1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the AsmPrinter class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/AsmPrinter.h" 14 #include "CodeViewDebug.h" 15 #include "DwarfDebug.h" 16 #include "DwarfException.h" 17 #include "WasmException.h" 18 #include "WinCFGuard.h" 19 #include "WinException.h" 20 #include "llvm/ADT/APFloat.h" 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/ProfileSummaryInfo.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineConstantPool.h" 45 #include "llvm/CodeGen/MachineDominators.h" 46 #include "llvm/CodeGen/MachineFrameInfo.h" 47 #include "llvm/CodeGen/MachineFunction.h" 48 #include "llvm/CodeGen/MachineFunctionPass.h" 49 #include "llvm/CodeGen/MachineInstr.h" 50 #include "llvm/CodeGen/MachineInstrBundle.h" 51 #include "llvm/CodeGen/MachineJumpTableInfo.h" 52 #include "llvm/CodeGen/MachineLoopInfo.h" 53 #include "llvm/CodeGen/MachineMemOperand.h" 54 #include "llvm/CodeGen/MachineModuleInfo.h" 55 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 56 #include "llvm/CodeGen/MachineOperand.h" 57 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 58 #include "llvm/CodeGen/MachineSizeOpts.h" 59 #include "llvm/CodeGen/StackMaps.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/IR/BasicBlock.h" 66 #include "llvm/IR/Comdat.h" 67 #include "llvm/IR/Constant.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GlobalAlias.h" 74 #include "llvm/IR/GlobalIFunc.h" 75 #include "llvm/IR/GlobalIndirectSymbol.h" 76 #include "llvm/IR/GlobalObject.h" 77 #include "llvm/IR/GlobalValue.h" 78 #include "llvm/IR/GlobalVariable.h" 79 #include "llvm/IR/Instruction.h" 80 #include "llvm/IR/Mangler.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/RemarkStreamer.h" 85 #include "llvm/IR/Type.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/MC/MCAsmInfo.h" 88 #include "llvm/MC/MCContext.h" 89 #include "llvm/MC/MCDirectives.h" 90 #include "llvm/MC/MCDwarf.h" 91 #include "llvm/MC/MCExpr.h" 92 #include "llvm/MC/MCInst.h" 93 #include "llvm/MC/MCSection.h" 94 #include "llvm/MC/MCSectionCOFF.h" 95 #include "llvm/MC/MCSectionELF.h" 96 #include "llvm/MC/MCSectionMachO.h" 97 #include "llvm/MC/MCSectionXCOFF.h" 98 #include "llvm/MC/MCStreamer.h" 99 #include "llvm/MC/MCSubtargetInfo.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/MC/MCSymbolELF.h" 102 #include "llvm/MC/MCSymbolXCOFF.h" 103 #include "llvm/MC/MCTargetOptions.h" 104 #include "llvm/MC/MCValue.h" 105 #include "llvm/MC/SectionKind.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Remarks/Remark.h" 108 #include "llvm/Remarks/RemarkFormat.h" 109 #include "llvm/Remarks/RemarkStringTable.h" 110 #include "llvm/Support/Casting.h" 111 #include "llvm/Support/CommandLine.h" 112 #include "llvm/Support/Compiler.h" 113 #include "llvm/Support/ErrorHandling.h" 114 #include "llvm/Support/Format.h" 115 #include "llvm/Support/MathExtras.h" 116 #include "llvm/Support/Path.h" 117 #include "llvm/Support/TargetRegistry.h" 118 #include "llvm/Support/Timer.h" 119 #include "llvm/Support/raw_ostream.h" 120 #include "llvm/Target/TargetLoweringObjectFile.h" 121 #include "llvm/Target/TargetMachine.h" 122 #include "llvm/Target/TargetOptions.h" 123 #include <algorithm> 124 #include <cassert> 125 #include <cinttypes> 126 #include <cstdint> 127 #include <iterator> 128 #include <limits> 129 #include <memory> 130 #include <string> 131 #include <utility> 132 #include <vector> 133 134 using namespace llvm; 135 136 #define DEBUG_TYPE "asm-printer" 137 138 static const char *const DWARFGroupName = "dwarf"; 139 static const char *const DWARFGroupDescription = "DWARF Emission"; 140 static const char *const DbgTimerName = "emit"; 141 static const char *const DbgTimerDescription = "Debug Info Emission"; 142 static const char *const EHTimerName = "write_exception"; 143 static const char *const EHTimerDescription = "DWARF Exception Writer"; 144 static const char *const CFGuardName = "Control Flow Guard"; 145 static const char *const CFGuardDescription = "Control Flow Guard"; 146 static const char *const CodeViewLineTablesGroupName = "linetables"; 147 static const char *const CodeViewLineTablesGroupDescription = 148 "CodeView Line Tables"; 149 150 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 151 152 char AsmPrinter::ID = 0; 153 154 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 155 156 static gcp_map_type &getGCMap(void *&P) { 157 if (!P) 158 P = new gcp_map_type(); 159 return *(gcp_map_type*)P; 160 } 161 162 /// getGVAlignment - Return the alignment to use for the specified global 163 /// value. This rounds up to the preferred alignment if possible and legal. 164 Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, 165 Align InAlign) { 166 Align Alignment; 167 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 168 Alignment = Align(DL.getPreferredAlignment(GVar)); 169 170 // If InAlign is specified, round it to it. 171 if (InAlign > Alignment) 172 Alignment = InAlign; 173 174 // If the GV has a specified alignment, take it into account. 175 const MaybeAlign GVAlign(GV->getAlignment()); 176 if (!GVAlign) 177 return Alignment; 178 179 assert(GVAlign && "GVAlign must be set"); 180 181 // If the GVAlign is larger than NumBits, or if we are required to obey 182 // NumBits because the GV has an assigned section, obey it. 183 if (*GVAlign > Alignment || GV->hasSection()) 184 Alignment = *GVAlign; 185 return Alignment; 186 } 187 188 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 189 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 190 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 191 VerboseAsm = OutStreamer->isVerboseAsm(); 192 } 193 194 AsmPrinter::~AsmPrinter() { 195 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 196 197 if (GCMetadataPrinters) { 198 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 199 200 delete &GCMap; 201 GCMetadataPrinters = nullptr; 202 } 203 } 204 205 bool AsmPrinter::isPositionIndependent() const { 206 return TM.isPositionIndependent(); 207 } 208 209 /// getFunctionNumber - Return a unique ID for the current function. 210 unsigned AsmPrinter::getFunctionNumber() const { 211 return MF->getFunctionNumber(); 212 } 213 214 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 215 return *TM.getObjFileLowering(); 216 } 217 218 const DataLayout &AsmPrinter::getDataLayout() const { 219 return MMI->getModule()->getDataLayout(); 220 } 221 222 // Do not use the cached DataLayout because some client use it without a Module 223 // (dsymutil, llvm-dwarfdump). 224 unsigned AsmPrinter::getPointerSize() const { 225 return TM.getPointerSize(0); // FIXME: Default address space 226 } 227 228 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 229 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 230 return MF->getSubtarget<MCSubtargetInfo>(); 231 } 232 233 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 234 S.EmitInstruction(Inst, getSubtargetInfo()); 235 } 236 237 void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { 238 assert(DD && "Dwarf debug file is not defined."); 239 assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); 240 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); 241 } 242 243 /// getCurrentSection() - Return the current section we are emitting to. 244 const MCSection *AsmPrinter::getCurrentSection() const { 245 return OutStreamer->getCurrentSectionOnly(); 246 } 247 248 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 249 AU.setPreservesAll(); 250 MachineFunctionPass::getAnalysisUsage(AU); 251 AU.addRequired<MachineModuleInfoWrapperPass>(); 252 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 253 AU.addRequired<GCModuleInfo>(); 254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 255 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 256 } 257 258 bool AsmPrinter::doInitialization(Module &M) { 259 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); 260 MMI = MMIWP ? &MMIWP->getMMI() : nullptr; 261 262 // Initialize TargetLoweringObjectFile. 263 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 264 .Initialize(OutContext, TM); 265 266 const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) 267 .getModuleMetadata(M); 268 269 OutStreamer->InitSections(false); 270 271 // Emit the version-min deployment target directive if needed. 272 // 273 // FIXME: If we end up with a collection of these sorts of Darwin-specific 274 // or ELF-specific things, it may make sense to have a platform helper class 275 // that will work with the target helper class. For now keep it here, as the 276 // alternative is duplicated code in each of the target asm printers that 277 // use the directive, where it would need the same conditionalization 278 // anyway. 279 const Triple &Target = TM.getTargetTriple(); 280 OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); 281 282 // Allow the target to emit any magic that it wants at the start of the file. 283 EmitStartOfAsmFile(M); 284 285 // Very minimal debug info. It is ignored if we emit actual debug info. If we 286 // don't, this at least helps the user find where a global came from. 287 if (MAI->hasSingleParameterDotFile()) { 288 // .file "foo.c" 289 OutStreamer->EmitFileDirective( 290 llvm::sys::path::filename(M.getSourceFileName())); 291 } 292 293 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 294 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 295 for (auto &I : *MI) 296 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 297 MP->beginAssembly(M, *MI, *this); 298 299 // Emit module-level inline asm if it exists. 300 if (!M.getModuleInlineAsm().empty()) { 301 // We're at the module level. Construct MCSubtarget from the default CPU 302 // and target triple. 303 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 304 TM.getTargetTriple().str(), TM.getTargetCPU(), 305 TM.getTargetFeatureString())); 306 OutStreamer->AddComment("Start of file scope inline assembly"); 307 OutStreamer->AddBlankLine(); 308 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 309 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 310 OutStreamer->AddComment("End of file scope inline assembly"); 311 OutStreamer->AddBlankLine(); 312 } 313 314 if (MAI->doesSupportDebugInformation()) { 315 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 316 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 317 Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), 318 DbgTimerName, DbgTimerDescription, 319 CodeViewLineTablesGroupName, 320 CodeViewLineTablesGroupDescription); 321 } 322 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 323 DD = new DwarfDebug(this, &M); 324 DD->beginModule(); 325 Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, 326 DbgTimerDescription, DWARFGroupName, 327 DWARFGroupDescription); 328 } 329 } 330 331 switch (MAI->getExceptionHandlingType()) { 332 case ExceptionHandling::SjLj: 333 case ExceptionHandling::DwarfCFI: 334 case ExceptionHandling::ARM: 335 isCFIMoveForDebugging = true; 336 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 337 break; 338 for (auto &F: M.getFunctionList()) { 339 // If the module contains any function with unwind data, 340 // .eh_frame has to be emitted. 341 // Ignore functions that won't get emitted. 342 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 343 isCFIMoveForDebugging = false; 344 break; 345 } 346 } 347 break; 348 default: 349 isCFIMoveForDebugging = false; 350 break; 351 } 352 353 EHStreamer *ES = nullptr; 354 switch (MAI->getExceptionHandlingType()) { 355 case ExceptionHandling::None: 356 break; 357 case ExceptionHandling::SjLj: 358 case ExceptionHandling::DwarfCFI: 359 ES = new DwarfCFIException(this); 360 break; 361 case ExceptionHandling::ARM: 362 ES = new ARMException(this); 363 break; 364 case ExceptionHandling::WinEH: 365 switch (MAI->getWinEHEncodingType()) { 366 default: llvm_unreachable("unsupported unwinding information encoding"); 367 case WinEH::EncodingType::Invalid: 368 break; 369 case WinEH::EncodingType::X86: 370 case WinEH::EncodingType::Itanium: 371 ES = new WinException(this); 372 break; 373 } 374 break; 375 case ExceptionHandling::Wasm: 376 ES = new WasmException(this); 377 break; 378 } 379 if (ES) 380 Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, 381 EHTimerDescription, DWARFGroupName, 382 DWARFGroupDescription); 383 384 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). 385 if (mdconst::extract_or_null<ConstantInt>( 386 MMI->getModule()->getModuleFlag("cfguard"))) 387 Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, 388 CFGuardDescription, DWARFGroupName, 389 DWARFGroupDescription); 390 return false; 391 } 392 393 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 394 if (!MAI.hasWeakDefCanBeHiddenDirective()) 395 return false; 396 397 return GV->canBeOmittedFromSymbolTable(); 398 } 399 400 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 401 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 402 switch (Linkage) { 403 case GlobalValue::CommonLinkage: 404 case GlobalValue::LinkOnceAnyLinkage: 405 case GlobalValue::LinkOnceODRLinkage: 406 case GlobalValue::WeakAnyLinkage: 407 case GlobalValue::WeakODRLinkage: 408 if (MAI->hasWeakDefDirective()) { 409 // .globl _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 411 412 if (!canBeHidden(GV, *MAI)) 413 // .weak_definition _foo 414 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 415 else 416 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 417 } else if (MAI->hasLinkOnceDirective()) { 418 // .globl _foo 419 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 420 //NOTE: linkonce is handled by the section the symbol was assigned to. 421 } else { 422 // .weak _foo 423 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 424 } 425 return; 426 case GlobalValue::ExternalLinkage: 427 // If external, declare as a global symbol: .globl _foo 428 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 429 return; 430 case GlobalValue::PrivateLinkage: 431 return; 432 case GlobalValue::InternalLinkage: 433 if (MAI->hasDotLGloblDirective()) 434 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); 435 return; 436 case GlobalValue::AppendingLinkage: 437 case GlobalValue::AvailableExternallyLinkage: 438 case GlobalValue::ExternalWeakLinkage: 439 llvm_unreachable("Should never emit this"); 440 } 441 llvm_unreachable("Unknown linkage type!"); 442 } 443 444 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 445 const GlobalValue *GV) const { 446 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 447 } 448 449 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 450 return TM.getSymbol(GV); 451 } 452 453 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 454 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 455 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 456 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 457 "No emulated TLS variables in the common section"); 458 459 // Never emit TLS variable xyz in emulated TLS model. 