1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/Config/config.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GCStrategy.h" 72 #include "llvm/IR/GlobalAlias.h" 73 #include "llvm/IR/GlobalIFunc.h" 74 #include "llvm/IR/GlobalIndirectSymbol.h" 75 #include "llvm/IR/GlobalObject.h" 76 #include "llvm/IR/GlobalValue.h" 77 #include "llvm/IR/GlobalVariable.h" 78 #include "llvm/IR/Instruction.h" 79 #include "llvm/IR/Mangler.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Module.h" 82 #include "llvm/IR/Operator.h" 83 #include "llvm/IR/PseudoProbe.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Value.h" 86 #include "llvm/MC/MCAsmInfo.h" 87 #include "llvm/MC/MCContext.h" 88 #include "llvm/MC/MCDirectives.h" 89 #include "llvm/MC/MCDwarf.h" 90 #include "llvm/MC/MCExpr.h" 91 #include "llvm/MC/MCInst.h" 92 #include "llvm/MC/MCSection.h" 93 #include "llvm/MC/MCSectionCOFF.h" 94 #include "llvm/MC/MCSectionELF.h" 95 #include "llvm/MC/MCSectionMachO.h" 96 #include "llvm/MC/MCSectionXCOFF.h" 97 #include "llvm/MC/MCStreamer.h" 98 #include "llvm/MC/MCSubtargetInfo.h" 99 #include "llvm/MC/MCSymbol.h" 100 #include "llvm/MC/MCSymbolELF.h" 101 #include "llvm/MC/MCSymbolXCOFF.h" 102 #include "llvm/MC/MCTargetOptions.h" 103 #include "llvm/MC/MCValue.h" 104 #include "llvm/MC/SectionKind.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Remarks/Remark.h" 107 #include "llvm/Remarks/RemarkFormat.h" 108 #include "llvm/Remarks/RemarkStreamer.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/FileSystem.h" 115 #include "llvm/Support/Format.h" 116 #include "llvm/Support/MathExtras.h" 117 #include "llvm/Support/Path.h" 118 #include "llvm/Support/TargetRegistry.h" 119 #include "llvm/Support/Timer.h" 120 #include "llvm/Support/raw_ostream.h" 121 #include "llvm/Target/TargetLoweringObjectFile.h" 122 #include "llvm/Target/TargetMachine.h" 123 #include "llvm/Target/TargetOptions.h" 124 #include <algorithm> 125 #include <cassert> 126 #include <cinttypes> 127 #include <cstdint> 128 #include <iterator> 129 #include <limits> 130 #include <memory> 131 #include <string> 132 #include <utility> 133 #include <vector> 134 135 using namespace llvm; 136 137 #define DEBUG_TYPE "asm-printer" 138 139 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 140 static cl::opt<bool> 141 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 142 cl::desc("Disable debug info printing")); 143 144 const char DWARFGroupName[] = "dwarf"; 145 const char DWARFGroupDescription[] = "DWARF Emission"; 146 const char DbgTimerName[] = "emit"; 147 const char DbgTimerDescription[] = "Debug Info Emission"; 148 const char EHTimerName[] = "write_exception"; 149 const char EHTimerDescription[] = "DWARF Exception Writer"; 150 const char CFGuardName[] = "Control Flow Guard"; 151 const char CFGuardDescription[] = "Control Flow Guard"; 152 const char CodeViewLineTablesGroupName[] = "linetables"; 153 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 154 const char PPTimerName[] = "emit"; 155 const char PPTimerDescription[] = "Pseudo Probe Emission"; 156 const char PPGroupName[] = "pseudo probe"; 157 const char PPGroupDescription[] = "Pseudo Probe Emission"; 158 159 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 160 161 char AsmPrinter::ID = 0; 162 163 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 164 165 static gcp_map_type &getGCMap(void *&P) { 166 if (!P) 167 P = new gcp_map_type(); 168 return *(gcp_map_type*)P; 169 } 170 171 /// getGVAlignment - Return the alignment to use for the specified global 172 /// value. This rounds up to the preferred alignment if possible and legal. 173 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 174 Align InAlign) { 175 Align Alignment; 176 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 177 Alignment = DL.getPreferredAlign(GVar); 178 179 // If InAlign is specified, round it to it. 180 if (InAlign > Alignment) 181 Alignment = InAlign; 182 183 // If the GV has a specified alignment, take it into account. 184 const MaybeAlign GVAlign(GV->getAlignment()); 185 if (!GVAlign) 186 return Alignment; 187 188 assert(GVAlign && "GVAlign must be set"); 189 190 // If the GVAlign is larger than NumBits, or if we are required to obey 191 // NumBits because the GV has an assigned section, obey it. 192 if (*GVAlign > Alignment || GV->hasSection()) 193 Alignment = *GVAlign; 194 return Alignment; 195 } 196 197 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 198 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 199 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 200 VerboseAsm = OutStreamer->isVerboseAsm(); 201 } 202 203 AsmPrinter::~AsmPrinter() { 204 assert(!DD && Handlers.size() == NumUserHandlers && 205 "Debug/EH info didn't get finalized"); 206 207 if (GCMetadataPrinters) { 208 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 209 210 delete &GCMap; 211 GCMetadataPrinters = nullptr; 212 } 213 } 214 215 bool AsmPrinter::isPositionIndependent() const { 216 return TM.isPositionIndependent(); 217 } 218 219 /// getFunctionNumber - Return a unique ID for the current function. 220 unsigned AsmPrinter::getFunctionNumber() const { 221 return MF->getFunctionNumber(); 222 } 223 224 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 225 return *TM.getObjFileLowering(); 226 } 227 228 const DataLayout &AsmPrinter::getDataLayout() const { 229 return MMI->getModule()->getDataLayout(); 230 } 231 232 // Do not use the cached DataLayout because some client use it without a Module 233 // (dsymutil, llvm-dwarfdump). 234 unsigned AsmPrinter::getPointerSize() const { 235 return TM.getPointerSize(0); // FIXME: Default address space 236 } 237 238 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 239 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 240 return MF->getSubtarget<MCSubtargetInfo>(); 241 } 242 243 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 244 S.emitInstruction(Inst, getSubtargetInfo()); 245 } 246 247 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 248 if (DD) { 249 assert(OutStreamer->hasRawTextSupport() && 250 "Expected assembly output mode."); 251 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 252 } 253 } 254 255 /// getCurrentSection() - Return the current section we are emitting to. 256 const MCSection *AsmPrinter::getCurrentSection() const { 257 return OutStreamer->getCurrentSectionOnly(); 258 } 259 260 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 261 AU.setPreservesAll(); 262 MachineFunctionPass::getAnalysisUsage(AU); 263 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 264 AU.addRequired<GCModuleInfo>(); 265 } 266 267 bool AsmPrinter::doInitialization(Module &M) { 268 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 269 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 270 271 // Initialize TargetLoweringObjectFile. 272 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 273 .Initialize(OutContext, TM); 274 275 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 276 .getModuleMetadata(M); 277 278 OutStreamer->initSections(false, *TM.getMCSubtargetInfo()); 279 280 if (DisableDebugInfoPrinting) 281 MMI->setDebugInfoAvailability(false); 282 283 // Emit the version-min deployment target directive if needed. 284 // 285 // FIXME: If we end up with a collection of these sorts of Darwin-specific 286 // or ELF-specific things, it may make sense to have a platform helper class 287 // that will work with the target helper class. For now keep it here, as the 288 // alternative is duplicated code in each of the target asm printers that 289 // use the directive, where it would need the same conditionalization 290 // anyway. 291 const Triple &Target = TM.getTargetTriple(); 292 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 293 294 // Allow the target to emit any magic that it wants at the start of the file. 295 emitStartOfAsmFile(M); 296 297 // Very minimal debug info. It is ignored if we emit actual debug info. If we 298 // don't, this at least helps the user find where a global came from. 299 if (MAI->hasSingleParameterDotFile()) { 300 // .file "foo.c" 301 302 SmallString<128> FileName; 303 if (MAI->hasBasenameOnlyForFileDirective()) 304 FileName = llvm::sys::path::filename(M.getSourceFileName()); 305 else 306 FileName = M.getSourceFileName(); 307 if (MAI->hasFourStringsDotFile()) { 308 #ifdef PACKAGE_VENDOR 309 const char VerStr[] = 310 PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION; 311 #else 312 const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION; 313 #endif 314 // TODO: Add timestamp and description. 315 OutStreamer->emitFileDirective(FileName, VerStr, "", ""); 316 } else { 317 OutStreamer->emitFileDirective(FileName); 318 } 319 } 320 321 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 322 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 323 for (auto &I : *MI) 324 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 325 MP->beginAssembly(M, *MI, *this); 326 327 // Emit module-level inline asm if it exists. 328 if (!M.getModuleInlineAsm().empty()) { 329 OutStreamer->AddComment("Start of file scope inline assembly"); 330 OutStreamer->AddBlankLine(); 331 emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(), 332 TM.Options.MCOptions); 333 OutStreamer->AddComment("End of file scope inline assembly"); 334 OutStreamer->AddBlankLine(); 335 } 336 337 if (MAI->doesSupportDebugInformation()) { 338 bool EmitCodeView = M.getCodeViewFlag(); 339 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 340 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 341 DbgTimerName, DbgTimerDescription, 342 CodeViewLineTablesGroupName, 343 CodeViewLineTablesGroupDescription); 344 } 345 if (!EmitCodeView || M.getDwarfVersion()) { 346 if (!DisableDebugInfoPrinting) { 347 DD = new DwarfDebug(this); 348 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 349 DbgTimerDescription, DWARFGroupName, 350 DWARFGroupDescription); 351 } 352 } 353 } 354 355 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 356 PP = new PseudoProbeHandler(this); 357 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 358 PPTimerDescription, PPGroupName, PPGroupDescription); 359 } 360 361 switch (MAI->getExceptionHandlingType()) { 362 case ExceptionHandling::None: 363 // We may want to emit CFI for debug. 364 LLVM_FALLTHROUGH; 365 case ExceptionHandling::SjLj: 366 case ExceptionHandling::DwarfCFI: 367 case ExceptionHandling::ARM: 368 for (auto &F : M.getFunctionList()) { 369 if (getFunctionCFISectionType(F) != CFISection::None) 370 ModuleCFISection = getFunctionCFISectionType(F); 371 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence 372 // the module needs .eh_frame. If we have found that case, we are done. 373 if (ModuleCFISection == CFISection::EH) 374 break; 375 } 376 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || 377 ModuleCFISection != CFISection::EH); 378 break; 379 default: 380 break; 381 } 382 383 EHStreamer *ES = nullptr; 384 switch (MAI->getExceptionHandlingType()) { 385 case ExceptionHandling::None: 386 if (!needsCFIForDebug()) 387 break; 388 LLVM_FALLTHROUGH; 389 case ExceptionHandling::SjLj: 390 case ExceptionHandling::DwarfCFI: 391 ES = new DwarfCFIException(this); 392 break; 393 case ExceptionHandling::ARM: 394 ES = new ARMException(this); 395 break; 396 case ExceptionHandling::WinEH: 397 switch (MAI->getWinEHEncodingType()) { 398 default: llvm_unreachable("unsupported unwinding information encoding"); 399 case WinEH::EncodingType::Invalid: 400 break; 401 case WinEH::EncodingType::X86: 402 case WinEH::EncodingType::Itanium: 403 ES = new WinException(this); 404 break; 405 } 406 break; 407 case ExceptionHandling::Wasm: 408 ES = new WasmException(this); 409 break; 410 case ExceptionHandling::AIX: 411 ES = new AIXException(this); 412 break; 413 } 414 if (ES) 415 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 416 EHTimerDescription, DWARFGroupName, 417 DWARFGroupDescription); 418 419 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 420 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 421 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 422 CFGuardDescription, DWARFGroupName, 423 DWARFGroupDescription); 424 425 for (const HandlerInfo &HI : Handlers) { 426 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 427 HI.TimerGroupDescription, TimePassesIsEnabled); 428 HI.Handler->beginModule(&M); 429 } 430 431 return false; 432 } 433 434 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 435 if (!MAI.hasWeakDefCanBeHiddenDirective()) 436 return false; 437 438 return GV->canBeOmittedFromSymbolTable(); 439 } 440 441 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 442 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 443 switch (Linkage) { 444 case GlobalValue::CommonLinkage: 445 case GlobalValue::LinkOnceAnyLinkage: 446 case GlobalValue::LinkOnceODRLinkage: 447 case GlobalValue::WeakAnyLinkage: 448 case GlobalValue::WeakODRLinkage: 449 if (MAI->hasWeakDefDirective()) { 450 // .globl _foo 451 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 452 453 if (!canBeHidden(GV, *MAI)) 454 // .weak_definition _foo 455 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 456 else 457 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 458 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 459 // .globl _foo 460 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 461 //NOTE: linkonce is handled by the section the symbol was assigned to. 462 } else { 463 // .weak _foo 464 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 465 } 466 return; 467 case GlobalValue::ExternalLinkage: 468 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 469 return; 470 case GlobalValue::PrivateLinkage: 471 case GlobalValue::InternalLinkage: 472 return; 473 case GlobalValue::ExternalWeakLinkage: 474 case GlobalValue::AvailableExternallyLinkage: 475 case GlobalValue::AppendingLinkage: 476 llvm_unreachable("Should never emit this"); 477 } 478 llvm_unreachable("Unknown linkage type!"); 479 } 480 481 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 482 const GlobalValue *GV) const { 483 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 484 } 485 486 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 487 return TM.getSymbol(GV); 488 } 489 490 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 491 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 492 // exact definion (intersection of GlobalValue::hasExactDefinition() and 493 // !isInterposable()). These linkages include: external, appending, internal, 494 // private. It may be profitable to use a local alias for external. The 495 // assembler would otherwise be conservative and assume a global default 496 // visibility symbol can be interposable, even if the code generator already 497 // assumed it. 498 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 499 const Module &M = *GV.getParent(); 500 if (TM.getRelocationModel() != Reloc::Static && 501 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 502 return getSymbolWithGlobalValueBase(&GV, "$local"); 503 } 504 return TM.getSymbol(&GV); 505 } 506 507 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 508 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 509 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 510 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 511 "No emulated TLS variables in the common section"); 512 513 // Never emit TLS variable xyz in emulated TLS model. 514 // The initialization value is in __emutls_t.xyz instead of xyz. 515 if (IsEmuTLSVar) 516 return; 517 518 if (GV->hasInitializer()) { 519 // Check to see if this is a special global used by LLVM, if so, emit it. 520 if (emitSpecialLLVMGlobal(GV)) 521 return; 522 523 // Skip the emission of global equivalents. The symbol can be emitted later 524 // on by emitGlobalGOTEquivs in case it turns out to be needed. 525 if (GlobalGOTEquivs.count(getSymbol(GV))) 526 return; 527 528 if (isVerbose()) { 529 // When printing the control variable __emutls_v.