1 //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the AsmPrinter class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/AsmPrinter.h" 15 #include "AsmPrinterHandler.h" 16 #include "CodeViewDebug.h" 17 #include "DwarfDebug.h" 18 #include "DwarfException.h" 19 #include "WinCFGuard.h" 20 #include "WinException.h" 21 #include "llvm/ADT/APFloat.h" 22 #include "llvm/ADT/APInt.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallPtrSet.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/ADT/Triple.h" 31 #include "llvm/ADT/Twine.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/BinaryFormat/COFF.h" 36 #include "llvm/BinaryFormat/Dwarf.h" 37 #include "llvm/BinaryFormat/ELF.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/GCMetadataPrinter.h" 40 #include "llvm/CodeGen/GCStrategy.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineConstantPool.h" 43 #include "llvm/CodeGen/MachineDominators.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineFunctionPass.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBundle.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineLoopInfo.h" 51 #include "llvm/CodeGen/MachineMemOperand.h" 52 #include "llvm/CodeGen/MachineModuleInfo.h" 53 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 54 #include "llvm/CodeGen/MachineOperand.h" 55 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 56 #include "llvm/CodeGen/TargetFrameLowering.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetLowering.h" 59 #include "llvm/CodeGen/TargetOpcodes.h" 60 #include "llvm/CodeGen/TargetRegisterInfo.h" 61 #include "llvm/CodeGen/TargetSubtargetInfo.h" 62 #include "llvm/IR/BasicBlock.h" 63 #include "llvm/IR/Comdat.h" 64 #include "llvm/IR/Constant.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Function.h" 70 #include "llvm/IR/GlobalAlias.h" 71 #include "llvm/IR/GlobalIFunc.h" 72 #include "llvm/IR/GlobalIndirectSymbol.h" 73 #include "llvm/IR/GlobalObject.h" 74 #include "llvm/IR/GlobalValue.h" 75 #include "llvm/IR/GlobalVariable.h" 76 #include "llvm/IR/Instruction.h" 77 #include "llvm/IR/Mangler.h" 78 #include "llvm/IR/Metadata.h" 79 #include "llvm/IR/Module.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/Type.h" 82 #include "llvm/IR/Value.h" 83 #include "llvm/MC/MCAsmInfo.h" 84 #include "llvm/MC/MCCodePadder.h" 85 #include "llvm/MC/MCContext.h" 86 #include "llvm/MC/MCDirectives.h" 87 #include "llvm/MC/MCDwarf.h" 88 #include "llvm/MC/MCExpr.h" 89 #include "llvm/MC/MCInst.h" 90 #include "llvm/MC/MCSection.h" 91 #include "llvm/MC/MCSectionCOFF.h" 92 #include "llvm/MC/MCSectionELF.h" 93 #include "llvm/MC/MCSectionMachO.h" 94 #include "llvm/MC/MCStreamer.h" 95 #include "llvm/MC/MCSubtargetInfo.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/MC/MCSymbolELF.h" 98 #include "llvm/MC/MCTargetOptions.h" 99 #include "llvm/MC/MCValue.h" 100 #include "llvm/MC/SectionKind.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Compiler.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/Format.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/Path.h" 109 #include "llvm/Support/TargetRegistry.h" 110 #include "llvm/Support/Timer.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetLoweringObjectFile.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include <algorithm> 116 #include <cassert> 117 #include <cinttypes> 118 #include <cstdint> 119 #include <iterator> 120 #include <limits> 121 #include <memory> 122 #include <string> 123 #include <utility> 124 #include <vector> 125 126 using namespace llvm; 127 128 #define DEBUG_TYPE "asm-printer" 129 130 static const char *const DWARFGroupName = "dwarf"; 131 static const char *const DWARFGroupDescription = "DWARF Emission"; 132 static const char *const DbgTimerName = "emit"; 133 static const char *const DbgTimerDescription = "Debug Info Emission"; 134 static const char *const EHTimerName = "write_exception"; 135 static const char *const EHTimerDescription = "DWARF Exception Writer"; 136 static const char *const CFGuardName = "Control Flow Guard"; 137 static const char *const CFGuardDescription = "Control Flow Guard Tables"; 138 static const char *const CodeViewLineTablesGroupName = "linetables"; 139 static const char *const CodeViewLineTablesGroupDescription = 140 "CodeView Line Tables"; 141 142 STATISTIC(EmittedInsts, "Number of machine instrs printed"); 143 144 static cl::opt<bool> 145 PrintSchedule("print-schedule", cl::Hidden, cl::init(false), 146 cl::desc("Print 'sched: [latency:throughput]' in .s output")); 147 148 char AsmPrinter::ID = 0; 149 150 using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; 151 152 static gcp_map_type &getGCMap(void *&P) { 153 if (!P) 154 P = new gcp_map_type(); 155 return *(gcp_map_type*)P; 156 } 157 158 /// getGVAlignmentLog2 - Return the alignment to use for the specified global 159 /// value in log2 form. This rounds up to the preferred alignment if possible 160 /// and legal. 161 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &DL, 162 unsigned InBits = 0) { 163 unsigned NumBits = 0; 164 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 165 NumBits = DL.getPreferredAlignmentLog(GVar); 166 167 // If InBits is specified, round it to it. 168 if (InBits > NumBits) 169 NumBits = InBits; 170 171 // If the GV has a specified alignment, take it into account. 172 if (GV->getAlignment() == 0) 173 return NumBits; 174 175 unsigned GVAlign = Log2_32(GV->getAlignment()); 176 177 // If the GVAlign is larger than NumBits, or if we are required to obey 178 // NumBits because the GV has an assigned section, obey it. 179 if (GVAlign > NumBits || GV->hasSection()) 180 NumBits = GVAlign; 181 return NumBits; 182 } 183 184 AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) 185 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), 186 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { 187 VerboseAsm = OutStreamer->isVerboseAsm(); 188 } 189 190 AsmPrinter::~AsmPrinter() { 191 assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); 192 193 if (GCMetadataPrinters) { 194 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 195 196 delete &GCMap; 197 GCMetadataPrinters = nullptr; 198 } 199 } 200 201 bool AsmPrinter::isPositionIndependent() const { 202 return TM.isPositionIndependent(); 203 } 204 205 /// getFunctionNumber - Return a unique ID for the current function. 206 unsigned AsmPrinter::getFunctionNumber() const { 207 return MF->getFunctionNumber(); 208 } 209 210 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { 211 return *TM.getObjFileLowering(); 212 } 213 214 const DataLayout &AsmPrinter::getDataLayout() const { 215 return MMI->getModule()->getDataLayout(); 216 } 217 218 // Do not use the cached DataLayout because some client use it without a Module 219 // (dsymutil, llvm-dwarfdump). 220 unsigned AsmPrinter::getPointerSize() const { 221 return TM.getPointerSize(0); // FIXME: Default address space 222 } 223 224 const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { 225 assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); 226 return MF->getSubtarget<MCSubtargetInfo>(); 227 } 228 229 void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { 230 S.EmitInstruction(Inst, getSubtargetInfo()); 231 } 232 233 /// getCurrentSection() - Return the current section we are emitting to. 234 const MCSection *AsmPrinter::getCurrentSection() const { 235 return OutStreamer->getCurrentSectionOnly(); 236 } 237 238 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { 239 AU.setPreservesAll(); 240 MachineFunctionPass::getAnalysisUsage(AU); 241 AU.addRequired<MachineModuleInfo>(); 242 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 243 AU.addRequired<GCModuleInfo>(); 244 } 245 246 bool AsmPrinter::doInitialization(Module &M) { 247 MMI = getAnalysisIfAvailable<MachineModuleInfo>(); 248 249 // Initialize TargetLoweringObjectFile. 250 const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) 251 .Initialize(OutContext, TM); 252 253 OutStreamer->InitSections(false); 254 255 // Emit the version-min deployment target directive if needed. 256 // 257 // FIXME: If we end up with a collection of these sorts of Darwin-specific 258 // or ELF-specific things, it may make sense to have a platform helper class 259 // that will work with the target helper class. For now keep it here, as the 260 // alternative is duplicated code in each of the target asm printers that 261 // use the directive, where it would need the same conditionalization 262 // anyway. 263 const Triple &Target = TM.getTargetTriple(); 264 OutStreamer->EmitVersionForTarget(Target); 265 266 // Allow the target to emit any magic that it wants at the start of the file. 267 EmitStartOfAsmFile(M); 268 269 // Very minimal debug info. It is ignored if we emit actual debug info. If we 270 // don't, this at least helps the user find where a global came from. 271 if (MAI->hasSingleParameterDotFile()) { 272 // .file "foo.c" 273 OutStreamer->EmitFileDirective( 274 llvm::sys::path::filename(M.getSourceFileName())); 275 } 276 277 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 278 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 279 for (auto &I : *MI) 280 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) 281 MP->beginAssembly(M, *MI, *this); 282 283 // Emit module-level inline asm if it exists. 284 if (!M.getModuleInlineAsm().empty()) { 285 // We're at the module level. Construct MCSubtarget from the default CPU 286 // and target triple. 287 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( 288 TM.getTargetTriple().str(), TM.getTargetCPU(), 289 TM.getTargetFeatureString())); 290 OutStreamer->AddComment("Start of file scope inline assembly"); 291 OutStreamer->AddBlankLine(); 292 EmitInlineAsm(M.getModuleInlineAsm()+"\n", 293 OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); 294 OutStreamer->AddComment("End of file scope inline assembly"); 295 OutStreamer->AddBlankLine(); 296 } 297 298 if (MAI->doesSupportDebugInformation()) { 299 bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); 300 if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { 301 Handlers.push_back(HandlerInfo(new CodeViewDebug(this), 302 DbgTimerName, DbgTimerDescription, 303 CodeViewLineTablesGroupName, 304 CodeViewLineTablesGroupDescription)); 305 } 306 if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { 307 DD = new DwarfDebug(this, &M); 308 DD->beginModule(); 309 Handlers.push_back(HandlerInfo(DD, DbgTimerName, DbgTimerDescription, 310 DWARFGroupName, DWARFGroupDescription)); 311 } 312 } 313 314 switch (MAI->getExceptionHandlingType()) { 315 case ExceptionHandling::SjLj: 316 case ExceptionHandling::DwarfCFI: 317 case ExceptionHandling::ARM: 318 isCFIMoveForDebugging = true; 319 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) 320 break; 321 for (auto &F: M.getFunctionList()) { 322 // If the module contains any function with unwind data, 323 // .eh_frame has to be emitted. 324 // Ignore functions that won't get emitted. 325 if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { 326 isCFIMoveForDebugging = false; 327 break; 328 } 329 } 330 break; 331 default: 332 isCFIMoveForDebugging = false; 333 break; 334 } 335 336 EHStreamer *ES = nullptr; 337 switch (MAI->getExceptionHandlingType()) { 338 case ExceptionHandling::None: 339 break; 340 case ExceptionHandling::SjLj: 341 case ExceptionHandling::DwarfCFI: 342 ES = new DwarfCFIException(this); 343 break; 344 case ExceptionHandling::ARM: 345 ES = new ARMException(this); 346 break; 347 case ExceptionHandling::WinEH: 348 switch (MAI->getWinEHEncodingType()) { 349 default: llvm_unreachable("unsupported unwinding information encoding"); 350 case WinEH::EncodingType::Invalid: 351 break; 352 case WinEH::EncodingType::X86: 353 case WinEH::EncodingType::Itanium: 354 ES = new WinException(this); 355 break; 356 } 357 break; 358 case ExceptionHandling::Wasm: 359 // TODO to prevent warning 360 break; 361 } 362 if (ES) 363 Handlers.push_back(HandlerInfo(ES, EHTimerName, EHTimerDescription, 364 DWARFGroupName, DWARFGroupDescription)); 365 366 if (mdconst::extract_or_null<ConstantInt>( 367 MMI->getModule()->getModuleFlag("cfguardtable"))) 368 Handlers.push_back(HandlerInfo(new WinCFGuard(this), CFGuardName, 369 CFGuardDescription, DWARFGroupName, 370 DWARFGroupDescription)); 371 372 return false; 373 } 374 375 static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { 376 if (!MAI.hasWeakDefCanBeHiddenDirective()) 377 return false; 378 379 return GV->canBeOmittedFromSymbolTable(); 380 } 381 382 void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { 383 GlobalValue::LinkageTypes Linkage = GV->getLinkage(); 384 switch (Linkage) { 385 case GlobalValue::CommonLinkage: 386 case GlobalValue::LinkOnceAnyLinkage: 387 case GlobalValue::LinkOnceODRLinkage: 388 case GlobalValue::WeakAnyLinkage: 389 case GlobalValue::WeakODRLinkage: 390 if (MAI->hasWeakDefDirective()) { 391 // .globl _foo 392 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 393 394 if (!canBeHidden(GV, *MAI)) 395 // .weak_definition _foo 396 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); 397 else 398 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); 399 } else if (MAI->hasLinkOnceDirective()) { 400 // .globl _foo 401 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 402 //NOTE: linkonce is handled by the section the symbol was assigned to. 403 } else { 404 // .weak _foo 405 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); 406 } 407 return; 408 case GlobalValue::ExternalLinkage: 409 // If external, declare as a global symbol: .globl _foo 410 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); 411 return; 412 case GlobalValue::PrivateLinkage: 413 case GlobalValue::InternalLinkage: 414 return; 415 case GlobalValue::AppendingLinkage: 416 case GlobalValue::AvailableExternallyLinkage: 417 case GlobalValue::ExternalWeakLinkage: 418 llvm_unreachable("Should never emit this"); 419 } 420 llvm_unreachable("Unknown linkage type!"); 421 } 422 423 void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, 424 const GlobalValue *GV) const { 425 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); 426 } 427 428 MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { 429 return TM.getSymbol(GV); 430 } 431 432 /// EmitGlobalVariable - Emit the specified global variable to the .s file. 433 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { 434 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); 435 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && 436 "No emulated TLS variables in the common section"); 437 438 // Never emit TLS variable xyz in emulated TLS model. 