1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "PseudoProbePrinter.h" 18 #include "WasmException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 36 #include "llvm/BinaryFormat/COFF.h" 37 #include "llvm/BinaryFormat/Dwarf.h" 38 #include "llvm/BinaryFormat/ELF.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/GCMetadataPrinter.h" 41 #include "llvm/CodeGen/GCStrategy.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConstantPool.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineJumpTableInfo.h" 51 #include "llvm/CodeGen/MachineLoopInfo.h" 52 #include "llvm/CodeGen/MachineMemOperand.h" 53 #include "llvm/CodeGen/MachineModuleInfo.h" 54 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 55 #include "llvm/CodeGen/MachineOperand.h" 56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/Comdat.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DataLayout.h" 68 #include "llvm/IR/DebugInfoMetadata.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Function.h" 71 #include "llvm/IR/GlobalAlias.h" 72 #include "llvm/IR/GlobalIFunc.h" 73 #include "llvm/IR/GlobalIndirectSymbol.h" 74 #include "llvm/IR/GlobalObject.h" 75 #include "llvm/IR/GlobalValue.h" 76 #include "llvm/IR/GlobalVariable.h" 77 #include "llvm/IR/Instruction.h" 78 #include "llvm/IR/Mangler.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Module.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PseudoProbe.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Value.h" 85 #include "llvm/MC/MCAsmInfo.h" 86 #include "llvm/MC/MCContext.h" 87 #include "llvm/MC/MCDirectives.h" 88 #include "llvm/MC/MCDwarf.h" 89 #include "llvm/MC/MCExpr.h" 90 #include "llvm/MC/MCInst.h" 91 #include "llvm/MC/MCSection.h" 92 #include "llvm/MC/MCSectionCOFF.h" 93 #include "llvm/MC/MCSectionELF.h" 94 #include "llvm/MC/MCSectionMachO.h" 95 #include "llvm/MC/MCSectionXCOFF.h" 96 #include "llvm/MC/MCStreamer.h" 97 #include "llvm/MC/MCSubtargetInfo.h" 98 #include "llvm/MC/MCSymbol.h" 99 #include "llvm/MC/MCSymbolELF.h" 100 #include "llvm/MC/MCSymbolXCOFF.h" 101 #include "llvm/MC/MCTargetOptions.h" 102 #include "llvm/MC/MCValue.h" 103 #include "llvm/MC/SectionKind.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Remarks/Remark.h" 106 #include "llvm/Remarks/RemarkFormat.h" 107 #include "llvm/Remarks/RemarkStreamer.h" 108 #include "llvm/Remarks/RemarkStringTable.h" 109 #include "llvm/Support/Casting.h" 110 #include "llvm/Support/CommandLine.h" 111 #include "llvm/Support/Compiler.h" 112 #include "llvm/Support/ErrorHandling.h" 113 #include "llvm/Support/Format.h" 114 #include "llvm/Support/MathExtras.h" 115 #include "llvm/Support/Path.h" 116 #include "llvm/Support/TargetRegistry.h" 117 #include "llvm/Support/Timer.h" 118 #include "llvm/Support/raw_ostream.h" 119 #include "llvm/Target/TargetLoweringObjectFile.h" 120 #include "llvm/Target/TargetMachine.h" 121 #include "llvm/Target/TargetOptions.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <cinttypes> 125 #include <cstdint> 126 #include <iterator> 127 #include <limits> 128 #include <memory> 129 #include <string> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 135 #define DEBUG_TYPE "asm-printer" 136 137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables 138 static cl::opt<bool> 139 DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, 140 cl::desc("Disable debug info printing")); 141 142 const char DWARFGroupName[] = "dwarf"; 143 const char DWARFGroupDescription[] = "DWARF Emission"; 144 const char DbgTimerName[] = "emit"; 145 const char DbgTimerDescription[] = "Debug Info Emission"; 146 const char EHTimerName[] = "write_exception"; 147 const char EHTimerDescription[] = "DWARF Exception Writer"; 148 const char CFGuardName[] = "Control Flow Guard"; 149 const char CFGuardDescription[] = "Control Flow Guard"; 150 const char CodeViewLineTablesGroupName[] = "linetables"; 151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables"; 152 const char PPTimerName[] = "emit"; 153 const char PPTimerDescription[] = "Pseudo Probe Emission"; 154 const char PPGroupName[] = "pseudo probe"; 155 const char PPGroupDescription[] = "Pseudo Probe Emission"; 156 157 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 158 159 char AsmPrinter::ID = 0; 160 161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 162 163 static gcp_map_type &getGCMap(void *&P) { 164 if (!P) 165 P = new gcp_map_type(); 166 return *(gcp_map_type*)P; 167 } 168 169 /// getGVAlignment - Return the alignment to use for the specified global 170 /// value. This rounds up to the preferred alignment if possible and legal. 171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, 172 Align InAlign) { 173 Align Alignment; 174 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 175 Alignment = DL.getPreferredAlign(GVar); 176 177 // If InAlign is specified, round it to it. 178 if (InAlign > Alignment) 179 Alignment = InAlign; 180 181 // If the GV has a specified alignment, take it into account. 182 const MaybeAlign GVAlign(GV->getAlignment()); 183 if (!GVAlign) 184 return Alignment; 185 186 assert(GVAlign && "GVAlign must be set"); 187 188 // If the GVAlign is larger than NumBits, or if we are required to obey 189 // NumBits because the GV has an assigned section, obey it. 190 if (*GVAlign > Alignment || GV->hasSection()) 191 Alignment = *GVAlign; 192 return Alignment; 193 } 194 195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 196 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 197 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 198 VerboseAsm = OutStreamer->isVerboseAsm(); 199 } 200 201 AsmPrinter::~AsmPrinter() { 202 assert(!DD && Handlers.size() == NumUserHandlers && 203 "Debug/EH info didn't get finalized"); 204 205 if (GCMetadataPrinters) { 206 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 207 208 delete &GCMap; 209 GCMetadataPrinters = nullptr; 210 } 211 } 212 213 bool AsmPrinter::isPositionIndependent() const { 214 return TM.isPositionIndependent(); 215 } 216 217 /// getFunctionNumber - Return a unique ID for the current function. 218 unsigned AsmPrinter::getFunctionNumber() const { 219 return MF->getFunctionNumber(); 220 } 221 222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 223 return *TM.getObjFileLowering(); 224 } 225 226 const DataLayout &AsmPrinter::getDataLayout() const { 227 return MMI->getModule()->getDataLayout(); 228 } 229 230 // Do not use the cached DataLayout because some client use it without a Module 231 // (dsymutil, llvm-dwarfdump). 232 unsigned AsmPrinter::getPointerSize() const { 233 return TM.getPointerSize(0); // FIXME: Default address space 234 } 235 236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 237 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 238 return MF->getSubtarget<MCSubtargetInfo>(); 239 } 240 241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 242 S.emitInstruction(Inst, getSubtargetInfo()); 243 } 244 245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 246 if (DD) { 247 assert(OutStreamer->hasRawTextSupport() && 248 "Expected assembly output mode."); 249 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 250 } 251 } 252 253 /// getCurrentSection() - Return the current section we are emitting to. 254 const MCSection *AsmPrinter::getCurrentSection() const { 255 return OutStreamer->getCurrentSectionOnly(); 256 } 257 258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 259 AU.setPreservesAll(); 260 MachineFunctionPass::getAnalysisUsage(AU); 261 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 262 AU.addRequired<GCModuleInfo>(); 263 } 264 265 bool AsmPrinter::doInitialization(Module &M) { 266 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 267 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 268 269 // Initialize TargetLoweringObjectFile. 270 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 271 .Initialize(OutContext, TM); 272 273 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 274 .getModuleMetadata(M); 275 276 OutStreamer->InitSections(false); 277 278 if (DisableDebugInfoPrinting) 279 MMI->setDebugInfoAvailability(false); 280 281 // Emit the version-min deployment target directive if needed. 282 // 283 // FIXME: If we end up with a collection of these sorts of Darwin-specific 284 // or ELF-specific things, it may make sense to have a platform helper class 285 // that will work with the target helper class. For now keep it here, as the 286 // alternative is duplicated code in each of the target asm printers that 287 // use the directive, where it would need the same conditionalization 288 // anyway. 289 const Triple &Target = TM.getTargetTriple(); 290 OutStreamer->emitVersionForTarget(Target, M.getSDKVersion()); 291 292 // Allow the target to emit any magic that it wants at the start of the file. 293 emitStartOfAsmFile(M); 294 295 // Very minimal debug info. It is ignored if we emit actual debug info. If we 296 // don't, this at least helps the user find where a global came from. 297 if (MAI->hasSingleParameterDotFile()) { 298 // .file "foo.c" 299 OutStreamer->emitFileDirective( 300 llvm::sys::path::filename(M.getSourceFileName())); 301 } 302 303 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 304 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 305 for (auto &I : *MI) 306 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 307 MP->beginAssembly(M, *MI, *this); 308 309 // Emit module-level inline asm if it exists. 310 if (!M.getModuleInlineAsm().empty()) { 311 // We're at the module level. Construct MCSubtarget from the default CPU 312 // and target triple. 313 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 314 TM.getTargetTriple().str(), TM.getTargetCPU(), 315 TM.getTargetFeatureString())); 316 assert(STI && "Unable to create subtarget info"); 317 OutStreamer->AddComment("Start of file scope inline assembly"); 318 OutStreamer->AddBlankLine(); 319 emitInlineAsm(M.getModuleInlineAsm() + "\n", 320 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 321 OutStreamer->AddComment("End of file scope inline assembly"); 322 OutStreamer->AddBlankLine(); 323 } 324 325 if (MAI->doesSupportDebugInformation()) { 326 bool EmitCodeView = M.getCodeViewFlag(); 327 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 328 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 329 DbgTimerName, DbgTimerDescription, 330 CodeViewLineTablesGroupName, 331 CodeViewLineTablesGroupDescription); 332 } 333 if (!EmitCodeView || M.getDwarfVersion()) { 334 if (!DisableDebugInfoPrinting) { 335 DD = new DwarfDebug(this); 336 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 337 DbgTimerDescription, DWARFGroupName, 338 DWARFGroupDescription); 339 } 340 } 341 } 342 343 if (M.getNamedMetadata(PseudoProbeDescMetadataName)) { 344 PP = new PseudoProbeHandler(this, &M); 345 Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName, 346 PPTimerDescription, PPGroupName, PPGroupDescription); 347 } 348 349 switch (MAI->getExceptionHandlingType()) { 350 case ExceptionHandling::SjLj: 351 case ExceptionHandling::DwarfCFI: 352 case ExceptionHandling::ARM: 353 isCFIMoveForDebugging = true; 354 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 355 break; 356 for (auto &F: M.getFunctionList()) { 357 // If the module contains any function with unwind data, 358 // .eh_frame has to be emitted. 359 // Ignore functions that won't get emitted. 360 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 361 isCFIMoveForDebugging = false; 362 break; 363 } 364 } 365 break; 366 default: 367 isCFIMoveForDebugging = false; 368 break; 369 } 370 371 EHStreamer *ES = nullptr; 372 switch (MAI->getExceptionHandlingType()) { 373 case ExceptionHandling::None: 374 break; 375 case ExceptionHandling::SjLj: 376 case ExceptionHandling::DwarfCFI: 377 ES = new DwarfCFIException(this); 378 break; 379 case ExceptionHandling::ARM: 380 ES = new ARMException(this); 381 break; 382 case ExceptionHandling::WinEH: 383 switch (MAI->getWinEHEncodingType()) { 384 default: llvm_unreachable("unsupported unwinding information encoding"); 385 case WinEH::EncodingType::Invalid: 386 break; 387 case WinEH::EncodingType::X86: 388 case WinEH::EncodingType::Itanium: 389 ES = new WinException(this); 390 break; 391 } 392 break; 393 case ExceptionHandling::Wasm: 394 ES = new WasmException(this); 395 break; 396 case ExceptionHandling::AIX: 397 ES = new AIXException(this); 398 break; 399 } 400 if (ES) 401 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 402 EHTimerDescription, DWARFGroupName, 403 DWARFGroupDescription); 404 405 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 406 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard"))) 407 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 408 CFGuardDescription, DWARFGroupName, 409 DWARFGroupDescription); 410 411 for (const HandlerInfo &HI : Handlers) { 412 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 413 HI.TimerGroupDescription, TimePassesIsEnabled); 414 HI.Handler->beginModule(&M); 415 } 416 417 return false; 418 } 419 420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 421 if (!MAI.hasWeakDefCanBeHiddenDirective()) 422 return false; 423 424 return GV->canBeOmittedFromSymbolTable(); 425 } 426 427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 428 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 429 switch (Linkage) { 430 case GlobalValue::CommonLinkage: 431 case GlobalValue::LinkOnceAnyLinkage: 432 case GlobalValue::LinkOnceODRLinkage: 433 case GlobalValue::WeakAnyLinkage: 434 case GlobalValue::WeakODRLinkage: 435 if (MAI->hasWeakDefDirective()) { 436 // .globl _foo 437 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 438 439 if (!canBeHidden(GV, *MAI)) 440 // .weak_definition _foo 441 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition); 442 else 443 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 444 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { 445 // .globl _foo 446 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 447 //NOTE: linkonce is handled by the section the symbol was assigned to. 448 } else { 449 // .weak _foo 450 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak); 451 } 452 return; 453 case GlobalValue::ExternalLinkage: 454 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global); 455 return; 456 case GlobalValue::PrivateLinkage: 457 case GlobalValue::InternalLinkage: 458 return; 459 case GlobalValue::ExternalWeakLinkage: 460 case GlobalValue::AvailableExternallyLinkage: 461 case GlobalValue::AppendingLinkage: 462 llvm_unreachable("Should never emit this"); 463 } 464 llvm_unreachable("Unknown linkage type!"); 465 } 466 467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 468 const GlobalValue *GV) const { 469 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 470 } 471 472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 473 return TM.getSymbol(GV); 474 } 475 476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { 477 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an 478 // exact definion (intersection of GlobalValue::hasExactDefinition() and 479 // !isInterposable()). These linkages include: external, appending, internal, 480 // private. It may be profitable to use a local alias for external. The 481 // assembler would otherwise be conservative and assume a global default 482 // visibility symbol can be interposable, even if the code generator already 483 // assumed it. 484 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { 485 const Module &M = *GV.getParent(); 486 if (TM.getRelocationModel() != Reloc::Static && 487 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) 488 return getSymbolWithGlobalValueBase(&GV, "$local"); 489 } 490 return TM.getSymbol(&GV); 491 } 492 493 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 495 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 496 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 497 "No emulated TLS variables in the common section"); 498 499 // Never emit TLS variable xyz in emulated TLS model. 