1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "CodeViewDebug.h" 16 #include "DwarfDebug.h" 17 #include "DwarfException.h" 18 #include "WinException.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/CodeGen/Analysis.h" 22 #include "llvm/CodeGen/GCMetadataPrinter.h" 23 #include "llvm/CodeGen/MachineConstantPool.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineLoopInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCContext.h" 37 #include "llvm/MC/MCExpr.h" 38 #include "llvm/MC/MCInst.h" 39 #include "llvm/MC/MCSection.h" 40 #include "llvm/MC/MCStreamer.h" 41 #include "llvm/MC/MCSymbolELF.h" 42 #include "llvm/MC/MCValue.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/Format.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/TargetRegistry.h" 47 #include "llvm/Support/Timer.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetLowering.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Target/TargetRegisterInfo.h" 53 #include "llvm/Target/TargetSubtargetInfo.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "asm-printer" 57 58 static const char *const DWARFGroupName = "DWARF Emission"; 59 static const char *const DbgTimerName = "Debug Info Emission"; 60 static const char *const EHTimerName = "DWARF Exception Writer"; 61 static const char *const CodeViewLineTablesGroupName = "CodeView Line Tables"; 62 63 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 64 65 char AsmPrinter::ID = 0; 66 67 typedef DenseMap<GCStrategy*, std::unique_ptr<GCMetadataPrinter>> gcp_map_type; 68 static gcp_map_type &getGCMap(void *&P) { 69 if (!P) 70 P = new gcp_map_type(); 71 return *(gcp_map_type*)P; 72 } 73 74 75 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 76 /// value in log2 form. This rounds up to the preferred alignment if possible 77 /// and legal. 78 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 79 unsigned InBits = 0) { 80 unsigned NumBits = 0; 81 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 82 NumBits = DL.getPreferredAlignmentLog(GVar); 83 84 // If InBits is specified, round it to it. 85 if (InBits > NumBits) 86 NumBits = InBits; 87 88 // If the GV has a specified alignment, take it into account. 89 if (GV->getAlignment() == 0) 90 return NumBits; 91 92 unsigned GVAlign = Log2_32(GV->getAlignment()); 93 94 // If the GVAlign is larger than NumBits, or if we are required to obey 95 // NumBits because the GV has an assigned section, obey it. 96 if (GVAlign > NumBits || GV->hasSection()) 97 NumBits = GVAlign; 98 return NumBits; 99 } 100 101 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 102 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 103 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), 104 LastMI(nullptr), LastFn(0), Counter(~0U) { 105 DD = nullptr; 106 MMI = nullptr; 107 LI = nullptr; 108 MF = nullptr; 109 CurExceptionSym = CurrentFnSym = CurrentFnSymForSize = nullptr; 110 CurrentFnBegin = nullptr; 111 CurrentFnEnd = nullptr; 112 GCMetadataPrinters = nullptr; 113 VerboseAsm = OutStreamer->isVerboseAsm(); 114 } 115 116 AsmPrinter::~AsmPrinter() { 117 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 118 119 if (GCMetadataPrinters) { 120 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 121 122 delete &GCMap; 123 GCMetadataPrinters = nullptr; 124 } 125 } 126 127 /// getFunctionNumber - Return a unique ID for the current function. 128 /// 129 unsigned AsmPrinter::getFunctionNumber() const { 130 return MF->getFunctionNumber(); 131 } 132 133 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 134 return *TM.getObjFileLowering(); 135 } 136 137 const DataLayout &AsmPrinter::getDataLayout() const { 138 return MMI->getModule()->getDataLayout(); 139 } 140 141 // Do not use the cached DataLayout because some client use it without a Module 142 // (llmv-dsymutil, llvm-dwarfdump). 143 unsigned AsmPrinter::getPointerSize() const { return TM.getPointerSize(); } 144 145 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 146 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 147 return MF->getSubtarget<MCSubtargetInfo>(); 148 } 149 150 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 151 S.EmitInstruction(Inst, getSubtargetInfo()); 152 } 153 154 StringRef AsmPrinter::getTargetTriple() const { 155 return TM.getTargetTriple().str(); 156 } 157 158 /// getCurrentSection() - Return the current section we are emitting to. 159 const MCSection *AsmPrinter::getCurrentSection() const { 160 return OutStreamer->getCurrentSection().first; 161 } 162 163 164 165 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 166 AU.setPreservesAll(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 AU.addRequired<MachineModuleInfo>(); 169 AU.addRequired<GCModuleInfo>(); 170 if (isVerbose()) 171 AU.addRequired<MachineLoopInfo>(); 172 } 173 174 bool AsmPrinter::doInitialization(Module &M) { 175 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 176 177 // Initialize TargetLoweringObjectFile. 178 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 179 .Initialize(OutContext, TM); 180 181 OutStreamer->InitSections(false); 182 183 Mang = new Mangler(); 184 185 // Emit the version-min deplyment target directive if needed. 186 // 187 // FIXME: If we end up with a collection of these sorts of Darwin-specific 188 // or ELF-specific things, it may make sense to have a platform helper class 189 // that will work with the target helper class. For now keep it here, as the 190 // alternative is duplicated code in each of the target asm printers that 191 // use the directive, where it would need the same conditionalization 192 // anyway. 193 Triple TT(getTargetTriple()); 194 // If there is a version specified, Major will be non-zero. 195 if (TT.isOSDarwin() && TT.getOSMajorVersion() != 0) { 196 unsigned Major, Minor, Update; 197 MCVersionMinType VersionType; 198 if (TT.isWatchOS()) { 199 VersionType = MCVM_WatchOSVersionMin; 200 TT.getWatchOSVersion(Major, Minor, Update); 201 } else if (TT.isTvOS()) { 202 VersionType = MCVM_TvOSVersionMin; 203 TT.getiOSVersion(Major, Minor, Update); 204 } else if (TT.isMacOSX()) { 205 VersionType = MCVM_OSXVersionMin; 206 if (!TT.getMacOSXVersion(Major, Minor, Update)) 207 Major = 0; 208 } else { 209 VersionType = MCVM_IOSVersionMin; 210 TT.getiOSVersion(Major, Minor, Update); 211 } 212 if (Major != 0) 213 OutStreamer->EmitVersionMin(VersionType, Major, Minor, Update); 214 } 215 216 // Allow the target to emit any magic that it wants at the start of the file. 217 EmitStartOfAsmFile(M); 218 219 // Very minimal debug info. It is ignored if we emit actual debug info. If we 220 // don't, this at least helps the user find where a global came from. 221 if (MAI->hasSingleParameterDotFile()) { 222 // .file "foo.c" 223 OutStreamer->EmitFileDirective(M.getModuleIdentifier()); 224 } 225 226 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 227 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 228 for (auto &I : *MI) 229 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 230 MP->beginAssembly(M, *MI, *this); 231 232 // Emit module-level inline asm if it exists. 233 if (!M.getModuleInlineAsm().empty()) { 234 // We're at the module level. Construct MCSubtarget from the default CPU 235 // and target triple. 236 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 237 TM.getTargetTriple().str(), TM.getTargetCPU(), 238 TM.getTargetFeatureString())); 239 OutStreamer->AddComment("Start of file scope inline assembly"); 240 OutStreamer->AddBlankLine(); 241 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 242 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 243 OutStreamer->AddComment("End of file scope inline assembly"); 244 OutStreamer->AddBlankLine(); 245 } 246 247 if (MAI->doesSupportDebugInformation()) { 248 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 249 if (EmitCodeView && TM.getTargetTriple().isKnownWindowsMSVCEnvironment()) { 250 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 251 DbgTimerName, 252 CodeViewLineTablesGroupName)); 253 } 254 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 255 DD = new DwarfDebug(this, &M); 256 DD->beginModule(); 257 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DWARFGroupName)); 258 } 259 } 260 261 EHStreamer *ES = nullptr; 262 switch (MAI->getExceptionHandlingType()) { 263 case ExceptionHandling::None: 264 break; 265 case ExceptionHandling::SjLj: 266 case ExceptionHandling::DwarfCFI: 267 ES = new DwarfCFIException(this); 268 break; 269 case ExceptionHandling::ARM: 270 ES = new ARMException(this); 271 break; 272 case ExceptionHandling::WinEH: 273 switch (MAI->getWinEHEncodingType()) { 274 default: llvm_unreachable("unsupported unwinding information encoding"); 275 case WinEH::EncodingType::Invalid: 276 break; 277 case WinEH::EncodingType::X86: 278 case WinEH::EncodingType::Itanium: 279 ES = new WinException(this); 280 break; 281 } 282 break; 283 } 284 if (ES) 285 Handlers.push_back(HandlerInfo(ES, EHTimerName, DWARFGroupName)); 286 return false; 287 } 288 289 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 290 if (!MAI.hasWeakDefCanBeHiddenDirective()) 291 return false; 292 293 return canBeOmittedFromSymbolTable(GV); 294 } 295 296 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 297 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 298 switch (Linkage) { 299 case GlobalValue::CommonLinkage: 300 case GlobalValue::LinkOnceAnyLinkage: 301 case GlobalValue::LinkOnceODRLinkage: 302 case GlobalValue::WeakAnyLinkage: 303 case GlobalValue::WeakODRLinkage: 304 if (MAI->hasWeakDefDirective()) { 305 // .globl _foo 306 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 307 308 if (!canBeHidden(GV, *MAI)) 309 // .weak_definition _foo 310 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 311 else 312 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 313 } else if (MAI->hasLinkOnceDirective()) { 314 // .globl _foo 315 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 316 //NOTE: linkonce is handled by the section the symbol was assigned to. 317 } else { 318 // .weak _foo 319 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 320 } 321 return; 322 case GlobalValue::ExternalLinkage: 323 // If external, declare as a global symbol: .globl _foo 324 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 325 return; 326 case GlobalValue::PrivateLinkage: 327 case GlobalValue::InternalLinkage: 328 return; 329 case GlobalValue::AppendingLinkage: 330 case GlobalValue::AvailableExternallyLinkage: 331 case GlobalValue::ExternalWeakLinkage: 332 llvm_unreachable("Should never emit this"); 333 } 334 llvm_unreachable("Unknown linkage type!"); 335 } 336 337 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 338 const GlobalValue *GV) const { 339 TM.getNameWithPrefix(Name, GV, *Mang); 340 } 341 342 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 343 return TM.getSymbol(GV, *Mang); 344 } 345 346 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 347 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 348 bool IsEmuTLSVar = TM.Options.EmulatedTLS && GV->isThreadLocal(); 349 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 350 "No emulated TLS variables in the common section"); 351 352 // Never emit TLS variable xyz in emulated TLS model. 353 // The initialization value is in __emutls_t.xyz instead of xyz. 354 if (IsEmuTLSVar) 355 return; 356 357 if (GV->hasInitializer()) { 358 // Check to see if this is a special global used by LLVM, if so, emit it. 359 if (EmitSpecialLLVMGlobal(GV)) 360 return; 361 362 // Skip the emission of global equivalents. The symbol can be emitted later 363 // on by emitGlobalGOTEquivs in case it turns out to be needed. 