460 // The initialization value is in __emutls_t.xyz instead of xyz. 461 if (IsEmuTLSVar) 462 return; 463 464 if (GV->hasInitializer()) { 465 // Check to see if this is a special global used by LLVM, if so, emit it. 466 if (EmitSpecialLLVMGlobal(GV)) 467 return; 468 469 // Skip the emission of global equivalents. The symbol can be emitted later 470 // on by emitGlobalGOTEquivs in case it turns out to be needed. 471 if (GlobalGOTEquivs.count(getSymbol(GV))) 472 return; 473 474 if (isVerbose()) { 475 // When printing the control variable __emutls_v.*, 476 // we don't need to print the original TLS variable name. 477 GV->printAsOperand(OutStreamer->GetCommentOS(), 478 /*PrintType=*/false, GV->getParent()); 479 OutStreamer->GetCommentOS() << '\n'; 480 } 481 } 482 483 MCSymbol *GVSym = getSymbol(GV); 484 MCSymbol *EmittedSym = GVSym; 485 486 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 487 // attributes. 488 // GV's or GVSym's attributes will be used for the EmittedSym. 489 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 490 491 if (!GV->hasInitializer()) // External globals require no extra code. 492 return; 493 494 GVSym->redefineIfPossible(); 495 if (GVSym->isDefined() || GVSym->isVariable()) 496 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 497 "' is already defined"); 498 499 if (MAI->hasDotTypeDotSizeDirective()) 500 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 501 502 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 503 504 const DataLayout &DL = GV->getParent()->getDataLayout(); 505 uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); 506 507 // If the alignment is specified, we *must* obey it. Overaligning a global 508 // with a specified alignment is a prompt way to break globals emitted to 509 // sections and expected to be contiguous (e.g. ObjC metadata). 510 const Align Alignment = getGVAlignment(GV, DL); 511 512 for (const HandlerInfo &HI : Handlers) { 513 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 514 HI.TimerGroupName, HI.TimerGroupDescription, 515 TimePassesIsEnabled); 516 HI.Handler->setSymbolSize(GVSym, Size); 517 } 518 519 // Handle common symbols 520 if (GVKind.isCommon()) { 521 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 522 // .comm _foo, 42, 4 523 const bool SupportsAlignment = 524 getObjFileLowering().getCommDirectiveSupportsAlignment(); 525 OutStreamer->EmitCommonSymbol(GVSym, Size, 526 SupportsAlignment ? Alignment.value() : 0); 527 return; 528 } 529 530 // Determine to which section this global should be emitted. 531 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 532 533 // If we have a bss global going to a section that supports the 534 // zerofill directive, do so here. 535 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 536 TheSection->isVirtualSection()) { 537 if (Size == 0) 538 Size = 1; // zerofill of 0 bytes is undefined. 539 EmitLinkage(GV, GVSym); 540 // .zerofill __DATA, __bss, _foo, 400, 5 541 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); 542 return; 543 } 544 545 // If this is a BSS local symbol and we are emitting in the BSS 546 // section use .lcomm/.comm directive. 547 if (GVKind.isBSSLocal() && 548 getObjFileLowering().getBSSSection() == TheSection) { 549 if (Size == 0) 550 Size = 1; // .comm Foo, 0 is undefined, avoid it. 551 552 // Use .lcomm only if it supports user-specified alignment. 553 // Otherwise, while it would still be correct to use .lcomm in some 554 // cases (e.g. when Align == 1), the external assembler might enfore 555 // some -unknown- default alignment behavior, which could cause 556 // spurious differences between external and integrated assembler. 557 // Prefer to simply fall back to .local / .comm in this case. 558 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 559 // .lcomm _foo, 42 560 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); 561 return; 562 } 563 564 // .local _foo 565 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 566 // .comm _foo, 42, 4 567 const bool SupportsAlignment = 568 getObjFileLowering().getCommDirectiveSupportsAlignment(); 569 OutStreamer->EmitCommonSymbol(GVSym, Size, 570 SupportsAlignment ? Alignment.value() : 0); 571 return; 572 } 573 574 // Handle thread local data for mach-o which requires us to output an 575 // additional structure of data and mangle the original symbol so that we 576 // can reference it later. 577 // 578 // TODO: This should become an "emit thread local global" method on TLOF. 579 // All of this macho specific stuff should be sunk down into TLOFMachO and 580 // stuff like "TLSExtraDataSection" should no longer be part of the parent 581 // TLOF class. This will also make it more obvious that stuff like 582 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 583 // specific code. 584 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 585 // Emit the .tbss symbol 586 MCSymbol *MangSym = 587 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 588 589 if (GVKind.isThreadBSS()) { 590 TheSection = getObjFileLowering().getTLSBSSSection(); 591 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); 592 } else if (GVKind.isThreadData()) { 593 OutStreamer->SwitchSection(TheSection); 594 595 EmitAlignment(Alignment, GV); 596 OutStreamer->EmitLabel(MangSym); 597 598 EmitGlobalConstant(GV->getParent()->getDataLayout(), 599 GV->getInitializer()); 600 } 601 602 OutStreamer->AddBlankLine(); 603 604 // Emit the variable struct for the runtime. 605 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 606 607 OutStreamer->SwitchSection(TLVSect); 608 // Emit the linkage here. 609 EmitLinkage(GV, GVSym); 610 OutStreamer->EmitLabel(GVSym); 611 612 // Three pointers in size: 613 // - __tlv_bootstrap - used to make sure support exists 614 // - spare pointer, used when mapped by the runtime 615 // - pointer to mangled symbol above with initializer 616 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 617 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 618 PtrSize); 619 OutStreamer->EmitIntValue(0, PtrSize); 620 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 621 622 OutStreamer->AddBlankLine(); 623 return; 624 } 625 626 MCSymbol *EmittedInitSym = GVSym; 627 628 OutStreamer->SwitchSection(TheSection); 629 630 EmitLinkage(GV, EmittedInitSym); 631 EmitAlignment(Alignment, GV); 632 633 OutStreamer->EmitLabel(EmittedInitSym); 634 635 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 636 637 if (MAI->hasDotTypeDotSizeDirective()) 638 // .size foo, 42 639 OutStreamer->emitELFSize(EmittedInitSym, 640 MCConstantExpr::create(Size, OutContext)); 641 642 OutStreamer->AddBlankLine(); 643 } 644 645 /// Emit the directive and value for debug thread local expression 646 /// 647 /// \p Value - The value to emit. 648 /// \p Size - The size of the integer (in bytes) to emit. 649 void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { 650 OutStreamer->EmitValue(Value, Size); 651 } 652 653 /// EmitFunctionHeader - This method emits the header for the current 654 /// function. 655 void AsmPrinter::EmitFunctionHeader() { 656 const Function &F = MF->getFunction(); 657 658 if (isVerbose()) 659 OutStreamer->GetCommentOS() 660 << "-- Begin function " 661 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 662 663 // Print out constants referenced by the function 664 EmitConstantPool(); 665 666 // Print the 'header' of function. 667 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 668 EmitVisibility(CurrentFnSym, F.getVisibility()); 669 670 if (MAI->needsFunctionDescriptors() && 671 F.getLinkage() != GlobalValue::InternalLinkage) 672 EmitLinkage(&F, CurrentFnDescSym); 673 674 EmitLinkage(&F, CurrentFnSym); 675 if (MAI->hasFunctionAlignment()) 676 EmitAlignment(MF->getAlignment(), &F); 677 678 if (MAI->hasDotTypeDotSizeDirective()) 679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 680 681 if (F.hasFnAttribute(Attribute::Cold)) 682 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); 683 684 if (isVerbose()) { 685 F.printAsOperand(OutStreamer->GetCommentOS(), 686 /*PrintType=*/false, F.getParent()); 687 OutStreamer->GetCommentOS() << '\n'; 688 } 689 690 // Emit the prefix data. 691 if (F.hasPrefixData()) { 692 if (MAI->hasSubsectionsViaSymbols()) { 693 // Preserving prefix data on platforms which use subsections-via-symbols 694 // is a bit tricky. Here we introduce a symbol for the prefix data 695 // and use the .alt_entry attribute to mark the function's real entry point 696 // as an alternative entry point to the prefix-data symbol. 697 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 698 OutStreamer->EmitLabel(PrefixSym); 699 700 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 701 702 // Emit an .alt_entry directive for the actual function symbol. 703 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 704 } else { 705 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 706 } 707 } 708 709 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily 710 // place prefix data before NOPs. 711 unsigned PatchableFunctionPrefix = 0; 712 (void)F.getFnAttribute("patchable-function-prefix") 713 .getValueAsString() 714 .getAsInteger(10, PatchableFunctionPrefix); 715 if (PatchableFunctionPrefix) { 716 CurrentPatchableFunctionEntrySym = 717 OutContext.createLinkerPrivateTempSymbol(); 718 OutStreamer->EmitLabel(CurrentPatchableFunctionEntrySym); 719 emitNops(PatchableFunctionPrefix); 720 } else { 721 CurrentPatchableFunctionEntrySym = CurrentFnBegin; 722 } 723 724 // Emit the function descriptor. This is a virtual function to allow targets 725 // to emit their specific function descriptor. 726 if (MAI->needsFunctionDescriptors()) 727 EmitFunctionDescriptor(); 728 729 // Emit the CurrentFnSym. This is a virtual function to allow targets to do 730 // their wild and crazy things as required. 731 EmitFunctionEntryLabel(); 732 733 if (CurrentFnBegin) { 734 if (MAI->useAssignmentForEHBegin()) { 735 MCSymbol *CurPos = OutContext.createTempSymbol(); 736 OutStreamer->EmitLabel(CurPos); 737 OutStreamer->EmitAssignment(CurrentFnBegin, 738 MCSymbolRefExpr::create(CurPos, OutContext)); 739 } else { 740 OutStreamer->EmitLabel(CurrentFnBegin); 741 } 742 } 743 744 // Emit pre-function debug and/or EH information. 745 for (const HandlerInfo &HI : Handlers) { 746 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 747 HI.TimerGroupDescription, TimePassesIsEnabled); 748 HI.Handler->beginFunction(MF); 749 } 750 751 // Emit the prologue data. 752 if (F.hasPrologueData()) 753 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 754 } 755 756 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 757 /// function. This can be overridden by targets as required to do custom stuff. 758 void AsmPrinter::EmitFunctionEntryLabel() { 759 CurrentFnSym->redefineIfPossible(); 760 761 // The function label could have already been emitted if two symbols end up 762 // conflicting due to asm renaming. Detect this and emit an error. 763 if (CurrentFnSym->isVariable()) 764 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 765 "' is a protected alias"); 766 if (CurrentFnSym->isDefined()) 767 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 768 "' label emitted multiple times to assembly file"); 769 770 return OutStreamer->EmitLabel(CurrentFnSym); 771 } 772 773 /// emitComments - Pretty-print comments for instructions. 774 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 775 const MachineFunction *MF = MI.getMF(); 776 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 777 778 // Check for spills and reloads 779 780 // We assume a single instruction only has a spill or reload, not 781 // both. 782 Optional<unsigned> Size; 783 if ((Size = MI.getRestoreSize(TII))) { 784 CommentOS << *Size << "-byte Reload\n"; 785 } else if ((Size = MI.getFoldedRestoreSize(TII))) { 786 if (*Size) 787 CommentOS << *Size << "-byte Folded Reload\n"; 788 } else if ((Size = MI.getSpillSize(TII))) { 789 CommentOS << *Size << "-byte Spill\n"; 790 } else if ((Size = MI.getFoldedSpillSize(TII))) { 791 if (*Size) 792 CommentOS << *Size << "-byte Folded Spill\n"; 793 } 794 795 // Check for spill-induced copies 796 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 797 CommentOS << " Reload Reuse\n"; 798 } 799 800 /// emitImplicitDef - This method emits the specified machine instruction 801 /// that is an implicit def. 802 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 803 Register RegNo = MI->getOperand(0).getReg(); 804 805 SmallString<128> Str; 806 raw_svector_ostream OS(Str); 807 OS << "implicit-def: " 808 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 809 810 OutStreamer->AddComment(OS.str()); 811 OutStreamer->AddBlankLine(); 812 } 813 814 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 815 std::string Str; 816 raw_string_ostream OS(Str); 817 OS << "kill:"; 818 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 819 const MachineOperand &Op = MI->getOperand(i); 820 assert(Op.isReg() && "KILL instruction must have only register operands"); 821 OS << ' ' << (Op.isDef() ? "def " : "killed ") 822 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 823 } 824 AP.OutStreamer->AddComment(OS.str()); 825 AP.OutStreamer->AddBlankLine(); 826 } 827 828 /// emitDebugValueComment - This method handles the target-independent form 829 /// of DBG_VALUE, returning true if it was able to do so. A false return 830 /// means the target will need to handle MI in EmitInstruction. 831 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 832 // This code handles only the 4-operand target-independent form. 833 if (MI->getNumOperands() != 4) 834 return false; 835 836 SmallString<128> Str; 837 raw_svector_ostream OS(Str); 838 OS << "DEBUG_VALUE: "; 839 840 const DILocalVariable *V = MI->getDebugVariable(); 841 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 842 StringRef Name = SP->getName(); 843 if (!Name.empty()) 844 OS << Name << ":"; 845 } 846 OS << V->getName(); 847 OS << " <- "; 848 849 // The second operand is only an offset if it's an immediate. 