*, 530 // we don't need to print the original TLS variable name. 531 GV->printAsOperand(OutStreamer->GetCommentOS(), 532 /*PrintType=*/false, GV->getParent()); 533 OutStreamer->GetCommentOS() << '\n'; 534 } 535 } 536 537 MCSymbol *GVSym = getSymbol(GV); 538 MCSymbol *EmittedSym = GVSym; 539 540 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 541 // attributes. 542 // GV's or GVSym's attributes will be used for the EmittedSym. 543 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 544 545 if (!GV->hasInitializer()) // External globals require no extra code. 546 return; 547 548 GVSym->redefineIfPossible(); 549 if (GVSym->isDefined() || GVSym->isVariable()) 550 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 551 "' is already defined"); 552 553 if (MAI->hasDotTypeDotSizeDirective()) 554 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 555 556 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 557 558 const DataLayout &DL = GV->getParent()->getDataLayout(); 559 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 560 561 // If the alignment is specified, we *must* obey it. Overaligning a global 562 // with a specified alignment is a prompt way to break globals emitted to 563 // sections and expected to be contiguous (e.g. ObjC metadata). 564 const Align Alignment = getGVAlignment(GV, DL); 565 566 for (const HandlerInfo &HI : Handlers) { 567 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 568 HI.TimerGroupName, HI.TimerGroupDescription, 569 TimePassesIsEnabled); 570 HI.Handler->setSymbolSize(GVSym, Size); 571 } 572 573 // Handle common symbols 574 if (GVKind.isCommon()) { 575 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 576 // .comm _foo, 42, 4 577 const bool SupportsAlignment = 578 getObjFileLowering().getCommDirectiveSupportsAlignment(); 579 OutStreamer->emitCommonSymbol(GVSym, Size, 580 SupportsAlignment ? Alignment.value() : 0); 581 return; 582 } 583 584 // Determine to which section this global should be emitted. 585 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 586 587 // If we have a bss global going to a section that supports the 588 // zerofill directive, do so here. 589 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 590 TheSection->isVirtualSection()) { 591 if (Size == 0) 592 Size = 1; // zerofill of 0 bytes is undefined. 593 emitLinkage(GV, GVSym); 594 // .zerofill __DATA, __bss, _foo, 400, 5 595 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 596 return; 597 } 598 599 // If this is a BSS local symbol and we are emitting in the BSS 600 // section use .lcomm/.comm directive. 601 if (GVKind.isBSSLocal() && 602 getObjFileLowering().getBSSSection() == TheSection) { 603 if (Size == 0) 604 Size = 1; // .comm Foo, 0 is undefined, avoid it. 605 606 // Use .lcomm only if it supports user-specified alignment. 607 // Otherwise, while it would still be correct to use .lcomm in some 608 // cases (e.g. when Align == 1), the external assembler might enfore 609 // some -unknown- default alignment behavior, which could cause 610 // spurious differences between external and integrated assembler. 611 // Prefer to simply fall back to .local / .comm in this case. 612 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 613 // .lcomm _foo, 42 614 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 615 return; 616 } 617 618 // .local _foo 619 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 620 // .comm _foo, 42, 4 621 const bool SupportsAlignment = 622 getObjFileLowering().getCommDirectiveSupportsAlignment(); 623 OutStreamer->emitCommonSymbol(GVSym, Size, 624 SupportsAlignment ? Alignment.value() : 0); 625 return; 626 } 627 628 // Handle thread local data for mach-o which requires us to output an 629 // additional structure of data and mangle the original symbol so that we 630 // can reference it later. 631 // 632 // TODO: This should become an "emit thread local global" method on TLOF. 633 // All of this macho specific stuff should be sunk down into TLOFMachO and 634 // stuff like "TLSExtraDataSection" should no longer be part of the parent 635 // TLOF class. This will also make it more obvious that stuff like 636 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 637 // specific code. 638 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 639 // Emit the .tbss symbol 640 MCSymbol *MangSym = 641 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 642 643 if (GVKind.isThreadBSS()) { 644 TheSection = getObjFileLowering().getTLSBSSSection(); 645 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 646 } else if (GVKind.isThreadData()) { 647 OutStreamer->SwitchSection(TheSection); 648 649 emitAlignment(Alignment, GV); 650 OutStreamer->emitLabel(MangSym); 651 652 emitGlobalConstant(GV->getParent()->getDataLayout(), 653 GV->getInitializer()); 654 } 655 656 OutStreamer->AddBlankLine(); 657 658 // Emit the variable struct for the runtime. 659 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 660 661 OutStreamer->SwitchSection(TLVSect); 662 // Emit the linkage here. 663 emitLinkage(GV, GVSym); 664 OutStreamer->emitLabel(GVSym); 665 666 // Three pointers in size: 667 // - __tlv_bootstrap - used to make sure support exists 668 // - spare pointer, used when mapped by the runtime 669 // - pointer to mangled symbol above with initializer 670 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 671 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 672 PtrSize); 673 OutStreamer->emitIntValue(0, PtrSize); 674 OutStreamer->emitSymbolValue(MangSym, PtrSize); 675 676 OutStreamer->AddBlankLine(); 677 return; 678 } 679 680 MCSymbol *EmittedInitSym = GVSym; 681 682 OutStreamer->SwitchSection(TheSection); 683 684 emitLinkage(GV, EmittedInitSym); 685 emitAlignment(Alignment, GV); 686 687 OutStreamer->emitLabel(EmittedInitSym); 688 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 689 if (LocalAlias != EmittedInitSym) 690 OutStreamer->emitLabel(LocalAlias); 691 692 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 693 694 if (MAI->hasDotTypeDotSizeDirective()) 695 // .size foo, 42 696 OutStreamer->emitELFSize(EmittedInitSym, 697 MCConstantExpr::create(Size, OutContext)); 698 699 OutStreamer->AddBlankLine(); 700 } 701 702 /// Emit the directive and value for debug thread local expression 703 /// 704 /// \p Value - The value to emit. 705 /// \p Size - The size of the integer (in bytes) to emit. 706 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 707 OutStreamer->emitValue(Value, Size); 708 } 709 710 void AsmPrinter::emitFunctionHeaderComment() {} 711 712 /// EmitFunctionHeader - This method emits the header for the current 713 /// function. 714 void AsmPrinter::emitFunctionHeader() { 715 const Function &F = MF->getFunction(); 716 717 if (isVerbose()) 718 OutStreamer->GetCommentOS() 719 << "-- Begin function " 720 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 721 722 // Print out constants referenced by the function 723 emitConstantPool(); 724 725 // Print the 'header' of function. 726 // If basic block sections are desired, explicitly request a unique section 727 // for this function's entry block. 728 if (MF->front().isBeginSection()) 729 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); 730 else 731 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 732 OutStreamer->SwitchSection(MF->getSection()); 733 734 if (!MAI->hasVisibilityOnlyWithLinkage()) 735 emitVisibility(CurrentFnSym, F.getVisibility()); 736 737 if (MAI->needsFunctionDescriptors()) 738 emitLinkage(&F, CurrentFnDescSym); 739 740 emitLinkage(&F, CurrentFnSym); 741 if (MAI->hasFunctionAlignment()) 742 emitAlignment(MF->getAlignment(), &F); 743 744 if (MAI->hasDotTypeDotSizeDirective()) 745 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 746 747 if (F.hasFnAttribute(Attribute::Cold)) 748 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 749 750 if (isVerbose()) { 751 F.printAsOperand(OutStreamer->GetCommentOS(), 752 /*PrintType=*/false, F.getParent()); 753 emitFunctionHeaderComment(); 754 OutStreamer->GetCommentOS() << '\n'; 755 } 756 757 // Emit the prefix data. 758 if (F.hasPrefixData()) { 759 if (MAI->hasSubsectionsViaSymbols()) { 760 // Preserving prefix data on platforms which use subsections-via-symbols 761 // is a bit tricky. Here we introduce a symbol for the prefix data 762 // and use the .alt_entry attribute to mark the function's real entry point 763 // as an alternative entry point to the prefix-data symbol. 764 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 765 OutStreamer->emitLabel(PrefixSym); 766 767 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 768 769 // Emit an .alt_entry directive for the actual function symbol. 770 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 771 } else { 772 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 773 } 774 } 775 776 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 777 // place prefix data before NOPs. 778 unsigned PatchableFunctionPrefix = 0; 779 unsigned PatchableFunctionEntry = 0; 780 (void)F.getFnAttribute("patchable-function-prefix") 781 .getValueAsString() 782 .getAsInteger(10, PatchableFunctionPrefix); 783 (void)F.getFnAttribute("patchable-function-entry") 784 .getValueAsString() 785 .getAsInteger(10, PatchableFunctionEntry); 786 if (PatchableFunctionPrefix) { 787 CurrentPatchableFunctionEntrySym = 788 OutContext.createLinkerPrivateTempSymbol(); 789 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 790 emitNops(PatchableFunctionPrefix); 791 } else if (PatchableFunctionEntry) { 792 // May be reassigned when emitting the body, to reference the label after 793 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 794 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 795 } 796 797 // Emit the function descriptor. This is a virtual function to allow targets 798 // to emit their specific function descriptor. Right now it is only used by 799 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 800 // descriptors and should be converted to use this hook as well. 801 if (MAI->needsFunctionDescriptors()) 802 emitFunctionDescriptor(); 803 804 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 805 // their wild and crazy things as required. 806 emitFunctionEntryLabel(); 807 808 // If the function had address-taken blocks that got deleted, then we have 809 // references to the dangling symbols. Emit them at the start of the function 810 // so that we don't get references to undefined symbols. 811 std::vector<MCSymbol*> DeadBlockSyms; 812 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 813 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 814 OutStreamer->AddComment("Address taken block that was later removed"); 815 OutStreamer->emitLabel(DeadBlockSyms[i]); 816 } 817 818 if (CurrentFnBegin) { 819 if (MAI->useAssignmentForEHBegin()) { 820 MCSymbol *CurPos = OutContext.createTempSymbol(); 821 OutStreamer->emitLabel(CurPos); 822 OutStreamer->emitAssignment(CurrentFnBegin, 823 MCSymbolRefExpr::create(CurPos, OutContext)); 824 } else { 825 OutStreamer->emitLabel(CurrentFnBegin); 826 } 827 } 828 829 // Emit pre-function debug and/or EH information. 830 for (const HandlerInfo &HI : Handlers) { 831 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 832 HI.TimerGroupDescription, TimePassesIsEnabled); 833 HI.Handler->beginFunction(MF); 834 } 835 836 // Emit the prologue data. 837 if (F.hasPrologueData()) 838 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 839 } 840 841 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 842 /// function. This can be overridden by targets as required to do custom stuff. 843 void AsmPrinter::emitFunctionEntryLabel() { 844 CurrentFnSym->redefineIfPossible(); 845 846 // The function label could have already been emitted if two symbols end up 847 // conflicting due to asm renaming. Detect this and emit an error. 848 if (CurrentFnSym->isVariable()) 849 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 850 "' is a protected alias"); 851 852 OutStreamer->emitLabel(CurrentFnSym); 853 854 if (TM.getTargetTriple().isOSBinFormatELF()) { 855 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 856 if (Sym != CurrentFnSym) 857 OutStreamer->emitLabel(Sym); 858 } 859 } 860 861 /// emitComments - Pretty-print comments for instructions. 862 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 863 const MachineFunction *MF = MI.getMF(); 864 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 865 866 // Check for spills and reloads 867 868 // We assume a single instruction only has a spill or reload, not 869 // both. 870 Optional<unsigned> Size; 871 if ((Size = MI.getRestoreSize(TII))) { 872 CommentOS << *Size << "-byte Reload\n"; 873 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 874 if (*Size) { 875 if (*Size == unsigned(MemoryLocation::UnknownSize)) 876 CommentOS << "Unknown-size Folded Reload\n"; 877 else 878 CommentOS << *Size << "-byte Folded Reload\n"; 879 } 880 } else if ((Size = MI.getSpillSize(TII))) { 881 CommentOS << *Size << "-byte Spill\n"; 882 } else if ((Size = MI.getFoldedSpillSize(TII))) { 883 if (*Size) { 884 if (*Size == unsigned(MemoryLocation::UnknownSize)) 885 CommentOS << "Unknown-size Folded Spill\n"; 886 else 887 CommentOS << *Size << "-byte Folded Spill\n"; 888 } 889 } 890 891 // Check for spill-induced copies 892 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 893 CommentOS << " Reload Reuse\n"; 894 } 895 896 /// emitImplicitDef - This method emits the specified machine instruction 897 /// that is an implicit def. 898 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 899 Register RegNo = MI->getOperand(0).getReg(); 900 901 SmallString<128> Str; 902 raw_svector_ostream OS(Str); 903 OS << "implicit-def: " 904 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 905 906 OutStreamer->AddComment(OS.str()); 907 OutStreamer->AddBlankLine(); 908 } 909 910 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 911 std::string Str; 912 raw_string_ostream OS(Str); 913 OS << "kill:"; 914 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 915 const MachineOperand &Op = MI->getOperand(i); 916 assert(Op.isReg() && "KILL instruction must have only register operands"); 917 OS << ' ' << (Op.isDef() ? "def " : "killed ") 918 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 919 } 920 AP.OutStreamer->AddComment(OS.str()); 921 AP.OutStreamer->AddBlankLine(); 922 } 923 924 /// emitDebugValueComment - This method handles the target-independent form 925 /// of DBG_VALUE, returning true if it was able to do so. A false return 926 /// means the target will need to handle MI in EmitInstruction. 927 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 928 // This code handles only the 4-operand target-independent form. 929 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) 930 return false; 931 932 SmallString<128> Str; 933 raw_svector_ostream OS(Str); 934 OS << "DEBUG_VALUE: "; 935 936 const DILocalVariable *V = MI->getDebugVariable(); 937 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 938 StringRef Name = SP->getName(); 939 if (!Name.empty()) 940 OS << Name << ":"; 941 } 942 OS << V->getName(); 943 OS << " <- "; 944 945 const DIExpression *Expr = MI->getDebugExpression(); 946 if (Expr->getNumElements()) { 947 OS << '['; 948 ListSeparator LS; 949 for (auto Op : Expr->expr_ops()) { 950 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 951 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 952 OS << ' ' << Op.getArg(I); 953 } 954 OS << "] "; 955 } 956 957 // Register or immediate value. Register 0 means undef. 958 for (const MachineOperand &Op : MI->debug_operands()) { 959 if (&Op != MI->debug_operands().begin()) 960 OS << ", "; 961 switch (Op.getType()) { 962 case MachineOperand::MO_FPImmediate: { 963 APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); 964 Type *ImmTy = Op.getFPImm()->getType(); 965 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || 966 ImmTy->isDoubleTy()) { 967 OS << APF.convertToDouble(); 968 } else { 969 // There is no good way to print long double. Convert a copy to 970 // double. Ah well, it's only a comment. 