364 if (GlobalGOTEquivs.count(getSymbol(GV))) 365 return; 366 367 if (isVerbose()) { 368 // When printing the control variable __emutls_v.*, 369 // we don't need to print the original TLS variable name. 370 GV->printAsOperand(OutStreamer->GetCommentOS(), 371 /*PrintType=*/false, GV->getParent()); 372 OutStreamer->GetCommentOS() << '\n'; 373 } 374 } 375 376 MCSymbol *GVSym = getSymbol(GV); 377 MCSymbol *EmittedSym = GVSym; 378 // getOrCreateEmuTLSControlSym only creates the symbol with name and default attributes. 379 // GV's or GVSym's attributes will be used for the EmittedSym. 380 381 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 382 383 if (!GV->hasInitializer()) // External globals require no extra code. 384 return; 385 386 GVSym->redefineIfPossible(); 387 if (GVSym->isDefined() || GVSym->isVariable()) 388 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 389 "' is already defined"); 390 391 if (MAI->hasDotTypeDotSizeDirective()) 392 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 393 394 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 395 396 const DataLayout &DL = GV->getParent()->getDataLayout(); 397 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 398 399 // If the alignment is specified, we *must* obey it. Overaligning a global 400 // with a specified alignment is a prompt way to break globals emitted to 401 // sections and expected to be contiguous (e.g. ObjC metadata). 402 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 403 404 for (const HandlerInfo &HI : Handlers) { 405 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 406 HI.Handler->setSymbolSize(GVSym, Size); 407 } 408 409 // Handle common and BSS local symbols (.lcomm). 410 if (GVKind.isCommon() || GVKind.isBSSLocal()) { 411 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 412 unsigned Align = 1 << AlignLog; 413 414 // Handle common symbols. 415 if (GVKind.isCommon()) { 416 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 417 Align = 0; 418 419 // .comm _foo, 42, 4 420 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 421 return; 422 } 423 424 // Handle local BSS symbols. 425 if (MAI->hasMachoZeroFillDirective()) { 426 MCSection *TheSection = 427 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 428 // .zerofill __DATA, __bss, _foo, 400, 5 429 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 430 return; 431 } 432 433 // Use .lcomm only if it supports user-specified alignment. 434 // Otherwise, while it would still be correct to use .lcomm in some 435 // cases (e.g. when Align == 1), the external assembler might enfore 436 // some -unknown- default alignment behavior, which could cause 437 // spurious differences between external and integrated assembler. 438 // Prefer to simply fall back to .local / .comm in this case. 439 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 440 // .lcomm _foo, 42 441 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 442 return; 443 } 444 445 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 446 Align = 0; 447 448 // .local _foo 449 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 450 // .comm _foo, 42, 4 451 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 452 return; 453 } 454 455 MCSymbol *EmittedInitSym = GVSym; 456 457 MCSection *TheSection = 458 getObjFileLowering().SectionForGlobal(GV, GVKind, *Mang, TM); 459 460 // Handle the zerofill directive on darwin, which is a special form of BSS 461 // emission. 462 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { 463 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. 464 465 // .globl _foo 466 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 467 // .zerofill __DATA, __common, _foo, 400, 5 468 OutStreamer->EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); 469 return; 470 } 471 472 // Handle thread local data for mach-o which requires us to output an 473 // additional structure of data and mangle the original symbol so that we 474 // can reference it later. 475 // 476 // TODO: This should become an "emit thread local global" method on TLOF. 477 // All of this macho specific stuff should be sunk down into TLOFMachO and 478 // stuff like "TLSExtraDataSection" should no longer be part of the parent 479 // TLOF class. This will also make it more obvious that stuff like 480 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 481 // specific code. 482 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 483 // Emit the .tbss symbol 484 MCSymbol *MangSym = 485 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 486 487 if (GVKind.isThreadBSS()) { 488 TheSection = getObjFileLowering().getTLSBSSSection(); 489 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 490 } else if (GVKind.isThreadData()) { 491 OutStreamer->SwitchSection(TheSection); 492 493 EmitAlignment(AlignLog, GV); 494 OutStreamer->EmitLabel(MangSym); 495 496 EmitGlobalConstant(GV->getParent()->getDataLayout(), 497 GV->getInitializer()); 498 } 499 500 OutStreamer->AddBlankLine(); 501 502 // Emit the variable struct for the runtime. 503 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 504 505 OutStreamer->SwitchSection(TLVSect); 506 // Emit the linkage here. 507 EmitLinkage(GV, GVSym); 508 OutStreamer->EmitLabel(GVSym); 509 510 // Three pointers in size: 511 // - __tlv_bootstrap - used to make sure support exists 512 // - spare pointer, used when mapped by the runtime 513 // - pointer to mangled symbol above with initializer 514 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 515 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 516 PtrSize); 517 OutStreamer->EmitIntValue(0, PtrSize); 518 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 519 520 OutStreamer->AddBlankLine(); 521 return; 522 } 523 524 OutStreamer->SwitchSection(TheSection); 525 526 EmitLinkage(GV, EmittedInitSym); 527 EmitAlignment(AlignLog, GV); 528 529 OutStreamer->EmitLabel(EmittedInitSym); 530 531 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 532 533 if (MAI->hasDotTypeDotSizeDirective()) 534 // .size foo, 42 535 OutStreamer->emitELFSize(cast<MCSymbolELF>(EmittedInitSym), 536 MCConstantExpr::create(Size, OutContext)); 537 538 OutStreamer->AddBlankLine(); 539 } 540 541 /// EmitFunctionHeader - This method emits the header for the current 542 /// function. 543 void AsmPrinter::EmitFunctionHeader() { 544 // Print out constants referenced by the function 545 EmitConstantPool(); 546 547 // Print the 'header' of function. 548 const Function *F = MF->getFunction(); 549 550 OutStreamer->SwitchSection( 551 getObjFileLowering().SectionForGlobal(F, *Mang, TM)); 552 EmitVisibility(CurrentFnSym, F->getVisibility()); 553 554 EmitLinkage(F, CurrentFnSym); 555 if (MAI->hasFunctionAlignment()) 556 EmitAlignment(MF->getAlignment(), F); 557 558 if (MAI->hasDotTypeDotSizeDirective()) 559 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 560 561 if (isVerbose()) { 562 F->printAsOperand(OutStreamer->GetCommentOS(), 563 /*PrintType=*/false, F->getParent()); 564 OutStreamer->GetCommentOS() << '\n'; 565 } 566 567 // Emit the prefix data. 568 if (F->hasPrefixData()) 569 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrefixData()); 570 571 // Emit the CurrentFnSym. This is a virtual function to allow targets to 572 // do their wild and crazy things as required. 573 EmitFunctionEntryLabel(); 574 575 // If the function had address-taken blocks that got deleted, then we have 576 // references to the dangling symbols. Emit them at the start of the function 577 // so that we don't get references to undefined symbols. 578 std::vector<MCSymbol*> DeadBlockSyms; 579 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); 580 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 581 OutStreamer->AddComment("Address taken block that was later removed"); 582 OutStreamer->EmitLabel(DeadBlockSyms[i]); 583 } 584 585 if (CurrentFnBegin) { 586 if (MAI->useAssignmentForEHBegin()) { 587 MCSymbol *CurPos = OutContext.createTempSymbol(); 588 OutStreamer->EmitLabel(CurPos); 589 OutStreamer->EmitAssignment(CurrentFnBegin, 590 MCSymbolRefExpr::create(CurPos, OutContext)); 591 } else { 592 OutStreamer->EmitLabel(CurrentFnBegin); 593 } 594 } 595 596 // Emit pre-function debug and/or EH information. 597 for (const HandlerInfo &HI : Handlers) { 598 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 599 HI.Handler->beginFunction(MF); 600 } 601 602 // Emit the prologue data. 603 if (F->hasPrologueData()) 604 EmitGlobalConstant(F->getParent()->getDataLayout(), F->getPrologueData()); 605 } 606 607 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 608 /// function. This can be overridden by targets as required to do custom stuff. 609 void AsmPrinter::EmitFunctionEntryLabel() { 610 CurrentFnSym->redefineIfPossible(); 611 612 // The function label could have already been emitted if two symbols end up 613 // conflicting due to asm renaming. Detect this and emit an error. 614 if (CurrentFnSym->isVariable()) 615 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 616 "' is a protected alias"); 617 if (CurrentFnSym->isDefined()) 618 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 619 "' label emitted multiple times to assembly file"); 620 621 return OutStreamer->EmitLabel(CurrentFnSym); 622 } 623 624 /// emitComments - Pretty-print comments for instructions. 625 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { 626 const MachineFunction *MF = MI.getParent()->getParent(); 627 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 628 629 // Check for spills and reloads 630 int FI; 631 632 const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); 633 634 // We assume a single instruction only has a spill or reload, not 635 // both. 636 const MachineMemOperand *MMO; 637 if (TII->isLoadFromStackSlotPostFE(&MI, FI)) { 638 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 639 MMO = *MI.memoperands_begin(); 640 CommentOS << MMO->getSize() << "-byte Reload\n"; 641 } 642 } else if (TII->hasLoadFromStackSlot(&MI, MMO, FI)) { 643 if (FrameInfo->isSpillSlotObjectIndex(FI)) 644 CommentOS << MMO->getSize() << "-byte Folded Reload\n"; 645 } else if (TII->isStoreToStackSlotPostFE(&MI, FI)) { 646 if (FrameInfo->isSpillSlotObjectIndex(FI)) { 647 MMO = *MI.memoperands_begin(); 648 CommentOS << MMO->getSize() << "-byte Spill\n"; 649 } 650 } else if (TII->hasStoreToStackSlot(&MI, MMO, FI)) { 651 if (FrameInfo->isSpillSlotObjectIndex(FI)) 652 CommentOS << MMO->getSize() << "-byte Folded Spill\n"; 653 } 654 655 // Check for spill-induced copies 656 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) 657 CommentOS << " Reload Reuse\n"; 658 } 659 660 /// emitImplicitDef - This method emits the specified machine instruction 661 /// that is an implicit def. 662 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 663 unsigned RegNo = MI->getOperand(0).getReg(); 664 665 SmallString<128> Str; 666 raw_svector_ostream OS(Str); 667 OS << "implicit-def: " 668 << PrintReg(RegNo, MF->getSubtarget().getRegisterInfo()); 669 670 OutStreamer->AddComment(OS.str()); 671 OutStreamer->AddBlankLine(); 672 } 673 674 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 675 std::string Str; 676 raw_string_ostream OS(Str); 677 OS << "kill:"; 678 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 679 const MachineOperand &Op = MI->getOperand(i); 680 assert(Op.isReg() && "KILL instruction must have only register operands"); 681 OS << ' ' 682 << PrintReg(Op.getReg(), 683 AP.MF->getSubtarget().getRegisterInfo()) 684 << (Op.isDef() ? "<def>" : "<kill>"); 685 } 686 AP.OutStreamer->AddComment(Str); 687 AP.OutStreamer->AddBlankLine(); 688 } 689 690 /// emitDebugValueComment - This method handles the target-independent form 691 /// of DBG_VALUE, returning true if it was able to do so. A false return 692 /// means the target will need to handle MI in EmitInstruction. 