850 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 851 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 852 const DIExpression *Expr = MI->getDebugExpression(); 853 if (Expr->getNumElements()) { 854 OS << '['; 855 bool NeedSep = false; 856 for (auto Op : Expr->expr_ops()) { 857 if (NeedSep) 858 OS << ", "; 859 else 860 NeedSep = true; 861 OS << dwarf::OperationEncodingString(Op.getOp()); 862 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 863 OS << ' ' << Op.getArg(I); 864 } 865 OS << "] "; 866 } 867 868 // Register or immediate value. Register 0 means undef. 869 if (MI->getOperand(0).isFPImm()) { 870 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 871 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 872 OS << (double)APF.convertToFloat(); 873 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 874 OS << APF.convertToDouble(); 875 } else { 876 // There is no good way to print long double. Convert a copy to 877 // double. Ah well, it's only a comment. 878 bool ignored; 879 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 880 &ignored); 881 OS << "(long double) " << APF.convertToDouble(); 882 } 883 } else if (MI->getOperand(0).isImm()) { 884 OS << MI->getOperand(0).getImm(); 885 } else if (MI->getOperand(0).isCImm()) { 886 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 887 } else if (MI->getOperand(0).isTargetIndex()) { 888 auto Op = MI->getOperand(0); 889 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")"; 890 return true; 891 } else { 892 unsigned Reg; 893 if (MI->getOperand(0).isReg()) { 894 Reg = MI->getOperand(0).getReg(); 895 } else { 896 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 897 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 898 Offset += TFI->getFrameIndexReference(*AP.MF, 899 MI->getOperand(0).getIndex(), Reg); 900 MemLoc = true; 901 } 902 if (Reg == 0) { 903 // Suppress offset, it is not meaningful here. 904 OS << "undef"; 905 // NOTE: Want this comment at start of line, don't emit with AddComment. 906 AP.OutStreamer->emitRawComment(OS.str()); 907 return true; 908 } 909 if (MemLoc) 910 OS << '['; 911 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 912 } 913 914 if (MemLoc) 915 OS << '+' << Offset << ']'; 916 917 // NOTE: Want this comment at start of line, don't emit with AddComment. 918 AP.OutStreamer->emitRawComment(OS.str()); 919 return true; 920 } 921 922 /// This method handles the target-independent form of DBG_LABEL, returning 923 /// true if it was able to do so. A false return means the target will need 924 /// to handle MI in EmitInstruction. 925 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 926 if (MI->getNumOperands() != 1) 927 return false; 928 929 SmallString<128> Str; 930 raw_svector_ostream OS(Str); 931 OS << "DEBUG_LABEL: "; 932 933 const DILabel *V = MI->getDebugLabel(); 934 if (auto *SP = dyn_cast<DISubprogram>( 935 V->getScope()->getNonLexicalBlockFileScope())) { 936 StringRef Name = SP->getName(); 937 if (!Name.empty()) 938 OS << Name << ":"; 939 } 940 OS << V->getName(); 941 942 // NOTE: Want this comment at start of line, don't emit with AddComment. 943 AP.OutStreamer->emitRawComment(OS.str()); 944 return true; 945 } 946 947 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 948 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 949 MF->getFunction().needsUnwindTableEntry()) 950 return CFI_M_EH; 951 952 if (MMI->hasDebugInfo() || MF->getTarget().Options.ForceDwarfFrameSection) 953 return CFI_M_Debug; 954 955 return CFI_M_None; 956 } 957 958 bool AsmPrinter::needsSEHMoves() { 959 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 960 } 961 962 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 963 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 964 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 965 ExceptionHandlingType != ExceptionHandling::ARM) 966 return; 967 968 if (needsCFIMoves() == CFI_M_None) 969 return; 970 971 // If there is no "real" instruction following this CFI instruction, skip 972 // emitting it; it would be beyond the end of the function's FDE range. 973 auto *MBB = MI.getParent(); 974 auto I = std::next(MI.getIterator()); 975 while (I != MBB->end() && I->isTransient()) 976 ++I; 977 if (I == MBB->instr_end() && 978 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 979 return; 980 981 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 982 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 983 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 984 emitCFIInstruction(CFI); 985 } 986 987 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 988 // The operands are the MCSymbol and the frame offset of the allocation. 989 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 990 int FrameOffset = MI.getOperand(1).getImm(); 991 992 // Emit a symbol assignment. 993 OutStreamer->EmitAssignment(FrameAllocSym, 994 MCConstantExpr::create(FrameOffset, OutContext)); 995 } 996 997 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 998 if (!MF.getTarget().Options.EmitStackSizeSection) 999 return; 1000 1001 MCSection *StackSizeSection = 1002 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1003 if (!StackSizeSection) 1004 return; 1005 1006 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1007 // Don't emit functions with dynamic stack allocations. 1008 if (FrameInfo.hasVarSizedObjects()) 1009 return; 1010 1011 OutStreamer->PushSection(); 1012 OutStreamer->SwitchSection(StackSizeSection); 1013 1014 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1015 uint64_t StackSize = FrameInfo.getStackSize(); 1016 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1017 OutStreamer->EmitULEB128IntValue(StackSize); 1018 1019 OutStreamer->PopSection(); 1020 } 1021 1022 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1023 MachineModuleInfo *MMI) { 1024 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1025 return true; 1026 1027 // We might emit an EH table that uses function begin and end labels even if 1028 // we don't have any landingpads. 1029 if (!MF.getFunction().hasPersonalityFn()) 1030 return false; 1031 return !isNoOpWithoutInvoke( 1032 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1033 } 1034 1035 /// EmitFunctionBody - This method emits the body and trailer for a 1036 /// function. 1037 void AsmPrinter::EmitFunctionBody() { 1038 EmitFunctionHeader(); 1039 1040 // Emit target-specific gunk before the function body. 1041 EmitFunctionBodyStart(); 1042 1043 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1044 1045 if (isVerbose()) { 1046 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1047 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1048 if (!MDT) { 1049 OwnedMDT = std::make_unique<MachineDominatorTree>(); 1050 OwnedMDT->getBase().recalculate(*MF); 1051 MDT = OwnedMDT.get(); 1052 } 1053 1054 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1055 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1056 if (!MLI) { 1057 OwnedMLI = std::make_unique<MachineLoopInfo>(); 1058 OwnedMLI->getBase().analyze(MDT->getBase()); 1059 MLI = OwnedMLI.get(); 1060 } 1061 } 1062 1063 // Print out code for the function. 1064 bool HasAnyRealCode = false; 1065 int NumInstsInFunction = 0; 1066 for (auto &MBB : *MF) { 1067 // Print a label for the basic block. 1068 EmitBasicBlockStart(MBB); 1069 for (auto &MI : MBB) { 1070 // Print the assembly for the instruction. 1071 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1072 !MI.isDebugInstr()) { 1073 HasAnyRealCode = true; 1074 ++NumInstsInFunction; 1075 } 1076 1077 // If there is a pre-instruction symbol, emit a label for it here. 1078 if (MCSymbol *S = MI.getPreInstrSymbol()) 1079 OutStreamer->EmitLabel(S); 1080 1081 if (ShouldPrintDebugScopes) { 1082 for (const HandlerInfo &HI : Handlers) { 1083 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1084 HI.TimerGroupName, HI.TimerGroupDescription, 1085 TimePassesIsEnabled); 1086 HI.Handler->beginInstruction(&MI); 1087 } 1088 } 1089 1090 if (isVerbose()) 1091 emitComments(MI, OutStreamer->GetCommentOS()); 1092 1093 switch (MI.getOpcode()) { 1094 case TargetOpcode::CFI_INSTRUCTION: 1095 emitCFIInstruction(MI); 1096 break; 1097 case TargetOpcode::LOCAL_ESCAPE: 1098 emitFrameAlloc(MI); 1099 break; 1100 case TargetOpcode::ANNOTATION_LABEL: 1101 case TargetOpcode::EH_LABEL: 1102 case TargetOpcode::GC_LABEL: 1103 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1104 break; 1105 case TargetOpcode::INLINEASM: 1106 case TargetOpcode::INLINEASM_BR: 1107 EmitInlineAsm(&MI); 1108 break; 1109 case TargetOpcode::DBG_VALUE: 1110 if (isVerbose()) { 1111 if (!emitDebugValueComment(&MI, *this)) 1112 EmitInstruction(&MI); 1113 } 1114 break; 1115 case TargetOpcode::DBG_LABEL: 1116 if (isVerbose()) { 1117 if (!emitDebugLabelComment(&MI, *this)) 1118 EmitInstruction(&MI); 1119 } 1120 break; 1121 case TargetOpcode::IMPLICIT_DEF: 1122 if (isVerbose()) emitImplicitDef(&MI); 1123 break; 1124 case TargetOpcode::KILL: 1125 if (isVerbose()) emitKill(&MI, *this); 1126 break; 1127 default: 1128 EmitInstruction(&MI); 1129 break; 1130 } 1131 1132 // If there is a post-instruction symbol, emit a label for it here. 1133 if (MCSymbol *S = MI.getPostInstrSymbol()) 1134 OutStreamer->EmitLabel(S); 1135 1136 if (ShouldPrintDebugScopes) { 1137 for (const HandlerInfo &HI : Handlers) { 1138 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1139 HI.TimerGroupName, HI.TimerGroupDescription, 1140 TimePassesIsEnabled); 1141 HI.Handler->endInstruction(); 1142 } 1143 } 1144 } 1145 1146 EmitBasicBlockEnd(MBB); 1147 } 1148 1149 EmittedInsts += NumInstsInFunction; 1150 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1151 MF->getFunction().getSubprogram(), 1152 &MF->front()); 1153 R << ore::NV("NumInstructions", NumInstsInFunction) 1154 << " instructions in function"; 1155 ORE->emit(R); 1156 1157 // If the function is empty and the object file uses .subsections_via_symbols, 1158 // then we need to emit *something* to the function body to prevent the 1159 // labels from collapsing together. Just emit a noop. 1160 // Similarly, don't emit empty functions on Windows either. It can lead to 1161 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1162 // after linking, causing the kernel not to load the binary: 1163 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1164 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1165 const Triple &TT = TM.getTargetTriple(); 1166 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1167 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1168 MCInst Noop; 1169 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1170 1171 // Targets can opt-out of emitting the noop here by leaving the opcode 1172 // unspecified. 1173 if (Noop.getOpcode()) { 1174 OutStreamer->AddComment("avoids zero-length function"); 1175 emitNops(1); 1176 } 1177 } 1178 1179 const Function &F = MF->getFunction(); 1180 for (const auto &BB : F) { 1181 if (!BB.hasAddressTaken()) 1182 continue; 1183 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1184 if (Sym->isDefined()) 1185 continue; 1186 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1187 OutStreamer->EmitLabel(Sym); 1188 } 1189 1190 // Emit target-specific gunk after the function body. 1191 EmitFunctionBodyEnd(); 1192 1193 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1194 MAI->hasDotTypeDotSizeDirective()) { 1195 // Create a symbol for the end of function. 1196 CurrentFnEnd = createTempSymbol("func_end"); 1197 OutStreamer->EmitLabel(CurrentFnEnd); 1198 } 1199 1200 // If the target wants a .size directive for the size of the function, emit 1201 // it. 1202 if (MAI->hasDotTypeDotSizeDirective()) { 1203 // We can get the size as difference between the function label and the 1204 // temp label. 1205 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1206 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1207 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1208 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1209 } 1210 1211 for (const HandlerInfo &HI : Handlers) { 1212 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1213 HI.TimerGroupDescription, TimePassesIsEnabled); 1214 HI.Handler->markFunctionEnd(); 1215 } 1216 1217 // Print out jump tables referenced by the function. 1218 EmitJumpTableInfo(); 1219 1220 // Emit post-function debug and/or EH information. 1221 for (const HandlerInfo &HI : Handlers) { 1222 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1223 HI.TimerGroupDescription, TimePassesIsEnabled); 1224 HI.Handler->endFunction(MF); 1225 } 1226 1227 // Emit section containing stack size metadata. 1228 emitStackSizeSection(*MF); 1229 1230 emitPatchableFunctionEntries(); 1231 1232 if (isVerbose()) 1233 OutStreamer->GetCommentOS() << "-- End function\n"; 1234 1235 OutStreamer->AddBlankLine(); 1236 } 1237 1238 /// Compute the number of Global Variables that uses a Constant. 1239 static unsigned getNumGlobalVariableUses(const Constant *C) { 1240 if (!C) 1241 return 0; 1242 1243 if (isa<GlobalVariable>(C)) 1244 return 1; 1245 1246 unsigned NumUses = 0; 1247 for (auto *CU : C->users()) 1248 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1249 1250 return NumUses; 1251 } 1252 1253 /// Only consider global GOT equivalents if at least one user is a 1254 /// cstexpr inside an initializer of another global variables. Also, don't 1255 /// handle cstexpr inside instructions. During global variable emission, 1256 /// candidates are skipped and are emitted later in case at least one cstexpr 1257 /// isn't replaced by a PC relative GOT entry access. 1258 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1259 unsigned &NumGOTEquivUsers) { 1260 // Global GOT equivalents are unnamed private globals with a constant 1261 // pointer initializer to another global symbol. They must point to a 1262 // GlobalVariable or Function, i.e., as GlobalValue. 1263 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1264 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1265 !isa<GlobalValue>(GV->getOperand(0))) 1266 return false; 1267 1268 // To be a got equivalent, at least one of its users need to be a constant 1269 // expression used by another global variable. 1270 for (auto *U : GV->users()) 1271 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1272 1273 return NumGOTEquivUsers > 0; 1274 } 1275 1276 /// Unnamed constant global variables solely contaning a pointer to 1277 /// another globals variable is equivalent to a GOT table entry; it contains the 1278 /// the address of another symbol. Optimize it and replace accesses to these 1279 /// "GOT equivalents" by using the GOT entry for the final global instead. 