439 // The initialization value is in __emutls_t.xyz instead of xyz. 440 if (IsEmuTLSVar) 441 return; 442 443 if (GV->hasInitializer()) { 444 // Check to see if this is a special global used by LLVM, if so, emit it. 445 if (EmitSpecialLLVMGlobal(GV)) 446 return; 447 448 // Skip the emission of global equivalents. The symbol can be emitted later 449 // on by emitGlobalGOTEquivs in case it turns out to be needed. 450 if (GlobalGOTEquivs.count(getSymbol(GV))) 451 return; 452 453 if (isVerbose()) { 454 // When printing the control variable __emutls_v.*, 455 // we don't need to print the original TLS variable name. 456 GV->printAsOperand(OutStreamer->GetCommentOS(), 457 /*PrintType=*/false, GV->getParent()); 458 OutStreamer->GetCommentOS() << '\n'; 459 } 460 } 461 462 MCSymbol *GVSym = getSymbol(GV); 463 MCSymbol *EmittedSym = GVSym; 464 465 // getOrCreateEmuTLSControlSym only creates the symbol with name and default 466 // attributes. 467 // GV's or GVSym's attributes will be used for the EmittedSym. 468 EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); 469 470 if (!GV->hasInitializer()) // External globals require no extra code. 471 return; 472 473 GVSym->redefineIfPossible(); 474 if (GVSym->isDefined() || GVSym->isVariable()) 475 report_fatal_error("symbol '" + Twine(GVSym->getName()) + 476 "' is already defined"); 477 478 if (MAI->hasDotTypeDotSizeDirective()) 479 OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); 480 481 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); 482 483 const DataLayout &DL = GV->getParent()->getDataLayout(); 484 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 485 486 // If the alignment is specified, we *must* obey it. Overaligning a global 487 // with a specified alignment is a prompt way to break globals emitted to 488 // sections and expected to be contiguous (e.g. ObjC metadata). 489 unsigned AlignLog = getGVAlignmentLog2(GV, DL); 490 491 for (const HandlerInfo &HI : Handlers) { 492 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 493 HI.TimerGroupName, HI.TimerGroupDescription, 494 TimePassesIsEnabled); 495 HI.Handler->setSymbolSize(GVSym, Size); 496 } 497 498 // Handle common symbols 499 if (GVKind.isCommon()) { 500 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. 501 unsigned Align = 1 << AlignLog; 502 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 503 Align = 0; 504 505 // .comm _foo, 42, 4 506 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 507 return; 508 } 509 510 // Determine to which section this global should be emitted. 511 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); 512 513 // If we have a bss global going to a section that supports the 514 // zerofill directive, do so here. 515 if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && 516 TheSection->isVirtualSection()) { 517 if (Size == 0) 518 Size = 1; // zerofill of 0 bytes is undefined. 519 unsigned Align = 1 << AlignLog; 520 EmitLinkage(GV, GVSym); 521 // .zerofill __DATA, __bss, _foo, 400, 5 522 OutStreamer->EmitZerofill(TheSection, GVSym, Size, Align); 523 return; 524 } 525 526 // If this is a BSS local symbol and we are emitting in the BSS 527 // section use .lcomm/.comm directive. 528 if (GVKind.isBSSLocal() && 529 getObjFileLowering().getBSSSection() == TheSection) { 530 if (Size == 0) 531 Size = 1; // .comm Foo, 0 is undefined, avoid it. 532 unsigned Align = 1 << AlignLog; 533 534 // Use .lcomm only if it supports user-specified alignment. 535 // Otherwise, while it would still be correct to use .lcomm in some 536 // cases (e.g. when Align == 1), the external assembler might enfore 537 // some -unknown- default alignment behavior, which could cause 538 // spurious differences between external and integrated assembler. 539 // Prefer to simply fall back to .local / .comm in this case. 540 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { 541 // .lcomm _foo, 42 542 OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Align); 543 return; 544 } 545 546 if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) 547 Align = 0; 548 549 // .local _foo 550 OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); 551 // .comm _foo, 42, 4 552 OutStreamer->EmitCommonSymbol(GVSym, Size, Align); 553 return; 554 } 555 556 // Handle thread local data for mach-o which requires us to output an 557 // additional structure of data and mangle the original symbol so that we 558 // can reference it later. 559 // 560 // TODO: This should become an "emit thread local global" method on TLOF. 561 // All of this macho specific stuff should be sunk down into TLOFMachO and 562 // stuff like "TLSExtraDataSection" should no longer be part of the parent 563 // TLOF class. This will also make it more obvious that stuff like 564 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho 565 // specific code. 566 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { 567 // Emit the .tbss symbol 568 MCSymbol *MangSym = 569 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); 570 571 if (GVKind.isThreadBSS()) { 572 TheSection = getObjFileLowering().getTLSBSSSection(); 573 OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); 574 } else if (GVKind.isThreadData()) { 575 OutStreamer->SwitchSection(TheSection); 576 577 EmitAlignment(AlignLog, GV); 578 OutStreamer->EmitLabel(MangSym); 579 580 EmitGlobalConstant(GV->getParent()->getDataLayout(), 581 GV->getInitializer()); 582 } 583 584 OutStreamer->AddBlankLine(); 585 586 // Emit the variable struct for the runtime. 587 MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); 588 589 OutStreamer->SwitchSection(TLVSect); 590 // Emit the linkage here. 591 EmitLinkage(GV, GVSym); 592 OutStreamer->EmitLabel(GVSym); 593 594 // Three pointers in size: 595 // - __tlv_bootstrap - used to make sure support exists 596 // - spare pointer, used when mapped by the runtime 597 // - pointer to mangled symbol above with initializer 598 unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); 599 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), 600 PtrSize); 601 OutStreamer->EmitIntValue(0, PtrSize); 602 OutStreamer->EmitSymbolValue(MangSym, PtrSize); 603 604 OutStreamer->AddBlankLine(); 605 return; 606 } 607 608 MCSymbol *EmittedInitSym = GVSym; 609 610 OutStreamer->SwitchSection(TheSection); 611 612 EmitLinkage(GV, EmittedInitSym); 613 EmitAlignment(AlignLog, GV); 614 615 OutStreamer->EmitLabel(EmittedInitSym); 616 617 EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); 618 619 if (MAI->hasDotTypeDotSizeDirective()) 620 // .size foo, 42 621 OutStreamer->emitELFSize(EmittedInitSym, 622 MCConstantExpr::create(Size, OutContext)); 623 624 OutStreamer->AddBlankLine(); 625 } 626 627 /// Emit the directive and value for debug thread local expression 628 /// 629 /// \p Value - The value to emit. 630 /// \p Size - The size of the integer (in bytes) to emit. 631 void AsmPrinter::EmitDebugThreadLocal(const MCExpr *Value, 632 unsigned Size) const { 633 OutStreamer->EmitValue(Value, Size); 634 } 635 636 /// EmitFunctionHeader - This method emits the header for the current 637 /// function. 638 void AsmPrinter::EmitFunctionHeader() { 639 const Function &F = MF->getFunction(); 640 641 if (isVerbose()) 642 OutStreamer->GetCommentOS() 643 << "-- Begin function " 644 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; 645 646 // Print out constants referenced by the function 647 EmitConstantPool(); 648 649 // Print the 'header' of function. 650 OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); 651 EmitVisibility(CurrentFnSym, F.getVisibility()); 652 653 EmitLinkage(&F, CurrentFnSym); 654 if (MAI->hasFunctionAlignment()) 655 EmitAlignment(MF->getAlignment(), &F); 656 657 if (MAI->hasDotTypeDotSizeDirective()) 658 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); 659 660 if (isVerbose()) { 661 F.printAsOperand(OutStreamer->GetCommentOS(), 662 /*PrintType=*/false, F.getParent()); 663 OutStreamer->GetCommentOS() << '\n'; 664 } 665 666 // Emit the prefix data. 667 if (F.hasPrefixData()) { 668 if (MAI->hasSubsectionsViaSymbols()) { 669 // Preserving prefix data on platforms which use subsections-via-symbols 670 // is a bit tricky. Here we introduce a symbol for the prefix data 671 // and use the .alt_entry attribute to mark the function's real entry point 672 // as an alternative entry point to the prefix-data symbol. 673 MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); 674 OutStreamer->EmitLabel(PrefixSym); 675 676 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 677 678 // Emit an .alt_entry directive for the actual function symbol. 679 OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); 680 } else { 681 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); 682 } 683 } 684 685 // Emit the CurrentFnSym. This is a virtual function to allow targets to 686 // do their wild and crazy things as required. 687 EmitFunctionEntryLabel(); 688 689 // If the function had address-taken blocks that got deleted, then we have 690 // references to the dangling symbols. Emit them at the start of the function 691 // so that we don't get references to undefined symbols. 692 std::vector<MCSymbol*> DeadBlockSyms; 693 MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); 694 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { 695 OutStreamer->AddComment("Address taken block that was later removed"); 696 OutStreamer->EmitLabel(DeadBlockSyms[i]); 697 } 698 699 if (CurrentFnBegin) { 700 if (MAI->useAssignmentForEHBegin()) { 701 MCSymbol *CurPos = OutContext.createTempSymbol(); 702 OutStreamer->EmitLabel(CurPos); 703 OutStreamer->EmitAssignment(CurrentFnBegin, 704 MCSymbolRefExpr::create(CurPos, OutContext)); 705 } else { 706 OutStreamer->EmitLabel(CurrentFnBegin); 707 } 708 } 709 710 // Emit pre-function debug and/or EH information. 711 for (const HandlerInfo &HI : Handlers) { 712 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 713 HI.TimerGroupDescription, TimePassesIsEnabled); 714 HI.Handler->beginFunction(MF); 715 } 716 717 // Emit the prologue data. 718 if (F.hasPrologueData()) 719 EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); 720 } 721 722 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the 723 /// function. This can be overridden by targets as required to do custom stuff. 724 void AsmPrinter::EmitFunctionEntryLabel() { 725 CurrentFnSym->redefineIfPossible(); 726 727 // The function label could have already been emitted if two symbols end up 728 // conflicting due to asm renaming. Detect this and emit an error. 729 if (CurrentFnSym->isVariable()) 730 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 731 "' is a protected alias"); 732 if (CurrentFnSym->isDefined()) 733 report_fatal_error("'" + Twine(CurrentFnSym->getName()) + 734 "' label emitted multiple times to assembly file"); 735 736 return OutStreamer->EmitLabel(CurrentFnSym); 737 } 738 739 /// emitComments - Pretty-print comments for instructions. 740 /// It returns true iff the sched comment was emitted. 741 /// Otherwise it returns false. 742 static bool emitComments(const MachineInstr &MI, raw_ostream &CommentOS, 743 AsmPrinter *AP) { 744 const MachineFunction *MF = MI.getMF(); 745 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 746 747 // Check for spills and reloads 748 int FI; 749 750 const MachineFrameInfo &MFI = MF->getFrameInfo(); 751 bool Commented = false; 752 753 auto getSize = 754 [&MFI](const SmallVectorImpl<const MachineMemOperand *> &Accesses) { 755 unsigned Size = 0; 756 for (auto A : Accesses) 757 if (MFI.isSpillSlotObjectIndex( 758 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 759 ->getFrameIndex())) 760 Size += A->getSize(); 761 return Size; 762 }; 763 764 // We assume a single instruction only has a spill or reload, not 765 // both. 766 const MachineMemOperand *MMO; 767 SmallVector<const MachineMemOperand *, 2> Accesses; 768 if (TII->isLoadFromStackSlotPostFE(MI, FI)) { 769 if (MFI.isSpillSlotObjectIndex(FI)) { 770 MMO = *MI.memoperands_begin(); 771 CommentOS << MMO->getSize() << "-byte Reload"; 772 Commented = true; 773 } 774 } else if (TII->hasLoadFromStackSlot(MI, Accesses)) { 775 if (auto Size = getSize(Accesses)) { 776 CommentOS << Size << "-byte Folded Reload"; 777 Commented = true; 778 } 779 } else if (TII->isStoreToStackSlotPostFE(MI, FI)) { 780 if (MFI.isSpillSlotObjectIndex(FI)) { 781 MMO = *MI.memoperands_begin(); 782 CommentOS << MMO->getSize() << "-byte Spill"; 783 Commented = true; 784 } 785 } else if (TII->hasStoreToStackSlot(MI, Accesses)) { 786 if (auto Size = getSize(Accesses)) { 787 CommentOS << Size << "-byte Folded Spill"; 788 Commented = true; 789 } 790 } 791 792 // Check for spill-induced copies 793 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) { 794 Commented = true; 795 CommentOS << " Reload Reuse"; 796 } 797 798 if (Commented) { 799 if (AP->EnablePrintSchedInfo) { 800 // If any comment was added above and we need sched info comment then add 801 // this new comment just after the above comment w/o "\n" between them. 802 CommentOS << " " << MF->getSubtarget().getSchedInfoStr(MI) << "\n"; 803 return true; 804 } 805 CommentOS << "\n"; 806 } 807 return false; 808 } 809 810 /// emitImplicitDef - This method emits the specified machine instruction 811 /// that is an implicit def. 812 void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { 813 unsigned RegNo = MI->getOperand(0).getReg(); 814 815 SmallString<128> Str; 816 raw_svector_ostream OS(Str); 817 OS << "implicit-def: " 818 << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); 819 820 OutStreamer->AddComment(OS.str()); 821 OutStreamer->AddBlankLine(); 822 } 823 824 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { 825 std::string Str; 826 raw_string_ostream OS(Str); 827 OS << "kill:"; 828 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 829 const MachineOperand &Op = MI->getOperand(i); 830 assert(Op.isReg() && "KILL instruction must have only register operands"); 831 OS << ' ' << (Op.isDef() ? "def " : "killed ") 832 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); 833 } 834 AP.OutStreamer->AddComment(OS.str()); 835 AP.OutStreamer->AddBlankLine(); 836 } 837 838 /// emitDebugValueComment - This method handles the target-independent form 839 /// of DBG_VALUE, returning true if it was able to do so. A false return 840 /// means the target will need to handle MI in EmitInstruction. 