1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/AsmPrinter.h"
15 #include "AsmPrinterHandler.h"
16 #include "CodeViewDebug.h"
17 #include "DwarfDebug.h"
18 #include "DwarfException.h"
19 #include "WinCFGuard.h"
20 #include "WinException.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/BinaryFormat/COFF.h"
36 #include "llvm/BinaryFormat/Dwarf.h"
37 #include "llvm/BinaryFormat/ELF.h"
38 #include "llvm/CodeGen/GCMetadata.h"
39 #include "llvm/CodeGen/GCMetadataPrinter.h"
40 #include "llvm/CodeGen/GCStrategy.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineConstantPool.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineLoopInfo.h"
51 #include "llvm/CodeGen/MachineMemOperand.h"
52 #include "llvm/CodeGen/MachineModuleInfo.h"
53 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
56 #include "llvm/CodeGen/TargetFrameLowering.h"
57 #include "llvm/CodeGen/TargetInstrInfo.h"
58 #include "llvm/CodeGen/TargetLowering.h"
59 #include "llvm/CodeGen/TargetOpcodes.h"
60 #include "llvm/CodeGen/TargetRegisterInfo.h"
61 #include "llvm/CodeGen/TargetSubtargetInfo.h"
62 #include "llvm/IR/BasicBlock.h"
63 #include "llvm/IR/Comdat.h"
64 #include "llvm/IR/Constant.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/GlobalAlias.h"
71 #include "llvm/IR/GlobalIFunc.h"
72 #include "llvm/IR/GlobalIndirectSymbol.h"
73 #include "llvm/IR/GlobalObject.h"
74 #include "llvm/IR/GlobalValue.h"
75 #include "llvm/IR/GlobalVariable.h"
76 #include "llvm/IR/Instruction.h"
77 #include "llvm/IR/Mangler.h"
78 #include "llvm/IR/Metadata.h"
79 #include "llvm/IR/Module.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/Type.h"
82 #include "llvm/IR/Value.h"
83 #include "llvm/MC/MCAsmInfo.h"
84 #include "llvm/MC/MCCodePadder.h"
85 #include "llvm/MC/MCContext.h"
86 #include "llvm/MC/MCDirectives.h"
87 #include "llvm/MC/MCDwarf.h"
88 #include "llvm/MC/MCExpr.h"
89 #include "llvm/MC/MCInst.h"
90 #include "llvm/MC/MCSection.h"
91 #include "llvm/MC/MCSectionCOFF.h"
92 #include "llvm/MC/MCSectionELF.h"
93 #include "llvm/MC/MCSectionMachO.h"
94 #include "llvm/MC/MCStreamer.h"
95 #include "llvm/MC/MCSubtargetInfo.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/MC/MCSymbolELF.h"
98 #include "llvm/MC/MCTargetOptions.h"
99 #include "llvm/MC/MCValue.h"
100 #include "llvm/MC/SectionKind.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/Format.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/Path.h"
109 #include "llvm/Support/TargetRegistry.h"
110 #include "llvm/Support/Timer.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Target/TargetLoweringObjectFile.h"
113 #include "llvm/Target/TargetMachine.h"
114 #include "llvm/Target/TargetOptions.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cinttypes>
118 #include <cstdint>
119 #include <iterator>
120 #include <limits>
121 #include <memory>
122 #include <string>
123 #include <utility>
124 #include <vector>
125 
126 using namespace llvm;
127 
128 #define DEBUG_TYPE "asm-printer"
129 
130 static const char *const DWARFGroupName = "dwarf";
131 static const char *const DWARFGroupDescription = "DWARF Emission";
132 static const char *const DbgTimerName = "emit";
133 static const char *const DbgTimerDescription = "Debug Info Emission";
134 static const char *const EHTimerName = "write_exception";
135 static const char *const EHTimerDescription = "DWARF Exception Writer";
136 static const char *const CFGuardName = "Control Flow Guard";
137 static const char *const CFGuardDescription = "Control Flow Guard Tables";
138 static const char *const CodeViewLineTablesGroupName = "linetables";
139 static const char *const CodeViewLineTablesGroupDescription =
140   "CodeView Line Tables";
141 
142 STATISTIC(EmittedInsts, "Number of machine instrs printed");
143 
144 static cl::opt<bool>
145     PrintSchedule("print-schedule", cl::Hidden, cl::init(false),
146                   cl::desc("Print 'sched: [latency:throughput]' in .s output"));
147 
148 char AsmPrinter::ID = 0;
149 
150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>;
151 
152 static gcp_map_type &getGCMap(void *&P) {
153   if (!P)
154     P = new gcp_map_type();
155   return *(gcp_map_type*)P;
156 }
157 
158 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
159 /// value in log2 form.  This rounds up to the preferred alignment if possible
160 /// and legal.
161 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL,
162                                    unsigned InBits = 0) {
163   unsigned NumBits = 0;
164   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
165     NumBits = DL.getPreferredAlignmentLog(GVar);
166 
167   // If InBits is specified, round it to it.
168   if (InBits > NumBits)
169     NumBits = InBits;
170 
171   // If the GV has a specified alignment, take it into account.
172   if (GV->getAlignment() == 0)
173     return NumBits;
174 
175   unsigned GVAlign = Log2_32(GV->getAlignment());
176 
177   // If the GVAlign is larger than NumBits, or if we are required to obey
178   // NumBits because the GV has an assigned section, obey it.
179   if (GVAlign > NumBits || GV->hasSection())
180     NumBits = GVAlign;
181   return NumBits;
182 }
183 
184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
185     : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
186       OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) {
187   VerboseAsm = OutStreamer->isVerboseAsm();
188 }
189 
190 AsmPrinter::~AsmPrinter() {
191   assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized");
192 
193   if (GCMetadataPrinters) {
194     gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
195 
196     delete &GCMap;
197     GCMetadataPrinters = nullptr;
198   }
199 }
200 
201 bool AsmPrinter::isPositionIndependent() const {
202   return TM.isPositionIndependent();
203 }
204 
205 /// getFunctionNumber - Return a unique ID for the current function.
206 unsigned AsmPrinter::getFunctionNumber() const {
207   return MF->getFunctionNumber();
208 }
209 
210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
211   return *TM.getObjFileLowering();
212 }
213 
214 const DataLayout &AsmPrinter::getDataLayout() const {
215   return MMI->getModule()->getDataLayout();
216 }
217 
218 // Do not use the cached DataLayout because some client use it without a Module
219 // (dsymutil, llvm-dwarfdump).
220 unsigned AsmPrinter::getPointerSize() const {
221   return TM.getPointerSize(0); // FIXME: Default address space
222 }
223 
224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
225   assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
226   return MF->getSubtarget<MCSubtargetInfo>();
227 }
228 
229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
230   S.EmitInstruction(Inst, getSubtargetInfo());
231 }
232 
233 /// getCurrentSection() - Return the current section we are emitting to.
234 const MCSection *AsmPrinter::getCurrentSection() const {
235   return OutStreamer->getCurrentSectionOnly();
236 }
237 
238 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
239   AU.setPreservesAll();
240   MachineFunctionPass::getAnalysisUsage(AU);
241   AU.addRequired<MachineModuleInfo>();
242   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
243   AU.addRequired<GCModuleInfo>();
244 }
245 
246 bool AsmPrinter::doInitialization(Module &M) {
247   MMI = getAnalysisIfAvailable<MachineModuleInfo>();
248 
249   // Initialize TargetLoweringObjectFile.
250   const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
251     .Initialize(OutContext, TM);
252 
253   OutStreamer->InitSections(false);
254 
255   // Emit the version-min deployment target directive if needed.
256   //
257   // FIXME: If we end up with a collection of these sorts of Darwin-specific
258   // or ELF-specific things, it may make sense to have a platform helper class
259   // that will work with the target helper class. For now keep it here, as the
260   // alternative is duplicated code in each of the target asm printers that
261   // use the directive, where it would need the same conditionalization
262   // anyway.
263   const Triple &Target = TM.getTargetTriple();
264   OutStreamer->EmitVersionForTarget(Target);
265 
266   // Allow the target to emit any magic that it wants at the start of the file.
267   EmitStartOfAsmFile(M);
268 
269   // Very minimal debug info. It is ignored if we emit actual debug info. If we
270   // don't, this at least helps the user find where a global came from.
271   if (MAI->hasSingleParameterDotFile()) {
272     // .file "foo.c"
273     OutStreamer->EmitFileDirective(
274         llvm::sys::path::filename(M.getSourceFileName()));
275   }
276 
277   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
278   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
279   for (auto &I : *MI)
280     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
281       MP->beginAssembly(M, *MI, *this);
282 
283   // Emit module-level inline asm if it exists.
284   if (!M.getModuleInlineAsm().empty()) {
285     // We're at the module level. Construct MCSubtarget from the default CPU
286     // and target triple.
287     std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
288         TM.getTargetTriple().str(), TM.getTargetCPU(),
289         TM.getTargetFeatureString()));
290     OutStreamer->AddComment("Start of file scope inline assembly");
291     OutStreamer->AddBlankLine();
292     EmitInlineAsm(M.getModuleInlineAsm()+"\n",
293                   OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions);
294     OutStreamer->AddComment("End of file scope inline assembly");
295     OutStreamer->AddBlankLine();
296   }
297 
298   if (MAI->doesSupportDebugInformation()) {
299     bool EmitCodeView = MMI->getModule()->getCodeViewFlag();
300     if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
301       Handlers.push_back(HandlerInfo(new CodeViewDebug(this),
302                                      DbgTimerName, DbgTimerDescription,
303                                      CodeViewLineTablesGroupName,
304                                      CodeViewLineTablesGroupDescription));
305     }
306     if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) {
307       DD = new DwarfDebug(this, &M);
308       DD->beginModule();
309       Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription,
310                                      DWARFGroupName, DWARFGroupDescription));
311     }
312   }
313 
314   switch (MAI->getExceptionHandlingType()) {
315   case ExceptionHandling::SjLj:
316   case ExceptionHandling::DwarfCFI:
317   case ExceptionHandling::ARM:
318     isCFIMoveForDebugging = true;
319     if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
320       break;
321     for (auto &F: M.getFunctionList()) {
322       // If the module contains any function with unwind data,
323       // .eh_frame has to be emitted.
324       // Ignore functions that won't get emitted.
325       if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) {
326         isCFIMoveForDebugging = false;
327         break;
328       }
329     }
330     break;
331   default:
332     isCFIMoveForDebugging = false;
333     break;
334   }
335 
336   EHStreamer *ES = nullptr;
337   switch (MAI->getExceptionHandlingType()) {
338   case ExceptionHandling::None:
339     break;
340   case ExceptionHandling::SjLj:
341   case ExceptionHandling::DwarfCFI:
342     ES = new DwarfCFIException(this);
343     break;
344   case ExceptionHandling::ARM:
345     ES = new ARMException(this);
346     break;
347   case ExceptionHandling::WinEH:
348     switch (MAI->getWinEHEncodingType()) {
349     default: llvm_unreachable("unsupported unwinding information encoding");
350     case WinEH::EncodingType::Invalid:
351       break;
352     case WinEH::EncodingType::X86:
353     case WinEH::EncodingType::Itanium:
354       ES = new WinException(this);
355       break;
356     }
357     break;
358   case ExceptionHandling::Wasm:
359     // TODO to prevent warning
360     break;
361   }
362   if (ES)
363     Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription,
364                                    DWARFGroupName, DWARFGroupDescription));
365 
366   if (mdconst::extract_or_null<ConstantInt>(
367           MMI->getModule()->getModuleFlag("cfguardtable")))
368     Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName,
369                                    CFGuardDescription, DWARFGroupName,
370                                    DWARFGroupDescription));
371 
372   return false;
373 }
374 
375 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
376   if (!MAI.hasWeakDefCanBeHiddenDirective())
377     return false;
378 
379   return GV->canBeOmittedFromSymbolTable();
380 }
381 
382 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
383   GlobalValue::LinkageTypes Linkage = GV->getLinkage();
384   switch (Linkage) {
385   case GlobalValue::CommonLinkage:
386   case GlobalValue::LinkOnceAnyLinkage:
387   case GlobalValue::LinkOnceODRLinkage:
388   case GlobalValue::WeakAnyLinkage:
389   case GlobalValue::WeakODRLinkage:
390     if (MAI->hasWeakDefDirective()) {
391       // .globl _foo
392       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
393 
394       if (!canBeHidden(GV, *MAI))
395         // .weak_definition _foo
396         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
397       else
398         OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
399     } else if (MAI->hasLinkOnceDirective()) {
400       // .globl _foo
401       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
402       //NOTE: linkonce is handled by the section the symbol was assigned to.
403     } else {
404       // .weak _foo
405       OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak);
406     }
407     return;
408   case GlobalValue::ExternalLinkage:
409     // If external, declare as a global symbol: .globl _foo
410     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global);
411     return;
412   case GlobalValue::PrivateLinkage:
413   case GlobalValue::InternalLinkage:
414     return;
415   case GlobalValue::AppendingLinkage:
416   case GlobalValue::AvailableExternallyLinkage:
417   case GlobalValue::ExternalWeakLinkage:
418     llvm_unreachable("Should never emit this");
419   }
420   llvm_unreachable("Unknown linkage type!");
421 }
422 
423 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
424                                    const GlobalValue *GV) const {
425   TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
426 }
427 
428 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
429   return TM.getSymbol(GV);
430 }
431 
432 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
433 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
434   bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
435   assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
436          "No emulated TLS variables in the common section");
437 
438   // Never emit TLS variable xyz in emulated TLS model.