1280 /// Compute GOT equivalent candidates among all global variables to avoid 1281 /// emitting them if possible later on, after it use is replaced by a GOT entry 1282 /// access. 1283 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1284 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1285 return; 1286 1287 for (const auto &G : M.globals()) { 1288 unsigned NumGOTEquivUsers = 0; 1289 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1290 continue; 1291 1292 const MCSymbol *GOTEquivSym = getSymbol(&G); 1293 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1294 } 1295 } 1296 1297 /// Constant expressions using GOT equivalent globals may not be eligible 1298 /// for PC relative GOT entry conversion, in such cases we need to emit such 1299 /// globals we previously omitted in EmitGlobalVariable. 1300 void AsmPrinter::emitGlobalGOTEquivs() { 1301 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1302 return; 1303 1304 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1305 for (auto &I : GlobalGOTEquivs) { 1306 const GlobalVariable *GV = I.second.first; 1307 unsigned Cnt = I.second.second; 1308 if (Cnt) 1309 FailedCandidates.push_back(GV); 1310 } 1311 GlobalGOTEquivs.clear(); 1312 1313 for (auto *GV : FailedCandidates) 1314 EmitGlobalVariable(GV); 1315 } 1316 1317 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1318 const GlobalIndirectSymbol& GIS) { 1319 MCSymbol *Name = getSymbol(&GIS); 1320 1321 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1322 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1323 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1324 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1325 else 1326 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1327 1328 bool IsFunction = GIS.getValueType()->isFunctionTy(); 1329 1330 // Treat bitcasts of functions as functions also. This is important at least 1331 // on WebAssembly where object and function addresses can't alias each other. 1332 if (!IsFunction) 1333 if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) 1334 if (CE->getOpcode() == Instruction::BitCast) 1335 IsFunction = 1336 CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); 1337 1338 // Set the symbol type to function if the alias has a function type. 1339 // This affects codegen when the aliasee is not a function. 1340 if (IsFunction) 1341 OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) 1342 ? MCSA_ELF_TypeIndFunction 1343 : MCSA_ELF_TypeFunction); 1344 1345 EmitVisibility(Name, GIS.getVisibility()); 1346 1347 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1348 1349 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1350 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1351 1352 // Emit the directives as assignments aka .set: 1353 OutStreamer->EmitAssignment(Name, Expr); 1354 1355 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1356 // If the aliasee does not correspond to a symbol in the output, i.e. the 1357 // alias is not of an object or the aliased object is private, then set the 1358 // size of the alias symbol from the type of the alias. We don't do this in 1359 // other situations as the alias and aliasee having differing types but same 1360 // size may be intentional. 1361 const GlobalObject *BaseObject = GA->getBaseObject(); 1362 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1363 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1364 const DataLayout &DL = M.getDataLayout(); 1365 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1366 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1367 } 1368 } 1369 } 1370 1371 void AsmPrinter::emitRemarksSection(RemarkStreamer &RS) { 1372 if (!RS.needsSection()) 1373 return; 1374 1375 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer(); 1376 1377 Optional<SmallString<128>> Filename; 1378 if (Optional<StringRef> FilenameRef = RS.getFilename()) { 1379 Filename = *FilenameRef; 1380 sys::fs::make_absolute(*Filename); 1381 assert(!Filename->empty() && "The filename can't be empty."); 1382 } 1383 1384 std::string Buf; 1385 raw_string_ostream OS(Buf); 1386 std::unique_ptr<remarks::MetaSerializer> MetaSerializer = 1387 Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) 1388 : RemarkSerializer.metaSerializer(OS); 1389 MetaSerializer->emit(); 1390 1391 // Switch to the remarks section. 1392 MCSection *RemarksSection = 1393 OutContext.getObjectFileInfo()->getRemarksSection(); 1394 OutStreamer->SwitchSection(RemarksSection); 1395 1396 OutStreamer->EmitBinaryData(OS.str()); 1397 } 1398 1399 bool AsmPrinter::doFinalization(Module &M) { 1400 // Set the MachineFunction to nullptr so that we can catch attempted 1401 // accesses to MF specific features at the module level and so that 1402 // we can conditionalize accesses based on whether or not it is nullptr. 1403 MF = nullptr; 1404 1405 // Gather all GOT equivalent globals in the module. We really need two 1406 // passes over the globals: one to compute and another to avoid its emission 1407 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1408 // where the got equivalent shows up before its use. 1409 computeGlobalGOTEquivs(M); 1410 1411 // Emit global variables. 1412 for (const auto &G : M.globals()) 1413 EmitGlobalVariable(&G); 1414 1415 // Emit remaining GOT equivalent globals. 1416 emitGlobalGOTEquivs(); 1417 1418 // Emit visibility info for declarations 1419 for (const Function &F : M) { 1420 if (!F.isDeclarationForLinker()) 1421 continue; 1422 GlobalValue::VisibilityTypes V = F.getVisibility(); 1423 if (V == GlobalValue::DefaultVisibility) 1424 continue; 1425 1426 MCSymbol *Name = getSymbol(&F); 1427 EmitVisibility(Name, V, false); 1428 } 1429 1430 // Emit the remarks section contents. 1431 // FIXME: Figure out when is the safest time to emit this section. It should 1432 // not come after debug info. 1433 if (RemarkStreamer *RS = M.getContext().getRemarkStreamer()) 1434 emitRemarksSection(*RS); 1435 1436 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1437 1438 TLOF.emitModuleMetadata(*OutStreamer, M); 1439 1440 if (TM.getTargetTriple().isOSBinFormatELF()) { 1441 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1442 1443 // Output stubs for external and common global variables. 1444 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1445 if (!Stubs.empty()) { 1446 OutStreamer->SwitchSection(TLOF.getDataSection()); 1447 const DataLayout &DL = M.getDataLayout(); 1448 1449 EmitAlignment(Align(DL.getPointerSize())); 1450 for (const auto &Stub : Stubs) { 1451 OutStreamer->EmitLabel(Stub.first); 1452 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1453 DL.getPointerSize()); 1454 } 1455 } 1456 } 1457 1458 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1459 MachineModuleInfoCOFF &MMICOFF = 1460 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1461 1462 // Output stubs for external and common global variables. 1463 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1464 if (!Stubs.empty()) { 1465 const DataLayout &DL = M.getDataLayout(); 1466 1467 for (const auto &Stub : Stubs) { 1468 SmallString<256> SectionName = StringRef(".rdata$"); 1469 SectionName += Stub.first->getName(); 1470 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1471 SectionName, 1472 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1473 COFF::IMAGE_SCN_LNK_COMDAT, 1474 SectionKind::getReadOnly(), Stub.first->getName(), 1475 COFF::IMAGE_COMDAT_SELECT_ANY)); 1476 EmitAlignment(Align(DL.getPointerSize())); 1477 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1478 OutStreamer->EmitLabel(Stub.first); 1479 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1480 DL.getPointerSize()); 1481 } 1482 } 1483 } 1484 1485 // Finalize debug and EH information. 1486 for (const HandlerInfo &HI : Handlers) { 1487 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1488 HI.TimerGroupDescription, TimePassesIsEnabled); 1489 HI.Handler->endModule(); 1490 } 1491 Handlers.clear(); 1492 DD = nullptr; 1493 1494 // If the target wants to know about weak references, print them all. 1495 if (MAI->getWeakRefDirective()) { 1496 // FIXME: This is not lazy, it would be nice to only print weak references 1497 // to stuff that is actually used. Note that doing so would require targets 1498 // to notice uses in operands (due to constant exprs etc). This should 1499 // happen with the MC stuff eventually. 1500 1501 // Print out module-level global objects here. 1502 for (const auto &GO : M.global_objects()) { 1503 if (!GO.hasExternalWeakLinkage()) 1504 continue; 1505 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1506 } 1507 } 1508 1509 // Print aliases in topological order, that is, for each alias a = b, 1510 // b must be printed before a. 1511 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1512 // such an order to generate correct TOC information. 1513 SmallVector<const GlobalAlias *, 16> AliasStack; 1514 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1515 for (const auto &Alias : M.aliases()) { 1516 for (const GlobalAlias *Cur = &Alias; Cur; 1517 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1518 if (!AliasVisited.insert(Cur).second) 1519 break; 1520 AliasStack.push_back(Cur); 1521 } 1522 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1523 emitGlobalIndirectSymbol(M, *AncestorAlias); 1524 AliasStack.clear(); 1525 } 1526 for (const auto &IFunc : M.ifuncs()) 1527 emitGlobalIndirectSymbol(M, IFunc); 1528 1529 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1530 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1531 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1532 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1533 MP->finishAssembly(M, *MI, *this); 1534 1535 // Emit llvm.ident metadata in an '.ident' directive. 1536 EmitModuleIdents(M); 1537 1538 // Emit bytes for llvm.commandline metadata. 1539 EmitModuleCommandLines(M); 1540 1541 // Emit __morestack address if needed for indirect calls. 1542 if (MMI->usesMorestackAddr()) { 1543 unsigned Align = 1; 1544 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1545 getDataLayout(), SectionKind::getReadOnly(), 1546 /*C=*/nullptr, Align); 1547 OutStreamer->SwitchSection(ReadOnlySection); 1548 1549 MCSymbol *AddrSymbol = 1550 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1551 OutStreamer->EmitLabel(AddrSymbol); 1552 1553 unsigned PtrSize = MAI->getCodePointerSize(); 1554 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1555 PtrSize); 1556 } 1557 1558 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1559 // split-stack is used. 1560 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1561 OutStreamer->SwitchSection( 1562 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1563 if (MMI->hasNosplitStack()) 1564 OutStreamer->SwitchSection( 1565 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1566 } 1567 1568 // If we don't have any trampolines, then we don't require stack memory 1569 // to be executable. Some targets have a directive to declare this. 1570 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1571 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1572 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1573 OutStreamer->SwitchSection(S); 1574 1575 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1576 // Emit /EXPORT: flags for each exported global as necessary. 1577 const auto &TLOF = getObjFileLowering(); 1578 std::string Flags; 1579 1580 for (const GlobalValue &GV : M.global_values()) { 1581 raw_string_ostream OS(Flags); 1582 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1583 OS.flush(); 1584 if (!Flags.empty()) { 1585 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1586 OutStreamer->EmitBytes(Flags); 1587 } 1588 Flags.clear(); 1589 } 1590 1591 // Emit /INCLUDE: flags for each used global as necessary. 1592 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1593 assert(LU->hasInitializer() && 1594 "expected llvm.used to have an initializer"); 1595 assert(isa<ArrayType>(LU->getValueType()) && 1596 "expected llvm.used to be an array type"); 1597 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1598 for (const Value *Op : A->operands()) { 1599 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1600 // Global symbols with internal or private linkage are not visible to 1601 // the linker, and thus would cause an error when the linker tried to 1602 // preserve the symbol due to the `/include:` directive. 1603 if (GV->hasLocalLinkage()) 1604 continue; 1605 1606 raw_string_ostream OS(Flags); 1607 TLOF.emitLinkerFlagsForUsed(OS, GV); 1608 OS.flush(); 1609 1610 if (!Flags.empty()) { 1611 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1612 OutStreamer->EmitBytes(Flags); 1613 } 1614 Flags.clear(); 1615 } 1616 } 1617 } 1618 } 1619 1620 if (TM.Options.EmitAddrsig) { 1621 // Emit address-significance attributes for all globals. 1622 OutStreamer->EmitAddrsig(); 1623 for (const GlobalValue &GV : M.global_values()) 1624 if (!GV.use_empty() && !GV.isThreadLocal() && 1625 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1626 !GV.hasAtLeastLocalUnnamedAddr()) 1627 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1628 } 1629 1630 // Emit symbol partition specifications (ELF only). 1631 if (TM.getTargetTriple().isOSBinFormatELF()) { 1632 unsigned UniqueID = 0; 1633 for (const GlobalValue &GV : M.global_values()) { 1634 if (!GV.hasPartition() || GV.isDeclarationForLinker() || 1635 GV.getVisibility() != GlobalValue::DefaultVisibility) 1636 continue; 1637 1638 OutStreamer->SwitchSection(OutContext.getELFSection( 1639 ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); 1640 OutStreamer->EmitBytes(GV.getPartition()); 1641 OutStreamer->EmitZeros(1); 1642 OutStreamer->EmitValue( 1643 MCSymbolRefExpr::create(getSymbol(&GV), OutContext), 1644 MAI->getCodePointerSize()); 1645 } 1646 } 1647 1648 // Allow the target to emit any magic that it wants at the end of the file, 1649 // after everything else has gone out. 1650 EmitEndOfAsmFile(M); 1651 1652 MMI = nullptr; 1653 1654 OutStreamer->Finish(); 1655 OutStreamer->reset(); 1656 OwnedMLI.reset(); 1657 OwnedMDT.reset(); 1658 1659 return false; 1660 } 1661 1662 MCSymbol *AsmPrinter::getCurExceptionSym() { 1663 if (!CurExceptionSym) 1664 CurExceptionSym = createTempSymbol("exception"); 1665 return CurExceptionSym; 1666 } 1667 1668 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1669 this->MF = &MF; 1670 const Function &F = MF.getFunction(); 1671 1672 // Get the function symbol. 1673 if (MAI->needsFunctionDescriptors()) { 1674 assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" 1675 " supported on AIX."); 1676 assert(CurrentFnDescSym && "The function descriptor symbol needs to be" 1677 " initalized first."); 1678 1679 // Get the function entry point symbol. 