841 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { 842 // This code handles only the 4-operand target-independent form. 843 if (MI->getNumOperands() != 4) 844 return false; 845 846 SmallString<128> Str; 847 raw_svector_ostream OS(Str); 848 OS << "DEBUG_VALUE: "; 849 850 const DILocalVariable *V = MI->getDebugVariable(); 851 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 852 StringRef Name = SP->getName(); 853 if (!Name.empty()) 854 OS << Name << ":"; 855 } 856 OS << V->getName(); 857 OS << " <- "; 858 859 // The second operand is only an offset if it's an immediate. 860 bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); 861 int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; 862 const DIExpression *Expr = MI->getDebugExpression(); 863 if (Expr->getNumElements()) { 864 OS << '['; 865 bool NeedSep = false; 866 for (auto Op : Expr->expr_ops()) { 867 if (NeedSep) 868 OS << ", "; 869 else 870 NeedSep = true; 871 OS << dwarf::OperationEncodingString(Op.getOp()); 872 for (unsigned I = 0; I < Op.getNumArgs(); ++I) 873 OS << ' ' << Op.getArg(I); 874 } 875 OS << "] "; 876 } 877 878 // Register or immediate value. Register 0 means undef. 879 if (MI->getOperand(0).isFPImm()) { 880 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); 881 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { 882 OS << (double)APF.convertToFloat(); 883 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { 884 OS << APF.convertToDouble(); 885 } else { 886 // There is no good way to print long double. Convert a copy to 887 // double. Ah well, it's only a comment. 888 bool ignored; 889 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, 890 &ignored); 891 OS << "(long double) " << APF.convertToDouble(); 892 } 893 } else if (MI->getOperand(0).isImm()) { 894 OS << MI->getOperand(0).getImm(); 895 } else if (MI->getOperand(0).isCImm()) { 896 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); 897 } else { 898 unsigned Reg; 899 if (MI->getOperand(0).isReg()) { 900 Reg = MI->getOperand(0).getReg(); 901 } else { 902 assert(MI->getOperand(0).isFI() && "Unknown operand type"); 903 const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); 904 Offset += TFI->getFrameIndexReference(*AP.MF, 905 MI->getOperand(0).getIndex(), Reg); 906 MemLoc = true; 907 } 908 if (Reg == 0) { 909 // Suppress offset, it is not meaningful here. 910 OS << "undef"; 911 // NOTE: Want this comment at start of line, don't emit with AddComment. 912 AP.OutStreamer->emitRawComment(OS.str()); 913 return true; 914 } 915 if (MemLoc) 916 OS << '['; 917 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); 918 } 919 920 if (MemLoc) 921 OS << '+' << Offset << ']'; 922 923 // NOTE: Want this comment at start of line, don't emit with AddComment. 924 AP.OutStreamer->emitRawComment(OS.str()); 925 return true; 926 } 927 928 /// This method handles the target-independent form of DBG_LABEL, returning 929 /// true if it was able to do so. A false return means the target will need 930 /// to handle MI in EmitInstruction. 931 static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { 932 if (MI->getNumOperands() != 1) 933 return false; 934 935 SmallString<128> Str; 936 raw_svector_ostream OS(Str); 937 OS << "DEBUG_LABEL: "; 938 939 const DILabel *V = MI->getDebugLabel(); 940 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { 941 StringRef Name = SP->getName(); 942 if (!Name.empty()) 943 OS << Name << ":"; 944 } 945 OS << V->getName(); 946 947 // NOTE: Want this comment at start of line, don't emit with AddComment. 948 AP.OutStreamer->emitRawComment(OS.str()); 949 return true; 950 } 951 952 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { 953 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && 954 MF->getFunction().needsUnwindTableEntry()) 955 return CFI_M_EH; 956 957 if (MMI->hasDebugInfo()) 958 return CFI_M_Debug; 959 960 return CFI_M_None; 961 } 962 963 bool AsmPrinter::needsSEHMoves() { 964 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); 965 } 966 967 void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { 968 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); 969 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && 970 ExceptionHandlingType != ExceptionHandling::ARM) 971 return; 972 973 if (needsCFIMoves() == CFI_M_None) 974 return; 975 976 // If there is no "real" instruction following this CFI instruction, skip 977 // emitting it; it would be beyond the end of the function's FDE range. 978 auto *MBB = MI.getParent(); 979 auto I = std::next(MI.getIterator()); 980 while (I != MBB->end() && I->isTransient()) 981 ++I; 982 if (I == MBB->instr_end() && 983 MBB->getReverseIterator() == MBB->getParent()->rbegin()) 984 return; 985 986 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); 987 unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); 988 const MCCFIInstruction &CFI = Instrs[CFIIndex]; 989 emitCFIInstruction(CFI); 990 } 991 992 void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { 993 // The operands are the MCSymbol and the frame offset of the allocation. 994 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); 995 int FrameOffset = MI.getOperand(1).getImm(); 996 997 // Emit a symbol assignment. 998 OutStreamer->EmitAssignment(FrameAllocSym, 999 MCConstantExpr::create(FrameOffset, OutContext)); 1000 } 1001 1002 void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { 1003 if (!MF.getTarget().Options.EmitStackSizeSection) 1004 return; 1005 1006 MCSection *StackSizeSection = 1007 getObjFileLowering().getStackSizesSection(*getCurrentSection()); 1008 if (!StackSizeSection) 1009 return; 1010 1011 const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); 1012 // Don't emit functions with dynamic stack allocations. 1013 if (FrameInfo.hasVarSizedObjects()) 1014 return; 1015 1016 OutStreamer->PushSection(); 1017 OutStreamer->SwitchSection(StackSizeSection); 1018 1019 const MCSymbol *FunctionSymbol = getFunctionBegin(); 1020 uint64_t StackSize = FrameInfo.getStackSize(); 1021 OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); 1022 OutStreamer->EmitULEB128IntValue(StackSize); 1023 1024 OutStreamer->PopSection(); 1025 } 1026 1027 static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, 1028 MachineModuleInfo *MMI) { 1029 if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) 1030 return true; 1031 1032 // We might emit an EH table that uses function begin and end labels even if 1033 // we don't have any landingpads. 1034 if (!MF.getFunction().hasPersonalityFn()) 1035 return false; 1036 return !isNoOpWithoutInvoke( 1037 classifyEHPersonality(MF.getFunction().getPersonalityFn())); 1038 } 1039 1040 /// EmitFunctionBody - This method emits the body and trailer for a 1041 /// function. 1042 void AsmPrinter::EmitFunctionBody() { 1043 EmitFunctionHeader(); 1044 1045 // Emit target-specific gunk before the function body. 1046 EmitFunctionBodyStart(); 1047 1048 bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); 1049 1050 if (isVerbose()) { 1051 // Get MachineDominatorTree or compute it on the fly if it's unavailable 1052 MDT = getAnalysisIfAvailable<MachineDominatorTree>(); 1053 if (!MDT) { 1054 OwnedMDT = make_unique<MachineDominatorTree>(); 1055 OwnedMDT->getBase().recalculate(*MF); 1056 MDT = OwnedMDT.get(); 1057 } 1058 1059 // Get MachineLoopInfo or compute it on the fly if it's unavailable 1060 MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 1061 if (!MLI) { 1062 OwnedMLI = make_unique<MachineLoopInfo>(); 1063 OwnedMLI->getBase().analyze(MDT->getBase()); 1064 MLI = OwnedMLI.get(); 1065 } 1066 } 1067 1068 // Print out code for the function. 1069 bool HasAnyRealCode = false; 1070 int NumInstsInFunction = 0; 1071 for (auto &MBB : *MF) { 1072 // Print a label for the basic block. 1073 EmitBasicBlockStart(MBB); 1074 for (auto &MI : MBB) { 1075 // Print the assembly for the instruction. 1076 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && 1077 !MI.isDebugInstr()) { 1078 HasAnyRealCode = true; 1079 ++NumInstsInFunction; 1080 } 1081 1082 // If there is a pre-instruction symbol, emit a label for it here. 1083 if (MCSymbol *S = MI.getPreInstrSymbol()) 1084 OutStreamer->EmitLabel(S); 1085 1086 if (ShouldPrintDebugScopes) { 1087 for (const HandlerInfo &HI : Handlers) { 1088 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1089 HI.TimerGroupName, HI.TimerGroupDescription, 1090 TimePassesIsEnabled); 1091 HI.Handler->beginInstruction(&MI); 1092 } 1093 } 1094 1095 if (isVerbose() && emitComments(MI, OutStreamer->GetCommentOS(), this)) { 1096 MachineInstr *MIP = const_cast<MachineInstr *>(&MI); 1097 MIP->setAsmPrinterFlag(MachineInstr::NoSchedComment); 1098 } 1099 1100 switch (MI.getOpcode()) { 1101 case TargetOpcode::CFI_INSTRUCTION: 1102 emitCFIInstruction(MI); 1103 break; 1104 case TargetOpcode::LOCAL_ESCAPE: 1105 emitFrameAlloc(MI); 1106 break; 1107 case TargetOpcode::EH_LABEL: 1108 case TargetOpcode::GC_LABEL: 1109 OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); 1110 break; 1111 case TargetOpcode::INLINEASM: 1112 EmitInlineAsm(&MI); 1113 break; 1114 case TargetOpcode::DBG_VALUE: 1115 if (isVerbose()) { 1116 if (!emitDebugValueComment(&MI, *this)) 1117 EmitInstruction(&MI); 1118 } 1119 break; 1120 case TargetOpcode::DBG_LABEL: 1121 if (isVerbose()) { 1122 if (!emitDebugLabelComment(&MI, *this)) 1123 EmitInstruction(&MI); 1124 } 1125 break; 1126 case TargetOpcode::IMPLICIT_DEF: 1127 if (isVerbose()) emitImplicitDef(&MI); 1128 break; 1129 case TargetOpcode::KILL: 1130 if (isVerbose()) emitKill(&MI, *this); 1131 break; 1132 default: 1133 EmitInstruction(&MI); 1134 break; 1135 } 1136 1137 // If there is a post-instruction symbol, emit a label for it here. 1138 if (MCSymbol *S = MI.getPostInstrSymbol()) 1139 OutStreamer->EmitLabel(S); 1140 1141 if (ShouldPrintDebugScopes) { 1142 for (const HandlerInfo &HI : Handlers) { 1143 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, 1144 HI.TimerGroupName, HI.TimerGroupDescription, 1145 TimePassesIsEnabled); 1146 HI.Handler->endInstruction(); 1147 } 1148 } 1149 } 1150 1151 EmitBasicBlockEnd(MBB); 1152 } 1153 1154 EmittedInsts += NumInstsInFunction; 1155 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", 1156 MF->getFunction().getSubprogram(), 1157 &MF->front()); 1158 R << ore::NV("NumInstructions", NumInstsInFunction) 1159 << " instructions in function"; 1160 ORE->emit(R); 1161 1162 // If the function is empty and the object file uses .subsections_via_symbols, 1163 // then we need to emit *something* to the function body to prevent the 1164 // labels from collapsing together. Just emit a noop. 1165 // Similarly, don't emit empty functions on Windows either. It can lead to 1166 // duplicate entries (two functions with the same RVA) in the Guard CF Table 1167 // after linking, causing the kernel not to load the binary: 1168 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html 1169 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. 1170 const Triple &TT = TM.getTargetTriple(); 1171 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || 1172 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { 1173 MCInst Noop; 1174 MF->getSubtarget().getInstrInfo()->getNoop(Noop); 1175 1176 // Targets can opt-out of emitting the noop here by leaving the opcode 1177 // unspecified. 1178 if (Noop.getOpcode()) { 1179 OutStreamer->AddComment("avoids zero-length function"); 1180 OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); 1181 } 1182 } 1183 1184 const Function &F = MF->getFunction(); 1185 for (const auto &BB : F) { 1186 if (!BB.hasAddressTaken()) 1187 continue; 1188 MCSymbol *Sym = GetBlockAddressSymbol(&BB); 1189 if (Sym->isDefined()) 1190 continue; 1191 OutStreamer->AddComment("Address of block that was removed by CodeGen"); 1192 OutStreamer->EmitLabel(Sym); 1193 } 1194 1195 // Emit target-specific gunk after the function body. 1196 EmitFunctionBodyEnd(); 1197 1198 if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || 1199 MAI->hasDotTypeDotSizeDirective()) { 1200 // Create a symbol for the end of function. 1201 CurrentFnEnd = createTempSymbol("func_end"); 1202 OutStreamer->EmitLabel(CurrentFnEnd); 1203 } 1204 1205 // If the target wants a .size directive for the size of the function, emit 1206 // it. 1207 if (MAI->hasDotTypeDotSizeDirective()) { 1208 // We can get the size as difference between the function label and the 1209 // temp label. 1210 const MCExpr *SizeExp = MCBinaryExpr::createSub( 1211 MCSymbolRefExpr::create(CurrentFnEnd, OutContext), 1212 MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); 1213 OutStreamer->emitELFSize(CurrentFnSym, SizeExp); 1214 } 1215 1216 for (const HandlerInfo &HI : Handlers) { 1217 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1218 HI.TimerGroupDescription, TimePassesIsEnabled); 1219 HI.Handler->markFunctionEnd(); 1220 } 1221 1222 // Print out jump tables referenced by the function. 1223 EmitJumpTableInfo(); 1224 1225 // Emit post-function debug and/or EH information. 1226 for (const HandlerInfo &HI : Handlers) { 1227 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1228 HI.TimerGroupDescription, TimePassesIsEnabled); 1229 HI.Handler->endFunction(MF); 1230 } 1231 1232 // Emit section containing stack size metadata. 1233 emitStackSizeSection(*MF); 1234 1235 if (isVerbose()) 1236 OutStreamer->GetCommentOS() << "-- End function\n"; 1237 1238 OutStreamer->AddBlankLine(); 1239 } 1240 1241 /// Compute the number of Global Variables that uses a Constant. 