1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCSectionELF.h" 41 #include "llvm/MC/MCSectionMachO.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbolELF.h" 44 #include "llvm/MC/MCValue.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Target/TargetFrameLowering.h" 51 #include "llvm/Target/TargetInstrInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetLoweringObjectFile.h" 54 #include "llvm/Target/TargetRegisterInfo.h" 55 #include "llvm/Target/TargetSubtargetInfo.h" 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 static const char *const DWARFGroupName = "dwarf"; 61 static const char *const DWARFGroupDescription = "DWARF Emission"; 62 static const char *const DbgTimerName = "emit"; 63 static const char *const DbgTimerDescription = "Debug Info Emission"; 64 static const char *const EHTimerName = "write_exception"; 65 static const char *const EHTimerDescription = "DWARF Exception Writer"; 66 static const char *const CodeViewLineTablesGroupName = "linetables"; 67 static const char *const CodeViewLineTablesGroupDescription = 68 "CodeView Line Tables"; 69 70 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 71 72 char AsmPrinter::ID = 0; 73 74 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 75 static gcp_map_type &getGCMap(void *&P) { 76 if (!P) 77 P = new gcp_map_type(); 78 return *(gcp_map_type*)P; 79 } 80 81 82 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 83 /// value in log2 form. This rounds up to the preferred alignment if possible 84 /// and legal. 85 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 86 unsigned InBits = 0) { 87 unsigned NumBits = 0; 88 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 89 NumBits = DL.getPreferredAlignmentLog(GVar); 90 91 // If InBits is specified, round it to it. 92 if (InBits > NumBits) 93 NumBits = InBits; 94 95 // If the GV has a specified alignment, take it into account. 96 if (GV->getAlignment() == 0) 97 return NumBits; 98 99 unsigned GVAlign = Log2_32(GV->getAlignment()); 100 101 // If the GVAlign is larger than NumBits, or if we are required to obey 102 // NumBits because the GV has an assigned section, obey it. 103 if (GVAlign > NumBits || GV->hasSection()) 104 NumBits = GVAlign; 105 return NumBits; 106 } 107 108 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 109 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 110 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 111 isCFIMoveForDebugging(false), LastMI(nullptr), LastFn(0), Counter(~0U) { 112 DD = nullptr; 113 MMI = nullptr; 114 LI = nullptr; 115 MF = nullptr; 116 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 117 CurrentFnBegin = nullptr; 118 CurrentFnEnd = nullptr; 119 GCMetadataPrinters = nullptr; 120 VerboseAsm = OutStreamer->isVerboseAsm(); 121 } 122 123 AsmPrinter::~AsmPrinter() { 124 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 125 126 if (GCMetadataPrinters) { 127 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 128 129 delete &GCMap; 130 GCMetadataPrinters = nullptr; 131 } 132 } 133 134 bool AsmPrinter::isPositionIndependent() const { 135 return TM.isPositionIndependent(); 136 } 137 138 /// getFunctionNumber - Return a unique ID for the current function. 139 /// 140 unsigned AsmPrinter::getFunctionNumber() const { 141 return MF->getFunctionNumber(); 142 } 143 144 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 145 return *TM.getObjFileLowering(); 146 } 147 148 const DataLayout &AsmPrinter::getDataLayout() const { 149 return MMI->getModule()->getDataLayout(); 150 } 151 152 // Do not use the cached DataLayout because some client use it without a Module 153 // (llvm-dsymutil, llvm-dwarfdump). 154 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 155 156 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 157 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 158 return MF->getSubtarget<MCSubtargetInfo>(); 159 } 160 161 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 162 S.EmitInstruction(Inst, getSubtargetInfo()); 163 } 164 165 /// getCurrentSection() - Return the current section we are emitting to. 166 const MCSection *AsmPrinter::getCurrentSection() const { 167 return OutStreamer->getCurrentSectionOnly(); 168 } 169 170 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 171 AU.setPreservesAll(); 172 MachineFunctionPass::getAnalysisUsage(AU); 173 AU.addRequired<MachineModuleInfo>(); 174 AU.addRequired<GCModuleInfo>(); 175 if (isVerbose()) 176 AU.addRequired<MachineLoopInfo>(); 177 } 178 179 bool AsmPrinter::doInitialization(Module &M) { 180 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 181 182 // Initialize TargetLoweringObjectFile. 183 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 184 .Initialize(OutContext, TM); 185 186 OutStreamer->InitSections(false); 187 188 // Emit the version-min deplyment target directive if needed. 189 // 190 // FIXME: If we end up with a collection of these sorts of Darwin-specific 191 // or ELF-specific things, it may make sense to have a platform helper class 192 // that will work with the target helper class. For now keep it here, as the 193 // alternative is duplicated code in each of the target asm printers that 194 // use the directive, where it would need the same conditionalization 195 // anyway. 196 const Triple &TT = TM.getTargetTriple(); 197 // If there is a version specified, Major will be non-zero. 198 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 199 unsigned Major, Minor, Update; 200 MCVersionMinType VersionType; 201 if (TT.isWatchOS()) { 202 VersionType = MCVM_WatchOSVersionMin; 203 TT.getWatchOSVersion(Major, Minor, Update); 204 } else if (TT.isTvOS()) { 205 VersionType = MCVM_TvOSVersionMin; 206 TT.getiOSVersion(Major, Minor, Update); 207 } else if (TT.isMacOSX()) { 208 VersionType = MCVM_OSXVersionMin; 209 if (!TT.getMacOSXVersion(Major, Minor, Update)) 210 Major = 0; 211 } else { 212 VersionType = MCVM_IOSVersionMin; 213 TT.getiOSVersion(Major, Minor, Update); 214 } 215 if (Major != 0) 216 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 217 } 218 219 // Allow the target to emit any magic that it wants at the start of the file. 220 EmitStartOfAsmFile(M); 221 222 // Very minimal debug info. It is ignored if we emit actual debug info. If we 223 // don't, this at least helps the user find where a global came from. 224 if (MAI->hasSingleParameterDotFile()) { 225 // .file "foo.c" 226 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 227 } 228 229 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 230 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 231 for (auto &I : *MI) 232 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 233 MP->beginAssembly(M, *MI, *this); 234 235 // Emit module-level inline asm if it exists. 236 if (!M.getModuleInlineAsm().empty()) { 237 // We're at the module level. Construct MCSubtarget from the default CPU 238 // and target triple. 239 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 240 TM.getTargetTriple().str(), TM.getTargetCPU(), 241 TM.getTargetFeatureString())); 242 OutStreamer->AddComment("Start of file scope inline assembly"); 243 OutStreamer->AddBlankLine(); 244 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 245 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 246 OutStreamer->AddComment("End of file scope inline assembly"); 247 OutStreamer->AddBlankLine(); 248 } 249 250 if (MAI->doesSupportDebugInformation()) { 251 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 252 if (EmitCodeView && (TM.getTargetTriple().isKnownWindowsMSVCEnvironment() || 253 TM.getTargetTriple().isWindowsItaniumEnvironment())) { 254 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 255 DbgTimerName, DbgTimerDescription, 256 CodeViewLineTablesGroupName, 257 CodeViewLineTablesGroupDescription)); 258 } 259 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 260 DD = new DwarfDebug(this, &M); 261 DD->beginModule(); 262 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 263 DWARFGroupName, DWARFGroupDescription)); 264 } 265 } 266 267 switch (MAI->getExceptionHandlingType()) { 268 case ExceptionHandling::SjLj: 269 case ExceptionHandling::DwarfCFI: 270 case ExceptionHandling::ARM: 271 isCFIMoveForDebugging = true; 272 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 273 break; 274 for (auto &F: M.getFunctionList()) { 275 // If the module contains any function with unwind data, 276 // .eh_frame has to be emitted. 277 // Ignore functions that won't get emitted. 278 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 279 isCFIMoveForDebugging = false; 280 break; 281 } 282 } 283 break; 284 default: 285 isCFIMoveForDebugging = false; 286 break; 287 } 288 289 EHStreamer *ES = nullptr; 290 switch (MAI->getExceptionHandlingType()) { 291 case ExceptionHandling::None: 292 break; 293 case ExceptionHandling::SjLj: 294 case ExceptionHandling::DwarfCFI: 295 ES = new DwarfCFIException(this); 296 break; 297 case ExceptionHandling::ARM: 298 ES = new ARMException(this); 299 break; 300 case ExceptionHandling::WinEH: 301 switch (MAI->getWinEHEncodingType()) { 302 default: llvm_unreachable("unsupported unwinding information encoding"); 303 case WinEH::EncodingType::Invalid: 304 break; 305 case WinEH::EncodingType::X86: 306 case WinEH::EncodingType::Itanium: 307 ES = new WinException(this); 308 break; 309 } 310 break; 311 } 312 if (ES) 313 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 314 DWARFGroupName, DWARFGroupDescription)); 315 return false; 316 } 317 318 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 319 if (!MAI.hasWeakDefCanBeHiddenDirective()) 320 return false; 321 322 return canBeOmittedFromSymbolTable(GV); 323 } 324 325 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 326 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 327 switch (Linkage) { 328 case GlobalValue::CommonLinkage: 329 case GlobalValue::LinkOnceAnyLinkage: 330 case GlobalValue::LinkOnceODRLinkage: 331 case GlobalValue::WeakAnyLinkage: 332 case GlobalValue::WeakODRLinkage: 333 if (MAI->hasWeakDefDirective()) { 334 // .globl _foo 335 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 336 337 if (!canBeHidden(GV, *MAI)) 338 // .weak_definition _foo 339 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 340 else 341 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 342 } else if (MAI->hasLinkOnceDirective()) { 343 // .globl _foo 344 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 345 //NOTE: linkonce is handled by the section the symbol was assigned to. 346 } else { 347 // .weak _foo 348 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 349 } 350 return; 351 case GlobalValue::ExternalLinkage: 352 // If external, declare as a global symbol: .globl _foo 353 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 354 return; 355 case GlobalValue::PrivateLinkage: 356 case GlobalValue::InternalLinkage: 357 return; 358 case GlobalValue::AppendingLinkage: 359 case GlobalValue::AvailableExternallyLinkage: 360 case GlobalValue::ExternalWeakLinkage: 361 llvm_unreachable("Should never emit this"); 362 } 363 llvm_unreachable("Unknown linkage type!"); 364 } 365 366 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 367 const GlobalValue *GV) const { 368 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 369 } 370 371 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 372 return TM.getSymbol(GV); 373 } 374 375 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 376 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 377 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 378 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 379 "No emulated TLS variables in the common section"); 380 381 // Never emit TLS variable xyz in emulated TLS model. 382 // The initialization value is in __emutls_t.xyz instead of xyz. 383 if (IsEmuTLSVar) 384 return; 385 386 if (GV->hasInitializer()) { 387 // Check to see if this is a special global used by LLVM, if so, emit it. 388 if (EmitSpecialLLVMGlobal(GV)) 389 return; 390 391 // Skip the emission of global equivalents. The symbol can be emitted later 392 // on by emitGlobalGOTEquivs in case it turns out to be needed. 