971 bool ignored; 972 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 973 &ignored); 974 OS << "(long double) " << APF.convertToDouble(); 975 } 976 break; 977 } 978 case MachineOperand::MO_Immediate: { 979 OS << Op.getImm(); 980 break; 981 } 982 case MachineOperand::MO_CImmediate: { 983 Op.getCImm()->getValue().print(OS, false /*isSigned*/); 984 break; 985 } 986 case MachineOperand::MO_TargetIndex: { 987 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 988 // NOTE: Want this comment at start of line, don't emit with AddComment. 989 AP.OutStreamer->emitRawComment(OS.str()); 990 break; 991 } 992 case MachineOperand::MO_Register: 993 case MachineOperand::MO_FrameIndex: { 994 Register Reg; 995 Optional<StackOffset> Offset; 996 if (Op.isReg()) { 997 Reg = Op.getReg(); 998 } else { 999 const TargetFrameLowering *TFI = 1000 AP.MF->getSubtarget().getFrameLowering(); 1001 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg); 1002 } 1003 if (!Reg) { 1004 // Suppress offset, it is not meaningful here. 1005 OS << "undef"; 1006 break; 1007 } 1008 // The second operand is only an offset if it's an immediate. 1009 if (MI->isIndirectDebugValue()) 1010 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm()); 1011 if (Offset) 1012 OS << '['; 1013 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 1014 if (Offset) 1015 OS << '+' << Offset->getFixed() << ']'; 1016 break; 1017 } 1018 default: 1019 llvm_unreachable("Unknown operand type"); 1020 } 1021 } 1022 1023 // NOTE: Want this comment at start of line, don't emit with AddComment. 1024 AP.OutStreamer->emitRawComment(OS.str()); 1025 return true; 1026 } 1027 1028 /// This method handles the target-independent form of DBG_LABEL, returning 1029 /// true if it was able to do so. A false return means the target will need 1030 /// to handle MI in EmitInstruction. 1031 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 1032 if (MI->getNumOperands() != 1) 1033 return false; 1034 1035 SmallString<128> Str; 1036 raw_svector_ostream OS(Str); 1037 OS << "DEBUG_LABEL: "; 1038 1039 const DILabel *V = MI->getDebugLabel(); 1040 if (auto *SP = dyn_cast<DISubprogram>( 1041 V->getScope()->getNonLexicalBlockFileScope())) { 1042 StringRef Name = SP->getName(); 1043 if (!Name.empty()) 1044 OS << Name << ":"; 1045 } 1046 OS << V->getName(); 1047 1048 // NOTE: Want this comment at start of line, don't emit with AddComment. 1049 AP.OutStreamer->emitRawComment(OS.str()); 1050 return true; 1051 } 1052 1053 AsmPrinter::CFISection 1054 AsmPrinter::getFunctionCFISectionType(const Function &F) const { 1055 // Ignore functions that won't get emitted. 1056 if (F.isDeclarationForLinker()) 1057 return CFISection::None; 1058 1059 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1060 F.needsUnwindTableEntry()) 1061 return CFISection::EH; 1062 1063 if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection) 1064 return CFISection::Debug; 1065 1066 return CFISection::None; 1067 } 1068 1069 AsmPrinter::CFISection 1070 AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { 1071 return getFunctionCFISectionType(MF.getFunction()); 1072 } 1073 1074 bool AsmPrinter::needsSEHMoves() { 1075 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1076 } 1077 1078 bool AsmPrinter::needsCFIForDebug() const { 1079 return MAI->getExceptionHandlingType() == ExceptionHandling::None && 1080 MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug; 1081 } 1082 1083 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1084 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1085 if (!needsCFIForDebug() && 1086 ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1087 ExceptionHandlingType != ExceptionHandling::ARM) 1088 return; 1089 1090 if (getFunctionCFISectionType(*MF) == CFISection::None) 1091 return; 1092 1093 // If there is no "real" instruction following this CFI instruction, skip 1094 // emitting it; it would be beyond the end of the function's FDE range. 1095 auto *MBB = MI.getParent(); 1096 auto I = std::next(MI.getIterator()); 1097 while (I != MBB->end() && I->isTransient()) 1098 ++I; 1099 if (I == MBB->instr_end() && 1100 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1101 return; 1102 1103 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1104 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1105 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1106 emitCFIInstruction(CFI); 1107 } 1108 1109 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1110 // The operands are the MCSymbol and the frame offset of the allocation. 1111 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1112 int FrameOffset = MI.getOperand(1).getImm(); 1113 1114 // Emit a symbol assignment. 1115 OutStreamer->emitAssignment(FrameAllocSym, 1116 MCConstantExpr::create(FrameOffset, OutContext)); 1117 } 1118 1119 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1120 /// given basic block. This can be used to capture more precise profile 1121 /// information. We use the last 4 bits (LSBs) to encode the following 1122 /// information: 1123 /// * (1): set if return block (ret or tail call). 1124 /// * (2): set if ends with a tail call. 1125 /// * (3): set if exception handling (EH) landing pad. 1126 /// * (4): set if the block can fall through to its next. 1127 /// The remaining bits are zero. 1128 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1129 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1130 return ((unsigned)MBB.isReturnBlock()) | 1131 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1132 (MBB.isEHPad() << 2) | 1133 (const_cast<MachineBasicBlock &>(MBB).canFallThrough() << 3); 1134 } 1135 1136 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1137 MCSection *BBAddrMapSection = 1138 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1139 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1140 1141 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1142 1143 OutStreamer->PushSection(); 1144 OutStreamer->SwitchSection(BBAddrMapSection); 1145 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1146 // Emit the total number of basic blocks in this function. 1147 OutStreamer->emitULEB128IntValue(MF.size()); 1148 // Emit BB Information for each basic block in the funciton. 1149 for (const MachineBasicBlock &MBB : MF) { 1150 const MCSymbol *MBBSymbol = 1151 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1152 // Emit the basic block offset. 1153 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1154 // Emit the basic block size. When BBs have alignments, their size cannot 1155 // always be computed from their offsets. 1156 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1157 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1158 } 1159 OutStreamer->PopSection(); 1160 } 1161 1162 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1163 auto GUID = MI.getOperand(0).getImm(); 1164 auto Index = MI.getOperand(1).getImm(); 1165 auto Type = MI.getOperand(2).getImm(); 1166 auto Attr = MI.getOperand(3).getImm(); 1167 DILocation *DebugLoc = MI.getDebugLoc(); 1168 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1169 } 1170 1171 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1172 if (!MF.getTarget().Options.EmitStackSizeSection) 1173 return; 1174 1175 MCSection *StackSizeSection = 1176 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1177 if (!StackSizeSection) 1178 return; 1179 1180 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1181 // Don't emit functions with dynamic stack allocations. 1182 if (FrameInfo.hasVarSizedObjects()) 1183 return; 1184 1185 OutStreamer->PushSection(); 1186 OutStreamer->SwitchSection(StackSizeSection); 1187 1188 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1189 uint64_t StackSize = FrameInfo.getStackSize(); 1190 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1191 OutStreamer->emitULEB128IntValue(StackSize); 1192 1193 OutStreamer->PopSection(); 1194 } 1195 1196 void AsmPrinter::emitStackUsage(const MachineFunction &MF) { 1197 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; 1198 1199 // OutputFilename empty implies -fstack-usage is not passed. 1200 if (OutputFilename.empty()) 1201 return; 1202 1203 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1204 uint64_t StackSize = FrameInfo.getStackSize(); 1205 1206 if (StackUsageStream == nullptr) { 1207 std::error_code EC; 1208 StackUsageStream = 1209 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text); 1210 if (EC) { 1211 errs() << "Could not open file: " << EC.message(); 1212 return; 1213 } 1214 } 1215 1216 *StackUsageStream << MF.getFunction().getParent()->getName(); 1217 if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) 1218 *StackUsageStream << ':' << DSP->getLine(); 1219 1220 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; 1221 if (FrameInfo.hasVarSizedObjects()) 1222 *StackUsageStream << "dynamic\n"; 1223 else 1224 *StackUsageStream << "static\n"; 1225 } 1226 1227 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1228 MachineModuleInfo &MMI = MF.getMMI(); 1229 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1230 return true; 1231 1232 // We might emit an EH table that uses function begin and end labels even if 1233 // we don't have any landingpads. 1234 if (!MF.getFunction().hasPersonalityFn()) 1235 return false; 1236 return !isNoOpWithoutInvoke( 1237 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1238 } 1239 1240 /// EmitFunctionBody - This method emits the body and trailer for a 1241 /// function. 1242 void AsmPrinter::emitFunctionBody() { 1243 emitFunctionHeader(); 1244 1245 // Emit target-specific gunk before the function body. 1246 emitFunctionBodyStart(); 1247 1248 if (isVerbose()) { 1249 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1250 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1251 if (!MDT) { 1252 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1253 OwnedMDT->getBase().recalculate(*MF); 1254 MDT = OwnedMDT.get(); 1255 } 1256 1257 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1258 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1259 if (!MLI) { 1260 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1261 OwnedMLI->getBase().analyze(MDT->getBase()); 1262 MLI = OwnedMLI.get(); 1263 } 1264 } 1265 1266 // Print out code for the function. 1267 bool HasAnyRealCode = false; 1268 int NumInstsInFunction = 0; 1269 1270 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1271 for (auto &MBB : *MF) { 1272 // Print a label for the basic block. 1273 emitBasicBlockStart(MBB); 1274 DenseMap<StringRef, unsigned> MnemonicCounts; 1275 for (auto &MI : MBB) { 1276 // Print the assembly for the instruction. 1277 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1278 !MI.isDebugInstr()) { 1279 HasAnyRealCode = true; 1280 ++NumInstsInFunction; 1281 } 1282 1283 // If there is a pre-instruction symbol, emit a label for it here. 1284 if (MCSymbol *S = MI.getPreInstrSymbol()) 1285 OutStreamer->emitLabel(S); 1286 1287 for (const HandlerInfo &HI : Handlers) { 1288 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1289 HI.TimerGroupDescription, TimePassesIsEnabled); 1290 HI.Handler->beginInstruction(&MI); 1291 } 1292 1293 if (isVerbose()) 1294 emitComments(MI, OutStreamer->GetCommentOS()); 1295 1296 switch (MI.getOpcode()) { 1297 case TargetOpcode::CFI_INSTRUCTION: 1298 emitCFIInstruction(MI); 1299 break; 1300 case TargetOpcode::LOCAL_ESCAPE: 1301 emitFrameAlloc(MI); 1302 break; 1303 case TargetOpcode::ANNOTATION_LABEL: 1304 case TargetOpcode::EH_LABEL: 1305 case TargetOpcode::GC_LABEL: 1306 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1307 break; 1308 case TargetOpcode::INLINEASM: 1309 case TargetOpcode::INLINEASM_BR: 1310 emitInlineAsm(&MI); 1311 break; 1312 case TargetOpcode::DBG_VALUE: 1313 case TargetOpcode::DBG_VALUE_LIST: 1314 if (isVerbose()) { 1315 if (!emitDebugValueComment(&MI, *this)) 1316 emitInstruction(&MI); 1317 } 1318 break; 1319 case TargetOpcode::DBG_INSTR_REF: 1320 // This instruction reference will have been resolved to a machine 1321 // location, and a nearby DBG_VALUE created. We can safely ignore 1322 // the instruction reference. 1323 break; 1324 case TargetOpcode::DBG_PHI: 1325 // This instruction is only used to label a program point, it's purely 1326 // meta information. 1327 break; 1328 case TargetOpcode::DBG_LABEL: 1329 if (isVerbose()) { 1330 if (!emitDebugLabelComment(&MI, *this)) 1331 emitInstruction(&MI); 1332 } 1333 break; 1334 case TargetOpcode::IMPLICIT_DEF: 1335 if (isVerbose()) emitImplicitDef(&MI); 1336 break; 1337 case TargetOpcode::KILL: 1338 if (isVerbose()) emitKill(&MI, *this); 1339 break; 1340 case TargetOpcode::PSEUDO_PROBE: 1341 emitPseudoProbe(MI); 1342 break; 1343 case TargetOpcode::ARITH_FENCE: 1344 if (isVerbose()) 1345 OutStreamer->emitRawComment("ARITH_FENCE"); 1346 break; 1347 default: 1348 emitInstruction(&MI); 1349 if (CanDoExtraAnalysis) { 1350 MCInst MCI; 1351 MCI.setOpcode(MI.getOpcode()); 1352 auto Name = OutStreamer->getMnemonic(MCI); 1353 auto I = MnemonicCounts.insert({Name, 0u}); 1354 I.first->second++; 1355 } 1356 break; 1357 } 1358 1359 // If there is a post-instruction symbol, emit a label for it here. 1360 if (MCSymbol *S = MI.getPostInstrSymbol()) 1361 OutStreamer->emitLabel(S); 1362 1363 for (const HandlerInfo &HI : Handlers) { 1364 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1365 HI.TimerGroupDescription, TimePassesIsEnabled); 1366 HI.Handler->endInstruction(); 1367 } 1368 } 1369 1370 // We must emit temporary symbol for the end of this basic block, if either 1371 // we have BBLabels enabled or if this basic blocks marks the end of a 1372 // section. 1373 if (MF->hasBBLabels() || 1374 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) 1375 OutStreamer->emitLabel(MBB.getEndSymbol()); 1376 1377 if (MBB.isEndSection()) { 1378 // The size directive for the section containing the entry block is 1379 // handled separately by the function section. 1380 if (!MBB.sameSection(&MF->front())) { 1381 if (MAI->hasDotTypeDotSizeDirective()) { 1382 // Emit the size directive for the basic block section. 1383 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1384 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1385 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1386 OutContext); 1387 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1388 } 1389 MBBSectionRanges[MBB.getSectionIDNum()] = 1390 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1391 } 1392 } 1393 emitBasicBlockEnd(MBB); 1394 1395 if (CanDoExtraAnalysis) { 1396 // Skip empty blocks. 1397 if (MBB.empty()) 1398 continue; 1399 1400 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1401 MBB.begin()->getDebugLoc(), &MBB); 1402 1403 // Generate instruction mix remark. First, sort counts in descending order 1404 // by count and name. 1405 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1406 for (auto &KV : MnemonicCounts) 1407 MnemonicVec.emplace_back(KV.first, KV.second); 1408 1409 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1410 const std::pair<StringRef, unsigned> &B) { 1411 if (A.second > B.second) 1412 return true; 1413 if (A.second == B.second) 1414 return StringRef(A.first) < StringRef(B.first); 1415 return false; 1416 }); 1417 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1418 for (auto &KV : MnemonicVec) { 1419 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1420 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1421 } 1422 ORE->emit(R); 1423 } 1424 } 1425 1426 EmittedInsts += NumInstsInFunction; 1427 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1428 MF->getFunction().getSubprogram(), 1429 &MF->front()); 1430 R << ore::NV("NumInstructions", NumInstsInFunction) 1431 << " instructions in function"; 1432 ORE->emit(R); 1433 1434 // If the function is empty and the object file uses .subsections_via_symbols, 1435 // then we need to emit *something* to the function body to prevent the 1436 // labels from collapsing together. Just emit a noop. 1437 // Similarly, don't emit empty functions on Windows either. It can lead to 1438 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1439 // after linking, causing the kernel not to load the binary: 1440 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1441 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1442 const Triple &TT = TM.getTargetTriple(); 1443 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1444 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1445 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); 1446 1447 // Targets can opt-out of emitting the noop here by leaving the opcode 1448 // unspecified. 