1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "Win64Exception.h" 18 #include "WinCodeViewLineTables.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/JumpInstrTableInfo.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/GCMetadataPrinter.h" 25 #include "llvm/CodeGen/MachineConstantPool.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineFunction.h" 28 #include "llvm/CodeGen/MachineInstrBundle.h" 29 #include "llvm/CodeGen/MachineJumpTableInfo.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineModuleInfo.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/Mangler.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/MC/MCAsmInfo.h" 38 #include "llvm/MC/MCContext.h" 39 #include "llvm/MC/MCExpr.h" 40 #include "llvm/MC/MCInst.h" 41 #include "llvm/MC/MCSection.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/Format.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = TD.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) 102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 103 MII(tm.getSubtargetImpl()->getInstrInfo()), 104 OutContext(Streamer.getContext()), OutStreamer(Streamer), LastMI(nullptr), 105 LastFn(0), Counter(~0U), SetCounter(0) { 106 DD = nullptr; MMI = nullptr; LI = nullptr; MF = nullptr; 107 CurrentFnSym = CurrentFnSymForSize = nullptr; 108 GCMetadataPrinters = nullptr; 109 VerboseAsm = Streamer.isVerboseAsm(); 110 } 111 112 AsmPrinter::~AsmPrinter() { 113 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 114 115 if (GCMetadataPrinters) { 116 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 117 118 delete &GCMap; 119 GCMetadataPrinters = nullptr; 120 } 121 122 delete &OutStreamer; 123 } 124 125 /// getFunctionNumber - Return a unique ID for the current function. 126 /// 127 unsigned AsmPrinter::getFunctionNumber() const { 128 return MF->getFunctionNumber(); 129 } 130 131 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 132 return TM.getSubtargetImpl()->getTargetLowering()->getObjFileLowering(); 133 } 134 135 /// getDataLayout - Return information about data layout. 136 const DataLayout &AsmPrinter::getDataLayout() const { 137 return *TM.getSubtargetImpl()->getDataLayout(); 138 } 139 140 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 141 return TM.getSubtarget<MCSubtargetInfo>(); 142 } 143 144 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 145 S.EmitInstruction(Inst, getSubtargetInfo()); 146 } 147 148 StringRef AsmPrinter::getTargetTriple() const { 149 return TM.getTargetTriple(); 150 } 151 152 /// getCurrentSection() - Return the current section we are emitting to. 153 const MCSection *AsmPrinter::getCurrentSection() const { 154 return OutStreamer.getCurrentSection().first; 155 } 156 157 158 159 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 160 AU.setPreservesAll(); 161 MachineFunctionPass::getAnalysisUsage(AU); 162 AU.addRequired<MachineModuleInfo>(); 163 AU.addRequired<GCModuleInfo>(); 164 if (isVerbose()) 165 AU.addRequired<MachineLoopInfo>(); 166 } 167 168 bool AsmPrinter::doInitialization(Module &M) { 169 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 170 MMI->AnalyzeModule(M); 171 172 // Initialize TargetLoweringObjectFile. 173 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 174 .Initialize(OutContext, TM); 175 176 OutStreamer.InitSections(false); 177 178 Mang = new Mangler(TM.getSubtargetImpl()->getDataLayout()); 179 180 // Emit the version-min deplyment target directive if needed. 181 // 182 // FIXME: If we end up with a collection of these sorts of Darwin-specific 183 // or ELF-specific things, it may make sense to have a platform helper class 184 // that will work with the target helper class. For now keep it here, as the 185 // alternative is duplicated code in each of the target asm printers that 186 // use the directive, where it would need the same conditionalization 187 // anyway. 188 Triple TT(getTargetTriple()); 189 if (TT.isOSDarwin()) { 190 unsigned Major, Minor, Update; 191 TT.getOSVersion(Major, Minor, Update); 192 // If there is a version specified, Major will be non-zero. 193 if (Major) 194 OutStreamer.EmitVersionMin((TT.isMacOSX() ? 195 MCVM_OSXVersionMin : MCVM_IOSVersionMin), 196 Major, Minor, Update); 197 } 198 199 // Allow the target to emit any magic that it wants at the start of the file. 200 EmitStartOfAsmFile(M); 201 202 // Very minimal debug info. It is ignored if we emit actual debug info. If we 203 // don't, this at least helps the user find where a global came from. 204 if (MAI->hasSingleParameterDotFile()) { 205 // .file "foo.c" 206 OutStreamer.EmitFileDirective(M.getModuleIdentifier()); 207 } 208 209 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 210 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 211 for (auto &I : *MI) 212 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 213 MP->beginAssembly(*this); 214 215 // Emit module-level inline asm if it exists. 216 if (!M.getModuleInlineAsm().empty()) { 217 OutStreamer.AddComment("Start of file scope inline assembly"); 218 OutStreamer.AddBlankLine(); 219 EmitInlineAsm(M.getModuleInlineAsm()+"\n"); 220 OutStreamer.AddComment("End of file scope inline assembly"); 221 OutStreamer.AddBlankLine(); 222 } 223 224 if (MAI->doesSupportDebugInformation()) { 225 if (Triple(TM.getTargetTriple()).isKnownWindowsMSVCEnvironment()) { 226 Handlers.push_back(HandlerInfo(new WinCodeViewLineTables(this), 227 DbgTimerName, 228 CodeViewLineTablesGroupName)); 229 } else { 230 DD = new DwarfDebug(this, &M); 231 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 232 } 233 } 234 235 EHStreamer *ES = nullptr; 236 switch (MAI->getExceptionHandlingType()) { 237 case ExceptionHandling::None: 238 break; 239 case ExceptionHandling::SjLj: 240 case ExceptionHandling::DwarfCFI: 241 ES = new DwarfCFIException(this); 242 break; 243 case ExceptionHandling::ARM: 244 ES = new ARMException(this); 245 break; 246 case ExceptionHandling::WinEH: 247 switch (MAI->getWinEHEncodingType()) { 248 default: llvm_unreachable("unsupported unwinding information encoding"); 249 case WinEH::EncodingType::Itanium: 250 ES = new Win64Exception(this); 251 break; 252 } 253 break; 254 } 255 if (ES) 256 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 257 return false; 258 } 259 260 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 261 if (!MAI.hasWeakDefCanBeHiddenDirective()) 262 return false; 263 264 return canBeOmittedFromSymbolTable(GV); 265 } 266 267 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 268 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 269 switch (Linkage) { 270 case GlobalValue::CommonLinkage: 271 case GlobalValue::LinkOnceAnyLinkage: 272 case GlobalValue::LinkOnceODRLinkage: 273 case GlobalValue::WeakAnyLinkage: 274 case GlobalValue::WeakODRLinkage: 275 if (MAI->hasWeakDefDirective()) { 276 // .globl _foo 277 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 278 279 if (!canBeHidden(GV, *MAI)) 280 // .weak_definition _foo 281 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 282 else 283 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 284 } else if (MAI->hasLinkOnceDirective()) { 285 // .globl _foo 286 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 287 //NOTE: linkonce is handled by the section the symbol was assigned to. 288 } else { 289 // .weak _foo 290 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); 291 } 292 return; 293 case GlobalValue::AppendingLinkage: 294 // FIXME: appending linkage variables should go into a section of 295 // their name or something. For now, just emit them as external. 296 case GlobalValue::ExternalLinkage: 297 // If external or appending, declare as a global symbol. 298 // .globl _foo 299 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 300 return; 301 case GlobalValue::PrivateLinkage: 302 case GlobalValue::InternalLinkage: 303 return; 304 case GlobalValue::AvailableExternallyLinkage: 305 llvm_unreachable("Should never emit this"); 306 case GlobalValue::ExternalWeakLinkage: 307 llvm_unreachable("Don't know how to emit these"); 308 } 309 llvm_unreachable("Unknown linkage type!"); 310 } 311 312 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 313 const GlobalValue *GV) const { 314 TM.getNameWithPrefix(Name, GV, *Mang); 315 } 316 317 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 318 return TM.getSymbol(GV, *Mang); 319 } 320 321 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 322 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 323 if (GV->hasInitializer()) { 324 // Check to see if this is a special global used by LLVM, if so, emit it. 325 if (EmitSpecialLLVMGlobal(GV)) 326 return; 327 328 if (isVerbose()) { 329 GV->printAsOperand(OutStreamer.GetCommentOS(), 330 /*PrintType=*/false, GV->getParent()); 331 OutStreamer.GetCommentOS() << '\n'; 332 } 333 } 334 335 MCSymbol *GVSym = getSymbol(GV); 336 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); 337 338 if (!GV->hasInitializer()) // External globals require no extra code. 339 return; 340 341 if (MAI->hasDotTypeDotSizeDirective()) 342 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); 343 344 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 345 346 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 347 uint64_t Size = DL->getTypeAllocSize(GV->getType()->getElementType()); 348 349 // If the alignment is specified, we *must* obey it. Overaligning a global 350 // with a specified alignment is a prompt way to break globals emitted to 351 // sections and expected to be contiguous (e.g. ObjC metadata). 352 unsigned AlignLog = getGVAlignmentLog2(GV, *DL); 353 354 for (const HandlerInfo &HI : Handlers) { 355 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 356 HI.Handler->setSymbolSize(GVSym, Size); 357 } 358 359 // Handle common and BSS local symbols (.lcomm). 360 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 361 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 362 unsigned Align = 1 << AlignLog; 363 364 // Handle common symbols. 