1242 static unsigned getNumGlobalVariableUses(const Constant *C) { 1243 if (!C) 1244 return 0; 1245 1246 if (isa<GlobalVariable>(C)) 1247 return 1; 1248 1249 unsigned NumUses = 0; 1250 for (auto *CU : C->users()) 1251 NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); 1252 1253 return NumUses; 1254 } 1255 1256 /// Only consider global GOT equivalents if at least one user is a 1257 /// cstexpr inside an initializer of another global variables. Also, don't 1258 /// handle cstexpr inside instructions. During global variable emission, 1259 /// candidates are skipped and are emitted later in case at least one cstexpr 1260 /// isn't replaced by a PC relative GOT entry access. 1261 static bool isGOTEquivalentCandidate(const GlobalVariable *GV, 1262 unsigned &NumGOTEquivUsers) { 1263 // Global GOT equivalents are unnamed private globals with a constant 1264 // pointer initializer to another global symbol. They must point to a 1265 // GlobalVariable or Function, i.e., as GlobalValue. 1266 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || 1267 !GV->isConstant() || !GV->isDiscardableIfUnused() || 1268 !dyn_cast<GlobalValue>(GV->getOperand(0))) 1269 return false; 1270 1271 // To be a got equivalent, at least one of its users need to be a constant 1272 // expression used by another global variable. 1273 for (auto *U : GV->users()) 1274 NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); 1275 1276 return NumGOTEquivUsers > 0; 1277 } 1278 1279 /// Unnamed constant global variables solely contaning a pointer to 1280 /// another globals variable is equivalent to a GOT table entry; it contains the 1281 /// the address of another symbol. Optimize it and replace accesses to these 1282 /// "GOT equivalents" by using the GOT entry for the final global instead. 1283 /// Compute GOT equivalent candidates among all global variables to avoid 1284 /// emitting them if possible later on, after it use is replaced by a GOT entry 1285 /// access. 1286 void AsmPrinter::computeGlobalGOTEquivs(Module &M) { 1287 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1288 return; 1289 1290 for (const auto &G : M.globals()) { 1291 unsigned NumGOTEquivUsers = 0; 1292 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) 1293 continue; 1294 1295 const MCSymbol *GOTEquivSym = getSymbol(&G); 1296 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); 1297 } 1298 } 1299 1300 /// Constant expressions using GOT equivalent globals may not be eligible 1301 /// for PC relative GOT entry conversion, in such cases we need to emit such 1302 /// globals we previously omitted in EmitGlobalVariable. 1303 void AsmPrinter::emitGlobalGOTEquivs() { 1304 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) 1305 return; 1306 1307 SmallVector<const GlobalVariable *, 8> FailedCandidates; 1308 for (auto &I : GlobalGOTEquivs) { 1309 const GlobalVariable *GV = I.second.first; 1310 unsigned Cnt = I.second.second; 1311 if (Cnt) 1312 FailedCandidates.push_back(GV); 1313 } 1314 GlobalGOTEquivs.clear(); 1315 1316 for (auto *GV : FailedCandidates) 1317 EmitGlobalVariable(GV); 1318 } 1319 1320 void AsmPrinter::emitGlobalIndirectSymbol(Module &M, 1321 const GlobalIndirectSymbol& GIS) { 1322 MCSymbol *Name = getSymbol(&GIS); 1323 1324 if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) 1325 OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); 1326 else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) 1327 OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); 1328 else 1329 assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); 1330 1331 // Set the symbol type to function if the alias has a function type. 1332 // This affects codegen when the aliasee is not a function. 1333 if (GIS.getType()->getPointerElementType()->isFunctionTy()) { 1334 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeFunction); 1335 if (isa<GlobalIFunc>(GIS)) 1336 OutStreamer->EmitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction); 1337 } 1338 1339 EmitVisibility(Name, GIS.getVisibility()); 1340 1341 const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); 1342 1343 if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) 1344 OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); 1345 1346 // Emit the directives as assignments aka .set: 1347 OutStreamer->EmitAssignment(Name, Expr); 1348 1349 if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { 1350 // If the aliasee does not correspond to a symbol in the output, i.e. the 1351 // alias is not of an object or the aliased object is private, then set the 1352 // size of the alias symbol from the type of the alias. We don't do this in 1353 // other situations as the alias and aliasee having differing types but same 1354 // size may be intentional. 1355 const GlobalObject *BaseObject = GA->getBaseObject(); 1356 if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && 1357 (!BaseObject || BaseObject->hasPrivateLinkage())) { 1358 const DataLayout &DL = M.getDataLayout(); 1359 uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); 1360 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); 1361 } 1362 } 1363 } 1364 1365 bool AsmPrinter::doFinalization(Module &M) { 1366 // Set the MachineFunction to nullptr so that we can catch attempted 1367 // accesses to MF specific features at the module level and so that 1368 // we can conditionalize accesses based on whether or not it is nullptr. 1369 MF = nullptr; 1370 1371 // Gather all GOT equivalent globals in the module. We really need two 1372 // passes over the globals: one to compute and another to avoid its emission 1373 // in EmitGlobalVariable, otherwise we would not be able to handle cases 1374 // where the got equivalent shows up before its use. 1375 computeGlobalGOTEquivs(M); 1376 1377 // Emit global variables. 1378 for (const auto &G : M.globals()) 1379 EmitGlobalVariable(&G); 1380 1381 // Emit remaining GOT equivalent globals. 1382 emitGlobalGOTEquivs(); 1383 1384 // Emit visibility info for declarations 1385 for (const Function &F : M) { 1386 if (!F.isDeclarationForLinker()) 1387 continue; 1388 GlobalValue::VisibilityTypes V = F.getVisibility(); 1389 if (V == GlobalValue::DefaultVisibility) 1390 continue; 1391 1392 MCSymbol *Name = getSymbol(&F); 1393 EmitVisibility(Name, V, false); 1394 } 1395 1396 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1397 1398 TLOF.emitModuleMetadata(*OutStreamer, M); 1399 1400 if (TM.getTargetTriple().isOSBinFormatELF()) { 1401 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); 1402 1403 // Output stubs for external and common global variables. 1404 MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); 1405 if (!Stubs.empty()) { 1406 OutStreamer->SwitchSection(TLOF.getDataSection()); 1407 const DataLayout &DL = M.getDataLayout(); 1408 1409 EmitAlignment(Log2_32(DL.getPointerSize())); 1410 for (const auto &Stub : Stubs) { 1411 OutStreamer->EmitLabel(Stub.first); 1412 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1413 DL.getPointerSize()); 1414 } 1415 } 1416 } 1417 1418 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1419 MachineModuleInfoCOFF &MMICOFF = 1420 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 1421 1422 // Output stubs for external and common global variables. 1423 MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); 1424 if (!Stubs.empty()) { 1425 const DataLayout &DL = M.getDataLayout(); 1426 1427 for (const auto &Stub : Stubs) { 1428 SmallString<256> SectionName = StringRef(".rdata$"); 1429 SectionName += Stub.first->getName(); 1430 OutStreamer->SwitchSection(OutContext.getCOFFSection( 1431 SectionName, 1432 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | 1433 COFF::IMAGE_SCN_LNK_COMDAT, 1434 SectionKind::getReadOnly(), Stub.first->getName(), 1435 COFF::IMAGE_COMDAT_SELECT_ANY)); 1436 EmitAlignment(Log2_32(DL.getPointerSize())); 1437 OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); 1438 OutStreamer->EmitLabel(Stub.first); 1439 OutStreamer->EmitSymbolValue(Stub.second.getPointer(), 1440 DL.getPointerSize()); 1441 } 1442 } 1443 } 1444 1445 // Finalize debug and EH information. 1446 for (const HandlerInfo &HI : Handlers) { 1447 NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, 1448 HI.TimerGroupDescription, TimePassesIsEnabled); 1449 HI.Handler->endModule(); 1450 delete HI.Handler; 1451 } 1452 Handlers.clear(); 1453 DD = nullptr; 1454 1455 // If the target wants to know about weak references, print them all. 1456 if (MAI->getWeakRefDirective()) { 1457 // FIXME: This is not lazy, it would be nice to only print weak references 1458 // to stuff that is actually used. Note that doing so would require targets 1459 // to notice uses in operands (due to constant exprs etc). This should 1460 // happen with the MC stuff eventually. 1461 1462 // Print out module-level global objects here. 1463 for (const auto &GO : M.global_objects()) { 1464 if (!GO.hasExternalWeakLinkage()) 1465 continue; 1466 OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); 1467 } 1468 } 1469 1470 OutStreamer->AddBlankLine(); 1471 1472 // Print aliases in topological order, that is, for each alias a = b, 1473 // b must be printed before a. 1474 // This is because on some targets (e.g. PowerPC) linker expects aliases in 1475 // such an order to generate correct TOC information. 1476 SmallVector<const GlobalAlias *, 16> AliasStack; 1477 SmallPtrSet<const GlobalAlias *, 16> AliasVisited; 1478 for (const auto &Alias : M.aliases()) { 1479 for (const GlobalAlias *Cur = &Alias; Cur; 1480 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { 1481 if (!AliasVisited.insert(Cur).second) 1482 break; 1483 AliasStack.push_back(Cur); 1484 } 1485 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) 1486 emitGlobalIndirectSymbol(M, *AncestorAlias); 1487 AliasStack.clear(); 1488 } 1489 for (const auto &IFunc : M.ifuncs()) 1490 emitGlobalIndirectSymbol(M, IFunc); 1491 1492 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); 1493 assert(MI && "AsmPrinter didn't require GCModuleInfo?"); 1494 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) 1495 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) 1496 MP->finishAssembly(M, *MI, *this); 1497 1498 // Emit llvm.ident metadata in an '.ident' directive. 1499 EmitModuleIdents(M); 1500 1501 // Emit __morestack address if needed for indirect calls. 1502 if (MMI->usesMorestackAddr()) { 1503 unsigned Align = 1; 1504 MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( 1505 getDataLayout(), SectionKind::getReadOnly(), 1506 /*C=*/nullptr, Align); 1507 OutStreamer->SwitchSection(ReadOnlySection); 1508 1509 MCSymbol *AddrSymbol = 1510 OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); 1511 OutStreamer->EmitLabel(AddrSymbol); 1512 1513 unsigned PtrSize = MAI->getCodePointerSize(); 1514 OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), 1515 PtrSize); 1516 } 1517 1518 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if 1519 // split-stack is used. 1520 if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { 1521 OutStreamer->SwitchSection( 1522 OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); 1523 if (MMI->hasNosplitStack()) 1524 OutStreamer->SwitchSection( 1525 OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); 1526 } 1527 1528 // If we don't have any trampolines, then we don't require stack memory 1529 // to be executable. Some targets have a directive to declare this. 1530 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); 1531 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) 1532 if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) 1533 OutStreamer->SwitchSection(S); 1534 1535 if (TM.getTargetTriple().isOSBinFormatCOFF()) { 1536 // Emit /EXPORT: flags for each exported global as necessary. 1537 const auto &TLOF = getObjFileLowering(); 1538 std::string Flags; 1539 1540 for (const GlobalValue &GV : M.global_values()) { 1541 raw_string_ostream OS(Flags); 1542 TLOF.emitLinkerFlagsForGlobal(OS, &GV); 1543 OS.flush(); 1544 if (!Flags.empty()) { 1545 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1546 OutStreamer->EmitBytes(Flags); 1547 } 1548 Flags.clear(); 1549 } 1550 1551 // Emit /INCLUDE: flags for each used global as necessary. 1552 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1553 assert(LU->hasInitializer() && 1554 "expected llvm.used to have an initializer"); 1555 assert(isa<ArrayType>(LU->getValueType()) && 1556 "expected llvm.used to be an array type"); 1557 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1558 for (const Value *Op : A->operands()) { 1559 const auto *GV = 1560 cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); 1561 // Global symbols with internal or private linkage are not visible to 1562 // the linker, and thus would cause an error when the linker tried to 1563 // preserve the symbol due to the `/include:` directive. 1564 if (GV->hasLocalLinkage()) 1565 continue; 1566 1567 raw_string_ostream OS(Flags); 1568 TLOF.emitLinkerFlagsForUsed(OS, GV); 1569 OS.flush(); 1570 1571 if (!Flags.empty()) { 1572 OutStreamer->SwitchSection(TLOF.getDrectveSection()); 1573 OutStreamer->EmitBytes(Flags); 1574 } 1575 Flags.clear(); 1576 } 1577 } 1578 } 1579 } 1580 1581 if (TM.Options.EmitAddrsig) { 1582 // Emit address-significance attributes for all globals. 1583 OutStreamer->EmitAddrsig(); 1584 for (const GlobalValue &GV : M.global_values()) 1585 if (!GV.use_empty() && !GV.isThreadLocal() && 1586 !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && 1587 !GV.hasAtLeastLocalUnnamedAddr()) 1588 OutStreamer->EmitAddrsigSym(getSymbol(&GV)); 1589 } 1590 1591 // Allow the target to emit any magic that it wants at the end of the file, 1592 // after everything else has gone out. 1593 EmitEndOfAsmFile(M); 1594 1595 MMI = nullptr; 1596 1597 OutStreamer->Finish(); 1598 OutStreamer->reset(); 1599 OwnedMLI.reset(); 1600 OwnedMDT.reset(); 1601 1602 return false; 1603 } 1604 1605 MCSymbol *AsmPrinter::getCurExceptionSym() { 1606 if (!CurExceptionSym) 1607 CurExceptionSym = createTempSymbol("exception"); 1608 return CurExceptionSym; 1609 } 1610 1611 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { 1612 this->MF = &MF; 1613 // Get the function symbol. 