1449 if (Noop.getOpcode()) { 1450 OutStreamer->AddComment("avoids zero-length function"); 1451 emitNops(1); 1452 } 1453 } 1454 1455 // Switch to the original section in case basic block sections was used. 1456 OutStreamer->SwitchSection(MF->getSection()); 1457 1458 const Function &F = MF->getFunction(); 1459 for (const auto &BB : F) { 1460 if (!BB.hasAddressTaken()) 1461 continue; 1462 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1463 if (Sym->isDefined()) 1464 continue; 1465 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1466 OutStreamer->emitLabel(Sym); 1467 } 1468 1469 // Emit target-specific gunk after the function body. 1470 emitFunctionBodyEnd(); 1471 1472 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1473 MAI->hasDotTypeDotSizeDirective()) { 1474 // Create a symbol for the end of function. 1475 CurrentFnEnd = createTempSymbol("func_end"); 1476 OutStreamer->emitLabel(CurrentFnEnd); 1477 } 1478 1479 // If the target wants a .size directive for the size of the function, emit 1480 // it. 1481 if (MAI->hasDotTypeDotSizeDirective()) { 1482 // We can get the size as difference between the function label and the 1483 // temp label. 1484 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1485 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1486 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1487 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1488 } 1489 1490 for (const HandlerInfo &HI : Handlers) { 1491 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1492 HI.TimerGroupDescription, TimePassesIsEnabled); 1493 HI.Handler->markFunctionEnd(); 1494 } 1495 1496 MBBSectionRanges[MF->front().getSectionIDNum()] = 1497 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1498 1499 // Print out jump tables referenced by the function. 1500 emitJumpTableInfo(); 1501 1502 // Emit post-function debug and/or EH information. 1503 for (const HandlerInfo &HI : Handlers) { 1504 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1505 HI.TimerGroupDescription, TimePassesIsEnabled); 1506 HI.Handler->endFunction(MF); 1507 } 1508 1509 // Emit section containing BB address offsets and their metadata, when 1510 // BB labels are requested for this function. Skip empty functions. 1511 if (MF->hasBBLabels() && HasAnyRealCode) 1512 emitBBAddrMapSection(*MF); 1513 1514 // Emit section containing stack size metadata. 1515 emitStackSizeSection(*MF); 1516 1517 // Emit .su file containing function stack size information. 1518 emitStackUsage(*MF); 1519 1520 emitPatchableFunctionEntries(); 1521 1522 if (isVerbose()) 1523 OutStreamer->GetCommentOS() << "-- End function\n"; 1524 1525 OutStreamer->AddBlankLine(); 1526 } 1527 1528 /// Compute the number of Global Variables that uses a Constant. 1529 static unsigned getNumGlobalVariableUses(const Constant *C) { 1530 if (!C) 1531 return 0; 1532 1533 if (isa<GlobalVariable>(C)) 1534 return 1; 1535 1536 unsigned NumUses = 0; 1537 for (auto *CU : C->users()) 1538 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1539 1540 return NumUses; 1541 } 1542 1543 /// Only consider global GOT equivalents if at least one user is a 1544 /// cstexpr inside an initializer of another global variables. Also, don't 1545 /// handle cstexpr inside instructions. During global variable emission, 1546 /// candidates are skipped and are emitted later in case at least one cstexpr 1547 /// isn't replaced by a PC relative GOT entry access. 1548 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1549 unsigned &NumGOTEquivUsers) { 1550 // Global GOT equivalents are unnamed private globals with a constant 1551 // pointer initializer to another global symbol. They must point to a 1552 // GlobalVariable or Function, i.e., as GlobalValue. 1553 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1554 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1555 !isa<GlobalValue>(GV->getOperand(0))) 1556 return false; 1557 1558 // To be a got equivalent, at least one of its users need to be a constant 1559 // expression used by another global variable. 1560 for (auto *U : GV->users()) 1561 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1562 1563 return NumGOTEquivUsers > 0; 1564 } 1565 1566 /// Unnamed constant global variables solely contaning a pointer to 1567 /// another globals variable is equivalent to a GOT table entry; it contains the 1568 /// the address of another symbol. Optimize it and replace accesses to these 1569 /// "GOT equivalents" by using the GOT entry for the final global instead. 1570 /// Compute GOT equivalent candidates among all global variables to avoid 1571 /// emitting them if possible later on, after it use is replaced by a GOT entry 1572 /// access. 1573 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1574 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1575 return; 1576 1577 for (const auto &G : M.globals()) { 1578 unsigned NumGOTEquivUsers = 0; 1579 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1580 continue; 1581 1582 const MCSymbol *GOTEquivSym = getSymbol(&G); 1583 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1584 } 1585 } 1586 1587 /// Constant expressions using GOT equivalent globals may not be eligible 1588 /// for PC relative GOT entry conversion, in such cases we need to emit such 1589 /// globals we previously omitted in EmitGlobalVariable. 1590 void AsmPrinter::emitGlobalGOTEquivs() { 1591 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1592 return; 1593 1594 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1595 for (auto &I : GlobalGOTEquivs) { 1596 const GlobalVariable *GV = I.second.first; 1597 unsigned Cnt = I.second.second; 1598 if (Cnt) 1599 FailedCandidates.push_back(GV); 1600 } 1601 GlobalGOTEquivs.clear(); 1602 1603 for (auto *GV : FailedCandidates) 1604 emitGlobalVariable(GV); 1605 } 1606 1607 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1608 const GlobalIndirectSymbol& GIS) { 1609 MCSymbol *Name = getSymbol(&GIS); 1610 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1611 // Treat bitcasts of functions as functions also. This is important at least 1612 // on WebAssembly where object and function addresses can't alias each other. 1613 if (!IsFunction) 1614 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1615 if (CE->getOpcode() == Instruction::BitCast) 1616 IsFunction = 1617 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1618 1619 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1620 // so AIX has to use the extra-label-at-definition strategy. At this 1621 // point, all the extra label is emitted, we just have to emit linkage for 1622 // those labels. 1623 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1624 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1625 assert(MAI->hasVisibilityOnlyWithLinkage() && 1626 "Visibility should be handled with emitLinkage() on AIX."); 1627 emitLinkage(&GIS, Name); 1628 // If it's a function, also emit linkage for aliases of function entry 1629 // point. 1630 if (IsFunction) 1631 emitLinkage(&GIS, 1632 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1633 return; 1634 } 1635 1636 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1637 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1638 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1639 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1640 else 1641 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1642 1643 // Set the symbol type to function if the alias has a function type. 1644 // This affects codegen when the aliasee is not a function. 1645 if (IsFunction) 1646 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1647 ? MCSA_ELF_TypeIndFunction 1648 : MCSA_ELF_TypeFunction); 1649 1650 emitVisibility(Name, GIS.getVisibility()); 1651 1652 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1653 1654 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1655 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1656 1657 // Emit the directives as assignments aka .set: 1658 OutStreamer->emitAssignment(Name, Expr); 1659 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1660 if (LocalAlias != Name) 1661 OutStreamer->emitAssignment(LocalAlias, Expr); 1662 1663 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1664 // If the aliasee does not correspond to a symbol in the output, i.e. the 1665 // alias is not of an object or the aliased object is private, then set the 1666 // size of the alias symbol from the type of the alias. We don't do this in 1667 // other situations as the alias and aliasee having differing types but same 1668 // size may be intentional. 1669 const GlobalObject *BaseObject = GA->getBaseObject(); 1670 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1671 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1672 const DataLayout &DL = M.getDataLayout(); 1673 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1674 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1675 } 1676 } 1677 } 1678 1679 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1680 if (!RS.needsSection()) 1681 return; 1682 1683 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1684 1685 Optional<SmallString<128>> Filename; 1686 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1687 Filename = *FilenameRef; 1688 sys::fs::make_absolute(*Filename); 1689 assert(!Filename->empty() && "The filename can't be empty."); 1690 } 1691 1692 std::string Buf; 1693 raw_string_ostream OS(Buf); 1694 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1695 Filename ? RemarkSerializer.metaSerializer(OS, Filename->str()) 1696 : RemarkSerializer.metaSerializer(OS); 1697 MetaSerializer->emit(); 1698 1699 // Switch to the remarks section. 1700 MCSection *RemarksSection = 1701 OutContext.getObjectFileInfo()->getRemarksSection(); 1702 OutStreamer->SwitchSection(RemarksSection); 1703 1704 OutStreamer->emitBinaryData(OS.str()); 1705 } 1706 1707 bool AsmPrinter::doFinalization(Module &M) { 1708 // Set the MachineFunction to nullptr so that we can catch attempted 1709 // accesses to MF specific features at the module level and so that 1710 // we can conditionalize accesses based on whether or not it is nullptr. 1711 MF = nullptr; 1712 1713 // Gather all GOT equivalent globals in the module. We really need two 1714 // passes over the globals: one to compute and another to avoid its emission 1715 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1716 // where the got equivalent shows up before its use. 1717 computeGlobalGOTEquivs(M); 1718 1719 // Emit global variables. 1720 for (const auto &G : M.globals()) 1721 emitGlobalVariable(&G); 1722 1723 // Emit remaining GOT equivalent globals. 1724 emitGlobalGOTEquivs(); 1725 1726 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1727 1728 // Emit linkage(XCOFF) and visibility info for declarations 1729 for (const Function &F : M) { 1730 if (!F.isDeclarationForLinker()) 1731 continue; 1732 1733 MCSymbol *Name = getSymbol(&F); 1734 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1735 1736 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1737 GlobalValue::VisibilityTypes V = F.getVisibility(); 1738 if (V == GlobalValue::DefaultVisibility) 1739 continue; 1740 1741 emitVisibility(Name, V, false); 1742 continue; 1743 } 1744 1745 if (F.isIntrinsic()) 1746 continue; 1747 1748 // Handle the XCOFF case. 1749 // Variable `Name` is the function descriptor symbol (see above). Get the 1750 // function entry point symbol. 1751 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1752 // Emit linkage for the function entry point. 1753 emitLinkage(&F, FnEntryPointSym); 1754 1755 // Emit linkage for the function descriptor. 1756 emitLinkage(&F, Name); 1757 } 1758 1759 // Emit the remarks section contents. 1760 // FIXME: Figure out when is the safest time to emit this section. It should 1761 // not come after debug info. 1762 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1763 emitRemarksSection(*RS); 1764 1765 TLOF.emitModuleMetadata(*OutStreamer, M); 1766 1767 if (TM.getTargetTriple().isOSBinFormatELF()) { 1768 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1769 1770 // Output stubs for external and common global variables. 1771 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1772 if (!Stubs.empty()) { 1773 OutStreamer->SwitchSection(TLOF.getDataSection()); 1774 const DataLayout &DL = M.getDataLayout(); 1775 1776 emitAlignment(Align(DL.getPointerSize())); 1777 for (const auto &Stub : Stubs) { 1778 OutStreamer->emitLabel(Stub.first); 1779 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1780 DL.getPointerSize()); 1781 } 1782 } 1783 } 1784 1785 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1786 MachineModuleInfoCOFF &MMICOFF = 1787 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1788 1789 // Output stubs for external and common global variables. 1790 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1791 if (!Stubs.empty()) { 1792 const DataLayout &DL = M.getDataLayout(); 1793 1794 for (const auto &Stub : Stubs) { 1795 SmallString<256> SectionName = StringRef(".rdata$"); 1796 SectionName += Stub.first->getName(); 1797 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1798 SectionName, 1799 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1800 COFF::IMAGE_SCN_LNK_COMDAT, 1801 SectionKind::getReadOnly(), Stub.first->getName(), 1802 COFF::IMAGE_COMDAT_SELECT_ANY)); 1803 emitAlignment(Align(DL.getPointerSize())); 1804 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1805 OutStreamer->emitLabel(Stub.first); 1806 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1807 DL.getPointerSize()); 1808 } 1809 } 1810 } 1811 1812 // This needs to happen before emitting debug information since that can end 1813 // arbitrary sections. 1814 if (auto *TS = OutStreamer->getTargetStreamer()) 1815 TS->emitConstantPools(); 1816 1817 // Finalize debug and EH information. 1818 for (const HandlerInfo &HI : Handlers) { 1819 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1820 HI.TimerGroupDescription, TimePassesIsEnabled); 1821 HI.Handler->endModule(); 1822 } 1823 1824 // This deletes all the ephemeral handlers that AsmPrinter added, while 1825 // keeping all the user-added handlers alive until the AsmPrinter is 1826 // destroyed. 1827 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1828 DD = nullptr; 1829 1830 // If the target wants to know about weak references, print them all. 1831 if (MAI->getWeakRefDirective()) { 1832 // FIXME: This is not lazy, it would be nice to only print weak references 1833 // to stuff that is actually used. Note that doing so would require targets 1834 // to notice uses in operands (due to constant exprs etc). This should 1835 // happen with the MC stuff eventually. 1836 1837 // Print out module-level global objects here. 1838 for (const auto &GO : M.global_objects()) { 1839 if (!GO.hasExternalWeakLinkage()) 1840 continue; 1841 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1842 } 1843 } 1844 1845 // Print aliases in topological order, that is, for each alias a = b, 1846 // b must be printed before a. 1847 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1848 // such an order to generate correct TOC information. 1849 SmallVector<const GlobalAlias *, 16> AliasStack; 1850 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1851 for (const auto &Alias : M.aliases()) { 1852 for (const GlobalAlias *Cur = &Alias; Cur; 1853 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1854 if (!AliasVisited.insert(Cur).second) 1855 break; 1856 AliasStack.push_back(Cur); 1857 } 1858 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1859 emitGlobalIndirectSymbol(M, *AncestorAlias); 1860 AliasStack.clear(); 1861 } 1862 for (const auto &IFunc : M.ifuncs()) 1863 emitGlobalIndirectSymbol(M, IFunc); 1864 1865 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1866 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1867 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1868 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1869 MP->finishAssembly(M, *MI, *this); 1870 1871 // Emit llvm.ident metadata in an '.ident' directive. 