1680 CurrentFnSym = 1681 OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); 1682 1683 MCSectionXCOFF *FnEntryPointSec = 1684 cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); 1685 // Set the containing csect. 1686 cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); 1687 } else { 1688 CurrentFnSym = getSymbol(&MF.getFunction()); 1689 } 1690 1691 CurrentFnSymForSize = CurrentFnSym; 1692 CurrentFnBegin = nullptr; 1693 CurExceptionSym = nullptr; 1694 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1695 if (F.hasFnAttribute("patchable-function-entry") || 1696 needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1697 MF.getTarget().Options.EmitStackSizeSection) { 1698 CurrentFnBegin = createTempSymbol("func_begin"); 1699 if (NeedsLocalForSize) 1700 CurrentFnSymForSize = CurrentFnBegin; 1701 } 1702 1703 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1704 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1705 MBFI = (PSI && PSI->hasProfileSummary()) ? 1706 // ORE conditionally computes MBFI. If available, use it, otherwise 1707 // request it. 1708 (ORE->getBFI() ? ORE->getBFI() : 1709 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI()) : 1710 nullptr; 1711 } 1712 1713 namespace { 1714 1715 // Keep track the alignment, constpool entries per Section. 1716 struct SectionCPs { 1717 MCSection *S; 1718 unsigned Alignment; 1719 SmallVector<unsigned, 4> CPEs; 1720 1721 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1722 }; 1723 1724 } // end anonymous namespace 1725 1726 /// EmitConstantPool - Print to the current output stream assembly 1727 /// representations of the constants in the constant pool MCP. This is 1728 /// used to print out constants which have been "spilled to memory" by 1729 /// the code generator. 1730 void AsmPrinter::EmitConstantPool() { 1731 const MachineConstantPool *MCP = MF->getConstantPool(); 1732 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1733 if (CP.empty()) return; 1734 1735 // Calculate sections for constant pool entries. We collect entries to go into 1736 // the same section together to reduce amount of section switch statements. 1737 SmallVector<SectionCPs, 4> CPSections; 1738 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1739 const MachineConstantPoolEntry &CPE = CP[i]; 1740 unsigned Align = CPE.getAlignment(); 1741 1742 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1743 1744 const Constant *C = nullptr; 1745 if (!CPE.isMachineConstantPoolEntry()) 1746 C = CPE.Val.ConstVal; 1747 1748 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1749 Kind, C, Align); 1750 1751 // The number of sections are small, just do a linear search from the 1752 // last section to the first. 1753 bool Found = false; 1754 unsigned SecIdx = CPSections.size(); 1755 while (SecIdx != 0) { 1756 if (CPSections[--SecIdx].S == S) { 1757 Found = true; 1758 break; 1759 } 1760 } 1761 if (!Found) { 1762 SecIdx = CPSections.size(); 1763 CPSections.push_back(SectionCPs(S, Align)); 1764 } 1765 1766 if (Align > CPSections[SecIdx].Alignment) 1767 CPSections[SecIdx].Alignment = Align; 1768 CPSections[SecIdx].CPEs.push_back(i); 1769 } 1770 1771 // Now print stuff into the calculated sections. 1772 const MCSection *CurSection = nullptr; 1773 unsigned Offset = 0; 1774 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1775 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1776 unsigned CPI = CPSections[i].CPEs[j]; 1777 MCSymbol *Sym = GetCPISymbol(CPI); 1778 if (!Sym->isUndefined()) 1779 continue; 1780 1781 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1782 cast<MCSymbolXCOFF>(Sym)->setContainingCsect( 1783 cast<MCSectionXCOFF>(CPSections[i].S)); 1784 } 1785 1786 if (CurSection != CPSections[i].S) { 1787 OutStreamer->SwitchSection(CPSections[i].S); 1788 EmitAlignment(Align(CPSections[i].Alignment)); 1789 CurSection = CPSections[i].S; 1790 Offset = 0; 1791 } 1792 1793 MachineConstantPoolEntry CPE = CP[CPI]; 1794 1795 // Emit inter-object padding for alignment. 1796 unsigned AlignMask = CPE.getAlignment() - 1; 1797 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1798 OutStreamer->EmitZeros(NewOffset - Offset); 1799 1800 Type *Ty = CPE.getType(); 1801 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1802 1803 OutStreamer->EmitLabel(Sym); 1804 if (CPE.isMachineConstantPoolEntry()) 1805 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1806 else 1807 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1808 } 1809 } 1810 } 1811 1812 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1813 /// by the current function to the current output stream. 1814 void AsmPrinter::EmitJumpTableInfo() { 1815 const DataLayout &DL = MF->getDataLayout(); 1816 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1817 if (!MJTI) return; 1818 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1819 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1820 if (JT.empty()) return; 1821 1822 // Pick the directive to use to print the jump table entries, and switch to 1823 // the appropriate section. 1824 const Function &F = MF->getFunction(); 1825 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1826 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1827 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1828 F); 1829 if (JTInDiffSection) { 1830 // Drop it in the readonly section. 1831 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1832 OutStreamer->SwitchSection(ReadOnlySection); 1833 } 1834 1835 EmitAlignment(Align(MJTI->getEntryAlignment(DL))); 1836 1837 // Jump tables in code sections are marked with a data_region directive 1838 // where that's supported. 1839 if (!JTInDiffSection) 1840 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1841 1842 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1843 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1844 1845 // If this jump table was deleted, ignore it. 1846 if (JTBBs.empty()) continue; 1847 1848 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1849 /// emit a .set directive for each unique entry. 1850 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1851 MAI->doesSetDirectiveSuppressReloc()) { 1852 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1853 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1854 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1855 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1856 const MachineBasicBlock *MBB = JTBBs[ii]; 1857 if (!EmittedSets.insert(MBB).second) 1858 continue; 1859 1860 // .set LJTSet, LBB32-base 1861 const MCExpr *LHS = 1862 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1863 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1864 MCBinaryExpr::createSub(LHS, Base, 1865 OutContext)); 1866 } 1867 } 1868 1869 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1870 // before each jump table. The first label is never referenced, but tells 1871 // the assembler and linker the extents of the jump table object. The 1872 // second label is actually referenced by the code. 1873 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1874 // FIXME: This doesn't have to have any specific name, just any randomly 1875 // named and numbered local label started with 'l' would work. Simplify 1876 // GetJTISymbol. 1877 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1878 1879 MCSymbol* JTISymbol = GetJTISymbol(JTI); 1880 if (TM.getTargetTriple().isOSBinFormatXCOFF()) { 1881 cast<MCSymbolXCOFF>(JTISymbol)->setContainingCsect( 1882 cast<MCSectionXCOFF>(TLOF.getSectionForJumpTable(F, TM))); 1883 } 1884 OutStreamer->EmitLabel(JTISymbol); 1885 1886 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1887 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1888 } 1889 if (!JTInDiffSection) 1890 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1891 } 1892 1893 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1894 /// current stream. 1895 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1896 const MachineBasicBlock *MBB, 1897 unsigned UID) const { 1898 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1899 const MCExpr *Value = nullptr; 1900 switch (MJTI->getEntryKind()) { 1901 case MachineJumpTableInfo::EK_Inline: 1902 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1903 case MachineJumpTableInfo::EK_Custom32: 1904 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1905 MJTI, MBB, UID, OutContext); 1906 break; 1907 case MachineJumpTableInfo::EK_BlockAddress: 1908 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1909 // .word LBB123 1910 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1911 break; 1912 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1913 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1914 // with a relocation as gp-relative, e.g.: 1915 // .gprel32 LBB123 1916 MCSymbol *MBBSym = MBB->getSymbol(); 1917 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1918 return; 1919 } 1920 1921 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1922 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1923 // with a relocation as gp-relative, e.g.: 1924 // .gpdword LBB123 1925 MCSymbol *MBBSym = MBB->getSymbol(); 1926 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1927 return; 1928 } 1929 1930 case MachineJumpTableInfo::EK_LabelDifference32: { 1931 // Each entry is the address of the block minus the address of the jump 1932 // table. This is used for PIC jump tables where gprel32 is not supported. 1933 // e.g.: 1934 // .word LBB123 - LJTI1_2 1935 // If the .set directive avoids relocations, this is emitted as: 1936 // .set L4_5_set_123, LBB123 - LJTI1_2 1937 // .word L4_5_set_123 1938 if (MAI->doesSetDirectiveSuppressReloc()) { 1939 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1940 OutContext); 1941 break; 1942 } 1943 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1944 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1945 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1946 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1947 break; 1948 } 1949 } 1950 1951 assert(Value && "Unknown entry kind!"); 1952 1953 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1954 OutStreamer->EmitValue(Value, EntrySize); 1955 } 1956 1957 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1958 /// special global used by LLVM. If so, emit it and return true, otherwise 1959 /// do nothing and return false. 1960 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1961 if (GV->getName() == "llvm.used") { 1962 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1963 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1964 return true; 1965 } 1966 1967 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1968 if (GV->getSection() == "llvm.metadata" || 1969 GV->hasAvailableExternallyLinkage()) 1970 return true; 1971 1972 if (!GV->hasAppendingLinkage()) return false; 1973 1974 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1975 1976 if (GV->getName() == "llvm.global_ctors") { 1977 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1978 /* isCtor */ true); 1979 1980 return true; 1981 } 1982 1983 if (GV->getName() == "llvm.global_dtors") { 1984 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1985 /* isCtor */ false); 1986 1987 return true; 1988 } 1989 1990 report_fatal_error("unknown special variable"); 1991 } 1992 1993 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1994 /// global in the specified llvm.used list. 1995 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1996 // Should be an array of 'i8*'. 1997 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1998 const GlobalValue *GV = 1999 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 2000 if (GV) 2001 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 2002 } 2003 } 2004 2005 namespace { 2006 2007 struct Structor { 2008 int Priority = 0; 2009 Constant *Func = nullptr; 2010 GlobalValue *ComdatKey = nullptr; 2011 2012 Structor() = default; 2013 }; 2014 2015 } // end anonymous namespace 2016 2017 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 2018 /// priority. 2019 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 2020 bool isCtor) { 2021 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the 2022 // init priority. 2023 if (!isa<ConstantArray>(List)) return; 2024 2025 // Sanity check the structors list. 2026 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 2027 if (!InitList) return; // Not an array! 2028 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 2029 if (!ETy || ETy->getNumElements() != 3 || 2030 !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 2031 !isa<PointerType>(ETy->getTypeAtIndex(1U)) || 2032 !isa<PointerType>(ETy->getTypeAtIndex(2U))) 2033 return; // Not (int, ptr, ptr). 2034 2035 // Gather the structors in a form that's convenient for sorting by priority. 2036 SmallVector<Structor, 8> Structors; 2037 for (Value *O : InitList->operands()) { 2038 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 2039 if (!CS) continue; // Malformed. 2040 if (CS->getOperand(1)->isNullValue()) 2041 break; // Found a null terminator, skip the rest. 2042 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 2043 if (!Priority) continue; // Malformed. 2044 Structors.push_back(Structor()); 2045 Structor &S = Structors.back(); 2046 S.Priority = Priority->getLimitedValue(65535); 2047 S.Func = CS->getOperand(1); 2048 if (!CS->getOperand(2)->isNullValue()) 2049 S.ComdatKey = 2050 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 2051 } 2052 2053 // Emit the function pointers in the target-specific order 2054 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { 2055 return L.Priority < R.Priority; 2056 }); 2057 const Align Align = DL.getPointerPrefAlignment(); 2058 for (Structor &S : Structors) { 2059 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 2060 const MCSymbol *KeySym = nullptr; 2061 if (GlobalValue *GV = S.ComdatKey) { 2062 if (GV->isDeclarationForLinker()) 2063 // If the associated variable is not defined in this module 2064 // (it might be available_externally, or have been an 2065 // available_externally definition that was dropped by the 2066 // EliminateAvailableExternally pass), some other TU 2067 // will provide its dynamic initializer. 