365 if (GVKind.isCommon()) { 366 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 367 Align = 0; 368 369 // .comm _foo, 42, 4 370 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 371 return; 372 } 373 374 // Handle local BSS symbols. 375 if (MAI->hasMachoZeroFillDirective()) { 376 const MCSection *TheSection = 377 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 378 // .zerofill __DATA, __bss, _foo, 400, 5 379 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); 380 return; 381 } 382 383 // Use .lcomm only if it supports user-specified alignment. 384 // Otherwise, while it would still be correct to use .lcomm in some 385 // cases (e.g. when Align == 1), the external assembler might enfore 386 // some -unknown- default alignment behavior, which could cause 387 // spurious differences between external and integrated assembler. 388 // Prefer to simply fall back to .local / .comm in this case. 389 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 390 // .lcomm _foo, 42 391 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); 392 return; 393 } 394 395 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 396 Align = 0; 397 398 // .local _foo 399 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); 400 // .comm _foo, 42, 4 401 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); 402 return; 403 } 404 405 const MCSection *TheSection = 406 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 407 408 // Handle the zerofill directive on darwin, which is a special form of BSS 409 // emission. 410 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 411 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 412 413 // .globl _foo 414 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); 415 // .zerofill __DATA, __common, _foo, 400, 5 416 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 417 return; 418 } 419 420 // Handle thread local data for mach-o which requires us to output an 421 // additional structure of data and mangle the original symbol so that we 422 // can reference it later. 423 // 424 // TODO: This should become an "emit thread local global" method on TLOF. 425 // All of this macho specific stuff should be sunk down into TLOFMachO and 426 // stuff like "TLSExtraDataSection" should no longer be part of the parent 427 // TLOF class. This will also make it more obvious that stuff like 428 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 429 // specific code. 430 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 431 // Emit the .tbss symbol 432 MCSymbol *MangSym = 433 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 434 435 if (GVKind.isThreadBSS()) { 436 TheSection = getObjFileLowering().getTLSBSSSection(); 437 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 438 } else if (GVKind.isThreadData()) { 439 OutStreamer.SwitchSection(TheSection); 440 441 EmitAlignment(AlignLog, GV); 442 OutStreamer.EmitLabel(MangSym); 443 444 EmitGlobalConstant(GV->getInitializer()); 445 } 446 447 OutStreamer.AddBlankLine(); 448 449 // Emit the variable struct for the runtime. 450 const MCSection *TLVSect 451 = getObjFileLowering().getTLSExtraDataSection(); 452 453 OutStreamer.SwitchSection(TLVSect); 454 // Emit the linkage here. 455 EmitLinkage(GV, GVSym); 456 OutStreamer.EmitLabel(GVSym); 457 458 // Three pointers in size: 459 // - __tlv_bootstrap - used to make sure support exists 460 // - spare pointer, used when mapped by the runtime 461 // - pointer to mangled symbol above with initializer 462 unsigned PtrSize = DL->getPointerTypeSize(GV->getType()); 463 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 464 PtrSize); 465 OutStreamer.EmitIntValue(0, PtrSize); 466 OutStreamer.EmitSymbolValue(MangSym, PtrSize); 467 468 OutStreamer.AddBlankLine(); 469 return; 470 } 471 472 OutStreamer.SwitchSection(TheSection); 473 474 EmitLinkage(GV, GVSym); 475 EmitAlignment(AlignLog, GV); 476 477 OutStreamer.EmitLabel(GVSym); 478 479 EmitGlobalConstant(GV->getInitializer()); 480 481 if (MAI->hasDotTypeDotSizeDirective()) 482 // .size foo, 42 483 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); 484 485 OutStreamer.AddBlankLine(); 486 } 487 488 /// EmitFunctionHeader - This method emits the header for the current 489 /// function. 490 void AsmPrinter::EmitFunctionHeader() { 491 // Print out constants referenced by the function 492 EmitConstantPool(); 493 494 // Print the 'header' of function. 495 const Function *F = MF->getFunction(); 496 497 OutStreamer.SwitchSection( 498 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 499 EmitVisibility(CurrentFnSym, F->getVisibility()); 500 501 EmitLinkage(F, CurrentFnSym); 502 EmitAlignment(MF->getAlignment(), F); 503 504 if (MAI->hasDotTypeDotSizeDirective()) 505 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 506 507 if (isVerbose()) { 508 F->printAsOperand(OutStreamer.GetCommentOS(), 509 /*PrintType=*/false, F->getParent()); 510 OutStreamer.GetCommentOS() << '\n'; 511 } 512 513 // Emit the CurrentFnSym. This is a virtual function to allow targets to 514 // do their wild and crazy things as required. 515 EmitFunctionEntryLabel(); 516 517 // If the function had address-taken blocks that got deleted, then we have 518 // references to the dangling symbols. Emit them at the start of the function 519 // so that we don't get references to undefined symbols. 520 std::vector<MCSymbol*> DeadBlockSyms; 521 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 522 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 523 OutStreamer.AddComment("Address taken block that was later removed"); 524 OutStreamer.EmitLabel(DeadBlockSyms[i]); 525 } 526 527 // Emit pre-function debug and/or EH information. 528 for (const HandlerInfo &HI : Handlers) { 529 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 530 HI.Handler->beginFunction(MF); 531 } 532 533 // Emit the prefix data. 534 if (F->hasPrefixData()) 535 EmitGlobalConstant(F->getPrefixData()); 536 } 537 538 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 539 /// function. This can be overridden by targets as required to do custom stuff. 540 void AsmPrinter::EmitFunctionEntryLabel() { 541 // The function label could have already been emitted if two symbols end up 542 // conflicting due to asm renaming. Detect this and emit an error. 543 if (CurrentFnSym->isUndefined()) 544 return OutStreamer.EmitLabel(CurrentFnSym); 545 546 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 547 "' label emitted multiple times to assembly file"); 548 } 549 550 /// emitComments - Pretty-print comments for instructions. 551 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 552 const MachineFunction *MF = MI.getParent()->getParent(); 553 const TargetMachine &TM = MF->getTarget(); 554 555 // Check for spills and reloads 556 int FI; 557 558 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 559 560 // We assume a single instruction only has a spill or reload, not 561 // both. 562 const MachineMemOperand *MMO; 563 if (TM.getSubtargetImpl()->getInstrInfo()->isLoadFromStackSlotPostFE(&MI, 564 FI)) { 565 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 566 MMO = *MI.memoperands_begin(); 567 CommentOS << MMO->getSize() << "-byte Reload\n"; 568 } 569 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasLoadFromStackSlot( 570 &MI, MMO, FI)) { 571 if (FrameInfo->isSpillSlotObjectIndex(FI)) 572 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 573 } else if (TM.getSubtargetImpl()->getInstrInfo()->isStoreToStackSlotPostFE( 574 &MI, FI)) { 575 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 576 MMO = *MI.memoperands_begin(); 577 CommentOS << MMO->getSize() << "-byte Spill\n"; 578 } 579 } else if (TM.getSubtargetImpl()->getInstrInfo()->hasStoreToStackSlot( 580 &MI, MMO, FI)) { 581 if (FrameInfo->isSpillSlotObjectIndex(FI)) 582 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 583 } 584 585 // Check for spill-induced copies 586 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 587 CommentOS << " Reload Reuse\n"; 588 } 589 590 /// emitImplicitDef - This method emits the specified machine instruction 591 /// that is an implicit def. 592 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 593 unsigned RegNo = MI->getOperand(0).getReg(); 594 OutStreamer.AddComment( 595 Twine("implicit-def: ") + 596 TM.getSubtargetImpl()->getRegisterInfo()->getName(RegNo)); 597 OutStreamer.AddBlankLine(); 598 } 599 600 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 601 std::string Str = "kill:"; 602 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 603 const MachineOperand &Op = MI->getOperand(i); 604 assert(Op.isReg() && "KILL instruction must have only register operands"); 605 Str += ' '; 606 Str += AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Op.getReg()); 607 Str += (Op.isDef() ? "<def>" : "<kill>"); 608 } 609 AP.OutStreamer.AddComment(Str); 610 AP.OutStreamer.AddBlankLine(); 611 } 612 613 /// emitDebugValueComment - This method handles the target-independent form 614 /// of DBG_VALUE, returning true if it was able to do so. A false return 615 /// means the target will need to handle MI in EmitInstruction. 616 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 617 // This code handles only the 4-operand target-independent form. 618 if (MI->getNumOperands() != 4) 619 return false; 620 621 SmallString<128> Str; 622 raw_svector_ostream OS(Str); 623 OS << "DEBUG_VALUE: "; 624 625 DIVariable V = MI->getDebugVariable(); 626 if (V.getContext().isSubprogram()) { 627 StringRef Name = DISubprogram(V.getContext()).getDisplayName(); 628 if (!Name.empty()) 629 OS << Name << ":"; 630 } 631 OS << V.getName(); 632 633 DIExpression Expr = MI->getDebugExpression(); 634 if (Expr.isVariablePiece()) 635 OS << " [piece offset=" << Expr.getPieceOffset() 636 << " size=" << Expr.getPieceSize() << "]"; 637 OS << " <- "; 638 639 // The second operand is only an offset if it's an immediate. 640 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 641 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 642 643 // Register or immediate value. Register 0 means undef. 