1872 emitModuleIdents(M); 1873 1874 // Emit bytes for llvm.commandline metadata. 1875 emitModuleCommandLines(M); 1876 1877 // Emit __morestack address if needed for indirect calls. 1878 if (MMI->usesMorestackAddr()) { 1879 Align Alignment(1); 1880 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1881 getDataLayout(), SectionKind::getReadOnly(), 1882 /*C=*/nullptr, Alignment); 1883 OutStreamer->SwitchSection(ReadOnlySection); 1884 1885 MCSymbol *AddrSymbol = 1886 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1887 OutStreamer->emitLabel(AddrSymbol); 1888 1889 unsigned PtrSize = MAI->getCodePointerSize(); 1890 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1891 PtrSize); 1892 } 1893 1894 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1895 // split-stack is used. 1896 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1897 OutStreamer->SwitchSection( 1898 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1899 if (MMI->hasNosplitStack()) 1900 OutStreamer->SwitchSection( 1901 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1902 } 1903 1904 // If we don't have any trampolines, then we don't require stack memory 1905 // to be executable. Some targets have a directive to declare this. 1906 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1907 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1908 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1909 OutStreamer->SwitchSection(S); 1910 1911 if (TM.Options.EmitAddrsig) { 1912 // Emit address-significance attributes for all globals. 1913 OutStreamer->emitAddrsig(); 1914 for (const GlobalValue &GV : M.global_values()) { 1915 if (!GV.use_empty() && !GV.isTransitiveUsedByMetadataOnly() && 1916 !GV.isThreadLocal() && !GV.hasDLLImportStorageClass() && 1917 !GV.getName().startswith("llvm.") && !GV.hasAtLeastLocalUnnamedAddr()) 1918 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1919 } 1920 } 1921 1922 // Emit symbol partition specifications (ELF only). 1923 if (TM.getTargetTriple().isOSBinFormatELF()) { 1924 unsigned UniqueID = 0; 1925 for (const GlobalValue &GV : M.global_values()) { 1926 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1927 GV.getVisibility() != GlobalValue::DefaultVisibility) 1928 continue; 1929 1930 OutStreamer->SwitchSection( 1931 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1932 "", false, ++UniqueID, nullptr)); 1933 OutStreamer->emitBytes(GV.getPartition()); 1934 OutStreamer->emitZeros(1); 1935 OutStreamer->emitValue( 1936 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1937 MAI->getCodePointerSize()); 1938 } 1939 } 1940 1941 // Allow the target to emit any magic that it wants at the end of the file, 1942 // after everything else has gone out. 1943 emitEndOfAsmFile(M); 1944 1945 MMI = nullptr; 1946 1947 OutStreamer->Finish(); 1948 OutStreamer->reset(); 1949 OwnedMLI.reset(); 1950 OwnedMDT.reset(); 1951 1952 return false; 1953 } 1954 1955 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1956 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1957 if (Res.second) 1958 Res.first->second = createTempSymbol("exception"); 1959 return Res.first->second; 1960 } 1961 1962 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1963 this->MF = &MF; 1964 const Function &F = MF.getFunction(); 1965 1966 // Get the function symbol. 1967 if (!MAI->needsFunctionDescriptors()) { 1968 CurrentFnSym = getSymbol(&MF.getFunction()); 1969 } else { 1970 assert(TM.getTargetTriple().isOSAIX() && 1971 "Only AIX uses the function descriptor hooks."); 1972 // AIX is unique here in that the name of the symbol emitted for the 1973 // function body does not have the same name as the source function's 1974 // C-linkage name. 1975 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1976 " initalized first."); 1977 1978 // Get the function entry point symbol. 1979 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1980 } 1981 1982 CurrentFnSymForSize = CurrentFnSym; 1983 CurrentFnBegin = nullptr; 1984 CurrentSectionBeginSym = nullptr; 1985 MBBSectionRanges.clear(); 1986 MBBSectionExceptionSyms.clear(); 1987 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1988 if (F.hasFnAttribute("patchable-function-entry") || 1989 F.hasFnAttribute("function-instrument") || 1990 F.hasFnAttribute("xray-instruction-threshold") || 1991 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1992 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1993 CurrentFnBegin = createTempSymbol("func_begin"); 1994 if (NeedsLocalForSize) 1995 CurrentFnSymForSize = CurrentFnBegin; 1996 } 1997 1998 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1999 } 2000 2001 namespace { 2002 2003 // Keep track the alignment, constpool entries per Section. 2004 struct SectionCPs { 2005 MCSection *S; 2006 Align Alignment; 2007 SmallVector<unsigned, 4> CPEs; 2008 2009 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 2010 }; 2011 2012 } // end anonymous namespace 2013 2014 /// EmitConstantPool - Print to the current output stream assembly 2015 /// representations of the constants in the constant pool MCP. This is 2016 /// used to print out constants which have been "spilled to memory" by 2017 /// the code generator. 2018 void AsmPrinter::emitConstantPool() { 2019 const MachineConstantPool *MCP = MF->getConstantPool(); 2020 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 2021 if (CP.empty()) return; 2022 2023 // Calculate sections for constant pool entries. We collect entries to go into 2024 // the same section together to reduce amount of section switch statements. 2025 SmallVector<SectionCPs, 4> CPSections; 2026 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 2027 const MachineConstantPoolEntry &CPE = CP[i]; 2028 Align Alignment = CPE.getAlign(); 2029 2030 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 2031 2032 const Constant *C = nullptr; 2033 if (!CPE.isMachineConstantPoolEntry()) 2034 C = CPE.Val.ConstVal; 2035 2036 MCSection *S = getObjFileLowering().getSectionForConstant( 2037 getDataLayout(), Kind, C, Alignment); 2038 2039 // The number of sections are small, just do a linear search from the 2040 // last section to the first. 2041 bool Found = false; 2042 unsigned SecIdx = CPSections.size(); 2043 while (SecIdx != 0) { 2044 if (CPSections[--SecIdx].S == S) { 2045 Found = true; 2046 break; 2047 } 2048 } 2049 if (!Found) { 2050 SecIdx = CPSections.size(); 2051 CPSections.push_back(SectionCPs(S, Alignment)); 2052 } 2053 2054 if (Alignment > CPSections[SecIdx].Alignment) 2055 CPSections[SecIdx].Alignment = Alignment; 2056 CPSections[SecIdx].CPEs.push_back(i); 2057 } 2058 2059 // Now print stuff into the calculated sections. 2060 const MCSection *CurSection = nullptr; 2061 unsigned Offset = 0; 2062 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 2063 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 2064 unsigned CPI = CPSections[i].CPEs[j]; 2065 MCSymbol *Sym = GetCPISymbol(CPI); 2066 if (!Sym->isUndefined()) 2067 continue; 2068 2069 if (CurSection != CPSections[i].S) { 2070 OutStreamer->SwitchSection(CPSections[i].S); 2071 emitAlignment(Align(CPSections[i].Alignment)); 2072 CurSection = CPSections[i].S; 2073 Offset = 0; 2074 } 2075 2076 MachineConstantPoolEntry CPE = CP[CPI]; 2077 2078 // Emit inter-object padding for alignment. 2079 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 2080 OutStreamer->emitZeros(NewOffset - Offset); 2081 2082 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 2083 2084 OutStreamer->emitLabel(Sym); 2085 if (CPE.isMachineConstantPoolEntry()) 2086 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 2087 else 2088 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 2089 } 2090 } 2091 } 2092 2093 // Print assembly representations of the jump tables used by the current 2094 // function. 2095 void AsmPrinter::emitJumpTableInfo() { 2096 const DataLayout &DL = MF->getDataLayout(); 2097 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2098 if (!MJTI) return; 2099 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 2100 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2101 if (JT.empty()) return; 2102 2103 // Pick the directive to use to print the jump table entries, and switch to 2104 // the appropriate section. 2105 const Function &F = MF->getFunction(); 2106 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2107 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2108 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2109 F); 2110 if (JTInDiffSection) { 2111 // Drop it in the readonly section. 2112 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2113 OutStreamer->SwitchSection(ReadOnlySection); 2114 } 2115 2116 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2117 2118 // Jump tables in code sections are marked with a data_region directive 2119 // where that's supported. 2120 if (!JTInDiffSection) 2121 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2122 2123 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2124 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2125 2126 // If this jump table was deleted, ignore it. 2127 if (JTBBs.empty()) continue; 2128 2129 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2130 /// emit a .set directive for each unique entry. 2131 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2132 MAI->doesSetDirectiveSuppressReloc()) { 2133 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2134 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2135 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2136 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2137 const MachineBasicBlock *MBB = JTBBs[ii]; 2138 if (!EmittedSets.insert(MBB).second) 2139 continue; 2140 2141 // .set LJTSet, LBB32-base 2142 const MCExpr *LHS = 2143 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2144 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2145 MCBinaryExpr::createSub(LHS, Base, 2146 OutContext)); 2147 } 2148 } 2149 2150 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2151 // before each jump table. The first label is never referenced, but tells 2152 // the assembler and linker the extents of the jump table object. The 2153 // second label is actually referenced by the code. 2154 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2155 // FIXME: This doesn't have to have any specific name, just any randomly 2156 // named and numbered local label started with 'l' would work. Simplify 2157 // GetJTISymbol. 2158 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2159 2160 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2161 OutStreamer->emitLabel(JTISymbol); 2162 2163 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2164 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2165 } 2166 if (!JTInDiffSection) 2167 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2168 } 2169 2170 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2171 /// current stream. 2172 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2173 const MachineBasicBlock *MBB, 2174 unsigned UID) const { 2175 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2176 const MCExpr *Value = nullptr; 2177 switch (MJTI->getEntryKind()) { 2178 case MachineJumpTableInfo::EK_Inline: 2179 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2180 case MachineJumpTableInfo::EK_Custom32: 2181 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2182 MJTI, MBB, UID, OutContext); 2183 break; 2184 case MachineJumpTableInfo::EK_BlockAddress: 2185 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2186 // .word LBB123 2187 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2188 break; 2189 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2190 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2191 // with a relocation as gp-relative, e.g.: 2192 // .gprel32 LBB123 2193 MCSymbol *MBBSym = MBB->getSymbol(); 2194 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2195 return; 2196 } 2197 2198 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2199 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2200 // with a relocation as gp-relative, e.g.: 2201 // .gpdword LBB123 2202 MCSymbol *MBBSym = MBB->getSymbol(); 2203 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2204 return; 2205 } 2206 2207 case MachineJumpTableInfo::EK_LabelDifference32: { 2208 // Each entry is the address of the block minus the address of the jump 2209 // table. This is used for PIC jump tables where gprel32 is not supported. 2210 // e.g.: 2211 // .word LBB123 - LJTI1_2 2212 // If the .set directive avoids relocations, this is emitted as: 2213 // .set L4_5_set_123, LBB123 - LJTI1_2 2214 // .word L4_5_set_123 2215 if (MAI->doesSetDirectiveSuppressReloc()) { 2216 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2217 OutContext); 2218 break; 2219 } 2220 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2221 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2222 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2223 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2224 break; 2225 } 2226 } 2227 2228 assert(Value && "Unknown entry kind!"); 2229 2230 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2231 OutStreamer->emitValue(Value, EntrySize); 2232 } 2233 2234 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2235 /// special global used by LLVM. If so, emit it and return true, otherwise 2236 /// do nothing and return false. 2237 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2238 if (GV->getName() == "llvm.used") { 2239 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2240 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2241 return true; 2242 } 2243 2244 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2245 if (GV->getSection() == "llvm.metadata" || 2246 GV->hasAvailableExternallyLinkage()) 2247 return true; 2248 2249 if (!GV->hasAppendingLinkage()) return false; 2250 2251 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2252 2253 if (GV->getName() == "llvm.global_ctors") { 2254 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2255 /* isCtor */ true); 2256 2257 return true; 2258 } 2259 2260 if (GV->getName() == "llvm.global_dtors") { 2261 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2262 /* isCtor */ false); 2263 2264 return true; 2265 } 2266 2267 report_fatal_error("unknown special variable"); 2268 } 2269 2270 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2271 /// global in the specified llvm.used list. 2272 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2273 // Should be an array of 'i8*'. 2274 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2275 const GlobalValue *GV = 2276 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2277 if (GV) 2278 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2279 } 2280 } 2281 2282 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2283 const Constant *List, 2284 SmallVector<Structor, 8> &Structors) { 2285 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2286 // the init priority. 2287 if (!isa<ConstantArray>(List)) 2288 return; 2289 2290 // Gather the structors in a form that's convenient for sorting by priority. 2291 for (Value *O : cast<ConstantArray>(List)->operands()) { 2292 auto *CS = cast<ConstantStruct>(O); 2293 if (CS->getOperand(1)->isNullValue()) 2294 break; // Found a null terminator, skip the rest. 2295 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2296 if (!Priority) 2297 continue; // Malformed. 2298 Structors.push_back(Structor()); 2299 Structor &S = Structors.back(); 2300 S.Priority = Priority->getLimitedValue(65535); 2301 S.Func = CS->getOperand(1); 2302 if (!CS->getOperand(2)->isNullValue()) { 2303 if (TM.getTargetTriple().isOSAIX()) 2304 llvm::report_fatal_error( 2305 "associated data of XXStructor list is not yet supported on AIX"); 2306 S.ComdatKey = 2307 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2308 } 2309 } 2310 2311 // Emit the function pointers in the target-specific order 2312 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2313 return L.Priority < R.Priority; 2314 }); 2315 } 2316 2317 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2318 /// priority. 