693 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 694 // This code handles only the 4-operand target-independent form. 695 if (MI->getNumOperands() != 4) 696 return false; 697 698 SmallString<128> Str; 699 raw_svector_ostream OS(Str); 700 OS << "DEBUG_VALUE: "; 701 702 const DILocalVariable *V = MI->getDebugVariable(); 703 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 704 StringRef Name = SP->getDisplayName(); 705 if (!Name.empty()) 706 OS << Name << ":"; 707 } 708 OS << V->getName(); 709 710 const DIExpression *Expr = MI->getDebugExpression(); 711 if (Expr->isBitPiece()) 712 OS << " [bit_piece offset=" << Expr->getBitPieceOffset() 713 << " size=" << Expr->getBitPieceSize() << "]"; 714 OS << " <- "; 715 716 // The second operand is only an offset if it's an immediate. 717 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 718 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0; 719 720 for (unsigned i = 0; i < Expr->getNumElements(); ++i) { 721 if (Deref) { 722 // We currently don't support extra Offsets or derefs after the first 723 // one. Bail out early instead of emitting an incorrect comment 724 OS << " [complex expression]"; 725 AP.OutStreamer->emitRawComment(OS.str()); 726 return true; 727 } 728 uint64_t Op = Expr->getElement(i); 729 if (Op == dwarf::DW_OP_deref) { 730 Deref = true; 731 continue; 732 } else if (Op == dwarf::DW_OP_bit_piece) { 733 // There can't be any operands after this in a valid expression 734 break; 735 } 736 uint64_t ExtraOffset = Expr->getElement(i++); 737 if (Op == dwarf::DW_OP_plus) 738 Offset += ExtraOffset; 739 else { 740 assert(Op == dwarf::DW_OP_minus); 741 Offset -= ExtraOffset; 742 } 743 } 744 745 // Register or immediate value. Register 0 means undef. 746 if (MI->getOperand(0).isFPImm()) { 747 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 748 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 749 OS << (double)APF.convertToFloat(); 750 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 751 OS << APF.convertToDouble(); 752 } else { 753 // There is no good way to print long double. Convert a copy to 754 // double. Ah well, it's only a comment. 755 bool ignored; 756 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, 757 &ignored); 758 OS << "(long double) " << APF.convertToDouble(); 759 } 760 } else if (MI->getOperand(0).isImm()) { 761 OS << MI->getOperand(0).getImm(); 762 } else if (MI->getOperand(0).isCImm()) { 763 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 764 } else { 765 unsigned Reg; 766 if (MI->getOperand(0).isReg()) { 767 Reg = MI->getOperand(0).getReg(); 768 } else { 769 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 770 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 771 Offset += TFI->getFrameIndexReference(*AP.MF, 772 MI->getOperand(0).getIndex(), Reg); 773 Deref = true; 774 } 775 if (Reg == 0) { 776 // Suppress offset, it is not meaningful here. 777 OS << "undef"; 778 // NOTE: Want this comment at start of line, don't emit with AddComment. 779 AP.OutStreamer->emitRawComment(OS.str()); 780 return true; 781 } 782 if (Deref) 783 OS << '['; 784 OS << PrintReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 785 } 786 787 if (Deref) 788 OS << '+' << Offset << ']'; 789 790 // NOTE: Want this comment at start of line, don't emit with AddComment. 791 AP.OutStreamer->emitRawComment(OS.str()); 792 return true; 793 } 794 795 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { 796 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 797 MF->getFunction()->needsUnwindTableEntry()) 798 return CFI_M_EH; 799 800 if (MMI->hasDebugInfo()) 801 return CFI_M_Debug; 802 803 return CFI_M_None; 804 } 805 806 bool AsmPrinter::needsSEHMoves() { 807 return MAI->usesWindowsCFI() && MF->getFunction()->needsUnwindTableEntry(); 808 } 809 810 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 811 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 812 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 813 ExceptionHandlingType != ExceptionHandling::ARM) 814 return; 815 816 if (needsCFIMoves() == CFI_M_None) 817 return; 818 819 const MachineModuleInfo &MMI = MF->getMMI(); 820 const std::vector<MCCFIInstruction> &Instrs = MMI.getFrameInstructions(); 821 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 822 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 823 emitCFIInstruction(CFI); 824 } 825 826 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 827 // The operands are the MCSymbol and the frame offset of the allocation. 828 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 829 int FrameOffset = MI.getOperand(1).getImm(); 830 831 // Emit a symbol assignment. 832 OutStreamer->EmitAssignment(FrameAllocSym, 833 MCConstantExpr::create(FrameOffset, OutContext)); 834 } 835 836 /// EmitFunctionBody - This method emits the body and trailer for a 837 /// function. 838 void AsmPrinter::EmitFunctionBody() { 839 EmitFunctionHeader(); 840 841 // Emit target-specific gunk before the function body. 842 EmitFunctionBodyStart(); 843 844 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 845 846 // Print out code for the function. 847 bool HasAnyRealCode = false; 848 for (auto &MBB : *MF) { 849 // Print a label for the basic block. 850 EmitBasicBlockStart(MBB); 851 for (auto &MI : MBB) { 852 853 // Print the assembly for the instruction. 854 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 855 !MI.isDebugValue()) { 856 HasAnyRealCode = true; 857 ++EmittedInsts; 858 } 859 860 if (ShouldPrintDebugScopes) { 861 for (const HandlerInfo &HI : Handlers) { 862 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 863 TimePassesIsEnabled); 864 HI.Handler->beginInstruction(&MI); 865 } 866 } 867 868 if (isVerbose()) 869 emitComments(MI, OutStreamer->GetCommentOS()); 870 871 switch (MI.getOpcode()) { 872 case TargetOpcode::CFI_INSTRUCTION: 873 emitCFIInstruction(MI); 874 break; 875 876 case TargetOpcode::LOCAL_ESCAPE: 877 emitFrameAlloc(MI); 878 break; 879 880 case TargetOpcode::EH_LABEL: 881 case TargetOpcode::GC_LABEL: 882 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 883 break; 884 case TargetOpcode::INLINEASM: 885 EmitInlineAsm(&MI); 886 break; 887 case TargetOpcode::DBG_VALUE: 888 if (isVerbose()) { 889 if (!emitDebugValueComment(&MI, *this)) 890 EmitInstruction(&MI); 891 } 892 break; 893 case TargetOpcode::IMPLICIT_DEF: 894 if (isVerbose()) emitImplicitDef(&MI); 895 break; 896 case TargetOpcode::KILL: 897 if (isVerbose()) emitKill(&MI, *this); 898 break; 899 default: 900 EmitInstruction(&MI); 901 break; 902 } 903 904 if (ShouldPrintDebugScopes) { 905 for (const HandlerInfo &HI : Handlers) { 906 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 907 TimePassesIsEnabled); 908 HI.Handler->endInstruction(); 909 } 910 } 911 } 912 913 EmitBasicBlockEnd(MBB); 914 } 915 916 // If the function is empty and the object file uses .subsections_via_symbols, 917 // then we need to emit *something* to the function body to prevent the 918 // labels from collapsing together. Just emit a noop. 919 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode)) { 920 MCInst Noop; 921 MF->getSubtarget().getInstrInfo()->getNoopForMachoTarget(Noop); 922 OutStreamer->AddComment("avoids zero-length function"); 923 924 // Targets can opt-out of emitting the noop here by leaving the opcode 925 // unspecified. 926 if (Noop.getOpcode()) 927 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 928 } 929 930 const Function *F = MF->getFunction(); 931 for (const auto &BB : *F) { 932 if (!BB.hasAddressTaken()) 933 continue; 934 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 935 if (Sym->isDefined()) 936 continue; 937 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 938 OutStreamer->EmitLabel(Sym); 939 } 940 941 // Emit target-specific gunk after the function body. 942 EmitFunctionBodyEnd(); 943 944 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 945 MMI->hasEHFunclets() || MAI->hasDotTypeDotSizeDirective()) { 946 // Create a symbol for the end of function. 947 CurrentFnEnd = createTempSymbol("func_end"); 948 OutStreamer->EmitLabel(CurrentFnEnd); 949 } 950 951 // If the target wants a .size directive for the size of the function, emit 952 // it. 953 if (MAI->hasDotTypeDotSizeDirective()) { 954 // We can get the size as difference between the function label and the 955 // temp label. 956 const MCExpr *SizeExp = MCBinaryExpr::createSub( 957 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 958 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 959 if (auto Sym = dyn_cast<MCSymbolELF>(CurrentFnSym)) 960 OutStreamer->emitELFSize(Sym, SizeExp); 961 } 962 963 for (const HandlerInfo &HI : Handlers) { 964 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 965 HI.Handler->markFunctionEnd(); 966 } 967 968 // Print out jump tables referenced by the function. 969 EmitJumpTableInfo(); 970 971 // Emit post-function debug and/or EH information. 972 for (const HandlerInfo &HI : Handlers) { 973 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, TimePassesIsEnabled); 974 HI.Handler->endFunction(MF); 975 } 976 MMI->EndFunction(); 977 978 OutStreamer->AddBlankLine(); 979 } 980 981 /// \brief Compute the number of Global Variables that uses a Constant. 982 static unsigned getNumGlobalVariableUses(const Constant *C) { 983 if (!C) 984 return 0; 985 986 if (isa<GlobalVariable>(C)) 987 return 1; 988 989 unsigned NumUses = 0; 990 for (auto *CU : C->users()) 991 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 992 993 return NumUses; 994 } 995 996 /// \brief Only consider global GOT equivalents if at least one user is a 997 /// cstexpr inside an initializer of another global variables. Also, don't 998 /// handle cstexpr inside instructions. During global variable emission, 999 /// candidates are skipped and are emitted later in case at least one cstexpr 1000 /// isn't replaced by a PC relative GOT entry access. 1001 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1002 unsigned &NumGOTEquivUsers) { 1003 // Global GOT equivalents are unnamed private globals with a constant 1004 // pointer initializer to another global symbol. They must point to a 1005 // GlobalVariable or Function, i.e., as GlobalValue. 1006 if (!GV->hasUnnamedAddr() || !GV->hasInitializer() || !GV->isConstant() || 1007 !GV->isDiscardableIfUnused() || !dyn_cast<GlobalValue>(GV->getOperand(0))) 1008 return false; 1009 1010 // To be a got equivalent, at least one of its users need to be a constant 1011 // expression used by another global variable. 1012 for (auto *U : GV->users()) 1013 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1014 1015 return NumGOTEquivUsers > 0; 1016 } 1017 1018 /// \brief Unnamed constant global variables solely contaning a pointer to 1019 /// another globals variable is equivalent to a GOT table entry; it contains the 1020 /// the address of another symbol. Optimize it and replace accesses to these 1021 /// "GOT equivalents" by using the GOT entry for the final global instead. 1022 /// Compute GOT equivalent candidates among all global variables to avoid 1023 /// emitting them if possible later on, after it use is replaced by a GOT entry 1024 /// access. 