500 // The initialization value is in __emutls_t.xyz instead of xyz. 501 if (IsEmuTLSVar) 502 return; 503 504 if (GV->hasInitializer()) { 505 // Check to see if this is a special global used by LLVM, if so, emit it. 506 if (emitSpecialLLVMGlobal(GV)) 507 return; 508 509 // Skip the emission of global equivalents. The symbol can be emitted later 510 // on by emitGlobalGOTEquivs in case it turns out to be needed. 511 if (GlobalGOTEquivs.count(getSymbol(GV))) 512 return; 513 514 if (isVerbose()) { 515 // When printing the control variable __emutls_v.*, 516 // we don't need to print the original TLS variable name. 517 GV->printAsOperand(OutStreamer->GetCommentOS(), 518 /*PrintType=*/false, GV->getParent()); 519 OutStreamer->GetCommentOS() << '\n'; 520 } 521 } 522 523 MCSymbol *GVSym = getSymbol(GV); 524 MCSymbol *EmittedSym = GVSym; 525 526 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 527 // attributes. 528 // GV's or GVSym's attributes will be used for the EmittedSym. 529 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 530 531 if (!GV->hasInitializer()) // External globals require no extra code. 532 return; 533 534 GVSym->redefineIfPossible(); 535 if (GVSym->isDefined() || GVSym->isVariable()) 536 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) + 537 "' is already defined"); 538 539 if (MAI->hasDotTypeDotSizeDirective()) 540 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 541 542 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 543 544 const DataLayout &DL = GV->getParent()->getDataLayout(); 545 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 546 547 // If the alignment is specified, we *must* obey it. Overaligning a global 548 // with a specified alignment is a prompt way to break globals emitted to 549 // sections and expected to be contiguous (e.g. ObjC metadata). 550 const Align Alignment = getGVAlignment(GV, DL); 551 552 for (const HandlerInfo &HI : Handlers) { 553 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 554 HI.TimerGroupName, HI.TimerGroupDescription, 555 TimePassesIsEnabled); 556 HI.Handler->setSymbolSize(GVSym, Size); 557 } 558 559 // Handle common symbols 560 if (GVKind.isCommon()) { 561 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 562 // .comm _foo, 42, 4 563 const bool SupportsAlignment = 564 getObjFileLowering().getCommDirectiveSupportsAlignment(); 565 OutStreamer->emitCommonSymbol(GVSym, Size, 566 SupportsAlignment ? Alignment.value() : 0); 567 return; 568 } 569 570 // Determine to which section this global should be emitted. 571 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 572 573 // If we have a bss global going to a section that supports the 574 // zerofill directive, do so here. 575 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 576 TheSection->isVirtualSection()) { 577 if (Size == 0) 578 Size = 1; // zerofill of 0 bytes is undefined. 579 emitLinkage(GV, GVSym); 580 // .zerofill __DATA, __bss, _foo, 400, 5 581 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value()); 582 return; 583 } 584 585 // If this is a BSS local symbol and we are emitting in the BSS 586 // section use .lcomm/.comm directive. 587 if (GVKind.isBSSLocal() && 588 getObjFileLowering().getBSSSection() == TheSection) { 589 if (Size == 0) 590 Size = 1; // .comm Foo, 0 is undefined, avoid it. 591 592 // Use .lcomm only if it supports user-specified alignment. 593 // Otherwise, while it would still be correct to use .lcomm in some 594 // cases (e.g. when Align == 1), the external assembler might enfore 595 // some -unknown- default alignment behavior, which could cause 596 // spurious differences between external and integrated assembler. 597 // Prefer to simply fall back to .local / .comm in this case. 598 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 599 // .lcomm _foo, 42 600 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value()); 601 return; 602 } 603 604 // .local _foo 605 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local); 606 // .comm _foo, 42, 4 607 const bool SupportsAlignment = 608 getObjFileLowering().getCommDirectiveSupportsAlignment(); 609 OutStreamer->emitCommonSymbol(GVSym, Size, 610 SupportsAlignment ? Alignment.value() : 0); 611 return; 612 } 613 614 // Handle thread local data for mach-o which requires us to output an 615 // additional structure of data and mangle the original symbol so that we 616 // can reference it later. 617 // 618 // TODO: This should become an "emit thread local global" method on TLOF. 619 // All of this macho specific stuff should be sunk down into TLOFMachO and 620 // stuff like "TLSExtraDataSection" should no longer be part of the parent 621 // TLOF class. This will also make it more obvious that stuff like 622 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 623 // specific code. 624 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 625 // Emit the .tbss symbol 626 MCSymbol *MangSym = 627 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 628 629 if (GVKind.isThreadBSS()) { 630 TheSection = getObjFileLowering().getTLSBSSSection(); 631 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 632 } else if (GVKind.isThreadData()) { 633 OutStreamer->SwitchSection(TheSection); 634 635 emitAlignment(Alignment, GV); 636 OutStreamer->emitLabel(MangSym); 637 638 emitGlobalConstant(GV->getParent()->getDataLayout(), 639 GV->getInitializer()); 640 } 641 642 OutStreamer->AddBlankLine(); 643 644 // Emit the variable struct for the runtime. 645 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 646 647 OutStreamer->SwitchSection(TLVSect); 648 // Emit the linkage here. 649 emitLinkage(GV, GVSym); 650 OutStreamer->emitLabel(GVSym); 651 652 // Three pointers in size: 653 // - __tlv_bootstrap - used to make sure support exists 654 // - spare pointer, used when mapped by the runtime 655 // - pointer to mangled symbol above with initializer 656 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 657 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 658 PtrSize); 659 OutStreamer->emitIntValue(0, PtrSize); 660 OutStreamer->emitSymbolValue(MangSym, PtrSize); 661 662 OutStreamer->AddBlankLine(); 663 return; 664 } 665 666 MCSymbol *EmittedInitSym = GVSym; 667 668 OutStreamer->SwitchSection(TheSection); 669 670 emitLinkage(GV, EmittedInitSym); 671 emitAlignment(Alignment, GV); 672 673 OutStreamer->emitLabel(EmittedInitSym); 674 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV); 675 if (LocalAlias != EmittedInitSym) 676 OutStreamer->emitLabel(LocalAlias); 677 678 emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 679 680 if (MAI->hasDotTypeDotSizeDirective()) 681 // .size foo, 42 682 OutStreamer->emitELFSize(EmittedInitSym, 683 MCConstantExpr::create(Size, OutContext)); 684 685 OutStreamer->AddBlankLine(); 686 } 687 688 /// Emit the directive and value for debug thread local expression 689 /// 690 /// \p Value - The value to emit. 691 /// \p Size - The size of the integer (in bytes) to emit. 692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { 693 OutStreamer->emitValue(Value, Size); 694 } 695 696 void AsmPrinter::emitFunctionHeaderComment() {} 697 698 /// EmitFunctionHeader - This method emits the header for the current 699 /// function. 700 void AsmPrinter::emitFunctionHeader() { 701 const Function &F = MF->getFunction(); 702 703 if (isVerbose()) 704 OutStreamer->GetCommentOS() 705 << "-- Begin function " 706 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 707 708 // Print out constants referenced by the function 709 emitConstantPool(); 710 711 // Print the 'header' of function. 712 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM)); 713 OutStreamer->SwitchSection(MF->getSection()); 714 715 if (!MAI->hasVisibilityOnlyWithLinkage()) 716 emitVisibility(CurrentFnSym, F.getVisibility()); 717 718 if (MAI->needsFunctionDescriptors()) 719 emitLinkage(&F, CurrentFnDescSym); 720 721 emitLinkage(&F, CurrentFnSym); 722 if (MAI->hasFunctionAlignment()) 723 emitAlignment(MF->getAlignment(), &F); 724 725 if (MAI->hasDotTypeDotSizeDirective()) 726 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 727 728 if (F.hasFnAttribute(Attribute::Cold)) 729 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold); 730 731 if (isVerbose()) { 732 F.printAsOperand(OutStreamer->GetCommentOS(), 733 /*PrintType=*/false, F.getParent()); 734 emitFunctionHeaderComment(); 735 OutStreamer->GetCommentOS() << '\n'; 736 } 737 738 // Emit the prefix data. 739 if (F.hasPrefixData()) { 740 if (MAI->hasSubsectionsViaSymbols()) { 741 // Preserving prefix data on platforms which use subsections-via-symbols 742 // is a bit tricky. Here we introduce a symbol for the prefix data 743 // and use the .alt_entry attribute to mark the function's real entry point 744 // as an alternative entry point to the prefix-data symbol. 745 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 746 OutStreamer->emitLabel(PrefixSym); 747 748 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 749 750 // Emit an .alt_entry directive for the actual function symbol. 751 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 752 } else { 753 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 754 } 755 } 756 757 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 758 // place prefix data before NOPs. 759 unsigned PatchableFunctionPrefix = 0; 760 unsigned PatchableFunctionEntry = 0; 761 (void)F.getFnAttribute("patchable-function-prefix") 762 .getValueAsString() 763 .getAsInteger(10, PatchableFunctionPrefix); 764 (void)F.getFnAttribute("patchable-function-entry") 765 .getValueAsString() 766 .getAsInteger(10, PatchableFunctionEntry); 767 if (PatchableFunctionPrefix) { 768 CurrentPatchableFunctionEntrySym = 769 OutContext.createLinkerPrivateTempSymbol(); 770 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym); 771 emitNops(PatchableFunctionPrefix); 772 } else if (PatchableFunctionEntry) { 773 // May be reassigned when emitting the body, to reference the label after 774 // the initial BTI (AArch64) or endbr32/endbr64 (x86). 775 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 776 } 777 778 // Emit the function descriptor. This is a virtual function to allow targets 779 // to emit their specific function descriptor. Right now it is only used by 780 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function 781 // descriptors and should be converted to use this hook as well. 782 if (MAI->needsFunctionDescriptors()) 783 emitFunctionDescriptor(); 784 785 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 786 // their wild and crazy things as required. 787 emitFunctionEntryLabel(); 788 789 if (CurrentFnBegin) { 790 if (MAI->useAssignmentForEHBegin()) { 791 MCSymbol *CurPos = OutContext.createTempSymbol(); 792 OutStreamer->emitLabel(CurPos); 793 OutStreamer->emitAssignment(CurrentFnBegin, 794 MCSymbolRefExpr::create(CurPos, OutContext)); 795 } else { 796 OutStreamer->emitLabel(CurrentFnBegin); 797 } 798 } 799 800 // Emit pre-function debug and/or EH information. 801 for (const HandlerInfo &HI : Handlers) { 802 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 803 HI.TimerGroupDescription, TimePassesIsEnabled); 804 HI.Handler->beginFunction(MF); 805 } 806 807 // Emit the prologue data. 808 if (F.hasPrologueData()) 809 emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 810 } 811 812 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 813 /// function. This can be overridden by targets as required to do custom stuff. 814 void AsmPrinter::emitFunctionEntryLabel() { 815 CurrentFnSym->redefineIfPossible(); 816 817 // The function label could have already been emitted if two symbols end up 818 // conflicting due to asm renaming. Detect this and emit an error. 819 if (CurrentFnSym->isVariable()) 820 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 821 "' is a protected alias"); 822 if (CurrentFnSym->isDefined()) 823 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 824 "' label emitted multiple times to assembly file"); 825 826 OutStreamer->emitLabel(CurrentFnSym); 827 828 if (TM.getTargetTriple().isOSBinFormatELF()) { 829 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction()); 830 if (Sym != CurrentFnSym) 831 OutStreamer->emitLabel(Sym); 832 } 833 } 834 835 /// emitComments - Pretty-print comments for instructions. 836 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 837 const MachineFunction *MF = MI.getMF(); 838 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 839 840 // Check for spills and reloads 841 842 // We assume a single instruction only has a spill or reload, not 843 // both. 844 Optional<unsigned> Size; 845 if ((Size = MI.getRestoreSize(TII))) { 846 CommentOS << *Size << "-byte Reload\n"; 847 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 848 if (*Size) { 849 if (*Size == unsigned(MemoryLocation::UnknownSize)) 850 CommentOS << "Unknown-size Folded Reload\n"; 851 else 852 CommentOS << *Size << "-byte Folded Reload\n"; 853 } 854 } else if ((Size = MI.getSpillSize(TII))) { 855 CommentOS << *Size << "-byte Spill\n"; 856 } else if ((Size = MI.getFoldedSpillSize(TII))) { 857 if (*Size) { 858 if (*Size == unsigned(MemoryLocation::UnknownSize)) 859 CommentOS << "Unknown-size Folded Spill\n"; 860 else 861 CommentOS << *Size << "-byte Folded Spill\n"; 862 } 863 } 864 865 // Check for spill-induced copies 866 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 867 CommentOS << " Reload Reuse\n"; 868 } 869 870 /// emitImplicitDef - This method emits the specified machine instruction 871 /// that is an implicit def. 872 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 873 Register RegNo = MI->getOperand(0).getReg(); 874 875 SmallString<128> Str; 876 raw_svector_ostream OS(Str); 877 OS << "implicit-def: " 878 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 879 880 OutStreamer->AddComment(OS.str()); 881 OutStreamer->AddBlankLine(); 882 } 883 884 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 885 std::string Str; 886 raw_string_ostream OS(Str); 887 OS << "kill:"; 888 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 889 const MachineOperand &Op = MI->getOperand(i); 890 assert(Op.isReg() && "KILL instruction must have only register operands"); 891 OS << ' ' << (Op.isDef() ? "def " : "killed ") 892 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 893 } 894 AP.OutStreamer->AddComment(OS.str()); 895 AP.OutStreamer->AddBlankLine(); 896 } 897 898 /// emitDebugValueComment - This method handles the target-independent form 899 /// of DBG_VALUE, returning true if it was able to do so. A false return 900 /// means the target will need to handle MI in EmitInstruction. 901 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 902 // This code handles only the 4-operand target-independent form. 903 if (MI->getNumOperands() != 4) 904 return false; 905 906 SmallString<128> Str; 907 raw_svector_ostream OS(Str); 908 OS << "DEBUG_VALUE: "; 909 910 const DILocalVariable *V = MI->getDebugVariable(); 911 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 912 StringRef Name = SP->getName(); 913 if (!Name.empty()) 914 OS << Name << ":"; 915 } 916 OS << V->getName(); 917 OS << " <- "; 918 919 // The second operand is only an offset if it's an immediate. 920 bool MemLoc = MI->isIndirectDebugValue(); 921 auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0); 922 const DIExpression *Expr = MI->getDebugExpression(); 923 if (Expr->getNumElements()) { 924 OS << '['; 925 ListSeparator LS; 926 for (auto Op : Expr->expr_ops()) { 927 OS << LS << dwarf::OperationEncodingString(Op.getOp()); 928 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 929 OS << ' ' << Op.getArg(I); 930 } 931 OS << "] "; 932 } 933 934 // Register or immediate value. Register 0 means undef. 