2319 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2320 bool IsCtor) { 2321 SmallVector<Structor, 8> Structors; 2322 preprocessXXStructorList(DL, List, Structors); 2323 if (Structors.empty()) 2324 return; 2325 2326 // Emit the structors in reverse order if we are using the .ctor/.dtor 2327 // initialization scheme. 2328 if (!TM.Options.UseInitArray) 2329 std::reverse(Structors.begin(), Structors.end()); 2330 2331 const Align Align = DL.getPointerPrefAlignment(); 2332 for (Structor &S : Structors) { 2333 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2334 const MCSymbol *KeySym = nullptr; 2335 if (GlobalValue *GV = S.ComdatKey) { 2336 if (GV->isDeclarationForLinker()) 2337 // If the associated variable is not defined in this module 2338 // (it might be available_externally, or have been an 2339 // available_externally definition that was dropped by the 2340 // EliminateAvailableExternally pass), some other TU 2341 // will provide its dynamic initializer. 2342 continue; 2343 2344 KeySym = getSymbol(GV); 2345 } 2346 2347 MCSection *OutputSection = 2348 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2349 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2350 OutStreamer->SwitchSection(OutputSection); 2351 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2352 emitAlignment(Align); 2353 emitXXStructor(DL, S.Func); 2354 } 2355 } 2356 2357 void AsmPrinter::emitModuleIdents(Module &M) { 2358 if (!MAI->hasIdentDirective()) 2359 return; 2360 2361 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2362 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2363 const MDNode *N = NMD->getOperand(i); 2364 assert(N->getNumOperands() == 1 && 2365 "llvm.ident metadata entry can have only one operand"); 2366 const MDString *S = cast<MDString>(N->getOperand(0)); 2367 OutStreamer->emitIdent(S->getString()); 2368 } 2369 } 2370 } 2371 2372 void AsmPrinter::emitModuleCommandLines(Module &M) { 2373 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2374 if (!CommandLine) 2375 return; 2376 2377 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2378 if (!NMD || !NMD->getNumOperands()) 2379 return; 2380 2381 OutStreamer->PushSection(); 2382 OutStreamer->SwitchSection(CommandLine); 2383 OutStreamer->emitZeros(1); 2384 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2385 const MDNode *N = NMD->getOperand(i); 2386 assert(N->getNumOperands() == 1 && 2387 "llvm.commandline metadata entry can have only one operand"); 2388 const MDString *S = cast<MDString>(N->getOperand(0)); 2389 OutStreamer->emitBytes(S->getString()); 2390 OutStreamer->emitZeros(1); 2391 } 2392 OutStreamer->PopSection(); 2393 } 2394 2395 //===--------------------------------------------------------------------===// 2396 // Emission and print routines 2397 // 2398 2399 /// Emit a byte directive and value. 2400 /// 2401 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2402 2403 /// Emit a short directive and value. 2404 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2405 2406 /// Emit a long directive and value. 2407 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2408 2409 /// Emit a long long directive and value. 2410 void AsmPrinter::emitInt64(uint64_t Value) const { 2411 OutStreamer->emitInt64(Value); 2412 } 2413 2414 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2415 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2416 /// .set if it avoids relocations. 2417 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2418 unsigned Size) const { 2419 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2420 } 2421 2422 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2423 /// where the size in bytes of the directive is specified by Size and Label 2424 /// specifies the label. This implicitly uses .set if it is available. 2425 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2426 unsigned Size, 2427 bool IsSectionRelative) const { 2428 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2429 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2430 if (Size > 4) 2431 OutStreamer->emitZeros(Size - 4); 2432 return; 2433 } 2434 2435 // Emit Label+Offset (or just Label if Offset is zero) 2436 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2437 if (Offset) 2438 Expr = MCBinaryExpr::createAdd( 2439 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2440 2441 OutStreamer->emitValue(Expr, Size); 2442 } 2443 2444 //===----------------------------------------------------------------------===// 2445 2446 // EmitAlignment - Emit an alignment directive to the specified power of 2447 // two boundary. If a global value is specified, and if that global has 2448 // an explicit alignment requested, it will override the alignment request 2449 // if required for correctness. 2450 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2451 if (GV) 2452 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2453 2454 if (Alignment == Align(1)) 2455 return; // 1-byte aligned: no need to emit alignment. 2456 2457 if (getCurrentSection()->getKind().isText()) { 2458 const MCSubtargetInfo *STI = nullptr; 2459 if (this->MF) 2460 STI = &getSubtargetInfo(); 2461 else 2462 STI = TM.getMCSubtargetInfo(); 2463 OutStreamer->emitCodeAlignment(Alignment.value(), STI); 2464 } else 2465 OutStreamer->emitValueToAlignment(Alignment.value()); 2466 } 2467 2468 //===----------------------------------------------------------------------===// 2469 // Constant emission. 2470 //===----------------------------------------------------------------------===// 2471 2472 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2473 MCContext &Ctx = OutContext; 2474 2475 if (CV->isNullValue() || isa<UndefValue>(CV)) 2476 return MCConstantExpr::create(0, Ctx); 2477 2478 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2479 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2480 2481 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2482 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2483 2484 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2485 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2486 2487 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2488 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2489 2490 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2491 if (!CE) { 2492 llvm_unreachable("Unknown constant value to lower!"); 2493 } 2494 2495 switch (CE->getOpcode()) { 2496 case Instruction::AddrSpaceCast: { 2497 const Constant *Op = CE->getOperand(0); 2498 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2499 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2500 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2501 return lowerConstant(Op); 2502 2503 // Fallthrough to error. 2504 LLVM_FALLTHROUGH; 2505 } 2506 default: { 2507 // If the code isn't optimized, there may be outstanding folding 2508 // opportunities. Attempt to fold the expression using DataLayout as a 2509 // last resort before giving up. 2510 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2511 if (C != CE) 2512 return lowerConstant(C); 2513 2514 // Otherwise report the problem to the user. 2515 std::string S; 2516 raw_string_ostream OS(S); 2517 OS << "Unsupported expression in static initializer: "; 2518 CE->printAsOperand(OS, /*PrintType=*/false, 2519 !MF ? nullptr : MF->getFunction().getParent()); 2520 report_fatal_error(OS.str()); 2521 } 2522 case Instruction::GetElementPtr: { 2523 // Generate a symbolic expression for the byte address 2524 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2525 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2526 2527 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2528 if (!OffsetAI) 2529 return Base; 2530 2531 int64_t Offset = OffsetAI.getSExtValue(); 2532 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2533 Ctx); 2534 } 2535 2536 case Instruction::Trunc: 2537 // We emit the value and depend on the assembler to truncate the generated 2538 // expression properly. This is important for differences between 2539 // blockaddress labels. Since the two labels are in the same function, it 2540 // is reasonable to treat their delta as a 32-bit value. 2541 LLVM_FALLTHROUGH; 2542 case Instruction::BitCast: 2543 return lowerConstant(CE->getOperand(0)); 2544 2545 case Instruction::IntToPtr: { 2546 const DataLayout &DL = getDataLayout(); 2547 2548 // Handle casts to pointers by changing them into casts to the appropriate 2549 // integer type. This promotes constant folding and simplifies this code. 2550 Constant *Op = CE->getOperand(0); 2551 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2552 false/*ZExt*/); 2553 return lowerConstant(Op); 2554 } 2555 2556 case Instruction::PtrToInt: { 2557 const DataLayout &DL = getDataLayout(); 2558 2559 // Support only foldable casts to/from pointers that can be eliminated by 2560 // changing the pointer to the appropriately sized integer type. 2561 Constant *Op = CE->getOperand(0); 2562 Type *Ty = CE->getType(); 2563 2564 const MCExpr *OpExpr = lowerConstant(Op); 2565 2566 // We can emit the pointer value into this slot if the slot is an 2567 // integer slot equal to the size of the pointer. 2568 // 2569 // If the pointer is larger than the resultant integer, then 2570 // as with Trunc just depend on the assembler to truncate it. 2571 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2572 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2573 return OpExpr; 2574 2575 // Otherwise the pointer is smaller than the resultant integer, mask off 2576 // the high bits so we are sure to get a proper truncation if the input is 2577 // a constant expr. 2578 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2579 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2580 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2581 } 2582 2583 case Instruction::Sub: { 2584 GlobalValue *LHSGV; 2585 APInt LHSOffset; 2586 DSOLocalEquivalent *DSOEquiv; 2587 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2588 getDataLayout(), &DSOEquiv)) { 2589 GlobalValue *RHSGV; 2590 APInt RHSOffset; 2591 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2592 getDataLayout())) { 2593 const MCExpr *RelocExpr = 2594 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2595 if (!RelocExpr) { 2596 const MCExpr *LHSExpr = 2597 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2598 if (DSOEquiv && 2599 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2600 LHSExpr = 2601 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2602 RelocExpr = MCBinaryExpr::createSub( 2603 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2604 } 2605 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2606 if (Addend != 0) 2607 RelocExpr = MCBinaryExpr::createAdd( 2608 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2609 return RelocExpr; 2610 } 2611 } 2612 } 2613 // else fallthrough 2614 LLVM_FALLTHROUGH; 2615 2616 // The MC library also has a right-shift operator, but it isn't consistently 2617 // signed or unsigned between different targets. 2618 case Instruction::Add: 2619 case Instruction::Mul: 2620 case Instruction::SDiv: 2621 case Instruction::SRem: 2622 case Instruction::Shl: 2623 case Instruction::And: 2624 case Instruction::Or: 2625 case Instruction::Xor: { 2626 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2627 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2628 switch (CE->getOpcode()) { 2629 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2630 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2631 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2632 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2633 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2634 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2635 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2636 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2637 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2638 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2639 } 2640 } 2641 } 2642 } 2643 2644 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2645 AsmPrinter &AP, 2646 const Constant *BaseCV = nullptr, 2647 uint64_t Offset = 0); 2648 2649 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2650 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2651 2652 /// isRepeatedByteSequence - Determine whether the given value is 2653 /// composed of a repeated sequence of identical bytes and return the 2654 /// byte value. If it is not a repeated sequence, return -1. 2655 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2656 StringRef Data = V->getRawDataValues(); 2657 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2658 char C = Data[0]; 2659 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2660 if (Data[i] != C) return -1; 2661 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2662 } 2663 2664 /// isRepeatedByteSequence - Determine whether the given value is 2665 /// composed of a repeated sequence of identical bytes and return the 2666 /// byte value. If it is not a repeated sequence, return -1. 2667 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2668 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2669 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2670 assert(Size % 8 == 0); 2671 2672 // Extend the element to take zero padding into account. 2673 APInt Value = CI->getValue().zextOrSelf(Size); 2674 if (!Value.isSplat(8)) 2675 return -1; 2676 2677 return Value.zextOrTrunc(8).getZExtValue(); 2678 } 2679 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2680 // Make sure all array elements are sequences of the same repeated 2681 // byte. 2682 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2683 Constant *Op0 = CA->getOperand(0); 2684 int Byte = isRepeatedByteSequence(Op0, DL); 2685 if (Byte == -1) 2686 return -1; 2687 2688 // All array elements must be equal. 2689 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2690 if (CA->getOperand(i) != Op0) 2691 return -1; 2692 return Byte; 2693 } 2694 2695 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2696 return isRepeatedByteSequence(CDS); 2697 2698 return -1; 2699 } 2700 2701 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2702 const ConstantDataSequential *CDS, 2703 AsmPrinter &AP) { 2704 // See if we can aggregate this into a .fill, if so, emit it as such. 2705 int Value = isRepeatedByteSequence(CDS, DL); 2706 if (Value != -1) { 2707 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2708 // Don't emit a 1-byte object as a .fill. 2709 if (Bytes > 1) 2710 return AP.OutStreamer->emitFill(Bytes, Value); 2711 } 2712 2713 // If this can be emitted with .ascii/.asciz, emit it as such. 2714 if (CDS->isString()) 2715 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2716 2717 // Otherwise, emit the values in successive locations. 2718 unsigned ElementByteSize = CDS->getElementByteSize(); 2719 if (isa<IntegerType>(CDS->getElementType())) { 2720 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2721 if (AP.isVerbose()) 2722 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2723 CDS->getElementAsInteger(i)); 2724 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2725 ElementByteSize); 2726 } 2727 } else { 2728 Type *ET = CDS->getElementType(); 2729 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2730 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2731 } 2732 2733 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2734 unsigned EmittedSize = 2735 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2736 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2737 if (unsigned Padding = Size - EmittedSize) 2738 AP.OutStreamer->emitZeros(Padding); 2739 } 2740 2741 static void emitGlobalConstantArray(const DataLayout &DL, 2742 const ConstantArray *CA, AsmPrinter &AP, 2743 const Constant *BaseCV, uint64_t Offset) { 2744 // See if we can aggregate some values. Make sure it can be 2745 // represented as a series of bytes of the constant value. 