1025 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1026 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1027 return; 1028 1029 for (const auto &G : M.globals()) { 1030 unsigned NumGOTEquivUsers = 0; 1031 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1032 continue; 1033 1034 const MCSymbol *GOTEquivSym = getSymbol(&G); 1035 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1036 } 1037 } 1038 1039 /// \brief Constant expressions using GOT equivalent globals may not be eligible 1040 /// for PC relative GOT entry conversion, in such cases we need to emit such 1041 /// globals we previously omitted in EmitGlobalVariable. 1042 void AsmPrinter::emitGlobalGOTEquivs() { 1043 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1044 return; 1045 1046 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1047 for (auto &I : GlobalGOTEquivs) { 1048 const GlobalVariable *GV = I.second.first; 1049 unsigned Cnt = I.second.second; 1050 if (Cnt) 1051 FailedCandidates.push_back(GV); 1052 } 1053 GlobalGOTEquivs.clear(); 1054 1055 for (auto *GV : FailedCandidates) 1056 EmitGlobalVariable(GV); 1057 } 1058 1059 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1060 const GlobalIndirectSymbol& GIS) { 1061 MCSymbol *Name = getSymbol(&GIS); 1062 1063 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1064 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1065 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1066 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1067 else 1068 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1069 1070 // Set the symbol type to function if the alias has a function type. 1071 // This affects codegen when the aliasee is not a function. 1072 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1073 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1074 if (isa<GlobalIFunc>(GIS)) 1075 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1076 } 1077 1078 EmitVisibility(Name, GIS.getVisibility()); 1079 1080 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1081 1082 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1083 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1084 1085 // Emit the directives as assignments aka .set: 1086 OutStreamer->EmitAssignment(Name, Expr); 1087 1088 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1089 // If the aliasee does not correspond to a symbol in the output, i.e. the 1090 // alias is not of an object or the aliased object is private, then set the 1091 // size of the alias symbol from the type of the alias. We don't do this in 1092 // other situations as the alias and aliasee having differing types but same 1093 // size may be intentional. 1094 const GlobalObject *BaseObject = GA->getBaseObject(); 1095 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1096 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1097 const DataLayout &DL = M.getDataLayout(); 1098 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1099 OutStreamer->emitELFSize(cast<MCSymbolELF>(Name), 1100 MCConstantExpr::create(Size, OutContext)); 1101 } 1102 } 1103 } 1104 1105 bool AsmPrinter::doFinalization(Module &M) { 1106 // Set the MachineFunction to nullptr so that we can catch attempted 1107 // accesses to MF specific features at the module level and so that 1108 // we can conditionalize accesses based on whether or not it is nullptr. 1109 MF = nullptr; 1110 1111 // Gather all GOT equivalent globals in the module. We really need two 1112 // passes over the globals: one to compute and another to avoid its emission 1113 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1114 // where the got equivalent shows up before its use. 1115 computeGlobalGOTEquivs(M); 1116 1117 // Emit global variables. 1118 for (const auto &G : M.globals()) 1119 EmitGlobalVariable(&G); 1120 1121 // Emit remaining GOT equivalent globals. 1122 emitGlobalGOTEquivs(); 1123 1124 // Emit visibility info for declarations 1125 for (const Function &F : M) { 1126 if (!F.isDeclarationForLinker()) 1127 continue; 1128 GlobalValue::VisibilityTypes V = F.getVisibility(); 1129 if (V == GlobalValue::DefaultVisibility) 1130 continue; 1131 1132 MCSymbol *Name = getSymbol(&F); 1133 EmitVisibility(Name, V, false); 1134 } 1135 1136 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1137 1138 // Emit module flags. 1139 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 1140 M.getModuleFlagsMetadata(ModuleFlags); 1141 if (!ModuleFlags.empty()) 1142 TLOF.emitModuleFlags(*OutStreamer, ModuleFlags, *Mang, TM); 1143 1144 if (TM.getTargetTriple().isOSBinFormatELF()) { 1145 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1146 1147 // Output stubs for external and common global variables. 1148 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1149 if (!Stubs.empty()) { 1150 OutStreamer->SwitchSection(TLOF.getDataSection()); 1151 const DataLayout &DL = M.getDataLayout(); 1152 1153 for (const auto &Stub : Stubs) { 1154 OutStreamer->EmitLabel(Stub.first); 1155 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1156 DL.getPointerSize()); 1157 } 1158 } 1159 } 1160 1161 // Finalize debug and EH information. 1162 for (const HandlerInfo &HI : Handlers) { 1163 NamedRegionTimer T(HI.TimerName, HI.TimerGroupName, 1164 TimePassesIsEnabled); 1165 HI.Handler->endModule(); 1166 delete HI.Handler; 1167 } 1168 Handlers.clear(); 1169 DD = nullptr; 1170 1171 // If the target wants to know about weak references, print them all. 1172 if (MAI->getWeakRefDirective()) { 1173 // FIXME: This is not lazy, it would be nice to only print weak references 1174 // to stuff that is actually used. Note that doing so would require targets 1175 // to notice uses in operands (due to constant exprs etc). This should 1176 // happen with the MC stuff eventually. 1177 1178 // Print out module-level global variables here. 1179 for (const auto &G : M.globals()) { 1180 if (!G.hasExternalWeakLinkage()) 1181 continue; 1182 OutStreamer->EmitSymbolAttribute(getSymbol(&G), MCSA_WeakReference); 1183 } 1184 1185 for (const auto &F : M) { 1186 if (!F.hasExternalWeakLinkage()) 1187 continue; 1188 OutStreamer->EmitSymbolAttribute(getSymbol(&F), MCSA_WeakReference); 1189 } 1190 } 1191 1192 OutStreamer->AddBlankLine(); 1193 1194 // Print aliases in topological order, that is, for each alias a = b, 1195 // b must be printed before a. 1196 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1197 // such an order to generate correct TOC information. 1198 SmallVector<const GlobalAlias *, 16> AliasStack; 1199 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1200 for (const auto &Alias : M.aliases()) { 1201 for (const GlobalAlias *Cur = &Alias; Cur; 1202 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1203 if (!AliasVisited.insert(Cur).second) 1204 break; 1205 AliasStack.push_back(Cur); 1206 } 1207 for (const GlobalAlias *AncestorAlias : reverse(AliasStack)) 1208 emitGlobalIndirectSymbol(M, *AncestorAlias); 1209 AliasStack.clear(); 1210 } 1211 for (const auto &IFunc : M.ifuncs()) 1212 emitGlobalIndirectSymbol(M, IFunc); 1213 1214 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1215 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1216 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1217 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1218 MP->finishAssembly(M, *MI, *this); 1219 1220 // Emit llvm.ident metadata in an '.ident' directive. 1221 EmitModuleIdents(M); 1222 1223 // Emit __morestack address if needed for indirect calls. 1224 if (MMI->usesMorestackAddr()) { 1225 unsigned Align = 1; 1226 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1227 getDataLayout(), SectionKind::getReadOnly(), 1228 /*C=*/nullptr, Align); 1229 OutStreamer->SwitchSection(ReadOnlySection); 1230 1231 MCSymbol *AddrSymbol = 1232 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1233 OutStreamer->EmitLabel(AddrSymbol); 1234 1235 unsigned PtrSize = M.getDataLayout().getPointerSize(0); 1236 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1237 PtrSize); 1238 } 1239 1240 // If we don't have any trampolines, then we don't require stack memory 1241 // to be executable. Some targets have a directive to declare this. 1242 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1243 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1244 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1245 OutStreamer->SwitchSection(S); 1246 1247 // Allow the target to emit any magic that it wants at the end of the file, 1248 // after everything else has gone out. 1249 EmitEndOfAsmFile(M); 1250 1251 delete Mang; Mang = nullptr; 1252 MMI = nullptr; 1253 1254 OutStreamer->Finish(); 1255 OutStreamer->reset(); 1256 1257 return false; 1258 } 1259 1260 MCSymbol *AsmPrinter::getCurExceptionSym() { 1261 if (!CurExceptionSym) 1262 CurExceptionSym = createTempSymbol("exception"); 1263 return CurExceptionSym; 1264 } 1265 1266 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1267 this->MF = &MF; 1268 // Get the function symbol. 1269 CurrentFnSym = getSymbol(MF.getFunction()); 1270 CurrentFnSymForSize = CurrentFnSym; 1271 CurrentFnBegin = nullptr; 1272 CurExceptionSym = nullptr; 1273 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1274 if (!MMI->getLandingPads().empty() || MMI->hasDebugInfo() || 1275 MMI->hasEHFunclets() || NeedsLocalForSize) { 1276 CurrentFnBegin = createTempSymbol("func_begin"); 1277 if (NeedsLocalForSize) 1278 CurrentFnSymForSize = CurrentFnBegin; 1279 } 1280 1281 if (isVerbose()) 1282 LI = &getAnalysis<MachineLoopInfo>(); 1283 } 1284 1285 namespace { 1286 // Keep track the alignment, constpool entries per Section. 1287 struct SectionCPs { 1288 MCSection *S; 1289 unsigned Alignment; 1290 SmallVector<unsigned, 4> CPEs; 1291 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1292 }; 1293 } 1294 1295 /// EmitConstantPool - Print to the current output stream assembly 1296 /// representations of the constants in the constant pool MCP. This is 1297 /// used to print out constants which have been "spilled to memory" by 1298 /// the code generator. 1299 /// 1300 void AsmPrinter::EmitConstantPool() { 1301 const MachineConstantPool *MCP = MF->getConstantPool(); 1302 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1303 if (CP.empty()) return; 1304 1305 // Calculate sections for constant pool entries. We collect entries to go into 1306 // the same section together to reduce amount of section switch statements. 1307 SmallVector<SectionCPs, 4> CPSections; 1308 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1309 const MachineConstantPoolEntry &CPE = CP[i]; 1310 unsigned Align = CPE.getAlignment(); 1311 1312 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1313 1314 const Constant *C = nullptr; 1315 if (!CPE.isMachineConstantPoolEntry()) 1316 C = CPE.Val.ConstVal; 1317 1318 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1319 Kind, C, Align); 1320 1321 // The number of sections are small, just do a linear search from the 1322 // last section to the first. 1323 bool Found = false; 1324 unsigned SecIdx = CPSections.size(); 1325 while (SecIdx != 0) { 1326 if (CPSections[--SecIdx].S == S) { 1327 Found = true; 1328 break; 1329 } 1330 } 1331 if (!Found) { 1332 SecIdx = CPSections.size(); 1333 CPSections.push_back(SectionCPs(S, Align)); 1334 } 1335 1336 if (Align > CPSections[SecIdx].Alignment) 1337 CPSections[SecIdx].Alignment = Align; 1338 CPSections[SecIdx].CPEs.push_back(i); 1339 } 1340 1341 // Now print stuff into the calculated sections. 1342 const MCSection *CurSection = nullptr; 1343 unsigned Offset = 0; 1344 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1345 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1346 unsigned CPI = CPSections[i].CPEs[j]; 1347 MCSymbol *Sym = GetCPISymbol(CPI); 1348 if (!Sym->isUndefined()) 1349 continue; 1350 1351 if (CurSection != CPSections[i].S) { 1352 OutStreamer->SwitchSection(CPSections[i].S); 1353 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1354 CurSection = CPSections[i].S; 1355 Offset = 0; 1356 } 1357 1358 MachineConstantPoolEntry CPE = CP[CPI]; 1359 1360 // Emit inter-object padding for alignment. 