935 if (MI->getDebugOperand(0).isFPImm()) { 936 APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF()); 937 if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) { 938 OS << (double)APF.convertToFloat(); 939 } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) { 940 OS << APF.convertToDouble(); 941 } else { 942 // There is no good way to print long double. Convert a copy to 943 // double. Ah well, it's only a comment. 944 bool ignored; 945 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 946 &ignored); 947 OS << "(long double) " << APF.convertToDouble(); 948 } 949 } else if (MI->getDebugOperand(0).isImm()) { 950 OS << MI->getDebugOperand(0).getImm(); 951 } else if (MI->getDebugOperand(0).isCImm()) { 952 MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 953 } else if (MI->getDebugOperand(0).isTargetIndex()) { 954 auto Op = MI->getDebugOperand(0); 955 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 956 // NOTE: Want this comment at start of line, don't emit with AddComment. 957 AP.OutStreamer->emitRawComment(OS.str()); 958 return true; 959 } else { 960 Register Reg; 961 if (MI->getDebugOperand(0).isReg()) { 962 Reg = MI->getDebugOperand(0).getReg(); 963 } else { 964 assert(MI->getDebugOperand(0).isFI() && "Unknown operand type"); 965 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 966 Offset += TFI->getFrameIndexReference( 967 *AP.MF, MI->getDebugOperand(0).getIndex(), Reg); 968 MemLoc = true; 969 } 970 if (Reg == 0) { 971 // Suppress offset, it is not meaningful here. 972 OS << "undef"; 973 // NOTE: Want this comment at start of line, don't emit with AddComment. 974 AP.OutStreamer->emitRawComment(OS.str()); 975 return true; 976 } 977 if (MemLoc) 978 OS << '['; 979 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 980 } 981 982 if (MemLoc) 983 OS << '+' << Offset.getFixed() << ']'; 984 985 // NOTE: Want this comment at start of line, don't emit with AddComment. 986 AP.OutStreamer->emitRawComment(OS.str()); 987 return true; 988 } 989 990 /// This method handles the target-independent form of DBG_LABEL, returning 991 /// true if it was able to do so. A false return means the target will need 992 /// to handle MI in EmitInstruction. 993 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 994 if (MI->getNumOperands() != 1) 995 return false; 996 997 SmallString<128> Str; 998 raw_svector_ostream OS(Str); 999 OS << "DEBUG_LABEL: "; 1000 1001 const DILabel *V = MI->getDebugLabel(); 1002 if (auto *SP = dyn_cast<DISubprogram>( 1003 V->getScope()->getNonLexicalBlockFileScope())) { 1004 StringRef Name = SP->getName(); 1005 if (!Name.empty()) 1006 OS << Name << ":"; 1007 } 1008 OS << V->getName(); 1009 1010 // NOTE: Want this comment at start of line, don't emit with AddComment. 1011 AP.OutStreamer->emitRawComment(OS.str()); 1012 return true; 1013 } 1014 1015 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 1016 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 1017 MF->getFunction().needsUnwindTableEntry()) 1018 return CFI_M_EH; 1019 1020 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 1021 return CFI_M_Debug; 1022 1023 return CFI_M_None; 1024 } 1025 1026 bool AsmPrinter::needsSEHMoves() { 1027 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 1028 } 1029 1030 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 1031 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 1032 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 1033 ExceptionHandlingType != ExceptionHandling::ARM) 1034 return; 1035 1036 if (needsCFIMoves() == CFI_M_None) 1037 return; 1038 1039 // If there is no "real" instruction following this CFI instruction, skip 1040 // emitting it; it would be beyond the end of the function's FDE range. 1041 auto *MBB = MI.getParent(); 1042 auto I = std::next(MI.getIterator()); 1043 while (I != MBB->end() && I->isTransient()) 1044 ++I; 1045 if (I == MBB->instr_end() && 1046 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 1047 return; 1048 1049 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 1050 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 1051 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 1052 emitCFIInstruction(CFI); 1053 } 1054 1055 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 1056 // The operands are the MCSymbol and the frame offset of the allocation. 1057 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 1058 int FrameOffset = MI.getOperand(1).getImm(); 1059 1060 // Emit a symbol assignment. 1061 OutStreamer->emitAssignment(FrameAllocSym, 1062 MCConstantExpr::create(FrameOffset, OutContext)); 1063 } 1064 1065 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a 1066 /// given basic block. This can be used to capture more precise profile 1067 /// information. We use the last 3 bits (LSBs) to ecnode the following 1068 /// information: 1069 /// * (1): set if return block (ret or tail call). 1070 /// * (2): set if ends with a tail call. 1071 /// * (3): set if exception handling (EH) landing pad. 1072 /// The remaining bits are zero. 1073 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) { 1074 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); 1075 return ((unsigned)MBB.isReturnBlock()) | 1076 ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) | 1077 (MBB.isEHPad() << 2); 1078 } 1079 1080 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { 1081 MCSection *BBAddrMapSection = 1082 getObjFileLowering().getBBAddrMapSection(*MF.getSection()); 1083 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized."); 1084 1085 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1086 1087 OutStreamer->PushSection(); 1088 OutStreamer->SwitchSection(BBAddrMapSection); 1089 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize()); 1090 // Emit the total number of basic blocks in this function. 1091 OutStreamer->emitULEB128IntValue(MF.size()); 1092 // Emit BB Information for each basic block in the funciton. 1093 for (const MachineBasicBlock &MBB : MF) { 1094 const MCSymbol *MBBSymbol = 1095 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); 1096 // Emit the basic block offset. 1097 emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol); 1098 // Emit the basic block size. When BBs have alignments, their size cannot 1099 // always be computed from their offsets. 1100 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol); 1101 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB)); 1102 } 1103 OutStreamer->PopSection(); 1104 } 1105 1106 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { 1107 auto GUID = MI.getOperand(0).getImm(); 1108 auto Index = MI.getOperand(1).getImm(); 1109 auto Type = MI.getOperand(2).getImm(); 1110 auto Attr = MI.getOperand(3).getImm(); 1111 DILocation *DebugLoc = MI.getDebugLoc(); 1112 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc); 1113 } 1114 1115 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1116 if (!MF.getTarget().Options.EmitStackSizeSection) 1117 return; 1118 1119 MCSection *StackSizeSection = 1120 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1121 if (!StackSizeSection) 1122 return; 1123 1124 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1125 // Don't emit functions with dynamic stack allocations. 1126 if (FrameInfo.hasVarSizedObjects()) 1127 return; 1128 1129 OutStreamer->PushSection(); 1130 OutStreamer->SwitchSection(StackSizeSection); 1131 1132 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1133 uint64_t StackSize = FrameInfo.getStackSize(); 1134 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1135 OutStreamer->emitULEB128IntValue(StackSize); 1136 1137 OutStreamer->PopSection(); 1138 } 1139 1140 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) { 1141 MachineModuleInfo &MMI = MF.getMMI(); 1142 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo()) 1143 return true; 1144 1145 // We might emit an EH table that uses function begin and end labels even if 1146 // we don't have any landingpads. 1147 if (!MF.getFunction().hasPersonalityFn()) 1148 return false; 1149 return !isNoOpWithoutInvoke( 1150 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1151 } 1152 1153 /// EmitFunctionBody - This method emits the body and trailer for a 1154 /// function. 1155 void AsmPrinter::emitFunctionBody() { 1156 emitFunctionHeader(); 1157 1158 // Emit target-specific gunk before the function body. 1159 emitFunctionBodyStart(); 1160 1161 if (isVerbose()) { 1162 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1163 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1164 if (!MDT) { 1165 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1166 OwnedMDT->getBase().recalculate(*MF); 1167 MDT = OwnedMDT.get(); 1168 } 1169 1170 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1171 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1172 if (!MLI) { 1173 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1174 OwnedMLI->getBase().analyze(MDT->getBase()); 1175 MLI = OwnedMLI.get(); 1176 } 1177 } 1178 1179 // Print out code for the function. 1180 bool HasAnyRealCode = false; 1181 int NumInstsInFunction = 0; 1182 1183 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1184 for (auto &MBB : *MF) { 1185 // Print a label for the basic block. 1186 emitBasicBlockStart(MBB); 1187 DenseMap<StringRef, unsigned> MnemonicCounts; 1188 for (auto &MI : MBB) { 1189 // Print the assembly for the instruction. 1190 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1191 !MI.isDebugInstr()) { 1192 HasAnyRealCode = true; 1193 ++NumInstsInFunction; 1194 } 1195 1196 // If there is a pre-instruction symbol, emit a label for it here. 1197 if (MCSymbol *S = MI.getPreInstrSymbol()) 1198 OutStreamer->emitLabel(S); 1199 1200 for (const HandlerInfo &HI : Handlers) { 1201 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1202 HI.TimerGroupDescription, TimePassesIsEnabled); 1203 HI.Handler->beginInstruction(&MI); 1204 } 1205 1206 if (isVerbose()) 1207 emitComments(MI, OutStreamer->GetCommentOS()); 1208 1209 switch (MI.getOpcode()) { 1210 case TargetOpcode::CFI_INSTRUCTION: 1211 emitCFIInstruction(MI); 1212 break; 1213 case TargetOpcode::LOCAL_ESCAPE: 1214 emitFrameAlloc(MI); 1215 break; 1216 case TargetOpcode::ANNOTATION_LABEL: 1217 case TargetOpcode::EH_LABEL: 1218 case TargetOpcode::GC_LABEL: 1219 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol()); 1220 break; 1221 case TargetOpcode::INLINEASM: 1222 case TargetOpcode::INLINEASM_BR: 1223 emitInlineAsm(&MI); 1224 break; 1225 case TargetOpcode::DBG_VALUE: 1226 if (isVerbose()) { 1227 if (!emitDebugValueComment(&MI, *this)) 1228 emitInstruction(&MI); 1229 } 1230 break; 1231 case TargetOpcode::DBG_INSTR_REF: 1232 // This instruction reference will have been resolved to a machine 1233 // location, and a nearby DBG_VALUE created. We can safely ignore 1234 // the instruction reference. 1235 break; 1236 case TargetOpcode::DBG_LABEL: 1237 if (isVerbose()) { 1238 if (!emitDebugLabelComment(&MI, *this)) 1239 emitInstruction(&MI); 1240 } 1241 break; 1242 case TargetOpcode::IMPLICIT_DEF: 1243 if (isVerbose()) emitImplicitDef(&MI); 1244 break; 1245 case TargetOpcode::KILL: 1246 if (isVerbose()) emitKill(&MI, *this); 1247 break; 1248 case TargetOpcode::PSEUDO_PROBE: 1249 emitPseudoProbe(MI); 1250 break; 1251 default: 1252 emitInstruction(&MI); 1253 if (CanDoExtraAnalysis) { 1254 MCInst MCI; 1255 MCI.setOpcode(MI.getOpcode()); 1256 auto Name = OutStreamer->getMnemonic(MCI); 1257 auto I = MnemonicCounts.insert({Name, 0u}); 1258 I.first->second++; 1259 } 1260 break; 1261 } 1262 1263 // If there is a post-instruction symbol, emit a label for it here. 1264 if (MCSymbol *S = MI.getPostInstrSymbol()) 1265 OutStreamer->emitLabel(S); 1266 1267 for (const HandlerInfo &HI : Handlers) { 1268 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1269 HI.TimerGroupDescription, TimePassesIsEnabled); 1270 HI.Handler->endInstruction(); 1271 } 1272 } 1273 1274 // We must emit temporary symbol for the end of this basic block, if either 1275 // we have BBLabels enabled or if this basic blocks marks the end of a 1276 // section (except the section containing the entry basic block as the end 1277 // symbol for that section is CurrentFnEnd). 1278 if (MF->hasBBLabels() || 1279 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() && 1280 !MBB.sameSection(&MF->front()))) 1281 OutStreamer->emitLabel(MBB.getEndSymbol()); 1282 1283 if (MBB.isEndSection()) { 1284 // The size directive for the section containing the entry block is 1285 // handled separately by the function section. 1286 if (!MBB.sameSection(&MF->front())) { 1287 if (MAI->hasDotTypeDotSizeDirective()) { 1288 // Emit the size directive for the basic block section. 1289 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1290 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext), 1291 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext), 1292 OutContext); 1293 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp); 1294 } 1295 MBBSectionRanges[MBB.getSectionIDNum()] = 1296 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()}; 1297 } 1298 } 1299 emitBasicBlockEnd(MBB); 1300 1301 if (CanDoExtraAnalysis) { 1302 // Skip empty blocks. 1303 if (MBB.empty()) 1304 continue; 1305 1306 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix", 1307 MBB.begin()->getDebugLoc(), &MBB); 1308 1309 // Generate instruction mix remark. First, sort counts in descending order 1310 // by count and name. 1311 SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; 1312 for (auto &KV : MnemonicCounts) 1313 MnemonicVec.emplace_back(KV.first, KV.second); 1314 1315 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A, 1316 const std::pair<StringRef, unsigned> &B) { 1317 if (A.second > B.second) 1318 return true; 1319 if (A.second == B.second) 1320 return StringRef(A.first) < StringRef(B.first); 1321 return false; 1322 }); 1323 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n"; 1324 for (auto &KV : MnemonicVec) { 1325 auto Name = (Twine("INST_") + KV.first.trim()).str(); 1326 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n"; 1327 } 1328 ORE->emit(R); 1329 } 1330 } 1331 1332 EmittedInsts += NumInstsInFunction; 1333 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1334 MF->getFunction().getSubprogram(), 1335 &MF->front()); 1336 R << ore::NV("NumInstructions", NumInstsInFunction) 1337 << " instructions in function"; 1338 ORE->emit(R); 1339 1340 // If the function is empty and the object file uses .subsections_via_symbols, 1341 // then we need to emit *something* to the function body to prevent the 1342 // labels from collapsing together. Just emit a noop. 1343 // Similarly, don't emit empty functions on Windows either. It can lead to 1344 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1345 // after linking, causing the kernel not to load the binary: 1346 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1347 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1348 const Triple &TT = TM.getTargetTriple(); 1349 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1350 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1351 MCInst Noop; 1352 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1353 1354 // Targets can opt-out of emitting the noop here by leaving the opcode 1355 // unspecified. 1356 if (Noop.getOpcode()) { 1357 OutStreamer->AddComment("avoids zero-length function"); 1358 emitNops(1); 1359 } 1360 } 1361 1362 // Switch to the original section in case basic block sections was used. 1363 OutStreamer->SwitchSection(MF->getSection()); 1364 1365 const Function &F = MF->getFunction(); 1366 for (const auto &BB : F) { 1367 if (!BB.hasAddressTaken()) 1368 continue; 1369 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1370 if (Sym->isDefined()) 1371 continue; 1372 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1373 OutStreamer->emitLabel(Sym); 1374 } 1375 1376 // Emit target-specific gunk after the function body. 1377 emitFunctionBodyEnd(); 1378 1379 if (needFuncLabelsForEHOrDebugInfo(*MF) || 1380 MAI->hasDotTypeDotSizeDirective()) { 1381 // Create a symbol for the end of function. 