1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the AsmPrinter class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/AsmPrinter.h"
14 #include "CodeViewDebug.h"
15 #include "DwarfDebug.h"
16 #include "DwarfException.h"
17 #include "PseudoProbePrinter.h"
18 #include "WasmException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/BinaryFormat/COFF.h"
37 #include "llvm/BinaryFormat/Dwarf.h"
38 #include "llvm/BinaryFormat/ELF.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/GCMetadataPrinter.h"
41 #include "llvm/CodeGen/GCStrategy.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConstantPool.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineJumpTableInfo.h"
51 #include "llvm/CodeGen/MachineLoopInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineModuleInfo.h"
54 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
55 #include "llvm/CodeGen/MachineOperand.h"
56 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/Comdat.h"
65 #include "llvm/IR/Constant.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GlobalAlias.h"
72 #include "llvm/IR/GlobalIFunc.h"
73 #include "llvm/IR/GlobalIndirectSymbol.h"
74 #include "llvm/IR/GlobalObject.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Mangler.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Module.h"
81 #include "llvm/IR/Operator.h"
82 #include "llvm/IR/PseudoProbe.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Value.h"
85 #include "llvm/MC/MCAsmInfo.h"
86 #include "llvm/MC/MCContext.h"
87 #include "llvm/MC/MCDirectives.h"
88 #include "llvm/MC/MCDwarf.h"
89 #include "llvm/MC/MCExpr.h"
90 #include "llvm/MC/MCInst.h"
91 #include "llvm/MC/MCSection.h"
92 #include "llvm/MC/MCSectionCOFF.h"
93 #include "llvm/MC/MCSectionELF.h"
94 #include "llvm/MC/MCSectionMachO.h"
95 #include "llvm/MC/MCSectionXCOFF.h"
96 #include "llvm/MC/MCStreamer.h"
97 #include "llvm/MC/MCSubtargetInfo.h"
98 #include "llvm/MC/MCSymbol.h"
99 #include "llvm/MC/MCSymbolELF.h"
100 #include "llvm/MC/MCSymbolXCOFF.h"
101 #include "llvm/MC/MCTargetOptions.h"
102 #include "llvm/MC/MCValue.h"
103 #include "llvm/MC/SectionKind.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Remarks/Remark.h"
106 #include "llvm/Remarks/RemarkFormat.h"
107 #include "llvm/Remarks/RemarkStreamer.h"
108 #include "llvm/Remarks/RemarkStringTable.h"
109 #include "llvm/Support/Casting.h"
110 #include "llvm/Support/CommandLine.h"
111 #include "llvm/Support/Compiler.h"
112 #include "llvm/Support/ErrorHandling.h"
113 #include "llvm/Support/Format.h"
114 #include "llvm/Support/MathExtras.h"
115 #include "llvm/Support/Path.h"
116 #include "llvm/Support/TargetRegistry.h"
117 #include "llvm/Support/Timer.h"
118 #include "llvm/Support/raw_ostream.h"
119 #include "llvm/Target/TargetLoweringObjectFile.h"
120 #include "llvm/Target/TargetMachine.h"
121 #include "llvm/Target/TargetOptions.h"
122 #include <algorithm>
123 #include <cassert>
124 #include <cinttypes>
125 #include <cstdint>
126 #include <iterator>
127 #include <limits>
128 #include <memory>
129 #include <string>
130 #include <utility>
131 #include <vector>
132 
133 using namespace llvm;
134 
135 #define DEBUG_TYPE "asm-printer"
136 
137 // FIXME: this option currently only applies to DWARF, and not CodeView, tables
138 static cl::opt<bool>
139     DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden,
140                              cl::desc("Disable debug info printing"));
141 
142 const char DWARFGroupName[] = "dwarf";
143 const char DWARFGroupDescription[] = "DWARF Emission";
144 const char DbgTimerName[] = "emit";
145 const char DbgTimerDescription[] = "Debug Info Emission";
146 const char EHTimerName[] = "write_exception";
147 const char EHTimerDescription[] = "DWARF Exception Writer";
148 const char CFGuardName[] = "Control Flow Guard";
149 const char CFGuardDescription[] = "Control Flow Guard";
150 const char CodeViewLineTablesGroupName[] = "linetables";
151 const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
152 const char PPTimerName[] = "emit";
153 const char PPTimerDescription[] = "Pseudo Probe Emission";
154 const char PPGroupName[] = "pseudo probe";
155 const char PPGroupDescription[] = "Pseudo Probe Emission";
156 
157 STATISTIC(EmittedInsts, "Number of machine instrs printed");
158 
159 char AsmPrinter::ID = 0;
160 
161 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
162 
163 static gcp_map_type &getGCMap(void *&P) {
164   if (!P)
165     P = new gcp_map_type();
166   return *(gcp_map_type*)P;
167 }
168 
169 /// getGVAlignment - Return the alignment to use for the specified global
170 /// value.  This rounds up to the preferred alignment if possible and legal.
171 Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
172                                  Align InAlign) {
173   Align Alignment;
174   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
175     Alignment = DL.getPreferredAlign(GVar);
176 
177   // If InAlign is specified, round it to it.
178   if (InAlign > Alignment)
179     Alignment = InAlign;
180 
181   // If the GV has a specified alignment, take it into account.
182   const MaybeAlign GVAlign(GV->getAlignment());
183   if (!GVAlign)
184     return Alignment;
185 
186   assert(GVAlign && "GVAlign must be set");
187 
188   // If the GVAlign is larger than NumBits, or if we are required to obey
189   // NumBits because the GV has an assigned section, obey it.
190   if (*GVAlign > Alignment || GV->hasSection())
191     Alignment = *GVAlign;
192   return Alignment;
193 }
194 
195 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
196     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
197       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
198   VerboseAsm = OutStreamer->isVerboseAsm();
199 }
200 
201 AsmPrinter::~AsmPrinter() {
202   assert(!DD && Handlers.size() == NumUserHandlers &&
203          "Debug/EH info didn't get finalized");
204 
205   if (GCMetadataPrinters) {
206     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
207 
208     delete &GCMap;
209     GCMetadataPrinters = nullptr;
210   }
211 }
212 
213 bool AsmPrinter::isPositionIndependent() const {
214   return TM.isPositionIndependent();
215 }
216 
217 /// getFunctionNumber - Return a unique ID for the current function.
218 unsigned AsmPrinter::getFunctionNumber() const {
219   return MF->getFunctionNumber();
220 }
221 
222 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
223   return *TM.getObjFileLowering();
224 }
225 
226 const DataLayout &AsmPrinter::getDataLayout() const {
227   return MMI->getModule()->getDataLayout();
228 }
229 
230 // Do not use the cached DataLayout because some client use it without a Module
231 // (dsymutil, llvm-dwarfdump).
232 unsigned AsmPrinter::getPointerSize() const {
233   return TM.getPointerSize(0); // FIXME: Default address space
234 }
235 
236 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
237   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
238   return MF->getSubtarget<MCSubtargetInfo>();
239 }
240 
241 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
242   S.emitInstruction(Inst, getSubtargetInfo());
243 }
244 
245 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
246   if (DD) {
247     assert(OutStreamer->hasRawTextSupport() &&
248            "Expected assembly output mode.");
249     (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
250   }
251 }
252 
253 /// getCurrentSection() - Return the current section we are emitting to.
254 const MCSection *AsmPrinter::getCurrentSection() const {
255   return OutStreamer->getCurrentSectionOnly();
256 }
257 
258 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
259   AU.setPreservesAll();
260   MachineFunctionPass::getAnalysisUsage(AU);
261   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
262   AU.addRequired<GCModuleInfo>();
263 }
264 
265 bool AsmPrinter::doInitialization(Module &M) {
266   auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
267   MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
268 
269   // Initialize TargetLoweringObjectFile.
270   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
271     .Initialize(OutContext, TM);
272 
273   const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
274       .getModuleMetadata(M);
275 
276   OutStreamer->InitSections(false);
277 
278   if (DisableDebugInfoPrinting)
279     MMI->setDebugInfoAvailability(false);
280 
281   // Emit the version-min deployment target directive if needed.
282   //
283   // FIXME: If we end up with a collection of these sorts of Darwin-specific
284   // or ELF-specific things, it may make sense to have a platform helper class
285   // that will work with the target helper class. For now keep it here, as the
286   // alternative is duplicated code in each of the target asm printers that
287   // use the directive, where it would need the same conditionalization
288   // anyway.
289   const Triple &Target = TM.getTargetTriple();
290   OutStreamer->emitVersionForTarget(Target, M.getSDKVersion());
291 
292   // Allow the target to emit any magic that it wants at the start of the file.
293   emitStartOfAsmFile(M);
294 
295   // Very minimal debug info. It is ignored if we emit actual debug info. If we
296   // don't, this at least helps the user find where a global came from.
297   if (MAI->hasSingleParameterDotFile()) {
298     // .file "foo.c"
299     OutStreamer->emitFileDirective(
300         llvm::sys::path::filename(M.getSourceFileName()));
301   }
302 
303   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
304   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
305   for (auto &I : *MI)
306     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
307       MP->beginAssembly(M, *MI, *this);
308 
309   // Emit module-level inline asm if it exists.
310   if (!M.getModuleInlineAsm().empty()) {
311     // We're at the module level. Construct MCSubtarget from the default CPU
312     // and target triple.
313     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
314         TM.getTargetTriple().str(), TM.getTargetCPU(),
315         TM.getTargetFeatureString()));
316     assert(STI && "Unable to create subtarget info");
317     OutStreamer->AddComment("Start of file scope inline assembly");
318     OutStreamer->AddBlankLine();
319     emitInlineAsm(M.getModuleInlineAsm() + "\n",
320                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
321     OutStreamer->AddComment("End of file scope inline assembly");
322     OutStreamer->AddBlankLine();
323   }
324 
325   if (MAI->doesSupportDebugInformation()) {
326     bool EmitCodeView = M.getCodeViewFlag();
327     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
328       Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
329                             DbgTimerName, DbgTimerDescription,
330                             CodeViewLineTablesGroupName,
331                             CodeViewLineTablesGroupDescription);
332     }
333     if (!EmitCodeView || M.getDwarfVersion()) {
334       if (!DisableDebugInfoPrinting) {
335         DD = new DwarfDebug(this);
336         Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
337                               DbgTimerDescription, DWARFGroupName,
338                               DWARFGroupDescription);
339       }
340     }
341   }
342 
343   if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
344     PP = new PseudoProbeHandler(this, &M);
345     Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
346                           PPTimerDescription, PPGroupName, PPGroupDescription);
347   }
348 
349   switch (MAI->getExceptionHandlingType()) {
350   case ExceptionHandling::SjLj:
351   case ExceptionHandling::DwarfCFI:
352   case ExceptionHandling::ARM:
353     isCFIMoveForDebugging = true;
354     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
355       break;
356     for (auto &F: M.getFunctionList()) {
357       // If the module contains any function with unwind data,
358       // .eh_frame has to be emitted.
359       // Ignore functions that won't get emitted.
360       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
361         isCFIMoveForDebugging = false;
362         break;
363       }
364     }
365     break;
366   default:
367     isCFIMoveForDebugging = false;
368     break;
369   }
370 
371   EHStreamer *ES = nullptr;
372   switch (MAI->getExceptionHandlingType()) {
373   case ExceptionHandling::None:
374     break;
375   case ExceptionHandling::SjLj:
376   case ExceptionHandling::DwarfCFI:
377     ES = new DwarfCFIException(this);
378     break;
379   case ExceptionHandling::ARM:
380     ES = new ARMException(this);
381     break;
382   case ExceptionHandling::WinEH:
383     switch (MAI->getWinEHEncodingType()) {
384     default: llvm_unreachable("unsupported unwinding information encoding");
385     case WinEH::EncodingType::Invalid:
386       break;
387     case WinEH::EncodingType::X86:
388     case WinEH::EncodingType::Itanium:
389       ES = new WinException(this);
390       break;
391     }
392     break;
393   case ExceptionHandling::Wasm:
394     ES = new WasmException(this);
395     break;
396   case ExceptionHandling::AIX:
397     ES = new AIXException(this);
398     break;
399   }
400   if (ES)
401     Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
402                           EHTimerDescription, DWARFGroupName,
403                           DWARFGroupDescription);
404 
405   // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
406   if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
407     Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
408                           CFGuardDescription, DWARFGroupName,
409                           DWARFGroupDescription);
410 
411   for (const HandlerInfo &HI : Handlers) {
412     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
413                        HI.TimerGroupDescription, TimePassesIsEnabled);
414     HI.Handler->beginModule(&M);
415   }
416 
417   return false;
418 }
419 
420 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
421   if (!MAI.hasWeakDefCanBeHiddenDirective())
422     return false;
423 
424   return GV->canBeOmittedFromSymbolTable();
425 }
426 
427 void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
428   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
429   switch (Linkage) {
430   case GlobalValue::CommonLinkage:
431   case GlobalValue::LinkOnceAnyLinkage:
432   case GlobalValue::LinkOnceODRLinkage:
433   case GlobalValue::WeakAnyLinkage:
434   case GlobalValue::WeakODRLinkage:
435     if (MAI->hasWeakDefDirective()) {
436       // .globl _foo
437       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
438 
439       if (!canBeHidden(GV, *MAI))
440         // .weak_definition _foo
441         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
442       else
443         OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
444     } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
445       // .globl _foo
446       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
447       //NOTE: linkonce is handled by the section the symbol was assigned to.
448     } else {
449       // .weak _foo
450       OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
451     }
452     return;
453   case GlobalValue::ExternalLinkage:
454     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
455     return;
456   case GlobalValue::PrivateLinkage:
457   case GlobalValue::InternalLinkage:
458     return;
459   case GlobalValue::ExternalWeakLinkage:
460   case GlobalValue::AvailableExternallyLinkage:
461   case GlobalValue::AppendingLinkage:
462     llvm_unreachable("Should never emit this");
463   }
464   llvm_unreachable("Unknown linkage type!");
465 }
466 
467 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
468                                    const GlobalValue *GV) const {
469   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
470 }
471 
472 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
473   return TM.getSymbol(GV);
474 }
475 
476 MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
477   // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
478   // exact definion (intersection of GlobalValue::hasExactDefinition() and
479   // !isInterposable()). These linkages include: external, appending, internal,
480   // private. It may be profitable to use a local alias for external. The
481   // assembler would otherwise be conservative and assume a global default
482   // visibility symbol can be interposable, even if the code generator already
483   // assumed it.