644 if (MI->getOperand(0).isFPImm()) { 645 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 646 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 647 OS << (double)APF.convertToFloat(); 648 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 649 OS << APF.convertToDouble(); 650 } else { 651 // There is no good way to print long double. Convert a copy to 652 // double. Ah well, it's only a comment. 653 bool ignored; 654 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 655 &ignored); 656 OS << "(long double) " << APF.convertToDouble(); 657 } 658 } else if (MI->getOperand(0).isImm()) { 659 OS << MI->getOperand(0).getImm(); 660 } else if (MI->getOperand(0).isCImm()) { 661 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 662 } else { 663 unsigned Reg; 664 if (MI->getOperand(0).isReg()) { 665 Reg = MI->getOperand(0).getReg(); 666 } else { 667 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 668 const TargetFrameLowering *TFI = 669 AP.TM.getSubtargetImpl()->getFrameLowering(); 670 Offset += TFI->getFrameIndexReference(*AP.MF, 671 MI->getOperand(0).getIndex(), Reg); 672 Deref = true; 673 } 674 if (Reg == 0) { 675 // Suppress offset, it is not meaningful here. 676 OS << "undef"; 677 // NOTE: Want this comment at start of line, don't emit with AddComment. 678 AP.OutStreamer.emitRawComment(OS.str()); 679 return true; 680 } 681 if (Deref) 682 OS << '['; 683 OS << AP.TM.getSubtargetImpl()->getRegisterInfo()->getName(Reg); 684 } 685 686 if (Deref) 687 OS << '+' << Offset << ']'; 688 689 // NOTE: Want this comment at start of line, don't emit with AddComment. 690 AP.OutStreamer.emitRawComment(OS.str()); 691 return true; 692 } 693 694 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 695 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 696 MF->getFunction()->needsUnwindTableEntry()) 697 return CFI_M_EH; 698 699 if (MMI->hasDebugInfo()) 700 return CFI_M_Debug; 701 702 return CFI_M_None; 703 } 704 705 bool AsmPrinter::needsSEHMoves() { 706 return MAI->getExceptionHandlingType() == ExceptionHandling::WinEH && 707 MF->getFunction()->needsUnwindTableEntry(); 708 } 709 710 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 711 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 712 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 713 ExceptionHandlingType != ExceptionHandling::ARM) 714 return; 715 716 if (needsCFIMoves() == CFI_M_None) 717 return; 718 719 const MachineModuleInfo &MMI = MF->getMMI(); 720 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 721 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 722 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 723 emitCFIInstruction(CFI); 724 } 725 726 /// EmitFunctionBody - This method emits the body and trailer for a 727 /// function. 728 void AsmPrinter::EmitFunctionBody() { 729 // Emit target-specific gunk before the function body. 730 EmitFunctionBodyStart(); 731 732 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 733 734 // Print out code for the function. 735 bool HasAnyRealCode = false; 736 for (auto &MBB : *MF) { 737 // Print a label for the basic block. 738 EmitBasicBlockStart(MBB); 739 for (auto &MI : MBB) { 740 741 // Print the assembly for the instruction. 742 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 743 !MI.isDebugValue()) { 744 HasAnyRealCode = true; 745 ++EmittedInsts; 746 } 747 748 if (ShouldPrintDebugScopes) { 749 for (const HandlerInfo &HI : Handlers) { 750 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 751 TimePassesIsEnabled); 752 HI.Handler->beginInstruction(&MI); 753 } 754 } 755 756 if (isVerbose()) 757 emitComments(MI, OutStreamer.GetCommentOS()); 758 759 switch (MI.getOpcode()) { 760 case TargetOpcode::CFI_INSTRUCTION: 761 emitCFIInstruction(MI); 762 break; 763 764 case TargetOpcode::EH_LABEL: 765 case TargetOpcode::GC_LABEL: 766 OutStreamer.EmitLabel(MI.getOperand(0).getMCSymbol()); 767 break; 768 case TargetOpcode::INLINEASM: 769 EmitInlineAsm(&MI); 770 break; 771 case TargetOpcode::DBG_VALUE: 772 if (isVerbose()) { 773 if (!emitDebugValueComment(&MI, *this)) 774 EmitInstruction(&MI); 775 } 776 break; 777 case TargetOpcode::IMPLICIT_DEF: 778 if (isVerbose()) emitImplicitDef(&MI); 779 break; 780 case TargetOpcode::KILL: 781 if (isVerbose()) emitKill(&MI, *this); 782 break; 783 default: 784 EmitInstruction(&MI); 785 break; 786 } 787 788 if (ShouldPrintDebugScopes) { 789 for (const HandlerInfo &HI : Handlers) { 790 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 791 TimePassesIsEnabled); 792 HI.Handler->endInstruction(); 793 } 794 } 795 } 796 797 EmitBasicBlockEnd(MBB); 798 } 799 800 // If the function is empty and the object file uses .subsections_via_symbols, 801 // then we need to emit *something* to the function body to prevent the 802 // labels from collapsing together. Just emit a noop. 803 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 804 MCInst Noop; 805 TM.getSubtargetImpl()->getInstrInfo()->getNoopForMachoTarget(Noop); 806 OutStreamer.AddComment("avoids zero-length function"); 807 808 // Targets can opt-out of emitting the noop here by leaving the opcode 809 // unspecified. 810 if (Noop.getOpcode()) 811 OutStreamer.EmitInstruction(Noop, getSubtargetInfo()); 812 } 813 814 const Function *F = MF->getFunction(); 815 for (const auto &BB : *F) { 816 if (!BB.hasAddressTaken()) 817 continue; 818 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 819 if (Sym->isDefined()) 820 continue; 821 OutStreamer.AddComment("Address of block that was removed by CodeGen"); 822 OutStreamer.EmitLabel(Sym); 823 } 824 825 // Emit target-specific gunk after the function body. 826 EmitFunctionBodyEnd(); 827 828 // If the target wants a .size directive for the size of the function, emit 829 // it. 830 if (MAI->hasDotTypeDotSizeDirective()) { 831 // Create a symbol for the end of function, so we can get the size as 832 // difference between the function label and the temp label. 833 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); 834 OutStreamer.EmitLabel(FnEndLabel); 835 836 const MCExpr *SizeExp = 837 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), 838 MCSymbolRefExpr::Create(CurrentFnSymForSize, 839 OutContext), 840 OutContext); 841 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); 842 } 843 844 // Emit post-function debug and/or EH information. 845 for (const HandlerInfo &HI : Handlers) { 846 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 847 HI.Handler->endFunction(MF); 848 } 849 MMI->EndFunction(); 850 851 // Print out jump tables referenced by the function. 852 EmitJumpTableInfo(); 853 854 OutStreamer.AddBlankLine(); 855 } 856 857 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP); 858 859 bool AsmPrinter::doFinalization(Module &M) { 860 // Emit global variables. 861 for (const auto &G : M.globals()) 862 EmitGlobalVariable(&G); 863 864 // Emit visibility info for declarations 865 for (const Function &F : M) { 866 if (!F.isDeclaration()) 867 continue; 868 GlobalValue::VisibilityTypes V = F.getVisibility(); 869 if (V == GlobalValue::DefaultVisibility) 870 continue; 871 872 MCSymbol *Name = getSymbol(&F); 873 EmitVisibility(Name, V, false); 874 } 875 876 // Get information about jump-instruction tables to print. 877 JumpInstrTableInfo *JITI = getAnalysisIfAvailable<JumpInstrTableInfo>(); 878 879 if (JITI && !JITI->getTables().empty()) { 880 unsigned Arch = Triple(getTargetTriple()).getArch(); 881 bool IsThumb = (Arch == Triple::thumb || Arch == Triple::thumbeb); 882 MCInst TrapInst; 883 TM.getSubtargetImpl()->getInstrInfo()->getTrap(TrapInst); 884 for (const auto &KV : JITI->getTables()) { 885 uint64_t Count = 0; 886 for (const auto &FunPair : KV.second) { 887 // Emit the function labels to make this be a function entry point. 888 MCSymbol *FunSym = 889 OutContext.GetOrCreateSymbol(FunPair.second->getName()); 890 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_Global); 891 // FIXME: JumpTableInstrInfo should store information about the required 892 // alignment of table entries and the size of the padding instruction. 893 EmitAlignment(3); 894 if (IsThumb) 895 OutStreamer.EmitThumbFunc(FunSym); 896 if (MAI->hasDotTypeDotSizeDirective()) 897 OutStreamer.EmitSymbolAttribute(FunSym, MCSA_ELF_TypeFunction); 898 OutStreamer.EmitLabel(FunSym); 899 900 // Emit the jump instruction to transfer control to the original 901 // function. 902 MCInst JumpToFun; 903 MCSymbol *TargetSymbol = 904 OutContext.GetOrCreateSymbol(FunPair.first->getName()); 905 const MCSymbolRefExpr *TargetSymRef = 906 MCSymbolRefExpr::Create(TargetSymbol, MCSymbolRefExpr::VK_PLT, 907 OutContext); 908 TM.getSubtargetImpl()->getInstrInfo()->getUnconditionalBranch( 909 JumpToFun, TargetSymRef); 910 OutStreamer.EmitInstruction(JumpToFun, getSubtargetInfo()); 911 ++Count; 912 } 913 914 // Emit enough padding instructions to fill up to the next power of two. 915 // This assumes that the trap instruction takes 8 bytes or fewer. 916 uint64_t Remaining = NextPowerOf2(Count) - Count; 917 for (uint64_t C = 0; C < Remaining; ++C) { 918 EmitAlignment(3); 919 OutStreamer.EmitInstruction(TrapInst, getSubtargetInfo()); 920 } 921 922 } 923 } 924 925 // Emit module flags. 926 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 927 M.getModuleFlagsMetadata(ModuleFlags); 928 if (!ModuleFlags.empty()) 929 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, *Mang, TM); 930 931 // Make sure we wrote out everything we need. 932 OutStreamer.Flush(); 933 934 // Finalize debug and EH information. 935 for (const HandlerInfo &HI : Handlers) { 936 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 937 TimePassesIsEnabled); 938 HI.Handler->endModule(); 939 delete HI.Handler; 940 } 941 Handlers.clear(); 942 DD = nullptr; 943 944 // If the target wants to know about weak references, print them all. 945 if (MAI->getWeakRefDirective()) { 946 // FIXME: This is not lazy, it would be nice to only print weak references 947 // to stuff that is actually used. Note that doing so would require targets 948 // to notice uses in operands (due to constant exprs etc). This should 949 // happen with the MC stuff eventually. 