439   // The initialization value is in __emutls_t.xyz instead of xyz.
440   if (IsEmuTLSVar)
441     return;
442 
443   if (GV->hasInitializer()) {
444     // Check to see if this is a special global used by LLVM, if so, emit it.
445     if (EmitSpecialLLVMGlobal(GV))
446       return;
447 
448     // Skip the emission of global equivalents. The symbol can be emitted later
449     // on by emitGlobalGOTEquivs in case it turns out to be needed.
450     if (GlobalGOTEquivs.count(getSymbol(GV)))
451       return;
452 
453     if (isVerbose()) {
454       // When printing the control variable __emutls_v.*,
455       // we don't need to print the original TLS variable name.
456       GV->printAsOperand(OutStreamer->GetCommentOS(),
457                      /*PrintType=*/false, GV->getParent());
458       OutStreamer->GetCommentOS() << '\n';
459     }
460   }
461 
462   MCSymbol *GVSym = getSymbol(GV);
463   MCSymbol *EmittedSym = GVSym;
464 
465   // getOrCreateEmuTLSControlSym only creates the symbol with name and default
466   // attributes.
467   // GV's or GVSym's attributes will be used for the EmittedSym.
468   EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
469 
470   if (!GV->hasInitializer())   // External globals require no extra code.
471     return;
472 
473   GVSym->redefineIfPossible();
474   if (GVSym->isDefined() || GVSym->isVariable())
475     report_fatal_error("symbol '" + Twine(GVSym->getName()) +
476                        "' is already defined");
477 
478   if (MAI->hasDotTypeDotSizeDirective())
479     OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
480 
481   SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
482 
483   const DataLayout &DL = GV->getParent()->getDataLayout();
484   uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
485 
486   // If the alignment is specified, we *must* obey it.  Overaligning a global
487   // with a specified alignment is a prompt way to break globals emitted to
488   // sections and expected to be contiguous (e.g. ObjC metadata).
489   unsigned AlignLog = getGVAlignmentLog2(GV, DL);
490 
491   for (const HandlerInfo &HI : Handlers) {
492     NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
493                        HI.TimerGroupName, HI.TimerGroupDescription,
494                        TimePassesIsEnabled);
495     HI.Handler->setSymbolSize(GVSym, Size);
496   }
497 
498   // Handle common symbols
499   if (GVKind.isCommon()) {
500     if (Size == 0) Size = 1;   // .comm Foo, 0 is undefined, avoid it.
501     unsigned Align = 1 << AlignLog;
502     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
503       Align = 0;
504 
505     // .comm _foo, 42, 4
506     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
507     return;
508   }
509 
510   // Determine to which section this global should be emitted.
511   MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
512 
513   // If we have a bss global going to a section that supports the
514   // zerofill directive, do so here.
515   if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
516       TheSection->isVirtualSection()) {
517     if (Size == 0)
518       Size = 1; // zerofill of 0 bytes is undefined.
519     unsigned Align = 1 << AlignLog;
520     EmitLinkage(GV, GVSym);
521     // .zerofill __DATA, __bss, _foo, 400, 5
522     OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align);
523     return;
524   }
525 
526   // If this is a BSS local symbol and we are emitting in the BSS
527   // section use .lcomm/.comm directive.
528   if (GVKind.isBSSLocal() &&
529       getObjFileLowering().getBSSSection() == TheSection) {
530     if (Size == 0)
531       Size = 1; // .comm Foo, 0 is undefined, avoid it.
532     unsigned Align = 1 << AlignLog;
533 
534     // Use .lcomm only if it supports user-specified alignment.
535     // Otherwise, while it would still be correct to use .lcomm in some
536     // cases (e.g. when Align == 1), the external assembler might enfore
537     // some -unknown- default alignment behavior, which could cause
538     // spurious differences between external and integrated assembler.
539     // Prefer to simply fall back to .local / .comm in this case.
540     if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
541       // .lcomm _foo, 42
542       OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align);
543       return;
544     }
545 
546     if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
547       Align = 0;
548 
549     // .local _foo
550     OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local);
551     // .comm _foo, 42, 4
552     OutStreamer->EmitCommonSymbol(GVSym, Size, Align);
553     return;
554   }
555 
556   // Handle thread local data for mach-o which requires us to output an
557   // additional structure of data and mangle the original symbol so that we
558   // can reference it later.
559   //
560   // TODO: This should become an "emit thread local global" method on TLOF.
561   // All of this macho specific stuff should be sunk down into TLOFMachO and
562   // stuff like "TLSExtraDataSection" should no longer be part of the parent
563   // TLOF class.  This will also make it more obvious that stuff like
564   // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
565   // specific code.
566   if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
567     // Emit the .tbss symbol
568     MCSymbol *MangSym =
569         OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
570 
571     if (GVKind.isThreadBSS()) {
572       TheSection = getObjFileLowering().getTLSBSSSection();
573       OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
574     } else if (GVKind.isThreadData()) {
575       OutStreamer->SwitchSection(TheSection);
576 
577       EmitAlignment(AlignLog, GV);
578       OutStreamer->EmitLabel(MangSym);
579 
580       EmitGlobalConstant(GV->getParent()->getDataLayout(),
581                          GV->getInitializer());
582     }
583 
584     OutStreamer->AddBlankLine();
585 
586     // Emit the variable struct for the runtime.
587     MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
588 
589     OutStreamer->SwitchSection(TLVSect);
590     // Emit the linkage here.
591     EmitLinkage(GV, GVSym);
592     OutStreamer->EmitLabel(GVSym);
593 
594     // Three pointers in size:
595     //   - __tlv_bootstrap - used to make sure support exists
596     //   - spare pointer, used when mapped by the runtime
597     //   - pointer to mangled symbol above with initializer
598     unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
599     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
600                                 PtrSize);
601     OutStreamer->EmitIntValue(0, PtrSize);
602     OutStreamer->EmitSymbolValue(MangSym, PtrSize);
603 
604     OutStreamer->AddBlankLine();
605     return;
606   }
607 
608   MCSymbol *EmittedInitSym = GVSym;
609 
610   OutStreamer->SwitchSection(TheSection);
611 
612   EmitLinkage(GV, EmittedInitSym);
613   EmitAlignment(AlignLog, GV);
614 
615   OutStreamer->EmitLabel(EmittedInitSym);
616 
617   EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
618 
619   if (MAI->hasDotTypeDotSizeDirective())
620     // .size foo, 42
621     OutStreamer->emitELFSize(EmittedInitSym,
622                              MCConstantExpr::create(Size, OutContext));
623 
624   OutStreamer->AddBlankLine();
625 }
626 
627 /// Emit the directive and value for debug thread local expression
628 ///
629 /// \p Value - The value to emit.
630 /// \p Size - The size of the integer (in bytes) to emit.
631 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value,
632                                       unsigned Size) const {
633   OutStreamer->EmitValue(Value, Size);
634 }
635 
636 /// EmitFunctionHeader - This method emits the header for the current
637 /// function.
638 void AsmPrinter::EmitFunctionHeader() {
639   const Function &F = MF->getFunction();
640 
641   if (isVerbose())
642     OutStreamer->GetCommentOS()
643         << "-- Begin function "
644         << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
645 
646   // Print out constants referenced by the function
647   EmitConstantPool();
648 
649   // Print the 'header' of function.
650   OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM));
651   EmitVisibility(CurrentFnSym, F.getVisibility());
652 
653   EmitLinkage(&F, CurrentFnSym);
654   if (MAI->hasFunctionAlignment())
655     EmitAlignment(MF->getAlignment(), &F);
656 
657   if (MAI->hasDotTypeDotSizeDirective())
658     OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
659 
660   if (isVerbose()) {
661     F.printAsOperand(OutStreamer->GetCommentOS(),
662                    /*PrintType=*/false, F.getParent());
663     OutStreamer->GetCommentOS() << '\n';
664   }
665 
666   // Emit the prefix data.
667   if (F.hasPrefixData()) {
668     if (MAI->hasSubsectionsViaSymbols()) {
669       // Preserving prefix data on platforms which use subsections-via-symbols
670       // is a bit tricky. Here we introduce a symbol for the prefix data
671       // and use the .alt_entry attribute to mark the function's real entry point
672       // as an alternative entry point to the prefix-data symbol.
673       MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
674       OutStreamer->EmitLabel(PrefixSym);
675 
676       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
677 
678       // Emit an .alt_entry directive for the actual function symbol.
679       OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
680     } else {
681       EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
682     }
683   }
684 
685   // Emit the CurrentFnSym.  This is a virtual function to allow targets to
686   // do their wild and crazy things as required.
687   EmitFunctionEntryLabel();
688 
689   // If the function had address-taken blocks that got deleted, then we have
690   // references to the dangling symbols.  Emit them at the start of the function
691   // so that we don't get references to undefined symbols.
692   std::vector<MCSymbol*> DeadBlockSyms;
693   MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
694   for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
695     OutStreamer->AddComment("Address taken block that was later removed");
696     OutStreamer->EmitLabel(DeadBlockSyms[i]);
697   }
698 
699   if (CurrentFnBegin) {
700     if (MAI->useAssignmentForEHBegin()) {
701       MCSymbol *CurPos = OutContext.createTempSymbol();
702       OutStreamer->EmitLabel(CurPos);
703       OutStreamer->EmitAssignment(CurrentFnBegin,
704                                  MCSymbolRefExpr::create(CurPos, OutContext));
705     } else {
706       OutStreamer->EmitLabel(CurrentFnBegin);
707     }
708   }
709 
710   // Emit pre-function debug and/or EH information.
711   for (const HandlerInfo &HI : Handlers) {
712     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
713                        HI.TimerGroupDescription, TimePassesIsEnabled);
714     HI.Handler->beginFunction(MF);
715   }
716 
717   // Emit the prologue data.
718   if (F.hasPrologueData())
719     EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
720 }
721 
722 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
723 /// function.  This can be overridden by targets as required to do custom stuff.
724 void AsmPrinter::EmitFunctionEntryLabel() {
725   CurrentFnSym->redefineIfPossible();
726 
727   // The function label could have already been emitted if two symbols end up
728   // conflicting due to asm renaming.  Detect this and emit an error.
729   if (CurrentFnSym->isVariable())
730     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
731                        "' is a protected alias");
732   if (CurrentFnSym->isDefined())
733     report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
734                        "' label emitted multiple times to assembly file");
735 
736   return OutStreamer->EmitLabel(CurrentFnSym);
737 }
738 
739 /// emitComments - Pretty-print comments for instructions.
740 /// It returns true iff the sched comment was emitted.
741 ///   Otherwise it returns false.
742 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS,
743                          AsmPrinter *AP) {
744   const MachineFunction *MF = MI.getMF();
745   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
746 
747   // Check for spills and reloads
748   int FI;
749 
750   const MachineFrameInfo &MFI = MF->getFrameInfo();
751   bool Commented = false;
752 
753   auto getSize =
754       [&MFI](const SmallVectorImpl<const MachineMemOperand *> &Accesses) {
755         unsigned Size = 0;
756         for (auto A : Accesses)
757           if (MFI.isSpillSlotObjectIndex(
758                   cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
759                       ->getFrameIndex()))
760             Size += A->getSize();
761         return Size;
762       };
763 
764   // We assume a single instruction only has a spill or reload, not
765   // both.
766   const MachineMemOperand *MMO;
767   SmallVector<const MachineMemOperand *, 2> Accesses;
768   if (TII->isLoadFromStackSlotPostFE(MI, FI)) {
769     if (MFI.isSpillSlotObjectIndex(FI)) {
770       MMO = *MI.memoperands_begin();
771       CommentOS << MMO->getSize() << "-byte Reload";
772       Commented = true;
773     }
774   } else if (TII->hasLoadFromStackSlot(MI, Accesses)) {
775     if (auto Size = getSize(Accesses)) {
776       CommentOS << Size << "-byte Folded Reload";
777       Commented = true;
778     }
779   } else if (TII->isStoreToStackSlotPostFE(MI, FI)) {
780     if (MFI.isSpillSlotObjectIndex(FI)) {
781       MMO = *MI.memoperands_begin();
782       CommentOS << MMO->getSize() << "-byte Spill";
783       Commented = true;
784     }
785   } else if (TII->hasStoreToStackSlot(MI, Accesses)) {
786     if (auto Size = getSize(Accesses)) {
787       CommentOS << Size << "-byte Folded Spill";
788       Commented = true;
789     }
790   }
791 
792   // Check for spill-induced copies
793   if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) {
794     Commented = true;
795     CommentOS << " Reload Reuse";
796   }
797 
798   if (Commented) {
799     if (AP->EnablePrintSchedInfo) {
800       // If any comment was added above and we need sched info comment then add
801       // this new comment just after the above comment w/o "\n" between them.
802       CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n";
803       return true;
804     }
805     CommentOS << "\n";
806   }
807   return false;
808 }
809 
810 /// emitImplicitDef - This method emits the specified machine instruction
811 /// that is an implicit def.