393 if (GlobalGOTEquivs.count(getSymbol(GV))) 394 return; 395 396 if (isVerbose()) { 397 // When printing the control variable __emutls_v.*, 398 // we don't need to print the original TLS variable name. 399 GV->printAsOperand(OutStreamer->GetCommentOS(), 400 /*PrintType=*/false, GV->getParent()); 401 OutStreamer->GetCommentOS() << '\n'; 402 } 403 } 404 405 MCSymbol *GVSym = getSymbol(GV); 406 MCSymbol *EmittedSym = GVSym; 407 408 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 409 // attributes. 410 // GV's or GVSym's attributes will be used for the EmittedSym. 411 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 412 413 if (!GV->hasInitializer()) // External globals require no extra code. 414 return; 415 416 GVSym->redefineIfPossible(); 417 if (GVSym->isDefined() || GVSym->isVariable()) 418 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 419 "' is already defined"); 420 421 if (MAI->hasDotTypeDotSizeDirective()) 422 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 423 424 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 425 426 const DataLayout &DL = GV->getParent()->getDataLayout(); 427 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 428 429 // If the alignment is specified, we *must* obey it. Overaligning a global 430 // with a specified alignment is a prompt way to break globals emitted to 431 // sections and expected to be contiguous (e.g. ObjC metadata). 432 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 433 434 for (const HandlerInfo &HI : Handlers) { 435 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 436 HI.TimerGroupName, HI.TimerGroupDescription, 437 TimePassesIsEnabled); 438 HI.Handler->setSymbolSize(GVSym, Size); 439 } 440 441 // Handle common symbols 442 if (GVKind.isCommon()) { 443 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 444 unsigned Align = 1 << AlignLog; 445 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 446 Align = 0; 447 448 // .comm _foo, 42, 4 449 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 450 return; 451 } 452 453 // Determine to which section this global should be emitted. 454 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 455 456 // If we have a bss global going to a section that supports the 457 // zerofill directive, do so here. 458 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 459 TheSection->isVirtualSection()) { 460 if (Size == 0) 461 Size = 1; // zerofill of 0 bytes is undefined. 462 unsigned Align = 1 << AlignLog; 463 EmitLinkage(GV, GVSym); 464 // .zerofill __DATA, __bss, _foo, 400, 5 465 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 466 return; 467 } 468 469 // If this is a BSS local symbol and we are emitting in the BSS 470 // section use .lcomm/.comm directive. 471 if (GVKind.isBSSLocal() && 472 getObjFileLowering().getBSSSection() == TheSection) { 473 if (Size == 0) 474 Size = 1; // .comm Foo, 0 is undefined, avoid it. 475 unsigned Align = 1 << AlignLog; 476 477 // Use .lcomm only if it supports user-specified alignment. 478 // Otherwise, while it would still be correct to use .lcomm in some 479 // cases (e.g. when Align == 1), the external assembler might enfore 480 // some -unknown- default alignment behavior, which could cause 481 // spurious differences between external and integrated assembler. 482 // Prefer to simply fall back to .local / .comm in this case. 483 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 484 // .lcomm _foo, 42 485 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 486 return; 487 } 488 489 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 490 Align = 0; 491 492 // .local _foo 493 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 494 // .comm _foo, 42, 4 495 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 496 return; 497 } 498 499 // Handle thread local data for mach-o which requires us to output an 500 // additional structure of data and mangle the original symbol so that we 501 // can reference it later. 502 // 503 // TODO: This should become an "emit thread local global" method on TLOF. 504 // All of this macho specific stuff should be sunk down into TLOFMachO and 505 // stuff like "TLSExtraDataSection" should no longer be part of the parent 506 // TLOF class. This will also make it more obvious that stuff like 507 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 508 // specific code. 509 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 510 // Emit the .tbss symbol 511 MCSymbol *MangSym = 512 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 513 514 if (GVKind.isThreadBSS()) { 515 TheSection = getObjFileLowering().getTLSBSSSection(); 516 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 517 } else if (GVKind.isThreadData()) { 518 OutStreamer->SwitchSection(TheSection); 519 520 EmitAlignment(AlignLog, GV); 521 OutStreamer->EmitLabel(MangSym); 522 523 EmitGlobalConstant(GV->getParent()->getDataLayout(), 524 GV->getInitializer()); 525 } 526 527 OutStreamer->AddBlankLine(); 528 529 // Emit the variable struct for the runtime. 530 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 531 532 OutStreamer->SwitchSection(TLVSect); 533 // Emit the linkage here. 534 EmitLinkage(GV, GVSym); 535 OutStreamer->EmitLabel(GVSym); 536 537 // Three pointers in size: 538 // - __tlv_bootstrap - used to make sure support exists 539 // - spare pointer, used when mapped by the runtime 540 // - pointer to mangled symbol above with initializer 541 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 542 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 543 PtrSize); 544 OutStreamer->EmitIntValue(0, PtrSize); 545 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 546 547 OutStreamer->AddBlankLine(); 548 return; 549 } 550 551 MCSymbol *EmittedInitSym = GVSym; 552 553 OutStreamer->SwitchSection(TheSection); 554 555 EmitLinkage(GV, EmittedInitSym); 556 EmitAlignment(AlignLog, GV); 557 558 OutStreamer->EmitLabel(EmittedInitSym); 559 560 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 561 562 if (MAI->hasDotTypeDotSizeDirective()) 563 // .size foo, 42 564 OutStreamer->emitELFSize(EmittedInitSym, 565 MCConstantExpr::create(Size, OutContext)); 566 567 OutStreamer->AddBlankLine(); 568 } 569 570 /// Emit the directive and value for debug thread local expression 571 /// 572 /// \p Value - The value to emit. 573 /// \p Size - The size of the integer (in bytes) to emit. 574 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 575 unsigned Size) const { 576 OutStreamer->EmitValue(Value, Size); 577 } 578 579 /// EmitFunctionHeader - This method emits the header for the current 580 /// function. 581 void AsmPrinter::EmitFunctionHeader() { 582 // Print out constants referenced by the function 583 EmitConstantPool(); 584 585 // Print the 'header' of function. 586 const Function *F = MF->getFunction(); 587 588 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(F, TM)); 589 EmitVisibility(CurrentFnSym, F->getVisibility()); 590 591 EmitLinkage(F, CurrentFnSym); 592 if (MAI->hasFunctionAlignment()) 593 EmitAlignment(MF->getAlignment(), F); 594 595 if (MAI->hasDotTypeDotSizeDirective()) 596 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 597 598 if (isVerbose()) { 599 F->printAsOperand(OutStreamer->GetCommentOS(), 600 /*PrintType=*/false, F->getParent()); 601 OutStreamer->GetCommentOS() << '\n'; 602 } 603 604 // Emit the prefix data. 605 if (F->hasPrefixData()) 606 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 607 608 // Emit the CurrentFnSym. This is a virtual function to allow targets to 609 // do their wild and crazy things as required. 610 EmitFunctionEntryLabel(); 611 612 // If the function had address-taken blocks that got deleted, then we have 613 // references to the dangling symbols. Emit them at the start of the function 614 // so that we don't get references to undefined symbols. 615 std::vector<MCSymbol*> DeadBlockSyms; 616 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 617 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 618 OutStreamer->AddComment("Address taken block that was later removed"); 619 OutStreamer->EmitLabel(DeadBlockSyms[i]); 620 } 621 622 if (CurrentFnBegin) { 623 if (MAI->useAssignmentForEHBegin()) { 624 MCSymbol *CurPos = OutContext.createTempSymbol(); 625 OutStreamer->EmitLabel(CurPos); 626 OutStreamer->EmitAssignment(CurrentFnBegin, 627 MCSymbolRefExpr::create(CurPos, OutContext)); 628 } else { 629 OutStreamer->EmitLabel(CurrentFnBegin); 630 } 631 } 632 633 // Emit pre-function debug and/or EH information. 634 for (const HandlerInfo &HI : Handlers) { 635 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 636 HI.TimerGroupDescription, TimePassesIsEnabled); 637 HI.Handler->beginFunction(MF); 638 } 639 640 // Emit the prologue data. 641 if (F->hasPrologueData()) 642 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 643 } 644 645 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 646 /// function. This can be overridden by targets as required to do custom stuff. 647 void AsmPrinter::EmitFunctionEntryLabel() { 648 CurrentFnSym->redefineIfPossible(); 649 650 // The function label could have already been emitted if two symbols end up 651 // conflicting due to asm renaming. Detect this and emit an error. 652 if (CurrentFnSym->isVariable()) 653 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 654 "' is a protected alias"); 655 if (CurrentFnSym->isDefined()) 656 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 657 "' label emitted multiple times to assembly file"); 658 659 return OutStreamer->EmitLabel(CurrentFnSym); 660 } 661 662 /// emitComments - Pretty-print comments for instructions. 663 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 664 const MachineFunction *MF = MI.getParent()->getParent(); 665 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 666 667 // Check for spills and reloads 668 int FI; 669 670 const MachineFrameInfo &MFI = MF->getFrameInfo(); 671 672 // We assume a single instruction only has a spill or reload, not 673 // both. 674 const MachineMemOperand *MMO; 675 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 676 if (MFI.isSpillSlotObjectIndex(FI)) { 677 MMO = *MI.memoperands_begin(); 678 CommentOS << MMO->getSize() << "-byte Reload\n"; 679 } 680 } else if (TII->hasLoadFromStackSlot(MI, MMO, FI)) { 681 if (MFI.isSpillSlotObjectIndex(FI)) 682 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 683 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 684 if (MFI.isSpillSlotObjectIndex(FI)) { 685 MMO = *MI.memoperands_begin(); 686 CommentOS << MMO->getSize() << "-byte Spill\n"; 687 } 688 } else if (TII->hasStoreToStackSlot(MI, MMO, FI)) { 689 if (MFI.isSpillSlotObjectIndex(FI)) 690 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 691 } 692 693 // Check for spill-induced copies 694 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 695 CommentOS << " Reload Reuse\n"; 696 } 697 698 /// emitImplicitDef - This method emits the specified machine instruction 699 /// that is an implicit def. 700 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 701 unsigned RegNo = MI->getOperand(0).getReg(); 702 703 SmallString<128> Str; 704 raw_svector_ostream OS(Str); 705 OS << "implicit-def: " 706 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 707 708 OutStreamer->AddComment(OS.str()); 709 OutStreamer->AddBlankLine(); 710 } 711 712 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 713 std::string Str; 714 raw_string_ostream OS(Str); 715 OS << "kill:"; 716 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 717 const MachineOperand &Op = MI->getOperand(i); 718 assert(Op.isReg() && "KILL instruction must have only register operands"); 719 OS << ' ' 720 << PrintReg(Op.getReg(), 721 AP.MF->getSubtarget().getRegisterInfo()) 722 << (Op.isDef() ? "<def>" : "<kill>"); 723 } 724 AP.OutStreamer->AddComment(OS.str()); 725 AP.OutStreamer->AddBlankLine(); 726 } 727 728 /// emitDebugValueComment - This method handles the target-independent form 729 /// of DBG_VALUE, returning true if it was able to do so. A false return 730 /// means the target will need to handle MI in EmitInstruction. 