950 951 // Print out module-level global variables here. 952 for (const auto &G : M.globals()) { 953 if (!G.hasExternalWeakLinkage()) 954 continue; 955 OutStreamer.EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 956 } 957 958 for (const auto &F : M) { 959 if (!F.hasExternalWeakLinkage()) 960 continue; 961 OutStreamer.EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 962 } 963 } 964 965 if (MAI->hasSetDirective()) { 966 OutStreamer.AddBlankLine(); 967 for (const auto &Alias : M.aliases()) { 968 MCSymbol *Name = getSymbol(&Alias); 969 970 if (Alias.hasExternalLinkage() || !MAI->getWeakRefDirective()) 971 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); 972 else if (Alias.hasWeakLinkage() || Alias.hasLinkOnceLinkage()) 973 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); 974 else 975 assert(Alias.hasLocalLinkage() && "Invalid alias linkage"); 976 977 EmitVisibility(Name, Alias.getVisibility()); 978 979 // Emit the directives as assignments aka .set: 980 OutStreamer.EmitAssignment(Name, 981 lowerConstant(Alias.getAliasee(), *this)); 982 } 983 } 984 985 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 986 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 987 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 988 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 989 MP->finishAssembly(*this); 990 991 // Emit llvm.ident metadata in an '.ident' directive. 992 EmitModuleIdents(M); 993 994 // If we don't have any trampolines, then we don't require stack memory 995 // to be executable. Some targets have a directive to declare this. 996 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 997 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 998 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 999 OutStreamer.SwitchSection(S); 1000 1001 // Allow the target to emit any magic that it wants at the end of the file, 1002 // after everything else has gone out. 1003 EmitEndOfAsmFile(M); 1004 1005 delete Mang; Mang = nullptr; 1006 MMI = nullptr; 1007 1008 OutStreamer.Finish(); 1009 OutStreamer.reset(); 1010 1011 return false; 1012 } 1013 1014 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1015 this->MF = &MF; 1016 // Get the function symbol. 1017 CurrentFnSym = getSymbol(MF.getFunction()); 1018 CurrentFnSymForSize = CurrentFnSym; 1019 1020 if (isVerbose()) 1021 LI = &getAnalysis<MachineLoopInfo>(); 1022 } 1023 1024 namespace { 1025 // SectionCPs - Keep track the alignment, constpool entries per Section. 1026 struct SectionCPs { 1027 const MCSection *S; 1028 unsigned Alignment; 1029 SmallVector<unsigned, 4> CPEs; 1030 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} 1031 }; 1032 } 1033 1034 /// EmitConstantPool - Print to the current output stream assembly 1035 /// representations of the constants in the constant pool MCP. This is 1036 /// used to print out constants which have been "spilled to memory" by 1037 /// the code generator. 1038 /// 1039 void AsmPrinter::EmitConstantPool() { 1040 const MachineConstantPool *MCP = MF->getConstantPool(); 1041 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1042 if (CP.empty()) return; 1043 1044 // Calculate sections for constant pool entries. We collect entries to go into 1045 // the same section together to reduce amount of section switch statements. 1046 SmallVector<SectionCPs, 4> CPSections; 1047 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1048 const MachineConstantPoolEntry &CPE = CP[i]; 1049 unsigned Align = CPE.getAlignment(); 1050 1051 SectionKind Kind = 1052 CPE.getSectionKind(TM.getSubtargetImpl()->getDataLayout()); 1053 1054 const Constant *C = nullptr; 1055 if (!CPE.isMachineConstantPoolEntry()) 1056 C = CPE.Val.ConstVal; 1057 1058 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind, C); 1059 1060 // The number of sections are small, just do a linear search from the 1061 // last section to the first. 1062 bool Found = false; 1063 unsigned SecIdx = CPSections.size(); 1064 while (SecIdx != 0) { 1065 if (CPSections[--SecIdx].S == S) { 1066 Found = true; 1067 break; 1068 } 1069 } 1070 if (!Found) { 1071 SecIdx = CPSections.size(); 1072 CPSections.push_back(SectionCPs(S, Align)); 1073 } 1074 1075 if (Align > CPSections[SecIdx].Alignment) 1076 CPSections[SecIdx].Alignment = Align; 1077 CPSections[SecIdx].CPEs.push_back(i); 1078 } 1079 1080 // Now print stuff into the calculated sections. 1081 const MCSection *CurSection = nullptr; 1082 unsigned Offset = 0; 1083 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1084 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1085 unsigned CPI = CPSections[i].CPEs[j]; 1086 MCSymbol *Sym = GetCPISymbol(CPI); 1087 if (!Sym->isUndefined()) 1088 continue; 1089 1090 if (CurSection != CPSections[i].S) { 1091 OutStreamer.SwitchSection(CPSections[i].S); 1092 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1093 CurSection = CPSections[i].S; 1094 Offset = 0; 1095 } 1096 1097 MachineConstantPoolEntry CPE = CP[CPI]; 1098 1099 // Emit inter-object padding for alignment. 1100 unsigned AlignMask = CPE.getAlignment() - 1; 1101 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1102 OutStreamer.EmitZeros(NewOffset - Offset); 1103 1104 Type *Ty = CPE.getType(); 1105 Offset = NewOffset + 1106 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(Ty); 1107 1108 OutStreamer.EmitLabel(Sym); 1109 if (CPE.isMachineConstantPoolEntry()) 1110 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1111 else 1112 EmitGlobalConstant(CPE.Val.ConstVal); 1113 } 1114 } 1115 } 1116 1117 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1118 /// by the current function to the current output stream. 1119 /// 1120 void AsmPrinter::EmitJumpTableInfo() { 1121 const DataLayout *DL = MF->getSubtarget().getDataLayout(); 1122 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1123 if (!MJTI) return; 1124 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1125 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1126 if (JT.empty()) return; 1127 1128 // Pick the directive to use to print the jump table entries, and switch to 1129 // the appropriate section. 1130 const Function *F = MF->getFunction(); 1131 bool JTInDiffSection = false; 1132 if (// In PIC mode, we need to emit the jump table to the same section as the 1133 // function body itself, otherwise the label differences won't make sense. 1134 // FIXME: Need a better predicate for this: what about custom entries? 1135 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || 1136 // We should also do if the section name is NULL or function is declared 1137 // in discardable section 1138 // FIXME: this isn't the right predicate, should be based on the MCSection 1139 // for the function. 1140 F->isWeakForLinker()) { 1141 OutStreamer.SwitchSection( 1142 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 1143 } else { 1144 // Otherwise, drop it in the readonly section. 1145 const MCSection *ReadOnlySection = 1146 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly(), 1147 /*C=*/nullptr); 1148 OutStreamer.SwitchSection(ReadOnlySection); 1149 JTInDiffSection = true; 1150 } 1151 1152 EmitAlignment(Log2_32( 1153 MJTI->getEntryAlignment(*TM.getSubtargetImpl()->getDataLayout()))); 1154 1155 // Jump tables in code sections are marked with a data_region directive 1156 // where that's supported. 1157 if (!JTInDiffSection) 1158 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); 1159 1160 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1161 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1162 1163 // If this jump table was deleted, ignore it. 1164 if (JTBBs.empty()) continue; 1165 1166 // For the EK_LabelDifference32 entry, if the target supports .set, emit a 1167 // .set directive for each unique entry. This reduces the number of 1168 // relocations the assembler will generate for the jump table. 1169 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1170 MAI->hasSetDirective()) { 1171 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1172 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1173 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1174 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1175 const MachineBasicBlock *MBB = JTBBs[ii]; 1176 if (!EmittedSets.insert(MBB)) continue; 1177 1178 // .set LJTSet, LBB32-base 1179 const MCExpr *LHS = 1180 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1181 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1182 MCBinaryExpr::CreateSub(LHS, Base, OutContext)); 1183 } 1184 } 1185 1186 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1187 // before each jump table. The first label is never referenced, but tells 1188 // the assembler and linker the extents of the jump table object. The 1189 // second label is actually referenced by the code. 1190 if (JTInDiffSection && DL->hasLinkerPrivateGlobalPrefix()) 1191 // FIXME: This doesn't have to have any specific name, just any randomly 1192 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1193 OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); 1194 1195 OutStreamer.EmitLabel(GetJTISymbol(JTI)); 1196 1197 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1198 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1199 } 1200 if (!JTInDiffSection) 1201 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); 1202 } 1203 1204 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1205 /// current stream. 