484   if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
485     const Module &M = *GV.getParent();
486     if (TM.getRelocationModel() != Reloc::Static &&
487         M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
488       return getSymbolWithGlobalValueBase(&GV, "$local");
489   }
490   return TM.getSymbol(&GV);
491 }
492 
493 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
494 void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
495   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
496   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
497          "No emulated TLS variables in the common section");
498 
499   // Never emit TLS variable xyz in emulated TLS model.
500   // The initialization value is in __emutls_t.xyz instead of xyz.
501   if (IsEmuTLSVar)
502     return;
503 
504   if (GV->hasInitializer()) {
505     // Check to see if this is a special global used by LLVM, if so, emit it.
506     if (emitSpecialLLVMGlobal(GV))
507       return;
508 
509     // Skip the emission of global equivalents. The symbol can be emitted later
510     // on by emitGlobalGOTEquivs in case it turns out to be needed.
511     if (GlobalGOTEquivs.count(getSymbol(GV)))
512       return;
513 
514     if (isVerbose()) {
515       // When printing the control variable __emutls_v.*,
516       // we don't need to print the original TLS variable name.
517       GV->printAsOperand(OutStreamer->GetCommentOS(),
518                      /*PrintType=*/false, GV->getParent());
519       OutStreamer->GetCommentOS() << '\n';
520     }
521   }
522 
523   MCSymbol *GVSym = getSymbol(GV);
524   MCSymbol *EmittedSym = GVSym;
525 
526   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
527   // attributes.
528   // GV's or GVSym's attributes will be used for the EmittedSym.
529   emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
530 
531   if (!GV->hasInitializer())   // External globals require no extra code.
532     return;
533 
534   GVSym->redefineIfPossible();
535   if (GVSym->isDefined() || GVSym->isVariable())
536     OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
537                                         "' is already defined");
538 
539   if (MAI->hasDotTypeDotSizeDirective())
540     OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
541 
542   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
543 
544   const DataLayout &DL = GV->getParent()->getDataLayout();
545   uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
546 
547   // If the alignment is specified, we *must* obey it.  Overaligning a global
548   // with a specified alignment is a prompt way to break globals emitted to
549   // sections and expected to be contiguous (e.g. ObjC metadata).
550   const Align Alignment = getGVAlignment(GV, DL);
551 
552   for (const HandlerInfo &HI : Handlers) {
553     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
554                        HI.TimerGroupName, HI.TimerGroupDescription,
555                        TimePassesIsEnabled);
556     HI.Handler->setSymbolSize(GVSym, Size);
557   }
558 
559   // Handle common symbols
560   if (GVKind.isCommon()) {
561     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
562     // .comm _foo, 42, 4
563     const bool SupportsAlignment =
564         getObjFileLowering().getCommDirectiveSupportsAlignment();
565     OutStreamer->emitCommonSymbol(GVSym, Size,
566                                   SupportsAlignment ? Alignment.value() : 0);
567     return;
568   }
569 
570   // Determine to which section this global should be emitted.
571   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
572 
573   // If we have a bss global going to a section that supports the
574   // zerofill directive, do so here.
575   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
576       TheSection->isVirtualSection()) {
577     if (Size == 0)
578       Size = 1; // zerofill of 0 bytes is undefined.
579     emitLinkage(GV, GVSym);
580     // .zerofill __DATA, __bss, _foo, 400, 5
581     OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment.value());
582     return;
583   }
584 
585   // If this is a BSS local symbol and we are emitting in the BSS
586   // section use .lcomm/.comm directive.
587   if (GVKind.isBSSLocal() &&
588       getObjFileLowering().getBSSSection() == TheSection) {
589     if (Size == 0)
590       Size = 1; // .comm Foo, 0 is undefined, avoid it.
591 
592     // Use .lcomm only if it supports user-specified alignment.
593     // Otherwise, while it would still be correct to use .lcomm in some
594     // cases (e.g. when Align == 1), the external assembler might enfore
595     // some -unknown- default alignment behavior, which could cause
596     // spurious differences between external and integrated assembler.
597     // Prefer to simply fall back to .local / .comm in this case.
598     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
599       // .lcomm _foo, 42
600       OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment.value());
601       return;
602     }
603 
604     // .local _foo
605     OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
606     // .comm _foo, 42, 4
607     const bool SupportsAlignment =
608         getObjFileLowering().getCommDirectiveSupportsAlignment();
609     OutStreamer->emitCommonSymbol(GVSym, Size,
610                                   SupportsAlignment ? Alignment.value() : 0);
611     return;
612   }
613 
614   // Handle thread local data for mach-o which requires us to output an
615   // additional structure of data and mangle the original symbol so that we
616   // can reference it later.
617   //
618   // TODO: This should become an "emit thread local global" method on TLOF.
619   // All of this macho specific stuff should be sunk down into TLOFMachO and
620   // stuff like "TLSExtraDataSection" should no longer be part of the parent
621   // TLOF class.  This will also make it more obvious that stuff like
622   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
623   // specific code.
624   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
625     // Emit the .tbss symbol
626     MCSymbol *MangSym =
627         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
628 
629     if (GVKind.isThreadBSS()) {
630       TheSection = getObjFileLowering().getTLSBSSSection();
631       OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment.value());
632     } else if (GVKind.isThreadData()) {
633       OutStreamer->SwitchSection(TheSection);
634 
635       emitAlignment(Alignment, GV);
636       OutStreamer->emitLabel(MangSym);
637 
638       emitGlobalConstant(GV->getParent()->getDataLayout(),
639                          GV->getInitializer());
640     }
641 
642     OutStreamer->AddBlankLine();
643 
644     // Emit the variable struct for the runtime.
645     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
646 
647     OutStreamer->SwitchSection(TLVSect);
648     // Emit the linkage here.
649     emitLinkage(GV, GVSym);
650     OutStreamer->emitLabel(GVSym);
651 
652     // Three pointers in size:
653     //   - __tlv_bootstrap - used to make sure support exists
654     //   - spare pointer, used when mapped by the runtime
655     //   - pointer to mangled symbol above with initializer
656     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
657     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
658                                 PtrSize);
659     OutStreamer->emitIntValue(0, PtrSize);
660     OutStreamer->emitSymbolValue(MangSym, PtrSize);
661 
662     OutStreamer->AddBlankLine();
663     return;
664   }
665 
666   MCSymbol *EmittedInitSym = GVSym;
667 
668   OutStreamer->SwitchSection(TheSection);
669 
670   emitLinkage(GV, EmittedInitSym);
671   emitAlignment(Alignment, GV);
672 
673   OutStreamer->emitLabel(EmittedInitSym);
674   MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
675   if (LocalAlias != EmittedInitSym)
676     OutStreamer->emitLabel(LocalAlias);
677 
678   emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
679 
680   if (MAI->hasDotTypeDotSizeDirective())
681     // .size foo, 42
682     OutStreamer->emitELFSize(EmittedInitSym,
683                              MCConstantExpr::create(Size, OutContext));
684 
685   OutStreamer->AddBlankLine();
686 }
687 
688 /// Emit the directive and value for debug thread local expression
689 ///
690 /// \p Value - The value to emit.
691 /// \p Size - The size of the integer (in bytes) to emit.
692 void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
693   OutStreamer->emitValue(Value, Size);
694 }
695 
696 void AsmPrinter::emitFunctionHeaderComment() {}
697 
698 /// EmitFunctionHeader - This method emits the header for the current
699 /// function.
700 void AsmPrinter::emitFunctionHeader() {
701   const Function &F = MF->getFunction();
702 
703   if (isVerbose())
704     OutStreamer->GetCommentOS()
705         << "-- Begin function "
706         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
707 
708   // Print out constants referenced by the function
709   emitConstantPool();
710 
711   // Print the 'header' of function.
712   MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
713   OutStreamer->SwitchSection(MF->getSection());
714 
715   if (!MAI->hasVisibilityOnlyWithLinkage())
716     emitVisibility(CurrentFnSym, F.getVisibility());
717 
718   if (MAI->needsFunctionDescriptors())
719     emitLinkage(&F, CurrentFnDescSym);
720 
721   emitLinkage(&F, CurrentFnSym);
722   if (MAI->hasFunctionAlignment())
723     emitAlignment(MF->getAlignment(), &F);
724 
725   if (MAI->hasDotTypeDotSizeDirective())
726     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
727 
728   if (F.hasFnAttribute(Attribute::Cold))
729     OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
730 
731   if (isVerbose()) {
732     F.printAsOperand(OutStreamer->GetCommentOS(),
733                    /*PrintType=*/false, F.getParent());
734     emitFunctionHeaderComment();
735     OutStreamer->GetCommentOS() << '\n';
736   }
737 
738   // Emit the prefix data.
739   if (F.hasPrefixData()) {
740     if (MAI->hasSubsectionsViaSymbols()) {
741       // Preserving prefix data on platforms which use subsections-via-symbols
742       // is a bit tricky. Here we introduce a symbol for the prefix data
743       // and use the .alt_entry attribute to mark the function's real entry point
744       // as an alternative entry point to the prefix-data symbol.
745       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
746       OutStreamer->emitLabel(PrefixSym);
747 
748       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
749 
750       // Emit an .alt_entry directive for the actual function symbol.
751       OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
752     } else {
753       emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
754     }
755   }
756 
757   // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
758   // place prefix data before NOPs.
759   unsigned PatchableFunctionPrefix = 0;
760   unsigned PatchableFunctionEntry = 0;
761   (void)F.getFnAttribute("patchable-function-prefix")
762       .getValueAsString()
763       .getAsInteger(10, PatchableFunctionPrefix);
764   (void)F.getFnAttribute("patchable-function-entry")
765       .getValueAsString()
766       .getAsInteger(10, PatchableFunctionEntry);
767   if (PatchableFunctionPrefix) {
768     CurrentPatchableFunctionEntrySym =
769         OutContext.createLinkerPrivateTempSymbol();
770     OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
771     emitNops(PatchableFunctionPrefix);
772   } else if (PatchableFunctionEntry) {
773     // May be reassigned when emitting the body, to reference the label after
774     // the initial BTI (AArch64) or endbr32/endbr64 (x86).
775     CurrentPatchableFunctionEntrySym = CurrentFnBegin;
776   }
777 
778   // Emit the function descriptor. This is a virtual function to allow targets
779   // to emit their specific function descriptor. Right now it is only used by
780   // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
781   // descriptors and should be converted to use this hook as well.
782   if (MAI->needsFunctionDescriptors())
783     emitFunctionDescriptor();
784 
785   // Emit the CurrentFnSym. This is a virtual function to allow targets to do
786   // their wild and crazy things as required.
787   emitFunctionEntryLabel();
788 
789   if (CurrentFnBegin) {
790     if (MAI->useAssignmentForEHBegin()) {
791       MCSymbol *CurPos = OutContext.createTempSymbol();
792       OutStreamer->emitLabel(CurPos);
793       OutStreamer->emitAssignment(CurrentFnBegin,
794                                  MCSymbolRefExpr::create(CurPos, OutContext));
795     } else {
796       OutStreamer->emitLabel(CurrentFnBegin);
797     }
798   }
799 
800   // Emit pre-function debug and/or EH information.
801   for (const HandlerInfo &HI : Handlers) {
802     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
803                        HI.TimerGroupDescription, TimePassesIsEnabled);
804     HI.Handler->beginFunction(MF);
805   }
806 
807   // Emit the prologue data.
808   if (F.hasPrologueData())
809     emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
810 }
811 
812 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
813 /// function.  This can be overridden by targets as required to do custom stuff.
814 void AsmPrinter::emitFunctionEntryLabel() {
815   CurrentFnSym->redefineIfPossible();
816 
817   // The function label could have already been emitted if two symbols end up
818   // conflicting due to asm renaming.  Detect this and emit an error.
819   if (CurrentFnSym->isVariable())
820     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
821                        "' is a protected alias");
822   if (CurrentFnSym->isDefined())
823     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
824                        "' label emitted multiple times to assembly file");
825 
826   OutStreamer->emitLabel(CurrentFnSym);
827 
828   if (TM.getTargetTriple().isOSBinFormatELF()) {
829     MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
830     if (Sym != CurrentFnSym)
831       OutStreamer->emitLabel(Sym);
832   }
833 }
834 
835 /// emitComments - Pretty-print comments for instructions.
836 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
837   const MachineFunction *MF = MI.getMF();
838   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
839 
840   // Check for spills and reloads
841 
842   // We assume a single instruction only has a spill or reload, not
843   // both.
844   Optional<unsigned> Size;
845   if ((Size = MI.getRestoreSize(TII))) {
846     CommentOS << *Size << "-byte Reload\n";
847   } else if ((Size = MI.getFoldedRestoreSize(TII))) {
848     if (*Size) {
849       if (*Size == unsigned(MemoryLocation::UnknownSize))
850         CommentOS << "Unknown-size Folded Reload\n";
851       else
852         CommentOS << *Size << "-byte Folded Reload\n";
853     }
854   } else if ((Size = MI.getSpillSize(TII))) {
855     CommentOS << *Size << "-byte Spill\n";
856   } else if ((Size = MI.getFoldedSpillSize(TII))) {
857     if (*Size) {
858       if (*Size == unsigned(MemoryLocation::UnknownSize))
859         CommentOS << "Unknown-size Folded Spill\n";
860       else
861         CommentOS << *Size << "-byte Folded Spill\n";
862     }
863   }
864 
865   // Check for spill-induced copies
866   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
867     CommentOS << " Reload Reuse\n";
868 }
869 
870 /// emitImplicitDef - This method emits the specified machine instruction
871 /// that is an implicit def.
872 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
873   Register RegNo = MI->getOperand(0).getReg();
874 
875   SmallString<128> Str;
876   raw_svector_ostream OS(Str);
877   OS << "implicit-def: "
878      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
879 
880   OutStreamer->AddComment(OS.str());
881   OutStreamer->AddBlankLine();
882 }
883 
884 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
885   std::string Str;
886   raw_string_ostream OS(Str);
887   OS << "kill:";
888   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
889     const MachineOperand &Op = MI->getOperand(i);
890     assert(Op.isReg() && "KILL instruction must have only register operands");
891     OS << ' ' << (Op.isDef() ? "def " : "killed ")
892        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
893   }
894   AP.OutStreamer->AddComment(OS.str());
895   AP.OutStreamer->AddBlankLine();
896 }
897 
898 /// emitDebugValueComment - This method handles the target-independent form
899 /// of DBG_VALUE, returning true if it was able to do so.  A false return
900 /// means the target will need to handle MI in EmitInstruction.
901 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
902   // This code handles only the 4-operand target-independent form.