731 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 732 // This code handles only the 4-operand target-independent form. 733 if (MI->getNumOperands() != 4) 734 return false; 735 736 SmallString<128> Str; 737 raw_svector_ostream OS(Str); 738 OS << "DEBUG_VALUE: "; 739 740 const DILocalVariable *V = MI->getDebugVariable(); 741 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 742 StringRef Name = SP->getDisplayName(); 743 if (!Name.empty()) 744 OS << Name << ":"; 745 } 746 OS << V->getName(); 747 748 const DIExpression *Expr = MI->getDebugExpression(); 749 auto Fragment = Expr->getFragmentInfo(); 750 if (Fragment) 751 OS << " [fragment offset=" << Fragment->OffsetInBits 752 << " size=" << Fragment->SizeInBits << "]"; 753 OS << " <- "; 754 755 // The second operand is only an offset if it's an immediate. 756 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 757 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 758 759 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 760 uint64_t Op = Expr->getElement(i); 761 if (Op == dwarf::DW_OP_LLVM_fragment) { 762 // There can't be any operands after this in a valid expression 763 break; 764 } else if (Deref) { 765 // We currently don't support extra Offsets or derefs after the first 766 // one. Bail out early instead of emitting an incorrect comment 767 OS << " [complex expression]"; 768 AP.OutStreamer->emitRawComment(OS.str()); 769 return true; 770 } else if (Op == dwarf::DW_OP_deref) { 771 Deref = true; 772 continue; 773 } 774 775 uint64_t ExtraOffset = Expr->getElement(i++); 776 if (Op == dwarf::DW_OP_plus) 777 Offset += ExtraOffset; 778 else { 779 assert(Op == dwarf::DW_OP_minus); 780 Offset -= ExtraOffset; 781 } 782 } 783 784 // Register or immediate value. Register 0 means undef. 785 if (MI->getOperand(0).isFPImm()) { 786 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 787 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 788 OS << (double)APF.convertToFloat(); 789 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 790 OS << APF.convertToDouble(); 791 } else { 792 // There is no good way to print long double. Convert a copy to 793 // double. Ah well, it's only a comment. 794 bool ignored; 795 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 796 &ignored); 797 OS << "(long double) " << APF.convertToDouble(); 798 } 799 } else if (MI->getOperand(0).isImm()) { 800 OS << MI->getOperand(0).getImm(); 801 } else if (MI->getOperand(0).isCImm()) { 802 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 803 } else { 804 unsigned Reg; 805 if (MI->getOperand(0).isReg()) { 806 Reg = MI->getOperand(0).getReg(); 807 } else { 808 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 809 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 810 Offset += TFI->getFrameIndexReference(*AP.MF, 811 MI->getOperand(0).getIndex(), Reg); 812 Deref = true; 813 } 814 if (Reg == 0) { 815 // Suppress offset, it is not meaningful here. 816 OS << "undef"; 817 // NOTE: Want this comment at start of line, don't emit with AddComment. 818 AP.OutStreamer->emitRawComment(OS.str()); 819 return true; 820 } 821 if (Deref) 822 OS << '['; 823 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 824 } 825 826 if (Deref) 827 OS << '+' << Offset << ']'; 828 829 // NOTE: Want this comment at start of line, don't emit with AddComment. 830 AP.OutStreamer->emitRawComment(OS.str()); 831 return true; 832 } 833 834 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 835 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 836 MF->getFunction()->needsUnwindTableEntry()) 837 return CFI_M_EH; 838 839 if (MMI->hasDebugInfo()) 840 return CFI_M_Debug; 841 842 return CFI_M_None; 843 } 844 845 bool AsmPrinter::needsSEHMoves() { 846 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 847 } 848 849 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 850 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 851 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 852 ExceptionHandlingType != ExceptionHandling::ARM) 853 return; 854 855 if (needsCFIMoves() == CFI_M_None) 856 return; 857 858 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 859 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 860 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 861 emitCFIInstruction(CFI); 862 } 863 864 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 865 // The operands are the MCSymbol and the frame offset of the allocation. 866 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 867 int FrameOffset = MI.getOperand(1).getImm(); 868 869 // Emit a symbol assignment. 870 OutStreamer->EmitAssignment(FrameAllocSym, 871 MCConstantExpr::create(FrameOffset, OutContext)); 872 } 873 874 /// EmitFunctionBody - This method emits the body and trailer for a 875 /// function. 876 void AsmPrinter::EmitFunctionBody() { 877 EmitFunctionHeader(); 878 879 // Emit target-specific gunk before the function body. 880 EmitFunctionBodyStart(); 881 882 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 883 884 // Print out code for the function. 885 bool HasAnyRealCode = false; 886 for (auto &MBB : *MF) { 887 // Print a label for the basic block. 888 EmitBasicBlockStart(MBB); 889 for (auto &MI : MBB) { 890 891 // Print the assembly for the instruction. 892 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 893 !MI.isDebugValue()) { 894 HasAnyRealCode = true; 895 ++EmittedInsts; 896 } 897 898 if (ShouldPrintDebugScopes) { 899 for (const HandlerInfo &HI : Handlers) { 900 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 901 HI.TimerGroupName, HI.TimerGroupDescription, 902 TimePassesIsEnabled); 903 HI.Handler->beginInstruction(&MI); 904 } 905 } 906 907 if (isVerbose()) 908 emitComments(MI, OutStreamer->GetCommentOS()); 909 910 switch (MI.getOpcode()) { 911 case TargetOpcode::CFI_INSTRUCTION: 912 emitCFIInstruction(MI); 913 break; 914 915 case TargetOpcode::LOCAL_ESCAPE: 916 emitFrameAlloc(MI); 917 break; 918 919 case TargetOpcode::EH_LABEL: 920 case TargetOpcode::GC_LABEL: 921 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 922 break; 923 case TargetOpcode::INLINEASM: 924 EmitInlineAsm(&MI); 925 break; 926 case TargetOpcode::DBG_VALUE: 927 if (isVerbose()) { 928 if (!emitDebugValueComment(&MI, *this)) 929 EmitInstruction(&MI); 930 } 931 break; 932 case TargetOpcode::IMPLICIT_DEF: 933 if (isVerbose()) emitImplicitDef(&MI); 934 break; 935 case TargetOpcode::KILL: 936 if (isVerbose()) emitKill(&MI, *this); 937 break; 938 default: 939 EmitInstruction(&MI); 940 break; 941 } 942 943 if (ShouldPrintDebugScopes) { 944 for (const HandlerInfo &HI : Handlers) { 945 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 946 HI.TimerGroupName, HI.TimerGroupDescription, 947 TimePassesIsEnabled); 948 HI.Handler->endInstruction(); 949 } 950 } 951 } 952 953 EmitBasicBlockEnd(MBB); 954 } 955 956 // If the function is empty and the object file uses .subsections_via_symbols, 957 // then we need to emit *something* to the function body to prevent the 958 // labels from collapsing together. Just emit a noop. 959 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 960 MCInst Noop; 961 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 962 OutStreamer->AddComment("avoids zero-length function"); 963 964 // Targets can opt-out of emitting the noop here by leaving the opcode 965 // unspecified. 966 if (Noop.getOpcode()) 967 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 968 } 969 970 const Function *F = MF->getFunction(); 971 for (const auto &BB : *F) { 972 if (!BB.hasAddressTaken()) 973 continue; 974 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 975 if (Sym->isDefined()) 976 continue; 977 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 978 OutStreamer->EmitLabel(Sym); 979 } 980 981 // Emit target-specific gunk after the function body. 982 EmitFunctionBodyEnd(); 983 984 if (!MF->getLandingPads().empty() || MMI->hasDebugInfo() || 985 MF->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 986 // Create a symbol for the end of function. 987 CurrentFnEnd = createTempSymbol("func_end"); 988 OutStreamer->EmitLabel(CurrentFnEnd); 989 } 990 991 // If the target wants a .size directive for the size of the function, emit 992 // it. 993 if (MAI->hasDotTypeDotSizeDirective()) { 994 // We can get the size as difference between the function label and the 995 // temp label. 996 const MCExpr *SizeExp = MCBinaryExpr::createSub( 997 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 998 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 999 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1000 } 1001 1002 for (const HandlerInfo &HI : Handlers) { 1003 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1004 HI.TimerGroupDescription, TimePassesIsEnabled); 1005 HI.Handler->markFunctionEnd(); 1006 } 1007 1008 // Print out jump tables referenced by the function. 1009 EmitJumpTableInfo(); 1010 1011 // Emit post-function debug and/or EH information. 1012 for (const HandlerInfo &HI : Handlers) { 1013 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1014 HI.TimerGroupDescription, TimePassesIsEnabled); 1015 HI.Handler->endFunction(MF); 1016 } 1017 1018 OutStreamer->AddBlankLine(); 1019 } 1020 1021 /// \brief Compute the number of Global Variables that uses a Constant. 1022 static unsigned getNumGlobalVariableUses(const Constant *C) { 1023 if (!C) 1024 return 0; 1025 1026 if (isa<GlobalVariable>(C)) 1027 return 1; 1028 1029 unsigned NumUses = 0; 1030 for (auto *CU : C->users()) 1031 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1032 1033 return NumUses; 1034 } 1035 1036 /// \brief Only consider global GOT equivalents if at least one user is a 1037 /// cstexpr inside an initializer of another global variables. Also, don't 1038 /// handle cstexpr inside instructions. During global variable emission, 1039 /// candidates are skipped and are emitted later in case at least one cstexpr 1040 /// isn't replaced by a PC relative GOT entry access. 1041 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1042 unsigned &NumGOTEquivUsers) { 1043 // Global GOT equivalents are unnamed private globals with a constant 1044 // pointer initializer to another global symbol. They must point to a 1045 // GlobalVariable or Function, i.e., as GlobalValue. 1046 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1047 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1048 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1049 return false; 1050 1051 // To be a got equivalent, at least one of its users need to be a constant 1052 // expression used by another global variable. 1053 for (auto *U : GV->users()) 1054 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1055 1056 return NumGOTEquivUsers > 0; 1057 } 1058 1059 /// \brief Unnamed constant global variables solely contaning a pointer to 1060 /// another globals variable is equivalent to a GOT table entry; it contains the 1061 /// the address of another symbol. Optimize it and replace accesses to these 1062 /// "GOT equivalents" by using the GOT entry for the final global instead. 1063 /// Compute GOT equivalent candidates among all global variables to avoid 1064 /// emitting them if possible later on, after it use is replaced by a GOT entry 1065 /// access. 1066 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1067 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1068 return; 1069 1070 for (const auto &G : M.globals()) { 1071 unsigned NumGOTEquivUsers = 0; 1072 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1073 continue; 1074 1075 const MCSymbol *GOTEquivSym = getSymbol(&G); 1076 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1077 } 1078 } 1079 1080 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1081 /// for PC relative GOT entry conversion, in such cases we need to emit such 1082 /// globals we previously omitted in EmitGlobalVariable. 