constant *BaseCst, 2041 uint64_t Offset) { 2042 // The global @foo below illustrates a global that uses a got equivalent. 2043 // 2044 // @bar = global i32 42 2045 // @gotequiv = private unnamed_addr constant i32* @bar 2046 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2047 // i64 ptrtoint (i32* @foo to i64)) 2048 // to i32) 2049 // 2050 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2051 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2052 // form: 2053 // 2054 // foo = cstexpr, where 2055 // cstexpr := <gotequiv> - "." + <cst> 2056 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2057 // 2058 // After canonicalization by EvaluateAsRelocatable `ME` turns into: 2059 // 2060 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2061 // gotpcrelcst := <offset from @foo base> + <cst> 2062 // 2063 MCValue MV; 2064 if (!(*ME)->EvaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2065 return; 2066 2067 const MCSymbol *GOTEquivSym = &MV.getSymA()->getSymbol(); 2068 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2069 return; 2070 2071 const GlobalValue *BaseGV = dyn_cast<GlobalValue>(BaseCst); 2072 if (!BaseGV) 2073 return; 2074 2075 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2076 if (BaseSym != &MV.getSymB()->getSymbol()) 2077 return; 2078 2079 // Make sure to match: 2080 // 2081 // gotpcrelcst := <offset from @foo base> + <cst> 2082 // 2083 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2084 if (GOTPCRelCst < 0) 2085 return; 2086 2087 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2088 // 2089 // bar: 2090 // .long 42 2091 // gotequiv: 2092 // .quad bar 2093 // foo: 2094 // .long gotequiv - "." + <cst> 2095 // 2096 // is replaced by the target specific equivalent to: 2097 // 2098 // bar: 2099 // .long 42 2100 // foo: 2101 // .long bar@GOTPCREL+<gotpcrelcst> 2102 // 2103 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2104 const GlobalVariable *GV = Result.first; 2105 unsigned NumUses = Result.second; 2106 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2107 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2108 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(FinalSym, 2109 GOTPCRelCst); 2110 2111 // Update GOT equivalent usage information 2112 --NumUses; 2113 if (NumUses) 2114 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2115 else 2116 AP.GlobalGOTEquivs.erase(GOTEquivSym); 2117 } 2118 2119 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP, 2120 const Constant *BaseCV, uint64_t Offset) { 2121 const DataLayout *DL = AP.TM.getDataLayout(); 2122 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 2123 2124 // Globals with sub-elements such as combinations of arrays and structs 2125 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2126 // constant symbol base and the current position with BaseCV and Offset. 2127 if (!BaseCV && CV->hasOneUse()) 2128 BaseCV = dyn_cast<Constant>(CV->user_back()); 2129 2130 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2131 return AP.OutStreamer.EmitZeros(Size); 2132 2133 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2134 switch (Size) { 2135 case 1: 2136 case 2: 2137 case 4: 2138 case 8: 2139 if (AP.isVerbose()) 2140 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 2141 CI->getZExtValue()); 2142 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 2143 return; 2144 default: 2145 emitGlobalConstantLargeInt(CI, AP); 2146 return; 2147 } 2148 } 2149 2150 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2151 return emitGlobalConstantFP(CFP, AP); 2152 2153 if (isa<ConstantPointerNull>(CV)) { 2154 AP.OutStreamer.EmitIntValue(0, Size); 2155 return; 2156 } 2157 2158 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2159 return emitGlobalConstantDataSequential(CDS, AP); 2160 2161 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2162 return emitGlobalConstantArray(CVA, AP, BaseCV, Offset); 2163 2164 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2165 return emitGlobalConstantStruct(CVS, AP, BaseCV, Offset); 2166 2167 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2168 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2169 // vectors). 2170 if (CE->getOpcode() == Instruction::BitCast) 2171 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2172 2173 if (Size > 8) { 2174 // If the constant expression's size is greater than 64-bits, then we have 2175 // to emit the value in chunks. Try to constant fold the value and emit it 2176 // that way. 2177 Constant *New = ConstantFoldConstantExpression(CE, DL); 2178 if (New && New != CE) 2179 return emitGlobalConstantImpl(New, AP); 2180 } 2181 } 2182 2183 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2184 return emitGlobalConstantVector(V, AP); 2185 2186 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2187 // thread the streamer with EmitValue. 2188 const MCExpr *ME = AP.lowerConstant(CV); 2189 2190 // Since lowerConstant already folded and got rid of all IR pointer and 2191 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2192 // directly. 