2746 int Value = isRepeatedByteSequence(CA, DL); 2747 2748 if (Value != -1) { 2749 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2750 AP.OutStreamer->emitFill(Bytes, Value); 2751 } 2752 else { 2753 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2754 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2755 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2756 } 2757 } 2758 } 2759 2760 static void emitGlobalConstantVector(const DataLayout &DL, 2761 const ConstantVector *CV, AsmPrinter &AP) { 2762 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2763 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2764 2765 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2766 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2767 CV->getType()->getNumElements(); 2768 if (unsigned Padding = Size - EmittedSize) 2769 AP.OutStreamer->emitZeros(Padding); 2770 } 2771 2772 static void emitGlobalConstantStruct(const DataLayout &DL, 2773 const ConstantStruct *CS, AsmPrinter &AP, 2774 const Constant *BaseCV, uint64_t Offset) { 2775 // Print the fields in successive locations. Pad to align if needed! 2776 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2777 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2778 uint64_t SizeSoFar = 0; 2779 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2780 const Constant *Field = CS->getOperand(i); 2781 2782 // Print the actual field value. 2783 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2784 2785 // Check if padding is needed and insert one or more 0s. 2786 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2787 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2788 - Layout->getElementOffset(i)) - FieldSize; 2789 SizeSoFar += FieldSize + PadSize; 2790 2791 // Insert padding - this may include padding to increase the size of the 2792 // current field up to the ABI size (if the struct is not packed) as well 2793 // as padding to ensure that the next field starts at the right offset. 2794 AP.OutStreamer->emitZeros(PadSize); 2795 } 2796 assert(SizeSoFar == Layout->getSizeInBytes() && 2797 "Layout of constant struct may be incorrect!"); 2798 } 2799 2800 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2801 assert(ET && "Unknown float type"); 2802 APInt API = APF.bitcastToAPInt(); 2803 2804 // First print a comment with what we think the original floating-point value 2805 // should have been. 2806 if (AP.isVerbose()) { 2807 SmallString<8> StrVal; 2808 APF.toString(StrVal); 2809 ET->print(AP.OutStreamer->GetCommentOS()); 2810 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2811 } 2812 2813 // Now iterate through the APInt chunks, emitting them in endian-correct 2814 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2815 // floats). 2816 unsigned NumBytes = API.getBitWidth() / 8; 2817 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2818 const uint64_t *p = API.getRawData(); 2819 2820 // PPC's long double has odd notions of endianness compared to how LLVM 2821 // handles it: p[0] goes first for *big* endian on PPC. 2822 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2823 int Chunk = API.getNumWords() - 1; 2824 2825 if (TrailingBytes) 2826 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2827 2828 for (; Chunk >= 0; --Chunk) 2829 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2830 } else { 2831 unsigned Chunk; 2832 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2833 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2834 2835 if (TrailingBytes) 2836 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2837 } 2838 2839 // Emit the tail padding for the long double. 2840 const DataLayout &DL = AP.getDataLayout(); 2841 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2842 } 2843 2844 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2845 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2846 } 2847 2848 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2849 const DataLayout &DL = AP.getDataLayout(); 2850 unsigned BitWidth = CI->getBitWidth(); 2851 2852 // Copy the value as we may massage the layout for constants whose bit width 2853 // is not a multiple of 64-bits. 2854 APInt Realigned(CI->getValue()); 2855 uint64_t ExtraBits = 0; 2856 unsigned ExtraBitsSize = BitWidth & 63; 2857 2858 if (ExtraBitsSize) { 2859 // The bit width of the data is not a multiple of 64-bits. 2860 // The extra bits are expected to be at the end of the chunk of the memory. 2861 // Little endian: 2862 // * Nothing to be done, just record the extra bits to emit. 2863 // Big endian: 2864 // * Record the extra bits to emit. 2865 // * Realign the raw data to emit the chunks of 64-bits. 2866 if (DL.isBigEndian()) { 2867 // Basically the structure of the raw data is a chunk of 64-bits cells: 2868 // 0 1 BitWidth / 64 2869 // [chunk1][chunk2] ... [chunkN]. 2870 // The most significant chunk is chunkN and it should be emitted first. 2871 // However, due to the alignment issue chunkN contains useless bits. 2872 // Realign the chunks so that they contain only useful information: 2873 // ExtraBits 0 1 (BitWidth / 64) - 1 2874 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2875 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2876 ExtraBits = Realigned.getRawData()[0] & 2877 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2878 Realigned.lshrInPlace(ExtraBitsSize); 2879 } else 2880 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2881 } 2882 2883 // We don't expect assemblers to support integer data directives 2884 // for more than 64 bits, so we emit the data in at most 64-bit 2885 // quantities at a time. 2886 const uint64_t *RawData = Realigned.getRawData(); 2887 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2888 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2889 AP.OutStreamer->emitIntValue(Val, 8); 2890 } 2891 2892 if (ExtraBitsSize) { 2893 // Emit the extra bits after the 64-bits chunks. 2894 2895 // Emit a directive that fills the expected size. 2896 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2897 Size -= (BitWidth / 64) * 8; 2898 assert(Size && Size * 8 >= ExtraBitsSize && 2899 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2900 == ExtraBits && "Directive too small for extra bits."); 2901 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2902 } 2903 } 2904 2905 /// Transform a not absolute MCExpr containing a reference to a GOT 2906 /// equivalent global, by a target specific GOT pc relative access to the 2907 /// final symbol. 2908 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2909 const Constant *BaseCst, 2910 uint64_t Offset) { 2911 // The global @foo below illustrates a global that uses a got equivalent. 2912 // 2913 // @bar = global i32 42 2914 // @gotequiv = private unnamed_addr constant i32* @bar 2915 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2916 // i64 ptrtoint (i32* @foo to i64)) 2917 // to i32) 2918 // 2919 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2920 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2921 // form: 2922 // 2923 // foo = cstexpr, where 2924 // cstexpr := <gotequiv> - "." + <cst> 2925 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2926 // 2927 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2928 // 2929 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2930 // gotpcrelcst := <offset from @foo base> + <cst> 2931 MCValue MV; 2932 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2933 return; 2934 const MCSymbolRefExpr *SymA = MV.getSymA(); 2935 if (!SymA) 2936 return; 2937 2938 // Check that GOT equivalent symbol is cached. 2939 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2940 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2941 return; 2942 2943 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2944 if (!BaseGV) 2945 return; 2946 2947 // Check for a valid base symbol 2948 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2949 const MCSymbolRefExpr *SymB = MV.getSymB(); 2950 2951 if (!SymB || BaseSym != &SymB->getSymbol()) 2952 return; 2953 2954 // Make sure to match: 2955 // 2956 // gotpcrelcst := <offset from @foo base> + <cst> 2957 // 2958 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2959 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2960 // if the target knows how to encode it. 2961 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2962 if (GOTPCRelCst < 0) 2963 return; 2964 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2965 return; 2966 2967 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2968 // 2969 // bar: 2970 // .long 42 2971 // gotequiv: 2972 // .quad bar 2973 // foo: 2974 // .long gotequiv - "." + <cst> 2975 // 2976 // is replaced by the target specific equivalent to: 2977 // 2978 // bar: 2979 // .long 42 2980 // foo: 2981 // .long bar@GOTPCREL+<gotpcrelcst> 2982 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2983 const GlobalVariable *GV = Result.first; 2984 int NumUses = (int)Result.second; 2985 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2986 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2987 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2988 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2989 2990 // Update GOT equivalent usage information 2991 --NumUses; 2992 if (NumUses >= 0) 2993 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2994 } 2995 2996 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2997 AsmPrinter &AP, const Constant *BaseCV, 2998 uint64_t Offset) { 2999 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3000 3001 // Globals with sub-elements such as combinations of arrays and structs 3002 // are handled recursively by emitGlobalConstantImpl. Keep track of the 3003 // constant symbol base and the current position with BaseCV and Offset. 3004 if (!BaseCV && CV->hasOneUse()) 3005 BaseCV = dyn_cast<Constant>(CV->user_back()); 3006 3007 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 3008 return AP.OutStreamer->emitZeros(Size); 3009 3010 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 3011 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 3012 3013 if (StoreSize <= 8) { 3014 if (AP.isVerbose()) 3015 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 3016 CI->getZExtValue()); 3017 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 3018 } else { 3019 emitGlobalConstantLargeInt(CI, AP); 3020 } 3021 3022 // Emit tail padding if needed 3023 if (Size != StoreSize) 3024 AP.OutStreamer->emitZeros(Size - StoreSize); 3025 3026 return; 3027 } 3028 3029 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 3030 return emitGlobalConstantFP(CFP, AP); 3031 3032 if (isa<ConstantPointerNull>(CV)) { 3033 AP.OutStreamer->emitIntValue(0, Size); 3034 return; 3035 } 3036 3037 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 3038 return emitGlobalConstantDataSequential(DL, CDS, AP); 3039 3040 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 3041 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 3042 3043 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 3044 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 3045 3046 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 3047 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 3048 // vectors). 3049 if (CE->getOpcode() == Instruction::BitCast) 3050 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 3051 3052 if (Size > 8) { 3053 // If the constant expression's size is greater than 64-bits, then we have 3054 // to emit the value in chunks. Try to constant fold the value and emit it 3055 // that way. 3056 Constant *New = ConstantFoldConstant(CE, DL); 3057 if (New != CE) 3058 return emitGlobalConstantImpl(DL, New, AP); 3059 } 3060 } 3061 3062 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 3063 return emitGlobalConstantVector(DL, V, AP); 3064 3065 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 3066 // thread the streamer with EmitValue. 3067 const MCExpr *ME = AP.lowerConstant(CV); 3068 3069 // Since lowerConstant already folded and got rid of all IR pointer and 3070 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 3071 // directly. 3072 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 3073 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 3074 3075 AP.OutStreamer->emitValue(ME, Size); 3076 } 3077 3078 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 3079 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 3080 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 3081 if (Size) 3082 emitGlobalConstantImpl(DL, CV, *this); 3083 else if (MAI->hasSubsectionsViaSymbols()) { 3084 // If the global has zero size, emit a single byte so that two labels don't 3085 // look like they are at the same location. 3086 OutStreamer->emitIntValue(0, 1); 3087 } 3088 } 3089 3090 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 3091 // Target doesn't support this yet! 3092 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 3093 } 3094 3095 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 3096 if (Offset > 0) 3097 OS << '+' << Offset; 3098 else if (Offset < 0) 3099 OS << Offset; 3100 } 3101 3102 void AsmPrinter::emitNops(unsigned N) { 3103 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); 3104 for (; N; --N) 3105 EmitToStreamer(*OutStreamer, Nop); 3106 } 3107 3108 //===----------------------------------------------------------------------===// 3109 // Symbol Lowering Routines. 3110 //===----------------------------------------------------------------------===// 3111 3112 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3113 return OutContext.createTempSymbol(Name, true); 3114 } 3115 3116 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3117 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3118 } 3119 3120 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3121 return MMI->getAddrLabelSymbol(BB); 3122 } 3123 3124 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3125 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3126 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3127 const MachineConstantPoolEntry &CPE = 3128 MF->getConstantPool()->getConstants()[CPID]; 3129 if (!CPE.isMachineConstantPoolEntry()) { 3130 const DataLayout &DL = MF->getDataLayout(); 3131 SectionKind Kind = CPE.getSectionKind(&DL); 3132 const Constant *C = CPE.Val.ConstVal; 3133 Align Alignment = CPE.Alignment; 3134 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3135 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3136 Alignment))) { 3137 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3138 if (Sym->isUndefined()) 3139 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3140 return Sym; 3141 } 3142 } 3143 } 3144 } 3145 3146 const DataLayout &DL = getDataLayout(); 3147 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3148 "CPI" + Twine(getFunctionNumber()) + "_" + 3149 Twine(CPID)); 3150 } 3151 3152 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3153 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3154 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3155 } 3156 3157 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3158 /// FIXME: privatize to AsmPrinter. 3159 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3160 const DataLayout &DL = getDataLayout(); 3161 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3162 Twine(getFunctionNumber()) + "_" + 3163 Twine(UID) + "_set_" + Twine(MBBID)); 3164 } 3165 3166 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3167 StringRef Suffix) const { 3168 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3169 } 3170 3171 /// Return the MCSymbol for the specified ExternalSymbol. 3172 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3173 SmallString<60> NameStr; 3174 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3175 return OutContext.getOrCreateSymbol(NameStr); 3176 } 3177 3178 /// PrintParentLoopComment - Print comments about parent loops of this one. 3179 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3180 unsigned FunctionNumber) { 3181 if (!Loop) return; 3182 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3183 OS.indent(Loop->getLoopDepth()*2) 3184 << "Parent Loop BB" << FunctionNumber << "_" 3185 << Loop->getHeader()->getNumber() 3186 << " Depth=" << Loop->getLoopDepth() << '\n'; 3187 } 3188 3189 /// PrintChildLoopComment - Print comments about child loops within 3190 /// the loop for this basic block, with nesting. 