1361 unsigned AlignMask = CPE.getAlignment() - 1; 1362 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1363 OutStreamer->EmitZeros(NewOffset - Offset); 1364 1365 Type *Ty = CPE.getType(); 1366 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1367 1368 OutStreamer->EmitLabel(Sym); 1369 if (CPE.isMachineConstantPoolEntry()) 1370 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1371 else 1372 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1373 } 1374 } 1375 } 1376 1377 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1378 /// by the current function to the current output stream. 1379 /// 1380 void AsmPrinter::EmitJumpTableInfo() { 1381 const DataLayout &DL = MF->getDataLayout(); 1382 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1383 if (!MJTI) return; 1384 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1385 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1386 if (JT.empty()) return; 1387 1388 // Pick the directive to use to print the jump table entries, and switch to 1389 // the appropriate section. 1390 const Function *F = MF->getFunction(); 1391 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1392 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1393 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1394 *F); 1395 if (JTInDiffSection) { 1396 // Drop it in the readonly section. 1397 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(*F, *Mang, TM); 1398 OutStreamer->SwitchSection(ReadOnlySection); 1399 } 1400 1401 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1402 1403 // Jump tables in code sections are marked with a data_region directive 1404 // where that's supported. 1405 if (!JTInDiffSection) 1406 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1407 1408 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1409 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1410 1411 // If this jump table was deleted, ignore it. 1412 if (JTBBs.empty()) continue; 1413 1414 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1415 /// emit a .set directive for each unique entry. 1416 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1417 MAI->doesSetDirectiveSuppressesReloc()) { 1418 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1419 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1420 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1421 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1422 const MachineBasicBlock *MBB = JTBBs[ii]; 1423 if (!EmittedSets.insert(MBB).second) 1424 continue; 1425 1426 // .set LJTSet, LBB32-base 1427 const MCExpr *LHS = 1428 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1429 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1430 MCBinaryExpr::createSub(LHS, Base, 1431 OutContext)); 1432 } 1433 } 1434 1435 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1436 // before each jump table. The first label is never referenced, but tells 1437 // the assembler and linker the extents of the jump table object. The 1438 // second label is actually referenced by the code. 1439 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1440 // FIXME: This doesn't have to have any specific name, just any randomly 1441 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1442 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1443 1444 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1445 1446 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1447 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1448 } 1449 if (!JTInDiffSection) 1450 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1451 } 1452 1453 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1454 /// current stream. 1455 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1456 const MachineBasicBlock *MBB, 1457 unsigned UID) const { 1458 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1459 const MCExpr *Value = nullptr; 1460 switch (MJTI->getEntryKind()) { 1461 case MachineJumpTableInfo::EK_Inline: 1462 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1463 case MachineJumpTableInfo::EK_Custom32: 1464 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1465 MJTI, MBB, UID, OutContext); 1466 break; 1467 case MachineJumpTableInfo::EK_BlockAddress: 1468 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1469 // .word LBB123 1470 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1471 break; 1472 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1473 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1474 // with a relocation as gp-relative, e.g.: 1475 // .gprel32 LBB123 1476 MCSymbol *MBBSym = MBB->getSymbol(); 1477 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1478 return; 1479 } 1480 1481 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1482 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1483 // with a relocation as gp-relative, e.g.: 1484 // .gpdword LBB123 1485 MCSymbol *MBBSym = MBB->getSymbol(); 1486 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1487 return; 1488 } 1489 1490 case MachineJumpTableInfo::EK_LabelDifference32: { 1491 // Each entry is the address of the block minus the address of the jump 1492 // table. This is used for PIC jump tables where gprel32 is not supported. 1493 // e.g.: 1494 // .word LBB123 - LJTI1_2 1495 // If the .set directive avoids relocations, this is emitted as: 1496 // .set L4_5_set_123, LBB123 - LJTI1_2 1497 // .word L4_5_set_123 1498 if (MAI->doesSetDirectiveSuppressesReloc()) { 1499 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1500 OutContext); 1501 break; 1502 } 1503 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1504 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1505 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1506 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1507 break; 1508 } 1509 } 1510 1511 assert(Value && "Unknown entry kind!"); 1512 1513 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1514 OutStreamer->EmitValue(Value, EntrySize); 1515 } 1516 1517 1518 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1519 /// special global used by LLVM. If so, emit it and return true, otherwise 1520 /// do nothing and return false. 1521 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1522 if (GV->getName() == "llvm.used") { 1523 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1524 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1525 return true; 1526 } 1527 1528 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1529 if (GV->getSection() == "llvm.metadata" || 1530 GV->hasAvailableExternallyLinkage()) 1531 return true; 1532 1533 if (!GV->hasAppendingLinkage()) return false; 1534 1535 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1536 1537 if (GV->getName() == "llvm.global_ctors") { 1538 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1539 /* isCtor */ true); 1540 1541 if (TM.getRelocationModel() == Reloc::Static && 1542 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1543 StringRef Sym(".constructors_used"); 1544 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1545 MCSA_Reference); 1546 } 1547 return true; 1548 } 1549 1550 if (GV->getName() == "llvm.global_dtors") { 1551 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1552 /* isCtor */ false); 1553 1554 if (TM.getRelocationModel() == Reloc::Static && 1555 MAI->hasStaticCtorDtorReferenceInStaticMode()) { 1556 StringRef Sym(".destructors_used"); 1557 OutStreamer->EmitSymbolAttribute(OutContext.getOrCreateSymbol(Sym), 1558 MCSA_Reference); 1559 } 1560 return true; 1561 } 1562 1563 report_fatal_error("unknown special variable"); 1564 } 1565 1566 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1567 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1568 /// is true, as being used with this directive. 1569 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1570 // Should be an array of 'i8*'. 1571 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1572 const GlobalValue *GV = 1573 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1574 if (GV) 1575 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1576 } 1577 } 1578 1579 namespace { 1580 struct Structor { 1581 Structor() : Priority(0), Func(nullptr), ComdatKey(nullptr) {} 1582 int Priority; 1583 llvm::Constant *Func; 1584 llvm::GlobalValue *ComdatKey; 1585 }; 1586 } // end namespace 1587 1588 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1589 /// priority. 1590 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1591 bool isCtor) { 1592 // Should be an array of '{ int, void ()* }' structs. The first value is the 1593 // init priority. 1594 if (!isa<ConstantArray>(List)) return; 1595 1596 // Sanity check the structors list. 1597 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1598 if (!InitList) return; // Not an array! 1599 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1600 // FIXME: Only allow the 3-field form in LLVM 4.0. 1601 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1602 return; // Not an array of two or three elements! 1603 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1604 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1605 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1606 return; // Not (int, ptr, ptr). 1607 1608 // Gather the structors in a form that's convenient for sorting by priority. 1609 SmallVector<Structor, 8> Structors; 1610 for (Value *O : InitList->operands()) { 1611 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1612 if (!CS) continue; // Malformed. 1613 if (CS->getOperand(1)->isNullValue()) 1614 break; // Found a null terminator, skip the rest. 1615 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1616 if (!Priority) continue; // Malformed. 1617 Structors.push_back(Structor()); 1618 Structor &S = Structors.back(); 1619 S.Priority = Priority->getLimitedValue(65535); 1620 S.Func = CS->getOperand(1); 1621 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1622 S.ComdatKey = dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1623 } 1624 1625 // Emit the function pointers in the target-specific order 1626 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1627 std::stable_sort(Structors.begin(), Structors.end(), 1628 [](const Structor &L, 1629 const Structor &R) { return L.Priority < R.Priority; }); 1630 for (Structor &S : Structors) { 1631 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1632 const MCSymbol *KeySym = nullptr; 1633 if (GlobalValue *GV = S.ComdatKey) { 1634 if (GV->hasAvailableExternallyLinkage()) 1635 // If the associated variable is available_externally, some other TU 1636 // will provide its dynamic initializer. 1637 continue; 1638 1639 KeySym = getSymbol(GV); 1640 } 1641 MCSection *OutputSection = 1642 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1643 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1644 OutStreamer->SwitchSection(OutputSection); 1645 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1646 EmitAlignment(Align); 1647 EmitXXStructor(DL, S.Func); 1648 } 1649 } 1650 1651 void AsmPrinter::EmitModuleIdents(Module &M) { 1652 if (!MAI->hasIdentDirective()) 1653 return; 1654 1655 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 1656 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 1657 const MDNode *N = NMD->getOperand(i); 1658 assert(N->getNumOperands() == 1 && 1659 "llvm.ident metadata entry can have only one operand"); 1660 const MDString *S = cast<MDString>(N->getOperand(0)); 1661 OutStreamer->EmitIdent(S->getString()); 1662 } 1663 } 1664 } 1665 1666 //===--------------------------------------------------------------------===// 1667 // Emission and print routines 1668 // 1669 1670 /// EmitInt8 - Emit a byte directive and value. 