903   if (MI->getNumOperands() != 4)
904     return false;
905 
906   SmallString<128> Str;
907   raw_svector_ostream OS(Str);
908   OS << "DEBUG_VALUE: ";
909 
910   const DILocalVariable *V = MI->getDebugVariable();
911   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
912     StringRef Name = SP->getName();
913     if (!Name.empty())
914       OS << Name << ":";
915   }
916   OS << V->getName();
917   OS << " <- ";
918 
919   // The second operand is only an offset if it's an immediate.
920   bool MemLoc = MI->isIndirectDebugValue();
921   auto Offset = StackOffset::getFixed(MemLoc ? MI->getOperand(1).getImm() : 0);
922   const DIExpression *Expr = MI->getDebugExpression();
923   if (Expr->getNumElements()) {
924     OS << '[';
925     ListSeparator LS;
926     for (auto Op : Expr->expr_ops()) {
927       OS << LS << dwarf::OperationEncodingString(Op.getOp());
928       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
929         OS << ' ' << Op.getArg(I);
930     }
931     OS << "] ";
932   }
933 
934   // Register or immediate value. Register 0 means undef.
935   if (MI->getDebugOperand(0).isFPImm()) {
936     APFloat APF = APFloat(MI->getDebugOperand(0).getFPImm()->getValueAPF());
937     if (MI->getDebugOperand(0).getFPImm()->getType()->isFloatTy()) {
938       OS << (double)APF.convertToFloat();
939     } else if (MI->getDebugOperand(0).getFPImm()->getType()->isDoubleTy()) {
940       OS << APF.convertToDouble();
941     } else {
942       // There is no good way to print long double.  Convert a copy to
943       // double.  Ah well, it's only a comment.
944       bool ignored;
945       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
946                   &ignored);
947       OS << "(long double) " << APF.convertToDouble();
948     }
949   } else if (MI->getDebugOperand(0).isImm()) {
950     OS << MI->getDebugOperand(0).getImm();
951   } else if (MI->getDebugOperand(0).isCImm()) {
952     MI->getDebugOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
953   } else if (MI->getDebugOperand(0).isTargetIndex()) {
954     auto Op = MI->getDebugOperand(0);
955     OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
956     // NOTE: Want this comment at start of line, don't emit with AddComment.
957     AP.OutStreamer->emitRawComment(OS.str());
958     return true;
959   } else {
960     Register Reg;
961     if (MI->getDebugOperand(0).isReg()) {
962       Reg = MI->getDebugOperand(0).getReg();
963     } else {
964       assert(MI->getDebugOperand(0).isFI() && "Unknown operand type");
965       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
966       Offset += TFI->getFrameIndexReference(
967           *AP.MF, MI->getDebugOperand(0).getIndex(), Reg);
968       MemLoc = true;
969     }
970     if (Reg == 0) {
971       // Suppress offset, it is not meaningful here.
972       OS << "undef";
973       // NOTE: Want this comment at start of line, don't emit with AddComment.
974       AP.OutStreamer->emitRawComment(OS.str());
975       return true;
976     }
977     if (MemLoc)
978       OS << '[';
979     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
980   }
981 
982   if (MemLoc)
983     OS << '+' << Offset.getFixed() << ']';
984 
985   // NOTE: Want this comment at start of line, don't emit with AddComment.
986   AP.OutStreamer->emitRawComment(OS.str());
987   return true;
988 }
989 
990 /// This method handles the target-independent form of DBG_LABEL, returning
991 /// true if it was able to do so.  A false return means the target will need
992 /// to handle MI in EmitInstruction.
993 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
994   if (MI->getNumOperands() != 1)
995     return false;
996 
997   SmallString<128> Str;
998   raw_svector_ostream OS(Str);
999   OS << "DEBUG_LABEL: ";
1000 
1001   const DILabel *V = MI->getDebugLabel();
1002   if (auto *SP = dyn_cast<DISubprogram>(
1003           V->getScope()->getNonLexicalBlockFileScope())) {
1004     StringRef Name = SP->getName();
1005     if (!Name.empty())
1006       OS << Name << ":";
1007   }
1008   OS << V->getName();
1009 
1010   // NOTE: Want this comment at start of line, don't emit with AddComment.
1011   AP.OutStreamer->emitRawComment(OS.str());
1012   return true;
1013 }
1014 
1015 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
1016   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1017       MF->getFunction().needsUnwindTableEntry())
1018     return CFI_M_EH;
1019 
1020   if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection)
1021     return CFI_M_Debug;
1022 
1023   return CFI_M_None;
1024 }
1025 
1026 bool AsmPrinter::needsSEHMoves() {
1027   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1028 }
1029 
1030 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
1031   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1032   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1033       ExceptionHandlingType != ExceptionHandling::ARM)
1034     return;
1035 
1036   if (needsCFIMoves() == CFI_M_None)
1037     return;
1038 
1039   // If there is no "real" instruction following this CFI instruction, skip
1040   // emitting it; it would be beyond the end of the function's FDE range.
1041   auto *MBB = MI.getParent();
1042   auto I = std::next(MI.getIterator());
1043   while (I != MBB->end() && I->isTransient())
1044     ++I;
1045   if (I == MBB->instr_end() &&
1046       MBB->getReverseIterator() == MBB->getParent()->rbegin())
1047     return;
1048 
1049   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1050   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1051   const MCCFIInstruction &CFI = Instrs[CFIIndex];
1052   emitCFIInstruction(CFI);
1053 }
1054 
1055 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
1056   // The operands are the MCSymbol and the frame offset of the allocation.
1057   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1058   int FrameOffset = MI.getOperand(1).getImm();
1059 
1060   // Emit a symbol assignment.
1061   OutStreamer->emitAssignment(FrameAllocSym,
1062                              MCConstantExpr::create(FrameOffset, OutContext));
1063 }
1064 
1065 /// Returns the BB metadata to be emitted in the .llvm_bb_addr_map section for a
1066 /// given basic block. This can be used to capture more precise profile
1067 /// information. We use the last 3 bits (LSBs) to ecnode the following
1068 /// information:
1069 ///  * (1): set if return block (ret or tail call).
1070 ///  * (2): set if ends with a tail call.
1071 ///  * (3): set if exception handling (EH) landing pad.
1072 /// The remaining bits are zero.
1073 static unsigned getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
1074   const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1075   return ((unsigned)MBB.isReturnBlock()) |
1076          ((!MBB.empty() && TII->isTailCall(MBB.back())) << 1) |
1077          (MBB.isEHPad() << 2);
1078 }
1079 
1080 void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
1081   MCSection *BBAddrMapSection =
1082       getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1083   assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1084 
1085   const MCSymbol *FunctionSymbol = getFunctionBegin();
1086 
1087   OutStreamer->PushSection();
1088   OutStreamer->SwitchSection(BBAddrMapSection);
1089   OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1090   // Emit the total number of basic blocks in this function.
1091   OutStreamer->emitULEB128IntValue(MF.size());
1092   // Emit BB Information for each basic block in the funciton.
1093   for (const MachineBasicBlock &MBB : MF) {
1094     const MCSymbol *MBBSymbol =
1095         MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1096     // Emit the basic block offset.
1097     emitLabelDifferenceAsULEB128(MBBSymbol, FunctionSymbol);
1098     // Emit the basic block size. When BBs have alignments, their size cannot
1099     // always be computed from their offsets.
1100     emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
1101     OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1102   }
1103   OutStreamer->PopSection();
1104 }
1105 
1106 void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
1107   auto GUID = MI.getOperand(0).getImm();
1108   auto Index = MI.getOperand(1).getImm();
1109   auto Type = MI.getOperand(2).getImm();
1110   auto Attr = MI.getOperand(3).getImm();
1111   DILocation *DebugLoc = MI.getDebugLoc();
1112   PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1113 }
1114 
1115 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1116   if (!MF.getTarget().Options.EmitStackSizeSection)
1117     return;
1118 
1119   MCSection *StackSizeSection =
1120       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1121   if (!StackSizeSection)
1122     return;
1123 
1124   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1125   // Don't emit functions with dynamic stack allocations.
1126   if (FrameInfo.hasVarSizedObjects())
1127     return;
1128 
1129   OutStreamer->PushSection();
1130   OutStreamer->SwitchSection(StackSizeSection);
1131 
1132   const MCSymbol *FunctionSymbol = getFunctionBegin();
1133   uint64_t StackSize = FrameInfo.getStackSize();
1134   OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1135   OutStreamer->emitULEB128IntValue(StackSize);
1136 
1137   OutStreamer->PopSection();
1138 }
1139 
1140 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF) {
1141   MachineModuleInfo &MMI = MF.getMMI();
1142   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI.hasDebugInfo())
1143     return true;
1144 
1145   // We might emit an EH table that uses function begin and end labels even if
1146   // we don't have any landingpads.
1147   if (!MF.getFunction().hasPersonalityFn())
1148     return false;
1149   return !isNoOpWithoutInvoke(
1150       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1151 }
1152 
1153 /// EmitFunctionBody - This method emits the body and trailer for a
1154 /// function.
1155 void AsmPrinter::emitFunctionBody() {
1156   emitFunctionHeader();
1157 
1158   // Emit target-specific gunk before the function body.
1159   emitFunctionBodyStart();
1160 
1161   if (isVerbose()) {
1162     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1163     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1164     if (!MDT) {
1165       OwnedMDT = std::make_unique<MachineDominatorTree>();
1166       OwnedMDT->getBase().recalculate(*MF);
1167       MDT = OwnedMDT.get();
1168     }
1169 
1170     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1171     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1172     if (!MLI) {
1173       OwnedMLI = std::make_unique<MachineLoopInfo>();
1174       OwnedMLI->getBase().analyze(MDT->getBase());
1175       MLI = OwnedMLI.get();
1176     }
1177   }
1178 
1179   // Print out code for the function.
1180   bool HasAnyRealCode = false;
1181   int NumInstsInFunction = 0;
1182 
1183   bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1184   for (auto &MBB : *MF) {
1185     // Print a label for the basic block.
1186     emitBasicBlockStart(MBB);
1187     DenseMap<StringRef, unsigned> MnemonicCounts;
1188     for (auto &MI : MBB) {
1189       // Print the assembly for the instruction.
1190       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1191           !MI.isDebugInstr()) {
1192         HasAnyRealCode = true;
1193         ++NumInstsInFunction;
1194       }
1195 
1196       // If there is a pre-instruction symbol, emit a label for it here.
1197       if (MCSymbol *S = MI.getPreInstrSymbol())
1198         OutStreamer->emitLabel(S);
1199 
1200       for (const HandlerInfo &HI : Handlers) {
1201         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1202                            HI.TimerGroupDescription, TimePassesIsEnabled);
1203         HI.Handler->beginInstruction(&MI);
1204       }
1205 
1206       if (isVerbose())
1207         emitComments(MI, OutStreamer->GetCommentOS());
1208 
1209       switch (MI.getOpcode()) {
1210       case TargetOpcode::CFI_INSTRUCTION:
1211         emitCFIInstruction(MI);
1212         break;
1213       case TargetOpcode::LOCAL_ESCAPE:
1214         emitFrameAlloc(MI);
1215         break;
1216       case TargetOpcode::ANNOTATION_LABEL:
1217       case TargetOpcode::EH_LABEL:
1218       case TargetOpcode::GC_LABEL:
1219         OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
1220         break;
1221       case TargetOpcode::INLINEASM:
1222       case TargetOpcode::INLINEASM_BR:
1223         emitInlineAsm(&MI);
1224         break;
1225       case TargetOpcode::DBG_VALUE:
1226         if (isVerbose()) {
1227           if (!emitDebugValueComment(&MI, *this))
1228             emitInstruction(&MI);
1229         }
1230         break;
1231       case TargetOpcode::DBG_INSTR_REF:
1232         // This instruction reference will have been resolved to a machine
1233         // location, and a nearby DBG_VALUE created. We can safely ignore
1234         // the instruction reference.
1235         break;
1236       case TargetOpcode::DBG_LABEL:
1237         if (isVerbose()) {
1238           if (!emitDebugLabelComment(&MI, *this))
1239             emitInstruction(&MI);
1240         }
1241         break;
1242       case TargetOpcode::IMPLICIT_DEF:
1243         if (isVerbose()) emitImplicitDef(&MI);
1244         break;
1245       case TargetOpcode::KILL:
1246         if (isVerbose()) emitKill(&MI, *this);
1247         break;
1248       case TargetOpcode::PSEUDO_PROBE:
1249         emitPseudoProbe(MI);
1250         break;
1251       default:
1252         emitInstruction(&MI);
1253         if (CanDoExtraAnalysis) {
1254           MCInst MCI;
1255           MCI.setOpcode(MI.getOpcode());
1256           auto Name = OutStreamer->getMnemonic(MCI);
1257           auto I = MnemonicCounts.insert({Name, 0u});
1258           I.first->second++;
1259         }
1260         break;
1261       }
1262 
1263       // If there is a post-instruction symbol, emit a label for it here.
1264       if (MCSymbol *S = MI.getPostInstrSymbol())
1265         OutStreamer->emitLabel(S);
1266 
1267       for (const HandlerInfo &HI : Handlers) {
1268         NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1269                            HI.TimerGroupDescription, TimePassesIsEnabled);
1270         HI.Handler->endInstruction();
1271       }
1272     }
1273 
1274     // We must emit temporary symbol for the end of this basic block, if either
1275     // we have BBLabels enabled or if this basic blocks marks the end of a
1276     // section (except the section containing the entry basic block as the end
1277     // symbol for that section is CurrentFnEnd).
1278     if (MF->hasBBLabels() ||
1279         (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection() &&
1280          !MBB.sameSection(&MF->front())))
1281       OutStreamer->emitLabel(MBB.getEndSymbol());
1282 
1283     if (MBB.isEndSection()) {
1284       // The size directive for the section containing the entry block is
1285       // handled separately by the function section.
1286       if (!MBB.sameSection(&MF->front())) {
1287         if (MAI->hasDotTypeDotSizeDirective()) {
1288           // Emit the size directive for the basic block section.
1289           const MCExpr *SizeExp = MCBinaryExpr::createSub(
1290               MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
1291               MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
1292               OutContext);
1293           OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
1294         }
1295         MBBSectionRanges[MBB.getSectionIDNum()] =
1296             MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
1297       }
1298     }
1299     emitBasicBlockEnd(MBB);
1300 
1301     if (CanDoExtraAnalysis) {
1302       // Skip empty blocks.