1206 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1207 const MachineBasicBlock *MBB, 1208 unsigned UID) const { 1209 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1210 const MCExpr *Value = nullptr; 1211 switch (MJTI->getEntryKind()) { 1212 case MachineJumpTableInfo::EK_Inline: 1213 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1214 case MachineJumpTableInfo::EK_Custom32: 1215 Value = 1216 TM.getSubtargetImpl()->getTargetLowering()->LowerCustomJumpTableEntry( 1217 MJTI, MBB, UID, OutContext); 1218 break; 1219 case MachineJumpTableInfo::EK_BlockAddress: 1220 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1221 // .word LBB123 1222 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1223 break; 1224 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1225 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1226 // with a relocation as gp-relative, e.g.: 1227 // .gprel32 LBB123 1228 MCSymbol *MBBSym = MBB->getSymbol(); 1229 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1230 return; 1231 } 1232 1233 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1234 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1235 // with a relocation as gp-relative, e.g.: 1236 // .gpdword LBB123 1237 MCSymbol *MBBSym = MBB->getSymbol(); 1238 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); 1239 return; 1240 } 1241 1242 case MachineJumpTableInfo::EK_LabelDifference32: { 1243 // EK_LabelDifference32 - Each entry is the address of the block minus 1244 // the address of the jump table. This is used for PIC jump tables where 1245 // gprel32 is not supported. e.g.: 1246 // .word LBB123 - LJTI1_2 1247 // If the .set directive is supported, this is emitted as: 1248 // .set L4_5_set_123, LBB123 - LJTI1_2 1249 // .word L4_5_set_123 1250 1251 // If we have emitted set directives for the jump table entries, print 1252 // them rather than the entries themselves. If we're emitting PIC, then 1253 // emit the table entries as differences between two text section labels. 1254 if (MAI->hasSetDirective()) { 1255 // If we used .set, reference the .set's symbol. 1256 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), 1257 OutContext); 1258 break; 1259 } 1260 // Otherwise, use the difference as the jump table entry. 1261 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); 1262 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); 1263 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); 1264 break; 1265 } 1266 } 1267 1268 assert(Value && "Unknown entry kind!"); 1269 1270 unsigned EntrySize = 1271 MJTI->getEntrySize(*TM.getSubtargetImpl()->getDataLayout()); 1272 OutStreamer.EmitValue(Value, EntrySize); 1273 } 1274 1275 1276 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1277 /// special global used by LLVM. If so, emit it and return true, otherwise 1278 /// do nothing and return false. 1279 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1280 if (GV->getName() == "llvm.used") { 1281 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1282 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1283 return true; 1284 } 1285 1286 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1287 if (StringRef(GV->getSection()) == "llvm.metadata" || 1288 GV->hasAvailableExternallyLinkage()) 1289 return true; 1290 1291 if (!GV->hasAppendingLinkage()) return false; 1292 1293 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1294 1295 if (GV->getName() == "llvm.global_ctors") { 1296 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); 1297 1298 if (TM.getRelocationModel() == Reloc::Static && 1299 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1300 StringRef Sym(".constructors_used"); 1301 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1302 MCSA_Reference); 1303 } 1304 return true; 1305 } 1306 1307 if (GV->getName() == "llvm.global_dtors") { 1308 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); 1309 1310 if (TM.getRelocationModel() == Reloc::Static && 1311 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1312 StringRef Sym(".destructors_used"); 1313 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), 1314 MCSA_Reference); 1315 } 1316 return true; 1317 } 1318 1319 return false; 1320 } 1321 1322 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1323 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1324 /// is true, as being used with this directive. 1325 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1326 // Should be an array of 'i8*'. 1327 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1328 const GlobalValue *GV = 1329 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1330 if (GV) 1331 OutStreamer.EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1332 } 1333 } 1334 1335 namespace { 1336 struct Structor { 1337 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1338 int Priority; 1339 llvm::Constant *Func; 1340 llvm::GlobalValue *ComdatKey; 1341 }; 1342 } // end namespace 1343 1344 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1345 /// priority. 1346 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { 1347 // Should be an array of '{ int, void ()* }' structs. The first value is the 1348 // init priority. 1349 if (!isa<ConstantArray>(List)) return; 1350 1351 // Sanity check the structors list. 1352 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1353 if (!InitList) return; // Not an array! 1354 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1355 // FIXME: Only allow the 3-field form in LLVM 4.0. 1356 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1357 return; // Not an array of two or three elements! 1358 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1359 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1360 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1361 return; // Not (int, ptr, ptr). 1362 1363 // Gather the structors in a form that's convenient for sorting by priority. 1364 SmallVector<Structor, 8> Structors; 1365 for (Value *O : InitList->operands()) { 1366 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1367 if (!CS) continue; // Malformed. 1368 if (CS->getOperand(1)->isNullValue()) 1369 break; // Found a null terminator, skip the rest. 1370 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1371 if (!Priority) continue; // Malformed. 1372 Structors.push_back(Structor()); 1373 Structor &S = Structors.back(); 1374 S.Priority = Priority->getLimitedValue(65535); 1375 S.Func = CS->getOperand(1); 1376 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1377 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1378 } 1379 1380 // Emit the function pointers in the target-specific order 1381 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 1382 unsigned Align = Log2_32(DL->getPointerPrefAlignment()); 1383 std::stable_sort(Structors.begin(), Structors.end(), 1384 [](const Structor &L, 1385 const Structor &R) { return L.Priority < R.Priority; }); 1386 for (Structor &S : Structors) { 1387 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1388 const MCSymbol *KeySym = nullptr; 1389 if (GlobalValue *GV = S.ComdatKey) { 1390 if (GV->hasAvailableExternallyLinkage()) 1391 // If the associated variable is available_externally, some other TU 1392 // will provide its dynamic initializer. 1393 continue; 1394 1395 KeySym = getSymbol(GV); 1396 } 1397 const MCSection *OutputSection = 1398 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1399 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1400 OutStreamer.SwitchSection(OutputSection); 1401 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) 1402 EmitAlignment(Align); 1403 EmitXXStructor(S.Func); 1404 } 1405 } 1406 1407 void AsmPrinter::EmitModuleIdents(Module &M) { 1408 if (!MAI->hasIdentDirective()) 1409 return; 1410 1411 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1412 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1413 const MDNode *N = NMD->getOperand(i); 1414 assert(N->getNumOperands() == 1 && 1415 "llvm.ident metadata entry can have only one operand"); 1416 const MDString *S = cast<MDString>(N->getOperand(0)); 1417 OutStreamer.EmitIdent(S->getString()); 1418 } 1419 } 1420 } 1421 1422 //===--------------------------------------------------------------------===// 1423 // Emission and print routines 1424 // 1425 1426 /// EmitInt8 - Emit a byte directive and value. 1427 /// 1428 void AsmPrinter::EmitInt8(int Value) const { 1429 OutStreamer.EmitIntValue(Value, 1); 1430 } 1431 1432 /// EmitInt16 - Emit a short directive and value. 1433 /// 1434 void AsmPrinter::EmitInt16(int Value) const { 1435 OutStreamer.EmitIntValue(Value, 2); 1436 } 1437 1438 /// EmitInt32 - Emit a long directive and value. 1439 /// 1440 void AsmPrinter::EmitInt32(int Value) const { 1441 OutStreamer.EmitIntValue(Value, 4); 1442 } 1443 1444 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size 1445 /// in bytes of the directive is specified by Size and Hi/Lo specify the 1446 /// labels. This implicitly uses .set if it is available. 1447 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1448 unsigned Size) const { 1449 // Get the Hi-Lo expression. 1450 const MCExpr *Diff = 1451 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), 1452 MCSymbolRefExpr::Create(Lo, OutContext), 1453 OutContext); 1454 1455 if (!MAI->hasSetDirective()) { 1456 OutStreamer.EmitValue(Diff, Size); 1457 return; 1458 } 1459 1460 // Otherwise, emit with .set (aka assignment). 1461 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1462 OutStreamer.EmitAssignment(SetLabel, Diff); 1463 OutStreamer.EmitSymbolValue(SetLabel, Size); 1464 } 1465 1466 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" 1467 /// where the size in bytes of the directive is specified by Size and Hi/Lo 1468 /// specify the labels. This implicitly uses .set if it is available. 1469 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, 1470 const MCSymbol *Lo, 1471 unsigned Size) const { 1472 1473 // Emit Hi+Offset - Lo 1474 // Get the Hi+Offset expression. 1475 const MCExpr *Plus = 1476 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), 1477 MCConstantExpr::Create(Offset, OutContext), 1478 OutContext); 1479 1480 // Get the Hi+Offset-Lo expression. 1481 const MCExpr *Diff = 1482 MCBinaryExpr::CreateSub(Plus, 1483 MCSymbolRefExpr::Create(Lo, OutContext), 1484 OutContext); 1485 1486 if (!MAI->hasSetDirective()) 1487 OutStreamer.EmitValue(Diff, Size); 1488 else { 1489 // Otherwise, emit with .set (aka assignment). 1490 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); 1491 OutStreamer.EmitAssignment(SetLabel, Diff); 1492 OutStreamer.EmitSymbolValue(SetLabel, Size); 1493 } 1494 } 1495 1496 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1497 /// where the size in bytes of the directive is specified by Size and Label 1498 /// specifies the label. This implicitly uses .set if it is available. 