1083 void AsmPrinter::emitGlobalGOTEquivs() { 1084 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1085 return; 1086 1087 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1088 for (auto &I : GlobalGOTEquivs) { 1089 const GlobalVariable *GV = I.second.first; 1090 unsigned Cnt = I.second.second; 1091 if (Cnt) 1092 FailedCandidates.push_back(GV); 1093 } 1094 GlobalGOTEquivs.clear(); 1095 1096 for (auto *GV : FailedCandidates) 1097 EmitGlobalVariable(GV); 1098 } 1099 1100 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1101 const GlobalIndirectSymbol& GIS) { 1102 MCSymbol *Name = getSymbol(&GIS); 1103 1104 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1105 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1106 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1107 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1108 else 1109 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1110 1111 // Set the symbol type to function if the alias has a function type. 1112 // This affects codegen when the aliasee is not a function. 1113 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1114 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1115 if (isa<GlobalIFunc>(GIS)) 1116 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1117 } 1118 1119 EmitVisibility(Name, GIS.getVisibility()); 1120 1121 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1122 1123 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1124 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1125 1126 // Emit the directives as assignments aka .set: 1127 OutStreamer->EmitAssignment(Name, Expr); 1128 1129 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1130 // If the aliasee does not correspond to a symbol in the output, i.e. the 1131 // alias is not of an object or the aliased object is private, then set the 1132 // size of the alias symbol from the type of the alias. We don't do this in 1133 // other situations as the alias and aliasee having differing types but same 1134 // size may be intentional. 1135 const GlobalObject *BaseObject = GA->getBaseObject(); 1136 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1137 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1138 const DataLayout &DL = M.getDataLayout(); 1139 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1140 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1141 } 1142 } 1143 } 1144 1145 bool AsmPrinter::doFinalization(Module &M) { 1146 // Set the MachineFunction to nullptr so that we can catch attempted 1147 // accesses to MF specific features at the module level and so that 1148 // we can conditionalize accesses based on whether or not it is nullptr. 1149 MF = nullptr; 1150 1151 // Gather all GOT equivalent globals in the module. We really need two 1152 // passes over the globals: one to compute and another to avoid its emission 1153 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1154 // where the got equivalent shows up before its use. 1155 computeGlobalGOTEquivs(M); 1156 1157 // Emit global variables. 1158 for (const auto &G : M.globals()) 1159 EmitGlobalVariable(&G); 1160 1161 // Emit remaining GOT equivalent globals. 1162 emitGlobalGOTEquivs(); 1163 1164 // Emit visibility info for declarations 1165 for (const Function &F : M) { 1166 if (!F.isDeclarationForLinker()) 1167 continue; 1168 GlobalValue::VisibilityTypes V = F.getVisibility(); 1169 if (V == GlobalValue::DefaultVisibility) 1170 continue; 1171 1172 MCSymbol *Name = getSymbol(&F); 1173 EmitVisibility(Name, V, false); 1174 } 1175 1176 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1177 1178 // Emit module flags. 1179 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1180 M.getModuleFlagsMetadata(ModuleFlags); 1181 if (!ModuleFlags.empty()) 1182 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, TM); 1183 1184 if (TM.getTargetTriple().isOSBinFormatELF()) { 1185 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1186 1187 // Output stubs for external and common global variables. 1188 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1189 if (!Stubs.empty()) { 1190 OutStreamer->SwitchSection(TLOF.getDataSection()); 1191 const DataLayout &DL = M.getDataLayout(); 1192 1193 for (const auto &Stub : Stubs) { 1194 OutStreamer->EmitLabel(Stub.first); 1195 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1196 DL.getPointerSize()); 1197 } 1198 } 1199 } 1200 1201 // Finalize debug and EH information. 1202 for (const HandlerInfo &HI : Handlers) { 1203 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1204 HI.TimerGroupDescription, TimePassesIsEnabled); 1205 HI.Handler->endModule(); 1206 delete HI.Handler; 1207 } 1208 Handlers.clear(); 1209 DD = nullptr; 1210 1211 // If the target wants to know about weak references, print them all. 1212 if (MAI->getWeakRefDirective()) { 1213 // FIXME: This is not lazy, it would be nice to only print weak references 1214 // to stuff that is actually used. Note that doing so would require targets 1215 // to notice uses in operands (due to constant exprs etc). This should 1216 // happen with the MC stuff eventually. 1217 1218 // Print out module-level global objects here. 1219 for (const auto &GO : M.global_objects()) { 1220 if (!GO.hasExternalWeakLinkage()) 1221 continue; 1222 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1223 } 1224 } 1225 1226 OutStreamer->AddBlankLine(); 1227 1228 // Print aliases in topological order, that is, for each alias a = b, 1229 // b must be printed before a. 1230 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1231 // such an order to generate correct TOC information. 1232 SmallVector<const GlobalAlias *, 16> AliasStack; 1233 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1234 for (const auto &Alias : M.aliases()) { 1235 for (const GlobalAlias *Cur = &Alias; Cur; 1236 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1237 if (!AliasVisited.insert(Cur).second) 1238 break; 1239 AliasStack.push_back(Cur); 1240 } 1241 for (const GlobalAlias *AncestorAlias : reverse(AliasStack)) 1242 emitGlobalIndirectSymbol(M, *AncestorAlias); 1243 AliasStack.clear(); 1244 } 1245 for (const auto &IFunc : M.ifuncs()) 1246 emitGlobalIndirectSymbol(M, IFunc); 1247 1248 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1249 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1250 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1251 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1252 MP->finishAssembly(M, *MI, *this); 1253 1254 // Emit llvm.ident metadata in an '.ident' directive. 1255 EmitModuleIdents(M); 1256 1257 // Emit __morestack address if needed for indirect calls. 1258 if (MMI->usesMorestackAddr()) { 1259 unsigned Align = 1; 1260 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1261 getDataLayout(), SectionKind::getReadOnly(), 1262 /*C=*/nullptr, Align); 1263 OutStreamer->SwitchSection(ReadOnlySection); 1264 1265 MCSymbol *AddrSymbol = 1266 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1267 OutStreamer->EmitLabel(AddrSymbol); 1268 1269 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1270 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1271 PtrSize); 1272 } 1273 1274 // If we don't have any trampolines, then we don't require stack memory 1275 // to be executable. Some targets have a directive to declare this. 1276 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1277 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1278 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1279 OutStreamer->SwitchSection(S); 1280 1281 // Allow the target to emit any magic that it wants at the end of the file, 1282 // after everything else has gone out. 1283 EmitEndOfAsmFile(M); 1284 1285 MMI = nullptr; 1286 1287 OutStreamer->Finish(); 1288 OutStreamer->reset(); 1289 1290 return false; 1291 } 1292 1293 MCSymbol *AsmPrinter::getCurExceptionSym() { 1294 if (!CurExceptionSym) 1295 CurExceptionSym = createTempSymbol("exception"); 1296 return CurExceptionSym; 1297 } 1298 1299 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1300 this->MF = &MF; 1301 // Get the function symbol. 1302 CurrentFnSym = getSymbol(MF.getFunction()); 1303 CurrentFnSymForSize = CurrentFnSym; 1304 CurrentFnBegin = nullptr; 1305 CurExceptionSym = nullptr; 1306 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1307 if (!MF.getLandingPads().empty() || MMI->hasDebugInfo() || 1308 MF.hasEHFunclets() || NeedsLocalForSize) { 1309 CurrentFnBegin = createTempSymbol("func_begin"); 1310 if (NeedsLocalForSize) 1311 CurrentFnSymForSize = CurrentFnBegin; 1312 } 1313 1314 if (isVerbose()) 1315 LI = &getAnalysis<MachineLoopInfo>(); 1316 } 1317 1318 namespace { 1319 // Keep track the alignment, constpool entries per Section. 1320 struct SectionCPs { 1321 MCSection *S; 1322 unsigned Alignment; 1323 SmallVector<unsigned, 4> CPEs; 1324 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1325 }; 1326 } 1327 1328 /// EmitConstantPool - Print to the current output stream assembly 1329 /// representations of the constants in the constant pool MCP. This is 1330 /// used to print out constants which have been "spilled to memory" by 1331 /// the code generator. 1332 /// 1333 void AsmPrinter::EmitConstantPool() { 1334 const MachineConstantPool *MCP = MF->getConstantPool(); 1335 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1336 if (CP.empty()) return; 1337 1338 // Calculate sections for constant pool entries. We collect entries to go into 1339 // the same section together to reduce amount of section switch statements. 1340 SmallVector<SectionCPs, 4> CPSections; 1341 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1342 const MachineConstantPoolEntry &CPE = CP[i]; 1343 unsigned Align = CPE.getAlignment(); 1344 1345 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1346 1347 const Constant *C = nullptr; 1348 if (!CPE.isMachineConstantPoolEntry()) 1349 C = CPE.Val.ConstVal; 1350 1351 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1352 Kind, C, Align); 1353 1354 // The number of sections are small, just do a linear search from the 1355 // last section to the first. 1356 bool Found = false; 1357 unsigned SecIdx = CPSections.size(); 1358 while (SecIdx != 0) { 1359 if (CPSections[--SecIdx].S == S) { 1360 Found = true; 1361 break; 1362 } 1363 } 1364 if (!Found) { 1365 SecIdx = CPSections.size(); 1366 CPSections.push_back(SectionCPs(S, Align)); 1367 } 1368 1369 if (Align > CPSections[SecIdx].Alignment) 1370 CPSections[SecIdx].Alignment = Align; 1371 CPSections[SecIdx].CPEs.push_back(i); 1372 } 1373 1374 // Now print stuff into the calculated sections. 1375 const MCSection *CurSection = nullptr; 1376 unsigned Offset = 0; 1377 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1378 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1379 unsigned CPI = CPSections[i].CPEs[j]; 1380 MCSymbol *Sym = GetCPISymbol(CPI); 1381 if (!Sym->isUndefined()) 1382 continue; 1383 1384 if (CurSection != CPSections[i].S) { 1385 OutStreamer->SwitchSection(CPSections[i].S); 1386 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1387 CurSection = CPSections[i].S; 1388 Offset = 0; 1389 } 1390 1391 MachineConstantPoolEntry CPE = CP[CPI]; 1392 1393 // Emit inter-object padding for alignment. 1394 unsigned AlignMask = CPE.getAlignment() - 1; 1395 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1396 OutStreamer->EmitZeros(NewOffset - Offset); 1397 1398 Type *Ty = CPE.getType(); 1399 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1400 1401 OutStreamer->EmitLabel(Sym); 1402 if (CPE.isMachineConstantPoolEntry()) 1403 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1404 else 1405 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1406 } 1407 } 1408 } 1409 1410 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1411 /// by the current function to the current output stream. 