1382 CurrentFnEnd = createTempSymbol("func_end"); 1383 OutStreamer->emitLabel(CurrentFnEnd); 1384 } 1385 1386 // If the target wants a .size directive for the size of the function, emit 1387 // it. 1388 if (MAI->hasDotTypeDotSizeDirective()) { 1389 // We can get the size as difference between the function label and the 1390 // temp label. 1391 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1392 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1393 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1394 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1395 } 1396 1397 for (const HandlerInfo &HI : Handlers) { 1398 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1399 HI.TimerGroupDescription, TimePassesIsEnabled); 1400 HI.Handler->markFunctionEnd(); 1401 } 1402 1403 MBBSectionRanges[MF->front().getSectionIDNum()] = 1404 MBBSectionRange{CurrentFnBegin, CurrentFnEnd}; 1405 1406 // Print out jump tables referenced by the function. 1407 emitJumpTableInfo(); 1408 1409 // Emit post-function debug and/or EH information. 1410 for (const HandlerInfo &HI : Handlers) { 1411 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1412 HI.TimerGroupDescription, TimePassesIsEnabled); 1413 HI.Handler->endFunction(MF); 1414 } 1415 1416 // Emit section containing BB address offsets and their metadata, when 1417 // BB labels are requested for this function. 1418 if (MF->hasBBLabels()) 1419 emitBBAddrMapSection(*MF); 1420 1421 // Emit section containing stack size metadata. 1422 emitStackSizeSection(*MF); 1423 1424 emitPatchableFunctionEntries(); 1425 1426 if (isVerbose()) 1427 OutStreamer->GetCommentOS() << "-- End function\n"; 1428 1429 OutStreamer->AddBlankLine(); 1430 } 1431 1432 /// Compute the number of Global Variables that uses a Constant. 1433 static unsigned getNumGlobalVariableUses(const Constant *C) { 1434 if (!C) 1435 return 0; 1436 1437 if (isa<GlobalVariable>(C)) 1438 return 1; 1439 1440 unsigned NumUses = 0; 1441 for (auto *CU : C->users()) 1442 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1443 1444 return NumUses; 1445 } 1446 1447 /// Only consider global GOT equivalents if at least one user is a 1448 /// cstexpr inside an initializer of another global variables. Also, don't 1449 /// handle cstexpr inside instructions. During global variable emission, 1450 /// candidates are skipped and are emitted later in case at least one cstexpr 1451 /// isn't replaced by a PC relative GOT entry access. 1452 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1453 unsigned &NumGOTEquivUsers) { 1454 // Global GOT equivalents are unnamed private globals with a constant 1455 // pointer initializer to another global symbol. They must point to a 1456 // GlobalVariable or Function, i.e., as GlobalValue. 1457 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1458 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1459 !isa<GlobalValue>(GV->getOperand(0))) 1460 return false; 1461 1462 // To be a got equivalent, at least one of its users need to be a constant 1463 // expression used by another global variable. 1464 for (auto *U : GV->users()) 1465 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1466 1467 return NumGOTEquivUsers > 0; 1468 } 1469 1470 /// Unnamed constant global variables solely contaning a pointer to 1471 /// another globals variable is equivalent to a GOT table entry; it contains the 1472 /// the address of another symbol. Optimize it and replace accesses to these 1473 /// "GOT equivalents" by using the GOT entry for the final global instead. 1474 /// Compute GOT equivalent candidates among all global variables to avoid 1475 /// emitting them if possible later on, after it use is replaced by a GOT entry 1476 /// access. 1477 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1478 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1479 return; 1480 1481 for (const auto &G : M.globals()) { 1482 unsigned NumGOTEquivUsers = 0; 1483 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1484 continue; 1485 1486 const MCSymbol *GOTEquivSym = getSymbol(&G); 1487 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1488 } 1489 } 1490 1491 /// Constant expressions using GOT equivalent globals may not be eligible 1492 /// for PC relative GOT entry conversion, in such cases we need to emit such 1493 /// globals we previously omitted in EmitGlobalVariable. 1494 void AsmPrinter::emitGlobalGOTEquivs() { 1495 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1496 return; 1497 1498 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1499 for (auto &I : GlobalGOTEquivs) { 1500 const GlobalVariable *GV = I.second.first; 1501 unsigned Cnt = I.second.second; 1502 if (Cnt) 1503 FailedCandidates.push_back(GV); 1504 } 1505 GlobalGOTEquivs.clear(); 1506 1507 for (auto *GV : FailedCandidates) 1508 emitGlobalVariable(GV); 1509 } 1510 1511 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1512 const GlobalIndirectSymbol& GIS) { 1513 MCSymbol *Name = getSymbol(&GIS); 1514 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1515 // Treat bitcasts of functions as functions also. This is important at least 1516 // on WebAssembly where object and function addresses can't alias each other. 1517 if (!IsFunction) 1518 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1519 if (CE->getOpcode() == Instruction::BitCast) 1520 IsFunction = 1521 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1522 1523 // AIX's assembly directive `.set` is not usable for aliasing purpose, 1524 // so AIX has to use the extra-label-at-definition strategy. At this 1525 // point, all the extra label is emitted, we just have to emit linkage for 1526 // those labels. 1527 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1528 assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX."); 1529 assert(MAI->hasVisibilityOnlyWithLinkage() && 1530 "Visibility should be handled with emitLinkage() on AIX."); 1531 emitLinkage(&GIS, Name); 1532 // If it's a function, also emit linkage for aliases of function entry 1533 // point. 1534 if (IsFunction) 1535 emitLinkage(&GIS, 1536 getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM)); 1537 return; 1538 } 1539 1540 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1541 OutStreamer->emitSymbolAttribute(Name, MCSA_Global); 1542 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1543 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference); 1544 else 1545 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1546 1547 // Set the symbol type to function if the alias has a function type. 1548 // This affects codegen when the aliasee is not a function. 1549 if (IsFunction) 1550 OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1551 ? MCSA_ELF_TypeIndFunction 1552 : MCSA_ELF_TypeFunction); 1553 1554 emitVisibility(Name, GIS.getVisibility()); 1555 1556 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1557 1558 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1559 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry); 1560 1561 // Emit the directives as assignments aka .set: 1562 OutStreamer->emitAssignment(Name, Expr); 1563 MCSymbol *LocalAlias = getSymbolPreferLocal(GIS); 1564 if (LocalAlias != Name) 1565 OutStreamer->emitAssignment(LocalAlias, Expr); 1566 1567 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1568 // If the aliasee does not correspond to a symbol in the output, i.e. the 1569 // alias is not of an object or the aliased object is private, then set the 1570 // size of the alias symbol from the type of the alias. We don't do this in 1571 // other situations as the alias and aliasee having differing types but same 1572 // size may be intentional. 1573 const GlobalObject *BaseObject = GA->getBaseObject(); 1574 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1575 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1576 const DataLayout &DL = M.getDataLayout(); 1577 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1578 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1579 } 1580 } 1581 } 1582 1583 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) { 1584 if (!RS.needsSection()) 1585 return; 1586 1587 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1588 1589 Optional<SmallString<128>> Filename; 1590 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1591 Filename = *FilenameRef; 1592 sys::fs::make_absolute(*Filename); 1593 assert(!Filename->empty() && "The filename can't be empty."); 1594 } 1595 1596 std::string Buf; 1597 raw_string_ostream OS(Buf); 1598 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1599 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1600 : RemarkSerializer.metaSerializer(OS); 1601 MetaSerializer->emit(); 1602 1603 // Switch to the remarks section. 1604 MCSection *RemarksSection = 1605 OutContext.getObjectFileInfo()->getRemarksSection(); 1606 OutStreamer->SwitchSection(RemarksSection); 1607 1608 OutStreamer->emitBinaryData(OS.str()); 1609 } 1610 1611 bool AsmPrinter::doFinalization(Module &M) { 1612 // Set the MachineFunction to nullptr so that we can catch attempted 1613 // accesses to MF specific features at the module level and so that 1614 // we can conditionalize accesses based on whether or not it is nullptr. 1615 MF = nullptr; 1616 1617 // Gather all GOT equivalent globals in the module. We really need two 1618 // passes over the globals: one to compute and another to avoid its emission 1619 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1620 // where the got equivalent shows up before its use. 1621 computeGlobalGOTEquivs(M); 1622 1623 // Emit global variables. 1624 for (const auto &G : M.globals()) 1625 emitGlobalVariable(&G); 1626 1627 // Emit remaining GOT equivalent globals. 1628 emitGlobalGOTEquivs(); 1629 1630 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1631 1632 // Emit linkage(XCOFF) and visibility info for declarations 1633 for (const Function &F : M) { 1634 if (!F.isDeclarationForLinker()) 1635 continue; 1636 1637 MCSymbol *Name = getSymbol(&F); 1638 // Function getSymbol gives us the function descriptor symbol for XCOFF. 1639 1640 if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { 1641 GlobalValue::VisibilityTypes V = F.getVisibility(); 1642 if (V == GlobalValue::DefaultVisibility) 1643 continue; 1644 1645 emitVisibility(Name, V, false); 1646 continue; 1647 } 1648 1649 if (F.isIntrinsic()) 1650 continue; 1651 1652 // Handle the XCOFF case. 1653 // Variable `Name` is the function descriptor symbol (see above). Get the 1654 // function entry point symbol. 1655 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM); 1656 // Emit linkage for the function entry point. 1657 emitLinkage(&F, FnEntryPointSym); 1658 1659 // Emit linkage for the function descriptor. 1660 emitLinkage(&F, Name); 1661 } 1662 1663 // Emit the remarks section contents. 1664 // FIXME: Figure out when is the safest time to emit this section. It should 1665 // not come after debug info. 1666 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) 1667 emitRemarksSection(*RS); 1668 1669 TLOF.emitModuleMetadata(*OutStreamer, M); 1670 1671 if (TM.getTargetTriple().isOSBinFormatELF()) { 1672 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1673 1674 // Output stubs for external and common global variables. 1675 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1676 if (!Stubs.empty()) { 1677 OutStreamer->SwitchSection(TLOF.getDataSection()); 1678 const DataLayout &DL = M.getDataLayout(); 1679 1680 emitAlignment(Align(DL.getPointerSize())); 1681 for (const auto &Stub : Stubs) { 1682 OutStreamer->emitLabel(Stub.first); 1683 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1684 DL.getPointerSize()); 1685 } 1686 } 1687 } 1688 1689 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1690 MachineModuleInfoCOFF &MMICOFF = 1691 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1692 1693 // Output stubs for external and common global variables. 1694 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1695 if (!Stubs.empty()) { 1696 const DataLayout &DL = M.getDataLayout(); 1697 1698 for (const auto &Stub : Stubs) { 1699 SmallString<256> SectionName = StringRef(".rdata$"); 1700 SectionName += Stub.first->getName(); 1701 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1702 SectionName, 1703 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1704 COFF::IMAGE_SCN_LNK_COMDAT, 1705 SectionKind::getReadOnly(), Stub.first->getName(), 1706 COFF::IMAGE_COMDAT_SELECT_ANY)); 1707 emitAlignment(Align(DL.getPointerSize())); 1708 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global); 1709 OutStreamer->emitLabel(Stub.first); 1710 OutStreamer->emitSymbolValue(Stub.second.getPointer(), 1711 DL.getPointerSize()); 1712 } 1713 } 1714 } 1715 1716 // Finalize debug and EH information. 1717 for (const HandlerInfo &HI : Handlers) { 1718 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1719 HI.TimerGroupDescription, TimePassesIsEnabled); 1720 HI.Handler->endModule(); 1721 } 1722 1723 // This deletes all the ephemeral handlers that AsmPrinter added, while 1724 // keeping all the user-added handlers alive until the AsmPrinter is 1725 // destroyed. 1726 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end()); 1727 DD = nullptr; 1728 1729 // If the target wants to know about weak references, print them all. 1730 if (MAI->getWeakRefDirective()) { 1731 // FIXME: This is not lazy, it would be nice to only print weak references 1732 // to stuff that is actually used. Note that doing so would require targets 1733 // to notice uses in operands (due to constant exprs etc). This should 1734 // happen with the MC stuff eventually. 1735 1736 // Print out module-level global objects here. 1737 for (const auto &GO : M.global_objects()) { 1738 if (!GO.hasExternalWeakLinkage()) 1739 continue; 1740 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1741 } 1742 } 1743 1744 // Print aliases in topological order, that is, for each alias a = b, 1745 // b must be printed before a. 1746 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1747 // such an order to generate correct TOC information. 1748 SmallVector<const GlobalAlias *, 16> AliasStack; 1749 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1750 for (const auto &Alias : M.aliases()) { 1751 for (const GlobalAlias *Cur = &Alias; Cur; 1752 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1753 if (!AliasVisited.insert(Cur).second) 1754 break; 1755 AliasStack.push_back(Cur); 1756 } 1757 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1758 emitGlobalIndirectSymbol(M, *AncestorAlias); 1759 AliasStack.clear(); 1760 } 1761 for (const auto &IFunc : M.ifuncs()) 1762 emitGlobalIndirectSymbol(M, IFunc); 1763 1764 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1765 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1766 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1767 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1768 MP->finishAssembly(M, *MI, *this); 1769 1770 // Emit llvm.ident metadata in an '.ident' directive. 1771 emitModuleIdents(M); 1772 1773 // Emit bytes for llvm.commandline metadata. 1774 emitModuleCommandLines(M); 1775 1776 // Emit __morestack address if needed for indirect calls. 