2193 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2194 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2195 2196 AP.OutStreamer.EmitValue(ME, Size); 2197 } 2198 2199 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2200 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2201 uint64_t Size = 2202 TM.getDataLayout()->getTypeAllocSize(CV->getType()); 2203 if (Size) 2204 emitGlobalConstantImpl(CV, *this); 2205 else if (MAI->hasSubsectionsViaSymbols()) { 2206 // If the global has zero size, emit a single byte so that two labels don't 2207 // look like they are at the same location. 2208 OutStreamer.EmitIntValue(0, 1); 2209 } 2210 } 2211 2212 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2213 // Target doesn't support this yet! 2214 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2215 } 2216 2217 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2218 if (Offset > 0) 2219 OS << '+' << Offset; 2220 else if (Offset < 0) 2221 OS << Offset; 2222 } 2223 2224 //===----------------------------------------------------------------------===// 2225 // Symbol Lowering Routines. 2226 //===----------------------------------------------------------------------===// 2227 2228 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2229 /// temporary label with the specified stem and unique ID. 2230 MCSymbol *AsmPrinter::GetTempSymbol(const Twine &Name, unsigned ID) const { 2231 const DataLayout *DL = TM.getDataLayout(); 2232 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2233 Name + Twine(ID)); 2234 } 2235 2236 /// GetTempSymbol - Return an assembler temporary label with the specified 2237 /// stem. 2238 MCSymbol *AsmPrinter::GetTempSymbol(const Twine &Name) const { 2239 const DataLayout *DL = TM.getDataLayout(); 2240 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2241 Name); 2242 } 2243 2244 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name, unsigned ID) const { 2245 return OutContext.createTempSymbol(Name + Twine(ID)); 2246 } 2247 2248 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2249 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2250 } 2251 2252 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2253 return MMI->getAddrLabelSymbol(BB); 2254 } 2255 2256 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2257 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2258 const DataLayout *DL = TM.getDataLayout(); 2259 return OutContext.GetOrCreateSymbol 2260 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2261 + "_" + Twine(CPID)); 2262 } 2263 2264 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2265 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2266 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2267 } 2268 2269 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2270 /// FIXME: privatize to AsmPrinter. 2271 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2272 const DataLayout *DL = TM.getDataLayout(); 2273 return OutContext.GetOrCreateSymbol 2274 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2275 Twine(UID) + "_set_" + Twine(MBBID)); 2276 } 2277 2278 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2279 StringRef Suffix) const { 2280 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2281 TM); 2282 } 2283 2284 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2285 /// ExternalSymbol. 2286 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2287 SmallString<60> NameStr; 2288 Mang->getNameWithPrefix(NameStr, Sym); 2289 return OutContext.GetOrCreateSymbol(NameStr.str()); 2290 } 2291 2292 2293 2294 /// PrintParentLoopComment - Print comments about parent loops of this one. 2295 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2296 unsigned FunctionNumber) { 2297 if (!Loop) return; 2298 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2299 OS.indent(Loop->getLoopDepth()*2) 2300 << "Parent Loop BB" << FunctionNumber << "_" 2301 << Loop->getHeader()->getNumber() 2302 << " Depth=" << Loop->getLoopDepth() << '\n'; 2303 } 2304 2305 2306 /// PrintChildLoopComment - Print comments about child loops within 2307 /// the loop for this basic block, with nesting. 2308 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2309 unsigned FunctionNumber) { 2310 // Add child loop information 2311 for (const MachineLoop *CL : *Loop) { 2312 OS.indent(CL->getLoopDepth()*2) 2313 << "Child Loop BB" << FunctionNumber << "_" 2314 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2315 << '\n'; 2316 PrintChildLoopComment(OS, CL, FunctionNumber); 2317 } 2318 } 2319 2320 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2321 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2322 const MachineLoopInfo *LI, 2323 const AsmPrinter &AP) { 2324 // Add loop depth information 2325 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2326 if (!Loop) return; 2327 2328 MachineBasicBlock *Header = Loop->getHeader(); 2329 assert(Header && "No header for loop"); 2330 2331 // If this block is not a loop header, just print out what is the loop header 2332 // and return. 2333 if (Header != &MBB) { 2334 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2335 Twine(AP.getFunctionNumber())+"_" + 2336 Twine(Loop->getHeader()->getNumber())+ 2337 " Depth="+Twine(Loop->getLoopDepth())); 2338 return; 2339 } 2340 2341 // Otherwise, it is a loop header. Print out information about child and 2342 // parent loops. 