1412 /// 1413 void AsmPrinter::EmitJumpTableInfo() { 1414 const DataLayout &DL = MF->getDataLayout(); 1415 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1416 if (!MJTI) return; 1417 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1418 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1419 if (JT.empty()) return; 1420 1421 // Pick the directive to use to print the jump table entries, and switch to 1422 // the appropriate section. 1423 const Function *F = MF->getFunction(); 1424 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1425 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1426 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1427 *F); 1428 if (JTInDiffSection) { 1429 // Drop it in the readonly section. 1430 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, TM); 1431 OutStreamer->SwitchSection(ReadOnlySection); 1432 } 1433 1434 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1435 1436 // Jump tables in code sections are marked with a data_region directive 1437 // where that's supported. 1438 if (!JTInDiffSection) 1439 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1440 1441 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1442 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1443 1444 // If this jump table was deleted, ignore it. 1445 if (JTBBs.empty()) continue; 1446 1447 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1448 /// emit a .set directive for each unique entry. 1449 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1450 MAI->doesSetDirectiveSuppressReloc()) { 1451 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1452 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1453 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1454 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1455 const MachineBasicBlock *MBB = JTBBs[ii]; 1456 if (!EmittedSets.insert(MBB).second) 1457 continue; 1458 1459 // .set LJTSet, LBB32-base 1460 const MCExpr *LHS = 1461 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1462 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1463 MCBinaryExpr::createSub(LHS, Base, 1464 OutContext)); 1465 } 1466 } 1467 1468 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1469 // before each jump table. The first label is never referenced, but tells 1470 // the assembler and linker the extents of the jump table object. The 1471 // second label is actually referenced by the code. 1472 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1473 // FIXME: This doesn't have to have any specific name, just any randomly 1474 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1475 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1476 1477 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1478 1479 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1480 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1481 } 1482 if (!JTInDiffSection) 1483 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1484 } 1485 1486 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1487 /// current stream. 1488 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1489 const MachineBasicBlock *MBB, 1490 unsigned UID) const { 1491 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1492 const MCExpr *Value = nullptr; 1493 switch (MJTI->getEntryKind()) { 1494 case MachineJumpTableInfo::EK_Inline: 1495 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1496 case MachineJumpTableInfo::EK_Custom32: 1497 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1498 MJTI, MBB, UID, OutContext); 1499 break; 1500 case MachineJumpTableInfo::EK_BlockAddress: 1501 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1502 // .word LBB123 1503 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1504 break; 1505 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1506 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1507 // with a relocation as gp-relative, e.g.: 1508 // .gprel32 LBB123 1509 MCSymbol *MBBSym = MBB->getSymbol(); 1510 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1511 return; 1512 } 1513 1514 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1515 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1516 // with a relocation as gp-relative, e.g.: 1517 // .gpdword LBB123 1518 MCSymbol *MBBSym = MBB->getSymbol(); 1519 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1520 return; 1521 } 1522 1523 case MachineJumpTableInfo::EK_LabelDifference32: { 1524 // Each entry is the address of the block minus the address of the jump 1525 // table. This is used for PIC jump tables where gprel32 is not supported. 1526 // e.g.: 1527 // .word LBB123 - LJTI1_2 1528 // If the .set directive avoids relocations, this is emitted as: 1529 // .set L4_5_set_123, LBB123 - LJTI1_2 1530 // .word L4_5_set_123 1531 if (MAI->doesSetDirectiveSuppressReloc()) { 1532 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1533 OutContext); 1534 break; 1535 } 1536 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1537 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1538 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1539 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1540 break; 1541 } 1542 } 1543 1544 assert(Value && "Unknown entry kind!"); 1545 1546 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1547 OutStreamer->EmitValue(Value, EntrySize); 1548 } 1549 1550 1551 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1552 /// special global used by LLVM. If so, emit it and return true, otherwise 1553 /// do nothing and return false. 1554 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1555 if (GV->getName() == "llvm.used") { 1556 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1557 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1558 return true; 1559 } 1560 1561 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1562 if (GV->getSection() == "llvm.metadata" || 1563 GV->hasAvailableExternallyLinkage()) 1564 return true; 1565 1566 if (!GV->hasAppendingLinkage()) return false; 1567 1568 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1569 1570 if (GV->getName() == "llvm.global_ctors") { 1571 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1572 /* isCtor */ true); 1573 1574 return true; 1575 } 1576 1577 if (GV->getName() == "llvm.global_dtors") { 1578 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1579 /* isCtor */ false); 1580 1581 return true; 1582 } 1583 1584 report_fatal_error("unknown special variable"); 1585 } 1586 1587 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1588 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1589 /// is true, as being used with this directive. 1590 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1591 // Should be an array of 'i8*'. 1592 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1593 const GlobalValue *GV = 1594 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1595 if (GV) 1596 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1597 } 1598 } 1599 1600 namespace { 1601 struct Structor { 1602 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1603 int Priority; 1604 llvm::Constant *Func; 1605 llvm::GlobalValue *ComdatKey; 1606 }; 1607 } // end namespace 1608 1609 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1610 /// priority. 1611 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1612 bool isCtor) { 1613 // Should be an array of '{ int, void ()* }' structs. The first value is the 1614 // init priority. 1615 if (!isa<ConstantArray>(List)) return; 1616 1617 // Sanity check the structors list. 1618 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1619 if (!InitList) return; // Not an array! 1620 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1621 // FIXME: Only allow the 3-field form in LLVM 4.0. 1622 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1623 return; // Not an array of two or three elements! 1624 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1625 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1626 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1627 return; // Not (int, ptr, ptr). 1628 1629 // Gather the structors in a form that's convenient for sorting by priority. 1630 SmallVector<Structor, 8> Structors; 1631 for (Value *O : InitList->operands()) { 1632 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1633 if (!CS) continue; // Malformed. 1634 if (CS->getOperand(1)->isNullValue()) 1635 break; // Found a null terminator, skip the rest. 1636 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1637 if (!Priority) continue; // Malformed. 1638 Structors.push_back(Structor()); 1639 Structor &S = Structors.back(); 1640 S.Priority = Priority->getLimitedValue(65535); 1641 S.Func = CS->getOperand(1); 1642 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1643 S.ComdatKey = 1644 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1645 } 1646 1647 // Emit the function pointers in the target-specific order 1648 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1649 std::stable_sort(Structors.begin(), Structors.end(), 1650 [](const Structor &L, 1651 const Structor &R) { return L.Priority < R.Priority; }); 1652 for (Structor &S : Structors) { 1653 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1654 const MCSymbol *KeySym = nullptr; 1655 if (GlobalValue *GV = S.ComdatKey) { 1656 if (GV->isDeclarationForLinker()) 1657 // If the associated variable is not defined in this module 1658 // (it might be available_externally, or have been an 1659 // available_externally definition that was dropped by the 1660 // EliminateAvailableExternally pass), some other TU 1661 // will provide its dynamic initializer. 1662 continue; 1663 1664 KeySym = getSymbol(GV); 1665 } 1666 MCSection *OutputSection = 1667 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1668 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1669 OutStreamer->SwitchSection(OutputSection); 1670 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1671 EmitAlignment(Align); 1672 EmitXXStructor(DL, S.Func); 1673 } 1674 } 1675 1676 void AsmPrinter::EmitModuleIdents(Module &M) { 1677 if (!MAI->hasIdentDirective()) 1678 return; 1679 1680 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1681 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1682 const MDNode *N = NMD->getOperand(i); 1683 assert(N->getNumOperands() == 1 && 1684 "llvm.ident metadata entry can have only one operand"); 1685 const MDString *S = cast<MDString>(N->getOperand(0)); 1686 OutStreamer->EmitIdent(S->getString()); 1687 } 1688 } 1689 } 1690 1691 //===--------------------------------------------------------------------===// 1692 // Emission and print routines 1693 // 1694 1695 /// EmitInt8 - Emit a byte directive and value. 1696 /// 1697 void AsmPrinter::EmitInt8(int Value) const { 1698 OutStreamer->EmitIntValue(Value, 1); 1699 } 1700 1701 /// EmitInt16 - Emit a short directive and value. 1702 /// 1703 void AsmPrinter::EmitInt16(int Value) const { 1704 OutStreamer->EmitIntValue(Value, 2); 1705 } 1706 1707 /// EmitInt32 - Emit a long directive and value. 1708 /// 1709 void AsmPrinter::EmitInt32(int Value) const { 1710 OutStreamer->EmitIntValue(Value, 4); 1711 } 1712 1713 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1714 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1715 /// .set if it avoids relocations. 1716 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1717 unsigned Size) const { 1718 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1719 } 1720 1721 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1722 /// where the size in bytes of the directive is specified by Size and Label 1723 /// specifies the label. This implicitly uses .set if it is available. 