1614 CurrentFnSym = getSymbol(&MF.getFunction()); 1615 CurrentFnSymForSize = CurrentFnSym; 1616 CurrentFnBegin = nullptr; 1617 CurExceptionSym = nullptr; 1618 bool NeedsLocalForSize = MAI->needsLocalForSize(); 1619 if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || 1620 MF.getTarget().Options.EmitStackSizeSection) { 1621 CurrentFnBegin = createTempSymbol("func_begin"); 1622 if (NeedsLocalForSize) 1623 CurrentFnSymForSize = CurrentFnBegin; 1624 } 1625 1626 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 1627 1628 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1629 EnablePrintSchedInfo = PrintSchedule.getNumOccurrences() 1630 ? PrintSchedule 1631 : STI.supportPrintSchedInfo(); 1632 } 1633 1634 namespace { 1635 1636 // Keep track the alignment, constpool entries per Section. 1637 struct SectionCPs { 1638 MCSection *S; 1639 unsigned Alignment; 1640 SmallVector<unsigned, 4> CPEs; 1641 1642 SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} 1643 }; 1644 1645 } // end anonymous namespace 1646 1647 /// EmitConstantPool - Print to the current output stream assembly 1648 /// representations of the constants in the constant pool MCP. This is 1649 /// used to print out constants which have been "spilled to memory" by 1650 /// the code generator. 1651 void AsmPrinter::EmitConstantPool() { 1652 const MachineConstantPool *MCP = MF->getConstantPool(); 1653 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); 1654 if (CP.empty()) return; 1655 1656 // Calculate sections for constant pool entries. We collect entries to go into 1657 // the same section together to reduce amount of section switch statements. 1658 SmallVector<SectionCPs, 4> CPSections; 1659 for (unsigned i = 0, e = CP.size(); i != e; ++i) { 1660 const MachineConstantPoolEntry &CPE = CP[i]; 1661 unsigned Align = CPE.getAlignment(); 1662 1663 SectionKind Kind = CPE.getSectionKind(&getDataLayout()); 1664 1665 const Constant *C = nullptr; 1666 if (!CPE.isMachineConstantPoolEntry()) 1667 C = CPE.Val.ConstVal; 1668 1669 MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), 1670 Kind, C, Align); 1671 1672 // The number of sections are small, just do a linear search from the 1673 // last section to the first. 1674 bool Found = false; 1675 unsigned SecIdx = CPSections.size(); 1676 while (SecIdx != 0) { 1677 if (CPSections[--SecIdx].S == S) { 1678 Found = true; 1679 break; 1680 } 1681 } 1682 if (!Found) { 1683 SecIdx = CPSections.size(); 1684 CPSections.push_back(SectionCPs(S, Align)); 1685 } 1686 1687 if (Align > CPSections[SecIdx].Alignment) 1688 CPSections[SecIdx].Alignment = Align; 1689 CPSections[SecIdx].CPEs.push_back(i); 1690 } 1691 1692 // Now print stuff into the calculated sections. 1693 const MCSection *CurSection = nullptr; 1694 unsigned Offset = 0; 1695 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { 1696 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { 1697 unsigned CPI = CPSections[i].CPEs[j]; 1698 MCSymbol *Sym = GetCPISymbol(CPI); 1699 if (!Sym->isUndefined()) 1700 continue; 1701 1702 if (CurSection != CPSections[i].S) { 1703 OutStreamer->SwitchSection(CPSections[i].S); 1704 EmitAlignment(Log2_32(CPSections[i].Alignment)); 1705 CurSection = CPSections[i].S; 1706 Offset = 0; 1707 } 1708 1709 MachineConstantPoolEntry CPE = CP[CPI]; 1710 1711 // Emit inter-object padding for alignment. 1712 unsigned AlignMask = CPE.getAlignment() - 1; 1713 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; 1714 OutStreamer->EmitZeros(NewOffset - Offset); 1715 1716 Type *Ty = CPE.getType(); 1717 Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); 1718 1719 OutStreamer->EmitLabel(Sym); 1720 if (CPE.isMachineConstantPoolEntry()) 1721 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); 1722 else 1723 EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); 1724 } 1725 } 1726 } 1727 1728 /// EmitJumpTableInfo - Print assembly representations of the jump tables used 1729 /// by the current function to the current output stream. 1730 void AsmPrinter::EmitJumpTableInfo() { 1731 const DataLayout &DL = MF->getDataLayout(); 1732 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1733 if (!MJTI) return; 1734 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; 1735 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1736 if (JT.empty()) return; 1737 1738 // Pick the directive to use to print the jump table entries, and switch to 1739 // the appropriate section. 1740 const Function &F = MF->getFunction(); 1741 const TargetLoweringObjectFile &TLOF = getObjFileLowering(); 1742 bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( 1743 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, 1744 F); 1745 if (JTInDiffSection) { 1746 // Drop it in the readonly section. 1747 MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); 1748 OutStreamer->SwitchSection(ReadOnlySection); 1749 } 1750 1751 EmitAlignment(Log2_32(MJTI->getEntryAlignment(DL))); 1752 1753 // Jump tables in code sections are marked with a data_region directive 1754 // where that's supported. 1755 if (!JTInDiffSection) 1756 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 1757 1758 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { 1759 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1760 1761 // If this jump table was deleted, ignore it. 1762 if (JTBBs.empty()) continue; 1763 1764 // For the EK_LabelDifference32 entry, if using .set avoids a relocation, 1765 /// emit a .set directive for each unique entry. 1766 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && 1767 MAI->doesSetDirectiveSuppressReloc()) { 1768 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; 1769 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1770 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); 1771 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { 1772 const MachineBasicBlock *MBB = JTBBs[ii]; 1773 if (!EmittedSets.insert(MBB).second) 1774 continue; 1775 1776 // .set LJTSet, LBB32-base 1777 const MCExpr *LHS = 1778 MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1779 OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), 1780 MCBinaryExpr::createSub(LHS, Base, 1781 OutContext)); 1782 } 1783 } 1784 1785 // On some targets (e.g. Darwin) we want to emit two consecutive labels 1786 // before each jump table. The first label is never referenced, but tells 1787 // the assembler and linker the extents of the jump table object. The 1788 // second label is actually referenced by the code. 1789 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) 1790 // FIXME: This doesn't have to have any specific name, just any randomly 1791 // named and numbered 'l' label would work. Simplify GetJTISymbol. 1792 OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); 1793 1794 OutStreamer->EmitLabel(GetJTISymbol(JTI)); 1795 1796 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) 1797 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); 1798 } 1799 if (!JTInDiffSection) 1800 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1801 } 1802 1803 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the 1804 /// current stream. 1805 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, 1806 const MachineBasicBlock *MBB, 1807 unsigned UID) const { 1808 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); 1809 const MCExpr *Value = nullptr; 1810 switch (MJTI->getEntryKind()) { 1811 case MachineJumpTableInfo::EK_Inline: 1812 llvm_unreachable("Cannot emit EK_Inline jump table entry"); 1813 case MachineJumpTableInfo::EK_Custom32: 1814 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( 1815 MJTI, MBB, UID, OutContext); 1816 break; 1817 case MachineJumpTableInfo::EK_BlockAddress: 1818 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1819 // .word LBB123 1820 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1821 break; 1822 case MachineJumpTableInfo::EK_GPRel32BlockAddress: { 1823 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded 1824 // with a relocation as gp-relative, e.g.: 1825 // .gprel32 LBB123 1826 MCSymbol *MBBSym = MBB->getSymbol(); 1827 OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1828 return; 1829 } 1830 1831 case MachineJumpTableInfo::EK_GPRel64BlockAddress: { 1832 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded 1833 // with a relocation as gp-relative, e.g.: 1834 // .gpdword LBB123 1835 MCSymbol *MBBSym = MBB->getSymbol(); 1836 OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); 1837 return; 1838 } 1839 1840 case MachineJumpTableInfo::EK_LabelDifference32: { 1841 // Each entry is the address of the block minus the address of the jump 1842 // table. This is used for PIC jump tables where gprel32 is not supported. 1843 // e.g.: 1844 // .word LBB123 - LJTI1_2 1845 // If the .set directive avoids relocations, this is emitted as: 1846 // .set L4_5_set_123, LBB123 - LJTI1_2 1847 // .word L4_5_set_123 1848 if (MAI->doesSetDirectiveSuppressReloc()) { 1849 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), 1850 OutContext); 1851 break; 1852 } 1853 Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 1854 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); 1855 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); 1856 Value = MCBinaryExpr::createSub(Value, Base, OutContext); 1857 break; 1858 } 1859 } 1860 1861 assert(Value && "Unknown entry kind!"); 1862 1863 unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); 1864 OutStreamer->EmitValue(Value, EntrySize); 1865 } 1866 1867 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a 1868 /// special global used by LLVM. If so, emit it and return true, otherwise 1869 /// do nothing and return false. 1870 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { 1871 if (GV->getName() == "llvm.used") { 1872 if (MAI->hasNoDeadStrip()) // No need to emit this at all. 1873 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); 1874 return true; 1875 } 1876 1877 // Ignore debug and non-emitted data. This handles llvm.compiler.used. 1878 if (GV->getSection() == "llvm.metadata" || 1879 GV->hasAvailableExternallyLinkage()) 1880 return true; 1881 1882 if (!GV->hasAppendingLinkage()) return false; 1883 1884 assert(GV->hasInitializer() && "Not a special LLVM global!"); 1885 1886 if (GV->getName() == "llvm.global_ctors") { 1887 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1888 /* isCtor */ true); 1889 1890 return true; 1891 } 1892 1893 if (GV->getName() == "llvm.global_dtors") { 1894 EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), 1895 /* isCtor */ false); 1896 1897 return true; 1898 } 1899 1900 report_fatal_error("unknown special variable"); 1901 } 1902 1903 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each 1904 /// global in the specified llvm.used list for which emitUsedDirectiveFor 1905 /// is true, as being used with this directive. 1906 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { 1907 // Should be an array of 'i8*'. 1908 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 1909 const GlobalValue *GV = 1910 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); 1911 if (GV) 1912 OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); 1913 } 1914 } 1915 1916 namespace { 1917 1918 struct Structor { 1919 int Priority = 0; 1920 Constant *Func = nullptr; 1921 GlobalValue *ComdatKey = nullptr; 1922 1923 Structor() = default; 1924 }; 1925 1926 } // end anonymous namespace 1927 1928 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init 1929 /// priority. 1930 void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, 1931 bool isCtor) { 1932 // Should be an array of '{ int, void ()* }' structs. The first value is the 1933 // init priority. 1934 if (!isa<ConstantArray>(List)) return; 1935 1936 // Sanity check the structors list. 1937 const ConstantArray *InitList = dyn_cast<ConstantArray>(List); 1938 if (!InitList) return; // Not an array! 1939 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); 1940 // FIXME: Only allow the 3-field form in LLVM 4.0. 1941 if (!ETy || ETy->getNumElements() < 2 || ETy->getNumElements() > 3) 1942 return; // Not an array of two or three elements! 1943 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || 1944 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). 1945 if (ETy->getNumElements() == 3 && !isa<PointerType>(ETy->getTypeAtIndex(2U))) 1946 return; // Not (int, ptr, ptr). 1947 1948 // Gather the structors in a form that's convenient for sorting by priority. 1949 SmallVector<Structor, 8> Structors; 1950 for (Value *O : InitList->operands()) { 1951 ConstantStruct *CS = dyn_cast<ConstantStruct>(O); 1952 if (!CS) continue; // Malformed. 1953 if (CS->getOperand(1)->isNullValue()) 1954 break; // Found a null terminator, skip the rest. 1955 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); 1956 if (!Priority) continue; // Malformed. 1957 Structors.push_back(Structor()); 1958 Structor &S = Structors.back(); 1959 S.Priority = Priority->getLimitedValue(65535); 1960 S.Func = CS->getOperand(1); 1961 if (ETy->getNumElements() == 3 && !CS->getOperand(2)->isNullValue()) 1962 S.ComdatKey = 1963 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); 1964 } 1965 1966 // Emit the function pointers in the target-specific order 1967 unsigned Align = Log2_32(DL.getPointerPrefAlignment()); 1968 std::stable_sort(Structors.begin(), Structors.end(), 1969 [](const Structor &L, 1970 const Structor &R) { return L.Priority < R.Priority; }); 1971 for (Structor &S : Structors) { 1972 const TargetLoweringObjectFile &Obj = getObjFileLowering(); 1973 const MCSymbol *KeySym = nullptr; 1974 if (GlobalValue *GV = S.ComdatKey) { 1975 if (GV->isDeclarationForLinker()) 1976 // If the associated variable is not defined in this module 1977 // (it might be available_externally, or have been an 1978 // available_externally definition that was dropped by the 1979 // EliminateAvailableExternally pass), some other TU 1980 // will provide its dynamic initializer. 