1777 if (MMI->usesMorestackAddr()) { 1778 Align Alignment(1); 1779 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1780 getDataLayout(), SectionKind::getReadOnly(), 1781 /*C=*/nullptr, Alignment); 1782 OutStreamer->SwitchSection(ReadOnlySection); 1783 1784 MCSymbol *AddrSymbol = 1785 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1786 OutStreamer->emitLabel(AddrSymbol); 1787 1788 unsigned PtrSize = MAI->getCodePointerSize(); 1789 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1790 PtrSize); 1791 } 1792 1793 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1794 // split-stack is used. 1795 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1796 OutStreamer->SwitchSection( 1797 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1798 if (MMI->hasNosplitStack()) 1799 OutStreamer->SwitchSection( 1800 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1801 } 1802 1803 // If we don't have any trampolines, then we don't require stack memory 1804 // to be executable. Some targets have a directive to declare this. 1805 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1806 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1807 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1808 OutStreamer->SwitchSection(S); 1809 1810 if (TM.Options.EmitAddrsig) { 1811 // Emit address-significance attributes for all globals. 1812 OutStreamer->emitAddrsig(); 1813 for (const GlobalValue &GV : M.global_values()) 1814 if (!GV.use_empty() && !GV.isThreadLocal() && 1815 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1816 !GV.hasAtLeastLocalUnnamedAddr()) 1817 OutStreamer->emitAddrsigSym(getSymbol(&GV)); 1818 } 1819 1820 // Emit symbol partition specifications (ELF only). 1821 if (TM.getTargetTriple().isOSBinFormatELF()) { 1822 unsigned UniqueID = 0; 1823 for (const GlobalValue &GV : M.global_values()) { 1824 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1825 GV.getVisibility() != GlobalValue::DefaultVisibility) 1826 continue; 1827 1828 OutStreamer->SwitchSection( 1829 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, 1830 "", ++UniqueID, nullptr)); 1831 OutStreamer->emitBytes(GV.getPartition()); 1832 OutStreamer->emitZeros(1); 1833 OutStreamer->emitValue( 1834 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1835 MAI->getCodePointerSize()); 1836 } 1837 } 1838 1839 // Allow the target to emit any magic that it wants at the end of the file, 1840 // after everything else has gone out. 1841 emitEndOfAsmFile(M); 1842 1843 MMI = nullptr; 1844 1845 OutStreamer->Finish(); 1846 OutStreamer->reset(); 1847 OwnedMLI.reset(); 1848 OwnedMDT.reset(); 1849 1850 return false; 1851 } 1852 1853 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { 1854 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum()); 1855 if (Res.second) 1856 Res.first->second = createTempSymbol("exception"); 1857 return Res.first->second; 1858 } 1859 1860 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1861 this->MF = &MF; 1862 const Function &F = MF.getFunction(); 1863 1864 // Get the function symbol. 1865 if (!MAI->needsFunctionDescriptors()) { 1866 CurrentFnSym = getSymbol(&MF.getFunction()); 1867 } else { 1868 assert(TM.getTargetTriple().isOSAIX() && 1869 "Only AIX uses the function descriptor hooks."); 1870 // AIX is unique here in that the name of the symbol emitted for the 1871 // function body does not have the same name as the source function's 1872 // C-linkage name. 1873 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1874 " initalized first."); 1875 1876 // Get the function entry point symbol. 1877 CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM); 1878 } 1879 1880 CurrentFnSymForSize = CurrentFnSym; 1881 CurrentFnBegin = nullptr; 1882 CurrentSectionBeginSym = nullptr; 1883 MBBSectionRanges.clear(); 1884 MBBSectionExceptionSyms.clear(); 1885 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1886 if (F.hasFnAttribute("patchable-function-entry") || 1887 F.hasFnAttribute("function-instrument") || 1888 F.hasFnAttribute("xray-instruction-threshold") || 1889 needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize || 1890 MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) { 1891 CurrentFnBegin = createTempSymbol("func_begin"); 1892 if (NeedsLocalForSize) 1893 CurrentFnSymForSize = CurrentFnBegin; 1894 } 1895 1896 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1897 } 1898 1899 namespace { 1900 1901 // Keep track the alignment, constpool entries per Section. 1902 struct SectionCPs { 1903 MCSection *S; 1904 Align Alignment; 1905 SmallVector<unsigned, 4> CPEs; 1906 1907 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} 1908 }; 1909 1910 } // end anonymous namespace 1911 1912 /// EmitConstantPool - Print to the current output stream assembly 1913 /// representations of the constants in the constant pool MCP. This is 1914 /// used to print out constants which have been "spilled to memory" by 1915 /// the code generator. 1916 void AsmPrinter::emitConstantPool() { 1917 const MachineConstantPool *MCP = MF->getConstantPool(); 1918 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1919 if (CP.empty()) return; 1920 1921 // Calculate sections for constant pool entries. We collect entries to go into 1922 // the same section together to reduce amount of section switch statements. 1923 SmallVector<SectionCPs, 4> CPSections; 1924 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1925 const MachineConstantPoolEntry &CPE = CP[i]; 1926 Align Alignment = CPE.getAlign(); 1927 1928 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1929 1930 const Constant *C = nullptr; 1931 if (!CPE.isMachineConstantPoolEntry()) 1932 C = CPE.Val.ConstVal; 1933 1934 MCSection *S = getObjFileLowering().getSectionForConstant( 1935 getDataLayout(), Kind, C, Alignment); 1936 1937 // The number of sections are small, just do a linear search from the 1938 // last section to the first. 1939 bool Found = false; 1940 unsigned SecIdx = CPSections.size(); 1941 while (SecIdx != 0) { 1942 if (CPSections[--SecIdx].S == S) { 1943 Found = true; 1944 break; 1945 } 1946 } 1947 if (!Found) { 1948 SecIdx = CPSections.size(); 1949 CPSections.push_back(SectionCPs(S, Alignment)); 1950 } 1951 1952 if (Alignment > CPSections[SecIdx].Alignment) 1953 CPSections[SecIdx].Alignment = Alignment; 1954 CPSections[SecIdx].CPEs.push_back(i); 1955 } 1956 1957 // Now print stuff into the calculated sections. 1958 const MCSection *CurSection = nullptr; 1959 unsigned Offset = 0; 1960 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1961 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1962 unsigned CPI = CPSections[i].CPEs[j]; 1963 MCSymbol *Sym = GetCPISymbol(CPI); 1964 if (!Sym->isUndefined()) 1965 continue; 1966 1967 if (CurSection != CPSections[i].S) { 1968 OutStreamer->SwitchSection(CPSections[i].S); 1969 emitAlignment(Align(CPSections[i].Alignment)); 1970 CurSection = CPSections[i].S; 1971 Offset = 0; 1972 } 1973 1974 MachineConstantPoolEntry CPE = CP[CPI]; 1975 1976 // Emit inter-object padding for alignment. 1977 unsigned NewOffset = alignTo(Offset, CPE.getAlign()); 1978 OutStreamer->emitZeros(NewOffset - Offset); 1979 1980 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout()); 1981 1982 OutStreamer->emitLabel(Sym); 1983 if (CPE.isMachineConstantPoolEntry()) 1984 emitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1985 else 1986 emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1987 } 1988 } 1989 } 1990 1991 // Print assembly representations of the jump tables used by the current 1992 // function. 1993 void AsmPrinter::emitJumpTableInfo() { 1994 const DataLayout &DL = MF->getDataLayout(); 1995 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1996 if (!MJTI) return; 1997 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1998 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1999 if (JT.empty()) return; 2000 2001 // Pick the directive to use to print the jump table entries, and switch to 2002 // the appropriate section. 2003 const Function &F = MF->getFunction(); 2004 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 2005 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 2006 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 2007 F); 2008 if (JTInDiffSection) { 2009 // Drop it in the readonly section. 2010 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 2011 OutStreamer->SwitchSection(ReadOnlySection); 2012 } 2013 2014 emitAlignment(Align(MJTI->getEntryAlignment(DL))); 2015 2016 // Jump tables in code sections are marked with a data_region directive 2017 // where that's supported. 2018 if (!JTInDiffSection) 2019 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 2020 2021 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 2022 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2023 2024 // If this jump table was deleted, ignore it. 2025 if (JTBBs.empty()) continue; 2026 2027 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 2028 /// emit a .set directive for each unique entry. 2029 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 2030 MAI->doesSetDirectiveSuppressReloc()) { 2031 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 2032 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2033 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 2034 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 2035 const MachineBasicBlock *MBB = JTBBs[ii]; 2036 if (!EmittedSets.insert(MBB).second) 2037 continue; 2038 2039 // .set LJTSet, LBB32-base 2040 const MCExpr *LHS = 2041 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2042 OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 2043 MCBinaryExpr::createSub(LHS, Base, 2044 OutContext)); 2045 } 2046 } 2047 2048 // On some targets (e.g. Darwin) we want to emit two consecutive labels 2049 // before each jump table. The first label is never referenced, but tells 2050 // the assembler and linker the extents of the jump table object. The 2051 // second label is actually referenced by the code. 2052 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 2053 // FIXME: This doesn't have to have any specific name, just any randomly 2054 // named and numbered local label started with 'l' would work. Simplify 2055 // GetJTISymbol. 2056 OutStreamer->emitLabel(GetJTISymbol(JTI, true)); 2057 2058 MCSymbol* JTISymbol = GetJTISymbol(JTI); 2059 OutStreamer->emitLabel(JTISymbol); 2060 2061 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 2062 emitJumpTableEntry(MJTI, JTBBs[ii], JTI); 2063 } 2064 if (!JTInDiffSection) 2065 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 2066 } 2067 2068 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 2069 /// current stream. 2070 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI, 2071 const MachineBasicBlock *MBB, 2072 unsigned UID) const { 2073 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 2074 const MCExpr *Value = nullptr; 2075 switch (MJTI->getEntryKind()) { 2076 case MachineJumpTableInfo::EK_Inline: 2077 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 2078 case MachineJumpTableInfo::EK_Custom32: 2079 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 2080 MJTI, MBB, UID, OutContext); 2081 break; 2082 case MachineJumpTableInfo::EK_BlockAddress: 2083 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 2084 // .word LBB123 2085 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2086 break; 2087 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 2088 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 2089 // with a relocation as gp-relative, e.g.: 2090 // .gprel32 LBB123 2091 MCSymbol *MBBSym = MBB->getSymbol(); 2092 OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2093 return; 2094 } 2095 2096 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 2097 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 2098 // with a relocation as gp-relative, e.g.: 2099 // .gpdword LBB123 2100 MCSymbol *MBBSym = MBB->getSymbol(); 2101 OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 2102 return; 2103 } 2104 2105 case MachineJumpTableInfo::EK_LabelDifference32: { 2106 // Each entry is the address of the block minus the address of the jump 2107 // table. This is used for PIC jump tables where gprel32 is not supported. 2108 // e.g.: 2109 // .word LBB123 - LJTI1_2 2110 // If the .set directive avoids relocations, this is emitted as: 2111 // .set L4_5_set_123, LBB123 - LJTI1_2 2112 // .word L4_5_set_123 2113 if (MAI->doesSetDirectiveSuppressReloc()) { 2114 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 2115 OutContext); 2116 break; 2117 } 2118 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 2119 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 2120 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 2121 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 2122 break; 2123 } 2124 } 2125 2126 assert(Value && "Unknown entry kind!"); 2127 2128 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 2129 OutStreamer->emitValue(Value, EntrySize); 2130 } 2131 2132 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 2133 /// special global used by LLVM. If so, emit it and return true, otherwise 2134 /// do nothing and return false. 2135 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { 2136 if (GV->getName() == "llvm.used") { 2137 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 2138 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 2139 return true; 2140 } 2141 2142 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 2143 if (GV->getSection() == "llvm.metadata" || 2144 GV->hasAvailableExternallyLinkage()) 2145 return true; 2146 2147 if (!GV->hasAppendingLinkage()) return false; 2148 2149 assert(GV->hasInitializer() && "Not a special LLVM global!"); 2150 2151 if (GV->getName() == "llvm.global_ctors") { 2152 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2153 /* isCtor */ true); 2154 2155 return true; 2156 } 2157 2158 if (GV->getName() == "llvm.global_dtors") { 2159 emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 2160 /* isCtor */ false); 2161 2162 return true; 2163 } 2164 2165 report_fatal_error("unknown special variable"); 2166 } 2167 2168 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 2169 /// global in the specified llvm.used list. 2170 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { 2171 // Should be an array of 'i8*'. 2172 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 2173 const GlobalValue *GV = 2174 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2175 if (GV) 2176 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2177 } 2178 } 2179 2180 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, 2181 const Constant *List, 2182 SmallVector<Structor, 8> &Structors) { 2183 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is 2184 // the init priority. 2185 if (!isa<ConstantArray>(List)) 2186 return; 2187 2188 // Gather the structors in a form that's convenient for sorting by priority. 2189 for (Value *O : cast<ConstantArray>(List)->operands()) { 2190 auto *CS = cast<ConstantStruct>(O); 2191 if (CS->getOperand(1)->isNullValue()) 2192 break; // Found a null terminator, skip the rest. 2193 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2194 if (!Priority) 2195 continue; // Malformed. 2196 Structors.push_back(Structor()); 2197 Structor &S = Structors.back(); 2198 S.Priority = Priority->getLimitedValue(65535); 2199 S.Func = CS->getOperand(1); 2200 if (!CS->getOperand(2)->isNullValue()) { 2201 if (TM.getTargetTriple().isOSAIX()) 2202 llvm::report_fatal_error( 2203 "associated data of XXStructor list is not yet supported on AIX"); 2204 S.ComdatKey = 2205 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2206 } 2207 } 2208 2209 // Emit the function pointers in the target-specific order 2210 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2211 return L.Priority < R.Priority; 2212 }); 2213 } 2214 2215 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2216 /// priority. 2217 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, 2218 bool IsCtor) { 2219 SmallVector<Structor, 8> Structors; 2220 preprocessXXStructorList(DL, List, Structors); 2221 if (Structors.empty()) 2222 return; 2223 2224 const Align Align = DL.getPointerPrefAlignment(); 2225 for (Structor &S : Structors) { 2226 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2227 const MCSymbol *KeySym = nullptr; 2228 if (GlobalValue *GV = S.ComdatKey) { 2229 if (GV->isDeclarationForLinker()) 2230 // If the associated variable is not defined in this module 2231 // (it might be available_externally, or have been an 2232 // available_externally definition that was dropped by the 2233 // EliminateAvailableExternally pass), some other TU 2234 // will provide its dynamic initializer. 