1303       if (MBB.empty())
1304         continue;
1305 
1306       MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
1307                                           MBB.begin()->getDebugLoc(), &MBB);
1308 
1309       // Generate instruction mix remark. First, sort counts in descending order
1310       // by count and name.
1311       SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
1312       for (auto &KV : MnemonicCounts)
1313         MnemonicVec.emplace_back(KV.first, KV.second);
1314 
1315       sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
1316                            const std::pair<StringRef, unsigned> &B) {
1317         if (A.second > B.second)
1318           return true;
1319         if (A.second == B.second)
1320           return StringRef(A.first) < StringRef(B.first);
1321         return false;
1322       });
1323       R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
1324       for (auto &KV : MnemonicVec) {
1325         auto Name = (Twine("INST_") + KV.first.trim()).str();
1326         R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
1327       }
1328       ORE->emit(R);
1329     }
1330   }
1331 
1332   EmittedInsts += NumInstsInFunction;
1333   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1334                                       MF->getFunction().getSubprogram(),
1335                                       &MF->front());
1336   R << ore::NV("NumInstructions", NumInstsInFunction)
1337     << " instructions in function";
1338   ORE->emit(R);
1339 
1340   // If the function is empty and the object file uses .subsections_via_symbols,
1341   // then we need to emit *something* to the function body to prevent the
1342   // labels from collapsing together.  Just emit a noop.
1343   // Similarly, don't emit empty functions on Windows either. It can lead to
1344   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1345   // after linking, causing the kernel not to load the binary:
1346   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1347   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1348   const Triple &TT = TM.getTargetTriple();
1349   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1350                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1351     MCInst Noop;
1352     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1353 
1354     // Targets can opt-out of emitting the noop here by leaving the opcode
1355     // unspecified.
1356     if (Noop.getOpcode()) {
1357       OutStreamer->AddComment("avoids zero-length function");
1358       emitNops(1);
1359     }
1360   }
1361 
1362   // Switch to the original section in case basic block sections was used.
1363   OutStreamer->SwitchSection(MF->getSection());
1364 
1365   const Function &F = MF->getFunction();
1366   for (const auto &BB : F) {
1367     if (!BB.hasAddressTaken())
1368       continue;
1369     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1370     if (Sym->isDefined())
1371       continue;
1372     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1373     OutStreamer->emitLabel(Sym);
1374   }
1375 
1376   // Emit target-specific gunk after the function body.
1377   emitFunctionBodyEnd();
1378 
1379   if (needFuncLabelsForEHOrDebugInfo(*MF) ||
1380       MAI->hasDotTypeDotSizeDirective()) {
1381     // Create a symbol for the end of function.
1382     CurrentFnEnd = createTempSymbol("func_end");
1383     OutStreamer->emitLabel(CurrentFnEnd);
1384   }
1385 
1386   // If the target wants a .size directive for the size of the function, emit
1387   // it.
1388   if (MAI->hasDotTypeDotSizeDirective()) {
1389     // We can get the size as difference between the function label and the
1390     // temp label.
1391     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1392         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1393         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1394     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1395   }
1396 
1397   for (const HandlerInfo &HI : Handlers) {
1398     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1399                        HI.TimerGroupDescription, TimePassesIsEnabled);
1400     HI.Handler->markFunctionEnd();
1401   }
1402 
1403   MBBSectionRanges[MF->front().getSectionIDNum()] =
1404       MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
1405 
1406   // Print out jump tables referenced by the function.
1407   emitJumpTableInfo();
1408 
1409   // Emit post-function debug and/or EH information.
1410   for (const HandlerInfo &HI : Handlers) {
1411     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1412                        HI.TimerGroupDescription, TimePassesIsEnabled);
1413     HI.Handler->endFunction(MF);
1414   }
1415 
1416   // Emit section containing BB address offsets and their metadata, when
1417   // BB labels are requested for this function.
1418   if (MF->hasBBLabels())
1419     emitBBAddrMapSection(*MF);
1420 
1421   // Emit section containing stack size metadata.
1422   emitStackSizeSection(*MF);
1423 
1424   emitPatchableFunctionEntries();
1425 
1426   if (isVerbose())
1427     OutStreamer->GetCommentOS() << "-- End function\n";
1428 
1429   OutStreamer->AddBlankLine();
1430 }
1431 
1432 /// Compute the number of Global Variables that uses a Constant.
1433 static unsigned getNumGlobalVariableUses(const Constant *C) {
1434   if (!C)
1435     return 0;
1436 
1437   if (isa<GlobalVariable>(C))
1438     return 1;
1439 
1440   unsigned NumUses = 0;
1441   for (auto *CU : C->users())
1442     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1443 
1444   return NumUses;
1445 }
1446 
1447 /// Only consider global GOT equivalents if at least one user is a
1448 /// cstexpr inside an initializer of another global variables. Also, don't
1449 /// handle cstexpr inside instructions. During global variable emission,
1450 /// candidates are skipped and are emitted later in case at least one cstexpr
1451 /// isn't replaced by a PC relative GOT entry access.
1452 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1453                                      unsigned &NumGOTEquivUsers) {
1454   // Global GOT equivalents are unnamed private globals with a constant
1455   // pointer initializer to another global symbol. They must point to a
1456   // GlobalVariable or Function, i.e., as GlobalValue.
1457   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1458       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1459       !isa<GlobalValue>(GV->getOperand(0)))
1460     return false;
1461 
1462   // To be a got equivalent, at least one of its users need to be a constant
1463   // expression used by another global variable.
1464   for (auto *U : GV->users())
1465     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1466 
1467   return NumGOTEquivUsers > 0;
1468 }
1469 
1470 /// Unnamed constant global variables solely contaning a pointer to
1471 /// another globals variable is equivalent to a GOT table entry; it contains the
1472 /// the address of another symbol. Optimize it and replace accesses to these
1473 /// "GOT equivalents" by using the GOT entry for the final global instead.
1474 /// Compute GOT equivalent candidates among all global variables to avoid
1475 /// emitting them if possible later on, after it use is replaced by a GOT entry
1476 /// access.
1477 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1478   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1479     return;
1480 
1481   for (const auto &G : M.globals()) {
1482     unsigned NumGOTEquivUsers = 0;
1483     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1484       continue;
1485 
1486     const MCSymbol *GOTEquivSym = getSymbol(&G);
1487     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1488   }
1489 }
1490 
1491 /// Constant expressions using GOT equivalent globals may not be eligible
1492 /// for PC relative GOT entry conversion, in such cases we need to emit such
1493 /// globals we previously omitted in EmitGlobalVariable.
1494 void AsmPrinter::emitGlobalGOTEquivs() {
1495   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1496     return;
1497 
1498   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1499   for (auto &I : GlobalGOTEquivs) {
1500     const GlobalVariable *GV = I.second.first;
1501     unsigned Cnt = I.second.second;
1502     if (Cnt)
1503       FailedCandidates.push_back(GV);
1504   }
1505   GlobalGOTEquivs.clear();
1506 
1507   for (auto *GV : FailedCandidates)
1508     emitGlobalVariable(GV);
1509 }
1510 
1511 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1512                                           const GlobalIndirectSymbol& GIS) {
1513   MCSymbol *Name = getSymbol(&GIS);
1514   bool IsFunction = GIS.getValueType()->isFunctionTy();
1515   // Treat bitcasts of functions as functions also. This is important at least
1516   // on WebAssembly where object and function addresses can't alias each other.
1517   if (!IsFunction)
1518     if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol()))
1519       if (CE->getOpcode() == Instruction::BitCast)
1520         IsFunction =
1521           CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy();
1522 
1523   // AIX's assembly directive `.set` is not usable for aliasing purpose,
1524   // so AIX has to use the extra-label-at-definition strategy. At this
1525   // point, all the extra label is emitted, we just have to emit linkage for
1526   // those labels.
1527   if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
1528     assert(!isa<GlobalIFunc>(GIS) && "IFunc is not supported on AIX.");
1529     assert(MAI->hasVisibilityOnlyWithLinkage() &&
1530            "Visibility should be handled with emitLinkage() on AIX.");
1531     emitLinkage(&GIS, Name);
1532     // If it's a function, also emit linkage for aliases of function entry
1533     // point.
1534     if (IsFunction)
1535       emitLinkage(&GIS,
1536                   getObjFileLowering().getFunctionEntryPointSymbol(&GIS, TM));
1537     return;
1538   }
1539 
1540   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1541     OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
1542   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1543     OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
1544   else
1545     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1546 
1547   // Set the symbol type to function if the alias has a function type.
1548   // This affects codegen when the aliasee is not a function.
1549   if (IsFunction)
1550     OutStreamer->emitSymbolAttribute(Name, isa<GlobalIFunc>(GIS)
1551                                                ? MCSA_ELF_TypeIndFunction
1552                                                : MCSA_ELF_TypeFunction);
1553 
1554   emitVisibility(Name, GIS.getVisibility());
1555 
1556   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1557 
1558   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1559     OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
1560 
1561   // Emit the directives as assignments aka .set:
1562   OutStreamer->emitAssignment(Name, Expr);
1563   MCSymbol *LocalAlias = getSymbolPreferLocal(GIS);
1564   if (LocalAlias != Name)
1565     OutStreamer->emitAssignment(LocalAlias, Expr);
1566 
1567   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1568     // If the aliasee does not correspond to a symbol in the output, i.e. the
1569     // alias is not of an object or the aliased object is private, then set the
1570     // size of the alias symbol from the type of the alias. We don't do this in
1571     // other situations as the alias and aliasee having differing types but same
1572     // size may be intentional.
1573     const GlobalObject *BaseObject = GA->getBaseObject();
1574     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1575         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1576       const DataLayout &DL = M.getDataLayout();
1577       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1578       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1579     }
1580   }
1581 }
1582 
1583 void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
1584   if (!RS.needsSection())
1585     return;
1586 
1587   remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
1588 
1589   Optional<SmallString<128>> Filename;
1590   if (Optional<StringRef> FilenameRef = RS.getFilename()) {
1591     Filename = *FilenameRef;
1592     sys::fs::make_absolute(*Filename);
1593     assert(!Filename->empty() && "The filename can't be empty.");
1594   }
1595 
1596   std::string Buf;
1597   raw_string_ostream OS(Buf);
1598   std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
1599       Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename))
1600                : RemarkSerializer.metaSerializer(OS);
1601   MetaSerializer->emit();
1602 
1603   // Switch to the remarks section.
1604   MCSection *RemarksSection =
1605       OutContext.getObjectFileInfo()->getRemarksSection();
1606   OutStreamer->SwitchSection(RemarksSection);
1607 
1608   OutStreamer->emitBinaryData(OS.str());
1609 }
1610 
1611 bool AsmPrinter::doFinalization(Module &M) {
1612   // Set the MachineFunction to nullptr so that we can catch attempted
1613   // accesses to MF specific features at the module level and so that
1614   // we can conditionalize accesses based on whether or not it is nullptr.
1615   MF = nullptr;
1616 
1617   // Gather all GOT equivalent globals in the module. We really need two
1618   // passes over the globals: one to compute and another to avoid its emission
1619   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1620   // where the got equivalent shows up before its use.
1621   computeGlobalGOTEquivs(M);
1622 
1623   // Emit global variables.
1624   for (const auto &G : M.globals())
1625     emitGlobalVariable(&G);
1626 
1627   // Emit remaining GOT equivalent globals.
1628   emitGlobalGOTEquivs();
1629 
1630   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1631 
1632   // Emit linkage(XCOFF) and visibility info for declarations
1633   for (const Function &F : M) {
1634     if (!F.isDeclarationForLinker())
1635       continue;
1636 
1637     MCSymbol *Name = getSymbol(&F);
1638     // Function getSymbol gives us the function descriptor symbol for XCOFF.
1639 
1640     if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
1641       GlobalValue::VisibilityTypes V = F.getVisibility();
1642       if (V == GlobalValue::DefaultVisibility)
1643         continue;
1644 
1645       emitVisibility(Name, V, false);
1646       continue;
1647     }
1648 
1649     if (F.isIntrinsic())
1650       continue;
1651 
1652     // Handle the XCOFF case.
1653     // Variable `Name` is the function descriptor symbol (see above). Get the
1654     // function entry point symbol.
1655     MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
1656     // Emit linkage for the function entry point.
1657     emitLinkage(&F, FnEntryPointSym);
1658 
1659     // Emit linkage for the function descriptor.
1660     emitLinkage(&F, Name);
1661   }
1662 
1663   // Emit the remarks section contents.
1664   // FIXME: Figure out when is the safest time to emit this section. It should
1665   // not come after debug info.
1666   if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
1667     emitRemarksSection(*RS);
1668 
1669   TLOF.emitModuleMetadata(*OutStreamer, M);
1670 
1671   if (TM.getTargetTriple().isOSBinFormatELF()) {
1672     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1673 
1674     // Output stubs for external and common global variables.
1675     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1676     if (!Stubs.empty()) {
1677       OutStreamer->SwitchSection(TLOF.getDataSection());
1678       const DataLayout &DL = M.getDataLayout();
1679 
1680       emitAlignment(Align(DL.getPointerSize()));
1681       for (const auto &Stub : Stubs) {
1682         OutStreamer->emitLabel(Stub.first);
1683         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1684                                      DL.getPointerSize());
1685       }
1686     }
1687   }
1688 
1689   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1690     MachineModuleInfoCOFF &MMICOFF =
1691         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1692 
1693     // Output stubs for external and common global variables.
1694     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1695     if (!Stubs.empty()) {
1696       const DataLayout &DL = M.getDataLayout();
1697 
1698       for (const auto &Stub : Stubs) {
1699         SmallString<256> SectionName = StringRef(".rdata$");
1700         SectionName += Stub.first->getName();
1701         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1702             SectionName,
1703             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1704                 COFF::IMAGE_SCN_LNK_COMDAT,
1705             SectionKind::getReadOnly(), Stub.first->getName(),
1706             COFF::IMAGE_COMDAT_SELECT_ANY));
1707         emitAlignment(Align(DL.getPointerSize()));
1708         OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
1709         OutStreamer->emitLabel(Stub.first);
1710         OutStreamer->emitSymbolValue(Stub.second.getPointer(),
1711                                      DL.getPointerSize());
1712       }
1713     }
1714   }
1715 
1716   // Finalize debug and EH information.
1717   for (const HandlerInfo &HI : Handlers) {
1718     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1719                        HI.TimerGroupDescription, TimePassesIsEnabled);
1720     HI.Handler->endModule();
1721   }
1722 
1723   // This deletes all the ephemeral handlers that AsmPrinter added, while
1724   // keeping all the user-added handlers alive until the AsmPrinter is
1725   // destroyed.