1671 /// 1672 void AsmPrinter::EmitInt8(int Value) const { 1673 OutStreamer->EmitIntValue(Value, 1); 1674 } 1675 1676 /// EmitInt16 - Emit a short directive and value. 1677 /// 1678 void AsmPrinter::EmitInt16(int Value) const { 1679 OutStreamer->EmitIntValue(Value, 2); 1680 } 1681 1682 /// EmitInt32 - Emit a long directive and value. 1683 /// 1684 void AsmPrinter::EmitInt32(int Value) const { 1685 OutStreamer->EmitIntValue(Value, 4); 1686 } 1687 1688 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 1689 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 1690 /// .set if it avoids relocations. 1691 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 1692 unsigned Size) const { 1693 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 1694 } 1695 1696 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 1697 /// where the size in bytes of the directive is specified by Size and Label 1698 /// specifies the label. This implicitly uses .set if it is available. 1699 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 1700 unsigned Size, 1701 bool IsSectionRelative) const { 1702 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 1703 OutStreamer->EmitCOFFSecRel32(Label); 1704 return; 1705 } 1706 1707 // Emit Label+Offset (or just Label if Offset is zero) 1708 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 1709 if (Offset) 1710 Expr = MCBinaryExpr::createAdd( 1711 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 1712 1713 OutStreamer->EmitValue(Expr, Size); 1714 } 1715 1716 //===----------------------------------------------------------------------===// 1717 1718 // EmitAlignment - Emit an alignment directive to the specified power of 1719 // two boundary. For example, if you pass in 3 here, you will get an 8 1720 // byte alignment. If a global value is specified, and if that global has 1721 // an explicit alignment requested, it will override the alignment request 1722 // if required for correctness. 1723 // 1724 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 1725 if (GV) 1726 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 1727 1728 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 1729 1730 assert(NumBits < 1731 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 1732 "undefined behavior"); 1733 if (getCurrentSection()->getKind().isText()) 1734 OutStreamer->EmitCodeAlignment(1u << NumBits); 1735 else 1736 OutStreamer->EmitValueToAlignment(1u << NumBits); 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Constant emission. 1741 //===----------------------------------------------------------------------===// 1742 1743 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 1744 MCContext &Ctx = OutContext; 1745 1746 if (CV->isNullValue() || isa<UndefValue>(CV)) 1747 return MCConstantExpr::create(0, Ctx); 1748 1749 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 1750 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 1751 1752 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 1753 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 1754 1755 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 1756 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 1757 1758 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 1759 if (!CE) { 1760 llvm_unreachable("Unknown constant value to lower!"); 1761 } 1762 1763 switch (CE->getOpcode()) { 1764 default: 1765 // If the code isn't optimized, there may be outstanding folding 1766 // opportunities. Attempt to fold the expression using DataLayout as a 1767 // last resort before giving up. 1768 if (Constant *C = ConstantFoldConstantExpression(CE, getDataLayout())) 1769 if (C != CE) 1770 return lowerConstant(C); 1771 1772 // Otherwise report the problem to the user. 1773 { 1774 std::string S; 1775 raw_string_ostream OS(S); 1776 OS << "Unsupported expression in static initializer: "; 1777 CE->printAsOperand(OS, /*PrintType=*/false, 1778 !MF ? nullptr : MF->getFunction()->getParent()); 1779 report_fatal_error(OS.str()); 1780 } 1781 case Instruction::GetElementPtr: { 1782 // Generate a symbolic expression for the byte address 1783 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 1784 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 1785 1786 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 1787 if (!OffsetAI) 1788 return Base; 1789 1790 int64_t Offset = OffsetAI.getSExtValue(); 1791 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 1792 Ctx); 1793 } 1794 1795 case Instruction::Trunc: 1796 // We emit the value and depend on the assembler to truncate the generated 1797 // expression properly. This is important for differences between 1798 // blockaddress labels. Since the two labels are in the same function, it 1799 // is reasonable to treat their delta as a 32-bit value. 1800 // FALL THROUGH. 1801 case Instruction::BitCast: 1802 return lowerConstant(CE->getOperand(0)); 1803 1804 case Instruction::IntToPtr: { 1805 const DataLayout &DL = getDataLayout(); 1806 1807 // Handle casts to pointers by changing them into casts to the appropriate 1808 // integer type. This promotes constant folding and simplifies this code. 1809 Constant *Op = CE->getOperand(0); 1810 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 1811 false/*ZExt*/); 1812 return lowerConstant(Op); 1813 } 1814 1815 case Instruction::PtrToInt: { 1816 const DataLayout &DL = getDataLayout(); 1817 1818 // Support only foldable casts to/from pointers that can be eliminated by 1819 // changing the pointer to the appropriately sized integer type. 1820 Constant *Op = CE->getOperand(0); 1821 Type *Ty = CE->getType(); 1822 1823 const MCExpr *OpExpr = lowerConstant(Op); 1824 1825 // We can emit the pointer value into this slot if the slot is an 1826 // integer slot equal to the size of the pointer. 1827 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 1828 return OpExpr; 1829 1830 // Otherwise the pointer is smaller than the resultant integer, mask off 1831 // the high bits so we are sure to get a proper truncation if the input is 1832 // a constant expr. 1833 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 1834 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 1835 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 1836 } 1837 1838 case Instruction::Sub: { 1839 GlobalValue *LHSGV; 1840 APInt LHSOffset; 1841 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 1842 getDataLayout())) { 1843 GlobalValue *RHSGV; 1844 APInt RHSOffset; 1845 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 1846 getDataLayout())) { 1847 const MCExpr *RelocExpr = getObjFileLowering().lowerRelativeReference( 1848 LHSGV, RHSGV, *Mang, TM); 1849 if (!RelocExpr) 1850 RelocExpr = MCBinaryExpr::createSub( 1851 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 1852 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 1853 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 1854 if (Addend != 0) 1855 RelocExpr = MCBinaryExpr::createAdd( 1856 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 1857 return RelocExpr; 1858 } 1859 } 1860 } 1861 // else fallthrough 1862 1863 // The MC library also has a right-shift operator, but it isn't consistently 1864 // signed or unsigned between different targets. 1865 case Instruction::Add: 1866 case Instruction::Mul: 1867 case Instruction::SDiv: 1868 case Instruction::SRem: 1869 case Instruction::Shl: 1870 case Instruction::And: 1871 case Instruction::Or: 1872 case Instruction::Xor: { 1873 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 1874 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 1875 switch (CE->getOpcode()) { 1876 default: llvm_unreachable("Unknown binary operator constant cast expr"); 1877 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 1878 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1879 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 1880 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 1881 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 1882 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 1883 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 1884 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 1885 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 1886 } 1887 } 1888 } 1889 } 1890 1891 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 1892 AsmPrinter &AP, 1893 const Constant *BaseCV = nullptr, 1894 uint64_t Offset = 0); 1895 1896 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 1897 1898 /// isRepeatedByteSequence - Determine whether the given value is 1899 /// composed of a repeated sequence of identical bytes and return the 1900 /// byte value. If it is not a repeated sequence, return -1. 1901 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 1902 StringRef Data = V->getRawDataValues(); 1903 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 1904 char C = Data[0]; 1905 for (unsigned i = 1, e = Data.size(); i != e; ++i) 1906 if (Data[i] != C) return -1; 1907 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 1908 } 1909 1910 1911 /// isRepeatedByteSequence - Determine whether the given value is 1912 /// composed of a repeated sequence of identical bytes and return the 1913 /// byte value. If it is not a repeated sequence, return -1. 1914 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 1915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1916 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 1917 assert(Size % 8 == 0); 1918 1919 // Extend the element to take zero padding into account. 1920 APInt Value = CI->getValue().zextOrSelf(Size); 1921 if (!Value.isSplat(8)) 1922 return -1; 1923 1924 return Value.zextOrTrunc(8).getZExtValue(); 1925 } 1926 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1927 // Make sure all array elements are sequences of the same repeated 1928 // byte. 1929 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 1930 Constant *Op0 = CA->getOperand(0); 1931 int Byte = isRepeatedByteSequence(Op0, DL); 1932 if (Byte == -1) 1933 return -1; 1934 1935 // All array elements must be equal. 1936 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 1937 if (CA->getOperand(i) != Op0) 1938 return -1; 1939 return Byte; 1940 } 1941 1942 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 1943 return isRepeatedByteSequence(CDS); 1944 1945 return -1; 1946 } 1947 1948 static void emitGlobalConstantDataSequential(const DataLayout &DL, 1949 const ConstantDataSequential *CDS, 1950 AsmPrinter &AP) { 1951 1952 // See if we can aggregate this into a .fill, if so, emit it as such. 1953 int Value = isRepeatedByteSequence(CDS, DL); 1954 if (Value != -1) { 1955 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 1956 // Don't emit a 1-byte object as a .fill. 1957 if (Bytes > 1) 1958 return AP.OutStreamer->emitFill(Bytes, Value); 1959 } 1960 1961 // If this can be emitted with .ascii/.asciz, emit it as such. 1962 if (CDS->isString()) 1963 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 1964 1965 // Otherwise, emit the values in successive locations. 