2235 continue; 2236 2237 KeySym = getSymbol(GV); 2238 } 2239 2240 MCSection *OutputSection = 2241 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2242 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2243 OutStreamer->SwitchSection(OutputSection); 2244 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2245 emitAlignment(Align); 2246 emitXXStructor(DL, S.Func); 2247 } 2248 } 2249 2250 void AsmPrinter::emitModuleIdents(Module &M) { 2251 if (!MAI->hasIdentDirective()) 2252 return; 2253 2254 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2255 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2256 const MDNode *N = NMD->getOperand(i); 2257 assert(N->getNumOperands() == 1 && 2258 "llvm.ident metadata entry can have only one operand"); 2259 const MDString *S = cast<MDString>(N->getOperand(0)); 2260 OutStreamer->emitIdent(S->getString()); 2261 } 2262 } 2263 } 2264 2265 void AsmPrinter::emitModuleCommandLines(Module &M) { 2266 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2267 if (!CommandLine) 2268 return; 2269 2270 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2271 if (!NMD || !NMD->getNumOperands()) 2272 return; 2273 2274 OutStreamer->PushSection(); 2275 OutStreamer->SwitchSection(CommandLine); 2276 OutStreamer->emitZeros(1); 2277 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2278 const MDNode *N = NMD->getOperand(i); 2279 assert(N->getNumOperands() == 1 && 2280 "llvm.commandline metadata entry can have only one operand"); 2281 const MDString *S = cast<MDString>(N->getOperand(0)); 2282 OutStreamer->emitBytes(S->getString()); 2283 OutStreamer->emitZeros(1); 2284 } 2285 OutStreamer->PopSection(); 2286 } 2287 2288 //===--------------------------------------------------------------------===// 2289 // Emission and print routines 2290 // 2291 2292 /// Emit a byte directive and value. 2293 /// 2294 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } 2295 2296 /// Emit a short directive and value. 2297 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } 2298 2299 /// Emit a long directive and value. 2300 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } 2301 2302 /// Emit a long long directive and value. 2303 void AsmPrinter::emitInt64(uint64_t Value) const { 2304 OutStreamer->emitInt64(Value); 2305 } 2306 2307 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2308 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2309 /// .set if it avoids relocations. 2310 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2311 unsigned Size) const { 2312 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2313 } 2314 2315 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2316 /// where the size in bytes of the directive is specified by Size and Label 2317 /// specifies the label. This implicitly uses .set if it is available. 2318 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2319 unsigned Size, 2320 bool IsSectionRelative) const { 2321 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2322 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2323 if (Size > 4) 2324 OutStreamer->emitZeros(Size - 4); 2325 return; 2326 } 2327 2328 // Emit Label+Offset (or just Label if Offset is zero) 2329 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2330 if (Offset) 2331 Expr = MCBinaryExpr::createAdd( 2332 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2333 2334 OutStreamer->emitValue(Expr, Size); 2335 } 2336 2337 //===----------------------------------------------------------------------===// 2338 2339 // EmitAlignment - Emit an alignment directive to the specified power of 2340 // two boundary. If a global value is specified, and if that global has 2341 // an explicit alignment requested, it will override the alignment request 2342 // if required for correctness. 2343 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const { 2344 if (GV) 2345 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2346 2347 if (Alignment == Align(1)) 2348 return; // 1-byte aligned: no need to emit alignment. 2349 2350 if (getCurrentSection()->getKind().isText()) 2351 OutStreamer->emitCodeAlignment(Alignment.value()); 2352 else 2353 OutStreamer->emitValueToAlignment(Alignment.value()); 2354 } 2355 2356 //===----------------------------------------------------------------------===// 2357 // Constant emission. 2358 //===----------------------------------------------------------------------===// 2359 2360 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2361 MCContext &Ctx = OutContext; 2362 2363 if (CV->isNullValue() || isa<UndefValue>(CV)) 2364 return MCConstantExpr::create(0, Ctx); 2365 2366 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2367 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2368 2369 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2370 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2371 2372 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2373 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2374 2375 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) 2376 return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM); 2377 2378 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2379 if (!CE) { 2380 llvm_unreachable("Unknown constant value to lower!"); 2381 } 2382 2383 switch (CE->getOpcode()) { 2384 case Instruction::AddrSpaceCast: { 2385 const Constant *Op = CE->getOperand(0); 2386 unsigned DstAS = CE->getType()->getPointerAddressSpace(); 2387 unsigned SrcAS = Op->getType()->getPointerAddressSpace(); 2388 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS)) 2389 return lowerConstant(Op); 2390 2391 // Fallthrough to error. 2392 LLVM_FALLTHROUGH; 2393 } 2394 default: { 2395 // If the code isn't optimized, there may be outstanding folding 2396 // opportunities. Attempt to fold the expression using DataLayout as a 2397 // last resort before giving up. 2398 Constant *C = ConstantFoldConstant(CE, getDataLayout()); 2399 if (C != CE) 2400 return lowerConstant(C); 2401 2402 // Otherwise report the problem to the user. 2403 std::string S; 2404 raw_string_ostream OS(S); 2405 OS << "Unsupported expression in static initializer: "; 2406 CE->printAsOperand(OS, /*PrintType=*/false, 2407 !MF ? nullptr : MF->getFunction().getParent()); 2408 report_fatal_error(OS.str()); 2409 } 2410 case Instruction::GetElementPtr: { 2411 // Generate a symbolic expression for the byte address 2412 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2413 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2414 2415 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2416 if (!OffsetAI) 2417 return Base; 2418 2419 int64_t Offset = OffsetAI.getSExtValue(); 2420 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2421 Ctx); 2422 } 2423 2424 case Instruction::Trunc: 2425 // We emit the value and depend on the assembler to truncate the generated 2426 // expression properly. This is important for differences between 2427 // blockaddress labels. Since the two labels are in the same function, it 2428 // is reasonable to treat their delta as a 32-bit value. 2429 LLVM_FALLTHROUGH; 2430 case Instruction::BitCast: 2431 return lowerConstant(CE->getOperand(0)); 2432 2433 case Instruction::IntToPtr: { 2434 const DataLayout &DL = getDataLayout(); 2435 2436 // Handle casts to pointers by changing them into casts to the appropriate 2437 // integer type. This promotes constant folding and simplifies this code. 2438 Constant *Op = CE->getOperand(0); 2439 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2440 false/*ZExt*/); 2441 return lowerConstant(Op); 2442 } 2443 2444 case Instruction::PtrToInt: { 2445 const DataLayout &DL = getDataLayout(); 2446 2447 // Support only foldable casts to/from pointers that can be eliminated by 2448 // changing the pointer to the appropriately sized integer type. 2449 Constant *Op = CE->getOperand(0); 2450 Type *Ty = CE->getType(); 2451 2452 const MCExpr *OpExpr = lowerConstant(Op); 2453 2454 // We can emit the pointer value into this slot if the slot is an 2455 // integer slot equal to the size of the pointer. 2456 // 2457 // If the pointer is larger than the resultant integer, then 2458 // as with Trunc just depend on the assembler to truncate it. 2459 if (DL.getTypeAllocSize(Ty).getFixedSize() <= 2460 DL.getTypeAllocSize(Op->getType()).getFixedSize()) 2461 return OpExpr; 2462 2463 // Otherwise the pointer is smaller than the resultant integer, mask off 2464 // the high bits so we are sure to get a proper truncation if the input is 2465 // a constant expr. 2466 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2467 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2468 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2469 } 2470 2471 case Instruction::Sub: { 2472 GlobalValue *LHSGV; 2473 APInt LHSOffset; 2474 DSOLocalEquivalent *DSOEquiv; 2475 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2476 getDataLayout(), &DSOEquiv)) { 2477 GlobalValue *RHSGV; 2478 APInt RHSOffset; 2479 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2480 getDataLayout())) { 2481 const MCExpr *RelocExpr = 2482 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2483 if (!RelocExpr) { 2484 const MCExpr *LHSExpr = 2485 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx); 2486 if (DSOEquiv && 2487 getObjFileLowering().supportDSOLocalEquivalentLowering()) 2488 LHSExpr = 2489 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM); 2490 RelocExpr = MCBinaryExpr::createSub( 2491 LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2492 } 2493 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2494 if (Addend != 0) 2495 RelocExpr = MCBinaryExpr::createAdd( 2496 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2497 return RelocExpr; 2498 } 2499 } 2500 } 2501 // else fallthrough 2502 LLVM_FALLTHROUGH; 2503 2504 // The MC library also has a right-shift operator, but it isn't consistently 2505 // signed or unsigned between different targets. 2506 case Instruction::Add: 2507 case Instruction::Mul: 2508 case Instruction::SDiv: 2509 case Instruction::SRem: 2510 case Instruction::Shl: 2511 case Instruction::And: 2512 case Instruction::Or: 2513 case Instruction::Xor: { 2514 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2515 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2516 switch (CE->getOpcode()) { 2517 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2518 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2519 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2520 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2521 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2522 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2523 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2524 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2525 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2526 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2527 } 2528 } 2529 } 2530 } 2531 2532 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2533 AsmPrinter &AP, 2534 const Constant *BaseCV = nullptr, 2535 uint64_t Offset = 0); 2536 2537 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2538 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2539 2540 /// isRepeatedByteSequence - Determine whether the given value is 2541 /// composed of a repeated sequence of identical bytes and return the 2542 /// byte value. If it is not a repeated sequence, return -1. 2543 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2544 StringRef Data = V->getRawDataValues(); 2545 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2546 char C = Data[0]; 2547 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2548 if (Data[i] != C) return -1; 2549 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2550 } 2551 2552 /// isRepeatedByteSequence - Determine whether the given value is 2553 /// composed of a repeated sequence of identical bytes and return the 2554 /// byte value. If it is not a repeated sequence, return -1. 2555 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2556 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2557 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2558 assert(Size % 8 == 0); 2559 2560 // Extend the element to take zero padding into account. 2561 APInt Value = CI->getValue().zextOrSelf(Size); 2562 if (!Value.isSplat(8)) 2563 return -1; 2564 2565 return Value.zextOrTrunc(8).getZExtValue(); 2566 } 2567 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2568 // Make sure all array elements are sequences of the same repeated 2569 // byte. 2570 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2571 Constant *Op0 = CA->getOperand(0); 2572 int Byte = isRepeatedByteSequence(Op0, DL); 2573 if (Byte == -1) 2574 return -1; 2575 2576 // All array elements must be equal. 2577 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2578 if (CA->getOperand(i) != Op0) 2579 return -1; 2580 return Byte; 2581 } 2582 2583 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2584 return isRepeatedByteSequence(CDS); 2585 2586 return -1; 2587 } 2588 2589 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2590 const ConstantDataSequential *CDS, 2591 AsmPrinter &AP) { 2592 // See if we can aggregate this into a .fill, if so, emit it as such. 2593 int Value = isRepeatedByteSequence(CDS, DL); 2594 if (Value != -1) { 2595 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2596 // Don't emit a 1-byte object as a .fill. 2597 if (Bytes > 1) 2598 return AP.OutStreamer->emitFill(Bytes, Value); 2599 } 2600 2601 // If this can be emitted with .ascii/.asciz, emit it as such. 2602 if (CDS->isString()) 2603 return AP.OutStreamer->emitBytes(CDS->getAsString()); 2604 2605 // Otherwise, emit the values in successive locations. 2606 unsigned ElementByteSize = CDS->getElementByteSize(); 2607 if (isa<IntegerType>(CDS->getElementType())) { 2608 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2609 if (AP.isVerbose()) 2610 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2611 CDS->getElementAsInteger(i)); 2612 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i), 2613 ElementByteSize); 2614 } 2615 } else { 2616 Type *ET = CDS->getElementType(); 2617 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2618 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2619 } 2620 2621 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2622 unsigned EmittedSize = 2623 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements(); 2624 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2625 if (unsigned Padding = Size - EmittedSize) 2626 AP.OutStreamer->emitZeros(Padding); 2627 } 2628 2629 static void emitGlobalConstantArray(const DataLayout &DL, 2630 const ConstantArray *CA, AsmPrinter &AP, 2631 const Constant *BaseCV, uint64_t Offset) { 2632 // See if we can aggregate some values. Make sure it can be 2633 // represented as a series of bytes of the constant value. 2634 int Value = isRepeatedByteSequence(CA, DL); 2635 2636 if (Value != -1) { 2637 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2638 AP.OutStreamer->emitFill(Bytes, Value); 2639 } 2640 else { 2641 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2642 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2643 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2644 } 2645 } 2646 } 2647 2648 static void emitGlobalConstantVector(const DataLayout &DL, 2649 const ConstantVector *CV, AsmPrinter &AP) { 2650 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2651 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2652 2653 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2654 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2655 CV->getType()->getNumElements(); 2656 if (unsigned Padding = Size - EmittedSize) 2657 AP.OutStreamer->emitZeros(Padding); 2658 } 2659 2660 static void emitGlobalConstantStruct(const DataLayout &DL, 2661 const ConstantStruct *CS, AsmPrinter &AP, 2662 const Constant *BaseCV, uint64_t Offset) { 2663 // Print the fields in successive locations. Pad to align if needed! 