812 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
813   unsigned RegNo = MI->getOperand(0).getReg();
814 
815   SmallString<128> Str;
816   raw_svector_ostream OS(Str);
817   OS << "implicit-def: "
818      << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
819 
820   OutStreamer->AddComment(OS.str());
821   OutStreamer->AddBlankLine();
822 }
823 
824 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
825   std::string Str;
826   raw_string_ostream OS(Str);
827   OS << "kill:";
828   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
829     const MachineOperand &Op = MI->getOperand(i);
830     assert(Op.isReg() && "KILL instruction must have only register operands");
831     OS << ' ' << (Op.isDef() ? "def " : "killed ")
832        << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
833   }
834   AP.OutStreamer->AddComment(OS.str());
835   AP.OutStreamer->AddBlankLine();
836 }
837 
838 /// emitDebugValueComment - This method handles the target-independent form
839 /// of DBG_VALUE, returning true if it was able to do so.  A false return
840 /// means the target will need to handle MI in EmitInstruction.
841 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
842   // This code handles only the 4-operand target-independent form.
843   if (MI->getNumOperands() != 4)
844     return false;
845 
846   SmallString<128> Str;
847   raw_svector_ostream OS(Str);
848   OS << "DEBUG_VALUE: ";
849 
850   const DILocalVariable *V = MI->getDebugVariable();
851   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
852     StringRef Name = SP->getName();
853     if (!Name.empty())
854       OS << Name << ":";
855   }
856   OS << V->getName();
857   OS << " <- ";
858 
859   // The second operand is only an offset if it's an immediate.
860   bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
861   int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0;
862   const DIExpression *Expr = MI->getDebugExpression();
863   if (Expr->getNumElements()) {
864     OS << '[';
865     bool NeedSep = false;
866     for (auto Op : Expr->expr_ops()) {
867       if (NeedSep)
868         OS << ", ";
869       else
870         NeedSep = true;
871       OS << dwarf::OperationEncodingString(Op.getOp());
872       for (unsigned I = 0; I < Op.getNumArgs(); ++I)
873         OS << ' ' << Op.getArg(I);
874     }
875     OS << "] ";
876   }
877 
878   // Register or immediate value. Register 0 means undef.
879   if (MI->getOperand(0).isFPImm()) {
880     APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
881     if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
882       OS << (double)APF.convertToFloat();
883     } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
884       OS << APF.convertToDouble();
885     } else {
886       // There is no good way to print long double.  Convert a copy to
887       // double.  Ah well, it's only a comment.
888       bool ignored;
889       APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
890                   &ignored);
891       OS << "(long double) " << APF.convertToDouble();
892     }
893   } else if (MI->getOperand(0).isImm()) {
894     OS << MI->getOperand(0).getImm();
895   } else if (MI->getOperand(0).isCImm()) {
896     MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
897   } else {
898     unsigned Reg;
899     if (MI->getOperand(0).isReg()) {
900       Reg = MI->getOperand(0).getReg();
901     } else {
902       assert(MI->getOperand(0).isFI() && "Unknown operand type");
903       const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering();
904       Offset += TFI->getFrameIndexReference(*AP.MF,
905                                             MI->getOperand(0).getIndex(), Reg);
906       MemLoc = true;
907     }
908     if (Reg == 0) {
909       // Suppress offset, it is not meaningful here.
910       OS << "undef";
911       // NOTE: Want this comment at start of line, don't emit with AddComment.
912       AP.OutStreamer->emitRawComment(OS.str());
913       return true;
914     }
915     if (MemLoc)
916       OS << '[';
917     OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
918   }
919 
920   if (MemLoc)
921     OS << '+' << Offset << ']';
922 
923   // NOTE: Want this comment at start of line, don't emit with AddComment.
924   AP.OutStreamer->emitRawComment(OS.str());
925   return true;
926 }
927 
928 /// This method handles the target-independent form of DBG_LABEL, returning
929 /// true if it was able to do so.  A false return means the target will need
930 /// to handle MI in EmitInstruction.
931 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
932   if (MI->getNumOperands() != 1)
933     return false;
934 
935   SmallString<128> Str;
936   raw_svector_ostream OS(Str);
937   OS << "DEBUG_LABEL: ";
938 
939   const DILabel *V = MI->getDebugLabel();
940   if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
941     StringRef Name = SP->getName();
942     if (!Name.empty())
943       OS << Name << ":";
944   }
945   OS << V->getName();
946 
947   // NOTE: Want this comment at start of line, don't emit with AddComment.
948   AP.OutStreamer->emitRawComment(OS.str());
949   return true;
950 }
951 
952 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const {
953   if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
954       MF->getFunction().needsUnwindTableEntry())
955     return CFI_M_EH;
956 
957   if (MMI->hasDebugInfo())
958     return CFI_M_Debug;
959 
960   return CFI_M_None;
961 }
962 
963 bool AsmPrinter::needsSEHMoves() {
964   return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
965 }
966 
967 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
968   ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
969   if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
970       ExceptionHandlingType != ExceptionHandling::ARM)
971     return;
972 
973   if (needsCFIMoves() == CFI_M_None)
974     return;
975 
976   // If there is no "real" instruction following this CFI instruction, skip
977   // emitting it; it would be beyond the end of the function's FDE range.
978   auto *MBB = MI.getParent();
979   auto I = std::next(MI.getIterator());
980   while (I != MBB->end() && I->isTransient())
981     ++I;
982   if (I == MBB->instr_end() &&
983       MBB->getReverseIterator() == MBB->getParent()->rbegin())
984     return;
985 
986   const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
987   unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
988   const MCCFIInstruction &CFI = Instrs[CFIIndex];
989   emitCFIInstruction(CFI);
990 }
991 
992 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
993   // The operands are the MCSymbol and the frame offset of the allocation.
994   MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
995   int FrameOffset = MI.getOperand(1).getImm();
996 
997   // Emit a symbol assignment.
998   OutStreamer->EmitAssignment(FrameAllocSym,
999                              MCConstantExpr::create(FrameOffset, OutContext));
1000 }
1001 
1002 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
1003   if (!MF.getTarget().Options.EmitStackSizeSection)
1004     return;
1005 
1006   MCSection *StackSizeSection =
1007       getObjFileLowering().getStackSizesSection(*getCurrentSection());
1008   if (!StackSizeSection)
1009     return;
1010 
1011   const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1012   // Don't emit functions with dynamic stack allocations.
1013   if (FrameInfo.hasVarSizedObjects())
1014     return;
1015 
1016   OutStreamer->PushSection();
1017   OutStreamer->SwitchSection(StackSizeSection);
1018 
1019   const MCSymbol *FunctionSymbol = getFunctionBegin();
1020   uint64_t StackSize = FrameInfo.getStackSize();
1021   OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1022   OutStreamer->EmitULEB128IntValue(StackSize);
1023 
1024   OutStreamer->PopSection();
1025 }
1026 
1027 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF,
1028                                            MachineModuleInfo *MMI) {
1029   if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo())
1030     return true;
1031 
1032   // We might emit an EH table that uses function begin and end labels even if
1033   // we don't have any landingpads.
1034   if (!MF.getFunction().hasPersonalityFn())
1035     return false;
1036   return !isNoOpWithoutInvoke(
1037       classifyEHPersonality(MF.getFunction().getPersonalityFn()));
1038 }
1039 
1040 /// EmitFunctionBody - This method emits the body and trailer for a
1041 /// function.
1042 void AsmPrinter::EmitFunctionBody() {
1043   EmitFunctionHeader();
1044 
1045   // Emit target-specific gunk before the function body.
1046   EmitFunctionBodyStart();
1047 
1048   bool ShouldPrintDebugScopes = MMI->hasDebugInfo();
1049 
1050   if (isVerbose()) {
1051     // Get MachineDominatorTree or compute it on the fly if it's unavailable
1052     MDT = getAnalysisIfAvailable<MachineDominatorTree>();
1053     if (!MDT) {
1054       OwnedMDT = make_unique<MachineDominatorTree>();
1055       OwnedMDT->getBase().recalculate(*MF);
1056       MDT = OwnedMDT.get();
1057     }
1058 
1059     // Get MachineLoopInfo or compute it on the fly if it's unavailable
1060     MLI = getAnalysisIfAvailable<MachineLoopInfo>();
1061     if (!MLI) {
1062       OwnedMLI = make_unique<MachineLoopInfo>();
1063       OwnedMLI->getBase().analyze(MDT->getBase());
1064       MLI = OwnedMLI.get();
1065     }
1066   }
1067 
1068   // Print out code for the function.
1069   bool HasAnyRealCode = false;
1070   int NumInstsInFunction = 0;
1071   for (auto &MBB : *MF) {
1072     // Print a label for the basic block.
1073     EmitBasicBlockStart(MBB);
1074     for (auto &MI : MBB) {
1075       // Print the assembly for the instruction.
1076       if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
1077           !MI.isDebugInstr()) {
1078         HasAnyRealCode = true;
1079         ++NumInstsInFunction;
1080       }
1081 
1082       // If there is a pre-instruction symbol, emit a label for it here.
1083       if (MCSymbol *S = MI.getPreInstrSymbol())
1084         OutStreamer->EmitLabel(S);
1085 
1086       if (ShouldPrintDebugScopes) {
1087         for (const HandlerInfo &HI : Handlers) {
1088           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1089                              HI.TimerGroupName, HI.TimerGroupDescription,
1090                              TimePassesIsEnabled);
1091           HI.Handler->beginInstruction(&MI);
1092         }
1093       }
1094 
1095       if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) {
1096         MachineInstr *MIP = const_cast<MachineInstr *>(&MI);
1097         MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment);
1098       }
1099 
1100       switch (MI.getOpcode()) {
1101       case TargetOpcode::CFI_INSTRUCTION:
1102         emitCFIInstruction(MI);
1103         break;
1104       case TargetOpcode::LOCAL_ESCAPE:
1105         emitFrameAlloc(MI);
1106         break;
1107       case TargetOpcode::EH_LABEL:
1108       case TargetOpcode::GC_LABEL:
1109         OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol());
1110         break;
1111       case TargetOpcode::INLINEASM:
1112         EmitInlineAsm(&MI);
1113         break;
1114       case TargetOpcode::DBG_VALUE:
1115         if (isVerbose()) {
1116           if (!emitDebugValueComment(&MI, *this))
1117             EmitInstruction(&MI);
1118         }
1119         break;
1120       case TargetOpcode::DBG_LABEL:
1121         if (isVerbose()) {
1122           if (!emitDebugLabelComment(&MI, *this))
1123             EmitInstruction(&MI);
1124         }
1125         break;
1126       case TargetOpcode::IMPLICIT_DEF:
1127         if (isVerbose()) emitImplicitDef(&MI);
1128         break;
1129       case TargetOpcode::KILL:
1130         if (isVerbose()) emitKill(&MI, *this);
1131         break;
1132       default:
1133         EmitInstruction(&MI);
1134         break;
1135       }
1136 
1137       // If there is a post-instruction symbol, emit a label for it here.
1138       if (MCSymbol *S = MI.getPostInstrSymbol())
1139         OutStreamer->EmitLabel(S);
1140 
1141       if (ShouldPrintDebugScopes) {
1142         for (const HandlerInfo &HI : Handlers) {
1143           NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
1144                              HI.TimerGroupName, HI.TimerGroupDescription,
1145                              TimePassesIsEnabled);
1146           HI.Handler->endInstruction();
1147         }
1148       }
1149     }
1150 
1151     EmitBasicBlockEnd(MBB);
1152   }
1153 
1154   EmittedInsts += NumInstsInFunction;
1155   MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
1156                                       MF->getFunction().getSubprogram(),
1157                                       &MF->front());
1158   R << ore::NV("NumInstructions", NumInstsInFunction)
1159     << " instructions in function";
1160   ORE->emit(R);
1161 
1162   // If the function is empty and the object file uses .subsections_via_symbols,
1163   // then we need to emit *something* to the function body to prevent the
1164   // labels from collapsing together.  Just emit a noop.
1165   // Similarly, don't emit empty functions on Windows either. It can lead to
1166   // duplicate entries (two functions with the same RVA) in the Guard CF Table
1167   // after linking, causing the kernel not to load the binary:
1168   // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
1169   // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
1170   const Triple &TT = TM.getTargetTriple();
1171   if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
1172                           (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
1173     MCInst Noop;
1174     MF->getSubtarget().getInstrInfo()->getNoop(Noop);
1175 
1176     // Targets can opt-out of emitting the noop here by leaving the opcode
1177     // unspecified.
1178     if (Noop.getOpcode()) {
1179       OutStreamer->AddComment("avoids zero-length function");
1180       OutStreamer->EmitInstruction(Noop, getSubtargetInfo());
1181     }
1182   }
1183 
1184   const Function &F = MF->getFunction();
1185   for (const auto &BB : F) {
1186     if (!BB.hasAddressTaken())
1187       continue;
1188     MCSymbol *Sym = GetBlockAddressSymbol(&BB);
1189     if (Sym->isDefined())
1190       continue;
1191     OutStreamer->AddComment("Address of block that was removed by CodeGen");
1192     OutStreamer->EmitLabel(Sym);
1193   }
1194 
1195   // Emit target-specific gunk after the function body.