1724 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1725 unsigned Size, 1726 bool IsSectionRelative) const { 1727 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1728 OutStreamer->EmitCOFFSecRel32(Label, Offset); 1729 if (Size > 4) 1730 OutStreamer->EmitZeros(Size - 4); 1731 return; 1732 } 1733 1734 // Emit Label+Offset (or just Label if Offset is zero) 1735 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1736 if (Offset) 1737 Expr = MCBinaryExpr::createAdd( 1738 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1739 1740 OutStreamer->EmitValue(Expr, Size); 1741 } 1742 1743 //===----------------------------------------------------------------------===// 1744 1745 // EmitAlignment - Emit an alignment directive to the specified power of 1746 // two boundary. For example, if you pass in 3 here, you will get an 8 1747 // byte alignment. If a global value is specified, and if that global has 1748 // an explicit alignment requested, it will override the alignment request 1749 // if required for correctness. 1750 // 1751 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1752 if (GV) 1753 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1754 1755 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1756 1757 assert(NumBits < 1758 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1759 "undefined behavior"); 1760 if (getCurrentSection()->getKind().isText()) 1761 OutStreamer->EmitCodeAlignment(1u << NumBits); 1762 else 1763 OutStreamer->EmitValueToAlignment(1u << NumBits); 1764 } 1765 1766 //===----------------------------------------------------------------------===// 1767 // Constant emission. 1768 //===----------------------------------------------------------------------===// 1769 1770 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1771 MCContext &Ctx = OutContext; 1772 1773 if (CV->isNullValue() || isa<UndefValue>(CV)) 1774 return MCConstantExpr::create(0, Ctx); 1775 1776 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1777 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1778 1779 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1780 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1781 1782 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1783 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1784 1785 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1786 if (!CE) { 1787 llvm_unreachable("Unknown constant value to lower!"); 1788 } 1789 1790 switch (CE->getOpcode()) { 1791 default: 1792 // If the code isn't optimized, there may be outstanding folding 1793 // opportunities. Attempt to fold the expression using DataLayout as a 1794 // last resort before giving up. 1795 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 1796 if (C != CE) 1797 return lowerConstant(C); 1798 1799 // Otherwise report the problem to the user. 1800 { 1801 std::string S; 1802 raw_string_ostream OS(S); 1803 OS << "Unsupported expression in static initializer: "; 1804 CE->printAsOperand(OS, /*PrintType=*/false, 1805 !MF ? nullptr : MF->getFunction()->getParent()); 1806 report_fatal_error(OS.str()); 1807 } 1808 case Instruction::GetElementPtr: { 1809 // Generate a symbolic expression for the byte address 1810 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1811 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1812 1813 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1814 if (!OffsetAI) 1815 return Base; 1816 1817 int64_t Offset = OffsetAI.getSExtValue(); 1818 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1819 Ctx); 1820 } 1821 1822 case Instruction::Trunc: 1823 // We emit the value and depend on the assembler to truncate the generated 1824 // expression properly. This is important for differences between 1825 // blockaddress labels. Since the two labels are in the same function, it 1826 // is reasonable to treat their delta as a 32-bit value. 1827 LLVM_FALLTHROUGH; 1828 case Instruction::BitCast: 1829 return lowerConstant(CE->getOperand(0)); 1830 1831 case Instruction::IntToPtr: { 1832 const DataLayout &DL = getDataLayout(); 1833 1834 // Handle casts to pointers by changing them into casts to the appropriate 1835 // integer type. This promotes constant folding and simplifies this code. 1836 Constant *Op = CE->getOperand(0); 1837 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1838 false/*ZExt*/); 1839 return lowerConstant(Op); 1840 } 1841 1842 case Instruction::PtrToInt: { 1843 const DataLayout &DL = getDataLayout(); 1844 1845 // Support only foldable casts to/from pointers that can be eliminated by 1846 // changing the pointer to the appropriately sized integer type. 1847 Constant *Op = CE->getOperand(0); 1848 Type *Ty = CE->getType(); 1849 1850 const MCExpr *OpExpr = lowerConstant(Op); 1851 1852 // We can emit the pointer value into this slot if the slot is an 1853 // integer slot equal to the size of the pointer. 1854 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1855 return OpExpr; 1856 1857 // Otherwise the pointer is smaller than the resultant integer, mask off 1858 // the high bits so we are sure to get a proper truncation if the input is 1859 // a constant expr. 1860 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1861 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1862 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1863 } 1864 1865 case Instruction::Sub: { 1866 GlobalValue *LHSGV; 1867 APInt LHSOffset; 1868 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1869 getDataLayout())) { 1870 GlobalValue *RHSGV; 1871 APInt RHSOffset; 1872 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1873 getDataLayout())) { 1874 const MCExpr *RelocExpr = 1875 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 1876 if (!RelocExpr) 1877 RelocExpr = MCBinaryExpr::createSub( 1878 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1879 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1880 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1881 if (Addend != 0) 1882 RelocExpr = MCBinaryExpr::createAdd( 1883 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1884 return RelocExpr; 1885 } 1886 } 1887 } 1888 // else fallthrough 1889 1890 // The MC library also has a right-shift operator, but it isn't consistently 1891 // signed or unsigned between different targets. 1892 case Instruction::Add: 1893 case Instruction::Mul: 1894 case Instruction::SDiv: 1895 case Instruction::SRem: 1896 case Instruction::Shl: 1897 case Instruction::And: 1898 case Instruction::Or: 1899 case Instruction::Xor: { 1900 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1901 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1902 switch (CE->getOpcode()) { 1903 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1904 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1905 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1906 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1907 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1908 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1909 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1910 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1911 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1912 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1913 } 1914 } 1915 } 1916 } 1917 1918 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1919 AsmPrinter &AP, 1920 const Constant *BaseCV = nullptr, 1921 uint64_t Offset = 0); 1922 1923 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1924 1925 /// isRepeatedByteSequence - Determine whether the given value is 1926 /// composed of a repeated sequence of identical bytes and return the 1927 /// byte value. If it is not a repeated sequence, return -1. 1928 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1929 StringRef Data = V->getRawDataValues(); 1930 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1931 char C = Data[0]; 1932 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1933 if (Data[i] != C) return -1; 1934 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1935 } 1936 1937 1938 /// isRepeatedByteSequence - Determine whether the given value is 1939 /// composed of a repeated sequence of identical bytes and return the 1940 /// byte value. If it is not a repeated sequence, return -1. 1941 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1942 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1943 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1944 assert(Size % 8 == 0); 1945 1946 // Extend the element to take zero padding into account. 1947 APInt Value = CI->getValue().zextOrSelf(Size); 1948 if (!Value.isSplat(8)) 1949 return -1; 1950 1951 return Value.zextOrTrunc(8).getZExtValue(); 1952 } 1953 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1954 // Make sure all array elements are sequences of the same repeated 1955 // byte. 1956 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1957 Constant *Op0 = CA->getOperand(0); 1958 int Byte = isRepeatedByteSequence(Op0, DL); 1959 if (Byte == -1) 1960 return -1; 1961 1962 // All array elements must be equal. 1963 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1964 if (CA->getOperand(i) != Op0) 1965 return -1; 1966 return Byte; 1967 } 1968 1969 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1970 return isRepeatedByteSequence(CDS); 1971 1972 return -1; 1973 } 1974 1975 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1976 const ConstantDataSequential *CDS, 1977 AsmPrinter &AP) { 1978 1979 // See if we can aggregate this into a .fill, if so, emit it as such. 1980 int Value = isRepeatedByteSequence(CDS, DL); 1981 if (Value != -1) { 1982 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1983 // Don't emit a 1-byte object as a .fill. 1984 if (Bytes > 1) 1985 return AP.OutStreamer->emitFill(Bytes, Value); 1986 } 1987 1988 // If this can be emitted with .ascii/.asciz, emit it as such. 1989 if (CDS->isString()) 1990 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1991 1992 // Otherwise, emit the values in successive locations. 1993 unsigned ElementByteSize = CDS->getElementByteSize(); 1994 if (isa<IntegerType>(CDS->getElementType())) { 1995 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1996 if (AP.isVerbose()) 1997 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1998 CDS->getElementAsInteger(i)); 1999 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2000 ElementByteSize); 2001 } 2002 } else { 2003 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2004 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 2005 } 2006 2007 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2008 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2009 CDS->getNumElements(); 2010 if (unsigned Padding = Size - EmittedSize) 2011 AP.OutStreamer->EmitZeros(Padding); 2012 2013 } 2014 2015 static void emitGlobalConstantArray(const DataLayout &DL, 2016 const ConstantArray *CA, AsmPrinter &AP, 2017 const Constant *BaseCV, uint64_t Offset) { 2018 // See if we can aggregate some values. Make sure it can be 2019 // represented as a series of bytes of the constant value. 2020 int Value = isRepeatedByteSequence(CA, DL); 2021 2022 if (Value != -1) { 2023 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2024 AP.OutStreamer->emitFill(Bytes, Value); 2025 } 2026 else { 2027 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2028 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2029 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2030 } 2031 } 2032 } 2033 2034 static void emitGlobalConstantVector(const DataLayout &DL, 2035 const ConstantVector *CV, AsmPrinter &AP) { 2036 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2037 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2038 2039 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2040 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2041 CV->getType()->getNumElements(); 2042 if (unsigned Padding = Size - EmittedSize) 2043 AP.OutStreamer->EmitZeros(Padding); 2044 } 2045 2046 static void emitGlobalConstantStruct(const DataLayout &DL, 2047 const ConstantStruct *CS, AsmPrinter &AP, 2048 const Constant *BaseCV, uint64_t Offset) { 2049 // Print the fields in successive locations. Pad to align if needed! 