2664 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2665 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2666 uint64_t SizeSoFar = 0; 2667 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2668 const Constant *Field = CS->getOperand(i); 2669 2670 // Print the actual field value. 2671 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2672 2673 // Check if padding is needed and insert one or more 0s. 2674 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2675 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2676 - Layout->getElementOffset(i)) - FieldSize; 2677 SizeSoFar += FieldSize + PadSize; 2678 2679 // Insert padding - this may include padding to increase the size of the 2680 // current field up to the ABI size (if the struct is not packed) as well 2681 // as padding to ensure that the next field starts at the right offset. 2682 AP.OutStreamer->emitZeros(PadSize); 2683 } 2684 assert(SizeSoFar == Layout->getSizeInBytes() && 2685 "Layout of constant struct may be incorrect!"); 2686 } 2687 2688 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2689 assert(ET && "Unknown float type"); 2690 APInt API = APF.bitcastToAPInt(); 2691 2692 // First print a comment with what we think the original floating-point value 2693 // should have been. 2694 if (AP.isVerbose()) { 2695 SmallString<8> StrVal; 2696 APF.toString(StrVal); 2697 ET->print(AP.OutStreamer->GetCommentOS()); 2698 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2699 } 2700 2701 // Now iterate through the APInt chunks, emitting them in endian-correct 2702 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2703 // floats). 2704 unsigned NumBytes = API.getBitWidth() / 8; 2705 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2706 const uint64_t *p = API.getRawData(); 2707 2708 // PPC's long double has odd notions of endianness compared to how LLVM 2709 // handles it: p[0] goes first for *big* endian on PPC. 2710 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2711 int Chunk = API.getNumWords() - 1; 2712 2713 if (TrailingBytes) 2714 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes); 2715 2716 for (; Chunk >= 0; --Chunk) 2717 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2718 } else { 2719 unsigned Chunk; 2720 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2721 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t)); 2722 2723 if (TrailingBytes) 2724 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes); 2725 } 2726 2727 // Emit the tail padding for the long double. 2728 const DataLayout &DL = AP.getDataLayout(); 2729 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2730 } 2731 2732 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2733 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2734 } 2735 2736 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2737 const DataLayout &DL = AP.getDataLayout(); 2738 unsigned BitWidth = CI->getBitWidth(); 2739 2740 // Copy the value as we may massage the layout for constants whose bit width 2741 // is not a multiple of 64-bits. 2742 APInt Realigned(CI->getValue()); 2743 uint64_t ExtraBits = 0; 2744 unsigned ExtraBitsSize = BitWidth & 63; 2745 2746 if (ExtraBitsSize) { 2747 // The bit width of the data is not a multiple of 64-bits. 2748 // The extra bits are expected to be at the end of the chunk of the memory. 2749 // Little endian: 2750 // * Nothing to be done, just record the extra bits to emit. 2751 // Big endian: 2752 // * Record the extra bits to emit. 2753 // * Realign the raw data to emit the chunks of 64-bits. 2754 if (DL.isBigEndian()) { 2755 // Basically the structure of the raw data is a chunk of 64-bits cells: 2756 // 0 1 BitWidth / 64 2757 // [chunk1][chunk2] ... [chunkN]. 2758 // The most significant chunk is chunkN and it should be emitted first. 2759 // However, due to the alignment issue chunkN contains useless bits. 2760 // Realign the chunks so that they contain only useful information: 2761 // ExtraBits 0 1 (BitWidth / 64) - 1 2762 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2763 ExtraBitsSize = alignTo(ExtraBitsSize, 8); 2764 ExtraBits = Realigned.getRawData()[0] & 2765 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2766 Realigned.lshrInPlace(ExtraBitsSize); 2767 } else 2768 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2769 } 2770 2771 // We don't expect assemblers to support integer data directives 2772 // for more than 64 bits, so we emit the data in at most 64-bit 2773 // quantities at a time. 2774 const uint64_t *RawData = Realigned.getRawData(); 2775 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2776 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2777 AP.OutStreamer->emitIntValue(Val, 8); 2778 } 2779 2780 if (ExtraBitsSize) { 2781 // Emit the extra bits after the 64-bits chunks. 2782 2783 // Emit a directive that fills the expected size. 2784 uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType()); 2785 Size -= (BitWidth / 64) * 8; 2786 assert(Size && Size * 8 >= ExtraBitsSize && 2787 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2788 == ExtraBits && "Directive too small for extra bits."); 2789 AP.OutStreamer->emitIntValue(ExtraBits, Size); 2790 } 2791 } 2792 2793 /// Transform a not absolute MCExpr containing a reference to a GOT 2794 /// equivalent global, by a target specific GOT pc relative access to the 2795 /// final symbol. 2796 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2797 const Constant *BaseCst, 2798 uint64_t Offset) { 2799 // The global @foo below illustrates a global that uses a got equivalent. 2800 // 2801 // @bar = global i32 42 2802 // @gotequiv = private unnamed_addr constant i32* @bar 2803 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2804 // i64 ptrtoint (i32* @foo to i64)) 2805 // to i32) 2806 // 2807 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2808 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2809 // form: 2810 // 2811 // foo = cstexpr, where 2812 // cstexpr := <gotequiv> - "." + <cst> 2813 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2814 // 2815 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2816 // 2817 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2818 // gotpcrelcst := <offset from @foo base> + <cst> 2819 MCValue MV; 2820 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2821 return; 2822 const MCSymbolRefExpr *SymA = MV.getSymA(); 2823 if (!SymA) 2824 return; 2825 2826 // Check that GOT equivalent symbol is cached. 2827 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2828 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2829 return; 2830 2831 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2832 if (!BaseGV) 2833 return; 2834 2835 // Check for a valid base symbol 2836 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2837 const MCSymbolRefExpr *SymB = MV.getSymB(); 2838 2839 if (!SymB || BaseSym != &SymB->getSymbol()) 2840 return; 2841 2842 // Make sure to match: 2843 // 2844 // gotpcrelcst := <offset from @foo base> + <cst> 2845 // 2846 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2847 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2848 // if the target knows how to encode it. 2849 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2850 if (GOTPCRelCst < 0) 2851 return; 2852 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2853 return; 2854 2855 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2856 // 2857 // bar: 2858 // .long 42 2859 // gotequiv: 2860 // .quad bar 2861 // foo: 2862 // .long gotequiv - "." + <cst> 2863 // 2864 // is replaced by the target specific equivalent to: 2865 // 2866 // bar: 2867 // .long 42 2868 // foo: 2869 // .long bar@GOTPCREL+<gotpcrelcst> 2870 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2871 const GlobalVariable *GV = Result.first; 2872 int NumUses = (int)Result.second; 2873 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2874 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2875 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2876 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2877 2878 // Update GOT equivalent usage information 2879 --NumUses; 2880 if (NumUses >= 0) 2881 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2882 } 2883 2884 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2885 AsmPrinter &AP, const Constant *BaseCV, 2886 uint64_t Offset) { 2887 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2888 2889 // Globals with sub-elements such as combinations of arrays and structs 2890 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2891 // constant symbol base and the current position with BaseCV and Offset. 2892 if (!BaseCV && CV->hasOneUse()) 2893 BaseCV = dyn_cast<Constant>(CV->user_back()); 2894 2895 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2896 return AP.OutStreamer->emitZeros(Size); 2897 2898 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2899 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType()); 2900 2901 if (StoreSize <= 8) { 2902 if (AP.isVerbose()) 2903 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2904 CI->getZExtValue()); 2905 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize); 2906 } else { 2907 emitGlobalConstantLargeInt(CI, AP); 2908 } 2909 2910 // Emit tail padding if needed 2911 if (Size != StoreSize) 2912 AP.OutStreamer->emitZeros(Size - StoreSize); 2913 2914 return; 2915 } 2916 2917 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2918 return emitGlobalConstantFP(CFP, AP); 2919 2920 if (isa<ConstantPointerNull>(CV)) { 2921 AP.OutStreamer->emitIntValue(0, Size); 2922 return; 2923 } 2924 2925 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2926 return emitGlobalConstantDataSequential(DL, CDS, AP); 2927 2928 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2929 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2930 2931 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2932 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2933 2934 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2935 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2936 // vectors). 2937 if (CE->getOpcode() == Instruction::BitCast) 2938 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2939 2940 if (Size > 8) { 2941 // If the constant expression's size is greater than 64-bits, then we have 2942 // to emit the value in chunks. Try to constant fold the value and emit it 2943 // that way. 2944 Constant *New = ConstantFoldConstant(CE, DL); 2945 if (New != CE) 2946 return emitGlobalConstantImpl(DL, New, AP); 2947 } 2948 } 2949 2950 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2951 return emitGlobalConstantVector(DL, V, AP); 2952 2953 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2954 // thread the streamer with EmitValue. 2955 const MCExpr *ME = AP.lowerConstant(CV); 2956 2957 // Since lowerConstant already folded and got rid of all IR pointer and 2958 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2959 // directly. 2960 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2961 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2962 2963 AP.OutStreamer->emitValue(ME, Size); 2964 } 2965 2966 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2967 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2968 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2969 if (Size) 2970 emitGlobalConstantImpl(DL, CV, *this); 2971 else if (MAI->hasSubsectionsViaSymbols()) { 2972 // If the global has zero size, emit a single byte so that two labels don't 2973 // look like they are at the same location. 2974 OutStreamer->emitIntValue(0, 1); 2975 } 2976 } 2977 2978 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2979 // Target doesn't support this yet! 2980 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2981 } 2982 2983 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2984 if (Offset > 0) 2985 OS << '+' << Offset; 2986 else if (Offset < 0) 2987 OS << Offset; 2988 } 2989 2990 void AsmPrinter::emitNops(unsigned N) { 2991 MCInst Nop; 2992 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2993 for (; N; --N) 2994 EmitToStreamer(*OutStreamer, Nop); 2995 } 2996 2997 //===----------------------------------------------------------------------===// 2998 // Symbol Lowering Routines. 2999 //===----------------------------------------------------------------------===// 3000 3001 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 3002 return OutContext.createTempSymbol(Name, true); 3003 } 3004 3005 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 3006 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 3007 } 3008 3009 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 3010 return MMI->getAddrLabelSymbol(BB); 3011 } 3012 3013 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 3014 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 3015 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 3016 const MachineConstantPoolEntry &CPE = 3017 MF->getConstantPool()->getConstants()[CPID]; 3018 if (!CPE.isMachineConstantPoolEntry()) { 3019 const DataLayout &DL = MF->getDataLayout(); 3020 SectionKind Kind = CPE.getSectionKind(&DL); 3021 const Constant *C = CPE.Val.ConstVal; 3022 Align Alignment = CPE.Alignment; 3023 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 3024 getObjFileLowering().getSectionForConstant(DL, Kind, C, 3025 Alignment))) { 3026 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 3027 if (Sym->isUndefined()) 3028 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global); 3029 return Sym; 3030 } 3031 } 3032 } 3033 } 3034 3035 const DataLayout &DL = getDataLayout(); 3036 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3037 "CPI" + Twine(getFunctionNumber()) + "_" + 3038 Twine(CPID)); 3039 } 3040 3041 /// GetJTISymbol - Return the symbol for the specified jump table entry. 3042 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 3043 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 3044 } 3045 3046 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 3047 /// FIXME: privatize to AsmPrinter. 3048 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 3049 const DataLayout &DL = getDataLayout(); 3050 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 3051 Twine(getFunctionNumber()) + "_" + 3052 Twine(UID) + "_set_" + Twine(MBBID)); 3053 } 3054 3055 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 3056 StringRef Suffix) const { 3057 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 3058 } 3059 3060 /// Return the MCSymbol for the specified ExternalSymbol. 3061 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 3062 SmallString<60> NameStr; 3063 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 3064 return OutContext.getOrCreateSymbol(NameStr); 3065 } 3066 3067 /// PrintParentLoopComment - Print comments about parent loops of this one. 3068 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3069 unsigned FunctionNumber) { 3070 if (!Loop) return; 3071 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 3072 OS.indent(Loop->getLoopDepth()*2) 3073 << "Parent Loop BB" << FunctionNumber << "_" 3074 << Loop->getHeader()->getNumber() 3075 << " Depth=" << Loop->getLoopDepth() << '\n'; 3076 } 3077 3078 /// PrintChildLoopComment - Print comments about child loops within 3079 /// the loop for this basic block, with nesting. 