2068 continue; 2069 2070 KeySym = getSymbol(GV); 2071 } 2072 MCSection *OutputSection = 2073 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 2074 : Obj.getStaticDtorSection(S.Priority, KeySym)); 2075 OutStreamer->SwitchSection(OutputSection); 2076 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 2077 EmitAlignment(Align); 2078 EmitXXStructor(DL, S.Func); 2079 } 2080 } 2081 2082 void AsmPrinter::EmitModuleIdents(Module &M) { 2083 if (!MAI->hasIdentDirective()) 2084 return; 2085 2086 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2087 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2088 const MDNode *N = NMD->getOperand(i); 2089 assert(N->getNumOperands() == 1 && 2090 "llvm.ident metadata entry can have only one operand"); 2091 const MDString *S = cast<MDString>(N->getOperand(0)); 2092 OutStreamer->EmitIdent(S->getString()); 2093 } 2094 } 2095 } 2096 2097 void AsmPrinter::EmitModuleCommandLines(Module &M) { 2098 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); 2099 if (!CommandLine) 2100 return; 2101 2102 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); 2103 if (!NMD || !NMD->getNumOperands()) 2104 return; 2105 2106 OutStreamer->PushSection(); 2107 OutStreamer->SwitchSection(CommandLine); 2108 OutStreamer->EmitZeros(1); 2109 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2110 const MDNode *N = NMD->getOperand(i); 2111 assert(N->getNumOperands() == 1 && 2112 "llvm.commandline metadata entry can have only one operand"); 2113 const MDString *S = cast<MDString>(N->getOperand(0)); 2114 OutStreamer->EmitBytes(S->getString()); 2115 OutStreamer->EmitZeros(1); 2116 } 2117 OutStreamer->PopSection(); 2118 } 2119 2120 //===--------------------------------------------------------------------===// 2121 // Emission and print routines 2122 // 2123 2124 /// Emit a byte directive and value. 2125 /// 2126 void AsmPrinter::emitInt8(int Value) const { 2127 OutStreamer->EmitIntValue(Value, 1); 2128 } 2129 2130 /// Emit a short directive and value. 2131 void AsmPrinter::emitInt16(int Value) const { 2132 OutStreamer->EmitIntValue(Value, 2); 2133 } 2134 2135 /// Emit a long directive and value. 2136 void AsmPrinter::emitInt32(int Value) const { 2137 OutStreamer->EmitIntValue(Value, 4); 2138 } 2139 2140 /// Emit a long long directive and value. 2141 void AsmPrinter::emitInt64(uint64_t Value) const { 2142 OutStreamer->EmitIntValue(Value, 8); 2143 } 2144 2145 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2146 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2147 /// .set if it avoids relocations. 2148 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2149 unsigned Size) const { 2150 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2151 } 2152 2153 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2154 /// where the size in bytes of the directive is specified by Size and Label 2155 /// specifies the label. This implicitly uses .set if it is available. 2156 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2157 unsigned Size, 2158 bool IsSectionRelative) const { 2159 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2160 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2161 if (Size > 4) 2162 OutStreamer->EmitZeros(Size - 4); 2163 return; 2164 } 2165 2166 // Emit Label+Offset (or just Label if Offset is zero) 2167 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2168 if (Offset) 2169 Expr = MCBinaryExpr::createAdd( 2170 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2171 2172 OutStreamer->EmitValue(Expr, Size); 2173 } 2174 2175 //===----------------------------------------------------------------------===// 2176 2177 // EmitAlignment - Emit an alignment directive to the specified power of 2178 // two boundary. If a global value is specified, and if that global has 2179 // an explicit alignment requested, it will override the alignment request 2180 // if required for correctness. 2181 void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { 2182 if (GV) 2183 Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); 2184 2185 if (Alignment == Align(1)) 2186 return; // 1-byte aligned: no need to emit alignment. 2187 2188 if (getCurrentSection()->getKind().isText()) 2189 OutStreamer->EmitCodeAlignment(Alignment.value()); 2190 else 2191 OutStreamer->EmitValueToAlignment(Alignment.value()); 2192 } 2193 2194 //===----------------------------------------------------------------------===// 2195 // Constant emission. 2196 //===----------------------------------------------------------------------===// 2197 2198 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2199 MCContext &Ctx = OutContext; 2200 2201 if (CV->isNullValue() || isa<UndefValue>(CV)) 2202 return MCConstantExpr::create(0, Ctx); 2203 2204 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2205 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2206 2207 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2208 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2209 2210 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2211 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2212 2213 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2214 if (!CE) { 2215 llvm_unreachable("Unknown constant value to lower!"); 2216 } 2217 2218 switch (CE->getOpcode()) { 2219 default: 2220 // If the code isn't optimized, there may be outstanding folding 2221 // opportunities. Attempt to fold the expression using DataLayout as a 2222 // last resort before giving up. 2223 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2224 if (C != CE) 2225 return lowerConstant(C); 2226 2227 // Otherwise report the problem to the user. 2228 { 2229 std::string S; 2230 raw_string_ostream OS(S); 2231 OS << "Unsupported expression in static initializer: "; 2232 CE->printAsOperand(OS, /*PrintType=*/false, 2233 !MF ? nullptr : MF->getFunction().getParent()); 2234 report_fatal_error(OS.str()); 2235 } 2236 case Instruction::GetElementPtr: { 2237 // Generate a symbolic expression for the byte address 2238 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2239 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2240 2241 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2242 if (!OffsetAI) 2243 return Base; 2244 2245 int64_t Offset = OffsetAI.getSExtValue(); 2246 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2247 Ctx); 2248 } 2249 2250 case Instruction::Trunc: 2251 // We emit the value and depend on the assembler to truncate the generated 2252 // expression properly. This is important for differences between 2253 // blockaddress labels. Since the two labels are in the same function, it 2254 // is reasonable to treat their delta as a 32-bit value. 2255 LLVM_FALLTHROUGH; 2256 case Instruction::BitCast: 2257 return lowerConstant(CE->getOperand(0)); 2258 2259 case Instruction::IntToPtr: { 2260 const DataLayout &DL = getDataLayout(); 2261 2262 // Handle casts to pointers by changing them into casts to the appropriate 2263 // integer type. This promotes constant folding and simplifies this code. 2264 Constant *Op = CE->getOperand(0); 2265 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2266 false/*ZExt*/); 2267 return lowerConstant(Op); 2268 } 2269 2270 case Instruction::PtrToInt: { 2271 const DataLayout &DL = getDataLayout(); 2272 2273 // Support only foldable casts to/from pointers that can be eliminated by 2274 // changing the pointer to the appropriately sized integer type. 2275 Constant *Op = CE->getOperand(0); 2276 Type *Ty = CE->getType(); 2277 2278 const MCExpr *OpExpr = lowerConstant(Op); 2279 2280 // We can emit the pointer value into this slot if the slot is an 2281 // integer slot equal to the size of the pointer. 2282 // 2283 // If the pointer is larger than the resultant integer, then 2284 // as with Trunc just depend on the assembler to truncate it. 2285 if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) 2286 return OpExpr; 2287 2288 // Otherwise the pointer is smaller than the resultant integer, mask off 2289 // the high bits so we are sure to get a proper truncation if the input is 2290 // a constant expr. 2291 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2292 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2293 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2294 } 2295 2296 case Instruction::Sub: { 2297 GlobalValue *LHSGV; 2298 APInt LHSOffset; 2299 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2300 getDataLayout())) { 2301 GlobalValue *RHSGV; 2302 APInt RHSOffset; 2303 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2304 getDataLayout())) { 2305 const MCExpr *RelocExpr = 2306 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2307 if (!RelocExpr) 2308 RelocExpr = MCBinaryExpr::createSub( 2309 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2310 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2311 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2312 if (Addend != 0) 2313 RelocExpr = MCBinaryExpr::createAdd( 2314 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2315 return RelocExpr; 2316 } 2317 } 2318 } 2319 // else fallthrough 2320 LLVM_FALLTHROUGH; 2321 2322 // The MC library also has a right-shift operator, but it isn't consistently 2323 // signed or unsigned between different targets. 2324 case Instruction::Add: 2325 case Instruction::Mul: 2326 case Instruction::SDiv: 2327 case Instruction::SRem: 2328 case Instruction::Shl: 2329 case Instruction::And: 2330 case Instruction::Or: 2331 case Instruction::Xor: { 2332 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2333 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2334 switch (CE->getOpcode()) { 2335 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2336 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2337 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2338 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2339 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2340 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2341 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2342 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2343 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2344 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2345 } 2346 } 2347 } 2348 } 2349 2350 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2351 AsmPrinter &AP, 2352 const Constant *BaseCV = nullptr, 2353 uint64_t Offset = 0); 2354 2355 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2356 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2357 2358 /// isRepeatedByteSequence - Determine whether the given value is 2359 /// composed of a repeated sequence of identical bytes and return the 2360 /// byte value. If it is not a repeated sequence, return -1. 2361 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2362 StringRef Data = V->getRawDataValues(); 2363 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2364 char C = Data[0]; 2365 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2366 if (Data[i] != C) return -1; 2367 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2368 } 2369 2370 /// isRepeatedByteSequence - Determine whether the given value is 2371 /// composed of a repeated sequence of identical bytes and return the 2372 /// byte value. If it is not a repeated sequence, return -1. 2373 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2374 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2375 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2376 assert(Size % 8 == 0); 2377 2378 // Extend the element to take zero padding into account. 2379 APInt Value = CI->getValue().zextOrSelf(Size); 2380 if (!Value.isSplat(8)) 2381 return -1; 2382 2383 return Value.zextOrTrunc(8).getZExtValue(); 2384 } 2385 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2386 // Make sure all array elements are sequences of the same repeated 2387 // byte. 2388 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2389 Constant *Op0 = CA->getOperand(0); 2390 int Byte = isRepeatedByteSequence(Op0, DL); 2391 if (Byte == -1) 2392 return -1; 2393 2394 // All array elements must be equal. 2395 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2396 if (CA->getOperand(i) != Op0) 2397 return -1; 2398 return Byte; 2399 } 2400 2401 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2402 return isRepeatedByteSequence(CDS); 2403 2404 return -1; 2405 } 2406 2407 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2408 const ConstantDataSequential *CDS, 2409 AsmPrinter &AP) { 2410 // See if we can aggregate this into a .fill, if so, emit it as such. 2411 int Value = isRepeatedByteSequence(CDS, DL); 2412 if (Value != -1) { 2413 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2414 // Don't emit a 1-byte object as a .fill. 2415 if (Bytes > 1) 2416 return AP.OutStreamer->emitFill(Bytes, Value); 2417 } 2418 2419 // If this can be emitted with .ascii/.asciz, emit it as such. 2420 if (CDS->isString()) 2421 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2422 2423 // Otherwise, emit the values in successive locations. 2424 unsigned ElementByteSize = CDS->getElementByteSize(); 2425 if (isa<IntegerType>(CDS->getElementType())) { 2426 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2427 if (AP.isVerbose()) 2428 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2429 CDS->getElementAsInteger(i)); 2430 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2431 ElementByteSize); 2432 } 2433 } else { 2434 Type *ET = CDS->getElementType(); 2435 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2436 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2437 } 2438 2439 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2440 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2441 CDS->getNumElements(); 2442 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2443 if (unsigned Padding = Size - EmittedSize) 2444 AP.OutStreamer->EmitZeros(Padding); 2445 } 2446 2447 static void emitGlobalConstantArray(const DataLayout &DL, 2448 const ConstantArray *CA, AsmPrinter &AP, 2449 const Constant *BaseCV, uint64_t Offset) { 2450 // See if we can aggregate some values. Make sure it can be 2451 // represented as a series of bytes of the constant value. 2452 int Value = isRepeatedByteSequence(CA, DL); 2453 2454 if (Value != -1) { 2455 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2456 AP.OutStreamer->emitFill(Bytes, Value); 2457 } 2458 else { 2459 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2460 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2461 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2462 } 2463 } 2464 } 2465 2466 static void emitGlobalConstantVector(const DataLayout &DL, 2467 const ConstantVector *CV, AsmPrinter &AP) { 2468 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2469 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2470 2471 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2472 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2473 CV->getType()->getNumElements(); 2474 if (unsigned Padding = Size - EmittedSize) 2475 AP.OutStreamer->EmitZeros(Padding); 2476 } 2477 2478 static void emitGlobalConstantStruct(const DataLayout &DL, 2479 const ConstantStruct *CS, AsmPrinter &AP, 2480 const Constant *BaseCV, uint64_t Offset) { 2481 // Print the fields in successive locations. Pad to align if needed! 