1966 unsigned ElementByteSize = CDS->getElementByteSize(); 1967 if (isa<IntegerType>(CDS->getElementType())) { 1968 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1969 if (AP.isVerbose()) 1970 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 1971 CDS->getElementAsInteger(i)); 1972 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 1973 ElementByteSize); 1974 } 1975 } else { 1976 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 1977 emitGlobalConstantFP(cast<ConstantFP>(CDS->getElementAsConstant(I)), AP); 1978 } 1979 1980 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 1981 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 1982 CDS->getNumElements(); 1983 if (unsigned Padding = Size - EmittedSize) 1984 AP.OutStreamer->EmitZeros(Padding); 1985 1986 } 1987 1988 static void emitGlobalConstantArray(const DataLayout &DL, 1989 const ConstantArray *CA, AsmPrinter &AP, 1990 const Constant *BaseCV, uint64_t Offset) { 1991 // See if we can aggregate some values. Make sure it can be 1992 // represented as a series of bytes of the constant value. 1993 int Value = isRepeatedByteSequence(CA, DL); 1994 1995 if (Value != -1) { 1996 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 1997 AP.OutStreamer->emitFill(Bytes, Value); 1998 } 1999 else { 2000 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2001 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2002 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2003 } 2004 } 2005 } 2006 2007 static void emitGlobalConstantVector(const DataLayout &DL, 2008 const ConstantVector *CV, AsmPrinter &AP) { 2009 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2010 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2011 2012 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2013 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2014 CV->getType()->getNumElements(); 2015 if (unsigned Padding = Size - EmittedSize) 2016 AP.OutStreamer->EmitZeros(Padding); 2017 } 2018 2019 static void emitGlobalConstantStruct(const DataLayout &DL, 2020 const ConstantStruct *CS, AsmPrinter &AP, 2021 const Constant *BaseCV, uint64_t Offset) { 2022 // Print the fields in successive locations. Pad to align if needed! 2023 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2024 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2025 uint64_t SizeSoFar = 0; 2026 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2027 const Constant *Field = CS->getOperand(i); 2028 2029 // Print the actual field value. 2030 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2031 2032 // Check if padding is needed and insert one or more 0s. 2033 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2034 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2035 - Layout->getElementOffset(i)) - FieldSize; 2036 SizeSoFar += FieldSize + PadSize; 2037 2038 // Insert padding - this may include padding to increase the size of the 2039 // current field up to the ABI size (if the struct is not packed) as well 2040 // as padding to ensure that the next field starts at the right offset. 2041 AP.OutStreamer->EmitZeros(PadSize); 2042 } 2043 assert(SizeSoFar == Layout->getSizeInBytes() && 2044 "Layout of constant struct may be incorrect!"); 2045 } 2046 2047 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2048 APInt API = CFP->getValueAPF().bitcastToAPInt(); 2049 2050 // First print a comment with what we think the original floating-point value 2051 // should have been. 2052 if (AP.isVerbose()) { 2053 SmallString<8> StrVal; 2054 CFP->getValueAPF().toString(StrVal); 2055 2056 if (CFP->getType()) 2057 CFP->getType()->print(AP.OutStreamer->GetCommentOS()); 2058 else 2059 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2060 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2061 } 2062 2063 // Now iterate through the APInt chunks, emitting them in endian-correct 2064 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2065 // floats). 2066 unsigned NumBytes = API.getBitWidth() / 8; 2067 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2068 const uint64_t *p = API.getRawData(); 2069 2070 // PPC's long double has odd notions of endianness compared to how LLVM 2071 // handles it: p[0] goes first for *big* endian on PPC. 2072 if (AP.getDataLayout().isBigEndian() && !CFP->getType()->isPPC_FP128Ty()) { 2073 int Chunk = API.getNumWords() - 1; 2074 2075 if (TrailingBytes) 2076 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2077 2078 for (; Chunk >= 0; --Chunk) 2079 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2080 } else { 2081 unsigned Chunk; 2082 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2083 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2084 2085 if (TrailingBytes) 2086 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2087 } 2088 2089 // Emit the tail padding for the long double. 2090 const DataLayout &DL = AP.getDataLayout(); 2091 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(CFP->getType()) - 2092 DL.getTypeStoreSize(CFP->getType())); 2093 } 2094 2095 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2096 const DataLayout &DL = AP.getDataLayout(); 2097 unsigned BitWidth = CI->getBitWidth(); 2098 2099 // Copy the value as we may massage the layout for constants whose bit width 2100 // is not a multiple of 64-bits. 2101 APInt Realigned(CI->getValue()); 2102 uint64_t ExtraBits = 0; 2103 unsigned ExtraBitsSize = BitWidth & 63; 2104 2105 if (ExtraBitsSize) { 2106 // The bit width of the data is not a multiple of 64-bits. 2107 // The extra bits are expected to be at the end of the chunk of the memory. 2108 // Little endian: 2109 // * Nothing to be done, just record the extra bits to emit. 2110 // Big endian: 2111 // * Record the extra bits to emit. 2112 // * Realign the raw data to emit the chunks of 64-bits. 2113 if (DL.isBigEndian()) { 2114 // Basically the structure of the raw data is a chunk of 64-bits cells: 2115 // 0 1 BitWidth / 64 2116 // [chunk1][chunk2] ... [chunkN]. 2117 // The most significant chunk is chunkN and it should be emitted first. 2118 // However, due to the alignment issue chunkN contains useless bits. 2119 // Realign the chunks so that they contain only useless information: 2120 // ExtraBits 0 1 (BitWidth / 64) - 1 2121 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2122 ExtraBits = Realigned.getRawData()[0] & 2123 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2124 Realigned = Realigned.lshr(ExtraBitsSize); 2125 } else 2126 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2127 } 2128 2129 // We don't expect assemblers to support integer data directives 2130 // for more than 64 bits, so we emit the data in at most 64-bit 2131 // quantities at a time. 2132 const uint64_t *RawData = Realigned.getRawData(); 2133 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2134 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2135 AP.OutStreamer->EmitIntValue(Val, 8); 2136 } 2137 2138 if (ExtraBitsSize) { 2139 // Emit the extra bits after the 64-bits chunks. 2140 2141 // Emit a directive that fills the expected size. 2142 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2143 Size -= (BitWidth / 64) * 8; 2144 assert(Size && Size * 8 >= ExtraBitsSize && 2145 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2146 == ExtraBits && "Directive too small for extra bits."); 2147 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2148 } 2149 } 2150 2151 /// \brief Transform a not absolute MCExpr containing a reference to a GOT 2152 /// equivalent global, by a target specific GOT pc relative access to the 2153 /// final symbol. 2154 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2155 const Constant *BaseCst, 2156 uint64_t Offset) { 2157 // The global @foo below illustrates a global that uses a got equivalent. 2158 // 2159 // @bar = global i32 42 2160 // @gotequiv = private unnamed_addr constant i32* @bar 2161 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2162 // i64 ptrtoint (i32* @foo to i64)) 2163 // to i32) 2164 // 2165 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2166 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2167 // form: 2168 // 2169 // foo = cstexpr, where 2170 // cstexpr := <gotequiv> - "." + <cst> 2171 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2172 // 2173 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2174 // 2175 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2176 // gotpcrelcst := <offset from @foo base> + <cst> 2177 // 2178 MCValue MV; 2179 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2180 return; 2181 const MCSymbolRefExpr *SymA = MV.getSymA(); 2182 if (!SymA) 2183 return; 2184 2185 // Check that GOT equivalent symbol is cached. 2186 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2187 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2188 return; 2189 2190 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2191 if (!BaseGV) 2192 return; 2193 2194 // Check for a valid base symbol 2195 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2196 const MCSymbolRefExpr *SymB = MV.getSymB(); 2197 2198 if (!SymB || BaseSym != &SymB->getSymbol()) 2199 return; 2200 2201 // Make sure to match: 2202 // 2203 // gotpcrelcst := <offset from @foo base> + <cst> 2204 // 2205 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2206 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2207 // if the target knows how to encode it. 2208 // 2209 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2210 if (GOTPCRelCst < 0) 2211 return; 2212 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2213 return; 2214 2215 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2216 // 2217 // bar: 2218 // .long 42 2219 // gotequiv: 2220 // .quad bar 2221 // foo: 2222 // .long gotequiv - "." + <cst> 2223 // 2224 // is replaced by the target specific equivalent to: 2225 // 2226 // bar: 2227 // .long 42 2228 // foo: 2229 // .long bar@GOTPCREL+<gotpcrelcst> 2230 // 2231 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2232 const GlobalVariable *GV = Result.first; 2233 int NumUses = (int)Result.second; 2234 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2235 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2236 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2237 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2238 2239 // Update GOT equivalent usage information 2240 --NumUses; 2241 if (NumUses >= 0) 2242 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2243 } 2244 2245 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2246 AsmPrinter &AP, const Constant *BaseCV, 2247 uint64_t Offset) { 2248 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2249 2250 // Globals with sub-elements such as combinations of arrays and structs 2251 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2252 // constant symbol base and the current position with BaseCV and Offset. 2253 if (!BaseCV && CV->hasOneUse()) 2254 BaseCV = dyn_cast<Constant>(CV->user_back()); 2255 2256 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2257 return AP.OutStreamer->EmitZeros(Size); 2258 2259 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2260 switch (Size) { 2261 case 1: 2262 case 2: 2263 case 4: 2264 case 8: 2265 if (AP.isVerbose()) 2266 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2267 CI->getZExtValue()); 2268 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2269 return; 2270 default: 2271 emitGlobalConstantLargeInt(CI, AP); 2272 return; 2273 } 2274 } 2275 2276 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2277 return emitGlobalConstantFP(CFP, AP); 2278 2279 if (isa<ConstantPointerNull>(CV)) { 2280 AP.OutStreamer->EmitIntValue(0, Size); 2281 return; 2282 } 2283 2284 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2285 return emitGlobalConstantDataSequential(DL, CDS, AP); 2286 2287 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2288 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2289 2290 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2291 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2292 2293 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2294 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2295 // vectors). 