1726   Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
1727   DD = nullptr;
1728 
1729   // If the target wants to know about weak references, print them all.
1730   if (MAI->getWeakRefDirective()) {
1731     // FIXME: This is not lazy, it would be nice to only print weak references
1732     // to stuff that is actually used.  Note that doing so would require targets
1733     // to notice uses in operands (due to constant exprs etc).  This should
1734     // happen with the MC stuff eventually.
1735 
1736     // Print out module-level global objects here.
1737     for (const auto &GO : M.global_objects()) {
1738       if (!GO.hasExternalWeakLinkage())
1739         continue;
1740       OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1741     }
1742   }
1743 
1744   // Print aliases in topological order, that is, for each alias a = b,
1745   // b must be printed before a.
1746   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1747   // such an order to generate correct TOC information.
1748   SmallVector<const GlobalAlias *, 16> AliasStack;
1749   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1750   for (const auto &Alias : M.aliases()) {
1751     for (const GlobalAlias *Cur = &Alias; Cur;
1752          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1753       if (!AliasVisited.insert(Cur).second)
1754         break;
1755       AliasStack.push_back(Cur);
1756     }
1757     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1758       emitGlobalIndirectSymbol(M, *AncestorAlias);
1759     AliasStack.clear();
1760   }
1761   for (const auto &IFunc : M.ifuncs())
1762     emitGlobalIndirectSymbol(M, IFunc);
1763 
1764   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1765   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1766   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1767     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1768       MP->finishAssembly(M, *MI, *this);
1769 
1770   // Emit llvm.ident metadata in an '.ident' directive.
1771   emitModuleIdents(M);
1772 
1773   // Emit bytes for llvm.commandline metadata.
1774   emitModuleCommandLines(M);
1775 
1776   // Emit __morestack address if needed for indirect calls.
1777   if (MMI->usesMorestackAddr()) {
1778     Align Alignment(1);
1779     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1780         getDataLayout(), SectionKind::getReadOnly(),
1781         /*C=*/nullptr, Alignment);
1782     OutStreamer->SwitchSection(ReadOnlySection);
1783 
1784     MCSymbol *AddrSymbol =
1785         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1786     OutStreamer->emitLabel(AddrSymbol);
1787 
1788     unsigned PtrSize = MAI->getCodePointerSize();
1789     OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1790                                  PtrSize);
1791   }
1792 
1793   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1794   // split-stack is used.
1795   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1796     OutStreamer->SwitchSection(
1797         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1798     if (MMI->hasNosplitStack())
1799       OutStreamer->SwitchSection(
1800           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1801   }
1802 
1803   // If we don't have any trampolines, then we don't require stack memory
1804   // to be executable. Some targets have a directive to declare this.
1805   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1806   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1807     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1808       OutStreamer->SwitchSection(S);
1809 
1810   if (TM.Options.EmitAddrsig) {
1811     // Emit address-significance attributes for all globals.
1812     OutStreamer->emitAddrsig();
1813     for (const GlobalValue &GV : M.global_values())
1814       if (!GV.use_empty() && !GV.isThreadLocal() &&
1815           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1816           !GV.hasAtLeastLocalUnnamedAddr())
1817         OutStreamer->emitAddrsigSym(getSymbol(&GV));
1818   }
1819 
1820   // Emit symbol partition specifications (ELF only).
1821   if (TM.getTargetTriple().isOSBinFormatELF()) {
1822     unsigned UniqueID = 0;
1823     for (const GlobalValue &GV : M.global_values()) {
1824       if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
1825           GV.getVisibility() != GlobalValue::DefaultVisibility)
1826         continue;
1827 
1828       OutStreamer->SwitchSection(
1829           OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
1830                                    "", ++UniqueID, nullptr));
1831       OutStreamer->emitBytes(GV.getPartition());
1832       OutStreamer->emitZeros(1);
1833       OutStreamer->emitValue(
1834           MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
1835           MAI->getCodePointerSize());
1836     }
1837   }
1838 
1839   // Allow the target to emit any magic that it wants at the end of the file,
1840   // after everything else has gone out.
1841   emitEndOfAsmFile(M);
1842 
1843   MMI = nullptr;
1844 
1845   OutStreamer->Finish();
1846   OutStreamer->reset();
1847   OwnedMLI.reset();
1848   OwnedMDT.reset();
1849 
1850   return false;
1851 }
1852 
1853 MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
1854   auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
1855   if (Res.second)
1856     Res.first->second = createTempSymbol("exception");
1857   return Res.first->second;
1858 }
1859 
1860 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1861   this->MF = &MF;
1862   const Function &F = MF.getFunction();
1863 
1864   // Get the function symbol.
1865   if (!MAI->needsFunctionDescriptors()) {
1866     CurrentFnSym = getSymbol(&MF.getFunction());
1867   } else {
1868     assert(TM.getTargetTriple().isOSAIX() &&
1869            "Only AIX uses the function descriptor hooks.");
1870     // AIX is unique here in that the name of the symbol emitted for the
1871     // function body does not have the same name as the source function's
1872     // C-linkage name.
1873     assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
1874                                " initalized first.");
1875 
1876     // Get the function entry point symbol.
1877     CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
1878   }
1879 
1880   CurrentFnSymForSize = CurrentFnSym;
1881   CurrentFnBegin = nullptr;
1882   CurrentSectionBeginSym = nullptr;
1883   MBBSectionRanges.clear();
1884   MBBSectionExceptionSyms.clear();
1885   bool NeedsLocalForSize = MAI->needsLocalForSize();
1886   if (F.hasFnAttribute("patchable-function-entry") ||
1887       F.hasFnAttribute("function-instrument") ||
1888       F.hasFnAttribute("xray-instruction-threshold") ||
1889       needFuncLabelsForEHOrDebugInfo(MF) || NeedsLocalForSize ||
1890       MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
1891     CurrentFnBegin = createTempSymbol("func_begin");
1892     if (NeedsLocalForSize)
1893       CurrentFnSymForSize = CurrentFnBegin;
1894   }
1895 
1896   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1897 }
1898 
1899 namespace {
1900 
1901 // Keep track the alignment, constpool entries per Section.
1902   struct SectionCPs {
1903     MCSection *S;
1904     Align Alignment;
1905     SmallVector<unsigned, 4> CPEs;
1906 
1907     SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
1908   };
1909 
1910 } // end anonymous namespace
1911 
1912 /// EmitConstantPool - Print to the current output stream assembly
1913 /// representations of the constants in the constant pool MCP. This is
1914 /// used to print out constants which have been "spilled to memory" by
1915 /// the code generator.
1916 void AsmPrinter::emitConstantPool() {
1917   const MachineConstantPool *MCP = MF->getConstantPool();
1918   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1919   if (CP.empty()) return;
1920 
1921   // Calculate sections for constant pool entries. We collect entries to go into
1922   // the same section together to reduce amount of section switch statements.
1923   SmallVector<SectionCPs, 4> CPSections;
1924   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1925     const MachineConstantPoolEntry &CPE = CP[i];
1926     Align Alignment = CPE.getAlign();
1927 
1928     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1929 
1930     const Constant *C = nullptr;
1931     if (!CPE.isMachineConstantPoolEntry())
1932       C = CPE.Val.ConstVal;
1933 
1934     MCSection *S = getObjFileLowering().getSectionForConstant(
1935         getDataLayout(), Kind, C, Alignment);
1936 
1937     // The number of sections are small, just do a linear search from the
1938     // last section to the first.
1939     bool Found = false;
1940     unsigned SecIdx = CPSections.size();
1941     while (SecIdx != 0) {
1942       if (CPSections[--SecIdx].S == S) {
1943         Found = true;
1944         break;
1945       }
1946     }
1947     if (!Found) {
1948       SecIdx = CPSections.size();
1949       CPSections.push_back(SectionCPs(S, Alignment));
1950     }
1951 
1952     if (Alignment > CPSections[SecIdx].Alignment)
1953       CPSections[SecIdx].Alignment = Alignment;
1954     CPSections[SecIdx].CPEs.push_back(i);
1955   }
1956 
1957   // Now print stuff into the calculated sections.
1958   const MCSection *CurSection = nullptr;
1959   unsigned Offset = 0;
1960   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1961     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1962       unsigned CPI = CPSections[i].CPEs[j];
1963       MCSymbol *Sym = GetCPISymbol(CPI);
1964       if (!Sym->isUndefined())
1965         continue;
1966 
1967       if (CurSection != CPSections[i].S) {
1968         OutStreamer->SwitchSection(CPSections[i].S);
1969         emitAlignment(Align(CPSections[i].Alignment));
1970         CurSection = CPSections[i].S;
1971         Offset = 0;
1972       }
1973 
1974       MachineConstantPoolEntry CPE = CP[CPI];
1975 
1976       // Emit inter-object padding for alignment.
1977       unsigned NewOffset = alignTo(Offset, CPE.getAlign());
1978       OutStreamer->emitZeros(NewOffset - Offset);
1979 
1980       Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
1981 
1982       OutStreamer->emitLabel(Sym);
1983       if (CPE.isMachineConstantPoolEntry())
1984         emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1985       else
1986         emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1987     }
1988   }
1989 }
1990 
1991 // Print assembly representations of the jump tables used by the current
1992 // function.
1993 void AsmPrinter::emitJumpTableInfo() {
1994   const DataLayout &DL = MF->getDataLayout();
1995   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1996   if (!MJTI) return;
1997   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1998   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1999   if (JT.empty()) return;
2000 
2001   // Pick the directive to use to print the jump table entries, and switch to
2002   // the appropriate section.
2003   const Function &F = MF->getFunction();
2004   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
2005   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
2006       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
2007       F);
2008   if (JTInDiffSection) {
2009     // Drop it in the readonly section.
2010     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
2011     OutStreamer->SwitchSection(ReadOnlySection);
2012   }
2013 
2014   emitAlignment(Align(MJTI->getEntryAlignment(DL)));
2015 
2016   // Jump tables in code sections are marked with a data_region directive
2017   // where that's supported.
2018   if (!JTInDiffSection)
2019     OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
2020 
2021   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
2022     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2023 
2024     // If this jump table was deleted, ignore it.
2025     if (JTBBs.empty()) continue;
2026 
2027     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
2028     /// emit a .set directive for each unique entry.
2029     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
2030         MAI->doesSetDirectiveSuppressReloc()) {
2031       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
2032       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2033       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
2034       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
2035         const MachineBasicBlock *MBB = JTBBs[ii];
2036         if (!EmittedSets.insert(MBB).second)
2037           continue;
2038 
2039         // .set LJTSet, LBB32-base
2040         const MCExpr *LHS =
2041           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2042         OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
2043                                     MCBinaryExpr::createSub(LHS, Base,
2044                                                             OutContext));
2045       }
2046     }
2047 
2048     // On some targets (e.g. Darwin) we want to emit two consecutive labels
2049     // before each jump table.  The first label is never referenced, but tells
2050     // the assembler and linker the extents of the jump table object.  The
2051     // second label is actually referenced by the code.
2052     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
2053       // FIXME: This doesn't have to have any specific name, just any randomly
2054       // named and numbered local label started with 'l' would work.  Simplify
2055       // GetJTISymbol.
2056       OutStreamer->emitLabel(GetJTISymbol(JTI, true));
2057 
2058     MCSymbol* JTISymbol = GetJTISymbol(JTI);
2059     OutStreamer->emitLabel(JTISymbol);
2060 
2061     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
2062       emitJumpTableEntry(MJTI, JTBBs[ii], JTI);
2063   }
2064   if (!JTInDiffSection)
2065     OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
2066 }
2067 
2068 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
2069 /// current stream.
2070 void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
2071                                     const MachineBasicBlock *MBB,
2072                                     unsigned UID) const {
2073   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
2074   const MCExpr *Value = nullptr;
2075   switch (MJTI->getEntryKind()) {
2076   case MachineJumpTableInfo::EK_Inline:
2077     llvm_unreachable("Cannot emit EK_Inline jump table entry");
2078   case MachineJumpTableInfo::EK_Custom32:
2079     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
2080         MJTI, MBB, UID, OutContext);
2081     break;
2082   case MachineJumpTableInfo::EK_BlockAddress:
2083     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
2084     //     .word LBB123
2085     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2086     break;
2087   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
2088     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
2089     // with a relocation as gp-relative, e.g.:
2090     //     .gprel32 LBB123
2091     MCSymbol *MBBSym = MBB->getSymbol();
2092     OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2093     return;
2094   }
2095 
2096   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
2097     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
2098     // with a relocation as gp-relative, e.g.:
2099     //     .gpdword LBB123
2100     MCSymbol *MBBSym = MBB->getSymbol();
2101     OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
2102     return;
2103   }
2104 
2105   case MachineJumpTableInfo::EK_LabelDifference32: {
2106     // Each entry is the address of the block minus the address of the jump
2107     // table. This is used for PIC jump tables where gprel32 is not supported.
2108     // e.g.:
2109     //      .word LBB123 - LJTI1_2
2110     // If the .set directive avoids relocations, this is emitted as:
2111     //      .set L4_5_set_123, LBB123 - LJTI1_2
2112     //      .word L4_5_set_123
2113     if (MAI->doesSetDirectiveSuppressReloc()) {
2114       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
2115                                       OutContext);
2116       break;
2117     }
2118     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
2119     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
2120     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
2121     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
2122     break;
2123   }
2124   }
2125 
2126   assert(Value && "Unknown entry kind!");
2127 
2128   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
2129   OutStreamer->emitValue(Value, EntrySize);
2130 }
2131 
2132 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
2133 /// special global used by LLVM.  If so, emit it and return true, otherwise
2134 /// do nothing and return false.
2135 bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
2136   if (GV->getName() == "llvm.used") {
2137     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
2138       emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
2139     return true;
2140   }
2141 
2142   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
2143   if (GV->getSection() == "llvm.metadata" ||
2144       GV->hasAvailableExternallyLinkage())
2145     return true;
2146 
2147   if (!GV->hasAppendingLinkage()) return false;
2148 
2149   assert(GV->hasInitializer() && "Not a special LLVM global!");
2150 
2151   if (GV->getName() == "llvm.global_ctors") {
2152     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2153                        /* isCtor */ true);
2154 
2155     return true;
2156   }
2157 
2158   if (GV->getName() == "llvm.global_dtors") {
2159     emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
2160                        /* isCtor */ false);
2161 
2162     return true;
2163   }
2164 
2165   report_fatal_error("unknown special variable");
2166 }
2167 
2168 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
2169 /// global in the specified llvm.used list.