1196   EmitFunctionBodyEnd();
1197 
1198   if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) ||
1199       MAI->hasDotTypeDotSizeDirective()) {
1200     // Create a symbol for the end of function.
1201     CurrentFnEnd = createTempSymbol("func_end");
1202     OutStreamer->EmitLabel(CurrentFnEnd);
1203   }
1204 
1205   // If the target wants a .size directive for the size of the function, emit
1206   // it.
1207   if (MAI->hasDotTypeDotSizeDirective()) {
1208     // We can get the size as difference between the function label and the
1209     // temp label.
1210     const MCExpr *SizeExp = MCBinaryExpr::createSub(
1211         MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
1212         MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
1213     OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
1214   }
1215 
1216   for (const HandlerInfo &HI : Handlers) {
1217     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1218                        HI.TimerGroupDescription, TimePassesIsEnabled);
1219     HI.Handler->markFunctionEnd();
1220   }
1221 
1222   // Print out jump tables referenced by the function.
1223   EmitJumpTableInfo();
1224 
1225   // Emit post-function debug and/or EH information.
1226   for (const HandlerInfo &HI : Handlers) {
1227     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1228                        HI.TimerGroupDescription, TimePassesIsEnabled);
1229     HI.Handler->endFunction(MF);
1230   }
1231 
1232   // Emit section containing stack size metadata.
1233   emitStackSizeSection(*MF);
1234 
1235   if (isVerbose())
1236     OutStreamer->GetCommentOS() << "-- End function\n";
1237 
1238   OutStreamer->AddBlankLine();
1239 }
1240 
1241 /// Compute the number of Global Variables that uses a Constant.
1242 static unsigned getNumGlobalVariableUses(const Constant *C) {
1243   if (!C)
1244     return 0;
1245 
1246   if (isa<GlobalVariable>(C))
1247     return 1;
1248 
1249   unsigned NumUses = 0;
1250   for (auto *CU : C->users())
1251     NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
1252 
1253   return NumUses;
1254 }
1255 
1256 /// Only consider global GOT equivalents if at least one user is a
1257 /// cstexpr inside an initializer of another global variables. Also, don't
1258 /// handle cstexpr inside instructions. During global variable emission,
1259 /// candidates are skipped and are emitted later in case at least one cstexpr
1260 /// isn't replaced by a PC relative GOT entry access.
1261 static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
1262                                      unsigned &NumGOTEquivUsers) {
1263   // Global GOT equivalents are unnamed private globals with a constant
1264   // pointer initializer to another global symbol. They must point to a
1265   // GlobalVariable or Function, i.e., as GlobalValue.
1266   if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
1267       !GV->isConstant() || !GV->isDiscardableIfUnused() ||
1268       !dyn_cast<GlobalValue>(GV->getOperand(0)))
1269     return false;
1270 
1271   // To be a got equivalent, at least one of its users need to be a constant
1272   // expression used by another global variable.
1273   for (auto *U : GV->users())
1274     NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
1275 
1276   return NumGOTEquivUsers > 0;
1277 }
1278 
1279 /// Unnamed constant global variables solely contaning a pointer to
1280 /// another globals variable is equivalent to a GOT table entry; it contains the
1281 /// the address of another symbol. Optimize it and replace accesses to these
1282 /// "GOT equivalents" by using the GOT entry for the final global instead.
1283 /// Compute GOT equivalent candidates among all global variables to avoid
1284 /// emitting them if possible later on, after it use is replaced by a GOT entry
1285 /// access.
1286 void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
1287   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1288     return;
1289 
1290   for (const auto &G : M.globals()) {
1291     unsigned NumGOTEquivUsers = 0;
1292     if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
1293       continue;
1294 
1295     const MCSymbol *GOTEquivSym = getSymbol(&G);
1296     GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
1297   }
1298 }
1299 
1300 /// Constant expressions using GOT equivalent globals may not be eligible
1301 /// for PC relative GOT entry conversion, in such cases we need to emit such
1302 /// globals we previously omitted in EmitGlobalVariable.
1303 void AsmPrinter::emitGlobalGOTEquivs() {
1304   if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
1305     return;
1306 
1307   SmallVector<const GlobalVariable *, 8> FailedCandidates;
1308   for (auto &I : GlobalGOTEquivs) {
1309     const GlobalVariable *GV = I.second.first;
1310     unsigned Cnt = I.second.second;
1311     if (Cnt)
1312       FailedCandidates.push_back(GV);
1313   }
1314   GlobalGOTEquivs.clear();
1315 
1316   for (auto *GV : FailedCandidates)
1317     EmitGlobalVariable(GV);
1318 }
1319 
1320 void AsmPrinter::emitGlobalIndirectSymbol(Module &M,
1321                                           const GlobalIndirectSymbol& GIS) {
1322   MCSymbol *Name = getSymbol(&GIS);
1323 
1324   if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective())
1325     OutStreamer->EmitSymbolAttribute(Name, MCSA_Global);
1326   else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage())
1327     OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference);
1328   else
1329     assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage");
1330 
1331   // Set the symbol type to function if the alias has a function type.
1332   // This affects codegen when the aliasee is not a function.
1333   if (GIS.getType()->getPointerElementType()->isFunctionTy()) {
1334     OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
1335     if (isa<GlobalIFunc>(GIS))
1336       OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
1337   }
1338 
1339   EmitVisibility(Name, GIS.getVisibility());
1340 
1341   const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol());
1342 
1343   if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
1344     OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry);
1345 
1346   // Emit the directives as assignments aka .set:
1347   OutStreamer->EmitAssignment(Name, Expr);
1348 
1349   if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) {
1350     // If the aliasee does not correspond to a symbol in the output, i.e. the
1351     // alias is not of an object or the aliased object is private, then set the
1352     // size of the alias symbol from the type of the alias. We don't do this in
1353     // other situations as the alias and aliasee having differing types but same
1354     // size may be intentional.
1355     const GlobalObject *BaseObject = GA->getBaseObject();
1356     if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() &&
1357         (!BaseObject || BaseObject->hasPrivateLinkage())) {
1358       const DataLayout &DL = M.getDataLayout();
1359       uint64_t Size = DL.getTypeAllocSize(GA->getValueType());
1360       OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
1361     }
1362   }
1363 }
1364 
1365 bool AsmPrinter::doFinalization(Module &M) {
1366   // Set the MachineFunction to nullptr so that we can catch attempted
1367   // accesses to MF specific features at the module level and so that
1368   // we can conditionalize accesses based on whether or not it is nullptr.
1369   MF = nullptr;
1370 
1371   // Gather all GOT equivalent globals in the module. We really need two
1372   // passes over the globals: one to compute and another to avoid its emission
1373   // in EmitGlobalVariable, otherwise we would not be able to handle cases
1374   // where the got equivalent shows up before its use.
1375   computeGlobalGOTEquivs(M);
1376 
1377   // Emit global variables.
1378   for (const auto &G : M.globals())
1379     EmitGlobalVariable(&G);
1380 
1381   // Emit remaining GOT equivalent globals.
1382   emitGlobalGOTEquivs();
1383 
1384   // Emit visibility info for declarations
1385   for (const Function &F : M) {
1386     if (!F.isDeclarationForLinker())
1387       continue;
1388     GlobalValue::VisibilityTypes V = F.getVisibility();
1389     if (V == GlobalValue::DefaultVisibility)
1390       continue;
1391 
1392     MCSymbol *Name = getSymbol(&F);
1393     EmitVisibility(Name, V, false);
1394   }
1395 
1396   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1397 
1398   TLOF.emitModuleMetadata(*OutStreamer, M);
1399 
1400   if (TM.getTargetTriple().isOSBinFormatELF()) {
1401     MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
1402 
1403     // Output stubs for external and common global variables.
1404     MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
1405     if (!Stubs.empty()) {
1406       OutStreamer->SwitchSection(TLOF.getDataSection());
1407       const DataLayout &DL = M.getDataLayout();
1408 
1409       EmitAlignment(Log2_32(DL.getPointerSize()));
1410       for (const auto &Stub : Stubs) {
1411         OutStreamer->EmitLabel(Stub.first);
1412         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1413                                      DL.getPointerSize());
1414       }
1415     }
1416   }
1417 
1418   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1419     MachineModuleInfoCOFF &MMICOFF =
1420         MMI->getObjFileInfo<MachineModuleInfoCOFF>();
1421 
1422     // Output stubs for external and common global variables.
1423     MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
1424     if (!Stubs.empty()) {
1425       const DataLayout &DL = M.getDataLayout();
1426 
1427       for (const auto &Stub : Stubs) {
1428         SmallString<256> SectionName = StringRef(".rdata$");
1429         SectionName += Stub.first->getName();
1430         OutStreamer->SwitchSection(OutContext.getCOFFSection(
1431             SectionName,
1432             COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
1433                 COFF::IMAGE_SCN_LNK_COMDAT,
1434             SectionKind::getReadOnly(), Stub.first->getName(),
1435             COFF::IMAGE_COMDAT_SELECT_ANY));
1436         EmitAlignment(Log2_32(DL.getPointerSize()));
1437         OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global);
1438         OutStreamer->EmitLabel(Stub.first);
1439         OutStreamer->EmitSymbolValue(Stub.second.getPointer(),
1440                                      DL.getPointerSize());
1441       }
1442     }
1443   }
1444 
1445   // Finalize debug and EH information.
1446   for (const HandlerInfo &HI : Handlers) {
1447     NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
1448                        HI.TimerGroupDescription, TimePassesIsEnabled);
1449     HI.Handler->endModule();
1450     delete HI.Handler;
1451   }
1452   Handlers.clear();
1453   DD = nullptr;
1454 
1455   // If the target wants to know about weak references, print them all.
1456   if (MAI->getWeakRefDirective()) {
1457     // FIXME: This is not lazy, it would be nice to only print weak references
1458     // to stuff that is actually used.  Note that doing so would require targets
1459     // to notice uses in operands (due to constant exprs etc).  This should
1460     // happen with the MC stuff eventually.
1461 
1462     // Print out module-level global objects here.
1463     for (const auto &GO : M.global_objects()) {
1464       if (!GO.hasExternalWeakLinkage())
1465         continue;
1466       OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
1467     }
1468   }
1469 
1470   OutStreamer->AddBlankLine();
1471 
1472   // Print aliases in topological order, that is, for each alias a = b,
1473   // b must be printed before a.
1474   // This is because on some targets (e.g. PowerPC) linker expects aliases in
1475   // such an order to generate correct TOC information.
1476   SmallVector<const GlobalAlias *, 16> AliasStack;
1477   SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
1478   for (const auto &Alias : M.aliases()) {
1479     for (const GlobalAlias *Cur = &Alias; Cur;
1480          Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
1481       if (!AliasVisited.insert(Cur).second)
1482         break;
1483       AliasStack.push_back(Cur);
1484     }
1485     for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
1486       emitGlobalIndirectSymbol(M, *AncestorAlias);
1487     AliasStack.clear();
1488   }
1489   for (const auto &IFunc : M.ifuncs())
1490     emitGlobalIndirectSymbol(M, IFunc);
1491 
1492   GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
1493   assert(MI && "AsmPrinter didn't require GCModuleInfo?");
1494   for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
1495     if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I))
1496       MP->finishAssembly(M, *MI, *this);
1497 
1498   // Emit llvm.ident metadata in an '.ident' directive.
1499   EmitModuleIdents(M);
1500 
1501   // Emit __morestack address if needed for indirect calls.
1502   if (MMI->usesMorestackAddr()) {
1503     unsigned Align = 1;
1504     MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(
1505         getDataLayout(), SectionKind::getReadOnly(),
1506         /*C=*/nullptr, Align);
1507     OutStreamer->SwitchSection(ReadOnlySection);
1508 
1509     MCSymbol *AddrSymbol =
1510         OutContext.getOrCreateSymbol(StringRef("__morestack_addr"));
1511     OutStreamer->EmitLabel(AddrSymbol);
1512 
1513     unsigned PtrSize = MAI->getCodePointerSize();
1514     OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"),
1515                                  PtrSize);
1516   }
1517 
1518   // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
1519   // split-stack is used.
1520   if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) {
1521     OutStreamer->SwitchSection(
1522         OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0));
1523     if (MMI->hasNosplitStack())
1524       OutStreamer->SwitchSection(
1525           OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
1526   }
1527 
1528   // If we don't have any trampolines, then we don't require stack memory
1529   // to be executable. Some targets have a directive to declare this.
1530   Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
1531   if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
1532     if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
1533       OutStreamer->SwitchSection(S);
1534 
1535   if (TM.getTargetTriple().isOSBinFormatCOFF()) {
1536     // Emit /EXPORT: flags for each exported global as necessary.
1537     const auto &TLOF = getObjFileLowering();
1538     std::string Flags;
1539 
1540     for (const GlobalValue &GV : M.global_values()) {
1541       raw_string_ostream OS(Flags);
1542       TLOF.emitLinkerFlagsForGlobal(OS, &GV);
1543       OS.flush();
1544       if (!Flags.empty()) {
1545         OutStreamer->SwitchSection(TLOF.getDrectveSection());
1546         OutStreamer->EmitBytes(Flags);
1547       }
1548       Flags.clear();
1549     }
1550 
1551     // Emit /INCLUDE: flags for each used global as necessary.