2482 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2483 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2484 uint64_t SizeSoFar = 0; 2485 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2486 const Constant *Field = CS->getOperand(i); 2487 2488 // Print the actual field value. 2489 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2490 2491 // Check if padding is needed and insert one or more 0s. 2492 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2493 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2494 - Layout->getElementOffset(i)) - FieldSize; 2495 SizeSoFar += FieldSize + PadSize; 2496 2497 // Insert padding - this may include padding to increase the size of the 2498 // current field up to the ABI size (if the struct is not packed) as well 2499 // as padding to ensure that the next field starts at the right offset. 2500 AP.OutStreamer->EmitZeros(PadSize); 2501 } 2502 assert(SizeSoFar == Layout->getSizeInBytes() && 2503 "Layout of constant struct may be incorrect!"); 2504 } 2505 2506 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2507 assert(ET && "Unknown float type"); 2508 APInt API = APF.bitcastToAPInt(); 2509 2510 // First print a comment with what we think the original floating-point value 2511 // should have been. 2512 if (AP.isVerbose()) { 2513 SmallString<8> StrVal; 2514 APF.toString(StrVal); 2515 ET->print(AP.OutStreamer->GetCommentOS()); 2516 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2517 } 2518 2519 // Now iterate through the APInt chunks, emitting them in endian-correct 2520 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2521 // floats). 2522 unsigned NumBytes = API.getBitWidth() / 8; 2523 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2524 const uint64_t *p = API.getRawData(); 2525 2526 // PPC's long double has odd notions of endianness compared to how LLVM 2527 // handles it: p[0] goes first for *big* endian on PPC. 2528 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2529 int Chunk = API.getNumWords() - 1; 2530 2531 if (TrailingBytes) 2532 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2533 2534 for (; Chunk >= 0; --Chunk) 2535 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2536 } else { 2537 unsigned Chunk; 2538 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2539 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2540 2541 if (TrailingBytes) 2542 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2543 } 2544 2545 // Emit the tail padding for the long double. 2546 const DataLayout &DL = AP.getDataLayout(); 2547 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2548 } 2549 2550 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2551 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2552 } 2553 2554 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2555 const DataLayout &DL = AP.getDataLayout(); 2556 unsigned BitWidth = CI->getBitWidth(); 2557 2558 // Copy the value as we may massage the layout for constants whose bit width 2559 // is not a multiple of 64-bits. 2560 APInt Realigned(CI->getValue()); 2561 uint64_t ExtraBits = 0; 2562 unsigned ExtraBitsSize = BitWidth & 63; 2563 2564 if (ExtraBitsSize) { 2565 // The bit width of the data is not a multiple of 64-bits. 2566 // The extra bits are expected to be at the end of the chunk of the memory. 2567 // Little endian: 2568 // * Nothing to be done, just record the extra bits to emit. 2569 // Big endian: 2570 // * Record the extra bits to emit. 2571 // * Realign the raw data to emit the chunks of 64-bits. 2572 if (DL.isBigEndian()) { 2573 // Basically the structure of the raw data is a chunk of 64-bits cells: 2574 // 0 1 BitWidth / 64 2575 // [chunk1][chunk2] ... [chunkN]. 2576 // The most significant chunk is chunkN and it should be emitted first. 2577 // However, due to the alignment issue chunkN contains useless bits. 2578 // Realign the chunks so that they contain only useless information: 2579 // ExtraBits 0 1 (BitWidth / 64) - 1 2580 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2581 ExtraBits = Realigned.getRawData()[0] & 2582 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2583 Realigned.lshrInPlace(ExtraBitsSize); 2584 } else 2585 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2586 } 2587 2588 // We don't expect assemblers to support integer data directives 2589 // for more than 64 bits, so we emit the data in at most 64-bit 2590 // quantities at a time. 2591 const uint64_t *RawData = Realigned.getRawData(); 2592 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2593 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2594 AP.OutStreamer->EmitIntValue(Val, 8); 2595 } 2596 2597 if (ExtraBitsSize) { 2598 // Emit the extra bits after the 64-bits chunks. 2599 2600 // Emit a directive that fills the expected size. 2601 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2602 Size -= (BitWidth / 64) * 8; 2603 assert(Size && Size * 8 >= ExtraBitsSize && 2604 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2605 == ExtraBits && "Directive too small for extra bits."); 2606 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2607 } 2608 } 2609 2610 /// Transform a not absolute MCExpr containing a reference to a GOT 2611 /// equivalent global, by a target specific GOT pc relative access to the 2612 /// final symbol. 2613 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2614 const Constant *BaseCst, 2615 uint64_t Offset) { 2616 // The global @foo below illustrates a global that uses a got equivalent. 2617 // 2618 // @bar = global i32 42 2619 // @gotequiv = private unnamed_addr constant i32* @bar 2620 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2621 // i64 ptrtoint (i32* @foo to i64)) 2622 // to i32) 2623 // 2624 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2625 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2626 // form: 2627 // 2628 // foo = cstexpr, where 2629 // cstexpr := <gotequiv> - "." + <cst> 2630 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2631 // 2632 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2633 // 2634 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2635 // gotpcrelcst := <offset from @foo base> + <cst> 2636 MCValue MV; 2637 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2638 return; 2639 const MCSymbolRefExpr *SymA = MV.getSymA(); 2640 if (!SymA) 2641 return; 2642 2643 // Check that GOT equivalent symbol is cached. 2644 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2645 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2646 return; 2647 2648 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2649 if (!BaseGV) 2650 return; 2651 2652 // Check for a valid base symbol 2653 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2654 const MCSymbolRefExpr *SymB = MV.getSymB(); 2655 2656 if (!SymB || BaseSym != &SymB->getSymbol()) 2657 return; 2658 2659 // Make sure to match: 2660 // 2661 // gotpcrelcst := <offset from @foo base> + <cst> 2662 // 2663 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2664 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2665 // if the target knows how to encode it. 2666 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2667 if (GOTPCRelCst < 0) 2668 return; 2669 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2670 return; 2671 2672 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2673 // 2674 // bar: 2675 // .long 42 2676 // gotequiv: 2677 // .quad bar 2678 // foo: 2679 // .long gotequiv - "." + <cst> 2680 // 2681 // is replaced by the target specific equivalent to: 2682 // 2683 // bar: 2684 // .long 42 2685 // foo: 2686 // .long bar@GOTPCREL+<gotpcrelcst> 2687 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2688 const GlobalVariable *GV = Result.first; 2689 int NumUses = (int)Result.second; 2690 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2691 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2692 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2693 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2694 2695 // Update GOT equivalent usage information 2696 --NumUses; 2697 if (NumUses >= 0) 2698 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2699 } 2700 2701 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2702 AsmPrinter &AP, const Constant *BaseCV, 2703 uint64_t Offset) { 2704 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2705 2706 // Globals with sub-elements such as combinations of arrays and structs 2707 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2708 // constant symbol base and the current position with BaseCV and Offset. 2709 if (!BaseCV && CV->hasOneUse()) 2710 BaseCV = dyn_cast<Constant>(CV->user_back()); 2711 2712 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2713 return AP.OutStreamer->EmitZeros(Size); 2714 2715 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2716 switch (Size) { 2717 case 1: 2718 case 2: 2719 case 4: 2720 case 8: 2721 if (AP.isVerbose()) 2722 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2723 CI->getZExtValue()); 2724 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2725 return; 2726 default: 2727 emitGlobalConstantLargeInt(CI, AP); 2728 return; 2729 } 2730 } 2731 2732 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2733 return emitGlobalConstantFP(CFP, AP); 2734 2735 if (isa<ConstantPointerNull>(CV)) { 2736 AP.OutStreamer->EmitIntValue(0, Size); 2737 return; 2738 } 2739 2740 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2741 return emitGlobalConstantDataSequential(DL, CDS, AP); 2742 2743 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2744 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2745 2746 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2747 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2748 2749 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2750 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2751 // vectors). 2752 if (CE->getOpcode() == Instruction::BitCast) 2753 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2754 2755 if (Size > 8) { 2756 // If the constant expression's size is greater than 64-bits, then we have 2757 // to emit the value in chunks. Try to constant fold the value and emit it 2758 // that way. 2759 Constant *New = ConstantFoldConstant(CE, DL); 2760 if (New && New != CE) 2761 return emitGlobalConstantImpl(DL, New, AP); 2762 } 2763 } 2764 2765 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2766 return emitGlobalConstantVector(DL, V, AP); 2767 2768 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2769 // thread the streamer with EmitValue. 2770 const MCExpr *ME = AP.lowerConstant(CV); 2771 2772 // Since lowerConstant already folded and got rid of all IR pointer and 2773 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2774 // directly. 2775 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2776 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2777 2778 AP.OutStreamer->EmitValue(ME, Size); 2779 } 2780 2781 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2782 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2783 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2784 if (Size) 2785 emitGlobalConstantImpl(DL, CV, *this); 2786 else if (MAI->hasSubsectionsViaSymbols()) { 2787 // If the global has zero size, emit a single byte so that two labels don't 2788 // look like they are at the same location. 2789 OutStreamer->EmitIntValue(0, 1); 2790 } 2791 } 2792 2793 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2794 // Target doesn't support this yet! 2795 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2796 } 2797 2798 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2799 if (Offset > 0) 2800 OS << '+' << Offset; 2801 else if (Offset < 0) 2802 OS << Offset; 2803 } 2804 2805 void AsmPrinter::emitNops(unsigned N) { 2806 MCInst Nop; 2807 MF->getSubtarget().getInstrInfo()->getNoop(Nop); 2808 for (; N; --N) 2809 EmitToStreamer(*OutStreamer, Nop); 2810 } 2811 2812 //===----------------------------------------------------------------------===// 2813 // Symbol Lowering Routines. 2814 //===----------------------------------------------------------------------===// 2815 2816 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2817 return OutContext.createTempSymbol(Name, true); 2818 } 2819 2820 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2821 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2822 } 2823 2824 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2825 return MMI->getAddrLabelSymbol(BB); 2826 } 2827 2828 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2829 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2830 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { 2831 const MachineConstantPoolEntry &CPE = 2832 MF->getConstantPool()->getConstants()[CPID]; 2833 if (!CPE.isMachineConstantPoolEntry()) { 2834 const DataLayout &DL = MF->getDataLayout(); 2835 SectionKind Kind = CPE.getSectionKind(&DL); 2836 const Constant *C = CPE.Val.ConstVal; 2837 unsigned Align = CPE.Alignment; 2838 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2839 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2840 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2841 if (Sym->isUndefined()) 2842 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2843 return Sym; 2844 } 2845 } 2846 } 2847 } 2848 2849 const DataLayout &DL = getDataLayout(); 2850 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2851 "CPI" + Twine(getFunctionNumber()) + "_" + 2852 Twine(CPID)); 2853 } 2854 2855 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2856 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2857 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2858 } 2859 2860 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2861 /// FIXME: privatize to AsmPrinter. 2862 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2863 const DataLayout &DL = getDataLayout(); 2864 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2865 Twine(getFunctionNumber()) + "_" + 2866 Twine(UID) + "_set_" + Twine(MBBID)); 2867 } 2868 2869 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2870 StringRef Suffix) const { 2871 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2872 } 2873 2874 /// Return the MCSymbol for the specified ExternalSymbol. 