2296 if (CE->getOpcode() == Instruction::BitCast) 2297 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2298 2299 if (Size > 8) { 2300 // If the constant expression's size is greater than 64-bits, then we have 2301 // to emit the value in chunks. Try to constant fold the value and emit it 2302 // that way. 2303 Constant *New = ConstantFoldConstantExpression(CE, DL); 2304 if (New && New != CE) 2305 return emitGlobalConstantImpl(DL, New, AP); 2306 } 2307 } 2308 2309 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2310 return emitGlobalConstantVector(DL, V, AP); 2311 2312 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2313 // thread the streamer with EmitValue. 2314 const MCExpr *ME = AP.lowerConstant(CV); 2315 2316 // Since lowerConstant already folded and got rid of all IR pointer and 2317 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2318 // directly. 2319 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2320 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2321 2322 AP.OutStreamer->EmitValue(ME, Size); 2323 } 2324 2325 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2326 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2327 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2328 if (Size) 2329 emitGlobalConstantImpl(DL, CV, *this); 2330 else if (MAI->hasSubsectionsViaSymbols()) { 2331 // If the global has zero size, emit a single byte so that two labels don't 2332 // look like they are at the same location. 2333 OutStreamer->EmitIntValue(0, 1); 2334 } 2335 } 2336 2337 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2338 // Target doesn't support this yet! 2339 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2340 } 2341 2342 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2343 if (Offset > 0) 2344 OS << '+' << Offset; 2345 else if (Offset < 0) 2346 OS << Offset; 2347 } 2348 2349 //===----------------------------------------------------------------------===// 2350 // Symbol Lowering Routines. 2351 //===----------------------------------------------------------------------===// 2352 2353 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2354 return OutContext.createTempSymbol(Name, true); 2355 } 2356 2357 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2358 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2359 } 2360 2361 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2362 return MMI->getAddrLabelSymbol(BB); 2363 } 2364 2365 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2366 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2367 const DataLayout &DL = getDataLayout(); 2368 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2369 "CPI" + Twine(getFunctionNumber()) + "_" + 2370 Twine(CPID)); 2371 } 2372 2373 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2374 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2375 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2376 } 2377 2378 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2379 /// FIXME: privatize to AsmPrinter. 2380 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2381 const DataLayout &DL = getDataLayout(); 2382 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2383 Twine(getFunctionNumber()) + "_" + 2384 Twine(UID) + "_set_" + Twine(MBBID)); 2385 } 2386 2387 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2388 StringRef Suffix) const { 2389 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, *Mang, 2390 TM); 2391 } 2392 2393 /// Return the MCSymbol for the specified ExternalSymbol. 2394 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2395 SmallString<60> NameStr; 2396 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2397 return OutContext.getOrCreateSymbol(NameStr); 2398 } 2399 2400 2401 2402 /// PrintParentLoopComment - Print comments about parent loops of this one. 2403 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2404 unsigned FunctionNumber) { 2405 if (!Loop) return; 2406 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2407 OS.indent(Loop->getLoopDepth()*2) 2408 << "Parent Loop BB" << FunctionNumber << "_" 2409 << Loop->getHeader()->getNumber() 2410 << " Depth=" << Loop->getLoopDepth() << '\n'; 2411 } 2412 2413 2414 /// PrintChildLoopComment - Print comments about child loops within 2415 /// the loop for this basic block, with nesting. 2416 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2417 unsigned FunctionNumber) { 2418 // Add child loop information 2419 for (const MachineLoop *CL : *Loop) { 2420 OS.indent(CL->getLoopDepth()*2) 2421 << "Child Loop BB" << FunctionNumber << "_" 2422 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2423 << '\n'; 2424 PrintChildLoopComment(OS, CL, FunctionNumber); 2425 } 2426 } 2427 2428 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2429 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2430 const MachineLoopInfo *LI, 2431 const AsmPrinter &AP) { 2432 // Add loop depth information 2433 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2434 if (!Loop) return; 2435 2436 MachineBasicBlock *Header = Loop->getHeader(); 2437 assert(Header && "No header for loop"); 2438 2439 // If this block is not a loop header, just print out what is the loop header 2440 // and return. 2441 if (Header != &MBB) { 2442 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2443 Twine(AP.getFunctionNumber())+"_" + 2444 Twine(Loop->getHeader()->getNumber())+ 2445 " Depth="+Twine(Loop->getLoopDepth())); 2446 return; 2447 } 2448 2449 // Otherwise, it is a loop header. Print out information about child and 2450 // parent loops. 2451 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2452 2453 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2454 2455 OS << "=>"; 2456 OS.indent(Loop->getLoopDepth()*2-2); 2457 2458 OS << "This "; 2459 if (Loop->empty()) 2460 OS << "Inner "; 2461 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2462 2463 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2464 } 2465 2466 2467 /// EmitBasicBlockStart - This method prints the label for the specified 2468 /// MachineBasicBlock, an alignment (if present) and a comment describing 2469 /// it if appropriate. 2470 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2471 // End the previous funclet and start a new one. 2472 if (MBB.isEHFuncletEntry()) { 2473 for (const HandlerInfo &HI : Handlers) { 2474 HI.Handler->endFunclet(); 2475 HI.Handler->beginFunclet(MBB); 2476 } 2477 } 2478 2479 // Emit an alignment directive for this block, if needed. 2480 if (unsigned Align = MBB.getAlignment()) 2481 EmitAlignment(Align); 2482 2483 // If the block has its address taken, emit any labels that were used to 2484 // reference the block. It is possible that there is more than one label 2485 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2486 // the references were generated. 2487 if (MBB.hasAddressTaken()) { 2488 const BasicBlock *BB = MBB.getBasicBlock(); 2489 if (isVerbose()) 2490 OutStreamer->AddComment("Block address taken"); 2491 2492 // MBBs can have their address taken as part of CodeGen without having 2493 // their corresponding BB's address taken in IR 2494 if (BB->hasAddressTaken()) 2495 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2496 OutStreamer->EmitLabel(Sym); 2497 } 2498 2499 // Print some verbose block comments. 2500 if (isVerbose()) { 2501 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2502 if (BB->hasName()) { 2503 BB->printAsOperand(OutStreamer->GetCommentOS(), 2504 /*PrintType=*/false, BB->getModule()); 2505 OutStreamer->GetCommentOS() << '\n'; 2506 } 2507 } 2508 emitBasicBlockLoopComments(MBB, LI, *this); 2509 } 2510 2511 // Print the main label for the block. 2512 if (MBB.pred_empty() || 2513 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2514 if (isVerbose()) { 2515 // NOTE: Want this comment at start of line, don't emit with AddComment. 2516 OutStreamer->emitRawComment(" BB#" + Twine(MBB.getNumber()) + ":", false); 2517 } 2518 } else { 2519 OutStreamer->EmitLabel(MBB.getSymbol()); 2520 } 2521 } 2522 2523 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2524 bool IsDefinition) const { 2525 MCSymbolAttr Attr = MCSA_Invalid; 2526 2527 switch (Visibility) { 2528 default: break; 2529 case GlobalValue::HiddenVisibility: 2530 if (IsDefinition) 2531 Attr = MAI->getHiddenVisibilityAttr(); 2532 else 2533 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2534 break; 2535 case GlobalValue::ProtectedVisibility: 2536 Attr = MAI->getProtectedVisibilityAttr(); 2537 break; 2538 } 2539 2540 if (Attr != MCSA_Invalid) 2541 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2542 } 2543 2544 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2545 /// exactly one predecessor and the control transfer mechanism between 2546 /// the predecessor and this block is a fall-through. 2547 bool AsmPrinter:: 2548 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2549 // If this is a landing pad, it isn't a fall through. If it has no preds, 2550 // then nothing falls through to it. 2551 if (MBB->isEHPad() || MBB->pred_empty()) 2552 return false; 2553 2554 // If there isn't exactly one predecessor, it can't be a fall through. 2555 if (MBB->pred_size() > 1) 2556 return false; 2557 2558 // The predecessor has to be immediately before this block. 2559 MachineBasicBlock *Pred = *MBB->pred_begin(); 2560 if (!Pred->isLayoutSuccessor(MBB)) 2561 return false; 2562 2563 // If the block is completely empty, then it definitely does fall through. 2564 if (Pred->empty()) 2565 return true; 2566 2567 // Check the terminators in the previous blocks 2568 for (const auto &MI : Pred->terminators()) { 2569 // If it is not a simple branch, we are in a table somewhere. 2570 if (!MI.isBranch() || MI.isIndirectBranch()) 2571 return false; 2572 2573 // If we are the operands of one of the branches, this is not a fall 2574 // through. Note that targets with delay slots will usually bundle 2575 // terminators with the delay slot instruction. 2576 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2577 if (OP->isJTI()) 2578 return false; 2579 if (OP->isMBB() && OP->getMBB() == MBB) 2580 return false; 2581 } 2582 } 2583 2584 return true; 2585 } 2586 2587 2588 2589 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2590 if (!S.usesMetadata()) 2591 return nullptr; 2592 2593 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2594 " stackmap formats, please see the documentation for a description of" 2595 " the default format. If you really need a custom serialized format," 2596 " please file a bug"); 2597 2598 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2599 gcp_map_type::iterator GCPI = GCMap.find(&S); 2600 if (GCPI != GCMap.end()) 2601 return GCPI->second.get(); 2602 2603 const char *Name = S.getName().c_str(); 2604 2605 for (GCMetadataPrinterRegistry::iterator 2606 I = GCMetadataPrinterRegistry::begin(), 2607 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2608 if (strcmp(Name, I->getName()) == 0) { 2609 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2610 GMP->S = &S; 2611 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2612 return IterBool.first->second.get(); 2613 } 2614 2615 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 2616 } 2617 2618 /// Pin vtable to this file. 2619 AsmPrinterHandler::~AsmPrinterHandler() {} 2620 2621 void AsmPrinterHandler::markFunctionEnd() {} 2622