1552     if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1553       assert(LU->hasInitializer() &&
1554              "expected llvm.used to have an initializer");
1555       assert(isa<ArrayType>(LU->getValueType()) &&
1556              "expected llvm.used to be an array type");
1557       if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1558         for (const Value *Op : A->operands()) {
1559           const auto *GV =
1560               cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases());
1561           // Global symbols with internal or private linkage are not visible to
1562           // the linker, and thus would cause an error when the linker tried to
1563           // preserve the symbol due to the `/include:` directive.
1564           if (GV->hasLocalLinkage())
1565             continue;
1566 
1567           raw_string_ostream OS(Flags);
1568           TLOF.emitLinkerFlagsForUsed(OS, GV);
1569           OS.flush();
1570 
1571           if (!Flags.empty()) {
1572             OutStreamer->SwitchSection(TLOF.getDrectveSection());
1573             OutStreamer->EmitBytes(Flags);
1574           }
1575           Flags.clear();
1576         }
1577       }
1578     }
1579   }
1580 
1581   if (TM.Options.EmitAddrsig) {
1582     // Emit address-significance attributes for all globals.
1583     OutStreamer->EmitAddrsig();
1584     for (const GlobalValue &GV : M.global_values())
1585       if (!GV.use_empty() && !GV.isThreadLocal() &&
1586           !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
1587           !GV.hasAtLeastLocalUnnamedAddr())
1588         OutStreamer->EmitAddrsigSym(getSymbol(&GV));
1589   }
1590 
1591   // Allow the target to emit any magic that it wants at the end of the file,
1592   // after everything else has gone out.
1593   EmitEndOfAsmFile(M);
1594 
1595   MMI = nullptr;
1596 
1597   OutStreamer->Finish();
1598   OutStreamer->reset();
1599   OwnedMLI.reset();
1600   OwnedMDT.reset();
1601 
1602   return false;
1603 }
1604 
1605 MCSymbol *AsmPrinter::getCurExceptionSym() {
1606   if (!CurExceptionSym)
1607     CurExceptionSym = createTempSymbol("exception");
1608   return CurExceptionSym;
1609 }
1610 
1611 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
1612   this->MF = &MF;
1613   // Get the function symbol.
1614   CurrentFnSym = getSymbol(&MF.getFunction());
1615   CurrentFnSymForSize = CurrentFnSym;
1616   CurrentFnBegin = nullptr;
1617   CurExceptionSym = nullptr;
1618   bool NeedsLocalForSize = MAI->needsLocalForSize();
1619   if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize ||
1620       MF.getTarget().Options.EmitStackSizeSection) {
1621     CurrentFnBegin = createTempSymbol("func_begin");
1622     if (NeedsLocalForSize)
1623       CurrentFnSymForSize = CurrentFnBegin;
1624   }
1625 
1626   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
1627 
1628   const TargetSubtargetInfo &STI = MF.getSubtarget();
1629   EnablePrintSchedInfo = PrintSchedule.getNumOccurrences()
1630                              ? PrintSchedule
1631                              : STI.supportPrintSchedInfo();
1632 }
1633 
1634 namespace {
1635 
1636 // Keep track the alignment, constpool entries per Section.
1637   struct SectionCPs {
1638     MCSection *S;
1639     unsigned Alignment;
1640     SmallVector<unsigned, 4> CPEs;
1641 
1642     SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {}
1643   };
1644 
1645 } // end anonymous namespace
1646 
1647 /// EmitConstantPool - Print to the current output stream assembly
1648 /// representations of the constants in the constant pool MCP. This is
1649 /// used to print out constants which have been "spilled to memory" by
1650 /// the code generator.
1651 void AsmPrinter::EmitConstantPool() {
1652   const MachineConstantPool *MCP = MF->getConstantPool();
1653   const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1654   if (CP.empty()) return;
1655 
1656   // Calculate sections for constant pool entries. We collect entries to go into
1657   // the same section together to reduce amount of section switch statements.
1658   SmallVector<SectionCPs, 4> CPSections;
1659   for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1660     const MachineConstantPoolEntry &CPE = CP[i];
1661     unsigned Align = CPE.getAlignment();
1662 
1663     SectionKind Kind = CPE.getSectionKind(&getDataLayout());
1664 
1665     const Constant *C = nullptr;
1666     if (!CPE.isMachineConstantPoolEntry())
1667       C = CPE.Val.ConstVal;
1668 
1669     MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(),
1670                                                               Kind, C, Align);
1671 
1672     // The number of sections are small, just do a linear search from the
1673     // last section to the first.
1674     bool Found = false;
1675     unsigned SecIdx = CPSections.size();
1676     while (SecIdx != 0) {
1677       if (CPSections[--SecIdx].S == S) {
1678         Found = true;
1679         break;
1680       }
1681     }
1682     if (!Found) {
1683       SecIdx = CPSections.size();
1684       CPSections.push_back(SectionCPs(S, Align));
1685     }
1686 
1687     if (Align > CPSections[SecIdx].Alignment)
1688       CPSections[SecIdx].Alignment = Align;
1689     CPSections[SecIdx].CPEs.push_back(i);
1690   }
1691 
1692   // Now print stuff into the calculated sections.
1693   const MCSection *CurSection = nullptr;
1694   unsigned Offset = 0;
1695   for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1696     for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1697       unsigned CPI = CPSections[i].CPEs[j];
1698       MCSymbol *Sym = GetCPISymbol(CPI);
1699       if (!Sym->isUndefined())
1700         continue;
1701 
1702       if (CurSection != CPSections[i].S) {
1703         OutStreamer->SwitchSection(CPSections[i].S);
1704         EmitAlignment(Log2_32(CPSections[i].Alignment));
1705         CurSection = CPSections[i].S;
1706         Offset = 0;
1707       }
1708 
1709       MachineConstantPoolEntry CPE = CP[CPI];
1710 
1711       // Emit inter-object padding for alignment.
1712       unsigned AlignMask = CPE.getAlignment() - 1;
1713       unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1714       OutStreamer->EmitZeros(NewOffset - Offset);
1715 
1716       Type *Ty = CPE.getType();
1717       Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty);
1718 
1719       OutStreamer->EmitLabel(Sym);
1720       if (CPE.isMachineConstantPoolEntry())
1721         EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1722       else
1723         EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
1724     }
1725   }
1726 }
1727 
1728 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1729 /// by the current function to the current output stream.
1730 void AsmPrinter::EmitJumpTableInfo() {
1731   const DataLayout &DL = MF->getDataLayout();
1732   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1733   if (!MJTI) return;
1734   if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1735   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1736   if (JT.empty()) return;
1737 
1738   // Pick the directive to use to print the jump table entries, and switch to
1739   // the appropriate section.
1740   const Function &F = MF->getFunction();
1741   const TargetLoweringObjectFile &TLOF = getObjFileLowering();
1742   bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
1743       MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
1744       F);
1745   if (JTInDiffSection) {
1746     // Drop it in the readonly section.
1747     MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
1748     OutStreamer->SwitchSection(ReadOnlySection);
1749   }
1750 
1751   EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL)));
1752 
1753   // Jump tables in code sections are marked with a data_region directive
1754   // where that's supported.
1755   if (!JTInDiffSection)
1756     OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
1757 
1758   for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1759     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1760 
1761     // If this jump table was deleted, ignore it.
1762     if (JTBBs.empty()) continue;
1763 
1764     // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
1765     /// emit a .set directive for each unique entry.
1766     if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1767         MAI->doesSetDirectiveSuppressReloc()) {
1768       SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1769       const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1770       const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1771       for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1772         const MachineBasicBlock *MBB = JTBBs[ii];
1773         if (!EmittedSets.insert(MBB).second)
1774           continue;
1775 
1776         // .set LJTSet, LBB32-base
1777         const MCExpr *LHS =
1778           MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1779         OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1780                                     MCBinaryExpr::createSub(LHS, Base,
1781                                                             OutContext));
1782       }
1783     }
1784 
1785     // On some targets (e.g. Darwin) we want to emit two consecutive labels
1786     // before each jump table.  The first label is never referenced, but tells
1787     // the assembler and linker the extents of the jump table object.  The
1788     // second label is actually referenced by the code.
1789     if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
1790       // FIXME: This doesn't have to have any specific name, just any randomly
1791       // named and numbered 'l' label would work.  Simplify GetJTISymbol.
1792       OutStreamer->EmitLabel(GetJTISymbol(JTI, true));
1793 
1794     OutStreamer->EmitLabel(GetJTISymbol(JTI));
1795 
1796     for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1797       EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1798   }
1799   if (!JTInDiffSection)
1800     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
1801 }
1802 
1803 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1804 /// current stream.
1805 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1806                                     const MachineBasicBlock *MBB,
1807                                     unsigned UID) const {
1808   assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1809   const MCExpr *Value = nullptr;
1810   switch (MJTI->getEntryKind()) {
1811   case MachineJumpTableInfo::EK_Inline:
1812     llvm_unreachable("Cannot emit EK_Inline jump table entry");
1813   case MachineJumpTableInfo::EK_Custom32:
1814     Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
1815         MJTI, MBB, UID, OutContext);
1816     break;
1817   case MachineJumpTableInfo::EK_BlockAddress:
1818     // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1819     //     .word LBB123
1820     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1821     break;
1822   case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1823     // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1824     // with a relocation as gp-relative, e.g.:
1825     //     .gprel32 LBB123
1826     MCSymbol *MBBSym = MBB->getSymbol();
1827     OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1828     return;
1829   }
1830 
1831   case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1832     // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1833     // with a relocation as gp-relative, e.g.:
1834     //     .gpdword LBB123
1835     MCSymbol *MBBSym = MBB->getSymbol();
1836     OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
1837     return;
1838   }
1839 
1840   case MachineJumpTableInfo::EK_LabelDifference32: {
1841     // Each entry is the address of the block minus the address of the jump
1842     // table. This is used for PIC jump tables where gprel32 is not supported.
1843     // e.g.:
1844     //      .word LBB123 - LJTI1_2
1845     // If the .set directive avoids relocations, this is emitted as:
1846     //      .set L4_5_set_123, LBB123 - LJTI1_2
1847     //      .word L4_5_set_123
1848     if (MAI->doesSetDirectiveSuppressReloc()) {
1849       Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
1850                                       OutContext);
1851       break;
1852     }
1853     Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
1854     const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
1855     const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
1856     Value = MCBinaryExpr::createSub(Value, Base, OutContext);
1857     break;
1858   }
1859   }
1860 
1861   assert(Value && "Unknown entry kind!");
1862 
1863   unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
1864   OutStreamer->EmitValue(Value, EntrySize);
1865 }
1866 
1867 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1868 /// special global used by LLVM.  If so, emit it and return true, otherwise
1869 /// do nothing and return false.
1870 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1871   if (GV->getName() == "llvm.used") {
1872     if (MAI->hasNoDeadStrip())    // No need to emit this at all.
1873       EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1874     return true;
1875   }
1876 
1877   // Ignore debug and non-emitted data.  This handles llvm.compiler.used.
1878   if (GV->getSection() == "llvm.metadata" ||
1879       GV->hasAvailableExternallyLinkage())
1880     return true;
1881 
1882   if (!GV->hasAppendingLinkage()) return false;
1883 
1884   assert(GV->hasInitializer() && "Not a special LLVM global!");
1885 
1886   if (GV->getName() == "llvm.global_ctors") {
1887     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1888                        /* isCtor */ true);
1889 
1890     return true;
1891   }
1892 
1893   if (GV->getName() == "llvm.global_dtors") {
1894     EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
1895                        /* isCtor */ false);
1896 
1897     return true;
1898   }
1899 
1900   report_fatal_error("unknown special variable");
1901 }
1902 
1903 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1904 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1905 /// is true, as being used with this directive.
1906 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1907   // Should be an array of 'i8*'.
1908   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1909     const GlobalValue *GV =
1910       dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1911     if (GV)
1912       OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
1913   }
1914 }
1915 
1916 namespace {
1917 
1918 struct Structor {
1919   int Priority = 0;
1920   Constant *Func = nullptr;
1921   GlobalValue *ComdatKey = nullptr;
1922 
1923   Structor() = default;
1924 };
1925 
1926 } // end anonymous namespace
1927 
1928 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1929 /// priority.
1930 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List,
1931                                     bool isCtor) {
1932   // Should be an array of '{ int, void ()* }' structs.  The first value is the
1933   // init priority.
1934   if (!isa<ConstantArray>(List)) return;
1935 
1936   // Sanity check the structors list.
1937   const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1938   if (!InitList) return; // Not an array!
1939   StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1940   // FIXME: Only allow the 3-field form in LLVM 4.0.
1941   if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3)
1942     return; // Not an array of two or three elements!
1943   if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1944       !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1945   if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U)))
1946     return; // Not (int, ptr, ptr).
1947 
1948   // Gather the structors in a form that's convenient for sorting by priority.
1949   SmallVector<Structor, 8> Structors;
1950   for (Value *O : InitList->operands()) {
1951     ConstantStruct *CS = dyn_cast<ConstantStruct>(O);
1952     if (!CS) continue; // Malformed.
1953     if (CS->getOperand(1)->isNullValue())
1954       break;  // Found a null terminator, skip the rest.
1955     ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1956     if (!Priority) continue; // Malformed.