3080 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 3081 unsigned FunctionNumber) { 3082 // Add child loop information 3083 for (const MachineLoop *CL : *Loop) { 3084 OS.indent(CL->getLoopDepth()*2) 3085 << "Child Loop BB" << FunctionNumber << "_" 3086 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 3087 << '\n'; 3088 PrintChildLoopComment(OS, CL, FunctionNumber); 3089 } 3090 } 3091 3092 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 3093 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 3094 const MachineLoopInfo *LI, 3095 const AsmPrinter &AP) { 3096 // Add loop depth information 3097 const MachineLoop *Loop = LI->getLoopFor(&MBB); 3098 if (!Loop) return; 3099 3100 MachineBasicBlock *Header = Loop->getHeader(); 3101 assert(Header && "No header for loop"); 3102 3103 // If this block is not a loop header, just print out what is the loop header 3104 // and return. 3105 if (Header != &MBB) { 3106 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 3107 Twine(AP.getFunctionNumber())+"_" + 3108 Twine(Loop->getHeader()->getNumber())+ 3109 " Depth="+Twine(Loop->getLoopDepth())); 3110 return; 3111 } 3112 3113 // Otherwise, it is a loop header. Print out information about child and 3114 // parent loops. 3115 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 3116 3117 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 3118 3119 OS << "=>"; 3120 OS.indent(Loop->getLoopDepth()*2-2); 3121 3122 OS << "This "; 3123 if (Loop->isInnermost()) 3124 OS << "Inner "; 3125 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 3126 3127 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 3128 } 3129 3130 /// emitBasicBlockStart - This method prints the label for the specified 3131 /// MachineBasicBlock, an alignment (if present) and a comment describing 3132 /// it if appropriate. 3133 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { 3134 // End the previous funclet and start a new one. 3135 if (MBB.isEHFuncletEntry()) { 3136 for (const HandlerInfo &HI : Handlers) { 3137 HI.Handler->endFunclet(); 3138 HI.Handler->beginFunclet(MBB); 3139 } 3140 } 3141 3142 // Emit an alignment directive for this block, if needed. 3143 const Align Alignment = MBB.getAlignment(); 3144 if (Alignment != Align(1)) 3145 emitAlignment(Alignment); 3146 3147 // Switch to a new section if this basic block must begin a section. The 3148 // entry block is always placed in the function section and is handled 3149 // separately. 3150 if (MBB.isBeginSection() && !MBB.isEntryBlock()) { 3151 OutStreamer->SwitchSection( 3152 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(), 3153 MBB, TM)); 3154 CurrentSectionBeginSym = MBB.getSymbol(); 3155 } 3156 3157 // If the block has its address taken, emit any labels that were used to 3158 // reference the block. It is possible that there is more than one label 3159 // here, because multiple LLVM BB's may have been RAUW'd to this block after 3160 // the references were generated. 3161 if (MBB.hasAddressTaken()) { 3162 const BasicBlock *BB = MBB.getBasicBlock(); 3163 if (isVerbose()) 3164 OutStreamer->AddComment("Block address taken"); 3165 3166 // MBBs can have their address taken as part of CodeGen without having 3167 // their corresponding BB's address taken in IR 3168 if (BB->hasAddressTaken()) 3169 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 3170 OutStreamer->emitLabel(Sym); 3171 } 3172 3173 // Print some verbose block comments. 3174 if (isVerbose()) { 3175 if (const BasicBlock *BB = MBB.getBasicBlock()) { 3176 if (BB->hasName()) { 3177 BB->printAsOperand(OutStreamer->GetCommentOS(), 3178 /*PrintType=*/false, BB->getModule()); 3179 OutStreamer->GetCommentOS() << '\n'; 3180 } 3181 } 3182 3183 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 3184 emitBasicBlockLoopComments(MBB, MLI, *this); 3185 } 3186 3187 // Print the main label for the block. 3188 if (shouldEmitLabelForBasicBlock(MBB)) { 3189 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3190 OutStreamer->AddComment("Label of block must be emitted"); 3191 OutStreamer->emitLabel(MBB.getSymbol()); 3192 } else { 3193 if (isVerbose()) { 3194 // NOTE: Want this comment at start of line, don't emit with AddComment. 3195 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 3196 false); 3197 } 3198 } 3199 3200 // With BB sections, each basic block must handle CFI information on its own 3201 // if it begins a section (Entry block is handled separately by 3202 // AsmPrinterHandler::beginFunction). 3203 if (MBB.isBeginSection() && !MBB.isEntryBlock()) 3204 for (const HandlerInfo &HI : Handlers) 3205 HI.Handler->beginBasicBlock(MBB); 3206 } 3207 3208 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { 3209 // Check if CFI information needs to be updated for this MBB with basic block 3210 // sections. 3211 if (MBB.isEndSection()) 3212 for (const HandlerInfo &HI : Handlers) 3213 HI.Handler->endBasicBlock(MBB); 3214 } 3215 3216 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, 3217 bool IsDefinition) const { 3218 MCSymbolAttr Attr = MCSA_Invalid; 3219 3220 switch (Visibility) { 3221 default: break; 3222 case GlobalValue::HiddenVisibility: 3223 if (IsDefinition) 3224 Attr = MAI->getHiddenVisibilityAttr(); 3225 else 3226 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3227 break; 3228 case GlobalValue::ProtectedVisibility: 3229 Attr = MAI->getProtectedVisibilityAttr(); 3230 break; 3231 } 3232 3233 if (Attr != MCSA_Invalid) 3234 OutStreamer->emitSymbolAttribute(Sym, Attr); 3235 } 3236 3237 bool AsmPrinter::shouldEmitLabelForBasicBlock( 3238 const MachineBasicBlock &MBB) const { 3239 // With `-fbasic-block-sections=`, a label is needed for every non-entry block 3240 // in the labels mode (option `=labels`) and every section beginning in the 3241 // sections mode (`=all` and `=list=`). 3242 if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock()) 3243 return true; 3244 // A label is needed for any block with at least one predecessor (when that 3245 // predecessor is not the fallthrough predecessor, or if it is an EH funclet 3246 // entry, or if a label is forced). 3247 return !MBB.pred_empty() && 3248 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() || 3249 MBB.hasLabelMustBeEmitted()); 3250 } 3251 3252 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3253 /// exactly one predecessor and the control transfer mechanism between 3254 /// the predecessor and this block is a fall-through. 3255 bool AsmPrinter:: 3256 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3257 // If this is a landing pad, it isn't a fall through. If it has no preds, 3258 // then nothing falls through to it. 3259 if (MBB->isEHPad() || MBB->pred_empty()) 3260 return false; 3261 3262 // If there isn't exactly one predecessor, it can't be a fall through. 3263 if (MBB->pred_size() > 1) 3264 return false; 3265 3266 // The predecessor has to be immediately before this block. 3267 MachineBasicBlock *Pred = *MBB->pred_begin(); 3268 if (!Pred->isLayoutSuccessor(MBB)) 3269 return false; 3270 3271 // If the block is completely empty, then it definitely does fall through. 3272 if (Pred->empty()) 3273 return true; 3274 3275 // Check the terminators in the previous blocks 3276 for (const auto &MI : Pred->terminators()) { 3277 // If it is not a simple branch, we are in a table somewhere. 3278 if (!MI.isBranch() || MI.isIndirectBranch()) 3279 return false; 3280 3281 // If we are the operands of one of the branches, this is not a fall 3282 // through. Note that targets with delay slots will usually bundle 3283 // terminators with the delay slot instruction. 3284 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3285 if (OP->isJTI()) 3286 return false; 3287 if (OP->isMBB() && OP->getMBB() == MBB) 3288 return false; 3289 } 3290 } 3291 3292 return true; 3293 } 3294 3295 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3296 if (!S.usesMetadata()) 3297 return nullptr; 3298 3299 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3300 gcp_map_type::iterator GCPI = GCMap.find(&S); 3301 if (GCPI != GCMap.end()) 3302 return GCPI->second.get(); 3303 3304 auto Name = S.getName(); 3305 3306 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : 3307 GCMetadataPrinterRegistry::entries()) 3308 if (Name == GCMetaPrinter.getName()) { 3309 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); 3310 GMP->S = &S; 3311 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3312 return IterBool.first->second.get(); 3313 } 3314 3315 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3316 } 3317 3318 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3319 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3320 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3321 bool NeedsDefault = false; 3322 if (MI->begin() == MI->end()) 3323 // No GC strategy, use the default format. 3324 NeedsDefault = true; 3325 else 3326 for (auto &I : *MI) { 3327 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3328 if (MP->emitStackMaps(SM, *this)) 3329 continue; 3330 // The strategy doesn't have printer or doesn't emit custom stack maps. 3331 // Use the default format. 3332 NeedsDefault = true; 3333 } 3334 3335 if (NeedsDefault) 3336 SM.serializeToStackMapSection(); 3337 } 3338 3339 /// Pin vtable to this file. 3340 AsmPrinterHandler::~AsmPrinterHandler() = default; 3341 3342 void AsmPrinterHandler::markFunctionEnd() {} 3343 3344 // In the binary's "xray_instr_map" section, an array of these function entries 3345 // describes each instrumentation point. When XRay patches your code, the index 3346 // into this table will be given to your handler as a patch point identifier. 3347 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { 3348 auto Kind8 = static_cast<uint8_t>(Kind); 3349 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3350 Out->emitBinaryData( 3351 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3352 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3353 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3354 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3355 Out->emitZeros(Padding); 3356 } 3357 3358 void AsmPrinter::emitXRayTable() { 3359 if (Sleds.empty()) 3360 return; 3361 3362 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3363 const Function &F = MF->getFunction(); 3364 MCSection *InstMap = nullptr; 3365 MCSection *FnSledIndex = nullptr; 3366 const Triple &TT = TM.getTargetTriple(); 3367 // Use PC-relative addresses on all targets. 3368 if (TT.isOSBinFormatELF()) { 3369 auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3370 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3371 StringRef GroupName; 3372 if (F.hasComdat()) { 3373 Flags |= ELF::SHF_GROUP; 3374 GroupName = F.getComdat()->getName(); 3375 } 3376 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 3377 Flags, 0, GroupName, 3378 MCSection::NonUniqueID, LinkedToSym); 3379 3380 if (!TM.Options.XRayOmitFunctionIndex) 3381 FnSledIndex = OutContext.getELFSection( 3382 "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0, 3383 GroupName, MCSection::NonUniqueID, LinkedToSym); 3384 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3385 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3386 SectionKind::getReadOnlyWithRel()); 3387 if (!TM.Options.XRayOmitFunctionIndex) 3388 FnSledIndex = OutContext.getMachOSection( 3389 "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel()); 3390 } else { 3391 llvm_unreachable("Unsupported target"); 3392 } 3393 3394 auto WordSizeBytes = MAI->getCodePointerSize(); 3395 3396 // Now we switch to the instrumentation map section. Because this is done 3397 // per-function, we are able to create an index entry that will represent the 3398 // range of sleds associated with a function. 3399 auto &Ctx = OutContext; 3400 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3401 OutStreamer->SwitchSection(InstMap); 3402 OutStreamer->emitLabel(SledsStart); 3403 for (const auto &Sled : Sleds) { 3404 MCSymbol *Dot = Ctx.createTempSymbol(); 3405 OutStreamer->emitLabel(Dot); 3406 OutStreamer->emitValueImpl( 3407 MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx), 3408 MCSymbolRefExpr::create(Dot, Ctx), Ctx), 3409 WordSizeBytes); 3410 OutStreamer->emitValueImpl( 3411 MCBinaryExpr::createSub( 3412 MCSymbolRefExpr::create(CurrentFnBegin, Ctx), 3413 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx), 3414 MCConstantExpr::create(WordSizeBytes, Ctx), 3415 Ctx), 3416 Ctx), 3417 WordSizeBytes); 3418 Sled.emit(WordSizeBytes, OutStreamer.get()); 3419 } 3420 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3421 OutStreamer->emitLabel(SledsEnd); 3422 3423 // We then emit a single entry in the index per function. We use the symbols 3424 // that bound the instrumentation map as the range for a specific function. 3425 // Each entry here will be 2 * word size aligned, as we're writing down two 3426 // pointers. This should work for both 32-bit and 64-bit platforms. 3427 if (FnSledIndex) { 3428 OutStreamer->SwitchSection(FnSledIndex); 3429 OutStreamer->emitCodeAlignment(2 * WordSizeBytes); 3430 OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false); 3431 OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false); 3432 OutStreamer->SwitchSection(PrevSection); 3433 } 3434 Sleds.clear(); 3435 } 3436 3437 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3438 SledKind Kind, uint8_t Version) { 3439 const Function &F = MI.getMF()->getFunction(); 3440 auto Attr = F.getFnAttribute("function-instrument"); 3441 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3442 bool AlwaysInstrument = 3443 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3444 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3445 Kind = SledKind::LOG_ARGS_ENTER; 3446 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3447 AlwaysInstrument, &F, Version}); 3448 } 3449 3450 void AsmPrinter::emitPatchableFunctionEntries() { 3451 const Function &F = MF->getFunction(); 3452 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3453 (void)F.getFnAttribute("patchable-function-prefix") 3454 .getValueAsString() 3455 .getAsInteger(10, PatchableFunctionPrefix); 3456 (void)F.getFnAttribute("patchable-function-entry") 3457 .getValueAsString() 3458 .getAsInteger(10, PatchableFunctionEntry); 3459 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3460 return; 3461 const unsigned PointerSize = getPointerSize(); 3462 if (TM.getTargetTriple().isOSBinFormatELF()) { 3463 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3464 const MCSymbolELF *LinkedToSym = nullptr; 3465 StringRef GroupName; 3466 3467 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not 3468 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. 3469 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) { 3470 Flags |= ELF::SHF_LINK_ORDER; 3471 if (F.hasComdat()) { 3472 Flags |= ELF::SHF_GROUP; 3473 GroupName = F.getComdat()->getName(); 3474 } 3475 LinkedToSym = cast<MCSymbolELF>(CurrentFnSym); 3476 } 3477 OutStreamer->SwitchSection(OutContext.getELFSection( 3478 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName, 3479 MCSection::NonUniqueID, LinkedToSym)); 3480 emitAlignment(Align(PointerSize)); 3481 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3482 } 3483 } 3484 3485 uint16_t AsmPrinter::getDwarfVersion() const { 3486 return OutStreamer->getContext().getDwarfVersion(); 3487 } 3488 3489 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3490 OutStreamer->getContext().setDwarfVersion(Version); 3491 } 3492 3493 bool AsmPrinter::isDwarf64() const { 3494 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; 3495 } 3496 3497 unsigned int AsmPrinter::getDwarfOffsetByteSize() const { 3498 return dwarf::getDwarfOffsetByteSize( 3499 OutStreamer->getContext().getDwarfFormat()); 3500 } 3501 3502 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { 3503 return dwarf::getUnitLengthFieldByteSize( 3504 OutStreamer->getContext().getDwarfFormat()); 3505 } 3506