2170 void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
2171   // Should be an array of 'i8*'.
2172   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
2173     const GlobalValue *GV =
2174       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
2175     if (GV)
2176       OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
2177   }
2178 }
2179 
2180 void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
2181                                           const Constant *List,
2182                                           SmallVector<Structor, 8> &Structors) {
2183   // Should be an array of '{ i32, void ()*, i8* }' structs.  The first value is
2184   // the init priority.
2185   if (!isa<ConstantArray>(List))
2186     return;
2187 
2188   // Gather the structors in a form that's convenient for sorting by priority.
2189   for (Value *O : cast<ConstantArray>(List)->operands()) {
2190     auto *CS = cast<ConstantStruct>(O);
2191     if (CS->getOperand(1)->isNullValue())
2192       break; // Found a null terminator, skip the rest.
2193     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
2194     if (!Priority)
2195       continue; // Malformed.
2196     Structors.push_back(Structor());
2197     Structor &S = Structors.back();
2198     S.Priority = Priority->getLimitedValue(65535);
2199     S.Func = CS->getOperand(1);
2200     if (!CS->getOperand(2)->isNullValue()) {
2201       if (TM.getTargetTriple().isOSAIX())
2202         llvm::report_fatal_error(
2203             "associated data of XXStructor list is not yet supported on AIX");
2204       S.ComdatKey =
2205           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
2206     }
2207   }
2208 
2209   // Emit the function pointers in the target-specific order
2210   llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
2211     return L.Priority < R.Priority;
2212   });
2213 }
2214 
2215 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
2216 /// priority.
2217 void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
2218                                     bool IsCtor) {
2219   SmallVector<Structor, 8> Structors;
2220   preprocessXXStructorList(DL, List, Structors);
2221   if (Structors.empty())
2222     return;
2223 
2224   const Align Align = DL.getPointerPrefAlignment();
2225   for (Structor &S : Structors) {
2226     const TargetLoweringObjectFile &Obj = getObjFileLowering();
2227     const MCSymbol *KeySym = nullptr;
2228     if (GlobalValue *GV = S.ComdatKey) {
2229       if (GV->isDeclarationForLinker())
2230         // If the associated variable is not defined in this module
2231         // (it might be available_externally, or have been an
2232         // available_externally definition that was dropped by the
2233         // EliminateAvailableExternally pass), some other TU
2234         // will provide its dynamic initializer.
2235         continue;
2236 
2237       KeySym = getSymbol(GV);
2238     }
2239 
2240     MCSection *OutputSection =
2241         (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
2242                 : Obj.getStaticDtorSection(S.Priority, KeySym));
2243     OutStreamer->SwitchSection(OutputSection);
2244     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
2245       emitAlignment(Align);
2246     emitXXStructor(DL, S.Func);
2247   }
2248 }
2249 
2250 void AsmPrinter::emitModuleIdents(Module &M) {
2251   if (!MAI->hasIdentDirective())
2252     return;
2253 
2254   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2255     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2256       const MDNode *N = NMD->getOperand(i);
2257       assert(N->getNumOperands() == 1 &&
2258              "llvm.ident metadata entry can have only one operand");
2259       const MDString *S = cast<MDString>(N->getOperand(0));
2260       OutStreamer->emitIdent(S->getString());
2261     }
2262   }
2263 }
2264 
2265 void AsmPrinter::emitModuleCommandLines(Module &M) {
2266   MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
2267   if (!CommandLine)
2268     return;
2269 
2270   const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
2271   if (!NMD || !NMD->getNumOperands())
2272     return;
2273 
2274   OutStreamer->PushSection();
2275   OutStreamer->SwitchSection(CommandLine);
2276   OutStreamer->emitZeros(1);
2277   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2278     const MDNode *N = NMD->getOperand(i);
2279     assert(N->getNumOperands() == 1 &&
2280            "llvm.commandline metadata entry can have only one operand");
2281     const MDString *S = cast<MDString>(N->getOperand(0));
2282     OutStreamer->emitBytes(S->getString());
2283     OutStreamer->emitZeros(1);
2284   }
2285   OutStreamer->PopSection();
2286 }
2287 
2288 //===--------------------------------------------------------------------===//
2289 // Emission and print routines
2290 //
2291 
2292 /// Emit a byte directive and value.
2293 ///
2294 void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
2295 
2296 /// Emit a short directive and value.
2297 void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
2298 
2299 /// Emit a long directive and value.
2300 void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
2301 
2302 /// Emit a long long directive and value.
2303 void AsmPrinter::emitInt64(uint64_t Value) const {
2304   OutStreamer->emitInt64(Value);
2305 }
2306 
2307 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2308 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2309 /// .set if it avoids relocations.
2310 void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2311                                      unsigned Size) const {
2312   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2313 }
2314 
2315 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2316 /// where the size in bytes of the directive is specified by Size and Label
2317 /// specifies the label.  This implicitly uses .set if it is available.
2318 void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2319                                      unsigned Size,
2320                                      bool IsSectionRelative) const {
2321   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2322     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2323     if (Size > 4)
2324       OutStreamer->emitZeros(Size - 4);
2325     return;
2326   }
2327 
2328   // Emit Label+Offset (or just Label if Offset is zero)
2329   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2330   if (Offset)
2331     Expr = MCBinaryExpr::createAdd(
2332         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2333 
2334   OutStreamer->emitValue(Expr, Size);
2335 }
2336 
2337 //===----------------------------------------------------------------------===//
2338 
2339 // EmitAlignment - Emit an alignment directive to the specified power of
2340 // two boundary.  If a global value is specified, and if that global has
2341 // an explicit alignment requested, it will override the alignment request
2342 // if required for correctness.
2343 void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV) const {
2344   if (GV)
2345     Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
2346 
2347   if (Alignment == Align(1))
2348     return; // 1-byte aligned: no need to emit alignment.
2349 
2350   if (getCurrentSection()->getKind().isText())
2351     OutStreamer->emitCodeAlignment(Alignment.value());
2352   else
2353     OutStreamer->emitValueToAlignment(Alignment.value());
2354 }
2355 
2356 //===----------------------------------------------------------------------===//
2357 // Constant emission.
2358 //===----------------------------------------------------------------------===//
2359 
2360 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2361   MCContext &Ctx = OutContext;
2362 
2363   if (CV->isNullValue() || isa<UndefValue>(CV))
2364     return MCConstantExpr::create(0, Ctx);
2365 
2366   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2367     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2368 
2369   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2370     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2371 
2372   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2373     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2374 
2375   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
2376     return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
2377 
2378   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2379   if (!CE) {
2380     llvm_unreachable("Unknown constant value to lower!");
2381   }
2382 
2383   switch (CE->getOpcode()) {
2384   case Instruction::AddrSpaceCast: {
2385     const Constant *Op = CE->getOperand(0);
2386     unsigned DstAS = CE->getType()->getPointerAddressSpace();
2387     unsigned SrcAS = Op->getType()->getPointerAddressSpace();
2388     if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
2389       return lowerConstant(Op);
2390 
2391     // Fallthrough to error.
2392     LLVM_FALLTHROUGH;
2393   }
2394   default: {
2395     // If the code isn't optimized, there may be outstanding folding
2396     // opportunities. Attempt to fold the expression using DataLayout as a
2397     // last resort before giving up.
2398     Constant *C = ConstantFoldConstant(CE, getDataLayout());
2399     if (C != CE)
2400       return lowerConstant(C);
2401 
2402     // Otherwise report the problem to the user.
2403     std::string S;
2404     raw_string_ostream OS(S);
2405     OS << "Unsupported expression in static initializer: ";
2406     CE->printAsOperand(OS, /*PrintType=*/false,
2407                    !MF ? nullptr : MF->getFunction().getParent());
2408     report_fatal_error(OS.str());
2409   }
2410   case Instruction::GetElementPtr: {
2411     // Generate a symbolic expression for the byte address
2412     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2413     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2414 
2415     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2416     if (!OffsetAI)
2417       return Base;
2418 
2419     int64_t Offset = OffsetAI.getSExtValue();
2420     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2421                                    Ctx);
2422   }
2423 
2424   case Instruction::Trunc:
2425     // We emit the value and depend on the assembler to truncate the generated
2426     // expression properly.  This is important for differences between
2427     // blockaddress labels.  Since the two labels are in the same function, it
2428     // is reasonable to treat their delta as a 32-bit value.
2429     LLVM_FALLTHROUGH;
2430   case Instruction::BitCast:
2431     return lowerConstant(CE->getOperand(0));
2432 
2433   case Instruction::IntToPtr: {
2434     const DataLayout &DL = getDataLayout();
2435 
2436     // Handle casts to pointers by changing them into casts to the appropriate
2437     // integer type.  This promotes constant folding and simplifies this code.
2438     Constant *Op = CE->getOperand(0);
2439     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2440                                       false/*ZExt*/);
2441     return lowerConstant(Op);
2442   }
2443 
2444   case Instruction::PtrToInt: {
2445     const DataLayout &DL = getDataLayout();
2446 
2447     // Support only foldable casts to/from pointers that can be eliminated by
2448     // changing the pointer to the appropriately sized integer type.
2449     Constant *Op = CE->getOperand(0);
2450     Type *Ty = CE->getType();
2451 
2452     const MCExpr *OpExpr = lowerConstant(Op);
2453 
2454     // We can emit the pointer value into this slot if the slot is an
2455     // integer slot equal to the size of the pointer.
2456     //
2457     // If the pointer is larger than the resultant integer, then
2458     // as with Trunc just depend on the assembler to truncate it.
2459     if (DL.getTypeAllocSize(Ty).getFixedSize() <=
2460         DL.getTypeAllocSize(Op->getType()).getFixedSize())
2461       return OpExpr;
2462 
2463     // Otherwise the pointer is smaller than the resultant integer, mask off
2464     // the high bits so we are sure to get a proper truncation if the input is
2465     // a constant expr.
2466     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2467     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2468     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2469   }
2470 
2471   case Instruction::Sub: {
2472     GlobalValue *LHSGV;
2473     APInt LHSOffset;
2474     DSOLocalEquivalent *DSOEquiv;
2475     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2476                                    getDataLayout(), &DSOEquiv)) {
2477       GlobalValue *RHSGV;
2478       APInt RHSOffset;
2479       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2480                                      getDataLayout())) {
2481         const MCExpr *RelocExpr =
2482             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2483         if (!RelocExpr) {
2484           const MCExpr *LHSExpr =
2485               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
2486           if (DSOEquiv &&
2487               getObjFileLowering().supportDSOLocalEquivalentLowering())
2488             LHSExpr =
2489                 getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
2490           RelocExpr = MCBinaryExpr::createSub(
2491               LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2492         }
2493         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2494         if (Addend != 0)
2495           RelocExpr = MCBinaryExpr::createAdd(
2496               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2497         return RelocExpr;
2498       }
2499     }
2500   }
2501   // else fallthrough
2502   LLVM_FALLTHROUGH;
2503 
2504   // The MC library also has a right-shift operator, but it isn't consistently
2505   // signed or unsigned between different targets.
2506   case Instruction::Add:
2507   case Instruction::Mul:
2508   case Instruction::SDiv:
2509   case Instruction::SRem:
2510   case Instruction::Shl:
2511   case Instruction::And:
2512   case Instruction::Or:
2513   case Instruction::Xor: {
2514     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2515     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2516     switch (CE->getOpcode()) {
2517     default: llvm_unreachable("Unknown binary operator constant cast expr");
2518     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2519     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2520     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2521     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2522     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2523     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2524     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2525     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2526     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2527     }
2528   }
2529   }
2530 }
2531 
2532 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2533                                    AsmPrinter &AP,
2534                                    const Constant *BaseCV = nullptr,
2535                                    uint64_t Offset = 0);
2536 
2537 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2538 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2539 
2540 /// isRepeatedByteSequence - Determine whether the given value is
2541 /// composed of a repeated sequence of identical bytes and return the
2542 /// byte value.  If it is not a repeated sequence, return -1.
2543 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2544   StringRef Data = V->getRawDataValues();
2545   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2546   char C = Data[0];
2547   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2548     if (Data[i] != C) return -1;
2549   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2550 }
2551 
2552 /// isRepeatedByteSequence - Determine whether the given value is
2553 /// composed of a repeated sequence of identical bytes and return the
2554 /// byte value.  If it is not a repeated sequence, return -1.
2555 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2556   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2557     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2558     assert(Size % 8 == 0);
2559 
2560     // Extend the element to take zero padding into account.
2561     APInt Value = CI->getValue().zextOrSelf(Size);
2562     if (!Value.isSplat(8))
2563       return -1;
2564 
2565     return Value.zextOrTrunc(8).getZExtValue();
2566   }
2567   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2568     // Make sure all array elements are sequences of the same repeated
2569     // byte.
2570     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2571     Constant *Op0 = CA->getOperand(0);
2572     int Byte = isRepeatedByteSequence(Op0, DL);
2573     if (Byte == -1)
2574       return -1;
2575 
2576     // All array elements must be equal.
2577     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2578       if (CA->getOperand(i) != Op0)
2579         return -1;
2580     return Byte;
2581   }
2582 
2583   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2584     return isRepeatedByteSequence(CDS);
2585 
2586   return -1;
2587 }
2588 
2589 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2590                                              const ConstantDataSequential *CDS,
2591                                              AsmPrinter &AP) {
2592   // See if we can aggregate this into a .fill, if so, emit it as such.
2593   int Value = isRepeatedByteSequence(CDS, DL);
2594   if (Value != -1) {
2595     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2596     // Don't emit a 1-byte object as a .fill.
2597     if (Bytes > 1)
2598       return AP.OutStreamer->emitFill(Bytes, Value);
2599   }
2600 
2601   // If this can be emitted with .ascii/.asciz, emit it as such.
2602   if (CDS->isString())
2603     return AP.OutStreamer->emitBytes(CDS->getAsString());
2604 
2605   // Otherwise, emit the values in successive locations.
2606   unsigned ElementByteSize = CDS->getElementByteSize();
2607   if (isa<IntegerType>(CDS->getElementType())) {
2608     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2609       if (AP.isVerbose())
2610         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2611                                                  CDS->getElementAsInteger(i));
2612       AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(i),
2613                                    ElementByteSize);
2614     }
2615   } else {
2616     Type *ET = CDS->getElementType();
2617     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2618       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2619   }
2620 
2621   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2622   unsigned EmittedSize =
2623       DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
2624   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2625   if (unsigned Padding = Size - EmittedSize)
2626     AP.OutStreamer->emitZeros(Padding);
2627 }
2628 
2629 static void emitGlobalConstantArray(const DataLayout &DL,
2630                                     const ConstantArray *CA, AsmPrinter &AP,
2631                                     const Constant *BaseCV, uint64_t Offset) {
2632   // See if we can aggregate some values.  Make sure it can be
2633   // represented as a series of bytes of the constant value.