1957     Structors.push_back(Structor());
1958     Structor &S = Structors.back();
1959     S.Priority = Priority->getLimitedValue(65535);
1960     S.Func = CS->getOperand(1);
1961     if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue())
1962       S.ComdatKey =
1963           dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
1964   }
1965 
1966   // Emit the function pointers in the target-specific order
1967   unsigned Align = Log2_32(DL.getPointerPrefAlignment());
1968   std::stable_sort(Structors.begin(), Structors.end(),
1969                    [](const Structor &L,
1970                       const Structor &R) { return L.Priority < R.Priority; });
1971   for (Structor &S : Structors) {
1972     const TargetLoweringObjectFile &Obj = getObjFileLowering();
1973     const MCSymbol *KeySym = nullptr;
1974     if (GlobalValue *GV = S.ComdatKey) {
1975       if (GV->isDeclarationForLinker())
1976         // If the associated variable is not defined in this module
1977         // (it might be available_externally, or have been an
1978         // available_externally definition that was dropped by the
1979         // EliminateAvailableExternally pass), some other TU
1980         // will provide its dynamic initializer.
1981         continue;
1982 
1983       KeySym = getSymbol(GV);
1984     }
1985     MCSection *OutputSection =
1986         (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
1987                 : Obj.getStaticDtorSection(S.Priority, KeySym));
1988     OutStreamer->SwitchSection(OutputSection);
1989     if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
1990       EmitAlignment(Align);
1991     EmitXXStructor(DL, S.Func);
1992   }
1993 }
1994 
1995 void AsmPrinter::EmitModuleIdents(Module &M) {
1996   if (!MAI->hasIdentDirective())
1997     return;
1998 
1999   if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
2000     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2001       const MDNode *N = NMD->getOperand(i);
2002       assert(N->getNumOperands() == 1 &&
2003              "llvm.ident metadata entry can have only one operand");
2004       const MDString *S = cast<MDString>(N->getOperand(0));
2005       OutStreamer->EmitIdent(S->getString());
2006     }
2007   }
2008 }
2009 
2010 //===--------------------------------------------------------------------===//
2011 // Emission and print routines
2012 //
2013 
2014 /// Emit a byte directive and value.
2015 ///
2016 void AsmPrinter::emitInt8(int Value) const {
2017   OutStreamer->EmitIntValue(Value, 1);
2018 }
2019 
2020 /// Emit a short directive and value.
2021 void AsmPrinter::emitInt16(int Value) const {
2022   OutStreamer->EmitIntValue(Value, 2);
2023 }
2024 
2025 /// Emit a long directive and value.
2026 void AsmPrinter::emitInt32(int Value) const {
2027   OutStreamer->EmitIntValue(Value, 4);
2028 }
2029 
2030 /// Emit a long long directive and value.
2031 void AsmPrinter::emitInt64(uint64_t Value) const {
2032   OutStreamer->EmitIntValue(Value, 8);
2033 }
2034 
2035 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive
2036 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses
2037 /// .set if it avoids relocations.
2038 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
2039                                      unsigned Size) const {
2040   OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
2041 }
2042 
2043 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
2044 /// where the size in bytes of the directive is specified by Size and Label
2045 /// specifies the label.  This implicitly uses .set if it is available.
2046 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
2047                                      unsigned Size,
2048                                      bool IsSectionRelative) const {
2049   if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
2050     OutStreamer->EmitCOFFSecRel32(Label, Offset);
2051     if (Size > 4)
2052       OutStreamer->EmitZeros(Size - 4);
2053     return;
2054   }
2055 
2056   // Emit Label+Offset (or just Label if Offset is zero)
2057   const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
2058   if (Offset)
2059     Expr = MCBinaryExpr::createAdd(
2060         Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
2061 
2062   OutStreamer->EmitValue(Expr, Size);
2063 }
2064 
2065 //===----------------------------------------------------------------------===//
2066 
2067 // EmitAlignment - Emit an alignment directive to the specified power of
2068 // two boundary.  For example, if you pass in 3 here, you will get an 8
2069 // byte alignment.  If a global value is specified, and if that global has
2070 // an explicit alignment requested, it will override the alignment request
2071 // if required for correctness.
2072 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const {
2073   if (GV)
2074     NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits);
2075 
2076   if (NumBits == 0) return;   // 1-byte aligned: no need to emit alignment.
2077 
2078   assert(NumBits <
2079              static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
2080          "undefined behavior");
2081   if (getCurrentSection()->getKind().isText())
2082     OutStreamer->EmitCodeAlignment(1u << NumBits);
2083   else
2084     OutStreamer->EmitValueToAlignment(1u << NumBits);
2085 }
2086 
2087 //===----------------------------------------------------------------------===//
2088 // Constant emission.
2089 //===----------------------------------------------------------------------===//
2090 
2091 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
2092   MCContext &Ctx = OutContext;
2093 
2094   if (CV->isNullValue() || isa<UndefValue>(CV))
2095     return MCConstantExpr::create(0, Ctx);
2096 
2097   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
2098     return MCConstantExpr::create(CI->getZExtValue(), Ctx);
2099 
2100   if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
2101     return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
2102 
2103   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
2104     return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
2105 
2106   const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
2107   if (!CE) {
2108     llvm_unreachable("Unknown constant value to lower!");
2109   }
2110 
2111   switch (CE->getOpcode()) {
2112   default:
2113     // If the code isn't optimized, there may be outstanding folding
2114     // opportunities. Attempt to fold the expression using DataLayout as a
2115     // last resort before giving up.
2116     if (Constant *C = ConstantFoldConstant(CE, getDataLayout()))
2117       if (C != CE)
2118         return lowerConstant(C);
2119 
2120     // Otherwise report the problem to the user.
2121     {
2122       std::string S;
2123       raw_string_ostream OS(S);
2124       OS << "Unsupported expression in static initializer: ";
2125       CE->printAsOperand(OS, /*PrintType=*/false,
2126                      !MF ? nullptr : MF->getFunction().getParent());
2127       report_fatal_error(OS.str());
2128     }
2129   case Instruction::GetElementPtr: {
2130     // Generate a symbolic expression for the byte address
2131     APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
2132     cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
2133 
2134     const MCExpr *Base = lowerConstant(CE->getOperand(0));
2135     if (!OffsetAI)
2136       return Base;
2137 
2138     int64_t Offset = OffsetAI.getSExtValue();
2139     return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
2140                                    Ctx);
2141   }
2142 
2143   case Instruction::Trunc:
2144     // We emit the value and depend on the assembler to truncate the generated
2145     // expression properly.  This is important for differences between
2146     // blockaddress labels.  Since the two labels are in the same function, it
2147     // is reasonable to treat their delta as a 32-bit value.
2148     LLVM_FALLTHROUGH;
2149   case Instruction::BitCast:
2150     return lowerConstant(CE->getOperand(0));
2151 
2152   case Instruction::IntToPtr: {
2153     const DataLayout &DL = getDataLayout();
2154 
2155     // Handle casts to pointers by changing them into casts to the appropriate
2156     // integer type.  This promotes constant folding and simplifies this code.
2157     Constant *Op = CE->getOperand(0);
2158     Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
2159                                       false/*ZExt*/);
2160     return lowerConstant(Op);
2161   }
2162 
2163   case Instruction::PtrToInt: {
2164     const DataLayout &DL = getDataLayout();
2165 
2166     // Support only foldable casts to/from pointers that can be eliminated by
2167     // changing the pointer to the appropriately sized integer type.
2168     Constant *Op = CE->getOperand(0);
2169     Type *Ty = CE->getType();
2170 
2171     const MCExpr *OpExpr = lowerConstant(Op);
2172 
2173     // We can emit the pointer value into this slot if the slot is an
2174     // integer slot equal to the size of the pointer.
2175     if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType()))
2176       return OpExpr;
2177 
2178     // Otherwise the pointer is smaller than the resultant integer, mask off
2179     // the high bits so we are sure to get a proper truncation if the input is
2180     // a constant expr.
2181     unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType());
2182     const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx);
2183     return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx);
2184   }
2185 
2186   case Instruction::Sub: {
2187     GlobalValue *LHSGV;
2188     APInt LHSOffset;
2189     if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
2190                                    getDataLayout())) {
2191       GlobalValue *RHSGV;
2192       APInt RHSOffset;
2193       if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
2194                                      getDataLayout())) {
2195         const MCExpr *RelocExpr =
2196             getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
2197         if (!RelocExpr)
2198           RelocExpr = MCBinaryExpr::createSub(
2199               MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx),
2200               MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
2201         int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
2202         if (Addend != 0)
2203           RelocExpr = MCBinaryExpr::createAdd(
2204               RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
2205         return RelocExpr;
2206       }
2207     }
2208   }
2209   // else fallthrough
2210   LLVM_FALLTHROUGH;
2211 
2212   // The MC library also has a right-shift operator, but it isn't consistently
2213   // signed or unsigned between different targets.
2214   case Instruction::Add:
2215   case Instruction::Mul:
2216   case Instruction::SDiv:
2217   case Instruction::SRem:
2218   case Instruction::Shl:
2219   case Instruction::And:
2220   case Instruction::Or:
2221   case Instruction::Xor: {
2222     const MCExpr *LHS = lowerConstant(CE->getOperand(0));
2223     const MCExpr *RHS = lowerConstant(CE->getOperand(1));
2224     switch (CE->getOpcode()) {
2225     default: llvm_unreachable("Unknown binary operator constant cast expr");
2226     case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
2227     case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx);
2228     case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx);
2229     case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx);
2230     case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx);
2231     case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx);
2232     case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx);
2233     case Instruction::Or:  return MCBinaryExpr::createOr (LHS, RHS, Ctx);
2234     case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx);
2235     }
2236   }
2237   }
2238 }
2239 
2240 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
2241                                    AsmPrinter &AP,
2242                                    const Constant *BaseCV = nullptr,
2243                                    uint64_t Offset = 0);
2244 
2245 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
2246 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
2247 
2248 /// isRepeatedByteSequence - Determine whether the given value is
2249 /// composed of a repeated sequence of identical bytes and return the
2250 /// byte value.  If it is not a repeated sequence, return -1.
2251 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
2252   StringRef Data = V->getRawDataValues();
2253   assert(!Data.empty() && "Empty aggregates should be CAZ node");
2254   char C = Data[0];
2255   for (unsigned i = 1, e = Data.size(); i != e; ++i)
2256     if (Data[i] != C) return -1;
2257   return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
2258 }
2259 
2260 /// isRepeatedByteSequence - Determine whether the given value is
2261 /// composed of a repeated sequence of identical bytes and return the
2262 /// byte value.  If it is not a repeated sequence, return -1.
2263 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
2264   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2265     uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
2266     assert(Size % 8 == 0);
2267 
2268     // Extend the element to take zero padding into account.
2269     APInt Value = CI->getValue().zextOrSelf(Size);
2270     if (!Value.isSplat(8))
2271       return -1;
2272 
2273     return Value.zextOrTrunc(8).getZExtValue();
2274   }
2275   if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
2276     // Make sure all array elements are sequences of the same repeated
2277     // byte.
2278     assert(CA->getNumOperands() != 0 && "Should be a CAZ");
2279     Constant *Op0 = CA->getOperand(0);
2280     int Byte = isRepeatedByteSequence(Op0, DL);
2281     if (Byte == -1)
2282       return -1;
2283 
2284     // All array elements must be equal.
2285     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
2286       if (CA->getOperand(i) != Op0)
2287         return -1;
2288     return Byte;
2289   }
2290 
2291   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
2292     return isRepeatedByteSequence(CDS);
2293 
2294   return -1;
2295 }
2296 
2297 static void emitGlobalConstantDataSequential(const DataLayout &DL,
2298                                              const ConstantDataSequential *CDS,
2299                                              AsmPrinter &AP) {
2300   // See if we can aggregate this into a .fill, if so, emit it as such.
2301   int Value = isRepeatedByteSequence(CDS, DL);
2302   if (Value != -1) {
2303     uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
2304     // Don't emit a 1-byte object as a .fill.
2305     if (Bytes > 1)
2306       return AP.OutStreamer->emitFill(Bytes, Value);
2307   }
2308 
2309   // If this can be emitted with .ascii/.asciz, emit it as such.
2310   if (CDS->isString())
2311     return AP.OutStreamer->EmitBytes(CDS->getAsString());
2312 
2313   // Otherwise, emit the values in successive locations.
2314   unsigned ElementByteSize = CDS->getElementByteSize();
2315   if (isa<IntegerType>(CDS->getElementType())) {
2316     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2317       if (AP.isVerbose())
2318         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2319                                                  CDS->getElementAsInteger(i));
2320       AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i),
2321                                    ElementByteSize);
2322     }
2323   } else {
2324     Type *ET = CDS->getElementType();
2325     for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I)
2326       emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
2327   }
2328 
2329   unsigned Size = DL.getTypeAllocSize(CDS->getType());
2330   unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) *
2331                         CDS->getNumElements();
2332   assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
2333   if (unsigned Padding = Size - EmittedSize)
2334     AP.OutStreamer->EmitZeros(Padding);
2335 }
2336 
2337 static void emitGlobalConstantArray(const DataLayout &DL,
2338                                     const ConstantArray *CA, AsmPrinter &AP,
2339                                     const Constant *BaseCV, uint64_t Offset) {
2340   // See if we can aggregate some values.  Make sure it can be
2341   // represented as a series of bytes of the constant value.