1981 continue; 1982 1983 KeySym = getSymbol(GV); 1984 } 1985 MCSection *OutputSection = 1986 (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) 1987 : Obj.getStaticDtorSection(S.Priority, KeySym)); 1988 OutStreamer->SwitchSection(OutputSection); 1989 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) 1990 EmitAlignment(Align); 1991 EmitXXStructor(DL, S.Func); 1992 } 1993 } 1994 1995 void AsmPrinter::EmitModuleIdents(Module &M) { 1996 if (!MAI->hasIdentDirective()) 1997 return; 1998 1999 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { 2000 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { 2001 const MDNode *N = NMD->getOperand(i); 2002 assert(N->getNumOperands() == 1 && 2003 "llvm.ident metadata entry can have only one operand"); 2004 const MDString *S = cast<MDString>(N->getOperand(0)); 2005 OutStreamer->EmitIdent(S->getString()); 2006 } 2007 } 2008 } 2009 2010 //===--------------------------------------------------------------------===// 2011 // Emission and print routines 2012 // 2013 2014 /// Emit a byte directive and value. 2015 /// 2016 void AsmPrinter::emitInt8(int Value) const { 2017 OutStreamer->EmitIntValue(Value, 1); 2018 } 2019 2020 /// Emit a short directive and value. 2021 void AsmPrinter::emitInt16(int Value) const { 2022 OutStreamer->EmitIntValue(Value, 2); 2023 } 2024 2025 /// Emit a long directive and value. 2026 void AsmPrinter::emitInt32(int Value) const { 2027 OutStreamer->EmitIntValue(Value, 4); 2028 } 2029 2030 /// Emit a long long directive and value. 2031 void AsmPrinter::emitInt64(uint64_t Value) const { 2032 OutStreamer->EmitIntValue(Value, 8); 2033 } 2034 2035 /// Emit something like ".long Hi-Lo" where the size in bytes of the directive 2036 /// is specified by Size and Hi/Lo specify the labels. This implicitly uses 2037 /// .set if it avoids relocations. 2038 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, 2039 unsigned Size) const { 2040 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); 2041 } 2042 2043 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" 2044 /// where the size in bytes of the directive is specified by Size and Label 2045 /// specifies the label. This implicitly uses .set if it is available. 2046 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, 2047 unsigned Size, 2048 bool IsSectionRelative) const { 2049 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { 2050 OutStreamer->EmitCOFFSecRel32(Label, Offset); 2051 if (Size > 4) 2052 OutStreamer->EmitZeros(Size - 4); 2053 return; 2054 } 2055 2056 // Emit Label+Offset (or just Label if Offset is zero) 2057 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); 2058 if (Offset) 2059 Expr = MCBinaryExpr::createAdd( 2060 Expr, MCConstantExpr::create(Offset, OutContext), OutContext); 2061 2062 OutStreamer->EmitValue(Expr, Size); 2063 } 2064 2065 //===----------------------------------------------------------------------===// 2066 2067 // EmitAlignment - Emit an alignment directive to the specified power of 2068 // two boundary. For example, if you pass in 3 here, you will get an 8 2069 // byte alignment. If a global value is specified, and if that global has 2070 // an explicit alignment requested, it will override the alignment request 2071 // if required for correctness. 2072 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalObject *GV) const { 2073 if (GV) 2074 NumBits = getGVAlignmentLog2(GV, GV->getParent()->getDataLayout(), NumBits); 2075 2076 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. 2077 2078 assert(NumBits < 2079 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 2080 "undefined behavior"); 2081 if (getCurrentSection()->getKind().isText()) 2082 OutStreamer->EmitCodeAlignment(1u << NumBits); 2083 else 2084 OutStreamer->EmitValueToAlignment(1u << NumBits); 2085 } 2086 2087 //===----------------------------------------------------------------------===// 2088 // Constant emission. 2089 //===----------------------------------------------------------------------===// 2090 2091 const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { 2092 MCContext &Ctx = OutContext; 2093 2094 if (CV->isNullValue() || isa<UndefValue>(CV)) 2095 return MCConstantExpr::create(0, Ctx); 2096 2097 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) 2098 return MCConstantExpr::create(CI->getZExtValue(), Ctx); 2099 2100 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) 2101 return MCSymbolRefExpr::create(getSymbol(GV), Ctx); 2102 2103 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) 2104 return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); 2105 2106 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); 2107 if (!CE) { 2108 llvm_unreachable("Unknown constant value to lower!"); 2109 } 2110 2111 switch (CE->getOpcode()) { 2112 default: 2113 // If the code isn't optimized, there may be outstanding folding 2114 // opportunities. Attempt to fold the expression using DataLayout as a 2115 // last resort before giving up. 2116 if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) 2117 if (C != CE) 2118 return lowerConstant(C); 2119 2120 // Otherwise report the problem to the user. 2121 { 2122 std::string S; 2123 raw_string_ostream OS(S); 2124 OS << "Unsupported expression in static initializer: "; 2125 CE->printAsOperand(OS, /*PrintType=*/false, 2126 !MF ? nullptr : MF->getFunction().getParent()); 2127 report_fatal_error(OS.str()); 2128 } 2129 case Instruction::GetElementPtr: { 2130 // Generate a symbolic expression for the byte address 2131 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); 2132 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); 2133 2134 const MCExpr *Base = lowerConstant(CE->getOperand(0)); 2135 if (!OffsetAI) 2136 return Base; 2137 2138 int64_t Offset = OffsetAI.getSExtValue(); 2139 return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), 2140 Ctx); 2141 } 2142 2143 case Instruction::Trunc: 2144 // We emit the value and depend on the assembler to truncate the generated 2145 // expression properly. This is important for differences between 2146 // blockaddress labels. Since the two labels are in the same function, it 2147 // is reasonable to treat their delta as a 32-bit value. 2148 LLVM_FALLTHROUGH; 2149 case Instruction::BitCast: 2150 return lowerConstant(CE->getOperand(0)); 2151 2152 case Instruction::IntToPtr: { 2153 const DataLayout &DL = getDataLayout(); 2154 2155 // Handle casts to pointers by changing them into casts to the appropriate 2156 // integer type. This promotes constant folding and simplifies this code. 2157 Constant *Op = CE->getOperand(0); 2158 Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), 2159 false/*ZExt*/); 2160 return lowerConstant(Op); 2161 } 2162 2163 case Instruction::PtrToInt: { 2164 const DataLayout &DL = getDataLayout(); 2165 2166 // Support only foldable casts to/from pointers that can be eliminated by 2167 // changing the pointer to the appropriately sized integer type. 2168 Constant *Op = CE->getOperand(0); 2169 Type *Ty = CE->getType(); 2170 2171 const MCExpr *OpExpr = lowerConstant(Op); 2172 2173 // We can emit the pointer value into this slot if the slot is an 2174 // integer slot equal to the size of the pointer. 2175 if (DL.getTypeAllocSize(Ty) == DL.getTypeAllocSize(Op->getType())) 2176 return OpExpr; 2177 2178 // Otherwise the pointer is smaller than the resultant integer, mask off 2179 // the high bits so we are sure to get a proper truncation if the input is 2180 // a constant expr. 2181 unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); 2182 const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); 2183 return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); 2184 } 2185 2186 case Instruction::Sub: { 2187 GlobalValue *LHSGV; 2188 APInt LHSOffset; 2189 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, 2190 getDataLayout())) { 2191 GlobalValue *RHSGV; 2192 APInt RHSOffset; 2193 if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, 2194 getDataLayout())) { 2195 const MCExpr *RelocExpr = 2196 getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); 2197 if (!RelocExpr) 2198 RelocExpr = MCBinaryExpr::createSub( 2199 MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), 2200 MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); 2201 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); 2202 if (Addend != 0) 2203 RelocExpr = MCBinaryExpr::createAdd( 2204 RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); 2205 return RelocExpr; 2206 } 2207 } 2208 } 2209 // else fallthrough 2210 LLVM_FALLTHROUGH; 2211 2212 // The MC library also has a right-shift operator, but it isn't consistently 2213 // signed or unsigned between different targets. 2214 case Instruction::Add: 2215 case Instruction::Mul: 2216 case Instruction::SDiv: 2217 case Instruction::SRem: 2218 case Instruction::Shl: 2219 case Instruction::And: 2220 case Instruction::Or: 2221 case Instruction::Xor: { 2222 const MCExpr *LHS = lowerConstant(CE->getOperand(0)); 2223 const MCExpr *RHS = lowerConstant(CE->getOperand(1)); 2224 switch (CE->getOpcode()) { 2225 default: llvm_unreachable("Unknown binary operator constant cast expr"); 2226 case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); 2227 case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); 2228 case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); 2229 case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); 2230 case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); 2231 case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); 2232 case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); 2233 case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); 2234 case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); 2235 } 2236 } 2237 } 2238 } 2239 2240 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, 2241 AsmPrinter &AP, 2242 const Constant *BaseCV = nullptr, 2243 uint64_t Offset = 0); 2244 2245 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); 2246 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); 2247 2248 /// isRepeatedByteSequence - Determine whether the given value is 2249 /// composed of a repeated sequence of identical bytes and return the 2250 /// byte value. If it is not a repeated sequence, return -1. 2251 static int isRepeatedByteSequence(const ConstantDataSequential *V) { 2252 StringRef Data = V->getRawDataValues(); 2253 assert(!Data.empty() && "Empty aggregates should be CAZ node"); 2254 char C = Data[0]; 2255 for (unsigned i = 1, e = Data.size(); i != e; ++i) 2256 if (Data[i] != C) return -1; 2257 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. 2258 } 2259 2260 /// isRepeatedByteSequence - Determine whether the given value is 2261 /// composed of a repeated sequence of identical bytes and return the 2262 /// byte value. If it is not a repeated sequence, return -1. 2263 static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { 2264 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2265 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); 2266 assert(Size % 8 == 0); 2267 2268 // Extend the element to take zero padding into account. 2269 APInt Value = CI->getValue().zextOrSelf(Size); 2270 if (!Value.isSplat(8)) 2271 return -1; 2272 2273 return Value.zextOrTrunc(8).getZExtValue(); 2274 } 2275 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 2276 // Make sure all array elements are sequences of the same repeated 2277 // byte. 2278 assert(CA->getNumOperands() != 0 && "Should be a CAZ"); 2279 Constant *Op0 = CA->getOperand(0); 2280 int Byte = isRepeatedByteSequence(Op0, DL); 2281 if (Byte == -1) 2282 return -1; 2283 2284 // All array elements must be equal. 2285 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) 2286 if (CA->getOperand(i) != Op0) 2287 return -1; 2288 return Byte; 2289 } 2290 2291 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) 2292 return isRepeatedByteSequence(CDS); 2293 2294 return -1; 2295 } 2296 2297 static void emitGlobalConstantDataSequential(const DataLayout &DL, 2298 const ConstantDataSequential *CDS, 2299 AsmPrinter &AP) { 2300 // See if we can aggregate this into a .fill, if so, emit it as such. 2301 int Value = isRepeatedByteSequence(CDS, DL); 2302 if (Value != -1) { 2303 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); 2304 // Don't emit a 1-byte object as a .fill. 2305 if (Bytes > 1) 2306 return AP.OutStreamer->emitFill(Bytes, Value); 2307 } 2308 2309 // If this can be emitted with .ascii/.asciz, emit it as such. 2310 if (CDS->isString()) 2311 return AP.OutStreamer->EmitBytes(CDS->getAsString()); 2312 2313 // Otherwise, emit the values in successive locations. 2314 unsigned ElementByteSize = CDS->getElementByteSize(); 2315 if (isa<IntegerType>(CDS->getElementType())) { 2316 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 2317 if (AP.isVerbose()) 2318 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2319 CDS->getElementAsInteger(i)); 2320 AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), 2321 ElementByteSize); 2322 } 2323 } else { 2324 Type *ET = CDS->getElementType(); 2325 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) 2326 emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); 2327 } 2328 2329 unsigned Size = DL.getTypeAllocSize(CDS->getType()); 2330 unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * 2331 CDS->getNumElements(); 2332 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); 2333 if (unsigned Padding = Size - EmittedSize) 2334 AP.OutStreamer->EmitZeros(Padding); 2335 } 2336 2337 static void emitGlobalConstantArray(const DataLayout &DL, 2338 const ConstantArray *CA, AsmPrinter &AP, 2339 const Constant *BaseCV, uint64_t Offset) { 2340 // See if we can aggregate some values. Make sure it can be 2341 // represented as a series of bytes of the constant value. 