2634   int Value = isRepeatedByteSequence(CA, DL);
2635 
2636   if (Value != -1) {
2637     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2638     AP.OutStreamer->emitFill(Bytes, Value);
2639   }
2640   else {
2641     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2642       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2643       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2644     }
2645   }
2646 }
2647 
2648 static void emitGlobalConstantVector(const DataLayout &DL,
2649                                      const ConstantVector *CV, AsmPrinter &AP) {
2650   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2651     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2652 
2653   unsigned Size = DL.getTypeAllocSize(CV->getType());
2654   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2655                          CV->getType()->getNumElements();
2656   if (unsigned Padding = Size - EmittedSize)
2657     AP.OutStreamer->emitZeros(Padding);
2658 }
2659 
2660 static void emitGlobalConstantStruct(const DataLayout &DL,
2661                                      const ConstantStruct *CS, AsmPrinter &AP,
2662                                      const Constant *BaseCV, uint64_t Offset) {
2663   // Print the fields in successive locations. Pad to align if needed!
2664   unsigned Size = DL.getTypeAllocSize(CS->getType());
2665   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2666   uint64_t SizeSoFar = 0;
2667   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2668     const Constant *Field = CS->getOperand(i);
2669 
2670     // Print the actual field value.
2671     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2672 
2673     // Check if padding is needed and insert one or more 0s.
2674     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2675     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2676                         - Layout->getElementOffset(i)) - FieldSize;
2677     SizeSoFar += FieldSize + PadSize;
2678 
2679     // Insert padding - this may include padding to increase the size of the
2680     // current field up to the ABI size (if the struct is not packed) as well
2681     // as padding to ensure that the next field starts at the right offset.
2682     AP.OutStreamer->emitZeros(PadSize);
2683   }
2684   assert(SizeSoFar == Layout->getSizeInBytes() &&
2685          "Layout of constant struct may be incorrect!");
2686 }
2687 
2688 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2689   assert(ET && "Unknown float type");
2690   APInt API = APF.bitcastToAPInt();
2691 
2692   // First print a comment with what we think the original floating-point value
2693   // should have been.
2694   if (AP.isVerbose()) {
2695     SmallString<8> StrVal;
2696     APF.toString(StrVal);
2697     ET->print(AP.OutStreamer->GetCommentOS());
2698     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2699   }
2700 
2701   // Now iterate through the APInt chunks, emitting them in endian-correct
2702   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2703   // floats).
2704   unsigned NumBytes = API.getBitWidth() / 8;
2705   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2706   const uint64_t *p = API.getRawData();
2707 
2708   // PPC's long double has odd notions of endianness compared to how LLVM
2709   // handles it: p[0] goes first for *big* endian on PPC.
2710   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2711     int Chunk = API.getNumWords() - 1;
2712 
2713     if (TrailingBytes)
2714       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
2715 
2716     for (; Chunk >= 0; --Chunk)
2717       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2718   } else {
2719     unsigned Chunk;
2720     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2721       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
2722 
2723     if (TrailingBytes)
2724       AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
2725   }
2726 
2727   // Emit the tail padding for the long double.
2728   const DataLayout &DL = AP.getDataLayout();
2729   AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2730 }
2731 
2732 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2733   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2734 }
2735 
2736 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2737   const DataLayout &DL = AP.getDataLayout();
2738   unsigned BitWidth = CI->getBitWidth();
2739 
2740   // Copy the value as we may massage the layout for constants whose bit width
2741   // is not a multiple of 64-bits.
2742   APInt Realigned(CI->getValue());
2743   uint64_t ExtraBits = 0;
2744   unsigned ExtraBitsSize = BitWidth & 63;
2745 
2746   if (ExtraBitsSize) {
2747     // The bit width of the data is not a multiple of 64-bits.
2748     // The extra bits are expected to be at the end of the chunk of the memory.
2749     // Little endian:
2750     // * Nothing to be done, just record the extra bits to emit.
2751     // Big endian:
2752     // * Record the extra bits to emit.
2753     // * Realign the raw data to emit the chunks of 64-bits.
2754     if (DL.isBigEndian()) {
2755       // Basically the structure of the raw data is a chunk of 64-bits cells:
2756       //    0        1         BitWidth / 64
2757       // [chunk1][chunk2] ... [chunkN].
2758       // The most significant chunk is chunkN and it should be emitted first.
2759       // However, due to the alignment issue chunkN contains useless bits.
2760       // Realign the chunks so that they contain only useful information:
2761       // ExtraBits     0       1       (BitWidth / 64) - 1
2762       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2763       ExtraBitsSize = alignTo(ExtraBitsSize, 8);
2764       ExtraBits = Realigned.getRawData()[0] &
2765         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2766       Realigned.lshrInPlace(ExtraBitsSize);
2767     } else
2768       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2769   }
2770 
2771   // We don't expect assemblers to support integer data directives
2772   // for more than 64 bits, so we emit the data in at most 64-bit
2773   // quantities at a time.
2774   const uint64_t *RawData = Realigned.getRawData();
2775   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2776     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2777     AP.OutStreamer->emitIntValue(Val, 8);
2778   }
2779 
2780   if (ExtraBitsSize) {
2781     // Emit the extra bits after the 64-bits chunks.
2782 
2783     // Emit a directive that fills the expected size.
2784     uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
2785     Size -= (BitWidth / 64) * 8;
2786     assert(Size && Size * 8 >= ExtraBitsSize &&
2787            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2788            == ExtraBits && "Directive too small for extra bits.");
2789     AP.OutStreamer->emitIntValue(ExtraBits, Size);
2790   }
2791 }
2792 
2793 /// Transform a not absolute MCExpr containing a reference to a GOT
2794 /// equivalent global, by a target specific GOT pc relative access to the
2795 /// final symbol.
2796 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2797                                          const Constant *BaseCst,
2798                                          uint64_t Offset) {
2799   // The global @foo below illustrates a global that uses a got equivalent.
2800   //
2801   //  @bar = global i32 42
2802   //  @gotequiv = private unnamed_addr constant i32* @bar
2803   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2804   //                             i64 ptrtoint (i32* @foo to i64))
2805   //                        to i32)
2806   //
2807   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2808   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2809   // form:
2810   //
2811   //  foo = cstexpr, where
2812   //    cstexpr := <gotequiv> - "." + <cst>
2813   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2814   //
2815   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2816   //
2817   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2818   //    gotpcrelcst := <offset from @foo base> + <cst>
2819   MCValue MV;
2820   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2821     return;
2822   const MCSymbolRefExpr *SymA = MV.getSymA();
2823   if (!SymA)
2824     return;
2825 
2826   // Check that GOT equivalent symbol is cached.
2827   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2828   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2829     return;
2830 
2831   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2832   if (!BaseGV)
2833     return;
2834 
2835   // Check for a valid base symbol
2836   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2837   const MCSymbolRefExpr *SymB = MV.getSymB();
2838 
2839   if (!SymB || BaseSym != &SymB->getSymbol())
2840     return;
2841 
2842   // Make sure to match:
2843   //
2844   //    gotpcrelcst := <offset from @foo base> + <cst>
2845   //
2846   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2847   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2848   // if the target knows how to encode it.
2849   int64_t GOTPCRelCst = Offset + MV.getConstant();
2850   if (GOTPCRelCst < 0)
2851     return;
2852   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2853     return;
2854 
2855   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2856   //
2857   //  bar:
2858   //    .long 42
2859   //  gotequiv:
2860   //    .quad bar
2861   //  foo:
2862   //    .long gotequiv - "." + <cst>
2863   //
2864   // is replaced by the target specific equivalent to:
2865   //
2866   //  bar:
2867   //    .long 42
2868   //  foo:
2869   //    .long bar@GOTPCREL+<gotpcrelcst>
2870   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2871   const GlobalVariable *GV = Result.first;
2872   int NumUses = (int)Result.second;
2873   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2874   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2875   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2876       FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2877 
2878   // Update GOT equivalent usage information
2879   --NumUses;
2880   if (NumUses >= 0)
2881     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2882 }
2883 
2884 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2885                                    AsmPrinter &AP, const Constant *BaseCV,
2886                                    uint64_t Offset) {
2887   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2888 
2889   // Globals with sub-elements such as combinations of arrays and structs
2890   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2891   // constant symbol base and the current position with BaseCV and Offset.
2892   if (!BaseCV && CV->hasOneUse())
2893     BaseCV = dyn_cast<Constant>(CV->user_back());
2894 
2895   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2896     return AP.OutStreamer->emitZeros(Size);
2897 
2898   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2899     const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
2900 
2901     if (StoreSize <= 8) {
2902       if (AP.isVerbose())
2903         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2904                                                  CI->getZExtValue());
2905       AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
2906     } else {
2907       emitGlobalConstantLargeInt(CI, AP);
2908     }
2909 
2910     // Emit tail padding if needed
2911     if (Size != StoreSize)
2912       AP.OutStreamer->emitZeros(Size - StoreSize);
2913 
2914     return;
2915   }
2916 
2917   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2918     return emitGlobalConstantFP(CFP, AP);
2919 
2920   if (isa<ConstantPointerNull>(CV)) {
2921     AP.OutStreamer->emitIntValue(0, Size);
2922     return;
2923   }
2924 
2925   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2926     return emitGlobalConstantDataSequential(DL, CDS, AP);
2927 
2928   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2929     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2930 
2931   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2932     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2933 
2934   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2935     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2936     // vectors).
2937     if (CE->getOpcode() == Instruction::BitCast)
2938       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2939 
2940     if (Size > 8) {
2941       // If the constant expression's size is greater than 64-bits, then we have
2942       // to emit the value in chunks. Try to constant fold the value and emit it
2943       // that way.
2944       Constant *New = ConstantFoldConstant(CE, DL);
2945       if (New != CE)
2946         return emitGlobalConstantImpl(DL, New, AP);
2947     }
2948   }
2949 
2950   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2951     return emitGlobalConstantVector(DL, V, AP);
2952 
2953   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2954   // thread the streamer with EmitValue.
2955   const MCExpr *ME = AP.lowerConstant(CV);
2956 
2957   // Since lowerConstant already folded and got rid of all IR pointer and
2958   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2959   // directly.
2960   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2961     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2962 
2963   AP.OutStreamer->emitValue(ME, Size);
2964 }
2965 
2966 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2967 void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2968   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2969   if (Size)
2970     emitGlobalConstantImpl(DL, CV, *this);
2971   else if (MAI->hasSubsectionsViaSymbols()) {
2972     // If the global has zero size, emit a single byte so that two labels don't
2973     // look like they are at the same location.
2974     OutStreamer->emitIntValue(0, 1);
2975   }
2976 }
2977 
2978 void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2979   // Target doesn't support this yet!
2980   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2981 }
2982 
2983 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2984   if (Offset > 0)
2985     OS << '+' << Offset;
2986   else if (Offset < 0)
2987     OS << Offset;
2988 }
2989 
2990 void AsmPrinter::emitNops(unsigned N) {
2991   MCInst Nop;
2992   MF->getSubtarget().getInstrInfo()->getNoop(Nop);
2993   for (; N; --N)
2994     EmitToStreamer(*OutStreamer, Nop);
2995 }
2996 
2997 //===----------------------------------------------------------------------===//
2998 // Symbol Lowering Routines.
2999 //===----------------------------------------------------------------------===//
3000 
3001 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
3002   return OutContext.createTempSymbol(Name, true);
3003 }
3004 
3005 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
3006   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
3007 }
3008 
3009 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
3010   return MMI->getAddrLabelSymbol(BB);
3011 }
3012 
3013 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
3014 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
3015   if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
3016     const MachineConstantPoolEntry &CPE =
3017         MF->getConstantPool()->getConstants()[CPID];
3018     if (!CPE.isMachineConstantPoolEntry()) {
3019       const DataLayout &DL = MF->getDataLayout();
3020       SectionKind Kind = CPE.getSectionKind(&DL);
3021       const Constant *C = CPE.Val.ConstVal;
3022       Align Alignment = CPE.Alignment;
3023       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
3024               getObjFileLowering().getSectionForConstant(DL, Kind, C,
3025                                                          Alignment))) {
3026         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
3027           if (Sym->isUndefined())
3028             OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
3029           return Sym;
3030         }
3031       }
3032     }
3033   }
3034 
3035   const DataLayout &DL = getDataLayout();
3036   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3037                                       "CPI" + Twine(getFunctionNumber()) + "_" +
3038                                       Twine(CPID));
3039 }
3040 
3041 /// GetJTISymbol - Return the symbol for the specified jump table entry.
3042 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
3043   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
3044 }
3045 
3046 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
3047 /// FIXME: privatize to AsmPrinter.
3048 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
3049   const DataLayout &DL = getDataLayout();
3050   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
3051                                       Twine(getFunctionNumber()) + "_" +
3052                                       Twine(UID) + "_set_" + Twine(MBBID));
3053 }
3054 
3055 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
3056                                                    StringRef Suffix) const {
3057   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
3058 }
3059 
3060 /// Return the MCSymbol for the specified ExternalSymbol.
3061 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
3062   SmallString<60> NameStr;
3063   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
3064   return OutContext.getOrCreateSymbol(NameStr);
3065 }
3066 
3067 /// PrintParentLoopComment - Print comments about parent loops of this one.
3068 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3069                                    unsigned FunctionNumber) {
3070   if (!Loop) return;
3071   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
3072   OS.indent(Loop->getLoopDepth()*2)
3073     << "Parent Loop BB" << FunctionNumber << "_"
3074     << Loop->getHeader()->getNumber()
3075     << " Depth=" << Loop->getLoopDepth() << '\n';
3076 }
3077 
3078 /// PrintChildLoopComment - Print comments about child loops within
3079 /// the loop for this basic block, with nesting.
3080 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
3081                                   unsigned FunctionNumber) {
3082   // Add child loop information
3083   for (const MachineLoop *CL : *Loop) {
3084     OS.indent(CL->getLoopDepth()*2)
3085       << "Child Loop BB" << FunctionNumber << "_"
3086       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
3087       << '\n';
3088     PrintChildLoopComment(OS, CL, FunctionNumber);
3089   }
3090 }
3091 
3092 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
3093 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
3094                                        const MachineLoopInfo *LI,
3095                                        const AsmPrinter &AP) {
3096   // Add loop depth information
3097   const MachineLoop *Loop = LI->getLoopFor(&MBB);
3098   if (!Loop) return;
3099 
3100   MachineBasicBlock *Header = Loop->getHeader();
3101   assert(Header && "No header for loop");
3102 
3103   // If this block is not a loop header, just print out what is the loop header
3104   // and return.