1499 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1500 unsigned Size, 1501 bool IsSectionRelative) const { 1502 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1503 OutStreamer.EmitCOFFSecRel32(Label); 1504 return; 1505 } 1506 1507 // Emit Label+Offset (or just Label if Offset is zero) 1508 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); 1509 if (Offset) 1510 Expr = MCBinaryExpr::CreateAdd( 1511 Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); 1512 1513 OutStreamer.EmitValue(Expr, Size); 1514 } 1515 1516 //===----------------------------------------------------------------------===// 1517 1518 // EmitAlignment - Emit an alignment directive to the specified power of 1519 // two boundary. For example, if you pass in 3 here, you will get an 8 1520 // byte alignment. If a global value is specified, and if that global has 1521 // an explicit alignment requested, it will override the alignment request 1522 // if required for correctness. 1523 // 1524 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1525 if (GV) 1526 NumBits = getGVAlignmentLog2(GV, *TM.getSubtargetImpl()->getDataLayout(), 1527 NumBits); 1528 1529 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1530 1531 if (getCurrentSection()->getKind().isText()) 1532 OutStreamer.EmitCodeAlignment(1 << NumBits); 1533 else 1534 OutStreamer.EmitValueToAlignment(1 << NumBits); 1535 } 1536 1537 //===----------------------------------------------------------------------===// 1538 // Constant emission. 1539 //===----------------------------------------------------------------------===// 1540 1541 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. 1542 /// 1543 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { 1544 MCContext &Ctx = AP.OutContext; 1545 1546 if (CV->isNullValue() || isa<UndefValue>(CV)) 1547 return MCConstantExpr::Create(0, Ctx); 1548 1549 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1550 return MCConstantExpr::Create(CI->getZExtValue(), Ctx); 1551 1552 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1553 return MCSymbolRefExpr::Create(AP.getSymbol(GV), Ctx); 1554 1555 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1556 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); 1557 1558 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1559 if (!CE) { 1560 llvm_unreachable("Unknown constant value to lower!"); 1561 } 1562 1563 if (const MCExpr *RelocExpr = 1564 AP.getObjFileLowering().getExecutableRelativeSymbol(CE, *AP.Mang, 1565 AP.TM)) 1566 return RelocExpr; 1567 1568 switch (CE->getOpcode()) { 1569 default: 1570 // If the code isn't optimized, there may be outstanding folding 1571 // opportunities. Attempt to fold the expression using DataLayout as a 1572 // last resort before giving up. 1573 if (Constant *C = ConstantFoldConstantExpression( 1574 CE, AP.TM.getSubtargetImpl()->getDataLayout())) 1575 if (C != CE) 1576 return lowerConstant(C, AP); 1577 1578 // Otherwise report the problem to the user. 1579 { 1580 std::string S; 1581 raw_string_ostream OS(S); 1582 OS << "Unsupported expression in static initializer: "; 1583 CE->printAsOperand(OS, /*PrintType=*/false, 1584 !AP.MF ? nullptr : AP.MF->getFunction()->getParent()); 1585 report_fatal_error(OS.str()); 1586 } 1587 case Instruction::GetElementPtr: { 1588 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1589 // Generate a symbolic expression for the byte address 1590 APInt OffsetAI(DL.getPointerTypeSizeInBits(CE->getType()), 0); 1591 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, OffsetAI); 1592 1593 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); 1594 if (!OffsetAI) 1595 return Base; 1596 1597 int64_t Offset = OffsetAI.getSExtValue(); 1598 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), 1599 Ctx); 1600 } 1601 1602 case Instruction::Trunc: 1603 // We emit the value and depend on the assembler to truncate the generated 1604 // expression properly. This is important for differences between 1605 // blockaddress labels. Since the two labels are in the same function, it 1606 // is reasonable to treat their delta as a 32-bit value. 1607 // FALL THROUGH. 1608 case Instruction::BitCast: 1609 return lowerConstant(CE->getOperand(0), AP); 1610 1611 case Instruction::IntToPtr: { 1612 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1613 // Handle casts to pointers by changing them into casts to the appropriate 1614 // integer type. This promotes constant folding and simplifies this code. 1615 Constant *Op = CE->getOperand(0); 1616 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1617 false/*ZExt*/); 1618 return lowerConstant(Op, AP); 1619 } 1620 1621 case Instruction::PtrToInt: { 1622 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1623 // Support only foldable casts to/from pointers that can be eliminated by 1624 // changing the pointer to the appropriately sized integer type. 1625 Constant *Op = CE->getOperand(0); 1626 Type *Ty = CE->getType(); 1627 1628 const MCExpr *OpExpr = lowerConstant(Op, AP); 1629 1630 // We can emit the pointer value into this slot if the slot is an 1631 // integer slot equal to the size of the pointer. 1632 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1633 return OpExpr; 1634 1635 // Otherwise the pointer is smaller than the resultant integer, mask off 1636 // the high bits so we are sure to get a proper truncation if the input is 1637 // a constant expr. 1638 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1639 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); 1640 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); 1641 } 1642 1643 // The MC library also has a right-shift operator, but it isn't consistently 1644 // signed or unsigned between different targets. 1645 case Instruction::Add: 1646 case Instruction::Sub: 1647 case Instruction::Mul: 1648 case Instruction::SDiv: 1649 case Instruction::SRem: 1650 case Instruction::Shl: 1651 case Instruction::And: 1652 case Instruction::Or: 1653 case Instruction::Xor: { 1654 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); 1655 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); 1656 switch (CE->getOpcode()) { 1657 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1658 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); 1659 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); 1660 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); 1661 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); 1662 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); 1663 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); 1664 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); 1665 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); 1666 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); 1667 } 1668 } 1669 } 1670 } 1671 1672 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP); 1673 1674 /// isRepeatedByteSequence - Determine whether the given value is 1675 /// composed of a repeated sequence of identical bytes and return the 1676 /// byte value. If it is not a repeated sequence, return -1. 1677 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1678 StringRef Data = V->getRawDataValues(); 1679 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1680 char C = Data[0]; 1681 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1682 if (Data[i] != C) return -1; 1683 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1684 } 1685 1686 1687 /// isRepeatedByteSequence - Determine whether the given value is 1688 /// composed of a repeated sequence of identical bytes and return the 1689 /// byte value. If it is not a repeated sequence, return -1. 1690 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { 1691 1692 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1693 if (CI->getBitWidth() > 64) return -1; 1694 1695 uint64_t Size = 1696 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(V->getType()); 1697 uint64_t Value = CI->getZExtValue(); 1698 1699 // Make sure the constant is at least 8 bits long and has a power 1700 // of 2 bit width. This guarantees the constant bit width is 1701 // always a multiple of 8 bits, avoiding issues with padding out 1702 // to Size and other such corner cases. 1703 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; 1704 1705 uint8_t Byte = static_cast<uint8_t>(Value); 1706 1707 for (unsigned i = 1; i < Size; ++i) { 1708 Value >>= 8; 1709 if (static_cast<uint8_t>(Value) != Byte) return -1; 1710 } 1711 return Byte; 1712 } 1713 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1714 // Make sure all array elements are sequences of the same repeated 1715 // byte. 1716 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1717 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); 1718 if (Byte == -1) return -1; 1719 1720 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { 1721 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); 1722 if (ThisByte == -1) return -1; 1723 if (Byte != ThisByte) return -1; 1724 } 1725 return Byte; 1726 } 1727 1728 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1729 return isRepeatedByteSequence(CDS); 1730 1731 return -1; 1732 } 1733 1734 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, 1735 AsmPrinter &AP){ 1736 1737 // See if we can aggregate this into a .fill, if so, emit it as such. 1738 int Value = isRepeatedByteSequence(CDS, AP.TM); 1739 if (Value != -1) { 1740 uint64_t Bytes = 1741 AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize( 1742 CDS->getType()); 1743 // Don't emit a 1-byte object as a .fill. 1744 if (Bytes > 1) 1745 return AP.OutStreamer.EmitFill(Bytes, Value); 1746 } 1747 1748 // If this can be emitted with .ascii/.asciz, emit it as such. 1749 if (CDS->isString()) 1750 return AP.OutStreamer.EmitBytes(CDS->getAsString()); 1751 1752 // Otherwise, emit the values in successive locations. 1753 unsigned ElementByteSize = CDS->getElementByteSize(); 1754 if (isa<IntegerType>(CDS->getElementType())) { 1755 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1756 if (AP.isVerbose()) 1757 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1758 CDS->getElementAsInteger(i)); 1759 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), 1760 ElementByteSize); 1761 } 1762 } else if (ElementByteSize == 4) { 1763 // FP Constants are printed as integer constants to avoid losing 1764 // precision. 