3191 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3192 unsigned FunctionNumber) { 3193 // Add child loop information 3194 for (const MachineLoop *CL : *Loop) { 3195 OS.indent(CL->getLoopDepth()*2) 3196 << "Child Loop BB" << FunctionNumber << "_" 3197 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3198 << '\n'; 3199 PrintChildLoopComment(OS, CL, FunctionNumber); 3200 } 3201 } 3202 3203 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3204 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3205 const MachineLoopInfo *LI, 3206 const AsmPrinter &AP) { 3207 // Add loop depth information 3208 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3209 if (!Loop) return; 3210 3211 MachineBasicBlock *Header = Loop->getHeader(); 3212 assert(Header && "No header for loop"); 3213 3214 // If this block is not a loop header, just print out what is the loop header 3215 // and return. 3216 if (Header != &MBB) { 3217 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3218 Twine(AP.getFunctionNumber())+"_" + 3219 Twine(Loop->getHeader()->getNumber())+ 3220 " Depth="+Twine(Loop->getLoopDepth())); 3221 return; 3222 } 3223 3224 // Otherwise, it is a loop header. Print out information about child and 3225 // parent loops. 3226 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3227 3228 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3229 3230 OS << "=>"; 3231 OS.indent(Loop->getLoopDepth()*2-2); 3232 3233 OS << "This "; 3234 if (Loop->isInnermost()) 3235 OS << "Inner "; 3236 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3237 3238 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3239 } 3240 3241 /// emitBasicBlockStart - This method prints the label for the specified 3242 /// MachineBasicBlock, an alignment (if present) and a comment describing 3243 /// it if appropriate. 3244 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3245 // End the previous funclet and start a new one. 3246 if (MBB.isEHFuncletEntry()) { 3247 for (const HandlerInfo &HI : Handlers) { 3248 HI.Handler->endFunclet(); 3249 HI.Handler->beginFunclet(MBB); 3250 } 3251 } 3252 3253 // Emit an alignment directive for this block, if needed. 3254 const Align Alignment = MBB.getAlignment(); 3255 if (Alignment != Align(1)) 3256 emitAlignment(Alignment); 3257 3258 // Switch to a new section if this basic block must begin a section. The 3259 // entry block is always placed in the function section and is handled 3260 // separately. 3261 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3262 OutStreamer->SwitchSection( 3263 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3264 MBB, TM)); 3265 CurrentSectionBeginSym = MBB.getSymbol(); 3266 } 3267 3268 // If the block has its address taken, emit any labels that were used to 3269 // reference the block. It is possible that there is more than one label 3270 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3271 // the references were generated. 3272 const BasicBlock *BB = MBB.getBasicBlock(); 3273 if (MBB.hasAddressTaken()) { 3274 if (isVerbose()) 3275 OutStreamer->AddComment("Block address taken"); 3276 3277 // MBBs can have their address taken as part of CodeGen without having 3278 // their corresponding BB's address taken in IR 3279 if (BB && BB->hasAddressTaken()) 3280 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3281 OutStreamer->emitLabel(Sym); 3282 } 3283 3284 // Print some verbose block comments. 3285 if (isVerbose()) { 3286 if (BB) { 3287 if (BB->hasName()) { 3288 BB->printAsOperand(OutStreamer->GetCommentOS(), 3289 /*PrintType=*/false, BB->getModule()); 3290 OutStreamer->GetCommentOS() << '\n'; 3291 } 3292 } 3293 3294 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3295 emitBasicBlockLoopComments(MBB, MLI, *this); 3296 } 3297 3298 // Print the main label for the block. 3299 if (shouldEmitLabelForBasicBlock(MBB)) { 3300 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3301 OutStreamer->AddComment("Label of block must be emitted"); 3302 OutStreamer->emitLabel(MBB.getSymbol()); 3303 } else { 3304 if (isVerbose()) { 3305 // NOTE: Want this comment at start of line, don't emit with AddComment. 3306 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3307 false); 3308 } 3309 } 3310 3311 if (MBB.isEHCatchretTarget() && 3312 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { 3313 OutStreamer->emitLabel(MBB.getEHCatchretSymbol()); 3314 } 3315 3316 // With BB sections, each basic block must handle CFI information on its own 3317 // if it begins a section (Entry block is handled separately by 3318 // AsmPrinterHandler::beginFunction). 3319 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3320 for (const HandlerInfo &HI : Handlers) 3321 HI.Handler->beginBasicBlock(MBB); 3322 } 3323 3324 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3325 // Check if CFI information needs to be updated for this MBB with basic block 3326 // sections. 3327 if (MBB.isEndSection()) 3328 for (const HandlerInfo &HI : Handlers) 3329 HI.Handler->endBasicBlock(MBB); 3330 } 3331 3332 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3333 bool IsDefinition) const { 3334 MCSymbolAttr Attr = MCSA_Invalid; 3335 3336 switch (Visibility) { 3337 default: break; 3338 case GlobalValue::HiddenVisibility: 3339 if (IsDefinition) 3340 Attr = MAI->getHiddenVisibilityAttr(); 3341 else 3342 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3343 break; 3344 case GlobalValue::ProtectedVisibility: 3345 Attr = MAI->getProtectedVisibilityAttr(); 3346 break; 3347 } 3348 3349 if (Attr != MCSA_Invalid) 3350 OutStreamer->emitSymbolAttribute(Sym, Attr); 3351 } 3352 3353 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3354 const MachineBasicBlock &MBB) const { 3355 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3356 // in the labels mode (option `=labels`) and every section beginning in the 3357 // sections mode (`=all` and `=list=`). 3358 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3359 return true; 3360 // A label is needed for any block with at least one predecessor (when that 3361 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3362 // entry, or if a label is forced). 3363 return !MBB.pred_empty() && 3364 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3365 MBB.hasLabelMustBeEmitted()); 3366 } 3367 3368 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3369 /// exactly one predecessor and the control transfer mechanism between 3370 /// the predecessor and this block is a fall-through. 3371 bool AsmPrinter:: 3372 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3373 // If this is a landing pad, it isn't a fall through. If it has no preds, 3374 // then nothing falls through to it. 3375 if (MBB->isEHPad() || MBB->pred_empty()) 3376 return false; 3377 3378 // If there isn't exactly one predecessor, it can't be a fall through. 3379 if (MBB->pred_size() > 1) 3380 return false; 3381 3382 // The predecessor has to be immediately before this block. 3383 MachineBasicBlock *Pred = *MBB->pred_begin(); 3384 if (!Pred->isLayoutSuccessor(MBB)) 3385 return false; 3386 3387 // If the block is completely empty, then it definitely does fall through. 3388 if (Pred->empty()) 3389 return true; 3390 3391 // Check the terminators in the previous blocks 3392 for (const auto &MI : Pred->terminators()) { 3393 // If it is not a simple branch, we are in a table somewhere. 3394 if (!MI.isBranch() || MI.isIndirectBranch()) 3395 return false; 3396 3397 // If we are the operands of one of the branches, this is not a fall 3398 // through. Note that targets with delay slots will usually bundle 3399 // terminators with the delay slot instruction. 3400 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3401 if (OP->isJTI()) 3402 return false; 3403 if (OP->isMBB() && OP->getMBB() == MBB) 3404 return false; 3405 } 3406 } 3407 3408 return true; 3409 } 3410 3411 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3412 if (!S.usesMetadata()) 3413 return nullptr; 3414 3415 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3416 gcp_map_type::iterator GCPI = GCMap.find(&S); 3417 if (GCPI != GCMap.end()) 3418 return GCPI->second.get(); 3419 3420 auto Name = S.getName(); 3421 3422 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3423 GCMetadataPrinterRegistry::entries()) 3424 if (Name == GCMetaPrinter.getName()) { 3425 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3426 GMP->S = &S; 3427 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3428 return IterBool.first->second.get(); 3429 } 3430 3431 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3432 } 3433 3434 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3435 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3436 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3437 bool NeedsDefault = false; 3438 if (MI->begin() == MI->end()) 3439 // No GC strategy, use the default format. 3440 NeedsDefault = true; 3441 else 3442 for (auto &I : *MI) { 3443 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3444 if (MP->emitStackMaps(SM, *this)) 3445 continue; 3446 // The strategy doesn't have printer or doesn't emit custom stack maps. 3447 // Use the default format. 3448 NeedsDefault = true; 3449 } 3450 3451 if (NeedsDefault) 3452 SM.serializeToStackMapSection(); 3453 } 3454 3455 /// Pin vtable to this file. 3456 AsmPrinterHandler::~AsmPrinterHandler() = default; 3457 3458 void AsmPrinterHandler::markFunctionEnd() {} 3459 3460 // In the binary's "xray_instr_map" section, an array of these function entries 3461 // describes each instrumentation point. When XRay patches your code, the index 3462 // into this table will be given to your handler as a patch point identifier. 3463 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3464 auto Kind8 = static_cast<uint8_t>(Kind); 3465 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3466 Out->emitBinaryData( 3467 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3468 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3469 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3470 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3471 Out->emitZeros(Padding); 3472 } 3473 3474 void AsmPrinter::emitXRayTable() { 3475 if (Sleds.empty()) 3476 return; 3477 3478 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3479 const Function &F = MF->getFunction(); 3480 MCSection *InstMap = nullptr; 3481 MCSection *FnSledIndex = nullptr; 3482 const Triple &TT = TM.getTargetTriple(); 3483 // Use PC-relative addresses on all targets. 3484 if (TT.isOSBinFormatELF()) { 3485 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3486 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3487 StringRef GroupName; 3488 if (F.hasComdat()) { 3489 Flags |= ELF::SHF_GROUP; 3490 GroupName = F.getComdat()->getName(); 3491 } 3492 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3493 Flags, 0, GroupName, F.hasComdat(), 3494 MCSection::NonUniqueID, LinkedToSym); 3495 3496 if (!TM.Options.XRayOmitFunctionIndex) 3497 FnSledIndex = OutContext.getELFSection( 3498 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3499 GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym); 3500 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3501 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3502 SectionKind::getReadOnlyWithRel()); 3503 if (!TM.Options.XRayOmitFunctionIndex) 3504 FnSledIndex = OutContext.getMachOSection( 3505 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3506 } else { 3507 llvm_unreachable("Unsupported target"); 3508 } 3509 3510 auto WordSizeBytes = MAI->getCodePointerSize(); 3511 3512 // Now we switch to the instrumentation map section. Because this is done 3513 // per-function, we are able to create an index entry that will represent the 3514 // range of sleds associated with a function. 3515 auto &Ctx = OutContext; 3516 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3517 OutStreamer->SwitchSection(InstMap); 3518 OutStreamer->emitLabel(SledsStart); 3519 for (const auto &Sled : Sleds) { 3520 MCSymbol *Dot = Ctx.createTempSymbol(); 3521 OutStreamer->emitLabel(Dot); 3522 OutStreamer->emitValueImpl( 3523 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3524 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3525 WordSizeBytes); 3526 OutStreamer->emitValueImpl( 3527 MCBinaryExpr::createSub( 3528 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3529 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3530 MCConstantExpr::create(WordSizeBytes, Ctx), 3531 Ctx), 3532 Ctx), 3533 WordSizeBytes); 3534 Sled.emit(WordSizeBytes, OutStreamer.get()); 3535 } 3536 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3537 OutStreamer->emitLabel(SledsEnd); 3538 3539 // We then emit a single entry in the index per function. We use the symbols 3540 // that bound the instrumentation map as the range for a specific function. 3541 // Each entry here will be 2 * word size aligned, as we're writing down two 3542 // pointers. This should work for both 32-bit and 64-bit platforms. 3543 if (FnSledIndex) { 3544 OutStreamer->SwitchSection(FnSledIndex); 3545 OutStreamer->emitCodeAlignment(2 * WordSizeBytes, &getSubtargetInfo()); 3546 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3547 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3548 OutStreamer->SwitchSection(PrevSection); 3549 } 3550 Sleds.clear(); 3551 } 3552 3553 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3554 SledKind Kind, uint8_t Version) { 3555 const Function &F = MI.getMF()->getFunction(); 3556 auto Attr = F.getFnAttribute("function-instrument"); 3557 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3558 bool AlwaysInstrument = 3559 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3560 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3561 Kind = SledKind::LOG_ARGS_ENTER; 3562 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3563 AlwaysInstrument, &F, Version}); 3564 } 3565 3566 void AsmPrinter::emitPatchableFunctionEntries() { 3567 const Function &F = MF->getFunction(); 3568 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3569 (void)F.getFnAttribute("patchable-function-prefix") 3570 .getValueAsString() 3571 .getAsInteger(10, PatchableFunctionPrefix); 3572 (void)F.getFnAttribute("patchable-function-entry") 3573 .getValueAsString() 3574 .getAsInteger(10, PatchableFunctionEntry); 3575 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3576 return; 3577 const unsigned PointerSize = getPointerSize(); 3578 if (TM.getTargetTriple().isOSBinFormatELF()) { 3579 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3580 const MCSymbolELF *LinkedToSym = nullptr; 3581 StringRef GroupName; 3582 3583 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3584 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3585 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3586 Flags |= ELF::SHF_LINK_ORDER; 3587 if (F.hasComdat()) { 3588 Flags |= ELF::SHF_GROUP; 3589 GroupName = F.getComdat()->getName(); 3590 } 3591 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3592 } 3593 OutStreamer->SwitchSection(OutContext.getELFSection( 3594 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3595 F.hasComdat(), MCSection::NonUniqueID, LinkedToSym)); 3596 emitAlignment(Align(PointerSize)); 3597 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3598 } 3599 } 3600 3601 uint16_t AsmPrinter::getDwarfVersion() const { 3602 return OutStreamer->getContext().getDwarfVersion(); 3603 } 3604 3605 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3606 OutStreamer->getContext().setDwarfVersion(Version); 3607 } 3608 3609 bool AsmPrinter::isDwarf64() const { 3610 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3611 } 3612 3613 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3614 return dwarf::getDwarfOffsetByteSize( 3615 OutStreamer->getContext().getDwarfFormat()); 3616 } 3617 3618 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3619 return dwarf::getUnitLengthFieldByteSize( 3620 OutStreamer->getContext().getDwarfFormat()); 3621 } 3622