2342 int Value = isRepeatedByteSequence(CA, DL); 2343 2344 if (Value != -1) { 2345 uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); 2346 AP.OutStreamer->emitFill(Bytes, Value); 2347 } 2348 else { 2349 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { 2350 emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); 2351 Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); 2352 } 2353 } 2354 } 2355 2356 static void emitGlobalConstantVector(const DataLayout &DL, 2357 const ConstantVector *CV, AsmPrinter &AP) { 2358 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) 2359 emitGlobalConstantImpl(DL, CV->getOperand(i), AP); 2360 2361 unsigned Size = DL.getTypeAllocSize(CV->getType()); 2362 unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * 2363 CV->getType()->getNumElements(); 2364 if (unsigned Padding = Size - EmittedSize) 2365 AP.OutStreamer->EmitZeros(Padding); 2366 } 2367 2368 static void emitGlobalConstantStruct(const DataLayout &DL, 2369 const ConstantStruct *CS, AsmPrinter &AP, 2370 const Constant *BaseCV, uint64_t Offset) { 2371 // Print the fields in successive locations. Pad to align if needed! 2372 unsigned Size = DL.getTypeAllocSize(CS->getType()); 2373 const StructLayout *Layout = DL.getStructLayout(CS->getType()); 2374 uint64_t SizeSoFar = 0; 2375 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { 2376 const Constant *Field = CS->getOperand(i); 2377 2378 // Print the actual field value. 2379 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); 2380 2381 // Check if padding is needed and insert one or more 0s. 2382 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); 2383 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) 2384 - Layout->getElementOffset(i)) - FieldSize; 2385 SizeSoFar += FieldSize + PadSize; 2386 2387 // Insert padding - this may include padding to increase the size of the 2388 // current field up to the ABI size (if the struct is not packed) as well 2389 // as padding to ensure that the next field starts at the right offset. 2390 AP.OutStreamer->EmitZeros(PadSize); 2391 } 2392 assert(SizeSoFar == Layout->getSizeInBytes() && 2393 "Layout of constant struct may be incorrect!"); 2394 } 2395 2396 static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { 2397 APInt API = APF.bitcastToAPInt(); 2398 2399 // First print a comment with what we think the original floating-point value 2400 // should have been. 2401 if (AP.isVerbose()) { 2402 SmallString<8> StrVal; 2403 APF.toString(StrVal); 2404 2405 if (ET) 2406 ET->print(AP.OutStreamer->GetCommentOS()); 2407 else 2408 AP.OutStreamer->GetCommentOS() << "Printing <null> Type"; 2409 AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; 2410 } 2411 2412 // Now iterate through the APInt chunks, emitting them in endian-correct 2413 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit 2414 // floats). 2415 unsigned NumBytes = API.getBitWidth() / 8; 2416 unsigned TrailingBytes = NumBytes % sizeof(uint64_t); 2417 const uint64_t *p = API.getRawData(); 2418 2419 // PPC's long double has odd notions of endianness compared to how LLVM 2420 // handles it: p[0] goes first for *big* endian on PPC. 2421 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { 2422 int Chunk = API.getNumWords() - 1; 2423 2424 if (TrailingBytes) 2425 AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); 2426 2427 for (; Chunk >= 0; --Chunk) 2428 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2429 } else { 2430 unsigned Chunk; 2431 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) 2432 AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); 2433 2434 if (TrailingBytes) 2435 AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); 2436 } 2437 2438 // Emit the tail padding for the long double. 2439 const DataLayout &DL = AP.getDataLayout(); 2440 AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); 2441 } 2442 2443 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { 2444 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); 2445 } 2446 2447 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { 2448 const DataLayout &DL = AP.getDataLayout(); 2449 unsigned BitWidth = CI->getBitWidth(); 2450 2451 // Copy the value as we may massage the layout for constants whose bit width 2452 // is not a multiple of 64-bits. 2453 APInt Realigned(CI->getValue()); 2454 uint64_t ExtraBits = 0; 2455 unsigned ExtraBitsSize = BitWidth & 63; 2456 2457 if (ExtraBitsSize) { 2458 // The bit width of the data is not a multiple of 64-bits. 2459 // The extra bits are expected to be at the end of the chunk of the memory. 2460 // Little endian: 2461 // * Nothing to be done, just record the extra bits to emit. 2462 // Big endian: 2463 // * Record the extra bits to emit. 2464 // * Realign the raw data to emit the chunks of 64-bits. 2465 if (DL.isBigEndian()) { 2466 // Basically the structure of the raw data is a chunk of 64-bits cells: 2467 // 0 1 BitWidth / 64 2468 // [chunk1][chunk2] ... [chunkN]. 2469 // The most significant chunk is chunkN and it should be emitted first. 2470 // However, due to the alignment issue chunkN contains useless bits. 2471 // Realign the chunks so that they contain only useless information: 2472 // ExtraBits 0 1 (BitWidth / 64) - 1 2473 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] 2474 ExtraBits = Realigned.getRawData()[0] & 2475 (((uint64_t)-1) >> (64 - ExtraBitsSize)); 2476 Realigned.lshrInPlace(ExtraBitsSize); 2477 } else 2478 ExtraBits = Realigned.getRawData()[BitWidth / 64]; 2479 } 2480 2481 // We don't expect assemblers to support integer data directives 2482 // for more than 64 bits, so we emit the data in at most 64-bit 2483 // quantities at a time. 2484 const uint64_t *RawData = Realigned.getRawData(); 2485 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { 2486 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; 2487 AP.OutStreamer->EmitIntValue(Val, 8); 2488 } 2489 2490 if (ExtraBitsSize) { 2491 // Emit the extra bits after the 64-bits chunks. 2492 2493 // Emit a directive that fills the expected size. 2494 uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); 2495 Size -= (BitWidth / 64) * 8; 2496 assert(Size && Size * 8 >= ExtraBitsSize && 2497 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) 2498 == ExtraBits && "Directive too small for extra bits."); 2499 AP.OutStreamer->EmitIntValue(ExtraBits, Size); 2500 } 2501 } 2502 2503 /// Transform a not absolute MCExpr containing a reference to a GOT 2504 /// equivalent global, by a target specific GOT pc relative access to the 2505 /// final symbol. 2506 static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, 2507 const Constant *BaseCst, 2508 uint64_t Offset) { 2509 // The global @foo below illustrates a global that uses a got equivalent. 2510 // 2511 // @bar = global i32 42 2512 // @gotequiv = private unnamed_addr constant i32* @bar 2513 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), 2514 // i64 ptrtoint (i32* @foo to i64)) 2515 // to i32) 2516 // 2517 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually 2518 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the 2519 // form: 2520 // 2521 // foo = cstexpr, where 2522 // cstexpr := <gotequiv> - "." + <cst> 2523 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> 2524 // 2525 // After canonicalization by evaluateAsRelocatable `ME` turns into: 2526 // 2527 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where 2528 // gotpcrelcst := <offset from @foo base> + <cst> 2529 MCValue MV; 2530 if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) 2531 return; 2532 const MCSymbolRefExpr *SymA = MV.getSymA(); 2533 if (!SymA) 2534 return; 2535 2536 // Check that GOT equivalent symbol is cached. 2537 const MCSymbol *GOTEquivSym = &SymA->getSymbol(); 2538 if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) 2539 return; 2540 2541 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); 2542 if (!BaseGV) 2543 return; 2544 2545 // Check for a valid base symbol 2546 const MCSymbol *BaseSym = AP.getSymbol(BaseGV); 2547 const MCSymbolRefExpr *SymB = MV.getSymB(); 2548 2549 if (!SymB || BaseSym != &SymB->getSymbol()) 2550 return; 2551 2552 // Make sure to match: 2553 // 2554 // gotpcrelcst := <offset from @foo base> + <cst> 2555 // 2556 // If gotpcrelcst is positive it means that we can safely fold the pc rel 2557 // displacement into the GOTPCREL. We can also can have an extra offset <cst> 2558 // if the target knows how to encode it. 2559 int64_t GOTPCRelCst = Offset + MV.getConstant(); 2560 if (GOTPCRelCst < 0) 2561 return; 2562 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) 2563 return; 2564 2565 // Emit the GOT PC relative to replace the got equivalent global, i.e.: 2566 // 2567 // bar: 2568 // .long 42 2569 // gotequiv: 2570 // .quad bar 2571 // foo: 2572 // .long gotequiv - "." + <cst> 2573 // 2574 // is replaced by the target specific equivalent to: 2575 // 2576 // bar: 2577 // .long 42 2578 // foo: 2579 // .long bar@GOTPCREL+<gotpcrelcst> 2580 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; 2581 const GlobalVariable *GV = Result.first; 2582 int NumUses = (int)Result.second; 2583 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); 2584 const MCSymbol *FinalSym = AP.getSymbol(FinalGV); 2585 *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( 2586 FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); 2587 2588 // Update GOT equivalent usage information 2589 --NumUses; 2590 if (NumUses >= 0) 2591 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); 2592 } 2593 2594 static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, 2595 AsmPrinter &AP, const Constant *BaseCV, 2596 uint64_t Offset) { 2597 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2598 2599 // Globals with sub-elements such as combinations of arrays and structs 2600 // are handled recursively by emitGlobalConstantImpl. Keep track of the 2601 // constant symbol base and the current position with BaseCV and Offset. 2602 if (!BaseCV && CV->hasOneUse()) 2603 BaseCV = dyn_cast<Constant>(CV->user_back()); 2604 2605 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) 2606 return AP.OutStreamer->EmitZeros(Size); 2607 2608 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { 2609 switch (Size) { 2610 case 1: 2611 case 2: 2612 case 4: 2613 case 8: 2614 if (AP.isVerbose()) 2615 AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", 2616 CI->getZExtValue()); 2617 AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); 2618 return; 2619 default: 2620 emitGlobalConstantLargeInt(CI, AP); 2621 return; 2622 } 2623 } 2624 2625 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) 2626 return emitGlobalConstantFP(CFP, AP); 2627 2628 if (isa<ConstantPointerNull>(CV)) { 2629 AP.OutStreamer->EmitIntValue(0, Size); 2630 return; 2631 } 2632 2633 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) 2634 return emitGlobalConstantDataSequential(DL, CDS, AP); 2635 2636 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) 2637 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); 2638 2639 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) 2640 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); 2641 2642 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { 2643 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of 2644 // vectors). 2645 if (CE->getOpcode() == Instruction::BitCast) 2646 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); 2647 2648 if (Size > 8) { 2649 // If the constant expression's size is greater than 64-bits, then we have 2650 // to emit the value in chunks. Try to constant fold the value and emit it 2651 // that way. 2652 Constant *New = ConstantFoldConstant(CE, DL); 2653 if (New && New != CE) 2654 return emitGlobalConstantImpl(DL, New, AP); 2655 } 2656 } 2657 2658 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) 2659 return emitGlobalConstantVector(DL, V, AP); 2660 2661 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it 2662 // thread the streamer with EmitValue. 2663 const MCExpr *ME = AP.lowerConstant(CV); 2664 2665 // Since lowerConstant already folded and got rid of all IR pointer and 2666 // integer casts, detect GOT equivalent accesses by looking into the MCExpr 2667 // directly. 2668 if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) 2669 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); 2670 2671 AP.OutStreamer->EmitValue(ME, Size); 2672 } 2673 2674 /// EmitGlobalConstant - Print a general LLVM constant to the .s file. 2675 void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { 2676 uint64_t Size = DL.getTypeAllocSize(CV->getType()); 2677 if (Size) 2678 emitGlobalConstantImpl(DL, CV, *this); 2679 else if (MAI->hasSubsectionsViaSymbols()) { 2680 // If the global has zero size, emit a single byte so that two labels don't 2681 // look like they are at the same location. 2682 OutStreamer->EmitIntValue(0, 1); 2683 } 2684 } 2685 2686 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 2687 // Target doesn't support this yet! 2688 llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); 2689 } 2690 2691 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { 2692 if (Offset > 0) 2693 OS << '+' << Offset; 2694 else if (Offset < 0) 2695 OS << Offset; 2696 } 2697 2698 //===----------------------------------------------------------------------===// 2699 // Symbol Lowering Routines. 2700 //===----------------------------------------------------------------------===// 2701 2702 MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { 2703 return OutContext.createTempSymbol(Name, true); 2704 } 2705 2706 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { 2707 return MMI->getAddrLabelSymbol(BA->getBasicBlock()); 2708 } 2709 2710 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { 2711 return MMI->getAddrLabelSymbol(BB); 2712 } 2713 2714 /// GetCPISymbol - Return the symbol for the specified constant pool entry. 2715 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { 2716 if (getSubtargetInfo().getTargetTriple().isKnownWindowsMSVCEnvironment()) { 2717 const MachineConstantPoolEntry &CPE = 2718 MF->getConstantPool()->getConstants()[CPID]; 2719 if (!CPE.isMachineConstantPoolEntry()) { 2720 const DataLayout &DL = MF->getDataLayout(); 2721 SectionKind Kind = CPE.getSectionKind(&DL); 2722 const Constant *C = CPE.Val.ConstVal; 2723 unsigned Align = CPE.Alignment; 2724 if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( 2725 getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { 2726 if (MCSymbol *Sym = S->getCOMDATSymbol()) { 2727 if (Sym->isUndefined()) 2728 OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); 2729 return Sym; 2730 } 2731 } 2732 } 2733 } 2734 2735 const DataLayout &DL = getDataLayout(); 2736 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2737 "CPI" + Twine(getFunctionNumber()) + "_" + 2738 Twine(CPID)); 2739 } 2740 2741 /// GetJTISymbol - Return the symbol for the specified jump table entry. 