1765 assert(CDS->getElementType()->isFloatTy()); 1766 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1767 union { 1768 float F; 1769 uint32_t I; 1770 }; 1771 1772 F = CDS->getElementAsFloat(i); 1773 if (AP.isVerbose()) 1774 AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; 1775 AP.OutStreamer.EmitIntValue(I, 4); 1776 } 1777 } else { 1778 assert(CDS->getElementType()->isDoubleTy()); 1779 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1780 union { 1781 double F; 1782 uint64_t I; 1783 }; 1784 1785 F = CDS->getElementAsDouble(i); 1786 if (AP.isVerbose()) 1787 AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; 1788 AP.OutStreamer.EmitIntValue(I, 8); 1789 } 1790 } 1791 1792 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1793 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1794 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1795 CDS->getNumElements(); 1796 if (unsigned Padding = Size - EmittedSize) 1797 AP.OutStreamer.EmitZeros(Padding); 1798 1799 } 1800 1801 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) { 1802 // See if we can aggregate some values. Make sure it can be 1803 // represented as a series of bytes of the constant value. 1804 int Value = isRepeatedByteSequence(CA, AP.TM); 1805 1806 if (Value != -1) { 1807 uint64_t Bytes = 1808 AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize( 1809 CA->getType()); 1810 AP.OutStreamer.EmitFill(Bytes, Value); 1811 } 1812 else { 1813 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) 1814 emitGlobalConstantImpl(CA->getOperand(i), AP); 1815 } 1816 } 1817 1818 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) { 1819 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 1820 emitGlobalConstantImpl(CV->getOperand(i), AP); 1821 1822 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1823 unsigned Size = DL.getTypeAllocSize(CV->getType()); 1824 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 1825 CV->getType()->getNumElements(); 1826 if (unsigned Padding = Size - EmittedSize) 1827 AP.OutStreamer.EmitZeros(Padding); 1828 } 1829 1830 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) { 1831 // Print the fields in successive locations. Pad to align if needed! 1832 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout(); 1833 unsigned Size = DL->getTypeAllocSize(CS->getType()); 1834 const StructLayout *Layout = DL->getStructLayout(CS->getType()); 1835 uint64_t SizeSoFar = 0; 1836 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 1837 const Constant *Field = CS->getOperand(i); 1838 1839 // Check if padding is needed and insert one or more 0s. 1840 uint64_t FieldSize = DL->getTypeAllocSize(Field->getType()); 1841 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 1842 - Layout->getElementOffset(i)) - FieldSize; 1843 SizeSoFar += FieldSize + PadSize; 1844 1845 // Now print the actual field value. 1846 emitGlobalConstantImpl(Field, AP); 1847 1848 // Insert padding - this may include padding to increase the size of the 1849 // current field up to the ABI size (if the struct is not packed) as well 1850 // as padding to ensure that the next field starts at the right offset. 1851 AP.OutStreamer.EmitZeros(PadSize); 1852 } 1853 assert(SizeSoFar == Layout->getSizeInBytes() && 1854 "Layout of constant struct may be incorrect!"); 1855 } 1856 1857 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 1858 APInt API = CFP->getValueAPF().bitcastToAPInt(); 1859 1860 // First print a comment with what we think the original floating-point value 1861 // should have been. 1862 if (AP.isVerbose()) { 1863 SmallString<8> StrVal; 1864 CFP->getValueAPF().toString(StrVal); 1865 1866 if (CFP->getType()) 1867 CFP->getType()->print(AP.OutStreamer.GetCommentOS()); 1868 else 1869 AP.OutStreamer.GetCommentOS() << "Printing <null> Type"; 1870 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; 1871 } 1872 1873 // Now iterate through the APInt chunks, emitting them in endian-correct 1874 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 1875 // floats). 1876 unsigned NumBytes = API.getBitWidth() / 8; 1877 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 1878 const uint64_t *p = API.getRawData(); 1879 1880 // PPC's long double has odd notions of endianness compared to how LLVM 1881 // handles it: p[0] goes first for *big* endian on PPC. 1882 if (AP.TM.getSubtargetImpl()->getDataLayout()->isBigEndian() && 1883 !CFP->getType()->isPPC_FP128Ty()) { 1884 int Chunk = API.getNumWords() - 1; 1885 1886 if (TrailingBytes) 1887 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes); 1888 1889 for (; Chunk >= 0; --Chunk) 1890 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1891 } else { 1892 unsigned Chunk; 1893 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 1894 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t)); 1895 1896 if (TrailingBytes) 1897 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes); 1898 } 1899 1900 // Emit the tail padding for the long double. 1901 const DataLayout &DL = *AP.TM.getSubtargetImpl()->getDataLayout(); 1902 AP.OutStreamer.EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 1903 DL.getTypeStoreSize(CFP->getType())); 1904 } 1905 1906 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 1907 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout(); 1908 unsigned BitWidth = CI->getBitWidth(); 1909 1910 // Copy the value as we may massage the layout for constants whose bit width 1911 // is not a multiple of 64-bits. 1912 APInt Realigned(CI->getValue()); 1913 uint64_t ExtraBits = 0; 1914 unsigned ExtraBitsSize = BitWidth & 63; 1915 1916 if (ExtraBitsSize) { 1917 // The bit width of the data is not a multiple of 64-bits. 1918 // The extra bits are expected to be at the end of the chunk of the memory. 1919 // Little endian: 1920 // * Nothing to be done, just record the extra bits to emit. 1921 // Big endian: 1922 // * Record the extra bits to emit. 1923 // * Realign the raw data to emit the chunks of 64-bits. 1924 if (DL->isBigEndian()) { 1925 // Basically the structure of the raw data is a chunk of 64-bits cells: 1926 // 0 1 BitWidth / 64 1927 // [chunk1][chunk2] ... [chunkN]. 1928 // The most significant chunk is chunkN and it should be emitted first. 1929 // However, due to the alignment issue chunkN contains useless bits. 1930 // Realign the chunks so that they contain only useless information: 1931 // ExtraBits 0 1 (BitWidth / 64) - 1 1932 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 1933 ExtraBits = Realigned.getRawData()[0] & 1934 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 1935 Realigned = Realigned.lshr(ExtraBitsSize); 1936 } else 1937 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 1938 } 1939 1940 // We don't expect assemblers to support integer data directives 1941 // for more than 64 bits, so we emit the data in at most 64-bit 1942 // quantities at a time. 1943 const uint64_t *RawData = Realigned.getRawData(); 1944 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 1945 uint64_t Val = DL->isBigEndian() ? RawData[e - i - 1] : RawData[i]; 1946 AP.OutStreamer.EmitIntValue(Val, 8); 1947 } 1948 1949 if (ExtraBitsSize) { 1950 // Emit the extra bits after the 64-bits chunks. 1951 1952 // Emit a directive that fills the expected size. 1953 uint64_t Size = AP.TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize( 1954 CI->getType()); 1955 Size -= (BitWidth / 64) * 8; 1956 assert(Size && Size * 8 >= ExtraBitsSize && 1957 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 1958 == ExtraBits && "Directive too small for extra bits."); 1959 AP.OutStreamer.EmitIntValue(ExtraBits, Size); 1960 } 1961 } 1962 1963 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) { 1964 const DataLayout *DL = AP.TM.getSubtargetImpl()->getDataLayout(); 1965 uint64_t Size = DL->getTypeAllocSize(CV->getType()); 1966 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 1967 return AP.OutStreamer.EmitZeros(Size); 1968 1969 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 1970 switch (Size) { 1971 case 1: 1972 case 2: 1973 case 4: 1974 case 8: 1975 if (AP.isVerbose()) 1976 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", 1977 CI->getZExtValue()); 1978 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size); 1979 return; 1980 default: 1981 emitGlobalConstantLargeInt(CI, AP); 1982 return; 1983 } 1984 } 1985 1986 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 1987 return emitGlobalConstantFP(CFP, AP); 1988 1989 if (isa<ConstantPointerNull>(CV)) { 1990 AP.OutStreamer.EmitIntValue(0, Size); 1991 return; 1992 } 1993 1994 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 1995 return emitGlobalConstantDataSequential(CDS, AP); 1996 1997 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 1998 return emitGlobalConstantArray(CVA, AP); 1999 2000 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2001 return emitGlobalConstantStruct(CVS, AP); 2002 2003 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2004 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2005 // vectors). 2006 if (CE->getOpcode() == Instruction::BitCast) 2007 return emitGlobalConstantImpl(CE->getOperand(0), AP); 2008 2009 if (Size > 8) { 2010 // If the constant expression's size is greater than 64-bits, then we have 2011 // to emit the value in chunks. Try to constant fold the value and emit it 2012 // that way. 2013 Constant *New = ConstantFoldConstantExpression(CE, DL); 2014 if (New && New != CE) 2015 return emitGlobalConstantImpl(New, AP); 2016 } 2017 } 2018 2019 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2020 return emitGlobalConstantVector(V, AP); 2021 2022 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2023 // thread the streamer with EmitValue. 