2342   int Value = isRepeatedByteSequence(CA, DL);
2343 
2344   if (Value != -1) {
2345     uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
2346     AP.OutStreamer->emitFill(Bytes, Value);
2347   }
2348   else {
2349     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) {
2350       emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset);
2351       Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType());
2352     }
2353   }
2354 }
2355 
2356 static void emitGlobalConstantVector(const DataLayout &DL,
2357                                      const ConstantVector *CV, AsmPrinter &AP) {
2358   for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
2359     emitGlobalConstantImpl(DL, CV->getOperand(i), AP);
2360 
2361   unsigned Size = DL.getTypeAllocSize(CV->getType());
2362   unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) *
2363                          CV->getType()->getNumElements();
2364   if (unsigned Padding = Size - EmittedSize)
2365     AP.OutStreamer->EmitZeros(Padding);
2366 }
2367 
2368 static void emitGlobalConstantStruct(const DataLayout &DL,
2369                                      const ConstantStruct *CS, AsmPrinter &AP,
2370                                      const Constant *BaseCV, uint64_t Offset) {
2371   // Print the fields in successive locations. Pad to align if needed!
2372   unsigned Size = DL.getTypeAllocSize(CS->getType());
2373   const StructLayout *Layout = DL.getStructLayout(CS->getType());
2374   uint64_t SizeSoFar = 0;
2375   for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
2376     const Constant *Field = CS->getOperand(i);
2377 
2378     // Print the actual field value.
2379     emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar);
2380 
2381     // Check if padding is needed and insert one or more 0s.
2382     uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
2383     uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
2384                         - Layout->getElementOffset(i)) - FieldSize;
2385     SizeSoFar += FieldSize + PadSize;
2386 
2387     // Insert padding - this may include padding to increase the size of the
2388     // current field up to the ABI size (if the struct is not packed) as well
2389     // as padding to ensure that the next field starts at the right offset.
2390     AP.OutStreamer->EmitZeros(PadSize);
2391   }
2392   assert(SizeSoFar == Layout->getSizeInBytes() &&
2393          "Layout of constant struct may be incorrect!");
2394 }
2395 
2396 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
2397   APInt API = APF.bitcastToAPInt();
2398 
2399   // First print a comment with what we think the original floating-point value
2400   // should have been.
2401   if (AP.isVerbose()) {
2402     SmallString<8> StrVal;
2403     APF.toString(StrVal);
2404 
2405     if (ET)
2406       ET->print(AP.OutStreamer->GetCommentOS());
2407     else
2408       AP.OutStreamer->GetCommentOS() << "Printing <null> Type";
2409     AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n';
2410   }
2411 
2412   // Now iterate through the APInt chunks, emitting them in endian-correct
2413   // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
2414   // floats).
2415   unsigned NumBytes = API.getBitWidth() / 8;
2416   unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
2417   const uint64_t *p = API.getRawData();
2418 
2419   // PPC's long double has odd notions of endianness compared to how LLVM
2420   // handles it: p[0] goes first for *big* endian on PPC.
2421   if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
2422     int Chunk = API.getNumWords() - 1;
2423 
2424     if (TrailingBytes)
2425       AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes);
2426 
2427     for (; Chunk >= 0; --Chunk)
2428       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2429   } else {
2430     unsigned Chunk;
2431     for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
2432       AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t));
2433 
2434     if (TrailingBytes)
2435       AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes);
2436   }
2437 
2438   // Emit the tail padding for the long double.
2439   const DataLayout &DL = AP.getDataLayout();
2440   AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
2441 }
2442 
2443 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
2444   emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
2445 }
2446 
2447 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
2448   const DataLayout &DL = AP.getDataLayout();
2449   unsigned BitWidth = CI->getBitWidth();
2450 
2451   // Copy the value as we may massage the layout for constants whose bit width
2452   // is not a multiple of 64-bits.
2453   APInt Realigned(CI->getValue());
2454   uint64_t ExtraBits = 0;
2455   unsigned ExtraBitsSize = BitWidth & 63;
2456 
2457   if (ExtraBitsSize) {
2458     // The bit width of the data is not a multiple of 64-bits.
2459     // The extra bits are expected to be at the end of the chunk of the memory.
2460     // Little endian:
2461     // * Nothing to be done, just record the extra bits to emit.
2462     // Big endian:
2463     // * Record the extra bits to emit.
2464     // * Realign the raw data to emit the chunks of 64-bits.
2465     if (DL.isBigEndian()) {
2466       // Basically the structure of the raw data is a chunk of 64-bits cells:
2467       //    0        1         BitWidth / 64
2468       // [chunk1][chunk2] ... [chunkN].
2469       // The most significant chunk is chunkN and it should be emitted first.
2470       // However, due to the alignment issue chunkN contains useless bits.
2471       // Realign the chunks so that they contain only useless information:
2472       // ExtraBits     0       1       (BitWidth / 64) - 1
2473       //       chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
2474       ExtraBits = Realigned.getRawData()[0] &
2475         (((uint64_t)-1) >> (64 - ExtraBitsSize));
2476       Realigned.lshrInPlace(ExtraBitsSize);
2477     } else
2478       ExtraBits = Realigned.getRawData()[BitWidth / 64];
2479   }
2480 
2481   // We don't expect assemblers to support integer data directives
2482   // for more than 64 bits, so we emit the data in at most 64-bit
2483   // quantities at a time.
2484   const uint64_t *RawData = Realigned.getRawData();
2485   for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
2486     uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
2487     AP.OutStreamer->EmitIntValue(Val, 8);
2488   }
2489 
2490   if (ExtraBitsSize) {
2491     // Emit the extra bits after the 64-bits chunks.
2492 
2493     // Emit a directive that fills the expected size.
2494     uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType());
2495     Size -= (BitWidth / 64) * 8;
2496     assert(Size && Size * 8 >= ExtraBitsSize &&
2497            (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
2498            == ExtraBits && "Directive too small for extra bits.");
2499     AP.OutStreamer->EmitIntValue(ExtraBits, Size);
2500   }
2501 }
2502 
2503 /// Transform a not absolute MCExpr containing a reference to a GOT
2504 /// equivalent global, by a target specific GOT pc relative access to the
2505 /// final symbol.
2506 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
2507                                          const Constant *BaseCst,
2508                                          uint64_t Offset) {
2509   // The global @foo below illustrates a global that uses a got equivalent.
2510   //
2511   //  @bar = global i32 42
2512   //  @gotequiv = private unnamed_addr constant i32* @bar
2513   //  @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
2514   //                             i64 ptrtoint (i32* @foo to i64))
2515   //                        to i32)
2516   //
2517   // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
2518   // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
2519   // form:
2520   //
2521   //  foo = cstexpr, where
2522   //    cstexpr := <gotequiv> - "." + <cst>
2523   //    cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
2524   //
2525   // After canonicalization by evaluateAsRelocatable `ME` turns into:
2526   //
2527   //  cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
2528   //    gotpcrelcst := <offset from @foo base> + <cst>
2529   MCValue MV;
2530   if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
2531     return;
2532   const MCSymbolRefExpr *SymA = MV.getSymA();
2533   if (!SymA)
2534     return;
2535 
2536   // Check that GOT equivalent symbol is cached.
2537   const MCSymbol *GOTEquivSym = &SymA->getSymbol();
2538   if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
2539     return;
2540 
2541   const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
2542   if (!BaseGV)
2543     return;
2544 
2545   // Check for a valid base symbol
2546   const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
2547   const MCSymbolRefExpr *SymB = MV.getSymB();
2548 
2549   if (!SymB || BaseSym != &SymB->getSymbol())
2550     return;
2551 
2552   // Make sure to match:
2553   //
2554   //    gotpcrelcst := <offset from @foo base> + <cst>
2555   //
2556   // If gotpcrelcst is positive it means that we can safely fold the pc rel
2557   // displacement into the GOTPCREL. We can also can have an extra offset <cst>
2558   // if the target knows how to encode it.
2559   int64_t GOTPCRelCst = Offset + MV.getConstant();
2560   if (GOTPCRelCst < 0)
2561     return;
2562   if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
2563     return;
2564 
2565   // Emit the GOT PC relative to replace the got equivalent global, i.e.:
2566   //
2567   //  bar:
2568   //    .long 42
2569   //  gotequiv:
2570   //    .quad bar
2571   //  foo:
2572   //    .long gotequiv - "." + <cst>
2573   //
2574   // is replaced by the target specific equivalent to:
2575   //
2576   //  bar:
2577   //    .long 42
2578   //  foo:
2579   //    .long bar@GOTPCREL+<gotpcrelcst>
2580   AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
2581   const GlobalVariable *GV = Result.first;
2582   int NumUses = (int)Result.second;
2583   const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
2584   const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
2585   *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
2586       FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
2587 
2588   // Update GOT equivalent usage information
2589   --NumUses;
2590   if (NumUses >= 0)
2591     AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
2592 }
2593 
2594 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
2595                                    AsmPrinter &AP, const Constant *BaseCV,
2596                                    uint64_t Offset) {
2597   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2598 
2599   // Globals with sub-elements such as combinations of arrays and structs
2600   // are handled recursively by emitGlobalConstantImpl. Keep track of the
2601   // constant symbol base and the current position with BaseCV and Offset.
2602   if (!BaseCV && CV->hasOneUse())
2603     BaseCV = dyn_cast<Constant>(CV->user_back());
2604 
2605   if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
2606     return AP.OutStreamer->EmitZeros(Size);
2607 
2608   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
2609     switch (Size) {
2610     case 1:
2611     case 2:
2612     case 4:
2613     case 8:
2614       if (AP.isVerbose())
2615         AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n",
2616                                                  CI->getZExtValue());
2617       AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size);
2618       return;
2619     default:
2620       emitGlobalConstantLargeInt(CI, AP);
2621       return;
2622     }
2623   }
2624 
2625   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
2626     return emitGlobalConstantFP(CFP, AP);
2627 
2628   if (isa<ConstantPointerNull>(CV)) {
2629     AP.OutStreamer->EmitIntValue(0, Size);
2630     return;
2631   }
2632 
2633   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
2634     return emitGlobalConstantDataSequential(DL, CDS, AP);
2635 
2636   if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
2637     return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset);
2638 
2639   if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
2640     return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset);
2641 
2642   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
2643     // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
2644     // vectors).
2645     if (CE->getOpcode() == Instruction::BitCast)
2646       return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
2647 
2648     if (Size > 8) {
2649       // If the constant expression's size is greater than 64-bits, then we have
2650       // to emit the value in chunks. Try to constant fold the value and emit it
2651       // that way.
2652       Constant *New = ConstantFoldConstant(CE, DL);
2653       if (New && New != CE)
2654         return emitGlobalConstantImpl(DL, New, AP);
2655     }
2656   }
2657 
2658   if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
2659     return emitGlobalConstantVector(DL, V, AP);
2660 
2661   // Otherwise, it must be a ConstantExpr.  Lower it to an MCExpr, then emit it
2662   // thread the streamer with EmitValue.
2663   const MCExpr *ME = AP.lowerConstant(CV);
2664 
2665   // Since lowerConstant already folded and got rid of all IR pointer and
2666   // integer casts, detect GOT equivalent accesses by looking into the MCExpr
2667   // directly.
2668   if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
2669     handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
2670 
2671   AP.OutStreamer->EmitValue(ME, Size);
2672 }
2673 
2674 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
2675 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) {
2676   uint64_t Size = DL.getTypeAllocSize(CV->getType());
2677   if (Size)
2678     emitGlobalConstantImpl(DL, CV, *this);
2679   else if (MAI->hasSubsectionsViaSymbols()) {
2680     // If the global has zero size, emit a single byte so that two labels don't
2681     // look like they are at the same location.
2682     OutStreamer->EmitIntValue(0, 1);
2683   }
2684 }
2685 
2686 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
2687   // Target doesn't support this yet!
2688   llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
2689 }
2690 
2691 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
2692   if (Offset > 0)
2693     OS << '+' << Offset;
2694   else if (Offset < 0)
2695     OS << Offset;
2696 }
2697 
2698 //===----------------------------------------------------------------------===//
2699 // Symbol Lowering Routines.
2700 //===----------------------------------------------------------------------===//
2701 
2702 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
2703   return OutContext.createTempSymbol(Name, true);
2704 }
2705 
2706 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
2707   return MMI->getAddrLabelSymbol(BA->getBasicBlock());
2708 }
2709 
2710 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
2711   return MMI->getAddrLabelSymbol(BB);
2712 }
2713 
2714 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
2715 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
2716   if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) {
2717     const MachineConstantPoolEntry &CPE =
2718         MF->getConstantPool()->getConstants()[CPID];
2719     if (!CPE.isMachineConstantPoolEntry()) {
2720       const DataLayout &DL = MF->getDataLayout();
2721       SectionKind Kind = CPE.getSectionKind(&DL);
2722       const Constant *C = CPE.Val.ConstVal;
2723       unsigned Align = CPE.Alignment;
2724       if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
2725               getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) {
2726         if (MCSymbol *Sym = S->getCOMDATSymbol()) {
2727           if (Sym->isUndefined())
2728             OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global);
2729           return Sym;
2730         }
2731       }
2732     }
2733   }
2734 
2735   const DataLayout &DL = getDataLayout();
2736   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2737                                       "CPI" + Twine(getFunctionNumber()) + "_" +
2738                                       Twine(CPID));
2739 }
2740 
2741 /// GetJTISymbol - Return the symbol for the specified jump table entry.