2050 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2051 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2052 uint64_t SizeSoFar = 0; 2053 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2054 const Constant *Field = CS->getOperand(i); 2055 2056 // Print the actual field value. 2057 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2058 2059 // Check if padding is needed and insert one or more 0s. 2060 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2061 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2062 - Layout->getElementOffset(i)) - FieldSize; 2063 SizeSoFar += FieldSize + PadSize; 2064 2065 // Insert padding - this may include padding to increase the size of the 2066 // current field up to the ABI size (if the struct is not packed) as well 2067 // as padding to ensure that the next field starts at the right offset. 2068 AP.OutStreamer->EmitZeros(PadSize); 2069 } 2070 assert(SizeSoFar == Layout->getSizeInBytes() && 2071 "Layout of constant struct may be incorrect!"); 2072 } 2073 2074 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2075 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2076 2077 // First print a comment with what we think the original floating-point value 2078 // should have been. 2079 if (AP.isVerbose()) { 2080 SmallString<8> StrVal; 2081 CFP->getValueAPF().toString(StrVal); 2082 2083 if (CFP->getType()) 2084 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2085 else 2086 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2087 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2088 } 2089 2090 // Now iterate through the APInt chunks, emitting them in endian-correct 2091 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2092 // floats). 2093 unsigned NumBytes = API.getBitWidth() / 8; 2094 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2095 const uint64_t *p = API.getRawData(); 2096 2097 // PPC's long double has odd notions of endianness compared to how LLVM 2098 // handles it: p[0] goes first for *big* endian on PPC. 2099 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2100 int Chunk = API.getNumWords() - 1; 2101 2102 if (TrailingBytes) 2103 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2104 2105 for (; Chunk >= 0; --Chunk) 2106 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2107 } else { 2108 unsigned Chunk; 2109 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2110 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2111 2112 if (TrailingBytes) 2113 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2114 } 2115 2116 // Emit the tail padding for the long double. 2117 const DataLayout &DL = AP.getDataLayout(); 2118 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2119 DL.getTypeStoreSize(CFP->getType())); 2120 } 2121 2122 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2123 const DataLayout &DL = AP.getDataLayout(); 2124 unsigned BitWidth = CI->getBitWidth(); 2125 2126 // Copy the value as we may massage the layout for constants whose bit width 2127 // is not a multiple of 64-bits. 2128 APInt Realigned(CI->getValue()); 2129 uint64_t ExtraBits = 0; 2130 unsigned ExtraBitsSize = BitWidth & 63; 2131 2132 if (ExtraBitsSize) { 2133 // The bit width of the data is not a multiple of 64-bits. 2134 // The extra bits are expected to be at the end of the chunk of the memory. 2135 // Little endian: 2136 // * Nothing to be done, just record the extra bits to emit. 2137 // Big endian: 2138 // * Record the extra bits to emit. 2139 // * Realign the raw data to emit the chunks of 64-bits. 2140 if (DL.isBigEndian()) { 2141 // Basically the structure of the raw data is a chunk of 64-bits cells: 2142 // 0 1 BitWidth / 64 2143 // [chunk1][chunk2] ... [chunkN]. 2144 // The most significant chunk is chunkN and it should be emitted first. 2145 // However, due to the alignment issue chunkN contains useless bits. 2146 // Realign the chunks so that they contain only useless information: 2147 // ExtraBits 0 1 (BitWidth / 64) - 1 2148 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2149 ExtraBits = Realigned.getRawData()[0] & 2150 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2151 Realigned = Realigned.lshr(ExtraBitsSize); 2152 } else 2153 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2154 } 2155 2156 // We don't expect assemblers to support integer data directives 2157 // for more than 64 bits, so we emit the data in at most 64-bit 2158 // quantities at a time. 2159 const uint64_t *RawData = Realigned.getRawData(); 2160 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2161 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2162 AP.OutStreamer->EmitIntValue(Val, 8); 2163 } 2164 2165 if (ExtraBitsSize) { 2166 // Emit the extra bits after the 64-bits chunks. 2167 2168 // Emit a directive that fills the expected size. 2169 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2170 Size -= (BitWidth / 64) * 8; 2171 assert(Size && Size * 8 >= ExtraBitsSize && 2172 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2173 == ExtraBits && "Directive too small for extra bits."); 2174 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2175 } 2176 } 2177 2178 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2179 /// equivalent global, by a target specific GOT pc relative access to the 2180 /// final symbol. 2181 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2182 const Constant *BaseCst, 2183 uint64_t Offset) { 2184 // The global @foo below illustrates a global that uses a got equivalent. 2185 // 2186 // @bar = global i32 42 2187 // @gotequiv = private unnamed_addr constant i32* @bar 2188 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2189 // i64 ptrtoint (i32* @foo to i64)) 2190 // to i32) 2191 // 2192 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2193 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2194 // form: 2195 // 2196 // foo = cstexpr, where 2197 // cstexpr := <gotequiv> - "." + <cst> 2198 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2199 // 2200 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2201 // 2202 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2203 // gotpcrelcst := <offset from @foo base> + <cst> 2204 // 2205 MCValue MV; 2206 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2207 return; 2208 const MCSymbolRefExpr *SymA = MV.getSymA(); 2209 if (!SymA) 2210 return; 2211 2212 // Check that GOT equivalent symbol is cached. 2213 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2214 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2215 return; 2216 2217 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2218 if (!BaseGV) 2219 return; 2220 2221 // Check for a valid base symbol 2222 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2223 const MCSymbolRefExpr *SymB = MV.getSymB(); 2224 2225 if (!SymB || BaseSym != &SymB->getSymbol()) 2226 return; 2227 2228 // Make sure to match: 2229 // 2230 // gotpcrelcst := <offset from @foo base> + <cst> 2231 // 2232 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2233 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2234 // if the target knows how to encode it. 2235 // 2236 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2237 if (GOTPCRelCst < 0) 2238 return; 2239 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2240 return; 2241 2242 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2243 // 2244 // bar: 2245 // .long 42 2246 // gotequiv: 2247 // .quad bar 2248 // foo: 2249 // .long gotequiv - "." + <cst> 2250 // 2251 // is replaced by the target specific equivalent to: 2252 // 2253 // bar: 2254 // .long 42 2255 // foo: 2256 // .long bar@GOTPCREL+<gotpcrelcst> 2257 // 2258 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2259 const GlobalVariable *GV = Result.first; 2260 int NumUses = (int)Result.second; 2261 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2262 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2263 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2264 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2265 2266 // Update GOT equivalent usage information 2267 --NumUses; 2268 if (NumUses >= 0) 2269 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2270 } 2271 2272 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2273 AsmPrinter &AP, const Constant *BaseCV, 2274 uint64_t Offset) { 2275 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2276 2277 // Globals with sub-elements such as combinations of arrays and structs 2278 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2279 // constant symbol base and the current position with BaseCV and Offset. 2280 if (!BaseCV && CV->hasOneUse()) 2281 BaseCV = dyn_cast<Constant>(CV->user_back()); 2282 2283 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2284 return AP.OutStreamer->EmitZeros(Size); 2285 2286 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2287 switch (Size) { 2288 case 1: 2289 case 2: 2290 case 4: 2291 case 8: 2292 if (AP.isVerbose()) 2293 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2294 CI->getZExtValue()); 2295 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2296 return; 2297 default: 2298 emitGlobalConstantLargeInt(CI, AP); 2299 return; 2300 } 2301 } 2302 2303 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2304 return emitGlobalConstantFP(CFP, AP); 2305 2306 if (isa<ConstantPointerNull>(CV)) { 2307 AP.OutStreamer->EmitIntValue(0, Size); 2308 return; 2309 } 2310 2311 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2312 return emitGlobalConstantDataSequential(DL, CDS, AP); 2313 2314 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2315 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2316 2317 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2318 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2319 2320 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2321 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2322 // vectors). 2323 if (CE->getOpcode() == Instruction::BitCast) 2324 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2325 2326 if (Size > 8) { 2327 // If the constant expression's size is greater than 64-bits, then we have 2328 // to emit the value in chunks. Try to constant fold the value and emit it 2329 // that way. 2330 Constant *New = ConstantFoldConstant(CE, DL); 2331 if (New && New != CE) 2332 return emitGlobalConstantImpl(DL, New, AP); 2333 } 2334 } 2335 2336 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2337 return emitGlobalConstantVector(DL, V, AP); 2338 2339 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2340 // thread the streamer with EmitValue. 2341 const MCExpr *ME = AP.lowerConstant(CV); 2342 2343 // Since lowerConstant already folded and got rid of all IR pointer and 2344 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2345 // directly. 2346 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2347 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2348 2349 AP.OutStreamer->EmitValue(ME, Size); 2350 } 2351 2352 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2353 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2354 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2355 if (Size) 2356 emitGlobalConstantImpl(DL, CV, *this); 2357 else if (MAI->hasSubsectionsViaSymbols()) { 2358 // If the global has zero size, emit a single byte so that two labels don't 2359 // look like they are at the same location. 2360 OutStreamer->EmitIntValue(0, 1); 2361 } 2362 } 2363 2364 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2365 // Target doesn't support this yet! 2366 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2367 } 2368 2369 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2370 if (Offset > 0) 2371 OS << '+' << Offset; 2372 else if (Offset < 0) 2373 OS << Offset; 2374 } 2375 2376 //===----------------------------------------------------------------------===// 2377 // Symbol Lowering Routines. 