2024 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size); 2025 } 2026 2027 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2028 void AsmPrinter::EmitGlobalConstant(const Constant *CV) { 2029 uint64_t Size = 2030 TM.getSubtargetImpl()->getDataLayout()->getTypeAllocSize(CV->getType()); 2031 if (Size) 2032 emitGlobalConstantImpl(CV, *this); 2033 else if (MAI->hasSubsectionsViaSymbols()) { 2034 // If the global has zero size, emit a single byte so that two labels don't 2035 // look like they are at the same location. 2036 OutStreamer.EmitIntValue(0, 1); 2037 } 2038 } 2039 2040 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2041 // Target doesn't support this yet! 2042 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2043 } 2044 2045 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2046 if (Offset > 0) 2047 OS << '+' << Offset; 2048 else if (Offset < 0) 2049 OS << Offset; 2050 } 2051 2052 //===----------------------------------------------------------------------===// 2053 // Symbol Lowering Routines. 2054 //===----------------------------------------------------------------------===// 2055 2056 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler 2057 /// temporary label with the specified stem and unique ID. 2058 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name, unsigned ID) const { 2059 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2060 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix()) + 2061 Name + Twine(ID)); 2062 } 2063 2064 /// GetTempSymbol - Return an assembler temporary label with the specified 2065 /// stem. 2066 MCSymbol *AsmPrinter::GetTempSymbol(Twine Name) const { 2067 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2068 return OutContext.GetOrCreateSymbol(Twine(DL->getPrivateGlobalPrefix())+ 2069 Name); 2070 } 2071 2072 2073 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2074 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2075 } 2076 2077 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2078 return MMI->getAddrLabelSymbol(BB); 2079 } 2080 2081 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2082 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2083 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2084 return OutContext.GetOrCreateSymbol 2085 (Twine(DL->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) 2086 + "_" + Twine(CPID)); 2087 } 2088 2089 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2090 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2091 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2092 } 2093 2094 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2095 /// FIXME: privatize to AsmPrinter. 2096 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2097 const DataLayout *DL = TM.getSubtargetImpl()->getDataLayout(); 2098 return OutContext.GetOrCreateSymbol 2099 (Twine(DL->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + 2100 Twine(UID) + "_set_" + Twine(MBBID)); 2101 } 2102 2103 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2104 StringRef Suffix) const { 2105 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2106 TM); 2107 } 2108 2109 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified 2110 /// ExternalSymbol. 2111 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2112 SmallString<60> NameStr; 2113 Mang->getNameWithPrefix(NameStr, Sym); 2114 return OutContext.GetOrCreateSymbol(NameStr.str()); 2115 } 2116 2117 2118 2119 /// PrintParentLoopComment - Print comments about parent loops of this one. 2120 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2121 unsigned FunctionNumber) { 2122 if (!Loop) return; 2123 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2124 OS.indent(Loop->getLoopDepth()*2) 2125 << "Parent Loop BB" << FunctionNumber << "_" 2126 << Loop->getHeader()->getNumber() 2127 << " Depth=" << Loop->getLoopDepth() << '\n'; 2128 } 2129 2130 2131 /// PrintChildLoopComment - Print comments about child loops within 2132 /// the loop for this basic block, with nesting. 2133 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2134 unsigned FunctionNumber) { 2135 // Add child loop information 2136 for (const MachineLoop *CL : *Loop) { 2137 OS.indent(CL->getLoopDepth()*2) 2138 << "Child Loop BB" << FunctionNumber << "_" 2139 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2140 << '\n'; 2141 PrintChildLoopComment(OS, CL, FunctionNumber); 2142 } 2143 } 2144 2145 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2146 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2147 const MachineLoopInfo *LI, 2148 const AsmPrinter &AP) { 2149 // Add loop depth information 2150 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2151 if (!Loop) return; 2152 2153 MachineBasicBlock *Header = Loop->getHeader(); 2154 assert(Header && "No header for loop"); 2155 2156 // If this block is not a loop header, just print out what is the loop header 2157 // and return. 2158 if (Header != &MBB) { 2159 AP.OutStreamer.AddComment(" in Loop: Header=BB" + 2160 Twine(AP.getFunctionNumber())+"_" + 2161 Twine(Loop->getHeader()->getNumber())+ 2162 " Depth="+Twine(Loop->getLoopDepth())); 2163 return; 2164 } 2165 2166 // Otherwise, it is a loop header. Print out information about child and 2167 // parent loops. 2168 raw_ostream &OS = AP.OutStreamer.GetCommentOS(); 2169 2170 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2171 2172 OS << "=>"; 2173 OS.indent(Loop->getLoopDepth()*2-2); 2174 2175 OS << "This "; 2176 if (Loop->empty()) 2177 OS << "Inner "; 2178 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2179 2180 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2181 } 2182 2183 2184 /// EmitBasicBlockStart - This method prints the label for the specified 2185 /// MachineBasicBlock, an alignment (if present) and a comment describing 2186 /// it if appropriate. 2187 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2188 // Emit an alignment directive for this block, if needed. 2189 if (unsigned Align = MBB.getAlignment()) 2190 EmitAlignment(Align); 2191 2192 // If the block has its address taken, emit any labels that were used to 2193 // reference the block. It is possible that there is more than one label 2194 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2195 // the references were generated. 2196 if (MBB.hasAddressTaken()) { 2197 const BasicBlock *BB = MBB.getBasicBlock(); 2198 if (isVerbose()) 2199 OutStreamer.AddComment("Block address taken"); 2200 2201 std::vector<MCSymbol*> Symbols = MMI->getAddrLabelSymbolToEmit(BB); 2202 for (auto *Sym : Symbols) 2203 OutStreamer.EmitLabel(Sym); 2204 } 2205 2206 // Print some verbose block comments. 2207 if (isVerbose()) { 2208 if (const BasicBlock *BB = MBB.getBasicBlock()) 2209 if (BB->hasName()) 2210 OutStreamer.AddComment("%" + BB->getName()); 2211 emitBasicBlockLoopComments(MBB, LI, *this); 2212 } 2213 2214 // Print the main label for the block. 2215 if (MBB.pred_empty() || isBlockOnlyReachableByFallthrough(&MBB)) { 2216 if (isVerbose()) { 2217 // NOTE: Want this comment at start of line, don't emit with AddComment. 2218 OutStreamer.emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2219 } 2220 } else { 2221 OutStreamer.EmitLabel(MBB.getSymbol()); 2222 } 2223 } 2224 2225 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2226 bool IsDefinition) const { 2227 MCSymbolAttr Attr = MCSA_Invalid; 2228 2229 switch (Visibility) { 2230 default: break; 2231 case GlobalValue::HiddenVisibility: 2232 if (IsDefinition) 2233 Attr = MAI->getHiddenVisibilityAttr(); 2234 else 2235 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2236 break; 2237 case GlobalValue::ProtectedVisibility: 2238 Attr = MAI->getProtectedVisibilityAttr(); 2239 break; 2240 } 2241 2242 if (Attr != MCSA_Invalid) 2243 OutStreamer.EmitSymbolAttribute(Sym, Attr); 2244 } 2245 2246 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2247 /// exactly one predecessor and the control transfer mechanism between 2248 /// the predecessor and this block is a fall-through. 2249 bool AsmPrinter:: 2250 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2251 // If this is a landing pad, it isn't a fall through. If it has no preds, 2252 // then nothing falls through to it. 2253 if (MBB->isLandingPad() || MBB->pred_empty()) 2254 return false; 2255 2256 // If there isn't exactly one predecessor, it can't be a fall through. 2257 if (MBB->pred_size() > 1) 2258 return false; 2259 2260 // The predecessor has to be immediately before this block. 2261 MachineBasicBlock *Pred = *MBB->pred_begin(); 2262 if (!Pred->isLayoutSuccessor(MBB)) 2263 return false; 2264 2265 // If the block is completely empty, then it definitely does fall through. 2266 if (Pred->empty()) 2267 return true; 2268 2269 // Check the terminators in the previous blocks 2270 for (const auto &MI : Pred->terminators()) { 2271 // If it is not a simple branch, we are in a table somewhere. 2272 if (!MI.isBranch() || MI.isIndirectBranch()) 2273 return false; 2274 2275 // If we are the operands of one of the branches, this is not a fall 2276 // through. Note that targets with delay slots will usually bundle 2277 // terminators with the delay slot instruction. 2278 for (ConstMIBundleOperands OP(&MI); OP.isValid(); ++OP) { 2279 if (OP->isJTI()) 2280 return false; 2281 if (OP->isMBB() && OP->getMBB() == MBB) 2282 return false; 2283 } 2284 } 2285 2286 return true; 2287 } 2288 2289 2290 2291 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2292 if (!S.usesMetadata()) 2293 return nullptr; 2294 2295 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2296 gcp_map_type::iterator GCPI = GCMap.find(&S); 2297 if (GCPI != GCMap.end()) 2298 return GCPI->second.get(); 2299 2300 const char *Name = S.getName().c_str(); 2301 2302 for (GCMetadataPrinterRegistry::iterator 2303 I = GCMetadataPrinterRegistry::begin(), 2304 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2305 if (strcmp(Name, I->getName()) == 0) { 2306 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2307 GMP->S = &S; 2308 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2309 return IterBool.first->second.get(); 2310 } 2311 2312 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2313 } 2314 2315 /// Pin vtable to this file. 2316 AsmPrinterHandler::~AsmPrinterHandler() {} 2317