3105   if (Header != &MBB) {
3106     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
3107                                Twine(AP.getFunctionNumber())+"_" +
3108                                Twine(Loop->getHeader()->getNumber())+
3109                                " Depth="+Twine(Loop->getLoopDepth()));
3110     return;
3111   }
3112 
3113   // Otherwise, it is a loop header.  Print out information about child and
3114   // parent loops.
3115   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
3116 
3117   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
3118 
3119   OS << "=>";
3120   OS.indent(Loop->getLoopDepth()*2-2);
3121 
3122   OS << "This ";
3123   if (Loop->isInnermost())
3124     OS << "Inner ";
3125   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
3126 
3127   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
3128 }
3129 
3130 /// emitBasicBlockStart - This method prints the label for the specified
3131 /// MachineBasicBlock, an alignment (if present) and a comment describing
3132 /// it if appropriate.
3133 void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
3134   // End the previous funclet and start a new one.
3135   if (MBB.isEHFuncletEntry()) {
3136     for (const HandlerInfo &HI : Handlers) {
3137       HI.Handler->endFunclet();
3138       HI.Handler->beginFunclet(MBB);
3139     }
3140   }
3141 
3142   // Emit an alignment directive for this block, if needed.
3143   const Align Alignment = MBB.getAlignment();
3144   if (Alignment != Align(1))
3145     emitAlignment(Alignment);
3146 
3147   // Switch to a new section if this basic block must begin a section. The
3148   // entry block is always placed in the function section and is handled
3149   // separately.
3150   if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
3151     OutStreamer->SwitchSection(
3152         getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
3153                                                             MBB, TM));
3154     CurrentSectionBeginSym = MBB.getSymbol();
3155   }
3156 
3157   // If the block has its address taken, emit any labels that were used to
3158   // reference the block.  It is possible that there is more than one label
3159   // here, because multiple LLVM BB's may have been RAUW'd to this block after
3160   // the references were generated.
3161   if (MBB.hasAddressTaken()) {
3162     const BasicBlock *BB = MBB.getBasicBlock();
3163     if (isVerbose())
3164       OutStreamer->AddComment("Block address taken");
3165 
3166     // MBBs can have their address taken as part of CodeGen without having
3167     // their corresponding BB's address taken in IR
3168     if (BB->hasAddressTaken())
3169       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
3170         OutStreamer->emitLabel(Sym);
3171   }
3172 
3173   // Print some verbose block comments.
3174   if (isVerbose()) {
3175     if (const BasicBlock *BB = MBB.getBasicBlock()) {
3176       if (BB->hasName()) {
3177         BB->printAsOperand(OutStreamer->GetCommentOS(),
3178                            /*PrintType=*/false, BB->getModule());
3179         OutStreamer->GetCommentOS() << '\n';
3180       }
3181     }
3182 
3183     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
3184     emitBasicBlockLoopComments(MBB, MLI, *this);
3185   }
3186 
3187   // Print the main label for the block.
3188   if (shouldEmitLabelForBasicBlock(MBB)) {
3189     if (isVerbose() && MBB.hasLabelMustBeEmitted())
3190       OutStreamer->AddComment("Label of block must be emitted");
3191     OutStreamer->emitLabel(MBB.getSymbol());
3192   } else {
3193     if (isVerbose()) {
3194       // NOTE: Want this comment at start of line, don't emit with AddComment.
3195       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
3196                                   false);
3197     }
3198   }
3199 
3200   // With BB sections, each basic block must handle CFI information on its own
3201   // if it begins a section (Entry block is handled separately by
3202   // AsmPrinterHandler::beginFunction).
3203   if (MBB.isBeginSection() && !MBB.isEntryBlock())
3204     for (const HandlerInfo &HI : Handlers)
3205       HI.Handler->beginBasicBlock(MBB);
3206 }
3207 
3208 void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
3209   // Check if CFI information needs to be updated for this MBB with basic block
3210   // sections.
3211   if (MBB.isEndSection())
3212     for (const HandlerInfo &HI : Handlers)
3213       HI.Handler->endBasicBlock(MBB);
3214 }
3215 
3216 void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
3217                                 bool IsDefinition) const {
3218   MCSymbolAttr Attr = MCSA_Invalid;
3219 
3220   switch (Visibility) {
3221   default: break;
3222   case GlobalValue::HiddenVisibility:
3223     if (IsDefinition)
3224       Attr = MAI->getHiddenVisibilityAttr();
3225     else
3226       Attr = MAI->getHiddenDeclarationVisibilityAttr();
3227     break;
3228   case GlobalValue::ProtectedVisibility:
3229     Attr = MAI->getProtectedVisibilityAttr();
3230     break;
3231   }
3232 
3233   if (Attr != MCSA_Invalid)
3234     OutStreamer->emitSymbolAttribute(Sym, Attr);
3235 }
3236 
3237 bool AsmPrinter::shouldEmitLabelForBasicBlock(
3238     const MachineBasicBlock &MBB) const {
3239   // With `-fbasic-block-sections=`, a label is needed for every non-entry block
3240   // in the labels mode (option `=labels`) and every section beginning in the
3241   // sections mode (`=all` and `=list=`).
3242   if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
3243     return true;
3244   // A label is needed for any block with at least one predecessor (when that
3245   // predecessor is not the fallthrough predecessor, or if it is an EH funclet
3246   // entry, or if a label is forced).
3247   return !MBB.pred_empty() &&
3248          (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
3249           MBB.hasLabelMustBeEmitted());
3250 }
3251 
3252 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
3253 /// exactly one predecessor and the control transfer mechanism between
3254 /// the predecessor and this block is a fall-through.
3255 bool AsmPrinter::
3256 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
3257   // If this is a landing pad, it isn't a fall through.  If it has no preds,
3258   // then nothing falls through to it.
3259   if (MBB->isEHPad() || MBB->pred_empty())
3260     return false;
3261 
3262   // If there isn't exactly one predecessor, it can't be a fall through.
3263   if (MBB->pred_size() > 1)
3264     return false;
3265 
3266   // The predecessor has to be immediately before this block.
3267   MachineBasicBlock *Pred = *MBB->pred_begin();
3268   if (!Pred->isLayoutSuccessor(MBB))
3269     return false;
3270 
3271   // If the block is completely empty, then it definitely does fall through.
3272   if (Pred->empty())
3273     return true;
3274 
3275   // Check the terminators in the previous blocks
3276   for (const auto &MI : Pred->terminators()) {
3277     // If it is not a simple branch, we are in a table somewhere.
3278     if (!MI.isBranch() || MI.isIndirectBranch())
3279       return false;
3280 
3281     // If we are the operands of one of the branches, this is not a fall
3282     // through. Note that targets with delay slots will usually bundle
3283     // terminators with the delay slot instruction.
3284     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
3285       if (OP->isJTI())
3286         return false;
3287       if (OP->isMBB() && OP->getMBB() == MBB)
3288         return false;
3289     }
3290   }
3291 
3292   return true;
3293 }
3294 
3295 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
3296   if (!S.usesMetadata())
3297     return nullptr;
3298 
3299   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
3300   gcp_map_type::iterator GCPI = GCMap.find(&S);
3301   if (GCPI != GCMap.end())
3302     return GCPI->second.get();
3303 
3304   auto Name = S.getName();
3305 
3306   for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
3307        GCMetadataPrinterRegistry::entries())
3308     if (Name == GCMetaPrinter.getName()) {
3309       std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
3310       GMP->S = &S;
3311       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
3312       return IterBool.first->second.get();
3313     }
3314 
3315   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3316 }
3317 
3318 void AsmPrinter::emitStackMaps(StackMaps &SM) {
3319   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
3320   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
3321   bool NeedsDefault = false;
3322   if (MI->begin() == MI->end())
3323     // No GC strategy, use the default format.
3324     NeedsDefault = true;
3325   else
3326     for (auto &I : *MI) {
3327       if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
3328         if (MP->emitStackMaps(SM, *this))
3329           continue;
3330       // The strategy doesn't have printer or doesn't emit custom stack maps.
3331       // Use the default format.
3332       NeedsDefault = true;
3333     }
3334 
3335   if (NeedsDefault)
3336     SM.serializeToStackMapSection();
3337 }
3338 
3339 /// Pin vtable to this file.
3340 AsmPrinterHandler::~AsmPrinterHandler() = default;
3341 
3342 void AsmPrinterHandler::markFunctionEnd() {}
3343 
3344 // In the binary's "xray_instr_map" section, an array of these function entries
3345 // describes each instrumentation point.  When XRay patches your code, the index
3346 // into this table will be given to your handler as a patch point identifier.
3347 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
3348   auto Kind8 = static_cast<uint8_t>(Kind);
3349   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3350   Out->emitBinaryData(
3351       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3352   Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3353   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3354   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3355   Out->emitZeros(Padding);
3356 }
3357 
3358 void AsmPrinter::emitXRayTable() {
3359   if (Sleds.empty())
3360     return;
3361 
3362   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3363   const Function &F = MF->getFunction();
3364   MCSection *InstMap = nullptr;
3365   MCSection *FnSledIndex = nullptr;
3366   const Triple &TT = TM.getTargetTriple();
3367   // Use PC-relative addresses on all targets.
3368   if (TT.isOSBinFormatELF()) {
3369     auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3370     auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3371     StringRef GroupName;
3372     if (F.hasComdat()) {
3373       Flags |= ELF::SHF_GROUP;
3374       GroupName = F.getComdat()->getName();
3375     }
3376     InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
3377                                        Flags, 0, GroupName,
3378                                        MCSection::NonUniqueID, LinkedToSym);
3379 
3380     if (!TM.Options.XRayOmitFunctionIndex)
3381       FnSledIndex = OutContext.getELFSection(
3382           "xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
3383           GroupName, MCSection::NonUniqueID, LinkedToSym);
3384   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3385     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3386                                          SectionKind::getReadOnlyWithRel());
3387     if (!TM.Options.XRayOmitFunctionIndex)
3388       FnSledIndex = OutContext.getMachOSection(
3389           "__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
3390   } else {
3391     llvm_unreachable("Unsupported target");
3392   }
3393 
3394   auto WordSizeBytes = MAI->getCodePointerSize();
3395 
3396   // Now we switch to the instrumentation map section. Because this is done
3397   // per-function, we are able to create an index entry that will represent the
3398   // range of sleds associated with a function.
3399   auto &Ctx = OutContext;
3400   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3401   OutStreamer->SwitchSection(InstMap);
3402   OutStreamer->emitLabel(SledsStart);
3403   for (const auto &Sled : Sleds) {
3404     MCSymbol *Dot = Ctx.createTempSymbol();
3405     OutStreamer->emitLabel(Dot);
3406     OutStreamer->emitValueImpl(
3407         MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
3408                                 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
3409         WordSizeBytes);
3410     OutStreamer->emitValueImpl(
3411         MCBinaryExpr::createSub(
3412             MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
3413             MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
3414                                     MCConstantExpr::create(WordSizeBytes, Ctx),
3415                                     Ctx),
3416             Ctx),
3417         WordSizeBytes);
3418     Sled.emit(WordSizeBytes, OutStreamer.get());
3419   }
3420   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3421   OutStreamer->emitLabel(SledsEnd);
3422 
3423   // We then emit a single entry in the index per function. We use the symbols
3424   // that bound the instrumentation map as the range for a specific function.
3425   // Each entry here will be 2 * word size aligned, as we're writing down two
3426   // pointers. This should work for both 32-bit and 64-bit platforms.
3427   if (FnSledIndex) {
3428     OutStreamer->SwitchSection(FnSledIndex);
3429     OutStreamer->emitCodeAlignment(2 * WordSizeBytes);
3430     OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
3431     OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
3432     OutStreamer->SwitchSection(PrevSection);
3433   }
3434   Sleds.clear();
3435 }
3436 
3437 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3438                             SledKind Kind, uint8_t Version) {
3439   const Function &F = MI.getMF()->getFunction();
3440   auto Attr = F.getFnAttribute("function-instrument");
3441   bool LogArgs = F.hasFnAttribute("xray-log-args");
3442   bool AlwaysInstrument =
3443     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3444   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3445     Kind = SledKind::LOG_ARGS_ENTER;
3446   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3447                                        AlwaysInstrument, &F, Version});
3448 }
3449 
3450 void AsmPrinter::emitPatchableFunctionEntries() {
3451   const Function &F = MF->getFunction();
3452   unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
3453   (void)F.getFnAttribute("patchable-function-prefix")
3454       .getValueAsString()
3455       .getAsInteger(10, PatchableFunctionPrefix);
3456   (void)F.getFnAttribute("patchable-function-entry")
3457       .getValueAsString()
3458       .getAsInteger(10, PatchableFunctionEntry);
3459   if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
3460     return;
3461   const unsigned PointerSize = getPointerSize();
3462   if (TM.getTargetTriple().isOSBinFormatELF()) {
3463     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
3464     const MCSymbolELF *LinkedToSym = nullptr;
3465     StringRef GroupName;
3466 
3467     // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
3468     // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
3469     if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
3470       Flags |= ELF::SHF_LINK_ORDER;
3471       if (F.hasComdat()) {
3472         Flags |= ELF::SHF_GROUP;
3473         GroupName = F.getComdat()->getName();
3474       }
3475       LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
3476     }
3477     OutStreamer->SwitchSection(OutContext.getELFSection(
3478         "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
3479         MCSection::NonUniqueID, LinkedToSym));
3480     emitAlignment(Align(PointerSize));
3481     OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
3482   }
3483 }
3484 
3485 uint16_t AsmPrinter::getDwarfVersion() const {
3486   return OutStreamer->getContext().getDwarfVersion();
3487 }
3488 
3489 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3490   OutStreamer->getContext().setDwarfVersion(Version);
3491 }
3492 
3493 bool AsmPrinter::isDwarf64() const {
3494   return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
3495 }
3496 
3497 unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
3498   return dwarf::getDwarfOffsetByteSize(
3499       OutStreamer->getContext().getDwarfFormat());
3500 }
3501 
3502 unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
3503   return dwarf::getUnitLengthFieldByteSize(
3504       OutStreamer->getContext().getDwarfFormat());
3505 }
3506