2875 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2876 SmallString<60> NameStr; 2877 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2878 return OutContext.getOrCreateSymbol(NameStr); 2879 } 2880 2881 /// PrintParentLoopComment - Print comments about parent loops of this one. 2882 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2883 unsigned FunctionNumber) { 2884 if (!Loop) return; 2885 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2886 OS.indent(Loop->getLoopDepth()*2) 2887 << "Parent Loop BB" << FunctionNumber << "_" 2888 << Loop->getHeader()->getNumber() 2889 << " Depth=" << Loop->getLoopDepth() << '\n'; 2890 } 2891 2892 /// PrintChildLoopComment - Print comments about child loops within 2893 /// the loop for this basic block, with nesting. 2894 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2895 unsigned FunctionNumber) { 2896 // Add child loop information 2897 for (const MachineLoop *CL : *Loop) { 2898 OS.indent(CL->getLoopDepth()*2) 2899 << "Child Loop BB" << FunctionNumber << "_" 2900 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2901 << '\n'; 2902 PrintChildLoopComment(OS, CL, FunctionNumber); 2903 } 2904 } 2905 2906 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2907 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2908 const MachineLoopInfo *LI, 2909 const AsmPrinter &AP) { 2910 // Add loop depth information 2911 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2912 if (!Loop) return; 2913 2914 MachineBasicBlock *Header = Loop->getHeader(); 2915 assert(Header && "No header for loop"); 2916 2917 // If this block is not a loop header, just print out what is the loop header 2918 // and return. 2919 if (Header != &MBB) { 2920 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2921 Twine(AP.getFunctionNumber())+"_" + 2922 Twine(Loop->getHeader()->getNumber())+ 2923 " Depth="+Twine(Loop->getLoopDepth())); 2924 return; 2925 } 2926 2927 // Otherwise, it is a loop header. Print out information about child and 2928 // parent loops. 2929 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2930 2931 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2932 2933 OS << "=>"; 2934 OS.indent(Loop->getLoopDepth()*2-2); 2935 2936 OS << "This "; 2937 if (Loop->empty()) 2938 OS << "Inner "; 2939 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2940 2941 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2942 } 2943 2944 /// EmitBasicBlockStart - This method prints the label for the specified 2945 /// MachineBasicBlock, an alignment (if present) and a comment describing 2946 /// it if appropriate. 2947 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { 2948 // End the previous funclet and start a new one. 2949 if (MBB.isEHFuncletEntry()) { 2950 for (const HandlerInfo &HI : Handlers) { 2951 HI.Handler->endFunclet(); 2952 HI.Handler->beginFunclet(MBB); 2953 } 2954 } 2955 2956 // Emit an alignment directive for this block, if needed. 2957 const Align Alignment = MBB.getAlignment(); 2958 if (Alignment != Align(1)) 2959 EmitAlignment(Alignment); 2960 2961 // If the block has its address taken, emit any labels that were used to 2962 // reference the block. It is possible that there is more than one label 2963 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2964 // the references were generated. 2965 if (MBB.hasAddressTaken()) { 2966 const BasicBlock *BB = MBB.getBasicBlock(); 2967 if (isVerbose()) 2968 OutStreamer->AddComment("Block address taken"); 2969 2970 // MBBs can have their address taken as part of CodeGen without having 2971 // their corresponding BB's address taken in IR 2972 if (BB->hasAddressTaken()) 2973 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2974 OutStreamer->EmitLabel(Sym); 2975 } 2976 2977 // Print some verbose block comments. 2978 if (isVerbose()) { 2979 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2980 if (BB->hasName()) { 2981 BB->printAsOperand(OutStreamer->GetCommentOS(), 2982 /*PrintType=*/false, BB->getModule()); 2983 OutStreamer->GetCommentOS() << '\n'; 2984 } 2985 } 2986 2987 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2988 emitBasicBlockLoopComments(MBB, MLI, *this); 2989 } 2990 2991 // Print the main label for the block. 2992 if (MBB.pred_empty() || 2993 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && 2994 !MBB.hasLabelMustBeEmitted())) { 2995 if (isVerbose()) { 2996 // NOTE: Want this comment at start of line, don't emit with AddComment. 2997 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2998 false); 2999 } 3000 } else { 3001 if (isVerbose() && MBB.hasLabelMustBeEmitted()) 3002 OutStreamer->AddComment("Label of block must be emitted"); 3003 OutStreamer->EmitLabel(MBB.getSymbol()); 3004 } 3005 } 3006 3007 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {} 3008 3009 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 3010 bool IsDefinition) const { 3011 MCSymbolAttr Attr = MCSA_Invalid; 3012 3013 switch (Visibility) { 3014 default: break; 3015 case GlobalValue::HiddenVisibility: 3016 if (IsDefinition) 3017 Attr = MAI->getHiddenVisibilityAttr(); 3018 else 3019 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 3020 break; 3021 case GlobalValue::ProtectedVisibility: 3022 Attr = MAI->getProtectedVisibilityAttr(); 3023 break; 3024 } 3025 3026 if (Attr != MCSA_Invalid) 3027 OutStreamer->EmitSymbolAttribute(Sym, Attr); 3028 } 3029 3030 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 3031 /// exactly one predecessor and the control transfer mechanism between 3032 /// the predecessor and this block is a fall-through. 3033 bool AsmPrinter:: 3034 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 3035 // If this is a landing pad, it isn't a fall through. If it has no preds, 3036 // then nothing falls through to it. 3037 if (MBB->isEHPad() || MBB->pred_empty()) 3038 return false; 3039 3040 // If there isn't exactly one predecessor, it can't be a fall through. 3041 if (MBB->pred_size() > 1) 3042 return false; 3043 3044 // The predecessor has to be immediately before this block. 3045 MachineBasicBlock *Pred = *MBB->pred_begin(); 3046 if (!Pred->isLayoutSuccessor(MBB)) 3047 return false; 3048 3049 // If the block is completely empty, then it definitely does fall through. 3050 if (Pred->empty()) 3051 return true; 3052 3053 // Check the terminators in the previous blocks 3054 for (const auto &MI : Pred->terminators()) { 3055 // If it is not a simple branch, we are in a table somewhere. 3056 if (!MI.isBranch() || MI.isIndirectBranch()) 3057 return false; 3058 3059 // If we are the operands of one of the branches, this is not a fall 3060 // through. Note that targets with delay slots will usually bundle 3061 // terminators with the delay slot instruction. 3062 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 3063 if (OP->isJTI()) 3064 return false; 3065 if (OP->isMBB() && OP->getMBB() == MBB) 3066 return false; 3067 } 3068 } 3069 3070 return true; 3071 } 3072 3073 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 3074 if (!S.usesMetadata()) 3075 return nullptr; 3076 3077 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 3078 gcp_map_type::iterator GCPI = GCMap.find(&S); 3079 if (GCPI != GCMap.end()) 3080 return GCPI->second.get(); 3081 3082 auto Name = S.getName(); 3083 3084 for (GCMetadataPrinterRegistry::iterator 3085 I = GCMetadataPrinterRegistry::begin(), 3086 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 3087 if (Name == I->getName()) { 3088 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 3089 GMP->S = &S; 3090 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 3091 return IterBool.first->second.get(); 3092 } 3093 3094 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3095 } 3096 3097 void AsmPrinter::emitStackMaps(StackMaps &SM) { 3098 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 3099 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 3100 bool NeedsDefault = false; 3101 if (MI->begin() == MI->end()) 3102 // No GC strategy, use the default format. 3103 NeedsDefault = true; 3104 else 3105 for (auto &I : *MI) { 3106 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 3107 if (MP->emitStackMaps(SM, *this)) 3108 continue; 3109 // The strategy doesn't have printer or doesn't emit custom stack maps. 3110 // Use the default format. 3111 NeedsDefault = true; 3112 } 3113 3114 if (NeedsDefault) 3115 SM.serializeToStackMapSection(); 3116 } 3117 3118 /// Pin vtable to this file. 3119 AsmPrinterHandler::~AsmPrinterHandler() = default; 3120 3121 void AsmPrinterHandler::markFunctionEnd() {} 3122 3123 // In the binary's "xray_instr_map" section, an array of these function entries 3124 // describes each instrumentation point. When XRay patches your code, the index 3125 // into this table will be given to your handler as a patch point identifier. 3126 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3127 const MCSymbol *CurrentFnSym) const { 3128 Out->EmitSymbolValue(Sled, Bytes); 3129 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3130 auto Kind8 = static_cast<uint8_t>(Kind); 3131 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3132 Out->EmitBinaryData( 3133 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3134 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3135 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3136 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3137 Out->EmitZeros(Padding); 3138 } 3139 3140 void AsmPrinter::emitXRayTable() { 3141 if (Sleds.empty()) 3142 return; 3143 3144 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3145 const Function &F = MF->getFunction(); 3146 MCSection *InstMap = nullptr; 3147 MCSection *FnSledIndex = nullptr; 3148 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3149 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3150 assert(Associated != nullptr); 3151 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3152 std::string GroupName; 3153 if (F.hasComdat()) { 3154 Flags |= ELF::SHF_GROUP; 3155 GroupName = F.getComdat()->getName(); 3156 } 3157 3158 auto UniqueID = ++XRayFnUniqueID; 3159 InstMap = 3160 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3161 GroupName, UniqueID, Associated); 3162 FnSledIndex = 3163 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3164 GroupName, UniqueID, Associated); 3165 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3166 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3167 SectionKind::getReadOnlyWithRel()); 3168 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3169 SectionKind::getReadOnlyWithRel()); 3170 } else { 3171 llvm_unreachable("Unsupported target"); 3172 } 3173 3174 auto WordSizeBytes = MAI->getCodePointerSize(); 3175 3176 // Now we switch to the instrumentation map section. Because this is done 3177 // per-function, we are able to create an index entry that will represent the 3178 // range of sleds associated with a function. 3179 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3180 OutStreamer->SwitchSection(InstMap); 3181 OutStreamer->EmitLabel(SledsStart); 3182 for (const auto &Sled : Sleds) 3183 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3184 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3185 OutStreamer->EmitLabel(SledsEnd); 3186 3187 // We then emit a single entry in the index per function. We use the symbols 3188 // that bound the instrumentation map as the range for a specific function. 3189 // Each entry here will be 2 * word size aligned, as we're writing down two 3190 // pointers. This should work for both 32-bit and 64-bit platforms. 3191 OutStreamer->SwitchSection(FnSledIndex); 3192 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3193 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3194 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3195 OutStreamer->SwitchSection(PrevSection); 3196 Sleds.clear(); 3197 } 3198 3199 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3200 SledKind Kind, uint8_t Version) { 3201 const Function &F = MI.getMF()->getFunction(); 3202 auto Attr = F.getFnAttribute("function-instrument"); 3203 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3204 bool AlwaysInstrument = 3205 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3206 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3207 Kind = SledKind::LOG_ARGS_ENTER; 3208 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3209 AlwaysInstrument, &F, Version}); 3210 } 3211 3212 void AsmPrinter::emitPatchableFunctionEntries() { 3213 const Function &F = MF->getFunction(); 3214 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; 3215 (void)F.getFnAttribute("patchable-function-prefix") 3216 .getValueAsString() 3217 .getAsInteger(10, PatchableFunctionPrefix); 3218 (void)F.getFnAttribute("patchable-function-entry") 3219 .getValueAsString() 3220 .getAsInteger(10, PatchableFunctionEntry); 3221 if (!PatchableFunctionPrefix && !PatchableFunctionEntry) 3222 return; 3223 const unsigned PointerSize = getPointerSize(); 3224 if (TM.getTargetTriple().isOSBinFormatELF()) { 3225 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; 3226 3227 // As of binutils 2.33, GNU as does not support section flag "o" or linkage 3228 // field "unique". Use SHF_LINK_ORDER if we are using the integrated 3229 // assembler. 3230 if (MAI->useIntegratedAssembler()) { 3231 Flags |= ELF::SHF_LINK_ORDER; 3232 std::string GroupName; 3233 if (F.hasComdat()) { 3234 Flags |= ELF::SHF_GROUP; 3235 GroupName = F.getComdat()->getName(); 3236 } 3237 MCSection *Section = getObjFileLowering().SectionForGlobal(&F, TM); 3238 unsigned UniqueID = 3239 PatchableFunctionEntryID 3240 .try_emplace(Section, PatchableFunctionEntryID.size()) 3241 .first->second; 3242 OutStreamer->SwitchSection(OutContext.getELFSection( 3243 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, 3244 GroupName, UniqueID, cast<MCSymbolELF>(CurrentFnSym))); 3245 } else { 3246 OutStreamer->SwitchSection(OutContext.getELFSection( 3247 "__patchable_function_entries", ELF::SHT_PROGBITS, Flags)); 3248 } 3249 EmitAlignment(Align(PointerSize)); 3250 OutStreamer->EmitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize); 3251 } 3252 } 3253 3254 uint16_t AsmPrinter::getDwarfVersion() const { 3255 return OutStreamer->getContext().getDwarfVersion(); 3256 } 3257 3258 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3259 OutStreamer->getContext().setDwarfVersion(Version); 3260 } 3261