2742 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
2743   return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
2744 }
2745 
2746 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
2747 /// FIXME: privatize to AsmPrinter.
2748 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
2749   const DataLayout &DL = getDataLayout();
2750   return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
2751                                       Twine(getFunctionNumber()) + "_" +
2752                                       Twine(UID) + "_set_" + Twine(MBBID));
2753 }
2754 
2755 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
2756                                                    StringRef Suffix) const {
2757   return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
2758 }
2759 
2760 /// Return the MCSymbol for the specified ExternalSymbol.
2761 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2762   SmallString<60> NameStr;
2763   Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
2764   return OutContext.getOrCreateSymbol(NameStr);
2765 }
2766 
2767 /// PrintParentLoopComment - Print comments about parent loops of this one.
2768 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2769                                    unsigned FunctionNumber) {
2770   if (!Loop) return;
2771   PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2772   OS.indent(Loop->getLoopDepth()*2)
2773     << "Parent Loop BB" << FunctionNumber << "_"
2774     << Loop->getHeader()->getNumber()
2775     << " Depth=" << Loop->getLoopDepth() << '\n';
2776 }
2777 
2778 /// PrintChildLoopComment - Print comments about child loops within
2779 /// the loop for this basic block, with nesting.
2780 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2781                                   unsigned FunctionNumber) {
2782   // Add child loop information
2783   for (const MachineLoop *CL : *Loop) {
2784     OS.indent(CL->getLoopDepth()*2)
2785       << "Child Loop BB" << FunctionNumber << "_"
2786       << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
2787       << '\n';
2788     PrintChildLoopComment(OS, CL, FunctionNumber);
2789   }
2790 }
2791 
2792 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
2793 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2794                                        const MachineLoopInfo *LI,
2795                                        const AsmPrinter &AP) {
2796   // Add loop depth information
2797   const MachineLoop *Loop = LI->getLoopFor(&MBB);
2798   if (!Loop) return;
2799 
2800   MachineBasicBlock *Header = Loop->getHeader();
2801   assert(Header && "No header for loop");
2802 
2803   // If this block is not a loop header, just print out what is the loop header
2804   // and return.
2805   if (Header != &MBB) {
2806     AP.OutStreamer->AddComment("  in Loop: Header=BB" +
2807                                Twine(AP.getFunctionNumber())+"_" +
2808                                Twine(Loop->getHeader()->getNumber())+
2809                                " Depth="+Twine(Loop->getLoopDepth()));
2810     return;
2811   }
2812 
2813   // Otherwise, it is a loop header.  Print out information about child and
2814   // parent loops.
2815   raw_ostream &OS = AP.OutStreamer->GetCommentOS();
2816 
2817   PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2818 
2819   OS << "=>";
2820   OS.indent(Loop->getLoopDepth()*2-2);
2821 
2822   OS << "This ";
2823   if (Loop->empty())
2824     OS << "Inner ";
2825   OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2826 
2827   PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2828 }
2829 
2830 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB,
2831                                          MCCodePaddingContext &Context) const {
2832   assert(MF != nullptr && "Machine function must be valid");
2833   Context.IsPaddingActive = !MF->hasInlineAsm() &&
2834                             !MF->getFunction().optForSize() &&
2835                             TM.getOptLevel() != CodeGenOpt::None;
2836   Context.IsBasicBlockReachableViaFallthrough =
2837       std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) !=
2838       MBB.pred_end();
2839   Context.IsBasicBlockReachableViaBranch =
2840       MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB);
2841 }
2842 
2843 /// EmitBasicBlockStart - This method prints the label for the specified
2844 /// MachineBasicBlock, an alignment (if present) and a comment describing
2845 /// it if appropriate.
2846 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
2847   // End the previous funclet and start a new one.
2848   if (MBB.isEHFuncletEntry()) {
2849     for (const HandlerInfo &HI : Handlers) {
2850       HI.Handler->endFunclet();
2851       HI.Handler->beginFunclet(MBB);
2852     }
2853   }
2854 
2855   // Emit an alignment directive for this block, if needed.
2856   if (unsigned Align = MBB.getAlignment())
2857     EmitAlignment(Align);
2858   MCCodePaddingContext Context;
2859   setupCodePaddingContext(MBB, Context);
2860   OutStreamer->EmitCodePaddingBasicBlockStart(Context);
2861 
2862   // If the block has its address taken, emit any labels that were used to
2863   // reference the block.  It is possible that there is more than one label
2864   // here, because multiple LLVM BB's may have been RAUW'd to this block after
2865   // the references were generated.
2866   if (MBB.hasAddressTaken()) {
2867     const BasicBlock *BB = MBB.getBasicBlock();
2868     if (isVerbose())
2869       OutStreamer->AddComment("Block address taken");
2870 
2871     // MBBs can have their address taken as part of CodeGen without having
2872     // their corresponding BB's address taken in IR
2873     if (BB->hasAddressTaken())
2874       for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB))
2875         OutStreamer->EmitLabel(Sym);
2876   }
2877 
2878   // Print some verbose block comments.
2879   if (isVerbose()) {
2880     if (const BasicBlock *BB = MBB.getBasicBlock()) {
2881       if (BB->hasName()) {
2882         BB->printAsOperand(OutStreamer->GetCommentOS(),
2883                            /*PrintType=*/false, BB->getModule());
2884         OutStreamer->GetCommentOS() << '\n';
2885       }
2886     }
2887 
2888     assert(MLI != nullptr && "MachineLoopInfo should has been computed");
2889     emitBasicBlockLoopComments(MBB, MLI, *this);
2890   }
2891 
2892   // Print the main label for the block.
2893   if (MBB.pred_empty() ||
2894       (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) {
2895     if (isVerbose()) {
2896       // NOTE: Want this comment at start of line, don't emit with AddComment.
2897       OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
2898                                   false);
2899     }
2900   } else {
2901     OutStreamer->EmitLabel(MBB.getSymbol());
2902   }
2903 }
2904 
2905 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
2906   MCCodePaddingContext Context;
2907   setupCodePaddingContext(MBB, Context);
2908   OutStreamer->EmitCodePaddingBasicBlockEnd(Context);
2909 }
2910 
2911 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2912                                 bool IsDefinition) const {
2913   MCSymbolAttr Attr = MCSA_Invalid;
2914 
2915   switch (Visibility) {
2916   default: break;
2917   case GlobalValue::HiddenVisibility:
2918     if (IsDefinition)
2919       Attr = MAI->getHiddenVisibilityAttr();
2920     else
2921       Attr = MAI->getHiddenDeclarationVisibilityAttr();
2922     break;
2923   case GlobalValue::ProtectedVisibility:
2924     Attr = MAI->getProtectedVisibilityAttr();
2925     break;
2926   }
2927 
2928   if (Attr != MCSA_Invalid)
2929     OutStreamer->EmitSymbolAttribute(Sym, Attr);
2930 }
2931 
2932 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2933 /// exactly one predecessor and the control transfer mechanism between
2934 /// the predecessor and this block is a fall-through.
2935 bool AsmPrinter::
2936 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2937   // If this is a landing pad, it isn't a fall through.  If it has no preds,
2938   // then nothing falls through to it.
2939   if (MBB->isEHPad() || MBB->pred_empty())
2940     return false;
2941 
2942   // If there isn't exactly one predecessor, it can't be a fall through.
2943   if (MBB->pred_size() > 1)
2944     return false;
2945 
2946   // The predecessor has to be immediately before this block.
2947   MachineBasicBlock *Pred = *MBB->pred_begin();
2948   if (!Pred->isLayoutSuccessor(MBB))
2949     return false;
2950 
2951   // If the block is completely empty, then it definitely does fall through.
2952   if (Pred->empty())
2953     return true;
2954 
2955   // Check the terminators in the previous blocks
2956   for (const auto &MI : Pred->terminators()) {
2957     // If it is not a simple branch, we are in a table somewhere.
2958     if (!MI.isBranch() || MI.isIndirectBranch())
2959       return false;
2960 
2961     // If we are the operands of one of the branches, this is not a fall
2962     // through. Note that targets with delay slots will usually bundle
2963     // terminators with the delay slot instruction.
2964     for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
2965       if (OP->isJTI())
2966         return false;
2967       if (OP->isMBB() && OP->getMBB() == MBB)
2968         return false;
2969     }
2970   }
2971 
2972   return true;
2973 }
2974 
2975 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) {
2976   if (!S.usesMetadata())
2977     return nullptr;
2978 
2979   assert(!S.useStatepoints() && "statepoints do not currently support custom"
2980          " stackmap formats, please see the documentation for a description of"
2981          " the default format.  If you really need a custom serialized format,"
2982          " please file a bug");
2983 
2984   gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2985   gcp_map_type::iterator GCPI = GCMap.find(&S);
2986   if (GCPI != GCMap.end())
2987     return GCPI->second.get();
2988 
2989   auto Name = S.getName();
2990 
2991   for (GCMetadataPrinterRegistry::iterator
2992          I = GCMetadataPrinterRegistry::begin(),
2993          E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2994     if (Name == I->getName()) {
2995       std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate();
2996       GMP->S = &S;
2997       auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP)));
2998       return IterBool.first->second.get();
2999     }
3000 
3001   report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
3002 }
3003 
3004 /// Pin vtable to this file.
3005 AsmPrinterHandler::~AsmPrinterHandler() = default;
3006 
3007 void AsmPrinterHandler::markFunctionEnd() {}
3008 
3009 // In the binary's "xray_instr_map" section, an array of these function entries
3010 // describes each instrumentation point.  When XRay patches your code, the index
3011 // into this table will be given to your handler as a patch point identifier.
3012 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out,
3013                                          const MCSymbol *CurrentFnSym) const {
3014   Out->EmitSymbolValue(Sled, Bytes);
3015   Out->EmitSymbolValue(CurrentFnSym, Bytes);
3016   auto Kind8 = static_cast<uint8_t>(Kind);
3017   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
3018   Out->EmitBinaryData(
3019       StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
3020   Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
3021   auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
3022   assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
3023   Out->EmitZeros(Padding);
3024 }
3025 
3026 void AsmPrinter::emitXRayTable() {
3027   if (Sleds.empty())
3028     return;
3029 
3030   auto PrevSection = OutStreamer->getCurrentSectionOnly();
3031   const Function &F = MF->getFunction();
3032   MCSection *InstMap = nullptr;
3033   MCSection *FnSledIndex = nullptr;
3034   if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) {
3035     auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym);
3036     assert(Associated != nullptr);
3037     auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
3038     std::string GroupName;
3039     if (F.hasComdat()) {
3040       Flags |= ELF::SHF_GROUP;
3041       GroupName = F.getComdat()->getName();
3042     }
3043 
3044     auto UniqueID = ++XRayFnUniqueID;
3045     InstMap =
3046         OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0,
3047                                  GroupName, UniqueID, Associated);
3048     FnSledIndex =
3049         OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0,
3050                                  GroupName, UniqueID, Associated);
3051   } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
3052     InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
3053                                          SectionKind::getReadOnlyWithRel());
3054     FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0,
3055                                              SectionKind::getReadOnlyWithRel());
3056   } else {
3057     llvm_unreachable("Unsupported target");
3058   }
3059 
3060   auto WordSizeBytes = MAI->getCodePointerSize();
3061 
3062   // Now we switch to the instrumentation map section. Because this is done
3063   // per-function, we are able to create an index entry that will represent the
3064   // range of sleds associated with a function.
3065   MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
3066   OutStreamer->SwitchSection(InstMap);
3067   OutStreamer->EmitLabel(SledsStart);
3068   for (const auto &Sled : Sleds)
3069     Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym);
3070   MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
3071   OutStreamer->EmitLabel(SledsEnd);
3072 
3073   // We then emit a single entry in the index per function. We use the symbols
3074   // that bound the instrumentation map as the range for a specific function.
3075   // Each entry here will be 2 * word size aligned, as we're writing down two
3076   // pointers. This should work for both 32-bit and 64-bit platforms.
3077   OutStreamer->SwitchSection(FnSledIndex);
3078   OutStreamer->EmitCodeAlignment(2 * WordSizeBytes);
3079   OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false);
3080   OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false);
3081   OutStreamer->SwitchSection(PrevSection);
3082   Sleds.clear();
3083 }
3084 
3085 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
3086                             SledKind Kind, uint8_t Version) {
3087   const Function &F = MI.getMF()->getFunction();
3088   auto Attr = F.getFnAttribute("function-instrument");
3089   bool LogArgs = F.hasFnAttribute("xray-log-args");
3090   bool AlwaysInstrument =
3091     Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
3092   if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
3093     Kind = SledKind::LOG_ARGS_ENTER;
3094   Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
3095                                        AlwaysInstrument, &F, Version});
3096 }
3097 
3098 uint16_t AsmPrinter::getDwarfVersion() const {
3099   return OutStreamer->getContext().getDwarfVersion();
3100 }
3101 
3102 void AsmPrinter::setDwarfVersion(uint16_t Version) {
3103   OutStreamer->getContext().setDwarfVersion(Version);
3104 }
3105