2343 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2344 2345 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2346 2347 OS << "=>"; 2348 OS.indent(Loop->getLoopDepth()*2-2); 2349 2350 OS << "This "; 2351 if (Loop->empty()) 2352 OS << "Inner "; 2353 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2354 2355 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2356 } 2357 2358 2359 /// EmitBasicBlockStart - This method prints the label for the specified 2360 /// MachineBasicBlock, an alignment (if present) and a comment describing 2361 /// it if appropriate. 2362 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2363 // Emit an alignment directive for this block, if needed. 2364 if (unsigned Align = MBB.getAlignment()) 2365 EmitAlignment(Align); 2366 2367 // If the block has its address taken, emit any labels that were used to 2368 // reference the block. It is possible that there is more than one label 2369 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2370 // the references were generated. 2371 if (MBB.hasAddressTaken()) { 2372 const BasicBlock *BB = MBB.getBasicBlock(); 2373 if (isVerbose()) 2374 OutStreamer.AddComment("Block address taken"); 2375 2376 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2377 for (auto *Sym : Symbols) 2378 OutStreamer.EmitLabel(Sym); 2379 } 2380 2381 // Print some verbose block comments. 2382 if (isVerbose()) { 2383 if (const BasicBlock *BB = MBB.getBasicBlock()) 2384 if (BB->hasName()) 2385 OutStreamer.AddComment("%" + BB->getName()); 2386 emitBasicBlockLoopComments(MBB, LI, *this); 2387 } 2388 2389 // Print the main label for the block. 2390 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2391 if (isVerbose()) { 2392 // NOTE: Want this comment at start of line, don't emit with AddComment. 2393 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2394 } 2395 } else { 2396 OutStreamer.EmitLabel(MBB.getSymbol()); 2397 } 2398 } 2399 2400 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2401 bool IsDefinition) const { 2402 MCSymbolAttr Attr = MCSA_Invalid; 2403 2404 switch (Visibility) { 2405 default: break; 2406 case GlobalValue::HiddenVisibility: 2407 if (IsDefinition) 2408 Attr = MAI->getHiddenVisibilityAttr(); 2409 else 2410 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2411 break; 2412 case GlobalValue::ProtectedVisibility: 2413 Attr = MAI->getProtectedVisibilityAttr(); 2414 break; 2415 } 2416 2417 if (Attr != MCSA_Invalid) 2418 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2419 } 2420 2421 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2422 /// exactly one predecessor and the control transfer mechanism between 2423 /// the predecessor and this block is a fall-through. 2424 bool AsmPrinter:: 2425 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2426 // If this is a landing pad, it isn't a fall through. If it has no preds, 2427 // then nothing falls through to it. 2428 if (MBB->isLandingPad() || MBB->pred_empty()) 2429 return false; 2430 2431 // If there isn't exactly one predecessor, it can't be a fall through. 2432 if (MBB->pred_size() > 1) 2433 return false; 2434 2435 // The predecessor has to be immediately before this block. 2436 MachineBasicBlock *Pred = *MBB->pred_begin(); 2437 if (!Pred->isLayoutSuccessor(MBB)) 2438 return false; 2439 2440 // If the block is completely empty, then it definitely does fall through. 2441 if (Pred->empty()) 2442 return true; 2443 2444 // Check the terminators in the previous blocks 2445 for (const auto &MI : Pred->terminators()) { 2446 // If it is not a simple branch, we are in a table somewhere. 2447 if (!MI.isBranch() || MI.isIndirectBranch()) 2448 return false; 2449 2450 // If we are the operands of one of the branches, this is not a fall 2451 // through. Note that targets with delay slots will usually bundle 2452 // terminators with the delay slot instruction. 2453 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2454 if (OP->isJTI()) 2455 return false; 2456 if (OP->isMBB() && OP->getMBB() == MBB) 2457 return false; 2458 } 2459 } 2460 2461 return true; 2462 } 2463 2464 2465 2466 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2467 if (!S.usesMetadata()) 2468 return nullptr; 2469 2470 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2471 " stackmap formats, please see the documentation for a description of" 2472 " the default format. If you really need a custom serialized format," 2473 " please file a bug"); 2474 2475 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2476 gcp_map_type::iterator GCPI = GCMap.find(&S); 2477 if (GCPI != GCMap.end()) 2478 return GCPI->second.get(); 2479 2480 const char *Name = S.getName().c_str(); 2481 2482 for (GCMetadataPrinterRegistry::iterator 2483 I = GCMetadataPrinterRegistry::begin(), 2484 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2485 if (strcmp(Name, I->getName()) == 0) { 2486 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2487 GMP->S = &S; 2488 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2489 return IterBool.first->second.get(); 2490 } 2491 2492 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2493 } 2494 2495 /// Pin vtable to this file. 2496 AsmPrinterHandler::~AsmPrinterHandler() {} 2497