2378 //===----------------------------------------------------------------------===// 2379 2380 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2381 return OutContext.createTempSymbol(Name, true); 2382 } 2383 2384 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2385 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2386 } 2387 2388 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2389 return MMI->getAddrLabelSymbol(BB); 2390 } 2391 2392 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2393 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2394 const DataLayout &DL = getDataLayout(); 2395 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2396 "CPI" + Twine(getFunctionNumber()) + "_" + 2397 Twine(CPID)); 2398 } 2399 2400 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2401 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2402 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2403 } 2404 2405 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2406 /// FIXME: privatize to AsmPrinter. 2407 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2408 const DataLayout &DL = getDataLayout(); 2409 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2410 Twine(getFunctionNumber()) + "_" + 2411 Twine(UID) + "_set_" + Twine(MBBID)); 2412 } 2413 2414 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2415 StringRef Suffix) const { 2416 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2417 } 2418 2419 /// Return the MCSymbol for the specified ExternalSymbol. 2420 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2421 SmallString<60> NameStr; 2422 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2423 return OutContext.getOrCreateSymbol(NameStr); 2424 } 2425 2426 2427 2428 /// PrintParentLoopComment - Print comments about parent loops of this one. 2429 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2430 unsigned FunctionNumber) { 2431 if (!Loop) return; 2432 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2433 OS.indent(Loop->getLoopDepth()*2) 2434 << "Parent Loop BB" << FunctionNumber << "_" 2435 << Loop->getHeader()->getNumber() 2436 << " Depth=" << Loop->getLoopDepth() << '\n'; 2437 } 2438 2439 2440 /// PrintChildLoopComment - Print comments about child loops within 2441 /// the loop for this basic block, with nesting. 2442 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2443 unsigned FunctionNumber) { 2444 // Add child loop information 2445 for (const MachineLoop *CL : *Loop) { 2446 OS.indent(CL->getLoopDepth()*2) 2447 << "Child Loop BB" << FunctionNumber << "_" 2448 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2449 << '\n'; 2450 PrintChildLoopComment(OS, CL, FunctionNumber); 2451 } 2452 } 2453 2454 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2455 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2456 const MachineLoopInfo *LI, 2457 const AsmPrinter &AP) { 2458 // Add loop depth information 2459 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2460 if (!Loop) return; 2461 2462 MachineBasicBlock *Header = Loop->getHeader(); 2463 assert(Header && "No header for loop"); 2464 2465 // If this block is not a loop header, just print out what is the loop header 2466 // and return. 2467 if (Header != &MBB) { 2468 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2469 Twine(AP.getFunctionNumber())+"_" + 2470 Twine(Loop->getHeader()->getNumber())+ 2471 " Depth="+Twine(Loop->getLoopDepth())); 2472 return; 2473 } 2474 2475 // Otherwise, it is a loop header. Print out information about child and 2476 // parent loops. 2477 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2478 2479 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2480 2481 OS << "=>"; 2482 OS.indent(Loop->getLoopDepth()*2-2); 2483 2484 OS << "This "; 2485 if (Loop->empty()) 2486 OS << "Inner "; 2487 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2488 2489 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2490 } 2491 2492 2493 /// EmitBasicBlockStart - This method prints the label for the specified 2494 /// MachineBasicBlock, an alignment (if present) and a comment describing 2495 /// it if appropriate. 2496 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2497 // End the previous funclet and start a new one. 2498 if (MBB.isEHFuncletEntry()) { 2499 for (const HandlerInfo &HI : Handlers) { 2500 HI.Handler->endFunclet(); 2501 HI.Handler->beginFunclet(MBB); 2502 } 2503 } 2504 2505 // Emit an alignment directive for this block, if needed. 2506 if (unsigned Align = MBB.getAlignment()) 2507 EmitAlignment(Align); 2508 2509 // If the block has its address taken, emit any labels that were used to 2510 // reference the block. It is possible that there is more than one label 2511 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2512 // the references were generated. 2513 if (MBB.hasAddressTaken()) { 2514 const BasicBlock *BB = MBB.getBasicBlock(); 2515 if (isVerbose()) 2516 OutStreamer->AddComment("Block address taken"); 2517 2518 // MBBs can have their address taken as part of CodeGen without having 2519 // their corresponding BB's address taken in IR 2520 if (BB->hasAddressTaken()) 2521 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2522 OutStreamer->EmitLabel(Sym); 2523 } 2524 2525 // Print some verbose block comments. 2526 if (isVerbose()) { 2527 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2528 if (BB->hasName()) { 2529 BB->printAsOperand(OutStreamer->GetCommentOS(), 2530 /*PrintType=*/false, BB->getModule()); 2531 OutStreamer->GetCommentOS() << '\n'; 2532 } 2533 } 2534 emitBasicBlockLoopComments(MBB, LI, *this); 2535 } 2536 2537 // Print the main label for the block. 2538 if (MBB.pred_empty() || 2539 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2540 if (isVerbose()) { 2541 // NOTE: Want this comment at start of line, don't emit with AddComment. 2542 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2543 } 2544 } else { 2545 OutStreamer->EmitLabel(MBB.getSymbol()); 2546 } 2547 } 2548 2549 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2550 bool IsDefinition) const { 2551 MCSymbolAttr Attr = MCSA_Invalid; 2552 2553 switch (Visibility) { 2554 default: break; 2555 case GlobalValue::HiddenVisibility: 2556 if (IsDefinition) 2557 Attr = MAI->getHiddenVisibilityAttr(); 2558 else 2559 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2560 break; 2561 case GlobalValue::ProtectedVisibility: 2562 Attr = MAI->getProtectedVisibilityAttr(); 2563 break; 2564 } 2565 2566 if (Attr != MCSA_Invalid) 2567 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2568 } 2569 2570 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2571 /// exactly one predecessor and the control transfer mechanism between 2572 /// the predecessor and this block is a fall-through. 2573 bool AsmPrinter:: 2574 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2575 // If this is a landing pad, it isn't a fall through. If it has no preds, 2576 // then nothing falls through to it. 2577 if (MBB->isEHPad() || MBB->pred_empty()) 2578 return false; 2579 2580 // If there isn't exactly one predecessor, it can't be a fall through. 2581 if (MBB->pred_size() > 1) 2582 return false; 2583 2584 // The predecessor has to be immediately before this block. 2585 MachineBasicBlock *Pred = *MBB->pred_begin(); 2586 if (!Pred->isLayoutSuccessor(MBB)) 2587 return false; 2588 2589 // If the block is completely empty, then it definitely does fall through. 2590 if (Pred->empty()) 2591 return true; 2592 2593 // Check the terminators in the previous blocks 2594 for (const auto &MI : Pred->terminators()) { 2595 // If it is not a simple branch, we are in a table somewhere. 2596 if (!MI.isBranch() || MI.isIndirectBranch()) 2597 return false; 2598 2599 // If we are the operands of one of the branches, this is not a fall 2600 // through. Note that targets with delay slots will usually bundle 2601 // terminators with the delay slot instruction. 2602 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2603 if (OP->isJTI()) 2604 return false; 2605 if (OP->isMBB() && OP->getMBB() == MBB) 2606 return false; 2607 } 2608 } 2609 2610 return true; 2611 } 2612 2613 2614 2615 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2616 if (!S.usesMetadata()) 2617 return nullptr; 2618 2619 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2620 " stackmap formats, please see the documentation for a description of" 2621 " the default format. If you really need a custom serialized format," 2622 " please file a bug"); 2623 2624 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2625 gcp_map_type::iterator GCPI = GCMap.find(&S); 2626 if (GCPI != GCMap.end()) 2627 return GCPI->second.get(); 2628 2629 auto Name = S.getName(); 2630 2631 for (GCMetadataPrinterRegistry::iterator 2632 I = GCMetadataPrinterRegistry::begin(), 2633 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2634 if (Name == I->getName()) { 2635 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2636 GMP->S = &S; 2637 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2638 return IterBool.first->second.get(); 2639 } 2640 2641 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2642 } 2643 2644 /// Pin vtable to this file. 2645 AsmPrinterHandler::~AsmPrinterHandler() {} 2646 2647 void AsmPrinterHandler::markFunctionEnd() {} 2648 2649 // In the binary's "xray_instr_map" section, an array of these function entries 2650 // describes each instrumentation point. When XRay patches your code, the index 2651 // into this table will be given to your handler as a patch point identifier. 2652 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 2653 const MCSymbol *CurrentFnSym) const { 2654 Out->EmitSymbolValue(Sled, Bytes); 2655 Out->EmitSymbolValue(CurrentFnSym, Bytes); 2656 auto Kind8 = static_cast<uint8_t>(Kind); 2657 Out->EmitBytes(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 2658 Out->EmitBytes( 2659 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 2660 Out->EmitZeros(2 * Bytes - 2); // Pad the previous two entries 2661 } 2662 2663 void AsmPrinter::emitXRayTable() { 2664 if (Sleds.empty()) 2665 return; 2666 2667 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 2668 auto Fn = MF->getFunction(); 2669 MCSection *Section = nullptr; 2670 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 2671 if (Fn->hasComdat()) { 2672 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2673 ELF::SHF_ALLOC | ELF::SHF_GROUP, 0, 2674 Fn->getComdat()->getName()); 2675 } else { 2676 Section = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, 2677 ELF::SHF_ALLOC); 2678 } 2679 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 2680 Section = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 2681 SectionKind::getReadOnlyWithRel()); 2682 } else { 2683 llvm_unreachable("Unsupported target"); 2684 } 2685 2686 // Before we switch over, we force a reference to a label inside the 2687 // xray_instr_map section. Since this function is always called just 2688 // before the function's end, we assume that this is happening after 2689 // the last return instruction. 2690 2691 auto WordSizeBytes = TM.getPointerSize(); 2692 MCSymbol *Tmp = OutContext.createTempSymbol("xray_synthetic_", true); 2693 OutStreamer->EmitCodeAlignment(16); 2694 OutStreamer->EmitSymbolValue(Tmp, WordSizeBytes, false); 2695 OutStreamer->SwitchSection(Section); 2696 OutStreamer->EmitLabel(Tmp); 2697 for (const auto &Sled : Sleds) 2698 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 2699 2700 OutStreamer->SwitchSection(PrevSection); 2701 Sleds.clear(); 2702 } 2703 2704 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 2705 SledKind Kind) { 2706 auto Fn = MI.getParent()->getParent()->getFunction(); 2707 auto Attr = Fn->getFnAttribute("function-instrument"); 2708 bool AlwaysInstrument = 2709 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 2710 Sleds.emplace_back( 2711 XRayFunctionEntry{ Sled, CurrentFnSym, Kind, AlwaysInstrument, Fn }); 2712 } 2713 2714 uint16_t AsmPrinter::getDwarfVersion() const { 2715 return OutStreamer->getContext().getDwarfVersion(); 2716 } 2717 2718 void AsmPrinter::setDwarfVersion(uint16_t Version) { 2719 OutStreamer->getContext().setDwarfVersion(Version); 2720 } 2721