2742 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { 2743 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); 2744 } 2745 2746 /// GetJTSetSymbol - Return the symbol for the specified jump table .set 2747 /// FIXME: privatize to AsmPrinter. 2748 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { 2749 const DataLayout &DL = getDataLayout(); 2750 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 2751 Twine(getFunctionNumber()) + "_" + 2752 Twine(UID) + "_set_" + Twine(MBBID)); 2753 } 2754 2755 MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, 2756 StringRef Suffix) const { 2757 return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); 2758 } 2759 2760 /// Return the MCSymbol for the specified ExternalSymbol. 2761 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { 2762 SmallString<60> NameStr; 2763 Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); 2764 return OutContext.getOrCreateSymbol(NameStr); 2765 } 2766 2767 /// PrintParentLoopComment - Print comments about parent loops of this one. 2768 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2769 unsigned FunctionNumber) { 2770 if (!Loop) return; 2771 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); 2772 OS.indent(Loop->getLoopDepth()*2) 2773 << "Parent Loop BB" << FunctionNumber << "_" 2774 << Loop->getHeader()->getNumber() 2775 << " Depth=" << Loop->getLoopDepth() << '\n'; 2776 } 2777 2778 /// PrintChildLoopComment - Print comments about child loops within 2779 /// the loop for this basic block, with nesting. 2780 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, 2781 unsigned FunctionNumber) { 2782 // Add child loop information 2783 for (const MachineLoop *CL : *Loop) { 2784 OS.indent(CL->getLoopDepth()*2) 2785 << "Child Loop BB" << FunctionNumber << "_" 2786 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() 2787 << '\n'; 2788 PrintChildLoopComment(OS, CL, FunctionNumber); 2789 } 2790 } 2791 2792 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. 2793 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, 2794 const MachineLoopInfo *LI, 2795 const AsmPrinter &AP) { 2796 // Add loop depth information 2797 const MachineLoop *Loop = LI->getLoopFor(&MBB); 2798 if (!Loop) return; 2799 2800 MachineBasicBlock *Header = Loop->getHeader(); 2801 assert(Header && "No header for loop"); 2802 2803 // If this block is not a loop header, just print out what is the loop header 2804 // and return. 2805 if (Header != &MBB) { 2806 AP.OutStreamer->AddComment(" in Loop: Header=BB" + 2807 Twine(AP.getFunctionNumber())+"_" + 2808 Twine(Loop->getHeader()->getNumber())+ 2809 " Depth="+Twine(Loop->getLoopDepth())); 2810 return; 2811 } 2812 2813 // Otherwise, it is a loop header. Print out information about child and 2814 // parent loops. 2815 raw_ostream &OS = AP.OutStreamer->GetCommentOS(); 2816 2817 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); 2818 2819 OS << "=>"; 2820 OS.indent(Loop->getLoopDepth()*2-2); 2821 2822 OS << "This "; 2823 if (Loop->empty()) 2824 OS << "Inner "; 2825 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; 2826 2827 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); 2828 } 2829 2830 void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, 2831 MCCodePaddingContext &Context) const { 2832 assert(MF != nullptr && "Machine function must be valid"); 2833 Context.IsPaddingActive = !MF->hasInlineAsm() && 2834 !MF->getFunction().optForSize() && 2835 TM.getOptLevel() != CodeGenOpt::None; 2836 Context.IsBasicBlockReachableViaFallthrough = 2837 std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != 2838 MBB.pred_end(); 2839 Context.IsBasicBlockReachableViaBranch = 2840 MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); 2841 } 2842 2843 /// EmitBasicBlockStart - This method prints the label for the specified 2844 /// MachineBasicBlock, an alignment (if present) and a comment describing 2845 /// it if appropriate. 2846 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const { 2847 // End the previous funclet and start a new one. 2848 if (MBB.isEHFuncletEntry()) { 2849 for (const HandlerInfo &HI : Handlers) { 2850 HI.Handler->endFunclet(); 2851 HI.Handler->beginFunclet(MBB); 2852 } 2853 } 2854 2855 // Emit an alignment directive for this block, if needed. 2856 if (unsigned Align = MBB.getAlignment()) 2857 EmitAlignment(Align); 2858 MCCodePaddingContext Context; 2859 setupCodePaddingContext(MBB, Context); 2860 OutStreamer->EmitCodePaddingBasicBlockStart(Context); 2861 2862 // If the block has its address taken, emit any labels that were used to 2863 // reference the block. It is possible that there is more than one label 2864 // here, because multiple LLVM BB's may have been RAUW'd to this block after 2865 // the references were generated. 2866 if (MBB.hasAddressTaken()) { 2867 const BasicBlock *BB = MBB.getBasicBlock(); 2868 if (isVerbose()) 2869 OutStreamer->AddComment("Block address taken"); 2870 2871 // MBBs can have their address taken as part of CodeGen without having 2872 // their corresponding BB's address taken in IR 2873 if (BB->hasAddressTaken()) 2874 for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) 2875 OutStreamer->EmitLabel(Sym); 2876 } 2877 2878 // Print some verbose block comments. 2879 if (isVerbose()) { 2880 if (const BasicBlock *BB = MBB.getBasicBlock()) { 2881 if (BB->hasName()) { 2882 BB->printAsOperand(OutStreamer->GetCommentOS(), 2883 /*PrintType=*/false, BB->getModule()); 2884 OutStreamer->GetCommentOS() << '\n'; 2885 } 2886 } 2887 2888 assert(MLI != nullptr && "MachineLoopInfo should has been computed"); 2889 emitBasicBlockLoopComments(MBB, MLI, *this); 2890 } 2891 2892 // Print the main label for the block. 2893 if (MBB.pred_empty() || 2894 (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry())) { 2895 if (isVerbose()) { 2896 // NOTE: Want this comment at start of line, don't emit with AddComment. 2897 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", 2898 false); 2899 } 2900 } else { 2901 OutStreamer->EmitLabel(MBB.getSymbol()); 2902 } 2903 } 2904 2905 void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { 2906 MCCodePaddingContext Context; 2907 setupCodePaddingContext(MBB, Context); 2908 OutStreamer->EmitCodePaddingBasicBlockEnd(Context); 2909 } 2910 2911 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, 2912 bool IsDefinition) const { 2913 MCSymbolAttr Attr = MCSA_Invalid; 2914 2915 switch (Visibility) { 2916 default: break; 2917 case GlobalValue::HiddenVisibility: 2918 if (IsDefinition) 2919 Attr = MAI->getHiddenVisibilityAttr(); 2920 else 2921 Attr = MAI->getHiddenDeclarationVisibilityAttr(); 2922 break; 2923 case GlobalValue::ProtectedVisibility: 2924 Attr = MAI->getProtectedVisibilityAttr(); 2925 break; 2926 } 2927 2928 if (Attr != MCSA_Invalid) 2929 OutStreamer->EmitSymbolAttribute(Sym, Attr); 2930 } 2931 2932 /// isBlockOnlyReachableByFallthough - Return true if the basic block has 2933 /// exactly one predecessor and the control transfer mechanism between 2934 /// the predecessor and this block is a fall-through. 2935 bool AsmPrinter:: 2936 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { 2937 // If this is a landing pad, it isn't a fall through. If it has no preds, 2938 // then nothing falls through to it. 2939 if (MBB->isEHPad() || MBB->pred_empty()) 2940 return false; 2941 2942 // If there isn't exactly one predecessor, it can't be a fall through. 2943 if (MBB->pred_size() > 1) 2944 return false; 2945 2946 // The predecessor has to be immediately before this block. 2947 MachineBasicBlock *Pred = *MBB->pred_begin(); 2948 if (!Pred->isLayoutSuccessor(MBB)) 2949 return false; 2950 2951 // If the block is completely empty, then it definitely does fall through. 2952 if (Pred->empty()) 2953 return true; 2954 2955 // Check the terminators in the previous blocks 2956 for (const auto &MI : Pred->terminators()) { 2957 // If it is not a simple branch, we are in a table somewhere. 2958 if (!MI.isBranch() || MI.isIndirectBranch()) 2959 return false; 2960 2961 // If we are the operands of one of the branches, this is not a fall 2962 // through. Note that targets with delay slots will usually bundle 2963 // terminators with the delay slot instruction. 2964 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { 2965 if (OP->isJTI()) 2966 return false; 2967 if (OP->isMBB() && OP->getMBB() == MBB) 2968 return false; 2969 } 2970 } 2971 2972 return true; 2973 } 2974 2975 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { 2976 if (!S.usesMetadata()) 2977 return nullptr; 2978 2979 assert(!S.useStatepoints() && "statepoints do not currently support custom" 2980 " stackmap formats, please see the documentation for a description of" 2981 " the default format. If you really need a custom serialized format," 2982 " please file a bug"); 2983 2984 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); 2985 gcp_map_type::iterator GCPI = GCMap.find(&S); 2986 if (GCPI != GCMap.end()) 2987 return GCPI->second.get(); 2988 2989 auto Name = S.getName(); 2990 2991 for (GCMetadataPrinterRegistry::iterator 2992 I = GCMetadataPrinterRegistry::begin(), 2993 E = GCMetadataPrinterRegistry::end(); I != E; ++I) 2994 if (Name == I->getName()) { 2995 std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); 2996 GMP->S = &S; 2997 auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); 2998 return IterBool.first->second.get(); 2999 } 3000 3001 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); 3002 } 3003 3004 /// Pin vtable to this file. 3005 AsmPrinterHandler::~AsmPrinterHandler() = default; 3006 3007 void AsmPrinterHandler::markFunctionEnd() {} 3008 3009 // In the binary's "xray_instr_map" section, an array of these function entries 3010 // describes each instrumentation point. When XRay patches your code, the index 3011 // into this table will be given to your handler as a patch point identifier. 3012 void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, 3013 const MCSymbol *CurrentFnSym) const { 3014 Out->EmitSymbolValue(Sled, Bytes); 3015 Out->EmitSymbolValue(CurrentFnSym, Bytes); 3016 auto Kind8 = static_cast<uint8_t>(Kind); 3017 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); 3018 Out->EmitBinaryData( 3019 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); 3020 Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); 3021 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); 3022 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); 3023 Out->EmitZeros(Padding); 3024 } 3025 3026 void AsmPrinter::emitXRayTable() { 3027 if (Sleds.empty()) 3028 return; 3029 3030 auto PrevSection = OutStreamer->getCurrentSectionOnly(); 3031 const Function &F = MF->getFunction(); 3032 MCSection *InstMap = nullptr; 3033 MCSection *FnSledIndex = nullptr; 3034 if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { 3035 auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); 3036 assert(Associated != nullptr); 3037 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; 3038 std::string GroupName; 3039 if (F.hasComdat()) { 3040 Flags |= ELF::SHF_GROUP; 3041 GroupName = F.getComdat()->getName(); 3042 } 3043 3044 auto UniqueID = ++XRayFnUniqueID; 3045 InstMap = 3046 OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, 3047 GroupName, UniqueID, Associated); 3048 FnSledIndex = 3049 OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, 3050 GroupName, UniqueID, Associated); 3051 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { 3052 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, 3053 SectionKind::getReadOnlyWithRel()); 3054 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, 3055 SectionKind::getReadOnlyWithRel()); 3056 } else { 3057 llvm_unreachable("Unsupported target"); 3058 } 3059 3060 auto WordSizeBytes = MAI->getCodePointerSize(); 3061 3062 // Now we switch to the instrumentation map section. Because this is done 3063 // per-function, we are able to create an index entry that will represent the 3064 // range of sleds associated with a function. 3065 MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); 3066 OutStreamer->SwitchSection(InstMap); 3067 OutStreamer->EmitLabel(SledsStart); 3068 for (const auto &Sled : Sleds) 3069 Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); 3070 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); 3071 OutStreamer->EmitLabel(SledsEnd); 3072 3073 // We then emit a single entry in the index per function. We use the symbols 3074 // that bound the instrumentation map as the range for a specific function. 3075 // Each entry here will be 2 * word size aligned, as we're writing down two 3076 // pointers. This should work for both 32-bit and 64-bit platforms. 3077 OutStreamer->SwitchSection(FnSledIndex); 3078 OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); 3079 OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); 3080 OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); 3081 OutStreamer->SwitchSection(PrevSection); 3082 Sleds.clear(); 3083 } 3084 3085 void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, 3086 SledKind Kind, uint8_t Version) { 3087 const Function &F = MI.getMF()->getFunction(); 3088 auto Attr = F.getFnAttribute("function-instrument"); 3089 bool LogArgs = F.hasFnAttribute("xray-log-args"); 3090 bool AlwaysInstrument = 3091 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; 3092 if (Kind == SledKind::FUNCTION_ENTER && LogArgs) 3093 Kind = SledKind::LOG_ARGS_ENTER; 3094 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, 3095 AlwaysInstrument, &F, Version}); 3096 } 3097 3098 uint16_t AsmPrinter::getDwarfVersion() const { 3099 return OutStreamer->getContext().getDwarfVersion(); 3100 } 3101 3102 void AsmPrinter::setDwarfVersion(uint16_t Version) { 3103 OutStreamer->getContext().setDwarfVersion(Version); 3104 } 3105